Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger...
[cascardo/linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106                                         1;
107 #else
108                                         2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113         randomize_va_space = 0;
114         return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 EXPORT_SYMBOL(zero_pfn);
122
123 /*
124  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125  */
126 static int __init init_zero_pfn(void)
127 {
128         zero_pfn = page_to_pfn(ZERO_PAGE(0));
129         return 0;
130 }
131 core_initcall(init_zero_pfn);
132
133
134 #if defined(SPLIT_RSS_COUNTING)
135
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138         int i;
139
140         for (i = 0; i < NR_MM_COUNTERS; i++) {
141                 if (current->rss_stat.count[i]) {
142                         add_mm_counter(mm, i, current->rss_stat.count[i]);
143                         current->rss_stat.count[i] = 0;
144                 }
145         }
146         current->rss_stat.events = 0;
147 }
148
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151         struct task_struct *task = current;
152
153         if (likely(task->mm == mm))
154                 task->rss_stat.count[member] += val;
155         else
156                 add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH  (64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165         if (unlikely(task != current))
166                 return;
167         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168                 sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178
179 #endif /* SPLIT_RSS_COUNTING */
180
181 #ifdef HAVE_GENERIC_MMU_GATHER
182
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185         struct mmu_gather_batch *batch;
186
187         batch = tlb->active;
188         if (batch->next) {
189                 tlb->active = batch->next;
190                 return 1;
191         }
192
193         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194                 return 0;
195
196         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197         if (!batch)
198                 return 0;
199
200         tlb->batch_count++;
201         batch->next = NULL;
202         batch->nr   = 0;
203         batch->max  = MAX_GATHER_BATCH;
204
205         tlb->active->next = batch;
206         tlb->active = batch;
207
208         return 1;
209 }
210
211 /* tlb_gather_mmu
212  *      Called to initialize an (on-stack) mmu_gather structure for page-table
213  *      tear-down from @mm. The @fullmm argument is used when @mm is without
214  *      users and we're going to destroy the full address space (exit/execve).
215  */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218         tlb->mm = mm;
219
220         /* Is it from 0 to ~0? */
221         tlb->fullmm     = !(start | (end+1));
222         tlb->need_flush_all = 0;
223         tlb->local.next = NULL;
224         tlb->local.nr   = 0;
225         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
226         tlb->active     = &tlb->local;
227         tlb->batch_count = 0;
228
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230         tlb->batch = NULL;
231 #endif
232
233         __tlb_reset_range(tlb);
234 }
235
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237 {
238         tlb_flush(tlb);
239         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
240 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
241         tlb_table_flush(tlb);
242 #endif
243         __tlb_reset_range(tlb);
244 }
245
246 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
247 {
248         struct mmu_gather_batch *batch;
249
250         for (batch = &tlb->local; batch; batch = batch->next) {
251                 free_pages_and_swap_cache(batch->pages, batch->nr);
252                 batch->nr = 0;
253         }
254         tlb->active = &tlb->local;
255 }
256
257 void tlb_flush_mmu(struct mmu_gather *tlb)
258 {
259         if (!tlb->end)
260                 return;
261
262         tlb_flush_mmu_tlbonly(tlb);
263         tlb_flush_mmu_free(tlb);
264 }
265
266 /* tlb_finish_mmu
267  *      Called at the end of the shootdown operation to free up any resources
268  *      that were required.
269  */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272         struct mmu_gather_batch *batch, *next;
273
274         tlb_flush_mmu(tlb);
275
276         /* keep the page table cache within bounds */
277         check_pgt_cache();
278
279         for (batch = tlb->local.next; batch; batch = next) {
280                 next = batch->next;
281                 free_pages((unsigned long)batch, 0);
282         }
283         tlb->local.next = NULL;
284 }
285
286 /* __tlb_remove_page
287  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288  *      handling the additional races in SMP caused by other CPUs caching valid
289  *      mappings in their TLBs. Returns the number of free page slots left.
290  *      When out of page slots we must call tlb_flush_mmu().
291  */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294         struct mmu_gather_batch *batch;
295
296         VM_BUG_ON(!tlb->end);
297
298         batch = tlb->active;
299         batch->pages[batch->nr++] = page;
300         if (batch->nr == batch->max) {
301                 if (!tlb_next_batch(tlb))
302                         return 0;
303                 batch = tlb->active;
304         }
305         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
306
307         return batch->max - batch->nr;
308 }
309
310 #endif /* HAVE_GENERIC_MMU_GATHER */
311
312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
313
314 /*
315  * See the comment near struct mmu_table_batch.
316  */
317
318 static void tlb_remove_table_smp_sync(void *arg)
319 {
320         /* Simply deliver the interrupt */
321 }
322
323 static void tlb_remove_table_one(void *table)
324 {
325         /*
326          * This isn't an RCU grace period and hence the page-tables cannot be
327          * assumed to be actually RCU-freed.
328          *
329          * It is however sufficient for software page-table walkers that rely on
330          * IRQ disabling. See the comment near struct mmu_table_batch.
331          */
332         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
333         __tlb_remove_table(table);
334 }
335
336 static void tlb_remove_table_rcu(struct rcu_head *head)
337 {
338         struct mmu_table_batch *batch;
339         int i;
340
341         batch = container_of(head, struct mmu_table_batch, rcu);
342
343         for (i = 0; i < batch->nr; i++)
344                 __tlb_remove_table(batch->tables[i]);
345
346         free_page((unsigned long)batch);
347 }
348
349 void tlb_table_flush(struct mmu_gather *tlb)
350 {
351         struct mmu_table_batch **batch = &tlb->batch;
352
353         if (*batch) {
354                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
355                 *batch = NULL;
356         }
357 }
358
359 void tlb_remove_table(struct mmu_gather *tlb, void *table)
360 {
361         struct mmu_table_batch **batch = &tlb->batch;
362
363         /*
364          * When there's less then two users of this mm there cannot be a
365          * concurrent page-table walk.
366          */
367         if (atomic_read(&tlb->mm->mm_users) < 2) {
368                 __tlb_remove_table(table);
369                 return;
370         }
371
372         if (*batch == NULL) {
373                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374                 if (*batch == NULL) {
375                         tlb_remove_table_one(table);
376                         return;
377                 }
378                 (*batch)->nr = 0;
379         }
380         (*batch)->tables[(*batch)->nr++] = table;
381         if ((*batch)->nr == MAX_TABLE_BATCH)
382                 tlb_table_flush(tlb);
383 }
384
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
386
387 /*
388  * Note: this doesn't free the actual pages themselves. That
389  * has been handled earlier when unmapping all the memory regions.
390  */
391 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
392                            unsigned long addr)
393 {
394         pgtable_t token = pmd_pgtable(*pmd);
395         pmd_clear(pmd);
396         pte_free_tlb(tlb, token, addr);
397         atomic_long_dec(&tlb->mm->nr_ptes);
398 }
399
400 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
401                                 unsigned long addr, unsigned long end,
402                                 unsigned long floor, unsigned long ceiling)
403 {
404         pmd_t *pmd;
405         unsigned long next;
406         unsigned long start;
407
408         start = addr;
409         pmd = pmd_offset(pud, addr);
410         do {
411                 next = pmd_addr_end(addr, end);
412                 if (pmd_none_or_clear_bad(pmd))
413                         continue;
414                 free_pte_range(tlb, pmd, addr);
415         } while (pmd++, addr = next, addr != end);
416
417         start &= PUD_MASK;
418         if (start < floor)
419                 return;
420         if (ceiling) {
421                 ceiling &= PUD_MASK;
422                 if (!ceiling)
423                         return;
424         }
425         if (end - 1 > ceiling - 1)
426                 return;
427
428         pmd = pmd_offset(pud, start);
429         pud_clear(pud);
430         pmd_free_tlb(tlb, pmd, start);
431 }
432
433 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
434                                 unsigned long addr, unsigned long end,
435                                 unsigned long floor, unsigned long ceiling)
436 {
437         pud_t *pud;
438         unsigned long next;
439         unsigned long start;
440
441         start = addr;
442         pud = pud_offset(pgd, addr);
443         do {
444                 next = pud_addr_end(addr, end);
445                 if (pud_none_or_clear_bad(pud))
446                         continue;
447                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
448         } while (pud++, addr = next, addr != end);
449
450         start &= PGDIR_MASK;
451         if (start < floor)
452                 return;
453         if (ceiling) {
454                 ceiling &= PGDIR_MASK;
455                 if (!ceiling)
456                         return;
457         }
458         if (end - 1 > ceiling - 1)
459                 return;
460
461         pud = pud_offset(pgd, start);
462         pgd_clear(pgd);
463         pud_free_tlb(tlb, pud, start);
464 }
465
466 /*
467  * This function frees user-level page tables of a process.
468  */
469 void free_pgd_range(struct mmu_gather *tlb,
470                         unsigned long addr, unsigned long end,
471                         unsigned long floor, unsigned long ceiling)
472 {
473         pgd_t *pgd;
474         unsigned long next;
475
476         /*
477          * The next few lines have given us lots of grief...
478          *
479          * Why are we testing PMD* at this top level?  Because often
480          * there will be no work to do at all, and we'd prefer not to
481          * go all the way down to the bottom just to discover that.
482          *
483          * Why all these "- 1"s?  Because 0 represents both the bottom
484          * of the address space and the top of it (using -1 for the
485          * top wouldn't help much: the masks would do the wrong thing).
486          * The rule is that addr 0 and floor 0 refer to the bottom of
487          * the address space, but end 0 and ceiling 0 refer to the top
488          * Comparisons need to use "end - 1" and "ceiling - 1" (though
489          * that end 0 case should be mythical).
490          *
491          * Wherever addr is brought up or ceiling brought down, we must
492          * be careful to reject "the opposite 0" before it confuses the
493          * subsequent tests.  But what about where end is brought down
494          * by PMD_SIZE below? no, end can't go down to 0 there.
495          *
496          * Whereas we round start (addr) and ceiling down, by different
497          * masks at different levels, in order to test whether a table
498          * now has no other vmas using it, so can be freed, we don't
499          * bother to round floor or end up - the tests don't need that.
500          */
501
502         addr &= PMD_MASK;
503         if (addr < floor) {
504                 addr += PMD_SIZE;
505                 if (!addr)
506                         return;
507         }
508         if (ceiling) {
509                 ceiling &= PMD_MASK;
510                 if (!ceiling)
511                         return;
512         }
513         if (end - 1 > ceiling - 1)
514                 end -= PMD_SIZE;
515         if (addr > end - 1)
516                 return;
517
518         pgd = pgd_offset(tlb->mm, addr);
519         do {
520                 next = pgd_addr_end(addr, end);
521                 if (pgd_none_or_clear_bad(pgd))
522                         continue;
523                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
524         } while (pgd++, addr = next, addr != end);
525 }
526
527 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
528                 unsigned long floor, unsigned long ceiling)
529 {
530         while (vma) {
531                 struct vm_area_struct *next = vma->vm_next;
532                 unsigned long addr = vma->vm_start;
533
534                 /*
535                  * Hide vma from rmap and truncate_pagecache before freeing
536                  * pgtables
537                  */
538                 unlink_anon_vmas(vma);
539                 unlink_file_vma(vma);
540
541                 if (is_vm_hugetlb_page(vma)) {
542                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
543                                 floor, next? next->vm_start: ceiling);
544                 } else {
545                         /*
546                          * Optimization: gather nearby vmas into one call down
547                          */
548                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
549                                && !is_vm_hugetlb_page(next)) {
550                                 vma = next;
551                                 next = vma->vm_next;
552                                 unlink_anon_vmas(vma);
553                                 unlink_file_vma(vma);
554                         }
555                         free_pgd_range(tlb, addr, vma->vm_end,
556                                 floor, next? next->vm_start: ceiling);
557                 }
558                 vma = next;
559         }
560 }
561
562 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
563                 pmd_t *pmd, unsigned long address)
564 {
565         spinlock_t *ptl;
566         pgtable_t new = pte_alloc_one(mm, address);
567         int wait_split_huge_page;
568         if (!new)
569                 return -ENOMEM;
570
571         /*
572          * Ensure all pte setup (eg. pte page lock and page clearing) are
573          * visible before the pte is made visible to other CPUs by being
574          * put into page tables.
575          *
576          * The other side of the story is the pointer chasing in the page
577          * table walking code (when walking the page table without locking;
578          * ie. most of the time). Fortunately, these data accesses consist
579          * of a chain of data-dependent loads, meaning most CPUs (alpha
580          * being the notable exception) will already guarantee loads are
581          * seen in-order. See the alpha page table accessors for the
582          * smp_read_barrier_depends() barriers in page table walking code.
583          */
584         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
585
586         ptl = pmd_lock(mm, pmd);
587         wait_split_huge_page = 0;
588         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
589                 atomic_long_inc(&mm->nr_ptes);
590                 pmd_populate(mm, pmd, new);
591                 new = NULL;
592         } else if (unlikely(pmd_trans_splitting(*pmd)))
593                 wait_split_huge_page = 1;
594         spin_unlock(ptl);
595         if (new)
596                 pte_free(mm, new);
597         if (wait_split_huge_page)
598                 wait_split_huge_page(vma->anon_vma, pmd);
599         return 0;
600 }
601
602 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
603 {
604         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
605         if (!new)
606                 return -ENOMEM;
607
608         smp_wmb(); /* See comment in __pte_alloc */
609
610         spin_lock(&init_mm.page_table_lock);
611         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
612                 pmd_populate_kernel(&init_mm, pmd, new);
613                 new = NULL;
614         } else
615                 VM_BUG_ON(pmd_trans_splitting(*pmd));
616         spin_unlock(&init_mm.page_table_lock);
617         if (new)
618                 pte_free_kernel(&init_mm, new);
619         return 0;
620 }
621
622 static inline void init_rss_vec(int *rss)
623 {
624         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
625 }
626
627 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
628 {
629         int i;
630
631         if (current->mm == mm)
632                 sync_mm_rss(mm);
633         for (i = 0; i < NR_MM_COUNTERS; i++)
634                 if (rss[i])
635                         add_mm_counter(mm, i, rss[i]);
636 }
637
638 /*
639  * This function is called to print an error when a bad pte
640  * is found. For example, we might have a PFN-mapped pte in
641  * a region that doesn't allow it.
642  *
643  * The calling function must still handle the error.
