x86,mm: fix pte_special versus pte_numa
[cascardo/linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106                                         1;
107 #else
108                                         2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113         randomize_va_space = 0;
114         return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 /*
122  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123  */
124 static int __init init_zero_pfn(void)
125 {
126         zero_pfn = page_to_pfn(ZERO_PAGE(0));
127         return 0;
128 }
129 core_initcall(init_zero_pfn);
130
131
132 #if defined(SPLIT_RSS_COUNTING)
133
134 void sync_mm_rss(struct mm_struct *mm)
135 {
136         int i;
137
138         for (i = 0; i < NR_MM_COUNTERS; i++) {
139                 if (current->rss_stat.count[i]) {
140                         add_mm_counter(mm, i, current->rss_stat.count[i]);
141                         current->rss_stat.count[i] = 0;
142                 }
143         }
144         current->rss_stat.events = 0;
145 }
146
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148 {
149         struct task_struct *task = current;
150
151         if (likely(task->mm == mm))
152                 task->rss_stat.count[member] += val;
153         else
154                 add_mm_counter(mm, member, val);
155 }
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH  (64)
161 static void check_sync_rss_stat(struct task_struct *task)
162 {
163         if (unlikely(task != current))
164                 return;
165         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166                 sync_mm_rss(task->mm);
167 }
168 #else /* SPLIT_RSS_COUNTING */
169
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 }
176
177 #endif /* SPLIT_RSS_COUNTING */
178
179 #ifdef HAVE_GENERIC_MMU_GATHER
180
181 static int tlb_next_batch(struct mmu_gather *tlb)
182 {
183         struct mmu_gather_batch *batch;
184
185         batch = tlb->active;
186         if (batch->next) {
187                 tlb->active = batch->next;
188                 return 1;
189         }
190
191         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192                 return 0;
193
194         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195         if (!batch)
196                 return 0;
197
198         tlb->batch_count++;
199         batch->next = NULL;
200         batch->nr   = 0;
201         batch->max  = MAX_GATHER_BATCH;
202
203         tlb->active->next = batch;
204         tlb->active = batch;
205
206         return 1;
207 }
208
209 /* tlb_gather_mmu
210  *      Called to initialize an (on-stack) mmu_gather structure for page-table
211  *      tear-down from @mm. The @fullmm argument is used when @mm is without
212  *      users and we're going to destroy the full address space (exit/execve).
213  */
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
215 {
216         tlb->mm = mm;
217
218         /* Is it from 0 to ~0? */
219         tlb->fullmm     = !(start | (end+1));
220         tlb->need_flush_all = 0;
221         tlb->start      = start;
222         tlb->end        = end;
223         tlb->need_flush = 0;
224         tlb->local.next = NULL;
225         tlb->local.nr   = 0;
226         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
227         tlb->active     = &tlb->local;
228         tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231         tlb->batch = NULL;
232 #endif
233 }
234
235 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
236 {
237         tlb->need_flush = 0;
238         tlb_flush(tlb);
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240         tlb_table_flush(tlb);
241 #endif
242 }
243
244 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
245 {
246         struct mmu_gather_batch *batch;
247
248         for (batch = &tlb->local; batch; batch = batch->next) {
249                 free_pages_and_swap_cache(batch->pages, batch->nr);
250                 batch->nr = 0;
251         }
252         tlb->active = &tlb->local;
253 }
254
255 void tlb_flush_mmu(struct mmu_gather *tlb)
256 {
257         if (!tlb->need_flush)
258                 return;
259         tlb_flush_mmu_tlbonly(tlb);
260         tlb_flush_mmu_free(tlb);
261 }
262
263 /* tlb_finish_mmu
264  *      Called at the end of the shootdown operation to free up any resources
265  *      that were required.
266  */
267 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
268 {
269         struct mmu_gather_batch *batch, *next;
270
271         tlb_flush_mmu(tlb);
272
273         /* keep the page table cache within bounds */
274         check_pgt_cache();
275
276         for (batch = tlb->local.next; batch; batch = next) {
277                 next = batch->next;
278                 free_pages((unsigned long)batch, 0);
279         }
280         tlb->local.next = NULL;
281 }
282
283 /* __tlb_remove_page
284  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
285  *      handling the additional races in SMP caused by other CPUs caching valid
286  *      mappings in their TLBs. Returns the number of free page slots left.
287  *      When out of page slots we must call tlb_flush_mmu().
288  */
289 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
290 {
291         struct mmu_gather_batch *batch;
292
293         VM_BUG_ON(!tlb->need_flush);
294
295         batch = tlb->active;
296         batch->pages[batch->nr++] = page;
297         if (batch->nr == batch->max) {
298                 if (!tlb_next_batch(tlb))
299                         return 0;
300                 batch = tlb->active;
301         }
302         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
303
304         return batch->max - batch->nr;
305 }
306
307 #endif /* HAVE_GENERIC_MMU_GATHER */
308
309 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
310
311 /*
312  * See the comment near struct mmu_table_batch.
313  */
314
315 static void tlb_remove_table_smp_sync(void *arg)
316 {
317         /* Simply deliver the interrupt */
318 }
319
320 static void tlb_remove_table_one(void *table)
321 {
322         /*
323          * This isn't an RCU grace period and hence the page-tables cannot be
324          * assumed to be actually RCU-freed.
325          *
326          * It is however sufficient for software page-table walkers that rely on
327          * IRQ disabling. See the comment near struct mmu_table_batch.
328          */
329         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
330         __tlb_remove_table(table);
331 }
332
333 static void tlb_remove_table_rcu(struct rcu_head *head)
334 {
335         struct mmu_table_batch *batch;
336         int i;
337
338         batch = container_of(head, struct mmu_table_batch, rcu);
339
340         for (i = 0; i < batch->nr; i++)
341                 __tlb_remove_table(batch->tables[i]);
342
343         free_page((unsigned long)batch);
344 }
345
346 void tlb_table_flush(struct mmu_gather *tlb)
347 {
348         struct mmu_table_batch **batch = &tlb->batch;
349
350         if (*batch) {
351                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
352                 *batch = NULL;
353         }
354 }
355
356 void tlb_remove_table(struct mmu_gather *tlb, void *table)
357 {
358         struct mmu_table_batch **batch = &tlb->batch;
359
360         tlb->need_flush = 1;
361
362         /*
363          * When there's less then two users of this mm there cannot be a
364          * concurrent page-table walk.
365          */
366         if (atomic_read(&tlb->mm->mm_users) < 2) {
367                 __tlb_remove_table(table);
368                 return;
369         }
370
371         if (*batch == NULL) {
372                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
373                 if (*batch == NULL) {
374                         tlb_remove_table_one(table);
375                         return;
376                 }
377                 (*batch)->nr = 0;
378         }
379         (*batch)->tables[(*batch)->nr++] = table;
380         if ((*batch)->nr == MAX_TABLE_BATCH)
381                 tlb_table_flush(tlb);
382 }
383
384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
385
386 /*
387  * Note: this doesn't free the actual pages themselves. That
388  * has been handled earlier when unmapping all the memory regions.
389  */
390 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
391                            unsigned long addr)
392 {
393         pgtable_t token = pmd_pgtable(*pmd);
394         pmd_clear(pmd);
395         pte_free_tlb(tlb, token, addr);
396         atomic_long_dec(&tlb->mm->nr_ptes);
397 }
398
399 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
400                                 unsigned long addr, unsigned long end,
401                                 unsigned long floor, unsigned long ceiling)
402 {
403         pmd_t *pmd;
404         unsigned long next;
405         unsigned long start;
406
407         start = addr;
408         pmd = pmd_offset(pud, addr);
409         do {
410                 next = pmd_addr_end(addr, end);
411                 if (pmd_none_or_clear_bad(pmd))
412                         continue;
413                 free_pte_range(tlb, pmd, addr);
414         } while (pmd++, addr = next, addr != end);
415
416         start &= PUD_MASK;
417         if (start < floor)
418                 return;
419         if (ceiling) {
420                 ceiling &= PUD_MASK;
421                 if (!ceiling)
422                         return;
423         }
424         if (end - 1 > ceiling - 1)
425                 return;
426
427         pmd = pmd_offset(pud, start);
428         pud_clear(pud);
429         pmd_free_tlb(tlb, pmd, start);
430 }
431
432 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
433                                 unsigned long addr, unsigned long end,
434                                 unsigned long floor, unsigned long ceiling)
435 {
436         pud_t *pud;
437         unsigned long next;
438         unsigned long start;
439
440         start = addr;
441         pud = pud_offset(pgd, addr);
442         do {
443                 next = pud_addr_end(addr, end);
444                 if (pud_none_or_clear_bad(pud))
445                         continue;
446                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
447         } while (pud++, addr = next, addr != end);
448
449         start &= PGDIR_MASK;
450         if (start < floor)
451                 return;
452         if (ceiling) {
453                 ceiling &= PGDIR_MASK;
454                 if (!ceiling)
455                         return;
456         }
457         if (end - 1 > ceiling - 1)
458                 return;
459
460         pud = pud_offset(pgd, start);
461         pgd_clear(pgd);
462         pud_free_tlb(tlb, pud, start);
463 }
464
465 /*
466  * This function frees user-level page tables of a process.
467  */
468 void free_pgd_range(struct mmu_gather *tlb,
469                         unsigned long addr, unsigned long end,
470                         unsigned long floor, unsigned long ceiling)
471 {
472         pgd_t *pgd;
473         unsigned long next;
474
475         /*
476          * The next few lines have given us lots of grief...
477          *
478          * Why are we testing PMD* at this top level?  Because often
479          * there will be no work to do at all, and we'd prefer not to
480          * go all the way down to the bottom just to discover that.
481          *
482          * Why all these "- 1"s?  Because 0 represents both the bottom
483          * of the address space and the top of it (using -1 for the
484          * top wouldn't help much: the masks would do the wrong thing).
485          * The rule is that addr 0 and floor 0 refer to the bottom of
486          * the address space, but end 0 and ceiling 0 refer to the top
487          * Comparisons need to use "end - 1" and "ceiling - 1" (though
488          * that end 0 case should be mythical).
489          *
490          * Wherever addr is brought up or ceiling brought down, we must
491          * be careful to reject "the opposite 0" before it confuses the
492          * subsequent tests.  But what about where end is brought down
493          * by PMD_SIZE below? no, end can't go down to 0 there.
494          *
495          * Whereas we round start (addr) and ceiling down, by different
496          * masks at different levels, in order to test whether a table
497          * now has no other vmas using it, so can be freed, we don't
498          * bother to round floor or end up - the tests don't need that.