644  */
645 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
646                           pte_t pte, struct page *page)
647 {
648         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
649         pud_t *pud = pud_offset(pgd, addr);
650         pmd_t *pmd = pmd_offset(pud, addr);
651         struct address_space *mapping;
652         pgoff_t index;
653         static unsigned long resume;
654         static unsigned long nr_shown;
655         static unsigned long nr_unshown;
656
657         /*
658          * Allow a burst of 60 reports, then keep quiet for that minute;
659          * or allow a steady drip of one report per second.
660          */
661         if (nr_shown == 60) {
662                 if (time_before(jiffies, resume)) {
663                         nr_unshown++;
664                         return;
665                 }
666                 if (nr_unshown) {
667                         printk(KERN_ALERT
668                                 "BUG: Bad page map: %lu messages suppressed\n",
669                                 nr_unshown);
670                         nr_unshown = 0;
671                 }
672                 nr_shown = 0;
673         }
674         if (nr_shown++ == 0)
675                 resume = jiffies + 60 * HZ;
676
677         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
678         index = linear_page_index(vma, addr);
679
680         printk(KERN_ALERT
681                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
682                 current->comm,
683                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
684         if (page)
685                 dump_page(page, "bad pte");
686         printk(KERN_ALERT
687                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
688                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
689         /*
690          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
691          */
692         if (vma->vm_ops)
693                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
694                        vma->vm_ops->fault);
695         if (vma->vm_file)
696                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
697                        vma->vm_file->f_op->mmap);
698         dump_stack();
699         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
700 }
701
702 /*
703  * vm_normal_page -- This function gets the "struct page" associated with a pte.
704  *
705  * "Special" mappings do not wish to be associated with a "struct page" (either
706  * it doesn't exist, or it exists but they don't want to touch it). In this
707  * case, NULL is returned here. "Normal" mappings do have a struct page.
708  *
709  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
710  * pte bit, in which case this function is trivial. Secondly, an architecture
711  * may not have a spare pte bit, which requires a more complicated scheme,
712  * described below.
713  *
714  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
715  * special mapping (even if there are underlying and valid "struct pages").
716  * COWed pages of a VM_PFNMAP are always normal.
717  *
718  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
719  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
720  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
721  * mapping will always honor the rule
722  *
723  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
724  *
725  * And for normal mappings this is false.
726  *
727  * This restricts such mappings to be a linear translation from virtual address
728  * to pfn. To get around this restriction, we allow arbitrary mappings so long
729  * as the vma is not a COW mapping; in that case, we know that all ptes are
730  * special (because none can have been COWed).
731  *
732  *
733  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
734  *
735  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
736  * page" backing, however the difference is that _all_ pages with a struct
737  * page (that is, those where pfn_valid is true) are refcounted and considered
738  * normal pages by the VM. The disadvantage is that pages are refcounted
739  * (which can be slower and simply not an option for some PFNMAP users). The
740  * advantage is that we don't have to follow the strict linearity rule of
741  * PFNMAP mappings in order to support COWable mappings.
742  *
743  */
744 #ifdef __HAVE_ARCH_PTE_SPECIAL
745 # define HAVE_PTE_SPECIAL 1
746 #else
747 # define HAVE_PTE_SPECIAL 0
748 #endif
749 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
750                                 pte_t pte)
751 {
752         unsigned long pfn = pte_pfn(pte);
753
754         if (HAVE_PTE_SPECIAL) {
755                 if (likely(!pte_special(pte)))
756                         goto check_pfn;
757                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
758                         return NULL;
759                 if (!is_zero_pfn(pfn))
760                         print_bad_pte(vma, addr, pte, NULL);
761                 return NULL;
762         }
763
764         /* !HAVE_PTE_SPECIAL case follows: */
765
766         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
767                 if (vma->vm_flags & VM_MIXEDMAP) {
768                         if (!pfn_valid(pfn))
769                                 return NULL;
770                         goto out;
771                 } else {
772                         unsigned long off;
773                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
774                         if (pfn == vma->vm_pgoff + off)
775                                 return NULL;
776                         if (!is_cow_mapping(vma->vm_flags))
777                                 return NULL;
778                 }
779         }
780
781         if (is_zero_pfn(pfn))
782                 return NULL;
783 check_pfn:
784         if (unlikely(pfn > highest_memmap_pfn)) {
785                 print_bad_pte(vma, addr, pte, NULL);
786                 return NULL;
787         }
788
789         /*
790          * NOTE! We still have PageReserved() pages in the page tables.
791          * eg. VDSO mappings can cause them to exist.
792          */
793 out:
794         return pfn_to_page(pfn);
795 }
796
797 /*
798  * copy one vm_area from one task to the other. Assumes the page tables
799  * already present in the new task to be cleared in the whole range
800  * covered by this vma.
801  */
802
803 static inline unsigned long
804 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
805                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
806                 unsigned long addr, int *rss)
807 {
808         unsigned long vm_flags = vma->vm_flags;
809         pte_t pte = *src_pte;
810         struct page *page;
811
812         /* pte contains position in swap or file, so copy. */
813         if (unlikely(!pte_present(pte))) {
814                 if (!pte_file(pte)) {
815                         swp_entry_t entry = pte_to_swp_entry(pte);
816
817                         if (likely(!non_swap_entry(entry))) {
818                                 if (swap_duplicate(entry) < 0)
819                                         return entry.val;
820
821                                 /* make sure dst_mm is on swapoff's mmlist. */
822                                 if (unlikely(list_empty(&dst_mm->mmlist))) {
823                                         spin_lock(&mmlist_lock);
824                                         if (list_empty(&dst_mm->mmlist))
825                                                 list_add(&dst_mm->mmlist,
826                                                          &src_mm->mmlist);
827                                         spin_unlock(&mmlist_lock);
828                                 }
829                                 rss[MM_SWAPENTS]++;
830                         } else if (is_migration_entry(entry)) {
831                                 page = migration_entry_to_page(entry);
832
833                                 if (PageAnon(page))
834                                         rss[MM_ANONPAGES]++;
835                                 else
836                                         rss[MM_FILEPAGES]++;
837
838                                 if (is_write_migration_entry(entry) &&
839                                     is_cow_mapping(vm_flags)) {
840                                         /*
841                                          * COW mappings require pages in both
842                                          * parent and child to be set to read.
843                                          */
844                                         make_migration_entry_read(&entry);
845                                         pte = swp_entry_to_pte(entry);
846                                         if (pte_swp_soft_dirty(*src_pte))
847                                                 pte = pte_swp_mksoft_dirty(pte);
848                                         set_pte_at(src_mm, addr, src_pte, pte);
849                                 }
850                         }
851                 }
852                 goto out_set_pte;
853         }
854
855         /*
856          * If it's a COW mapping, write protect it both
857          * in the parent and the child
858          */
859         if (is_cow_mapping(vm_flags)) {
860                 ptep_set_wrprotect(src_mm, addr, src_pte);
861                 pte = pte_wrprotect(pte);
862         }
863
864         /*
865          * If it's a shared mapping, mark it clean in
866          * the child
867          */
868         if (vm_flags & VM_SHARED)
869                 pte = pte_mkclean(pte);
870         pte = pte_mkold(pte);
871
872         page = vm_normal_page(vma, addr, pte);
873         if (page) {
874                 get_page(page);
875                 page_dup_rmap(page);
876                 if (PageAnon(page))
877                         rss[MM_ANONPAGES]++;
878                 else
879                         rss[MM_FILEPAGES]++;
880         }
881
882 out_set_pte:
883         set_pte_at(dst_mm, addr, dst_pte, pte);
884         return 0;
885 }
886
887 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
888                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
889                    unsigned long addr, unsigned long end)
890 {
891         pte_t *orig_src_pte, *orig_dst_pte;
892         pte_t *src_pte, *dst_pte;
893         spinlock_t *src_ptl, *dst_ptl;
894         int progress = 0;
895         int rss[NR_MM_COUNTERS];
896         swp_entry_t entry = (swp_entry_t){0};
897
898 again:
899         init_rss_vec(rss);
900
901         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
902         if (!dst_pte)
903                 return -ENOMEM;
904         src_pte = pte_offset_map(src_pmd, addr);
905         src_ptl = pte_lockptr(src_mm, src_pmd);
906         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
907         orig_src_pte = src_pte;
908         orig_dst_pte = dst_pte;
909         arch_enter_lazy_mmu_mode();
910
911         do {
912                 /*
913                  * We are holding two locks at this point - either of them
914                  * could generate latencies in another task on another CPU.
915                  */
916                 if (progress >= 32) {
917                         progress = 0;
918                         if (need_resched() ||
919                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
920                                 break;
921                 }
922                 if (pte_none(*src_pte)) {
923                         progress++;
924                         continue;
925                 }
926                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
927                                                         vma, addr, rss);
928                 if (entry.val)
929                         break;
930                 progress += 8;
931         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
932
933         arch_leave_lazy_mmu_mode();
934         spin_unlock(src_ptl);
935         pte_unmap(orig_src_pte);
936         add_mm_rss_vec(dst_mm, rss);
937         pte_unmap_unlock(orig_dst_pte, dst_ptl);
938         cond_resched();
939
940         if (entry.val) {
941                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
942                         return -ENOMEM;
943                 progress = 0;
944         }
945         if (addr != end)
946                 goto again;
947         return 0;
948 }
949
950 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
951                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
952                 unsigned long addr, unsigned long end)
953 {
954         pmd_t *src_pmd, *dst_pmd;
955         unsigned long next;
956
957         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
958         if (!dst_pmd)
959                 return -ENOMEM;
960         src_pmd = pmd_offset(src_pud, addr);
961         do {
962                 next = pmd_addr_end(addr, end);
963                 if (pmd_trans_huge(*src_pmd)) {
964                         int err;
965                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
966                         err = copy_huge_pmd(dst_mm, src_mm,
967                                             dst_pmd, src_pmd, addr, vma);
968                         if (err == -ENOMEM)
969                                 return -ENOMEM;
970                         if (!err)
971                                 continue;
972                         /* fall through */
973                 }
974                 if (pmd_none_or_clear_bad(src_pmd))
975                         continue;
976                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
977                                                 vma, addr, next))
978                         return -ENOMEM;
979         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
980         return 0;
981 }
982
983 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
984                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
985                 unsigned long addr, unsigned long end)
986 {
987         pud_t *src_pud, *dst_pud;
988         unsigned long next;
989
990         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
991         if (!dst_pud)
992                 return -ENOMEM;
993         src_pud = pud_offset(src_pgd, addr);
994         do {
995                 next = pud_addr_end(addr, end);
996                 if (pud_none_or_clear_bad(src_pud))
997                         continue;
998                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
999                                                 vma, addr, next))
1000                         return -ENOMEM;
1001         } while (dst_pud++, src_pud++, addr = next, addr != end);
1002         return 0;
1003 }
1004
1005 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1006                 struct vm_area_struct *vma)
1007 {
1008         pgd_t *src_pgd, *dst_pgd;
1009         unsigned long next;
1010         unsigned long addr = vma->vm_start;
1011         unsigned long end = vma->vm_end;
1012         unsigned long mmun_start;       /* For mmu_notifiers */
1013         unsigned long mmun_end;         /* For mmu_notifiers */
1014         bool is_cow;
1015         int ret;
1016
1017         /*
1018          * Don't copy ptes where a page fault will fill them correctly.
1019          * Fork becomes much lighter when there are big shared or private
1020          * readonly mappings. The tradeoff is that copy_page_range is more
1021          * efficient than faulting.
1022          */
1023         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1024                                VM_PFNMAP | VM_MIXEDMAP))) {
1025                 if (!vma->anon_vma)
1026                         return 0;
1027         }
1028
1029         if (is_vm_hugetlb_page(vma))
1030                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1031
1032         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1033                 /*
1034                  * We do not free on error cases below as remove_vma
1035                  * gets called on error from higher level routine
1036                  */
1037                 ret = track_pfn_copy(vma);
1038                 if (ret)
1039                         return ret;
1040         }
1041
1042         /*
1043          * We need to invalidate the secondary MMU mappings only when
1044          * there could be a permission downgrade on the ptes of the
1045          * parent mm. And a permission downgrade will only happen if
1046          * is_cow_mapping() returns true.
1047          */
1048         is_cow = is_cow_mapping(vma->vm_flags);
1049         mmun_start = addr;
1050         mmun_end   = end;
1051         if (is_cow)
1052                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1053                                                     mmun_end);
1054
1055         ret = 0;
1056         dst_pgd = pgd_offset(dst_mm, addr);
1057         src_pgd = pgd_offset(src_mm, addr);
1058         do {
1059                 next = pgd_addr_end(addr, end);
1060                 if (pgd_none_or_clear_bad(src_pgd))
1061                         continue;
1062                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1063                                             vma, addr, next))) {
1064                         ret = -ENOMEM;
1065                         break;
1066                 }
1067         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1068
1069         if (is_cow)
1070                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1071         return ret;
1072 }
1073
1074 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1075                                 struct vm_area_struct *vma, pmd_t *pmd,
1076                                 unsigned long addr, unsigned long end,
1077                                 struct zap_details *details)
1078 {
1079         struct mm_struct *mm = tlb->mm;
1080         int force_flush = 0;
1081         int rss[NR_MM_COUNTERS];
1082         spinlock_t *ptl;
1083         pte_t *start_pte;
1084         pte_t *pte;
1085
1086 again:
1087         init_rss_vec(rss);
1088         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1089         pte = start_pte;
1090         arch_enter_lazy_mmu_mode();
1091         do {
1092                 pte_t ptent = *pte;
1093                 if (pte_none(ptent)) {
1094                         continue;
1095                 }
1096
1097                 if (pte_present(ptent)) {
1098                         struct page *page;
1099
1100                         page = vm_normal_page(vma, addr, ptent);
1101                         if (unlikely(details) && page) {
1102                                 /*
1103                                  * unmap_shared_mapping_pages() wants to
1104                                  * invalidate cache without truncating:
1105                                  * unmap shared but keep private pages.
1106                                  */
1107                                 if (details->check_mapping &&
1108                                     details->check_mapping != page->mapping)
1109                                         continue;
1110                                 /*
1111                                  * Each page->index must be checked when
1112                                  * invalidating or truncating nonlinear.
1113                                  */
1114                                 if (details->nonlinear_vma &&
1115                                     (page->index < details->first_index ||
1116                                      page->index > details->last_index))
1117                                         continue;
1118                         }
1119                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1120                                                         tlb->fullmm);
1121                         tlb_remove_tlb_entry(tlb, pte, addr);
1122                         if (unlikely(!page))
1123                                 continue;
1124                         if (unlikely(details) && details->nonlinear_vma
1125                             && linear_page_index(details->nonlinear_vma,
1126                                                 addr) != page->index) {
1127                                 pte_t ptfile = pgoff_to_pte(page->index);
1128                                 if (pte_soft_dirty(ptent))
1129                                         ptfile = pte_file_mksoft_dirty(ptfile);
1130                                 set_pte_at(mm, addr, pte, ptfile);
1131                         }
1132                         if (PageAnon(page))
1133                                 rss[MM_ANONPAGES]--;
1134                         else {
1135                                 if (pte_dirty(ptent)) {
1136                                         force_flush = 1;
1137                                         set_page_dirty(page);
1138                                 }
1139                                 if (pte_young(ptent) &&
1140                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1141                                         mark_page_accessed(page);
1142                                 rss[MM_FILEPAGES]--;
1143                         }
1144                         page_remove_rmap(page);
1145                         if (unlikely(page_mapcount(page) < 0))
1146                                 print_bad_pte(vma, addr, ptent, page);
1147                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1148                                 force_flush = 1;
1149                                 addr += PAGE_SIZE;
1150                                 break;
1151                         }
1152                         continue;
1153                 }
1154                 /*
1155                  * If details->check_mapping, we leave swap entries;
1156                  * if details->nonlinear_vma, we leave file entries.
1157                  */
1158                 if (unlikely(details))
1159                         continue;
1160                 if (pte_file(ptent)) {
1161                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1162                                 print_bad_pte(vma, addr, ptent, NULL);
1163                 } else {
1164                         swp_entry_t entry = pte_to_swp_entry(ptent);
1165
1166                         if (!non_swap_entry(entry))
1167                                 rss[MM_SWAPENTS]--;
1168                         else if (is_migration_entry(entry)) {
1169                                 struct page *page;
1170
1171                                 page = migration_entry_to_page(entry);
1172
1173                                 if (PageAnon(page))
1174                                         rss[MM_ANONPAGES]--;
1175                                 else
1176                                         rss[MM_FILEPAGES]--;
1177                         }
1178                         if (unlikely(!free_swap_and_cache(entry)))
1179                                 print_bad_pte(vma, addr, ptent, NULL);
1180                 }
1181                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1182         } while (pte++, addr += PAGE_SIZE, addr != end);
1183
1184         add_mm_rss_vec(mm, rss);
1185         arch_leave_lazy_mmu_mode();
1186
1187         /* Do the actual TLB flush before dropping ptl */
1188         if (force_flush)
1189                 tlb_flush_mmu_tlbonly(tlb);
1190         pte_unmap_unlock(start_pte, ptl);
1191
1192         /*
1193          * If we forced a TLB flush (either due to running out of
1194          * batch buffers or because we needed to flush dirty TLB
1195          * entries before releasing the ptl), free the batched
1196          * memory too. Restart if we didn't do everything.
1197          */
1198         if (force_flush) {
1199                 force_flush = 0;
1200                 tlb_flush_mmu_free(tlb);
1201
1202                 if (addr != end)
1203                         goto again;
1204         }
1205
1206         return addr;
1207 }
1208
1209 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1210                                 struct vm_area_struct *vma, pud_t *pud,
1211                                 unsigned long addr, unsigned long end,
1212                                 struct zap_details *details)
1213 {
1214         pmd_t *pmd;
1215         unsigned long next;
1216
1217         pmd = pmd_offset(pud, addr);
1218         do {
1219                 next = pmd_addr_end(addr, end);
1220                 if (pmd_trans_huge(*pmd)) {
1221                         if (next - addr != HPAGE_PMD_SIZE) {
1222 #ifdef CONFIG_DEBUG_VM
1223                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1224                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1225                                                 __func__, addr, end,
1226                                                 vma->vm_start,
1227                                                 vma->vm_end);
1228                                         BUG();
1229                                 }
1230 #endif
1231                                 split_huge_page_pmd(vma, addr, pmd);
1232                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1233                                 goto next;
1234                         /* fall through */
1235                 }
1236                 /*
1237                  * Here there can be other concurrent MADV_DONTNEED or
1238                  * trans huge page faults running, and if the pmd is
1239                  * none or trans huge it can change under us. This is
1240                  * because MADV_DONTNEED holds the mmap_sem in read
1241                  * mode.
1242                  */
1243                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1244                         goto next;
1245                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1246 next:
1247                 cond_resched();
1248         } while (pmd++, addr = next, addr != end);
1249
1250         return addr;
1251 }
1252
1253 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1254                                 struct vm_area_struct *vma, pgd_t *pgd,
1255                                 unsigned long addr, unsigned long end,
1256                                 struct zap_details *details)
1257 {
1258         pud_t *pud;
1259         unsigned long next;
1260
1261         pud = pud_offset(pgd, addr);
1262         do {
1263                 next = pud_addr_end(addr, end);
1264                 if (pud_none_or_clear_bad(pud))
1265                         continue;
1266                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1267         } while (pud++, addr = next, addr != end);
1268
1269         return addr;
1270 }
1271
1272 static void unmap_page_range(struct mmu_gather *tlb,
1273                              struct vm_area_struct *vma,
1274                              unsigned long addr, unsigned long end,
1275                              struct zap_details *details)
1276 {
1277         pgd_t *pgd;
1278         unsigned long next;
1279
1280         if (details && !details->check_mapping && !details->nonlinear_vma)
1281                 details = NULL;
1282
1283         BUG_ON(addr >= end);
1284         tlb_start_vma(tlb, vma);
1285         pgd = pgd_offset(vma->vm_mm, addr);
1286         do {
1287                 next = pgd_addr_end(addr, end);
1288                 if (pgd_none_or_clear_bad(pgd))
1289                         continue;
1290                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1291         } while (pgd++, addr = next, addr != end);
1292         tlb_end_vma(tlb, vma);
1293 }
1294
1295
1296 static void unmap_single_vma(struct mmu_gather *tlb,
1297                 struct vm_area_struct *vma, unsigned long start_addr,
1298                 unsigned long end_addr,
1299                 struct zap_details *details)
1300 {
1301         unsigned long start = max(vma->vm_start, start_addr);
1302         unsigned long end;
1303
1304         if (start >= vma->vm_end)
1305                 return;
1306         end = min(vma->vm_end, end_addr);
1307         if (end <= vma->vm_start)
1308                 return;
1309
1310         if (vma->vm_file)
1311                 uprobe_munmap(vma, start, end);
1312
1313         if (unlikely(vma->vm_flags & VM_PFNMAP))
1314                 untrack_pfn(vma, 0, 0);
1315
1316         if (start != end) {
1317                 if (unlikely(is_vm_hugetlb_page(vma))) {
1318                         /*
1319                          * It is undesirable to test vma->vm_file as it
1320                          * should be non-null for valid hugetlb area.
1321                          * However, vm_file will be NULL in the error
1322                          * cleanup path of mmap_region. When
1323                          * hugetlbfs ->mmap method fails,
1324                          * mmap_region() nullifies vma->vm_file
1325                          * before calling this function to clean up.
1326                          * Since no pte has actually been setup, it is
1327                          * safe to do nothing in this case.
1328                          */
1329                         if (vma->vm_file) {
1330                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1331                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1332                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1333                         }
1334                 } else
1335                         unmap_page_range(tlb, vma, start, end, details);
1336         }
1337 }
1338
1339 /**
1340  * unmap_vmas - unmap a range of memory covered by a list of vma's
1341  * @tlb: address of the caller's struct mmu_gather
1342  * @vma: the starting vma
1343  * @start_addr: virtual address at which to start unmapping
1344  * @end_addr: virtual address at which to end unmapping
1345  *
1346  * Unmap all pages in the vma list.
1347  *
1348  * Only addresses between `start' and `end' will be unmapped.
1349  *
1350  * The VMA list must be sorted in ascending virtual address order.
1351  *
1352  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1353  * range after unmap_vmas() returns.  So the only responsibility here is to
1354  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1355  * drops the lock and schedules.
1356  */
1357 void unmap_vmas(struct mmu_gather *tlb,
1358                 struct vm_area_struct *vma, unsigned long start_addr,
1359                 unsigned long end_addr)
1360 {
1361         struct mm_struct *mm = vma->vm_mm;
1362
1363         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1364         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1365                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1366         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1367 }
1368
1369 /**
1370  * zap_page_range - remove user pages in a given range
1371  * @vma: vm_area_struct holding the applicable pages
1372  * @start: starting address of pages to zap
1373  * @size: number of bytes to zap
1374  * @details: details of nonlinear truncation or shared cache invalidation
1375  *
1376  * Caller must protect the VMA list
1377  */
1378 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1379                 unsigned long size, struct zap_details *details)
1380 {
1381         struct mm_struct *mm = vma->vm_mm;
1382         struct mmu_gather tlb;
1383         unsigned long end = start + size;
1384
1385         lru_add_drain();
1386         tlb_gather_mmu(&tlb, mm, start, end);
1387         update_hiwater_rss(mm);
1388         mmu_notifier_invalidate_range_start(mm, start, end);
1389         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1390                 unmap_single_vma(&tlb, vma, start, end, details);
1391         mmu_notifier_invalidate_range_end(mm, start, end);
1392         tlb_finish_mmu(&tlb, start, end);
1393 }
1394
1395 /**
1396  * zap_page_range_single - remove user pages in a given range
1397  * @vma: vm_area_struct holding the applicable pages
1398  * @address: starting address of pages to zap
1399  * @size: number of bytes to zap
1400  * @details: details of nonlinear truncation or shared cache invalidation
1401  *
1402  * The range must fit into one VMA.
1403  */
1404 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1405                 unsigned long size, struct zap_details *details)
1406 {
1407         struct mm_struct *mm = vma->vm_mm;
1408         struct mmu_gather tlb;
1409         unsigned long end = address + size;
1410
1411         lru_add_drain();
1412         tlb_gather_mmu(&tlb, mm, address, end);
1413         update_hiwater_rss(mm);
1414         mmu_notifier_invalidate_range_start(mm, address, end);
1415         unmap_single_vma(&tlb, vma, address, end, details);
1416         mmu_notifier_invalidate_range_end(mm, address, end);
1417         tlb_finish_mmu(&tlb, address, end);
1418 }
1419
1420 /**
1421  * zap_vma_ptes - remove ptes mapping the vma
1422  * @vma: vm_area_struct holding ptes to be zapped
1423  * @address: starting address of pages to zap
1424  * @size: number of bytes to zap
1425  *
1426  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1427  *
1428  * The entire address range must be fully contained within the vma.
1429  *
1430  * Returns 0 if successful.
1431  */
1432 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1433                 unsigned long size)
1434 {
1435         if (address < vma->vm_start || address + size > vma->vm_end ||
1436                         !(vma->vm_flags & VM_PFNMAP))
1437                 return -1;
1438         zap_page_range_single(vma, address, size, NULL);
1439         return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1442
1443 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1444                         spinlock_t **ptl)
1445 {
1446         pgd_t * pgd = pgd_offset(mm, addr);
1447         pud_t * pud = pud_alloc(mm, pgd, addr);
1448         if (pud) {
1449                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1450                 if (pmd) {
1451                         VM_BUG_ON(pmd_trans_huge(*pmd));
1452                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1453                 }
1454         }
1455         return NULL;
1456 }
1457
1458 /*
1459  * This is the old fallback for page remapping.
1460  *
1461  * For historical reasons, it only allows reserved pages. Only
1462  * old drivers should use this, and they needed to mark their
1463  * pages reserved for the old functions anyway.
1464  */
1465 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1466                         struct page *page, pgprot_t prot)
1467 {
1468         struct mm_struct *mm = vma->vm_mm;
1469         int retval;
1470         pte_t *pte;
1471         spinlock_t *ptl;
1472
1473         retval = -EINVAL;
1474         if (PageAnon(page))
1475                 goto out;
1476         retval = -ENOMEM;
1477         flush_dcache_page(page);
1478         pte = get_locked_pte(mm, addr, &ptl);
1479         if (!pte)
1480                 goto out;
1481         retval = -EBUSY;
1482         if (!pte_none(*pte))
1483                 goto out_unlock;
1484
1485         /* Ok, finally just insert the thing.. */
1486         get_page(page);
1487         inc_mm_counter_fast(mm, MM_FILEPAGES);
1488         page_add_file_rmap(page);
1489         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1490
1491         retval = 0;
1492         pte_unmap_unlock(pte, ptl);
1493         return retval;
1494 out_unlock:
1495         pte_unmap_unlock(pte, ptl);
1496 out:
1497         return retval;
1498 }
1499
1500 /**
1501  * vm_insert_page - insert single page into user vma
1502  * @vma: user vma to map to
1503  * @addr: target user address of this page
1504  * @page: source kernel page
1505  *
1506  * This allows drivers to insert individual pages they've allocated
1507  * into a user vma.
1508  *
1509  * The page has to be a nice clean _individual_ kernel allocation.
1510  * If you allocate a compound page, you need to have marked it as
1511  * such (__GFP_COMP), or manually just split the page up yourself
1512  * (see split_page()).
1513  *
1514  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1515  * took an arbitrary page protection parameter. This doesn't allow
1516  * that. Your vma protection will have to be set up correctly, which
1517  * means that if you want a shared writable mapping, you'd better
1518  * ask for a shared writable mapping!
1519  *
1520  * The page does not need to be reserved.
1521  *
1522  * Usually this function is called from f_op->mmap() handler
1523  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1524  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1525  * function from other places, for example from page-fault handler.