499          */
500
501         addr &= PMD_MASK;
502         if (addr < floor) {
503                 addr += PMD_SIZE;
504                 if (!addr)
505                         return;
506         }
507         if (ceiling) {
508                 ceiling &= PMD_MASK;
509                 if (!ceiling)
510                         return;
511         }
512         if (end - 1 > ceiling - 1)
513                 end -= PMD_SIZE;
514         if (addr > end - 1)
515                 return;
516
517         pgd = pgd_offset(tlb->mm, addr);
518         do {
519                 next = pgd_addr_end(addr, end);
520                 if (pgd_none_or_clear_bad(pgd))
521                         continue;
522                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
523         } while (pgd++, addr = next, addr != end);
524 }
525
526 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
527                 unsigned long floor, unsigned long ceiling)
528 {
529         while (vma) {
530                 struct vm_area_struct *next = vma->vm_next;
531                 unsigned long addr = vma->vm_start;
532
533                 /*
534                  * Hide vma from rmap and truncate_pagecache before freeing
535                  * pgtables
536                  */
537                 unlink_anon_vmas(vma);
538                 unlink_file_vma(vma);
539
540                 if (is_vm_hugetlb_page(vma)) {
541                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
542                                 floor, next? next->vm_start: ceiling);
543                 } else {
544                         /*
545                          * Optimization: gather nearby vmas into one call down
546                          */
547                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
548                                && !is_vm_hugetlb_page(next)) {
549                                 vma = next;
550                                 next = vma->vm_next;
551                                 unlink_anon_vmas(vma);
552                                 unlink_file_vma(vma);
553                         }
554                         free_pgd_range(tlb, addr, vma->vm_end,
555                                 floor, next? next->vm_start: ceiling);
556                 }
557                 vma = next;
558         }
559 }
560
561 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
562                 pmd_t *pmd, unsigned long address)
563 {
564         spinlock_t *ptl;
565         pgtable_t new = pte_alloc_one(mm, address);
566         int wait_split_huge_page;
567         if (!new)
568                 return -ENOMEM;
569
570         /*
571          * Ensure all pte setup (eg. pte page lock and page clearing) are
572          * visible before the pte is made visible to other CPUs by being
573          * put into page tables.
574          *
575          * The other side of the story is the pointer chasing in the page
576          * table walking code (when walking the page table without locking;
577          * ie. most of the time). Fortunately, these data accesses consist
578          * of a chain of data-dependent loads, meaning most CPUs (alpha
579          * being the notable exception) will already guarantee loads are
580          * seen in-order. See the alpha page table accessors for the
581          * smp_read_barrier_depends() barriers in page table walking code.
582          */
583         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
584
585         ptl = pmd_lock(mm, pmd);
586         wait_split_huge_page = 0;
587         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
588                 atomic_long_inc(&mm->nr_ptes);
589                 pmd_populate(mm, pmd, new);
590                 new = NULL;
591         } else if (unlikely(pmd_trans_splitting(*pmd)))
592                 wait_split_huge_page = 1;
593         spin_unlock(ptl);
594         if (new)
595                 pte_free(mm, new);
596         if (wait_split_huge_page)
597                 wait_split_huge_page(vma->anon_vma, pmd);
598         return 0;
599 }
600
601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
602 {
603         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604         if (!new)
605                 return -ENOMEM;
606
607         smp_wmb(); /* See comment in __pte_alloc */
608
609         spin_lock(&init_mm.page_table_lock);
610         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
611                 pmd_populate_kernel(&init_mm, pmd, new);
612                 new = NULL;
613         } else
614                 VM_BUG_ON(pmd_trans_splitting(*pmd));
615         spin_unlock(&init_mm.page_table_lock);
616         if (new)
617                 pte_free_kernel(&init_mm, new);
618         return 0;
619 }
620
621 static inline void init_rss_vec(int *rss)
622 {
623         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
624 }
625
626 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
627 {
628         int i;
629
630         if (current->mm == mm)
631                 sync_mm_rss(mm);
632         for (i = 0; i < NR_MM_COUNTERS; i++)
633                 if (rss[i])
634                         add_mm_counter(mm, i, rss[i]);
635 }
636
637 /*
638  * This function is called to print an error when a bad pte
639  * is found. For example, we might have a PFN-mapped pte in
640  * a region that doesn't allow it.
641  *
642  * The calling function must still handle the error.
643  */
644 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
645                           pte_t pte, struct page *page)
646 {
647         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
648         pud_t *pud = pud_offset(pgd, addr);
649         pmd_t *pmd = pmd_offset(pud, addr);
650         struct address_space *mapping;
651         pgoff_t index;
652         static unsigned long resume;
653         static unsigned long nr_shown;
654         static unsigned long nr_unshown;
655
656         /*
657          * Allow a burst of 60 reports, then keep quiet for that minute;
658          * or allow a steady drip of one report per second.
659          */
660         if (nr_shown == 60) {
661                 if (time_before(jiffies, resume)) {
662                         nr_unshown++;
663                         return;
664                 }
665                 if (nr_unshown) {
666                         printk(KERN_ALERT
667                                 "BUG: Bad page map: %lu messages suppressed\n",
668                                 nr_unshown);
669                         nr_unshown = 0;
670                 }
671                 nr_shown = 0;
672         }
673         if (nr_shown++ == 0)
674                 resume = jiffies + 60 * HZ;
675
676         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
677         index = linear_page_index(vma, addr);
678
679         printk(KERN_ALERT
680                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
681                 current->comm,
682                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
683         if (page)
684                 dump_page(page, "bad pte");
685         printk(KERN_ALERT
686                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
687                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
688         /*
689          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
690          */
691         if (vma->vm_ops)
692                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
693                        vma->vm_ops->fault);
694         if (vma->vm_file)
695                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
696                        vma->vm_file->f_op->mmap);
697         dump_stack();
698         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
699 }
700
701 /*
702  * vm_normal_page -- This function gets the "struct page" associated with a pte.
703  *
704  * "Special" mappings do not wish to be associated with a "struct page" (either
705  * it doesn't exist, or it exists but they don't want to touch it). In this
706  * case, NULL is returned here. "Normal" mappings do have a struct page.
707  *
708  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
709  * pte bit, in which case this function is trivial. Secondly, an architecture
710  * may not have a spare pte bit, which requires a more complicated scheme,
711  * described below.
712  *
713  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
714  * special mapping (even if there are underlying and valid "struct pages").
715  * COWed pages of a VM_PFNMAP are always normal.
716  *
717  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
718  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
719  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
720  * mapping will always honor the rule
721  *
722  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
723  *
724  * And for normal mappings this is false.
725  *
726  * This restricts such mappings to be a linear translation from virtual address
727  * to pfn. To get around this restriction, we allow arbitrary mappings so long
728  * as the vma is not a COW mapping; in that case, we know that all ptes are
729  * special (because none can have been COWed).
730  *
731  *
732  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
733  *
734  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
735  * page" backing, however the difference is that _all_ pages with a struct
736  * page (that is, those where pfn_valid is true) are refcounted and considered
737  * normal pages by the VM. The disadvantage is that pages are refcounted
738  * (which can be slower and simply not an option for some PFNMAP users). The
739  * advantage is that we don't have to follow the strict linearity rule of
740  * PFNMAP mappings in order to support COWable mappings.
741  *
742  */
743 #ifdef __HAVE_ARCH_PTE_SPECIAL
744 # define HAVE_PTE_SPECIAL 1
745 #else
746 # define HAVE_PTE_SPECIAL 0
747 #endif
748 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
749                                 pte_t pte)
750 {
751         unsigned long pfn = pte_pfn(pte);
752
753         if (HAVE_PTE_SPECIAL) {
754                 if (likely(!pte_special(pte)))
755                         goto check_pfn;
756                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
757                         return NULL;
758                 if (!is_zero_pfn(pfn))
759                         print_bad_pte(vma, addr, pte, NULL);
760                 return NULL;
761         }
762
763         /* !HAVE_PTE_SPECIAL case follows: */
764
765         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
766                 if (vma->vm_flags & VM_MIXEDMAP) {
767                         if (!pfn_valid(pfn))
768                                 return NULL;
769                         goto out;
770                 } else {
771                         unsigned long off;
772                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
773                         if (pfn == vma->vm_pgoff + off)
774                                 return NULL;
775                         if (!is_cow_mapping(vma->vm_flags))
776                                 return NULL;
777                 }
778         }
779
780         if (is_zero_pfn(pfn))
781                 return NULL;
782 check_pfn:
783         if (unlikely(pfn > highest_memmap_pfn)) {
784                 print_bad_pte(vma, addr, pte, NULL);
785                 return NULL;
786         }
787
788         /*
789          * NOTE! We still have PageReserved() pages in the page tables.
790          * eg. VDSO mappings can cause them to exist.
791          */
792 out:
793         return pfn_to_page(pfn);
794 }
795
796 /*
797  * copy one vm_area from one task to the other. Assumes the page tables
798  * already present in the new task to be cleared in the whole range
799  * covered by this vma.
800  */
801
802 static inline unsigned long
803 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
804                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
805                 unsigned long addr, int *rss)
806 {
807         unsigned long vm_flags = vma->vm_flags;
808         pte_t pte = *src_pte;
809         struct page *page;
810
811         /* pte contains position in swap or file, so copy. */
812         if (unlikely(!pte_present(pte))) {
813                 if (!pte_file(pte)) {
814                         swp_entry_t entry = pte_to_swp_entry(pte);
815
816                         if (swap_duplicate(entry) < 0)
817                                 return entry.val;
818
819                         /* make sure dst_mm is on swapoff's mmlist. */
820                         if (unlikely(list_empty(&dst_mm->mmlist))) {
821                                 spin_lock(&mmlist_lock);
822                                 if (list_empty(&dst_mm->mmlist))
823                                         list_add(&dst_mm->mmlist,
824                                                  &src_mm->mmlist);
825                                 spin_unlock(&mmlist_lock);
826                         }
827                         if (likely(!non_swap_entry(entry)))
828                                 rss[MM_SWAPENTS]++;
829                         else if (is_migration_entry(entry)) {
830                                 page = migration_entry_to_page(entry);
831
832                                 if (PageAnon(page))
833                                         rss[MM_ANONPAGES]++;
834                                 else
835                                         rss[MM_FILEPAGES]++;
836
837                                 if (is_write_migration_entry(entry) &&
838                                     is_cow_mapping(vm_flags)) {
839                                         /*
840                                          * COW mappings require pages in both
841                                          * parent and child to be set to read.
842                                          */
843                                         make_migration_entry_read(&entry);
844                                         pte = swp_entry_to_pte(entry);
845                                         if (pte_swp_soft_dirty(*src_pte))
846                                                 pte = pte_swp_mksoft_dirty(pte);
847                                         set_pte_at(src_mm, addr, src_pte, pte);
848                                 }
849                         }
850                 }
851                 goto out_set_pte;
852         }
853
854         /*
855          * If it's a COW mapping, write protect it both
856          * in the parent and the child
857          */
858         if (is_cow_mapping(vm_flags)) {
859                 ptep_set_wrprotect(src_mm, addr, src_pte);
860                 pte = pte_wrprotect(pte);
861         }
862
863         /*
864          * If it's a shared mapping, mark it clean in
865          * the child
866          */
867         if (vm_flags & VM_SHARED)
868                 pte = pte_mkclean(pte);
869         pte = pte_mkold(pte);
870
871         page = vm_normal_page(vma, addr, pte);
872         if (page) {
873                 get_page(page);
874                 page_dup_rmap(page);
875                 if (PageAnon(page))
876                         rss[MM_ANONPAGES]++;
877                 else
878                         rss[MM_FILEPAGES]++;
879         }
880
881 out_set_pte:
882         set_pte_at(dst_mm, addr, dst_pte, pte);
883         return 0;
884 }
885
886 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
887                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
888                    unsigned long addr, unsigned long end)
889 {
890         pte_t *orig_src_pte, *orig_dst_pte;
891         pte_t *src_pte, *dst_pte;
892         spinlock_t *src_ptl, *dst_ptl;
893         int progress = 0;
894         int rss[NR_MM_COUNTERS];
895         swp_entry_t entry = (swp_entry_t){0};
896
897 again:
898         init_rss_vec(rss);
899
900         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
901         if (!dst_pte)
902                 return -ENOMEM;
903         src_pte = pte_offset_map(src_pmd, addr);
904         src_ptl = pte_lockptr(src_mm, src_pmd);
905         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
906         orig_src_pte = src_pte;
907         orig_dst_pte = dst_pte;
908         arch_enter_lazy_mmu_mode();
909
910         do {
911                 /*
912                  * We are holding two locks at this point - either of them
913                  * could generate latencies in another task on another CPU.
914                  */
915                 if (progress >= 32) {
916                         progress = 0;
917                         if (need_resched() ||
918                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
919                                 break;
920                 }
921                 if (pte_none(*src_pte)) {
922                         progress++;
923                         continue;
924                 }
925                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
926                                                         vma, addr, rss);
927                 if (entry.val)
928                         break;
929                 progress += 8;
930         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
931
932         arch_leave_lazy_mmu_mode();
933         spin_unlock(src_ptl);
934         pte_unmap(orig_src_pte);
935         add_mm_rss_vec(dst_mm, rss);
936         pte_unmap_unlock(orig_dst_pte, dst_ptl);
937         cond_resched();
938
939         if (entry.val) {
940                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
941                         return -ENOMEM;
942                 progress = 0;
943         }
944         if (addr != end)
945                 goto again;
946         return 0;
947 }
948
949 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
951                 unsigned long addr, unsigned long end)
952 {
953         pmd_t *src_pmd, *dst_pmd;
954         unsigned long next;
955
956         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
957         if (!dst_pmd)
958                 return -ENOMEM;
959         src_pmd = pmd_offset(src_pud, addr);
960         do {
961                 next = pmd_addr_end(addr, end);
962                 if (pmd_trans_huge(*src_pmd)) {
963                         int err;
964                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
965                         err = copy_huge_pmd(dst_mm, src_mm,
966                                             dst_pmd, src_pmd, addr, vma);
967                         if (err == -ENOMEM)
968                                 return -ENOMEM;
969                         if (!err)
970                                 continue;
971                         /* fall through */
972                 }
973                 if (pmd_none_or_clear_bad(src_pmd))
974                         continue;
975                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
976                                                 vma, addr, next))
977                         return -ENOMEM;
978         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
979         return 0;
980 }
981
982 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
983                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
984                 unsigned long addr, unsigned long end)
985 {
986         pud_t *src_pud, *dst_pud;
987         unsigned long next;
988
989         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
990         if (!dst_pud)
991                 return -ENOMEM;
992         src_pud = pud_offset(src_pgd, addr);
993         do {
994                 next = pud_addr_end(addr, end);
995                 if (pud_none_or_clear_bad(src_pud))
996                         continue;
997                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
998                                                 vma, addr, next))
999                         return -ENOMEM;
1000         } while (dst_pud++, src_pud++, addr = next, addr != end);
1001         return 0;
1002 }
1003
1004 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1005                 struct vm_area_struct *vma)
1006 {
1007         pgd_t *src_pgd, *dst_pgd;
1008         unsigned long next;
1009         unsigned long addr = vma->vm_start;
1010         unsigned long end = vma->vm_end;
1011         unsigned long mmun_start;       /* For mmu_notifiers */
1012         unsigned long mmun_end;         /* For mmu_notifiers */
1013         bool is_cow;
1014         int ret;
1015
1016         /*
1017          * Don't copy ptes where a page fault will fill them correctly.
1018          * Fork becomes much lighter when there are big shared or private
1019          * readonly mappings. The tradeoff is that copy_page_range is more
1020          * efficient than faulting.
1021          */
1022         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1023                                VM_PFNMAP | VM_MIXEDMAP))) {
1024                 if (!vma->anon_vma)
1025                         return 0;
1026         }
1027
1028         if (is_vm_hugetlb_page(vma))
1029                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1030
1031         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1032                 /*
1033                  * We do not free on error cases below as remove_vma
1034                  * gets called on error from higher level routine
1035                  */
1036                 ret = track_pfn_copy(vma);
1037                 if (ret)
1038                         return ret;
1039         }
1040
1041         /*
1042          * We need to invalidate the secondary MMU mappings only when
1043          * there could be a permission downgrade on the ptes of the
1044          * parent mm. And a permission downgrade will only happen if
1045          * is_cow_mapping() returns true.
1046          */
1047         is_cow = is_cow_mapping(vma->vm_flags);
1048         mmun_start = addr;
1049         mmun_end   = end;
1050         if (is_cow)
1051                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1052                                                     mmun_end);
1053
1054         ret = 0;
1055         dst_pgd = pgd_offset(dst_mm, addr);
1056         src_pgd = pgd_offset(src_mm, addr);
1057         do {
1058                 next = pgd_addr_end(addr, end);
1059                 if (pgd_none_or_clear_bad(src_pgd))
1060                         continue;
1061                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1062                                             vma, addr, next))) {
1063                         ret = -ENOMEM;
1064                         break;
1065                 }
1066         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1067
1068         if (is_cow)
1069                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1070         return ret;
1071 }
1072
1073 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1074                                 struct vm_area_struct *vma, pmd_t *pmd,
1075                                 unsigned long addr, unsigned long end,
1076                                 struct zap_details *details)
1077 {
1078         struct mm_struct *mm = tlb->mm;
1079         int force_flush = 0;
1080         int rss[NR_MM_COUNTERS];
1081         spinlock_t *ptl;
1082         pte_t *start_pte;
1083         pte_t *pte;
1084
1085 again:
1086         init_rss_vec(rss);
1087         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1088         pte = start_pte;
1089         arch_enter_lazy_mmu_mode();
1090         do {
1091                 pte_t ptent = *pte;
1092                 if (pte_none(ptent)) {
1093                         continue;
1094                 }
1095
1096                 if (pte_present(ptent)) {
1097                         struct page *page;
1098
1099                         page = vm_normal_page(vma, addr, ptent);
1100                         if (unlikely(details) && page) {
1101                                 /*
1102                                  * unmap_shared_mapping_pages() wants to
1103                                  * invalidate cache without truncating:
1104                                  * unmap shared but keep private pages.
1105                                  */
1106                                 if (details->check_mapping &&
1107                                     details->check_mapping != page->mapping)
1108                                         continue;
1109                                 /*
1110                                  * Each page->index must be checked when
1111                                  * invalidating or truncating nonlinear.
1112                                  */
1113                                 if (details->nonlinear_vma &&
1114                                     (page->index < details->first_index ||
1115                                      page->index > details->last_index))
1116                                         continue;
1117                         }
1118                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1119                                                         tlb->fullmm);
1120                         tlb_remove_tlb_entry(tlb, pte, addr);
1121                         if (unlikely(!page))
1122                                 continue;
1123                         if (unlikely(details) && details->nonlinear_vma
1124                             && linear_page_index(details->nonlinear_vma,
1125                                                 addr) != page->index) {
1126                                 pte_t ptfile = pgoff_to_pte(page->index);
1127                                 if (pte_soft_dirty(ptent))
1128                                         pte_file_mksoft_dirty(ptfile);
1129                                 set_pte_at(mm, addr, pte, ptfile);
1130                         }
1131                         if (PageAnon(page))
1132                                 rss[MM_ANONPAGES]--;
1133                         else {
1134                                 if (pte_dirty(ptent)) {
1135                                         force_flush = 1;
1136                                         set_page_dirty(page);
1137                                 }
1138                                 if (pte_young(ptent) &&
1139                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1140                                         mark_page_accessed(page);
1141                                 rss[MM_FILEPAGES]--;
1142                         }
1143                         page_remove_rmap(page);
1144                         if (unlikely(page_mapcount(page) < 0))
1145                                 print_bad_pte(vma, addr, ptent, page);
1146                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1147                                 force_flush = 1;
1148                                 break;
1149                         }
1150                         continue;
1151                 }
1152                 /*
1153                  * If details->check_mapping, we leave swap entries;
1154                  * if details->nonlinear_vma, we leave file entries.
1155                  */
1156                 if (unlikely(details))
1157                         continue;
1158                 if (pte_file(ptent)) {
1159                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1160                                 print_bad_pte(vma, addr, ptent, NULL);
1161                 } else {
1162                         swp_entry_t entry = pte_to_swp_entry(ptent);
1163
1164                         if (!non_swap_entry(entry))
1165                                 rss[MM_SWAPENTS]--;
1166                         else if (is_migration_entry(entry)) {
1167                                 struct page *page;
1168
1169                                 page = migration_entry_to_page(entry);
1170
1171                                 if (PageAnon(page))
1172                                         rss[MM_ANONPAGES]--;
1173                                 else
1174                                         rss[MM_FILEPAGES]--;
1175                         }
1176                         if (unlikely(!free_swap_and_cache(entry)))
1177                                 print_bad_pte(vma, addr, ptent, NULL);
1178                 }
1179                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1180         } while (pte++, addr += PAGE_SIZE, addr != end);
1181
1182         add_mm_rss_vec(mm, rss);
1183         arch_leave_lazy_mmu_mode();
1184
1185         /* Do the actual TLB flush before dropping ptl */
1186         if (force_flush) {
1187                 unsigned long old_end;
1188
1189                 /*
1190                  * Flush the TLB just for the previous segment,
1191                  * then update the range to be the remaining
1192                  * TLB range.
1193                  */
1194                 old_end = tlb->end;
1195                 tlb->end = addr;
1196                 tlb_flush_mmu_tlbonly(tlb);
1197                 tlb->start = addr;
1198                 tlb->end = old_end;
1199         }
1200         pte_unmap_unlock(start_pte, ptl);
1201
1202         /*
1203          * If we forced a TLB flush (either due to running out of
1204          * batch buffers or because we needed to flush dirty TLB
1205          * entries before releasing the ptl), free the batched
1206          * memory too. Restart if we didn't do everything.