1526  */
1527 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1528                         struct page *page)
1529 {
1530         if (addr < vma->vm_start || addr >= vma->vm_end)
1531                 return -EFAULT;
1532         if (!page_count(page))
1533                 return -EINVAL;
1534         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1535                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1536                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1537                 vma->vm_flags |= VM_MIXEDMAP;
1538         }
1539         return insert_page(vma, addr, page, vma->vm_page_prot);
1540 }
1541 EXPORT_SYMBOL(vm_insert_page);
1542
1543 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1544                         unsigned long pfn, pgprot_t prot)
1545 {
1546         struct mm_struct *mm = vma->vm_mm;
1547         int retval;
1548         pte_t *pte, entry;
1549         spinlock_t *ptl;
1550
1551         retval = -ENOMEM;
1552         pte = get_locked_pte(mm, addr, &ptl);
1553         if (!pte)
1554                 goto out;
1555         retval = -EBUSY;
1556         if (!pte_none(*pte))
1557                 goto out_unlock;
1558
1559         /* Ok, finally just insert the thing.. */
1560         entry = pte_mkspecial(pfn_pte(pfn, prot));
1561         set_pte_at(mm, addr, pte, entry);
1562         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1563
1564         retval = 0;
1565 out_unlock:
1566         pte_unmap_unlock(pte, ptl);
1567 out:
1568         return retval;
1569 }
1570
1571 /**
1572  * vm_insert_pfn - insert single pfn into user vma
1573  * @vma: user vma to map to
1574  * @addr: target user address of this page
1575  * @pfn: source kernel pfn
1576  *
1577  * Similar to vm_insert_page, this allows drivers to insert individual pages
1578  * they've allocated into a user vma. Same comments apply.
1579  *
1580  * This function should only be called from a vm_ops->fault handler, and
1581  * in that case the handler should return NULL.
1582  *
1583  * vma cannot be a COW mapping.
1584  *
1585  * As this is called only for pages that do not currently exist, we
1586  * do not need to flush old virtual caches or the TLB.
1587  */
1588 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1589                         unsigned long pfn)
1590 {
1591         int ret;
1592         pgprot_t pgprot = vma->vm_page_prot;
1593         /*
1594          * Technically, architectures with pte_special can avoid all these
1595          * restrictions (same for remap_pfn_range).  However we would like
1596          * consistency in testing and feature parity among all, so we should
1597          * try to keep these invariants in place for everybody.
1598          */
1599         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1600         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1601                                                 (VM_PFNMAP|VM_MIXEDMAP));
1602         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1603         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1604
1605         if (addr < vma->vm_start || addr >= vma->vm_end)
1606                 return -EFAULT;
1607         if (track_pfn_insert(vma, &pgprot, pfn))
1608                 return -EINVAL;
1609
1610         ret = insert_pfn(vma, addr, pfn, pgprot);
1611
1612         return ret;
1613 }
1614 EXPORT_SYMBOL(vm_insert_pfn);
1615
1616 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1617                         unsigned long pfn)
1618 {
1619         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1620
1621         if (addr < vma->vm_start || addr >= vma->vm_end)
1622                 return -EFAULT;
1623
1624         /*
1625          * If we don't have pte special, then we have to use the pfn_valid()
1626          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1627          * refcount the page if pfn_valid is true (hence insert_page rather
1628          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1629          * without pte special, it would there be refcounted as a normal page.
1630          */
1631         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1632                 struct page *page;
1633
1634                 page = pfn_to_page(pfn);
1635                 return insert_page(vma, addr, page, vma->vm_page_prot);
1636         }
1637         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1638 }
1639 EXPORT_SYMBOL(vm_insert_mixed);
1640
1641 /*
1642  * maps a range of physical memory into the requested pages. the old
1643  * mappings are removed. any references to nonexistent pages results
1644  * in null mappings (currently treated as "copy-on-access")
1645  */
1646 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1647                         unsigned long addr, unsigned long end,
1648                         unsigned long pfn, pgprot_t prot)
1649 {
1650         pte_t *pte;
1651         spinlock_t *ptl;
1652
1653         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1654         if (!pte)
1655                 return -ENOMEM;
1656         arch_enter_lazy_mmu_mode();
1657         do {
1658                 BUG_ON(!pte_none(*pte));
1659                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1660                 pfn++;
1661         } while (pte++, addr += PAGE_SIZE, addr != end);
1662         arch_leave_lazy_mmu_mode();
1663         pte_unmap_unlock(pte - 1, ptl);
1664         return 0;
1665 }
1666
1667 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1668                         unsigned long addr, unsigned long end,
1669                         unsigned long pfn, pgprot_t prot)
1670 {
1671         pmd_t *pmd;
1672         unsigned long next;
1673
1674         pfn -= addr >> PAGE_SHIFT;
1675         pmd = pmd_alloc(mm, pud, addr);
1676         if (!pmd)
1677                 return -ENOMEM;
1678         VM_BUG_ON(pmd_trans_huge(*pmd));
1679         do {
1680                 next = pmd_addr_end(addr, end);
1681                 if (remap_pte_range(mm, pmd, addr, next,
1682                                 pfn + (addr >> PAGE_SHIFT), prot))
1683                         return -ENOMEM;
1684         } while (pmd++, addr = next, addr != end);
1685         return 0;
1686 }
1687
1688 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1689                         unsigned long addr, unsigned long end,
1690                         unsigned long pfn, pgprot_t prot)
1691 {
1692         pud_t *pud;
1693         unsigned long next;
1694
1695         pfn -= addr >> PAGE_SHIFT;
1696         pud = pud_alloc(mm, pgd, addr);
1697         if (!pud)
1698                 return -ENOMEM;
1699         do {
1700                 next = pud_addr_end(addr, end);
1701                 if (remap_pmd_range(mm, pud, addr, next,
1702                                 pfn + (addr >> PAGE_SHIFT), prot))
1703                         return -ENOMEM;
1704         } while (pud++, addr = next, addr != end);
1705         return 0;
1706 }
1707
1708 /**
1709  * remap_pfn_range - remap kernel memory to userspace
1710  * @vma: user vma to map to
1711  * @addr: target user address to start at
1712  * @pfn: physical address of kernel memory
1713  * @size: size of map area
1714  * @prot: page protection flags for this mapping
1715  *
1716  *  Note: this is only safe if the mm semaphore is held when called.
1717  */
1718 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1719                     unsigned long pfn, unsigned long size, pgprot_t prot)
1720 {
1721         pgd_t *pgd;
1722         unsigned long next;
1723         unsigned long end = addr + PAGE_ALIGN(size);
1724         struct mm_struct *mm = vma->vm_mm;
1725         int err;
1726
1727         /*
1728          * Physically remapped pages are special. Tell the
1729          * rest of the world about it:
1730          *   VM_IO tells people not to look at these pages
1731          *      (accesses can have side effects).
1732          *   VM_PFNMAP tells the core MM that the base pages are just
1733          *      raw PFN mappings, and do not have a "struct page" associated
1734          *      with them.
1735          *   VM_DONTEXPAND
1736          *      Disable vma merging and expanding with mremap().
1737          *   VM_DONTDUMP
1738          *      Omit vma from core dump, even when VM_IO turned off.
1739          *
1740          * There's a horrible special case to handle copy-on-write
1741          * behaviour that some programs depend on. We mark the "original"
1742          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1743          * See vm_normal_page() for details.
1744          */
1745         if (is_cow_mapping(vma->vm_flags)) {
1746                 if (addr != vma->vm_start || end != vma->vm_end)
1747                         return -EINVAL;
1748                 vma->vm_pgoff = pfn;
1749         }
1750
1751         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1752         if (err)
1753                 return -EINVAL;
1754
1755         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1756
1757         BUG_ON(addr >= end);
1758         pfn -= addr >> PAGE_SHIFT;
1759         pgd = pgd_offset(mm, addr);
1760         flush_cache_range(vma, addr, end);
1761         do {
1762                 next = pgd_addr_end(addr, end);
1763                 err = remap_pud_range(mm, pgd, addr, next,
1764                                 pfn + (addr >> PAGE_SHIFT), prot);
1765                 if (err)
1766                         break;
1767         } while (pgd++, addr = next, addr != end);
1768
1769         if (err)
1770                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1771
1772         return err;
1773 }
1774 EXPORT_SYMBOL(remap_pfn_range);
1775
1776 /**
1777  * vm_iomap_memory - remap memory to userspace
1778  * @vma: user vma to map to
1779  * @start: start of area
1780  * @len: size of area
1781  *
1782  * This is a simplified io_remap_pfn_range() for common driver use. The
1783  * driver just needs to give us the physical memory range to be mapped,
1784  * we'll figure out the rest from the vma information.
1785  *
1786  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1787  * whatever write-combining details or similar.
1788  */
1789 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1790 {
1791         unsigned long vm_len, pfn, pages;
1792
1793         /* Check that the physical memory area passed in looks valid */
1794         if (start + len < start)
1795                 return -EINVAL;
1796         /*
1797          * You *really* shouldn't map things that aren't page-aligned,
1798          * but we've historically allowed it because IO memory might
1799          * just have smaller alignment.
1800          */
1801         len += start & ~PAGE_MASK;
1802         pfn = start >> PAGE_SHIFT;
1803         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1804         if (pfn + pages < pfn)
1805                 return -EINVAL;
1806
1807         /* We start the mapping 'vm_pgoff' pages into the area */
1808         if (vma->vm_pgoff > pages)
1809                 return -EINVAL;
1810         pfn += vma->vm_pgoff;
1811         pages -= vma->vm_pgoff;
1812
1813         /* Can we fit all of the mapping? */
1814         vm_len = vma->vm_end - vma->vm_start;
1815         if (vm_len >> PAGE_SHIFT > pages)
1816                 return -EINVAL;
1817
1818         /* Ok, let it rip */
1819         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1820 }
1821 EXPORT_SYMBOL(vm_iomap_memory);
1822
1823 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1824                                      unsigned long addr, unsigned long end,
1825                                      pte_fn_t fn, void *data)
1826 {
1827         pte_t *pte;
1828         int err;
1829         pgtable_t token;
1830         spinlock_t *uninitialized_var(ptl);
1831
1832         pte = (mm == &init_mm) ?
1833                 pte_alloc_kernel(pmd, addr) :
1834                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1835         if (!pte)
1836                 return -ENOMEM;
1837
1838         BUG_ON(pmd_huge(*pmd));
1839
1840         arch_enter_lazy_mmu_mode();
1841
1842         token = pmd_pgtable(*pmd);
1843
1844         do {
1845                 err = fn(pte++, token, addr, data);
1846                 if (err)
1847                         break;
1848         } while (addr += PAGE_SIZE, addr != end);
1849
1850         arch_leave_lazy_mmu_mode();
1851
1852         if (mm != &init_mm)
1853                 pte_unmap_unlock(pte-1, ptl);
1854         return err;
1855 }
1856
1857 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1858                                      unsigned long addr, unsigned long end,
1859                                      pte_fn_t fn, void *data)
1860 {
1861         pmd_t *pmd;
1862         unsigned long next;
1863         int err;
1864
1865         BUG_ON(pud_huge(*pud));
1866
1867         pmd = pmd_alloc(mm, pud, addr);
1868         if (!pmd)
1869                 return -ENOMEM;
1870         do {
1871                 next = pmd_addr_end(addr, end);
1872                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1873                 if (err)
1874                         break;
1875         } while (pmd++, addr = next, addr != end);
1876         return err;
1877 }
1878
1879 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1880                                      unsigned long addr, unsigned long end,
1881                                      pte_fn_t fn, void *data)
1882 {
1883         pud_t *pud;
1884         unsigned long next;
1885         int err;
1886
1887         pud = pud_alloc(mm, pgd, addr);
1888         if (!pud)
1889                 return -ENOMEM;
1890         do {
1891                 next = pud_addr_end(addr, end);
1892                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1893                 if (err)
1894                         break;
1895         } while (pud++, addr = next, addr != end);
1896         return err;
1897 }
1898
1899 /*
1900  * Scan a region of virtual memory, filling in page tables as necessary
1901  * and calling a provided function on each leaf page table.
1902  */
1903 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1904                         unsigned long size, pte_fn_t fn, void *data)
1905 {
1906         pgd_t *pgd;
1907         unsigned long next;
1908         unsigned long end = addr + size;
1909         int err;
1910
1911         BUG_ON(addr >= end);
1912         pgd = pgd_offset(mm, addr);
1913         do {
1914                 next = pgd_addr_end(addr, end);
1915                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1916                 if (err)
1917                         break;
1918         } while (pgd++, addr = next, addr != end);
1919
1920         return err;
1921 }
1922 EXPORT_SYMBOL_GPL(apply_to_page_range);
1923
1924 /*
1925  * handle_pte_fault chooses page fault handler according to an entry
1926  * which was read non-atomically.  Before making any commitment, on
1927  * those architectures or configurations (e.g. i386 with PAE) which
1928  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1929  * must check under lock before unmapping the pte and proceeding
1930  * (but do_wp_page is only called after already making such a check;
1931  * and do_anonymous_page can safely check later on).
1932  */
1933 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1934                                 pte_t *page_table, pte_t orig_pte)
1935 {
1936         int same = 1;
1937 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1938         if (sizeof(pte_t) > sizeof(unsigned long)) {
1939                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1940                 spin_lock(ptl);
1941                 same = pte_same(*page_table, orig_pte);
1942                 spin_unlock(ptl);
1943         }
1944 #endif
1945         pte_unmap(page_table);
1946         return same;
1947 }
1948
1949 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1950 {
1951         debug_dma_assert_idle(src);
1952
1953         /*
1954          * If the source page was a PFN mapping, we don't have
1955          * a "struct page" for it. We do a best-effort copy by
1956          * just copying from the original user address. If that
1957          * fails, we just zero-fill it. Live with it.
1958          */
1959         if (unlikely(!src)) {
1960                 void *kaddr = kmap_atomic(dst);
1961                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1962
1963                 /*
1964                  * This really shouldn't fail, because the page is there
1965                  * in the page tables. But it might just be unreadable,
1966                  * in which case we just give up and fill the result with
1967                  * zeroes.
1968                  */
1969                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1970                         clear_page(kaddr);
1971                 kunmap_atomic(kaddr);
1972                 flush_dcache_page(dst);
1973         } else
1974                 copy_user_highpage(dst, src, va, vma);
1975 }
1976
1977 /*
1978  * Notify the address space that the page is about to become writable so that
1979  * it can prohibit this or wait for the page to get into an appropriate state.
1980  *
1981  * We do this without the lock held, so that it can sleep if it needs to.
1982  */
1983 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1984                unsigned long address)
1985 {
1986         struct vm_fault vmf;
1987         int ret;
1988
1989         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1990         vmf.pgoff = page->index;
1991         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1992         vmf.page = page;
1993
1994         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1995         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1996                 return ret;
1997         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1998                 lock_page(page);
1999                 if (!page->mapping) {
2000                         unlock_page(page);
2001                         return 0; /* retry */
2002                 }
2003                 ret |= VM_FAULT_LOCKED;
2004         } else
2005                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2006         return ret;
2007 }
2008
2009 /*
2010  * This routine handles present pages, when users try to write
2011  * to a shared page. It is done by copying the page to a new address
2012  * and decrementing the shared-page counter for the old page.