1207          */
1208         if (force_flush) {
1209                 force_flush = 0;
1210                 tlb_flush_mmu_free(tlb);
1211
1212                 if (addr != end)
1213                         goto again;
1214         }
1215
1216         return addr;
1217 }
1218
1219 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1220                                 struct vm_area_struct *vma, pud_t *pud,
1221                                 unsigned long addr, unsigned long end,
1222                                 struct zap_details *details)
1223 {
1224         pmd_t *pmd;
1225         unsigned long next;
1226
1227         pmd = pmd_offset(pud, addr);
1228         do {
1229                 next = pmd_addr_end(addr, end);
1230                 if (pmd_trans_huge(*pmd)) {
1231                         if (next - addr != HPAGE_PMD_SIZE) {
1232 #ifdef CONFIG_DEBUG_VM
1233                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1234                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1235                                                 __func__, addr, end,
1236                                                 vma->vm_start,
1237                                                 vma->vm_end);
1238                                         BUG();
1239                                 }
1240 #endif
1241                                 split_huge_page_pmd(vma, addr, pmd);
1242                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1243                                 goto next;
1244                         /* fall through */
1245                 }
1246                 /*
1247                  * Here there can be other concurrent MADV_DONTNEED or
1248                  * trans huge page faults running, and if the pmd is
1249                  * none or trans huge it can change under us. This is
1250                  * because MADV_DONTNEED holds the mmap_sem in read
1251                  * mode.
1252                  */
1253                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1254                         goto next;
1255                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1256 next:
1257                 cond_resched();
1258         } while (pmd++, addr = next, addr != end);
1259
1260         return addr;
1261 }
1262
1263 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1264                                 struct vm_area_struct *vma, pgd_t *pgd,
1265                                 unsigned long addr, unsigned long end,
1266                                 struct zap_details *details)
1267 {
1268         pud_t *pud;
1269         unsigned long next;
1270
1271         pud = pud_offset(pgd, addr);
1272         do {
1273                 next = pud_addr_end(addr, end);
1274                 if (pud_none_or_clear_bad(pud))
1275                         continue;
1276                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1277         } while (pud++, addr = next, addr != end);
1278
1279         return addr;
1280 }
1281
1282 static void unmap_page_range(struct mmu_gather *tlb,
1283                              struct vm_area_struct *vma,
1284                              unsigned long addr, unsigned long end,
1285                              struct zap_details *details)
1286 {
1287         pgd_t *pgd;
1288         unsigned long next;
1289
1290         if (details && !details->check_mapping && !details->nonlinear_vma)
1291                 details = NULL;
1292
1293         BUG_ON(addr >= end);
1294         tlb_start_vma(tlb, vma);
1295         pgd = pgd_offset(vma->vm_mm, addr);
1296         do {
1297                 next = pgd_addr_end(addr, end);
1298                 if (pgd_none_or_clear_bad(pgd))
1299                         continue;
1300                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1301         } while (pgd++, addr = next, addr != end);
1302         tlb_end_vma(tlb, vma);
1303 }
1304
1305
1306 static void unmap_single_vma(struct mmu_gather *tlb,
1307                 struct vm_area_struct *vma, unsigned long start_addr,
1308                 unsigned long end_addr,
1309                 struct zap_details *details)
1310 {
1311         unsigned long start = max(vma->vm_start, start_addr);
1312         unsigned long end;
1313
1314         if (start >= vma->vm_end)
1315                 return;
1316         end = min(vma->vm_end, end_addr);
1317         if (end <= vma->vm_start)
1318                 return;
1319
1320         if (vma->vm_file)
1321                 uprobe_munmap(vma, start, end);
1322
1323         if (unlikely(vma->vm_flags & VM_PFNMAP))
1324                 untrack_pfn(vma, 0, 0);
1325
1326         if (start != end) {
1327                 if (unlikely(is_vm_hugetlb_page(vma))) {
1328                         /*
1329                          * It is undesirable to test vma->vm_file as it
1330                          * should be non-null for valid hugetlb area.
1331                          * However, vm_file will be NULL in the error
1332                          * cleanup path of mmap_region. When
1333                          * hugetlbfs ->mmap method fails,
1334                          * mmap_region() nullifies vma->vm_file
1335                          * before calling this function to clean up.
1336                          * Since no pte has actually been setup, it is
1337                          * safe to do nothing in this case.
1338                          */
1339                         if (vma->vm_file) {
1340                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1341                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1342                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1343                         }
1344                 } else
1345                         unmap_page_range(tlb, vma, start, end, details);
1346         }
1347 }
1348
1349 /**
1350  * unmap_vmas - unmap a range of memory covered by a list of vma's
1351  * @tlb: address of the caller's struct mmu_gather
1352  * @vma: the starting vma
1353  * @start_addr: virtual address at which to start unmapping
1354  * @end_addr: virtual address at which to end unmapping
1355  *
1356  * Unmap all pages in the vma list.
1357  *
1358  * Only addresses between `start' and `end' will be unmapped.
1359  *
1360  * The VMA list must be sorted in ascending virtual address order.
1361  *
1362  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1363  * range after unmap_vmas() returns.  So the only responsibility here is to
1364  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1365  * drops the lock and schedules.
1366  */
1367 void unmap_vmas(struct mmu_gather *tlb,
1368                 struct vm_area_struct *vma, unsigned long start_addr,
1369                 unsigned long end_addr)
1370 {
1371         struct mm_struct *mm = vma->vm_mm;
1372
1373         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1374         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1375                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1376         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1377 }
1378
1379 /**
1380  * zap_page_range - remove user pages in a given range
1381  * @vma: vm_area_struct holding the applicable pages
1382  * @start: starting address of pages to zap
1383  * @size: number of bytes to zap
1384  * @details: details of nonlinear truncation or shared cache invalidation
1385  *
1386  * Caller must protect the VMA list
1387  */
1388 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1389                 unsigned long size, struct zap_details *details)
1390 {
1391         struct mm_struct *mm = vma->vm_mm;
1392         struct mmu_gather tlb;
1393         unsigned long end = start + size;
1394
1395         lru_add_drain();
1396         tlb_gather_mmu(&tlb, mm, start, end);
1397         update_hiwater_rss(mm);
1398         mmu_notifier_invalidate_range_start(mm, start, end);
1399         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1400                 unmap_single_vma(&tlb, vma, start, end, details);
1401         mmu_notifier_invalidate_range_end(mm, start, end);
1402         tlb_finish_mmu(&tlb, start, end);
1403 }
1404
1405 /**
1406  * zap_page_range_single - remove user pages in a given range
1407  * @vma: vm_area_struct holding the applicable pages
1408  * @address: starting address of pages to zap
1409  * @size: number of bytes to zap
1410  * @details: details of nonlinear truncation or shared cache invalidation
1411  *
1412  * The range must fit into one VMA.
1413  */
1414 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1415                 unsigned long size, struct zap_details *details)
1416 {
1417         struct mm_struct *mm = vma->vm_mm;
1418         struct mmu_gather tlb;
1419         unsigned long end = address + size;
1420
1421         lru_add_drain();
1422         tlb_gather_mmu(&tlb, mm, address, end);
1423         update_hiwater_rss(mm);
1424         mmu_notifier_invalidate_range_start(mm, address, end);
1425         unmap_single_vma(&tlb, vma, address, end, details);
1426         mmu_notifier_invalidate_range_end(mm, address, end);
1427         tlb_finish_mmu(&tlb, address, end);
1428 }
1429
1430 /**
1431  * zap_vma_ptes - remove ptes mapping the vma
1432  * @vma: vm_area_struct holding ptes to be zapped
1433  * @address: starting address of pages to zap
1434  * @size: number of bytes to zap
1435  *
1436  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1437  *
1438  * The entire address range must be fully contained within the vma.
1439  *
1440  * Returns 0 if successful.
1441  */
1442 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1443                 unsigned long size)
1444 {
1445         if (address < vma->vm_start || address + size > vma->vm_end ||
1446                         !(vma->vm_flags & VM_PFNMAP))
1447                 return -1;
1448         zap_page_range_single(vma, address, size, NULL);
1449         return 0;
1450 }
1451 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1452
1453 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1454                         spinlock_t **ptl)
1455 {
1456         pgd_t * pgd = pgd_offset(mm, addr);
1457         pud_t * pud = pud_alloc(mm, pgd, addr);
1458         if (pud) {
1459                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1460                 if (pmd) {
1461                         VM_BUG_ON(pmd_trans_huge(*pmd));
1462                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1463                 }
1464         }
1465         return NULL;
1466 }
1467
1468 /*
1469  * This is the old fallback for page remapping.
1470  *
1471  * For historical reasons, it only allows reserved pages. Only
1472  * old drivers should use this, and they needed to mark their
1473  * pages reserved for the old functions anyway.
1474  */
1475 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1476                         struct page *page, pgprot_t prot)
1477 {
1478         struct mm_struct *mm = vma->vm_mm;
1479         int retval;
1480         pte_t *pte;
1481         spinlock_t *ptl;
1482
1483         retval = -EINVAL;
1484         if (PageAnon(page))
1485                 goto out;
1486         retval = -ENOMEM;
1487         flush_dcache_page(page);
1488         pte = get_locked_pte(mm, addr, &ptl);
1489         if (!pte)
1490                 goto out;
1491         retval = -EBUSY;
1492         if (!pte_none(*pte))
1493                 goto out_unlock;
1494
1495         /* Ok, finally just insert the thing.. */
1496         get_page(page);
1497         inc_mm_counter_fast(mm, MM_FILEPAGES);
1498         page_add_file_rmap(page);
1499         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1500
1501         retval = 0;
1502         pte_unmap_unlock(pte, ptl);
1503         return retval;
1504 out_unlock:
1505         pte_unmap_unlock(pte, ptl);
1506 out:
1507         return retval;
1508 }
1509
1510 /**
1511  * vm_insert_page - insert single page into user vma
1512  * @vma: user vma to map to
1513  * @addr: target user address of this page
1514  * @page: source kernel page
1515  *
1516  * This allows drivers to insert individual pages they've allocated
1517  * into a user vma.
1518  *
1519  * The page has to be a nice clean _individual_ kernel allocation.
1520  * If you allocate a compound page, you need to have marked it as
1521  * such (__GFP_COMP), or manually just split the page up yourself
1522  * (see split_page()).
1523  *
1524  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1525  * took an arbitrary page protection parameter. This doesn't allow
1526  * that. Your vma protection will have to be set up correctly, which
1527  * means that if you want a shared writable mapping, you'd better
1528  * ask for a shared writable mapping!
1529  *
1530  * The page does not need to be reserved.
1531  *
1532  * Usually this function is called from f_op->mmap() handler
1533  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1534  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1535  * function from other places, for example from page-fault handler.
1536  */
1537 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1538                         struct page *page)
1539 {
1540         if (addr < vma->vm_start || addr >= vma->vm_end)
1541                 return -EFAULT;
1542         if (!page_count(page))
1543                 return -EINVAL;
1544         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1545                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1546                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1547                 vma->vm_flags |= VM_MIXEDMAP;
1548         }
1549         return insert_page(vma, addr, page, vma->vm_page_prot);
1550 }
1551 EXPORT_SYMBOL(vm_insert_page);
1552
1553 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1554                         unsigned long pfn, pgprot_t prot)
1555 {
1556         struct mm_struct *mm = vma->vm_mm;
1557         int retval;
1558         pte_t *pte, entry;
1559         spinlock_t *ptl;
1560
1561         retval = -ENOMEM;
1562         pte = get_locked_pte(mm, addr, &ptl);
1563         if (!pte)
1564                 goto out;
1565         retval = -EBUSY;
1566         if (!pte_none(*pte))
1567                 goto out_unlock;
1568
1569         /* Ok, finally just insert the thing.. */
1570         entry = pte_mkspecial(pfn_pte(pfn, prot));
1571         set_pte_at(mm, addr, pte, entry);
1572         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1573
1574         retval = 0;
1575 out_unlock:
1576         pte_unmap_unlock(pte, ptl);
1577 out:
1578         return retval;
1579 }
1580
1581 /**
1582  * vm_insert_pfn - insert single pfn into user vma
1583  * @vma: user vma to map to
1584  * @addr: target user address of this page
1585  * @pfn: source kernel pfn
1586  *
1587  * Similar to vm_insert_page, this allows drivers to insert individual pages
1588  * they've allocated into a user vma. Same comments apply.
1589  *
1590  * This function should only be called from a vm_ops->fault handler, and
1591  * in that case the handler should return NULL.
1592  *
1593  * vma cannot be a COW mapping.
1594  *
1595  * As this is called only for pages that do not currently exist, we
1596  * do not need to flush old virtual caches or the TLB.
1597  */
1598 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1599                         unsigned long pfn)
1600 {
1601         int ret;
1602         pgprot_t pgprot = vma->vm_page_prot;
1603         /*
1604          * Technically, architectures with pte_special can avoid all these
1605          * restrictions (same for remap_pfn_range).  However we would like
1606          * consistency in testing and feature parity among all, so we should
1607          * try to keep these invariants in place for everybody.
1608          */
1609         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1610         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1611                                                 (VM_PFNMAP|VM_MIXEDMAP));
1612         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1613         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1614
1615         if (addr < vma->vm_start || addr >= vma->vm_end)
1616                 return -EFAULT;
1617         if (track_pfn_insert(vma, &pgprot, pfn))
1618                 return -EINVAL;
1619
1620         ret = insert_pfn(vma, addr, pfn, pgprot);
1621
1622         return ret;
1623 }
1624 EXPORT_SYMBOL(vm_insert_pfn);
1625
1626 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1627                         unsigned long pfn)
1628 {
1629         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1630
1631         if (addr < vma->vm_start || addr >= vma->vm_end)
1632                 return -EFAULT;
1633
1634         /*
1635          * If we don't have pte special, then we have to use the pfn_valid()
1636          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1637          * refcount the page if pfn_valid is true (hence insert_page rather
1638          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1639          * without pte special, it would there be refcounted as a normal page.
1640          */
1641         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1642                 struct page *page;
1643
1644                 page = pfn_to_page(pfn);
1645                 return insert_page(vma, addr, page, vma->vm_page_prot);
1646         }
1647         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1648 }
1649 EXPORT_SYMBOL(vm_insert_mixed);
1650
1651 /*
1652  * maps a range of physical memory into the requested pages. the old
1653  * mappings are removed. any references to nonexistent pages results
1654  * in null mappings (currently treated as "copy-on-access")
1655  */
1656 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1657                         unsigned long addr, unsigned long end,
1658                         unsigned long pfn, pgprot_t prot)
1659 {
1660         pte_t *pte;
1661         spinlock_t *ptl;
1662
1663         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1664         if (!pte)
1665                 return -ENOMEM;
1666         arch_enter_lazy_mmu_mode();
1667         do {
1668                 BUG_ON(!pte_none(*pte));
1669                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1670                 pfn++;
1671         } while (pte++, addr += PAGE_SIZE, addr != end);
1672         arch_leave_lazy_mmu_mode();
1673         pte_unmap_unlock(pte - 1, ptl);
1674         return 0;
1675 }
1676
1677 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1678                         unsigned long addr, unsigned long end,
1679                         unsigned long pfn, pgprot_t prot)
1680 {
1681         pmd_t *pmd;
1682         unsigned long next;
1683
1684         pfn -= addr >> PAGE_SHIFT;
1685         pmd = pmd_alloc(mm, pud, addr);
1686         if (!pmd)
1687                 return -ENOMEM;
1688         VM_BUG_ON(pmd_trans_huge(*pmd));
1689         do {
1690                 next = pmd_addr_end(addr, end);
1691                 if (remap_pte_range(mm, pmd, addr, next,
1692                                 pfn + (addr >> PAGE_SHIFT), prot))
1693                         return -ENOMEM;
1694         } while (pmd++, addr = next, addr != end);
1695         return 0;
1696 }
1697
1698 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1699                         unsigned long addr, unsigned long end,
1700                         unsigned long pfn, pgprot_t prot)
1701 {
1702         pud_t *pud;
1703         unsigned long next;
1704
1705         pfn -= addr >> PAGE_SHIFT;
1706         pud = pud_alloc(mm, pgd, addr);
1707         if (!pud)
1708                 return -ENOMEM;
1709         do {
1710                 next = pud_addr_end(addr, end);
1711                 if (remap_pmd_range(mm, pud, addr, next,
1712                                 pfn + (addr >> PAGE_SHIFT), prot))
1713                         return -ENOMEM;
1714         } while (pud++, addr = next, addr != end);
1715         return 0;
1716 }
1717
1718 /**
1719  * remap_pfn_range - remap kernel memory to userspace
1720  * @vma: user vma to map to
1721  * @addr: target user address to start at
1722  * @pfn: physical address of kernel memory
1723  * @size: size of map area
1724  * @prot: page protection flags for this mapping
1725  *
1726  *  Note: this is only safe if the mm semaphore is held when called.
1727  */
1728 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1729                     unsigned long pfn, unsigned long size, pgprot_t prot)
1730 {
1731         pgd_t *pgd;
1732         unsigned long next;
1733         unsigned long end = addr + PAGE_ALIGN(size);
1734         struct mm_struct *mm = vma->vm_mm;
1735         int err;
1736
1737         /*
1738          * Physically remapped pages are special. Tell the
1739          * rest of the world about it:
1740          *   VM_IO tells people not to look at these pages
1741          *      (accesses can have side effects).
1742          *   VM_PFNMAP tells the core MM that the base pages are just
1743          *      raw PFN mappings, and do not have a "struct page" associated
1744          *      with them.
1745          *   VM_DONTEXPAND
1746          *      Disable vma merging and expanding with mremap().
1747          *   VM_DONTDUMP
1748          *      Omit vma from core dump, even when VM_IO turned off.
1749          *
1750          * There's a horrible special case to handle copy-on-write
1751          * behaviour that some programs depend on. We mark the "original"
1752          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1753          * See vm_normal_page() for details.
1754          */
1755         if (is_cow_mapping(vma->vm_flags)) {
1756                 if (addr != vma->vm_start || end != vma->vm_end)
1757                         return -EINVAL;
1758                 vma->vm_pgoff = pfn;
1759         }
1760
1761         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1762         if (err)
1763                 return -EINVAL;
1764
1765         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1766
1767         BUG_ON(addr >= end);
1768         pfn -= addr >> PAGE_SHIFT;
1769         pgd = pgd_offset(mm, addr);
1770         flush_cache_range(vma, addr, end);
1771         do {
1772                 next = pgd_addr_end(addr, end);
1773                 err = remap_pud_range(mm, pgd, addr, next,
1774                                 pfn + (addr >> PAGE_SHIFT), prot);
1775                 if (err)
1776                         break;
1777         } while (pgd++, addr = next, addr != end);
1778
1779         if (err)
1780                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1781
1782         return err;
1783 }
1784 EXPORT_SYMBOL(remap_pfn_range);
1785
1786 /**
1787  * vm_iomap_memory - remap memory to userspace
1788  * @vma: user vma to map to
1789  * @start: start of area
1790  * @len: size of area
1791  *
1792  * This is a simplified io_remap_pfn_range() for common driver use. The
1793  * driver just needs to give us the physical memory range to be mapped,
1794  * we'll figure out the rest from the vma information.
1795  *
1796  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1797  * whatever write-combining details or similar.
1798  */
1799 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1800 {
1801         unsigned long vm_len, pfn, pages;
1802
1803         /* Check that the physical memory area passed in looks valid */
1804         if (start + len < start)
1805                 return -EINVAL;
1806         /*
1807          * You *really* shouldn't map things that aren't page-aligned,
1808          * but we've historically allowed it because IO memory might
1809          * just have smaller alignment.
1810          */
1811         len += start & ~PAGE_MASK;
1812         pfn = start >> PAGE_SHIFT;
1813         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1814         if (pfn + pages < pfn)
1815                 return -EINVAL;
1816
1817         /* We start the mapping 'vm_pgoff' pages into the area */
1818         if (vma->vm_pgoff > pages)
1819                 return -EINVAL;
1820         pfn += vma->vm_pgoff;
1821         pages -= vma->vm_pgoff;
1822
1823         /* Can we fit all of the mapping? */
1824         vm_len = vma->vm_end - vma->vm_start;
1825         if (vm_len >> PAGE_SHIFT > pages)
1826                 return -EINVAL;
1827
1828         /* Ok, let it rip */
1829         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1830 }
1831 EXPORT_SYMBOL(vm_iomap_memory);
1832
1833 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1834                                      unsigned long addr, unsigned long end,
1835                                      pte_fn_t fn, void *data)
1836 {
1837         pte_t *pte;
1838         int err;
1839         pgtable_t token;
1840         spinlock_t *uninitialized_var(ptl);
1841
1842         pte = (mm == &init_mm) ?
1843                 pte_alloc_kernel(pmd, addr) :
1844                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1845         if (!pte)
1846                 return -ENOMEM;
1847
1848         BUG_ON(pmd_huge(*pmd));
1849
1850         arch_enter_lazy_mmu_mode();
1851
1852         token = pmd_pgtable(*pmd);
1853
1854         do {
1855                 err = fn(pte++, token, addr, data);
1856                 if (err)
1857                         break;
1858         } while (addr += PAGE_SIZE, addr != end);
1859
1860         arch_leave_lazy_mmu_mode();
1861
1862         if (mm != &init_mm)
1863                 pte_unmap_unlock(pte-1, ptl);
1864         return err;
1865 }
1866
1867 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1868                                      unsigned long addr, unsigned long end,
1869                                      pte_fn_t fn, void *data)
1870 {
1871         pmd_t *pmd;
1872         unsigned long next;
1873         int err;
1874
1875         BUG_ON(pud_huge(*pud));
1876
1877         pmd = pmd_alloc(mm, pud, addr);
1878         if (!pmd)
1879                 return -ENOMEM;
1880         do {
1881                 next = pmd_addr_end(addr, end);
1882                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1883                 if (err)
1884                         break;
1885         } while (pmd++, addr = next, addr != end);
1886         return err;
1887 }
1888
1889 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1890                                      unsigned long addr, unsigned long end,
1891                                      pte_fn_t fn, void *data)
1892 {
1893         pud_t *pud;
1894         unsigned long next;
1895         int err;
1896
1897         pud = pud_alloc(mm, pgd, addr);
1898         if (!pud)
1899                 return -ENOMEM;
1900         do {
1901                 next = pud_addr_end(addr, end);
1902                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1903                 if (err)
1904                         break;
1905         } while (pud++, addr = next, addr != end);
1906         return err;
1907 }
1908
1909 /*
1910  * Scan a region of virtual memory, filling in page tables as necessary
1911  * and calling a provided function on each leaf page table.