2013  *
2014  * Note that this routine assumes that the protection checks have been
2015  * done by the caller (the low-level page fault routine in most cases).
2016  * Thus we can safely just mark it writable once we've done any necessary
2017  * COW.
2018  *
2019  * We also mark the page dirty at this point even though the page will
2020  * change only once the write actually happens. This avoids a few races,
2021  * and potentially makes it more efficient.
2022  *
2023  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2024  * but allow concurrent faults), with pte both mapped and locked.
2025  * We return with mmap_sem still held, but pte unmapped and unlocked.
2026  */
2027 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2028                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2029                 spinlock_t *ptl, pte_t orig_pte)
2030         __releases(ptl)
2031 {
2032         struct page *old_page, *new_page = NULL;
2033         pte_t entry;
2034         int ret = 0;
2035         int page_mkwrite = 0;
2036         struct page *dirty_page = NULL;
2037         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2038         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2039         struct mem_cgroup *memcg;
2040
2041         old_page = vm_normal_page(vma, address, orig_pte);
2042         if (!old_page) {
2043                 /*
2044                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2045                  * VM_PFNMAP VMA.
2046                  *
2047                  * We should not cow pages in a shared writeable mapping.
2048                  * Just mark the pages writable as we can't do any dirty
2049                  * accounting on raw pfn maps.
2050                  */
2051                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2052                                      (VM_WRITE|VM_SHARED))
2053                         goto reuse;
2054                 goto gotten;
2055         }
2056
2057         /*
2058          * Take out anonymous pages first, anonymous shared vmas are
2059          * not dirty accountable.
2060          */
2061         if (PageAnon(old_page) && !PageKsm(old_page)) {
2062                 if (!trylock_page(old_page)) {
2063                         page_cache_get(old_page);
2064                         pte_unmap_unlock(page_table, ptl);
2065                         lock_page(old_page);
2066                         page_table = pte_offset_map_lock(mm, pmd, address,
2067                                                          &ptl);
2068                         if (!pte_same(*page_table, orig_pte)) {
2069                                 unlock_page(old_page);
2070                                 goto unlock;
2071                         }
2072                         page_cache_release(old_page);
2073                 }
2074                 if (reuse_swap_page(old_page)) {
2075                         /*
2076                          * The page is all ours.  Move it to our anon_vma so
2077                          * the rmap code will not search our parent or siblings.
2078                          * Protected against the rmap code by the page lock.
2079                          */
2080                         page_move_anon_rmap(old_page, vma, address);
2081                         unlock_page(old_page);
2082                         goto reuse;
2083                 }
2084                 unlock_page(old_page);
2085         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2086                                         (VM_WRITE|VM_SHARED))) {
2087                 /*
2088                  * Only catch write-faults on shared writable pages,
2089                  * read-only shared pages can get COWed by
2090                  * get_user_pages(.write=1, .force=1).
2091                  */
2092                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2093                         int tmp;
2094                         page_cache_get(old_page);
2095                         pte_unmap_unlock(page_table, ptl);
2096                         tmp = do_page_mkwrite(vma, old_page, address);
2097                         if (unlikely(!tmp || (tmp &
2098                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2099                                 page_cache_release(old_page);
2100                                 return tmp;
2101                         }
2102                         /*
2103                          * Since we dropped the lock we need to revalidate
2104                          * the PTE as someone else may have changed it.  If
2105                          * they did, we just return, as we can count on the
2106                          * MMU to tell us if they didn't also make it writable.
2107                          */
2108                         page_table = pte_offset_map_lock(mm, pmd, address,
2109                                                          &ptl);
2110                         if (!pte_same(*page_table, orig_pte)) {
2111                                 unlock_page(old_page);
2112                                 goto unlock;
2113                         }
2114
2115                         page_mkwrite = 1;
2116                 }
2117                 dirty_page = old_page;
2118                 get_page(dirty_page);
2119
2120 reuse:
2121                 /*
2122                  * Clear the pages cpupid information as the existing
2123                  * information potentially belongs to a now completely
2124                  * unrelated process.
2125                  */
2126                 if (old_page)
2127                         page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2128
2129                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2130                 entry = pte_mkyoung(orig_pte);
2131                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2132                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2133                         update_mmu_cache(vma, address, page_table);
2134                 pte_unmap_unlock(page_table, ptl);
2135                 ret |= VM_FAULT_WRITE;
2136
2137                 if (!dirty_page)
2138                         return ret;
2139
2140                 /*
2141                  * Yes, Virginia, this is actually required to prevent a race
2142                  * with clear_page_dirty_for_io() from clearing the page dirty
2143                  * bit after it clear all dirty ptes, but before a racing
2144                  * do_wp_page installs a dirty pte.
2145                  *
2146                  * do_shared_fault is protected similarly.
2147                  */
2148                 if (!page_mkwrite) {
2149                         wait_on_page_locked(dirty_page);
2150                         set_page_dirty_balance(dirty_page);
2151                         /* file_update_time outside page_lock */
2152                         if (vma->vm_file)
2153                                 file_update_time(vma->vm_file);
2154                 }
2155                 put_page(dirty_page);
2156                 if (page_mkwrite) {
2157                         struct address_space *mapping = dirty_page->mapping;
2158
2159                         set_page_dirty(dirty_page);
2160                         unlock_page(dirty_page);
2161                         page_cache_release(dirty_page);
2162                         if (mapping)    {
2163                                 /*
2164                                  * Some device drivers do not set page.mapping
2165                                  * but still dirty their pages
2166                                  */
2167                                 balance_dirty_pages_ratelimited(mapping);
2168                         }
2169                 }
2170
2171                 return ret;
2172         }
2173
2174         /*
2175          * Ok, we need to copy. Oh, well..
2176          */
2177         page_cache_get(old_page);
2178 gotten:
2179         pte_unmap_unlock(page_table, ptl);
2180
2181         if (unlikely(anon_vma_prepare(vma)))
2182                 goto oom;
2183
2184         if (is_zero_pfn(pte_pfn(orig_pte))) {
2185                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2186                 if (!new_page)
2187                         goto oom;
2188         } else {
2189                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2190                 if (!new_page)
2191                         goto oom;
2192                 cow_user_page(new_page, old_page, address, vma);
2193         }
2194         __SetPageUptodate(new_page);
2195
2196         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2197                 goto oom_free_new;
2198
2199         mmun_start  = address & PAGE_MASK;
2200         mmun_end    = mmun_start + PAGE_SIZE;
2201         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2202
2203         /*
2204          * Re-check the pte - we dropped the lock
2205          */
2206         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2207         if (likely(pte_same(*page_table, orig_pte))) {
2208                 if (old_page) {
2209                         if (!PageAnon(old_page)) {
2210                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2211                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2212                         }
2213                 } else
2214                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2215                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2216                 entry = mk_pte(new_page, vma->vm_page_prot);
2217                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2218                 /*
2219                  * Clear the pte entry and flush it first, before updating the
2220                  * pte with the new entry. This will avoid a race condition
2221                  * seen in the presence of one thread doing SMC and another
2222                  * thread doing COW.
2223                  */
2224                 ptep_clear_flush_notify(vma, address, page_table);
2225                 page_add_new_anon_rmap(new_page, vma, address);
2226                 mem_cgroup_commit_charge(new_page, memcg, false);
2227                 lru_cache_add_active_or_unevictable(new_page, vma);
2228                 /*
2229                  * We call the notify macro here because, when using secondary
2230                  * mmu page tables (such as kvm shadow page tables), we want the
2231                  * new page to be mapped directly into the secondary page table.
2232                  */
2233                 set_pte_at_notify(mm, address, page_table, entry);
2234                 update_mmu_cache(vma, address, page_table);
2235                 if (old_page) {
2236                         /*
2237                          * Only after switching the pte to the new page may
2238                          * we remove the mapcount here. Otherwise another
2239                          * process may come and find the rmap count decremented
2240                          * before the pte is switched to the new page, and
2241                          * "reuse" the old page writing into it while our pte
2242                          * here still points into it and can be read by other
2243                          * threads.
2244                          *
2245                          * The critical issue is to order this
2246                          * page_remove_rmap with the ptp_clear_flush above.
2247                          * Those stores are ordered by (if nothing else,)
2248                          * the barrier present in the atomic_add_negative
2249                          * in page_remove_rmap.
2250                          *
2251                          * Then the TLB flush in ptep_clear_flush ensures that
2252                          * no process can access the old page before the
2253                          * decremented mapcount is visible. And the old page
2254                          * cannot be reused until after the decremented
2255                          * mapcount is visible. So transitively, TLBs to
2256                          * old page will be flushed before it can be reused.
2257                          */
2258                         page_remove_rmap(old_page);
2259                 }
2260
2261                 /* Free the old page.. */
2262                 new_page = old_page;
2263                 ret |= VM_FAULT_WRITE;
2264         } else
2265                 mem_cgroup_cancel_charge(new_page, memcg);
2266
2267         if (new_page)
2268                 page_cache_release(new_page);
2269 unlock:
2270         pte_unmap_unlock(page_table, ptl);
2271         if (mmun_end > mmun_start)
2272                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2273         if (old_page) {
2274                 /*
2275                  * Don't let another task, with possibly unlocked vma,
2276                  * keep the mlocked page.
2277                  */
2278                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2279                         lock_page(old_page);    /* LRU manipulation */
2280                         munlock_vma_page(old_page);
2281                         unlock_page(old_page);
2282                 }
2283                 page_cache_release(old_page);
2284         }
2285         return ret;
2286 oom_free_new:
2287         page_cache_release(new_page);
2288 oom:
2289         if (old_page)
2290                 page_cache_release(old_page);
2291         return VM_FAULT_OOM;
2292 }
2293
2294 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2295                 unsigned long start_addr, unsigned long end_addr,
2296                 struct zap_details *details)
2297 {
2298         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2299 }
2300
2301 static inline void unmap_mapping_range_tree(struct rb_root *root,
2302                                             struct zap_details *details)
2303 {
2304         struct vm_area_struct *vma;
2305         pgoff_t vba, vea, zba, zea;
2306
2307         vma_interval_tree_foreach(vma, root,
2308                         details->first_index, details->last_index) {
2309
2310                 vba = vma->vm_pgoff;
2311                 vea = vba + vma_pages(vma) - 1;
2312                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2313                 zba = details->first_index;
2314                 if (zba < vba)
2315                         zba = vba;
2316                 zea = details->last_index;
2317                 if (zea > vea)
2318                         zea = vea;
2319
2320                 unmap_mapping_range_vma(vma,
2321                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2322                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2323                                 details);
2324         }
2325 }
2326
2327 static inline void unmap_mapping_range_list(struct list_head *head,
2328                                             struct zap_details *details)
2329 {
2330         struct vm_area_struct *vma;
2331
2332         /*
2333          * In nonlinear VMAs there is no correspondence between virtual address
2334          * offset and file offset.  So we must perform an exhaustive search
2335          * across *all* the pages in each nonlinear VMA, not just the pages
2336          * whose virtual address lies outside the file truncation point.
2337          */
2338         list_for_each_entry(vma, head, shared.nonlinear) {
2339                 details->nonlinear_vma = vma;
2340                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2341         }
2342 }
2343
2344 /**
2345  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2346  * @mapping: the address space containing mmaps to be unmapped.
2347  * @holebegin: byte in first page to unmap, relative to the start of
2348  * the underlying file.  This will be rounded down to a PAGE_SIZE
2349  * boundary.  Note that this is different from truncate_pagecache(), which
2350  * must keep the partial page.  In contrast, we must get rid of
2351  * partial pages.
2352  * @holelen: size of prospective hole in bytes.  This will be rounded
2353  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2354  * end of the file.
2355  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2356  * but 0 when invalidating pagecache, don't throw away private data.
2357  */
2358 void unmap_mapping_range(struct address_space *mapping,
2359                 loff_t const holebegin, loff_t const holelen, int even_cows)
2360 {
2361         struct zap_details details;
2362         pgoff_t hba = holebegin >> PAGE_SHIFT;
2363         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2364
2365         /* Check for overflow. */
2366         if (sizeof(holelen) > sizeof(hlen)) {
2367                 long long holeend =
2368                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2369                 if (holeend & ~(long long)ULONG_MAX)
2370                         hlen = ULONG_MAX - hba + 1;
2371         }
2372
2373         details.check_mapping = even_cows? NULL: mapping;
2374         details.nonlinear_vma = NULL;
2375         details.first_index = hba;
2376         details.last_index = hba + hlen - 1;
2377         if (details.last_index < details.first_index)
2378                 details.last_index = ULONG_MAX;
2379
2380
2381         i_mmap_lock_read(mapping);
2382         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2383                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2384         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2385                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2386         i_mmap_unlock_read(mapping);
2387 }
2388 EXPORT_SYMBOL(unmap_mapping_range);
2389
2390 /*
2391  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2392  * but allow concurrent faults), and pte mapped but not yet locked.
2393  * We return with pte unmapped and unlocked.
2394  *
2395  * We return with the mmap_sem locked or unlocked in the same cases
2396  * as does filemap_fault().
2397  */
2398 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2399                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2400                 unsigned int flags, pte_t orig_pte)
2401 {
2402         spinlock_t *ptl;
2403         struct page *page, *swapcache;
2404         struct mem_cgroup *memcg;
2405         swp_entry_t entry;
2406         pte_t pte;
2407         int locked;
2408         int exclusive = 0;
2409         int ret = 0;
2410
2411         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2412                 goto out;
2413
2414         entry = pte_to_swp_entry(orig_pte);
2415         if (unlikely(non_swap_entry(entry))) {
2416                 if (is_migration_entry(entry)) {
2417                         migration_entry_wait(mm, pmd, address);
2418                 } else if (is_hwpoison_entry(entry)) {
2419                         ret = VM_FAULT_HWPOISON;
2420                 } else {
2421                         print_bad_pte(vma, address, orig_pte, NULL);
2422                         ret = VM_FAULT_SIGBUS;
2423                 }
2424                 goto out;
2425         }
2426         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2427         page = lookup_swap_cache(entry);
2428         if (!page) {
2429                 page = swapin_readahead(entry,
2430                                         GFP_HIGHUSER_MOVABLE, vma, address);
2431                 if (!page) {
2432                         /*
2433                          * Back out if somebody else faulted in this pte
2434                          * while we released the pte lock.
2435                          */
2436                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2437                         if (likely(pte_same(*page_table, orig_pte)))
2438                                 ret = VM_FAULT_OOM;
2439                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2440                         goto unlock;
2441                 }
2442
2443                 /* Had to read the page from swap area: Major fault */
2444                 ret = VM_FAULT_MAJOR;
2445                 count_vm_event(PGMAJFAULT);
2446                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2447         } else if (PageHWPoison(page)) {
2448                 /*
2449                  * hwpoisoned dirty swapcache pages are kept for killing
2450                  * owner processes (which may be unknown at hwpoison time)
2451                  */
2452                 ret = VM_FAULT_HWPOISON;
2453                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2454                 swapcache = page;
2455                 goto out_release;
2456         }
2457
2458         swapcache = page;
2459         locked = lock_page_or_retry(page, mm, flags);
2460
2461         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2462         if (!locked) {
2463                 ret |= VM_FAULT_RETRY;
2464                 goto out_release;
2465         }
2466
2467         /*
2468          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2469          * release the swapcache from under us.  The page pin, and pte_same
2470          * test below, are not enough to exclude that.  Even if it is still
2471          * swapcache, we need to check that the page's swap has not changed.
2472          */
2473         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2474                 goto out_page;
2475
2476         page = ksm_might_need_to_copy(page, vma, address);
2477         if (unlikely(!page)) {
2478                 ret = VM_FAULT_OOM;
2479                 page = swapcache;
2480                 goto out_page;
2481         }
2482
2483         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2484                 ret = VM_FAULT_OOM;
2485                 goto out_page;
2486         }
2487
2488         /*
2489          * Back out if somebody else already faulted in this pte.
2490          */
2491         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2492         if (unlikely(!pte_same(*page_table, orig_pte)))
2493                 goto out_nomap;
2494
2495         if (unlikely(!PageUptodate(page))) {
2496                 ret = VM_FAULT_SIGBUS;
2497                 goto out_nomap;
2498         }
2499
2500         /*
2501          * The page isn't present yet, go ahead with the fault.
2502          *
2503          * Be careful about the sequence of operations here.
2504          * To get its accounting right, reuse_swap_page() must be called
2505          * while the page is counted on swap but not yet in mapcount i.e.
2506          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2507          * must be called after the swap_free(), or it will never succeed.
2508          */
2509
2510         inc_mm_counter_fast(mm, MM_ANONPAGES);
2511         dec_mm_counter_fast(mm, MM_SWAPENTS);
2512         pte = mk_pte(page, vma->vm_page_prot);
2513         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2514                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2515                 flags &= ~FAULT_FLAG_WRITE;
2516                 ret |= VM_FAULT_WRITE;
2517                 exclusive = 1;
2518         }
2519         flush_icache_page(vma, page);
2520         if (pte_swp_soft_dirty(orig_pte))
2521                 pte = pte_mksoft_dirty(pte);
2522         set_pte_at(mm, address, page_table, pte);
2523         if (page == swapcache) {
2524                 do_page_add_anon_rmap(page, vma, address, exclusive);
2525                 mem_cgroup_commit_charge(page, memcg, true);
2526         } else { /* ksm created a completely new copy */
2527                 page_add_new_anon_rmap(page, vma, address);
2528                 mem_cgroup_commit_charge(page, memcg, false);
2529                 lru_cache_add_active_or_unevictable(page, vma);
2530         }
2531
2532         swap_free(entry);
2533         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2534                 try_to_free_swap(page);
2535         unlock_page(page);
2536         if (page != swapcache) {
2537                 /*
2538                  * Hold the lock to avoid the swap entry to be reused
2539                  * until we take the PT lock for the pte_same() check
2540                  * (to avoid false positives from pte_same). For
2541                  * further safety release the lock after the swap_free
2542                  * so that the swap count won't change under a
2543                  * parallel locked swapcache.
2544                  */
2545                 unlock_page(swapcache);
2546                 page_cache_release(swapcache);
2547         }
2548
2549         if (flags & FAULT_FLAG_WRITE) {
2550                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2551                 if (ret & VM_FAULT_ERROR)
2552                         ret &= VM_FAULT_ERROR;
2553                 goto out;
2554         }
2555
2556         /* No need to invalidate - it was non-present before */
2557         update_mmu_cache(vma, address, page_table);
2558 unlock:
2559         pte_unmap_unlock(page_table, ptl);
2560 out:
2561         return ret;
2562 out_nomap:
2563         mem_cgroup_cancel_charge(page, memcg);
2564         pte_unmap_unlock(page_table, ptl);
2565 out_page:
2566         unlock_page(page);
2567 out_release:
2568         page_cache_release(page);
2569         if (page != swapcache) {
2570                 unlock_page(swapcache);
2571                 page_cache_release(swapcache);
2572         }
2573         return ret;
2574 }
2575
2576 /*
2577  * This is like a special single-page "expand_{down|up}wards()",
2578  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2579  * doesn't hit another vma.
2580  */
2581 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2582 {
2583         address &= PAGE_MASK;
2584         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2585                 struct vm_area_struct *prev = vma->vm_prev;
2586
2587                 /*
2588                  * Is there a mapping abutting this one below?
2589                  *
2590                  * That's only ok if it's the same stack mapping
2591                  * that has gotten split..
2592                  */
2593                 if (prev && prev->vm_end == address)
2594                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2595
2596                 expand_downwards(vma, address - PAGE_SIZE);
2597         }
2598         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2599                 struct vm_area_struct *next = vma->vm_next;
2600
2601                 /* As VM_GROWSDOWN but s/below/above/ */
2602                 if (next && next->vm_start == address + PAGE_SIZE)
2603                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2604
2605                 expand_upwards(vma, address + PAGE_SIZE);
2606         }
2607         return 0;
2608 }
2609
2610 /*
2611  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2612  * but allow concurrent faults), and pte mapped but not yet locked.
2613  * We return with mmap_sem still held, but pte unmapped and unlocked.
2614  */
2615 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2616                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2617                 unsigned int flags)
2618 {
2619         struct mem_cgroup *memcg;
2620         struct page *page;
2621         spinlock_t *ptl;
2622         pte_t entry;
2623
2624         pte_unmap(page_table);
2625
2626         /* Check if we need to add a guard page to the stack */
2627         if (check_stack_guard_page(vma, address) < 0)
2628                 return VM_FAULT_SIGBUS;
2629
2630         /* Use the zero-page for reads */
2631         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2632                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2633                                                 vma->vm_page_prot));
2634                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2635                 if (!pte_none(*page_table))
2636                         goto unlock;
2637                 goto setpte;
2638         }
2639
2640         /* Allocate our own private page. */
2641         if (unlikely(anon_vma_prepare(vma)))
2642                 goto oom;
2643         page = alloc_zeroed_user_highpage_movable(vma, address);
2644         if (!page)
2645                 goto oom;
2646         /*
2647          * The memory barrier inside __SetPageUptodate makes sure that
2648          * preceeding stores to the page contents become visible before
2649          * the set_pte_at() write.
2650          */
2651         __SetPageUptodate(page);
2652
2653         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2654                 goto oom_free_page;
2655
2656         entry = mk_pte(page, vma->vm_page_prot);
2657         if (vma->vm_flags & VM_WRITE)
2658                 entry = pte_mkwrite(pte_mkdirty(entry));
2659
2660         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2661         if (!pte_none(*page_table))
2662                 goto release;
2663
2664         inc_mm_counter_fast(mm, MM_ANONPAGES);
2665         page_add_new_anon_rmap(page, vma, address);
2666         mem_cgroup_commit_charge(page, memcg, false);
2667         lru_cache_add_active_or_unevictable(page, vma);
2668 setpte:
2669         set_pte_at(mm, address, page_table, entry);
2670
2671         /* No need to invalidate - it was non-present before */
2672         update_mmu_cache(vma, address, page_table);
2673 unlock:
2674         pte_unmap_unlock(page_table, ptl);
2675         return 0;
2676 release:
2677         mem_cgroup_cancel_charge(page, memcg);
2678         page_cache_release(page);
2679         goto unlock;
2680 oom_free_page:
2681         page_cache_release(page);
2682 oom:
2683         return VM_FAULT_OOM;
2684 }
2685
2686 /*
2687  * The mmap_sem must have been held on entry, and may have been
2688  * released depending on flags and vma->vm_ops->fault() return value.
2689  * See filemap_fault() and __lock_page_retry().
2690  */
2691 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2692                 pgoff_t pgoff, unsigned int flags, struct page **page)
2693 {
2694         struct vm_fault vmf;
2695         int ret;
2696
2697         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2698         vmf.pgoff = pgoff;
2699         vmf.flags = flags;
2700         vmf.page = NULL;
2701
2702         ret = vma->vm_ops->fault(vma, &vmf);
2703         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2704                 return ret;
2705
2706         if (unlikely(PageHWPoison(vmf.page))) {
2707                 if (ret & VM_FAULT_LOCKED)
2708                         unlock_page(vmf.page);
2709                 page_cache_release(vmf.page);
2710                 return VM_FAULT_HWPOISON;
2711         }
2712
2713         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2714                 lock_page(vmf.page);
2715         else
2716                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2717
2718         *page = vmf.page;
2719         return ret;
2720 }
2721
2722 /**
2723  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2724  *
2725  * @vma: virtual memory area
2726  * @address: user virtual address
2727  * @page: page to map
2728  * @pte: pointer to target page table entry
2729  * @write: true, if new entry is writable
2730  * @anon: true, if it's anonymous page
2731  *
2732  * Caller must hold page table lock relevant for @pte.
2733  *
2734  * Target users are page handler itself and implementations of
2735  * vm_ops->map_pages.
2736  */
2737 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2738                 struct page *page, pte_t *pte, bool write, bool anon)
2739 {
2740         pte_t entry;
2741
2742         flush_icache_page(vma, page);
2743         entry = mk_pte(page, vma->vm_page_prot);
2744         if (write)
2745                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2746         else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2747                 entry = pte_mksoft_dirty(entry);
2748         if (anon) {
2749                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2750                 page_add_new_anon_rmap(page, vma, address);
2751         } else {
2752                 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2753                 page_add_file_rmap(page);
2754         }
2755         set_pte_at(vma->vm_mm, address, pte, entry);
2756
2757         /* no need to invalidate: a not-present page won't be cached */
2758         update_mmu_cache(vma, address, pte);
2759 }
2760
2761 static unsigned long fault_around_bytes __read_mostly =
2762         rounddown_pow_of_two(65536);
2763
2764 #ifdef CONFIG_DEBUG_FS
2765 static int fault_around_bytes_get(void *data, u64 *val)
2766 {
2767         *val = fault_around_bytes;
2768         return 0;
2769 }
2770
2771 /*
2772  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2773  * rounded down to nearest page order. It's what do_fault_around() expects to
2774  * see.
2775  */
2776 static int fault_around_bytes_set(void *data, u64 val)
2777 {
2778         if (val / PAGE_SIZE > PTRS_PER_PTE)
2779                 return -EINVAL;
2780         if (val > PAGE_SIZE)
2781                 fault_around_bytes = rounddown_pow_of_two(val);
2782         else
2783                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2784         return 0;
2785 }
2786 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2787                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2788
2789 static int __init fault_around_debugfs(void)
2790 {
2791         void *ret;
2792
2793         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2794                         &fault_around_bytes_fops);
2795         if (!ret)
2796                 pr_warn("Failed to create fault_around_bytes in debugfs");
2797         return 0;
2798 }
2799 late_initcall(fault_around_debugfs);
2800 #endif
2801
2802 /*
2803  * do_fault_around() tries to map few pages around the fault address. The hope
2804  * is that the pages will be needed soon and this will lower the number of
2805  * faults to handle.
2806  *
2807  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2808  * not ready to be mapped: not up-to-date, locked, etc.
2809  *
2810  * This function is called with the page table lock taken. In the split ptlock
2811  * case the page table lock only protects only those entries which belong to
2812  * the page table corresponding to the fault address.
2813  *
2814  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2815  * only once.
2816  *
2817  * fault_around_pages() defines how many pages we'll try to map.
2818  * do_fault_around() expects it to return a power of two less than or equal to
2819  * PTRS_PER_PTE.
2820  *
2821  * The virtual address of the area that we map is naturally aligned to the
2822  * fault_around_pages() value (and therefore to page order).  This way it's
2823  * easier to guarantee that we don't cross page table boundaries.
2824  */
2825 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2826                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2827 {
2828         unsigned long start_addr, nr_pages, mask;
2829         pgoff_t max_pgoff;
2830         struct vm_fault vmf;
2831         int off;
2832
2833         nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2834         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2835
2836         start_addr = max(address & mask, vma->vm_start);
2837         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2838         pte -= off;
2839         pgoff -= off;
2840
2841         /*
2842          *  max_pgoff is either end of page table or end of vma
2843          *  or fault_around_pages() from pgoff, depending what is nearest.
2844          */
2845         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2846                 PTRS_PER_PTE - 1;
2847         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2848                         pgoff + nr_pages - 1);
2849
2850         /* Check if it makes any sense to call ->map_pages */
2851         while (!pte_none(*pte)) {
2852                 if (++pgoff > max_pgoff)
2853                         return;
2854                 start_addr += PAGE_SIZE;
2855                 if (start_addr >= vma->vm_end)
2856                         return;
2857                 pte++;
2858         }
2859
2860         vmf.virtual_address = (void __user *) start_addr;
2861         vmf.pte = pte;
2862         vmf.pgoff = pgoff;
2863         vmf.max_pgoff = max_pgoff;
2864         vmf.flags = flags;
2865         vma->vm_ops->map_pages(vma, &vmf);
2866 }
2867
2868 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2869                 unsigned long address, pmd_t *pmd,
2870                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2871 {
2872         struct page *fault_page;
2873         spinlock_t *ptl;
2874         pte_t *pte;
2875         int ret = 0;
2876
2877         /*
2878          * Let's call ->map_pages() first and use ->fault() as fallback
2879          * if page by the offset is not ready to be mapped (cold cache or
2880          * something).