1912  */
1913 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1914                         unsigned long size, pte_fn_t fn, void *data)
1915 {
1916         pgd_t *pgd;
1917         unsigned long next;
1918         unsigned long end = addr + size;
1919         int err;
1920
1921         BUG_ON(addr >= end);
1922         pgd = pgd_offset(mm, addr);
1923         do {
1924                 next = pgd_addr_end(addr, end);
1925                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1926                 if (err)
1927                         break;
1928         } while (pgd++, addr = next, addr != end);
1929
1930         return err;
1931 }
1932 EXPORT_SYMBOL_GPL(apply_to_page_range);
1933
1934 /*
1935  * handle_pte_fault chooses page fault handler according to an entry
1936  * which was read non-atomically.  Before making any commitment, on
1937  * those architectures or configurations (e.g. i386 with PAE) which
1938  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1939  * must check under lock before unmapping the pte and proceeding
1940  * (but do_wp_page is only called after already making such a check;
1941  * and do_anonymous_page can safely check later on).
1942  */
1943 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1944                                 pte_t *page_table, pte_t orig_pte)
1945 {
1946         int same = 1;
1947 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1948         if (sizeof(pte_t) > sizeof(unsigned long)) {
1949                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1950                 spin_lock(ptl);
1951                 same = pte_same(*page_table, orig_pte);
1952                 spin_unlock(ptl);
1953         }
1954 #endif
1955         pte_unmap(page_table);
1956         return same;
1957 }
1958
1959 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1960 {
1961         debug_dma_assert_idle(src);
1962
1963         /*
1964          * If the source page was a PFN mapping, we don't have
1965          * a "struct page" for it. We do a best-effort copy by
1966          * just copying from the original user address. If that
1967          * fails, we just zero-fill it. Live with it.
1968          */
1969         if (unlikely(!src)) {
1970                 void *kaddr = kmap_atomic(dst);
1971                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1972
1973                 /*
1974                  * This really shouldn't fail, because the page is there
1975                  * in the page tables. But it might just be unreadable,
1976                  * in which case we just give up and fill the result with
1977                  * zeroes.
1978                  */
1979                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1980                         clear_page(kaddr);
1981                 kunmap_atomic(kaddr);
1982                 flush_dcache_page(dst);
1983         } else
1984                 copy_user_highpage(dst, src, va, vma);
1985 }
1986
1987 /*
1988  * Notify the address space that the page is about to become writable so that
1989  * it can prohibit this or wait for the page to get into an appropriate state.
1990  *
1991  * We do this without the lock held, so that it can sleep if it needs to.
1992  */
1993 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1994                unsigned long address)
1995 {
1996         struct vm_fault vmf;
1997         int ret;
1998
1999         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2000         vmf.pgoff = page->index;
2001         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2002         vmf.page = page;
2003
2004         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2005         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2006                 return ret;
2007         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2008                 lock_page(page);
2009                 if (!page->mapping) {
2010                         unlock_page(page);
2011                         return 0; /* retry */
2012                 }
2013                 ret |= VM_FAULT_LOCKED;
2014         } else
2015                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2016         return ret;
2017 }
2018
2019 /*
2020  * This routine handles present pages, when users try to write
2021  * to a shared page. It is done by copying the page to a new address
2022  * and decrementing the shared-page counter for the old page.
2023  *
2024  * Note that this routine assumes that the protection checks have been
2025  * done by the caller (the low-level page fault routine in most cases).
2026  * Thus we can safely just mark it writable once we've done any necessary
2027  * COW.
2028  *
2029  * We also mark the page dirty at this point even though the page will
2030  * change only once the write actually happens. This avoids a few races,
2031  * and potentially makes it more efficient.
2032  *
2033  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2034  * but allow concurrent faults), with pte both mapped and locked.
2035  * We return with mmap_sem still held, but pte unmapped and unlocked.
2036  */
2037 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2038                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2039                 spinlock_t *ptl, pte_t orig_pte)
2040         __releases(ptl)
2041 {
2042         struct page *old_page, *new_page = NULL;
2043         pte_t entry;
2044         int ret = 0;
2045         int page_mkwrite = 0;
2046         struct page *dirty_page = NULL;
2047         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2048         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2049         struct mem_cgroup *memcg;
2050
2051         old_page = vm_normal_page(vma, address, orig_pte);
2052         if (!old_page) {
2053                 /*
2054                  * VM_MIXEDMAP !pfn_valid() case
2055                  *
2056                  * We should not cow pages in a shared writeable mapping.
2057                  * Just mark the pages writable as we can't do any dirty
2058                  * accounting on raw pfn maps.
2059                  */
2060                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2061                                      (VM_WRITE|VM_SHARED))
2062                         goto reuse;
2063                 goto gotten;
2064         }
2065
2066         /*
2067          * Take out anonymous pages first, anonymous shared vmas are
2068          * not dirty accountable.
2069          */
2070         if (PageAnon(old_page) && !PageKsm(old_page)) {
2071                 if (!trylock_page(old_page)) {
2072                         page_cache_get(old_page);
2073                         pte_unmap_unlock(page_table, ptl);
2074                         lock_page(old_page);
2075                         page_table = pte_offset_map_lock(mm, pmd, address,
2076                                                          &ptl);
2077                         if (!pte_same(*page_table, orig_pte)) {
2078                                 unlock_page(old_page);
2079                                 goto unlock;
2080                         }
2081                         page_cache_release(old_page);
2082                 }
2083                 if (reuse_swap_page(old_page)) {
2084                         /*
2085                          * The page is all ours.  Move it to our anon_vma so
2086                          * the rmap code will not search our parent or siblings.
2087                          * Protected against the rmap code by the page lock.
2088                          */
2089                         page_move_anon_rmap(old_page, vma, address);
2090                         unlock_page(old_page);
2091                         goto reuse;
2092                 }
2093                 unlock_page(old_page);
2094         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2095                                         (VM_WRITE|VM_SHARED))) {
2096                 /*
2097                  * Only catch write-faults on shared writable pages,
2098                  * read-only shared pages can get COWed by
2099                  * get_user_pages(.write=1, .force=1).
2100                  */
2101                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2102                         int tmp;
2103                         page_cache_get(old_page);
2104                         pte_unmap_unlock(page_table, ptl);
2105                         tmp = do_page_mkwrite(vma, old_page, address);
2106                         if (unlikely(!tmp || (tmp &
2107                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2108                                 page_cache_release(old_page);
2109                                 return tmp;
2110                         }
2111                         /*
2112                          * Since we dropped the lock we need to revalidate
2113                          * the PTE as someone else may have changed it.  If
2114                          * they did, we just return, as we can count on the
2115                          * MMU to tell us if they didn't also make it writable.
2116                          */
2117                         page_table = pte_offset_map_lock(mm, pmd, address,
2118                                                          &ptl);
2119                         if (!pte_same(*page_table, orig_pte)) {
2120                                 unlock_page(old_page);
2121                                 goto unlock;
2122                         }
2123
2124                         page_mkwrite = 1;
2125                 }
2126                 dirty_page = old_page;
2127                 get_page(dirty_page);
2128
2129 reuse:
2130                 /*
2131                  * Clear the pages cpupid information as the existing
2132                  * information potentially belongs to a now completely
2133                  * unrelated process.
2134                  */
2135                 if (old_page)
2136                         page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2137
2138                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2139                 entry = pte_mkyoung(orig_pte);
2140                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2141                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2142                         update_mmu_cache(vma, address, page_table);
2143                 pte_unmap_unlock(page_table, ptl);
2144                 ret |= VM_FAULT_WRITE;
2145
2146                 if (!dirty_page)
2147                         return ret;
2148
2149                 /*
2150                  * Yes, Virginia, this is actually required to prevent a race
2151                  * with clear_page_dirty_for_io() from clearing the page dirty
2152                  * bit after it clear all dirty ptes, but before a racing
2153                  * do_wp_page installs a dirty pte.
2154                  *
2155                  * do_shared_fault is protected similarly.
2156                  */
2157                 if (!page_mkwrite) {
2158                         wait_on_page_locked(dirty_page);
2159                         set_page_dirty_balance(dirty_page);
2160                         /* file_update_time outside page_lock */
2161                         if (vma->vm_file)
2162                                 file_update_time(vma->vm_file);
2163                 }
2164                 put_page(dirty_page);
2165                 if (page_mkwrite) {
2166                         struct address_space *mapping = dirty_page->mapping;
2167
2168                         set_page_dirty(dirty_page);
2169                         unlock_page(dirty_page);
2170                         page_cache_release(dirty_page);
2171                         if (mapping)    {
2172                                 /*
2173                                  * Some device drivers do not set page.mapping
2174                                  * but still dirty their pages
2175                                  */
2176                                 balance_dirty_pages_ratelimited(mapping);
2177                         }
2178                 }
2179
2180                 return ret;
2181         }
2182
2183         /*
2184          * Ok, we need to copy. Oh, well..
2185          */
2186         page_cache_get(old_page);
2187 gotten:
2188         pte_unmap_unlock(page_table, ptl);
2189
2190         if (unlikely(anon_vma_prepare(vma)))
2191                 goto oom;
2192
2193         if (is_zero_pfn(pte_pfn(orig_pte))) {
2194                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2195                 if (!new_page)
2196                         goto oom;
2197         } else {
2198                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2199                 if (!new_page)
2200                         goto oom;
2201                 cow_user_page(new_page, old_page, address, vma);
2202         }
2203         __SetPageUptodate(new_page);
2204
2205         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2206                 goto oom_free_new;
2207
2208         mmun_start  = address & PAGE_MASK;
2209         mmun_end    = mmun_start + PAGE_SIZE;
2210         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2211
2212         /*
2213          * Re-check the pte - we dropped the lock
2214          */
2215         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2216         if (likely(pte_same(*page_table, orig_pte))) {
2217                 if (old_page) {
2218                         if (!PageAnon(old_page)) {
2219                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2220                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2221                         }
2222                 } else
2223                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2224                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2225                 entry = mk_pte(new_page, vma->vm_page_prot);
2226                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2227                 /*
2228                  * Clear the pte entry and flush it first, before updating the
2229                  * pte with the new entry. This will avoid a race condition
2230                  * seen in the presence of one thread doing SMC and another
2231                  * thread doing COW.