2881          */
2882         if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2883             fault_around_bytes >> PAGE_SHIFT > 1) {
2884                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2885                 do_fault_around(vma, address, pte, pgoff, flags);
2886                 if (!pte_same(*pte, orig_pte))
2887                         goto unlock_out;
2888                 pte_unmap_unlock(pte, ptl);
2889         }
2890
2891         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2892         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2893                 return ret;
2894
2895         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2896         if (unlikely(!pte_same(*pte, orig_pte))) {
2897                 pte_unmap_unlock(pte, ptl);
2898                 unlock_page(fault_page);
2899                 page_cache_release(fault_page);
2900                 return ret;
2901         }
2902         do_set_pte(vma, address, fault_page, pte, false, false);
2903         unlock_page(fault_page);
2904 unlock_out:
2905         pte_unmap_unlock(pte, ptl);
2906         return ret;
2907 }
2908
2909 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2910                 unsigned long address, pmd_t *pmd,
2911                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2912 {
2913         struct page *fault_page, *new_page;
2914         struct mem_cgroup *memcg;
2915         spinlock_t *ptl;
2916         pte_t *pte;
2917         int ret;
2918
2919         if (unlikely(anon_vma_prepare(vma)))
2920                 return VM_FAULT_OOM;
2921
2922         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2923         if (!new_page)
2924                 return VM_FAULT_OOM;
2925
2926         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2927                 page_cache_release(new_page);
2928                 return VM_FAULT_OOM;
2929         }
2930
2931         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2932         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2933                 goto uncharge_out;
2934
2935         copy_user_highpage(new_page, fault_page, address, vma);
2936         __SetPageUptodate(new_page);
2937
2938         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2939         if (unlikely(!pte_same(*pte, orig_pte))) {
2940                 pte_unmap_unlock(pte, ptl);
2941                 unlock_page(fault_page);
2942                 page_cache_release(fault_page);
2943                 goto uncharge_out;
2944         }
2945         do_set_pte(vma, address, new_page, pte, true, true);
2946         mem_cgroup_commit_charge(new_page, memcg, false);
2947         lru_cache_add_active_or_unevictable(new_page, vma);
2948         pte_unmap_unlock(pte, ptl);
2949         unlock_page(fault_page);
2950         page_cache_release(fault_page);
2951         return ret;
2952 uncharge_out:
2953         mem_cgroup_cancel_charge(new_page, memcg);
2954         page_cache_release(new_page);
2955         return ret;
2956 }
2957
2958 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2959                 unsigned long address, pmd_t *pmd,
2960                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2961 {
2962         struct page *fault_page;
2963         struct address_space *mapping;
2964         spinlock_t *ptl;
2965         pte_t *pte;
2966         int dirtied = 0;
2967         int ret, tmp;
2968
2969         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2970         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2971                 return ret;
2972
2973         /*
2974          * Check if the backing address space wants to know that the page is
2975          * about to become writable
2976          */
2977         if (vma->vm_ops->page_mkwrite) {
2978                 unlock_page(fault_page);
2979                 tmp = do_page_mkwrite(vma, fault_page, address);
2980                 if (unlikely(!tmp ||
2981                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2982                         page_cache_release(fault_page);
2983                         return tmp;
2984                 }
2985         }
2986
2987         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2988         if (unlikely(!pte_same(*pte, orig_pte))) {
2989                 pte_unmap_unlock(pte, ptl);
2990                 unlock_page(fault_page);
2991                 page_cache_release(fault_page);
2992                 return ret;
2993         }
2994         do_set_pte(vma, address, fault_page, pte, true, false);
2995         pte_unmap_unlock(pte, ptl);
2996
2997         if (set_page_dirty(fault_page))
2998                 dirtied = 1;
2999         /*
3000          * Take a local copy of the address_space - page.mapping may be zeroed
3001          * by truncate after unlock_page().   The address_space itself remains
3002          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3003          * release semantics to prevent the compiler from undoing this copying.
3004          */
3005         mapping = fault_page->mapping;
3006         unlock_page(fault_page);
3007         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3008                 /*
3009                  * Some device drivers do not set page.mapping but still
3010                  * dirty their pages
3011                  */
3012                 balance_dirty_pages_ratelimited(mapping);
3013         }
3014
3015         /* file_update_time outside page_lock */
3016         if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3017                 file_update_time(vma->vm_file);
3018
3019         return ret;
3020 }
3021
3022 /*
3023  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3024  * but allow concurrent faults).
3025  * The mmap_sem may have been released depending on flags and our
3026  * return value.  See filemap_fault() and __lock_page_or_retry().
3027  */
3028 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3029                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3030                 unsigned int flags, pte_t orig_pte)
3031 {
3032         pgoff_t pgoff = (((address & PAGE_MASK)
3033                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3034
3035         pte_unmap(page_table);
3036         if (!(flags & FAULT_FLAG_WRITE))
3037                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3038                                 orig_pte);
3039         if (!(vma->vm_flags & VM_SHARED))
3040                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3041                                 orig_pte);
3042         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3043 }
3044
3045 /*
3046  * Fault of a previously existing named mapping. Repopulate the pte
3047  * from the encoded file_pte if possible. This enables swappable
3048  * nonlinear vmas.
3049  *
3050  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3051  * but allow concurrent faults), and pte mapped but not yet locked.
3052  * We return with pte unmapped and unlocked.
3053  * The mmap_sem may have been released depending on flags and our
3054  * return value.  See filemap_fault() and __lock_page_or_retry().
3055  */
3056 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3057                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3058                 unsigned int flags, pte_t orig_pte)
3059 {
3060         pgoff_t pgoff;
3061
3062         flags |= FAULT_FLAG_NONLINEAR;
3063
3064         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3065                 return 0;
3066
3067         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3068                 /*
3069                  * Page table corrupted: show pte and kill process.
3070                  */
3071                 print_bad_pte(vma, address, orig_pte, NULL);
3072                 return VM_FAULT_SIGBUS;
3073         }
3074
3075         pgoff = pte_to_pgoff(orig_pte);
3076         if (!(flags & FAULT_FLAG_WRITE))
3077                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3078                                 orig_pte);
3079         if (!(vma->vm_flags & VM_SHARED))
3080                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3081                                 orig_pte);
3082         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3083 }
3084
3085 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3086                                 unsigned long addr, int page_nid,
3087                                 int *flags)
3088 {
3089         get_page(page);
3090
3091         count_vm_numa_event(NUMA_HINT_FAULTS);
3092         if (page_nid == numa_node_id()) {
3093                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3094                 *flags |= TNF_FAULT_LOCAL;
3095         }
3096
3097         return mpol_misplaced(page, vma, addr);
3098 }
3099
3100 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3101                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3102 {
3103         struct page *page = NULL;
3104         spinlock_t *ptl;
3105         int page_nid = -1;
3106         int last_cpupid;
3107         int target_nid;
3108         bool migrated = false;
3109         int flags = 0;
3110
3111         /*
3112         * The "pte" at this point cannot be used safely without
3113         * validation through pte_unmap_same(). It's of NUMA type but
3114         * the pfn may be screwed if the read is non atomic.
3115         *
3116         * ptep_modify_prot_start is not called as this is clearing
3117         * the _PAGE_NUMA bit and it is not really expected that there
3118         * would be concurrent hardware modifications to the PTE.
3119         */
3120         ptl = pte_lockptr(mm, pmd);
3121         spin_lock(ptl);
3122         if (unlikely(!pte_same(*ptep, pte))) {
3123                 pte_unmap_unlock(ptep, ptl);
3124                 goto out;
3125         }
3126
3127         pte = pte_mknonnuma(pte);
3128         set_pte_at(mm, addr, ptep, pte);
3129         update_mmu_cache(vma, addr, ptep);
3130
3131         page = vm_normal_page(vma, addr, pte);
3132         if (!page) {
3133                 pte_unmap_unlock(ptep, ptl);
3134                 return 0;
3135         }
3136         BUG_ON(is_zero_pfn(page_to_pfn(page)));
3137
3138         /*
3139          * Avoid grouping on DSO/COW pages in specific and RO pages
3140          * in general, RO pages shouldn't hurt as much anyway since
3141          * they can be in shared cache state.
3142          */
3143         if (!pte_write(pte))
3144                 flags |= TNF_NO_GROUP;
3145
3146         /*
3147          * Flag if the page is shared between multiple address spaces. This
3148          * is later used when determining whether to group tasks together
3149          */
3150         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3151                 flags |= TNF_SHARED;
3152
3153         last_cpupid = page_cpupid_last(page);
3154         page_nid = page_to_nid(page);
3155         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3156         pte_unmap_unlock(ptep, ptl);
3157         if (target_nid == -1) {
3158                 put_page(page);
3159                 goto out;
3160         }
3161
3162         /* Migrate to the requested node */
3163         migrated = migrate_misplaced_page(page, vma, target_nid);
3164         if (migrated) {
3165                 page_nid = target_nid;
3166                 flags |= TNF_MIGRATED;
3167         }
3168
3169 out:
3170         if (page_nid != -1)
3171                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3172         return 0;
3173 }
3174
3175 /*
3176  * These routines also need to handle stuff like marking pages dirty
3177  * and/or accessed for architectures that don't do it in hardware (most
3178  * RISC architectures).  The early dirtying is also good on the i386.
3179  *
3180  * There is also a hook called "update_mmu_cache()" that architectures
3181  * with external mmu caches can use to update those (ie the Sparc or
3182  * PowerPC hashed page tables that act as extended TLBs).
3183  *
3184  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3185  * but allow concurrent faults), and pte mapped but not yet locked.
3186  * We return with pte unmapped and unlocked.
3187  *
3188  * The mmap_sem may have been released depending on flags and our
3189  * return value.  See filemap_fault() and __lock_page_or_retry().
3190  */
3191 static int handle_pte_fault(struct mm_struct *mm,
3192                      struct vm_area_struct *vma, unsigned long address,
3193                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3194 {
3195         pte_t entry;
3196         spinlock_t *ptl;
3197
3198         /*
3199          * some architectures can have larger ptes than wordsize,
3200          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3201          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3202          * The code below just needs a consistent view for the ifs and
3203          * we later double check anyway with the ptl lock held. So here
3204          * a barrier will do.
3205          */
3206         entry = *pte;
3207         barrier();
3208         if (!pte_present(entry)) {
3209                 if (pte_none(entry)) {
3210                         if (vma->vm_ops) {
3211                                 if (likely(vma->vm_ops->fault))
3212                                         return do_linear_fault(mm, vma, address,
3213                                                 pte, pmd, flags, entry);
3214                         }
3215                         return do_anonymous_page(mm, vma, address,
3216                                                  pte, pmd, flags);
3217                 }
3218                 if (pte_file(entry))
3219                         return do_nonlinear_fault(mm, vma, address,
3220                                         pte, pmd, flags, entry);
3221                 return do_swap_page(mm, vma, address,
3222                                         pte, pmd, flags, entry);
3223         }
3224
3225         if (pte_numa(entry))
3226                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3227
3228         ptl = pte_lockptr(mm, pmd);
3229         spin_lock(ptl);
3230         if (unlikely(!pte_same(*pte, entry)))
3231                 goto unlock;
3232         if (flags & FAULT_FLAG_WRITE) {
3233                 if (!pte_write(entry))
3234                         return do_wp_page(mm, vma, address,
3235                                         pte, pmd, ptl, entry);
3236                 entry = pte_mkdirty(entry);
3237         }
3238         entry = pte_mkyoung(entry);
3239         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3240                 update_mmu_cache(vma, address, pte);
3241         } else {
3242                 /*
3243                  * This is needed only for protection faults but the arch code
3244                  * is not yet telling us if this is a protection fault or not.
3245                  * This still avoids useless tlb flushes for .text page faults
3246                  * with threads.
3247                  */
3248                 if (flags & FAULT_FLAG_WRITE)
3249                         flush_tlb_fix_spurious_fault(vma, address);
3250         }
3251 unlock:
3252         pte_unmap_unlock(pte, ptl);
3253         return 0;
3254 }
3255
3256 /*
3257  * By the time we get here, we already hold the mm semaphore
3258  *
3259  * The mmap_sem may have been released depending on flags and our
3260  * return value.  See filemap_fault() and __lock_page_or_retry().
3261  */
3262 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3263                              unsigned long address, unsigned int flags)
3264 {
3265         pgd_t *pgd;
3266         pud_t *pud;
3267         pmd_t *pmd;
3268         pte_t *pte;
3269
3270         if (unlikely(is_vm_hugetlb_page(vma)))
3271                 return hugetlb_fault(mm, vma, address, flags);
3272
3273         pgd = pgd_offset(mm, address);
3274         pud = pud_alloc(mm, pgd, address);
3275         if (!pud)
3276                 return VM_FAULT_OOM;
3277         pmd = pmd_alloc(mm, pud, address);
3278         if (!pmd)
3279                 return VM_FAULT_OOM;
3280         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3281                 int ret = VM_FAULT_FALLBACK;
3282                 if (!vma->vm_ops)
3283                         ret = do_huge_pmd_anonymous_page(mm, vma, address,
3284                                         pmd, flags);
3285                 if (!(ret & VM_FAULT_FALLBACK))
3286                         return ret;
3287         } else {
3288                 pmd_t orig_pmd = *pmd;
3289                 int ret;
3290
3291                 barrier();
3292                 if (pmd_trans_huge(orig_pmd)) {
3293                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3294
3295                         /*
3296                          * If the pmd is splitting, return and retry the
3297                          * the fault.  Alternative: wait until the split
3298                          * is done, and goto retry.
3299                          */
3300                         if (pmd_trans_splitting(orig_pmd))
3301                                 return 0;
3302
3303                         if (pmd_numa(orig_pmd))
3304                                 return do_huge_pmd_numa_page(mm, vma, address,
3305                                                              orig_pmd, pmd);
3306
3307                         if (dirty && !pmd_write(orig_pmd)) {
3308                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3309                                                           orig_pmd);
3310                                 if (!(ret & VM_FAULT_FALLBACK))
3311                                         return ret;
3312                         } else {
3313                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3314                                                       orig_pmd, dirty);
3315                                 return 0;
3316                         }
3317                 }
3318         }
3319
3320         /*
3321          * Use __pte_alloc instead of pte_alloc_map, because we can't
3322          * run pte_offset_map on the pmd, if an huge pmd could
3323          * materialize from under us from a different thread.
3324          */
3325         if (unlikely(pmd_none(*pmd)) &&
3326             unlikely(__pte_alloc(mm, vma, pmd, address)))
3327                 return VM_FAULT_OOM;
3328         /* if an huge pmd materialized from under us just retry later */
3329         if (unlikely(pmd_trans_huge(*pmd)))
3330                 return 0;
3331         /*
3332          * A regular pmd is established and it can't morph into a huge pmd
3333          * from under us anymore at this point because we hold the mmap_sem
3334          * read mode and khugepaged takes it in write mode. So now it's
3335          * safe to run pte_offset_map().
3336          */
3337         pte = pte_offset_map(pmd, address);
3338
3339         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3340 }
3341
3342 /*
3343  * By the time we get here, we already hold the mm semaphore
3344  *
3345  * The mmap_sem may have been released depending on flags and our
3346  * return value.  See filemap_fault() and __lock_page_or_retry().
3347  */
3348 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3349                     unsigned long address, unsigned int flags)
3350 {
3351         int ret;
3352
3353         __set_current_state(TASK_RUNNING);
3354
3355         count_vm_event(PGFAULT);
3356         mem_cgroup_count_vm_event(mm, PGFAULT);
3357
3358         /* do counter updates before entering really critical section. */
3359         check_sync_rss_stat(current);
3360
3361         /*
3362          * Enable the memcg OOM handling for faults triggered in user
3363          * space.  Kernel faults are handled more gracefully.
3364          */
3365         if (flags & FAULT_FLAG_USER)
3366                 mem_cgroup_oom_enable();
3367
3368         ret = __handle_mm_fault(mm, vma, address, flags);
3369
3370         if (flags & FAULT_FLAG_USER) {
3371                 mem_cgroup_oom_disable();
3372                 /*
3373                  * The task may have entered a memcg OOM situation but
3374                  * if the allocation error was handled gracefully (no
3375                  * VM_FAULT_OOM), there is no need to kill anything.
3376                  * Just clean up the OOM state peacefully.
3377                  */
3378                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3379                         mem_cgroup_oom_synchronize(false);
3380         }
3381
3382         return ret;
3383 }
3384 EXPORT_SYMBOL_GPL(handle_mm_fault);
3385
3386 #ifndef __PAGETABLE_PUD_FOLDED
3387 /*
3388  * Allocate page upper directory.
3389  * We've already handled the fast-path in-line.
3390  */
3391 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3392 {
3393         pud_t *new = pud_alloc_one(mm, address);
3394         if (!new)
3395                 return -ENOMEM;
3396
3397         smp_wmb(); /* See comment in __pte_alloc */
3398
3399         spin_lock(&mm->page_table_lock);
3400         if (pgd_present(*pgd))          /* Another has populated it */
3401                 pud_free(mm, new);
3402         else
3403                 pgd_populate(mm, pgd, new);
3404         spin_unlock(&mm->page_table_lock);
3405         return 0;
3406 }
3407 #endif /* __PAGETABLE_PUD_FOLDED */
3408
3409 #ifndef __PAGETABLE_PMD_FOLDED
3410 /*
3411  * Allocate page middle directory.
3412  * We've already handled the fast-path in-line.
3413  */
3414 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3415 {
3416         pmd_t *new = pmd_alloc_one(mm, address);
3417         if (!new)
3418                 return -ENOMEM;
3419
3420         smp_wmb(); /* See comment in __pte_alloc */
3421
3422         spin_lock(&mm->page_table_lock);
3423 #ifndef __ARCH_HAS_4LEVEL_HACK
3424         if (pud_present(*pud))          /* Another has populated it */
3425                 pmd_free(mm, new);
3426         else
3427                 pud_populate(mm, pud, new);
3428 #else
3429         if (pgd_present(*pud))          /* Another has populated it */
3430                 pmd_free(mm, new);
3431         else
3432                 pgd_populate(mm, pud, new);
3433 #endif /* __ARCH_HAS_4LEVEL_HACK */
3434         spin_unlock(&mm->page_table_lock);
3435         return 0;
3436 }
3437 #endif /* __PAGETABLE_PMD_FOLDED */
3438
3439 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3440                 pte_t **ptepp, spinlock_t **ptlp)
3441 {
3442         pgd_t *pgd;
3443         pud_t *pud;
3444         pmd_t *pmd;
3445         pte_t *ptep;
3446
3447         pgd = pgd_offset(mm, address);
3448         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3449                 goto out;
3450
3451         pud = pud_offset(pgd, address);
3452         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3453                 goto out;
3454
3455         pmd = pmd_offset(pud, address);
3456         VM_BUG_ON(pmd_trans_huge(*pmd));
3457         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3458                 goto out;
3459
3460         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3461         if (pmd_huge(*pmd))
3462                 goto out;
3463
3464         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3465         if (!ptep)
3466                 goto out;
3467         if (!pte_present(*ptep))
3468                 goto unlock;
3469         *ptepp = ptep;
3470         return 0;
3471 unlock:
3472         pte_unmap_unlock(ptep, *ptlp);
3473 out:
3474         return -EINVAL;
3475 }
3476
3477 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3478                              pte_t **ptepp, spinlock_t **ptlp)
3479 {
3480         int res;
3481
3482         /* (void) is needed to make gcc happy */
3483         (void) __cond_lock(*ptlp,
3484                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3485         return res;
3486 }
3487
3488 /**
3489  * follow_pfn - look up PFN at a user virtual address
3490  * @vma: memory mapping
3491  * @address: user virtual address
3492  * @pfn: location to store found PFN
3493  *
3494  * Only IO mappings and raw PFN mappings are allowed.
3495  *
3496  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3497  */
3498 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3499         unsigned long *pfn)
3500 {
3501         int ret = -EINVAL;
3502         spinlock_t *ptl;
3503         pte_t *ptep;
3504
3505         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3506                 return ret;
3507
3508         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3509         if (ret)
3510                 return ret;
3511         *pfn = pte_pfn(*ptep);
3512         pte_unmap_unlock(ptep, ptl);
3513         return 0;
3514 }
3515 EXPORT_SYMBOL(follow_pfn);
3516
3517 #ifdef CONFIG_HAVE_IOREMAP_PROT
3518 int follow_phys(struct vm_area_struct *vma,
3519                 unsigned long address, unsigned int flags,
3520                 unsigned long *prot, resource_size_t *phys)
3521 {
3522         int ret = -EINVAL;
3523         pte_t *ptep, pte;
3524         spinlock_t *ptl;
3525
3526         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3527                 goto out;
3528
3529         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3530                 goto out;
3531         pte = *ptep;
3532
3533         if ((flags & FOLL_WRITE) && !pte_write(pte))
3534                 goto unlock;
3535
3536         *prot = pgprot_val(pte_pgprot(pte));
3537         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3538
3539         ret = 0;
3540 unlock:
3541         pte_unmap_unlock(ptep, ptl);
3542 out:
3543         return ret;
3544 }
3545
3546 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3547                         void *buf, int len, int write)
3548 {
3549         resource_size_t phys_addr;
3550         unsigned long prot = 0;
3551         void __iomem *maddr;
3552         int offset = addr & (PAGE_SIZE-1);
3553
3554         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3555                 return -EINVAL;
3556
3557         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3558         if (write)
3559                 memcpy_toio(maddr + offset, buf, len);
3560         else
3561                 memcpy_fromio(buf, maddr + offset, len);
3562         iounmap(maddr);
3563
3564         return len;
3565 }
3566 EXPORT_SYMBOL_GPL(generic_access_phys);
3567 #endif
3568
3569 /*
3570  * Access another process' address space as given in mm.  If non-NULL, use the
3571  * given task for page fault accounting.
3572  */
3573 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3574                 unsigned long addr, void *buf, int len, int write)
3575 {
3576         struct vm_area_struct *vma;
3577         void *old_buf = buf;
3578
3579         down_read(&mm->mmap_sem);
3580         /* ignore errors, just check how much was successfully transferred */
3581         while (len) {
3582                 int bytes, ret, offset;
3583                 void *maddr;
3584                 struct page *page = NULL;
3585
3586                 ret = get_user_pages(tsk, mm, addr, 1,
3587                                 write, 1, &page, &vma);
3588                 if (ret <= 0) {
3589 #ifndef CONFIG_HAVE_IOREMAP_PROT
3590                         break;
3591 #else
3592                         /*
3593                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3594                          * we can access using slightly different code.
3595                          */
3596                         vma = find_vma(mm, addr);
3597                         if (!vma || vma->vm_start > addr)
3598                                 break;
3599                         if (vma->vm_ops && vma->vm_ops->access)
3600                                 ret = vma->vm_ops->access(vma, addr, buf,
3601                                                           len, write);
3602                         if (ret <= 0)
3603                                 break;
3604                         bytes = ret;
3605 #endif
3606                 } else {
3607                         bytes = len;
3608                         offset = addr & (PAGE_SIZE-1);
3609                         if (bytes > PAGE_SIZE-offset)
3610                                 bytes = PAGE_SIZE-offset;
3611
3612                         maddr = kmap(page);
3613                         if (write) {
3614                                 copy_to_user_page(vma, page, addr,
3615                                                   maddr + offset, buf, bytes);
3616                                 set_page_dirty_lock(page);
3617                         } else {
3618                                 copy_from_user_page(vma, page, addr,
3619                                                     buf, maddr + offset, bytes);
3620                         }
3621                         kunmap(page);
3622                         page_cache_release(page);
3623                 }
3624                 len -= bytes;
3625                 buf += bytes;
3626                 addr += bytes;
3627         }
3628         up_read(&mm->mmap_sem);
3629
3630         return buf - old_buf;
3631 }
3632
3633 /**
3634  * access_remote_vm - access another process' address space
3635  * @mm:         the mm_struct of the target address space
3636  * @addr:       start address to access
3637  * @buf:        source or destination buffer
3638  * @len:        number of bytes to transfer
3639  * @write:      whether the access is a write
3640  *
3641  * The caller must hold a reference on @mm.
3642  */
3643 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3644                 void *buf, int len, int write)
3645 {
3646         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3647 }
3648
3649 /*
3650  * Access another process' address space.
3651  * Source/target buffer must be kernel space,
3652  * Do not walk the page table directly, use get_user_pages
3653  */
3654 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3655                 void *buf, int len, int write)
3656 {
3657         struct mm_struct *mm;
3658         int ret;
3659
3660         mm = get_task_mm(tsk);
3661         if (!mm)
3662                 return 0;
3663
3664         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3665         mmput(mm);
3666
3667         return ret;
3668 }
3669
3670 /*
3671  * Print the name of a VMA.
3672  */
3673 void print_vma_addr(char *prefix, unsigned long ip)
3674 {
3675         struct mm_struct *mm = current->mm;
3676         struct vm_area_struct *vma;
3677
3678         /*
3679          * Do not print if we are in atomic
3680          * contexts (in exception stacks, etc.):
3681          */
3682         if (preempt_count())
3683                 return;
3684
3685         down_read(&mm->mmap_sem);
3686         vma = find_vma(mm, ip);
3687         if (vma && vma->vm_file) {
3688                 struct file *f = vma->vm_file;
3689                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3690                 if (buf) {
3691                         char *p;
3692
3693                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3694                         if (IS_ERR(p))
3695                                 p = "?";
3696                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3697                                         vma->vm_start,
3698                                         vma->vm_end - vma->vm_start);
3699                         free_page((unsigned long)buf);
3700                 }
3701         }
3702         up_read(&mm->mmap_sem);
3703 }
3704
3705 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3706 void might_fault(void)
3707 {
3708         /*
3709          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3710          * holding the mmap_sem, this is safe because kernel memory doesn't
3711          * get paged out, therefore we'll never actually fault, and the
3712          * below annotations will generate false positives.
3713          */
3714         if (segment_eq(get_fs(), KERNEL_DS))
3715                 return;
3716
3717         /*
3718          * it would be nicer only to annotate paths which are not under
3719          * pagefault_disable, however that requires a larger audit and
3720          * providing helpers like get_user_atomic.
3721          */
3722         if (in_atomic())
3723                 return;
3724
3725         __might_sleep(__FILE__, __LINE__, 0);
3726
3727         if (current->mm)
3728                 might_lock_read(&current->mm->mmap_sem);
3729 }
3730 EXPORT_SYMBOL(might_fault);
3731 #endif
3732
3733 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3734 static void clear_gigantic_page(struct page *page,
3735                                 unsigned long addr,
3736                                 unsigned int pages_per_huge_page)
3737 {
3738         int i;
3739         struct page *p = page;
3740
3741         might_sleep();
3742         for (i = 0; i < pages_per_huge_page;
3743              i++, p = mem_map_next(p, page, i)) {
3744                 cond_resched();
3745                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3746         }
3747 }
3748 void clear_huge_page(struct page *page,
3749                      unsigned long addr, unsigned int pages_per_huge_page)
3750 {
3751         int i;
3752
3753         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3754                 clear_gigantic_page(page, addr, pages_per_huge_page);
3755                 return;
3756         }
3757
3758         might_sleep();
3759         for (i = 0; i < pages_per_huge_page; i++) {
3760                 cond_resched();
3761                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3762         }
3763 }
3764
3765 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3766                                     unsigned long addr,
3767                                     struct vm_area_struct *vma,
3768                                     unsigned int pages_per_huge_page)
3769 {
3770         int i;
3771         struct page *dst_base = dst;
3772         struct page *src_base = src;
3773
3774         for (i = 0; i < pages_per_huge_page; ) {
3775                 cond_resched();
3776                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3777
3778                 i++;
3779                 dst = mem_map_next(dst, dst_base, i);
3780                 src = mem_map_next(src, src_base, i);
3781         }
3782 }
3783
3784 void copy_user_huge_page(struct page *dst, struct page *src,
3785                          unsigned long addr, struct vm_area_struct *vma,
3786                          unsigned int pages_per_huge_page)
3787 {
3788         int i;
3789
3790         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3791                 copy_user_gigantic_page(dst, src, addr, vma,
3792                                         pages_per_huge_page);
3793                 return;
3794         }
3795
3796         might_sleep();
3797         for (i = 0; i < pages_per_huge_page; i++) {
3798                 cond_resched();
3799                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3800         }
3801 }
3802 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3803
3804 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3805
3806 static struct kmem_cache *page_ptl_cachep;
3807
3808 void __init ptlock_cache_init(void)
3809 {
3810         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3811                         SLAB_PANIC, NULL);
3812 }
3813
3814 bool ptlock_alloc(struct page *page)
3815 {
3816         spinlock_t *ptl;
3817
3818         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3819         if (!ptl)
3820                 return false;
3821         page->ptl = ptl;
3822         return true;
3823 }
3824
3825 void ptlock_free(struct page *page)
3826 {
3827         kmem_cache_free(page_ptl_cachep, page->ptl);
3828 }
3829 #endif