2232                  */
2233                 ptep_clear_flush(vma, address, page_table);
2234                 page_add_new_anon_rmap(new_page, vma, address);
2235                 mem_cgroup_commit_charge(new_page, memcg, false);
2236                 lru_cache_add_active_or_unevictable(new_page, vma);
2237                 /*
2238                  * We call the notify macro here because, when using secondary
2239                  * mmu page tables (such as kvm shadow page tables), we want the
2240                  * new page to be mapped directly into the secondary page table.
2241                  */
2242                 set_pte_at_notify(mm, address, page_table, entry);
2243                 update_mmu_cache(vma, address, page_table);
2244                 if (old_page) {
2245                         /*
2246                          * Only after switching the pte to the new page may
2247                          * we remove the mapcount here. Otherwise another
2248                          * process may come and find the rmap count decremented
2249                          * before the pte is switched to the new page, and
2250                          * "reuse" the old page writing into it while our pte
2251                          * here still points into it and can be read by other
2252                          * threads.
2253                          *
2254                          * The critical issue is to order this
2255                          * page_remove_rmap with the ptp_clear_flush above.
2256                          * Those stores are ordered by (if nothing else,)
2257                          * the barrier present in the atomic_add_negative
2258                          * in page_remove_rmap.
2259                          *
2260                          * Then the TLB flush in ptep_clear_flush ensures that
2261                          * no process can access the old page before the
2262                          * decremented mapcount is visible. And the old page
2263                          * cannot be reused until after the decremented
2264                          * mapcount is visible. So transitively, TLBs to
2265                          * old page will be flushed before it can be reused.
2266                          */
2267                         page_remove_rmap(old_page);
2268                 }
2269
2270                 /* Free the old page.. */
2271                 new_page = old_page;
2272                 ret |= VM_FAULT_WRITE;
2273         } else
2274                 mem_cgroup_cancel_charge(new_page, memcg);
2275
2276         if (new_page)
2277                 page_cache_release(new_page);
2278 unlock:
2279         pte_unmap_unlock(page_table, ptl);
2280         if (mmun_end > mmun_start)
2281                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2282         if (old_page) {
2283                 /*
2284                  * Don't let another task, with possibly unlocked vma,
2285                  * keep the mlocked page.
2286                  */
2287                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2288                         lock_page(old_page);    /* LRU manipulation */
2289                         munlock_vma_page(old_page);
2290                         unlock_page(old_page);
2291                 }
2292                 page_cache_release(old_page);
2293         }
2294         return ret;
2295 oom_free_new:
2296         page_cache_release(new_page);
2297 oom:
2298         if (old_page)
2299                 page_cache_release(old_page);
2300         return VM_FAULT_OOM;
2301 }
2302
2303 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2304                 unsigned long start_addr, unsigned long end_addr,
2305                 struct zap_details *details)
2306 {
2307         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2308 }
2309
2310 static inline void unmap_mapping_range_tree(struct rb_root *root,
2311                                             struct zap_details *details)
2312 {
2313         struct vm_area_struct *vma;
2314         pgoff_t vba, vea, zba, zea;
2315
2316         vma_interval_tree_foreach(vma, root,
2317                         details->first_index, details->last_index) {
2318
2319                 vba = vma->vm_pgoff;
2320                 vea = vba + vma_pages(vma) - 1;
2321                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2322                 zba = details->first_index;
2323                 if (zba < vba)
2324                         zba = vba;
2325                 zea = details->last_index;
2326                 if (zea > vea)
2327                         zea = vea;
2328
2329                 unmap_mapping_range_vma(vma,
2330                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2331                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2332                                 details);
2333         }
2334 }
2335
2336 static inline void unmap_mapping_range_list(struct list_head *head,
2337                                             struct zap_details *details)
2338 {
2339         struct vm_area_struct *vma;
2340
2341         /*
2342          * In nonlinear VMAs there is no correspondence between virtual address
2343          * offset and file offset.  So we must perform an exhaustive search
2344          * across *all* the pages in each nonlinear VMA, not just the pages
2345          * whose virtual address lies outside the file truncation point.
2346          */
2347         list_for_each_entry(vma, head, shared.nonlinear) {
2348                 details->nonlinear_vma = vma;
2349                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2350         }
2351 }
2352
2353 /**
2354  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2355  * @mapping: the address space containing mmaps to be unmapped.
2356  * @holebegin: byte in first page to unmap, relative to the start of
2357  * the underlying file.  This will be rounded down to a PAGE_SIZE
2358  * boundary.  Note that this is different from truncate_pagecache(), which
2359  * must keep the partial page.  In contrast, we must get rid of
2360  * partial pages.
2361  * @holelen: size of prospective hole in bytes.  This will be rounded
2362  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2363  * end of the file.
2364  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2365  * but 0 when invalidating pagecache, don't throw away private data.
2366  */
2367 void unmap_mapping_range(struct address_space *mapping,
2368                 loff_t const holebegin, loff_t const holelen, int even_cows)
2369 {
2370         struct zap_details details;
2371         pgoff_t hba = holebegin >> PAGE_SHIFT;
2372         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2373
2374         /* Check for overflow. */
2375         if (sizeof(holelen) > sizeof(hlen)) {
2376                 long long holeend =
2377                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2378                 if (holeend & ~(long long)ULONG_MAX)
2379                         hlen = ULONG_MAX - hba + 1;
2380         }
2381
2382         details.check_mapping = even_cows? NULL: mapping;
2383         details.nonlinear_vma = NULL;
2384         details.first_index = hba;
2385         details.last_index = hba + hlen - 1;
2386         if (details.last_index < details.first_index)
2387                 details.last_index = ULONG_MAX;
2388
2389
2390         mutex_lock(&mapping->i_mmap_mutex);
2391         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2392                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2393         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2394                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2395         mutex_unlock(&mapping->i_mmap_mutex);
2396 }
2397 EXPORT_SYMBOL(unmap_mapping_range);
2398
2399 /*
2400  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2401  * but allow concurrent faults), and pte mapped but not yet locked.
2402  * We return with pte unmapped and unlocked.
2403  *
2404  * We return with the mmap_sem locked or unlocked in the same cases
2405  * as does filemap_fault().
2406  */
2407 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2408                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2409                 unsigned int flags, pte_t orig_pte)
2410 {
2411         spinlock_t *ptl;
2412         struct page *page, *swapcache;
2413         struct mem_cgroup *memcg;
2414         swp_entry_t entry;
2415         pte_t pte;
2416         int locked;
2417         int exclusive = 0;
2418         int ret = 0;
2419
2420         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2421                 goto out;
2422
2423         entry = pte_to_swp_entry(orig_pte);
2424         if (unlikely(non_swap_entry(entry))) {
2425                 if (is_migration_entry(entry)) {
2426                         migration_entry_wait(mm, pmd, address);
2427                 } else if (is_hwpoison_entry(entry)) {
2428                         ret = VM_FAULT_HWPOISON;
2429                 } else {
2430                         print_bad_pte(vma, address, orig_pte, NULL);
2431                         ret = VM_FAULT_SIGBUS;
2432                 }
2433                 goto out;
2434         }
2435         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2436         page = lookup_swap_cache(entry);
2437         if (!page) {
2438                 page = swapin_readahead(entry,
2439                                         GFP_HIGHUSER_MOVABLE, vma, address);
2440                 if (!page) {
2441                         /*
2442                          * Back out if somebody else faulted in this pte
2443                          * while we released the pte lock.
2444                          */
2445                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2446                         if (likely(pte_same(*page_table, orig_pte)))
2447                                 ret = VM_FAULT_OOM;
2448                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2449                         goto unlock;
2450                 }
2451
2452                 /* Had to read the page from swap area: Major fault */
2453                 ret = VM_FAULT_MAJOR;
2454                 count_vm_event(PGMAJFAULT);
2455                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2456         } else if (PageHWPoison(page)) {
2457                 /*
2458                  * hwpoisoned dirty swapcache pages are kept for killing
2459                  * owner processes (which may be unknown at hwpoison time)
2460                  */
2461                 ret = VM_FAULT_HWPOISON;
2462                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2463                 swapcache = page;
2464                 goto out_release;
2465         }
2466
2467         swapcache = page;
2468         locked = lock_page_or_retry(page, mm, flags);
2469
2470         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2471         if (!locked) {
2472                 ret |= VM_FAULT_RETRY;
2473                 goto out_release;
2474         }
2475
2476         /*
2477          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2478          * release the swapcache from under us.  The page pin, and pte_same
2479          * test below, are not enough to exclude that.  Even if it is still
2480          * swapcache, we need to check that the page's swap has not changed.
2481          */
2482         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2483                 goto out_page;
2484
2485         page = ksm_might_need_to_copy(page, vma, address);
2486         if (unlikely(!page)) {
2487                 ret = VM_FAULT_OOM;
2488                 page = swapcache;
2489                 goto out_page;
2490         }
2491
2492         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2493                 ret = VM_FAULT_OOM;
2494                 goto out_page;
2495         }
2496
2497         /*
2498          * Back out if somebody else already faulted in this pte.
2499          */
2500         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2501         if (unlikely(!pte_same(*page_table, orig_pte)))
2502                 goto out_nomap;
2503
2504         if (unlikely(!PageUptodate(page))) {
2505                 ret = VM_FAULT_SIGBUS;
2506                 goto out_nomap;
2507         }
2508
2509         /*
2510          * The page isn't present yet, go ahead with the fault.
2511          *
2512          * Be careful about the sequence of operations here.
2513          * To get its accounting right, reuse_swap_page() must be called
2514          * while the page is counted on swap but not yet in mapcount i.e.
2515          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2516          * must be called after the swap_free(), or it will never succeed.
2517          */
2518
2519         inc_mm_counter_fast(mm, MM_ANONPAGES);
2520         dec_mm_counter_fast(mm, MM_SWAPENTS);
2521         pte = mk_pte(page, vma->vm_page_prot);
2522         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2523                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2524                 flags &= ~FAULT_FLAG_WRITE;
2525                 ret |= VM_FAULT_WRITE;
2526                 exclusive = 1;
2527         }
2528         flush_icache_page(vma, page);
2529         if (pte_swp_soft_dirty(orig_pte))
2530                 pte = pte_mksoft_dirty(pte);
2531         set_pte_at(mm, address, page_table, pte);
2532         if (page == swapcache) {
2533                 do_page_add_anon_rmap(page, vma, address, exclusive);
2534                 mem_cgroup_commit_charge(page, memcg, true);
2535         } else { /* ksm created a completely new copy */
2536                 page_add_new_anon_rmap(page, vma, address);
2537                 mem_cgroup_commit_charge(page, memcg, false);
2538                 lru_cache_add_active_or_unevictable(page, vma);
2539         }
2540
2541         swap_free(entry);
2542         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2543                 try_to_free_swap(page);
2544         unlock_page(page);
2545         if (page != swapcache) {
2546                 /*
2547                  * Hold the lock to avoid the swap entry to be reused
2548                  * until we take the PT lock for the pte_same() check
2549                  * (to avoid false positives from pte_same). For
2550                  * further safety release the lock after the swap_free
2551                  * so that the swap count won't change under a
2552                  * parallel locked swapcache.
2553                  */
2554                 unlock_page(swapcache);
2555                 page_cache_release(swapcache);
2556         }
2557
2558         if (flags & FAULT_FLAG_WRITE) {
2559                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2560                 if (ret & VM_FAULT_ERROR)
2561                         ret &= VM_FAULT_ERROR;
2562                 goto out;
2563         }
2564
2565         /* No need to invalidate - it was non-present before */
2566         update_mmu_cache(vma, address, page_table);
2567 unlock:
2568         pte_unmap_unlock(page_table, ptl);
2569 out:
2570         return ret;
2571 out_nomap:
2572         mem_cgroup_cancel_charge(page, memcg);
2573         pte_unmap_unlock(page_table, ptl);
2574 out_page:
2575         unlock_page(page);
2576 out_release:
2577         page_cache_release(page);
2578         if (page != swapcache) {
2579                 unlock_page(swapcache);
2580                 page_cache_release(swapcache);
2581         }
2582         return ret;
2583 }
2584
2585 /*
2586  * This is like a special single-page "expand_{down|up}wards()",
2587  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2588  * doesn't hit another vma.
2589  */
2590 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2591 {
2592         address &= PAGE_MASK;
2593         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2594                 struct vm_area_struct *prev = vma->vm_prev;
2595
2596                 /*
2597                  * Is there a mapping abutting this one below?
2598                  *
2599                  * That's only ok if it's the same stack mapping
2600                  * that has gotten split..
2601                  */
2602                 if (prev && prev->vm_end == address)
2603                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2604
2605                 expand_downwards(vma, address - PAGE_SIZE);
2606         }
2607         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2608                 struct vm_area_struct *next = vma->vm_next;
2609
2610                 /* As VM_GROWSDOWN but s/below/above/ */
2611                 if (next && next->vm_start == address + PAGE_SIZE)
2612                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2613
2614                 expand_upwards(vma, address + PAGE_SIZE);
2615         }
2616         return 0;
2617 }
2618
2619 /*
2620  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2621  * but allow concurrent faults), and pte mapped but not yet locked.
2622  * We return with mmap_sem still held, but pte unmapped and unlocked.
2623  */
2624 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2625                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2626                 unsigned int flags)
2627 {
2628         struct mem_cgroup *memcg;
2629         struct page *page;
2630         spinlock_t *ptl;
2631         pte_t entry;
2632
2633         pte_unmap(page_table);
2634
2635         /* Check if we need to add a guard page to the stack */
2636         if (check_stack_guard_page(vma, address) < 0)
2637                 return VM_FAULT_SIGBUS;
2638
2639         /* Use the zero-page for reads */
2640         if (!(flags & FAULT_FLAG_WRITE)) {
2641                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2642                                                 vma->vm_page_prot));
2643                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2644                 if (!pte_none(*page_table))
2645                         goto unlock;
2646                 goto setpte;
2647         }
2648
2649         /* Allocate our own private page. */
2650         if (unlikely(anon_vma_prepare(vma)))
2651                 goto oom;
2652         page = alloc_zeroed_user_highpage_movable(vma, address);
2653         if (!page)
2654                 goto oom;
2655         /*
2656          * The memory barrier inside __SetPageUptodate makes sure that
2657          * preceeding stores to the page contents become visible before
2658          * the set_pte_at() write.
2659          */
2660         __SetPageUptodate(page);
2661
2662         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2663                 goto oom_free_page;
2664
2665         entry = mk_pte(page, vma->vm_page_prot);
2666         if (vma->vm_flags & VM_WRITE)
2667                 entry = pte_mkwrite(pte_mkdirty(entry));
2668
2669         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2670         if (!pte_none(*page_table))
2671                 goto release;
2672
2673         inc_mm_counter_fast(mm, MM_ANONPAGES);
2674         page_add_new_anon_rmap(page, vma, address);
2675         mem_cgroup_commit_charge(page, memcg, false);
2676         lru_cache_add_active_or_unevictable(page, vma);
2677 setpte:
2678         set_pte_at(mm, address, page_table, entry);
2679
2680         /* No need to invalidate - it was non-present before */
2681         update_mmu_cache(vma, address, page_table);
2682 unlock:
2683         pte_unmap_unlock(page_table, ptl);
2684         return 0;
2685 release:
2686         mem_cgroup_cancel_charge(page, memcg);
2687         page_cache_release(page);
2688         goto unlock;
2689 oom_free_page:
2690         page_cache_release(page);
2691 oom:
2692         return VM_FAULT_OOM;
2693 }
2694
2695 /*
2696  * The mmap_sem must have been held on entry, and may have been
2697  * released depending on flags and vma->vm_ops->fault() return value.
2698  * See filemap_fault() and __lock_page_retry().
2699  */
2700 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2701                 pgoff_t pgoff, unsigned int flags, struct page **page)
2702 {
2703         struct vm_fault vmf;
2704         int ret;
2705
2706         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2707         vmf.pgoff = pgoff;
2708         vmf.flags = flags;
2709         vmf.page = NULL;
2710
2711         ret = vma->vm_ops->fault(vma, &vmf);
2712         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2713                 return ret;
2714
2715         if (unlikely(PageHWPoison(vmf.page))) {
2716                 if (ret & VM_FAULT_LOCKED)
2717                         unlock_page(vmf.page);
2718                 page_cache_release(vmf.page);
2719                 return VM_FAULT_HWPOISON;
2720         }
2721
2722         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2723                 lock_page(vmf.page);
2724         else
2725                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2726
2727         *page = vmf.page;
2728         return ret;
2729 }
2730
2731 /**
2732  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2733  *
2734  * @vma: virtual memory area
2735  * @address: user virtual address
2736  * @page: page to map
2737  * @pte: pointer to target page table entry
2738  * @write: true, if new entry is writable
2739  * @anon: true, if it's anonymous page
2740  *
2741  * Caller must hold page table lock relevant for @pte.
2742  *
2743  * Target users are page handler itself and implementations of
2744  * vm_ops->map_pages.
2745  */
2746 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2747                 struct page *page, pte_t *pte, bool write, bool anon)
2748 {
2749         pte_t entry;
2750
2751         flush_icache_page(vma, page);
2752         entry = mk_pte(page, vma->vm_page_prot);
2753         if (write)
2754                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2755         else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2756                 entry = pte_mksoft_dirty(entry);
2757         if (anon) {
2758                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2759                 page_add_new_anon_rmap(page, vma, address);
2760         } else {
2761                 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2762                 page_add_file_rmap(page);
2763         }
2764         set_pte_at(vma->vm_mm, address, pte, entry);
2765
2766         /* no need to invalidate: a not-present page won't be cached */
2767         update_mmu_cache(vma, address, pte);
2768 }
2769
2770 static unsigned long fault_around_bytes __read_mostly =
2771         rounddown_pow_of_two(65536);
2772
2773 #ifdef CONFIG_DEBUG_FS
2774 static int fault_around_bytes_get(void *data, u64 *val)
2775 {
2776         *val = fault_around_bytes;
2777         return 0;
2778 }
2779
2780 /*
2781  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2782  * rounded down to nearest page order. It's what do_fault_around() expects to
2783  * see.
2784  */
2785 static int fault_around_bytes_set(void *data, u64 val)
2786 {
2787         if (val / PAGE_SIZE > PTRS_PER_PTE)
2788                 return -EINVAL;
2789         if (val > PAGE_SIZE)
2790                 fault_around_bytes = rounddown_pow_of_two(val);
2791         else
2792                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2793         return 0;
2794 }
2795 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2796                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2797
2798 static int __init fault_around_debugfs(void)
2799 {
2800         void *ret;
2801
2802         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2803                         &fault_around_bytes_fops);
2804         if (!ret)
2805                 pr_warn("Failed to create fault_around_bytes in debugfs");
2806         return 0;
2807 }
2808 late_initcall(fault_around_debugfs);
2809 #endif
2810
2811 /*
2812  * do_fault_around() tries to map few pages around the fault address. The hope
2813  * is that the pages will be needed soon and this will lower the number of
2814  * faults to handle.
2815  *
2816  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2817  * not ready to be mapped: not up-to-date, locked, etc.
2818  *
2819  * This function is called with the page table lock taken. In the split ptlock
2820  * case the page table lock only protects only those entries which belong to
2821  * the page table corresponding to the fault address.
2822  *
2823  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2824  * only once.
2825  *
2826  * fault_around_pages() defines how many pages we'll try to map.
2827  * do_fault_around() expects it to return a power of two less than or equal to
2828  * PTRS_PER_PTE.
2829  *
2830  * The virtual address of the area that we map is naturally aligned to the
2831  * fault_around_pages() value (and therefore to page order).  This way it's
2832  * easier to guarantee that we don't cross page table boundaries.
2833  */
2834 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2835                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2836 {
2837         unsigned long start_addr, nr_pages, mask;
2838         pgoff_t max_pgoff;
2839         struct vm_fault vmf;
2840         int off;
2841
2842         nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2843         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2844
2845         start_addr = max(address & mask, vma->vm_start);
2846         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2847         pte -= off;
2848         pgoff -= off;
2849
2850         /*
2851          *  max_pgoff is either end of page table or end of vma
2852          *  or fault_around_pages() from pgoff, depending what is nearest.
2853          */
2854         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2855                 PTRS_PER_PTE - 1;
2856         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2857                         pgoff + nr_pages - 1);
2858
2859         /* Check if it makes any sense to call ->map_pages */
2860         while (!pte_none(*pte)) {
2861                 if (++pgoff > max_pgoff)
2862                         return;
2863                 start_addr += PAGE_SIZE;
2864                 if (start_addr >= vma->vm_end)
2865                         return;
2866                 pte++;
2867         }
2868
2869         vmf.virtual_address = (void __user *) start_addr;
2870         vmf.pte = pte;
2871         vmf.pgoff = pgoff;
2872         vmf.max_pgoff = max_pgoff;
2873         vmf.flags = flags;
2874         vma->vm_ops->map_pages(vma, &vmf);
2875 }
2876
2877 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2878                 unsigned long address, pmd_t *pmd,
2879                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2880 {
2881         struct page *fault_page;
2882         spinlock_t *ptl;
2883         pte_t *pte;
2884         int ret = 0;
2885
2886         /*
2887          * Let's call ->map_pages() first and use ->fault() as fallback
2888          * if page by the offset is not ready to be mapped (cold cache or
2889          * something).
2890          */
2891         if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2892             fault_around_bytes >> PAGE_SHIFT > 1) {
2893                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2894                 do_fault_around(vma, address, pte, pgoff, flags);
2895                 if (!pte_same(*pte, orig_pte))
2896                         goto unlock_out;
2897                 pte_unmap_unlock(pte, ptl);
2898         }
2899
2900         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2901         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2902                 return ret;
2903
2904         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2905         if (unlikely(!pte_same(*pte, orig_pte))) {
2906                 pte_unmap_unlock(pte, ptl);
2907                 unlock_page(fault_page);
2908                 page_cache_release(fault_page);
2909                 return ret;
2910         }
2911         do_set_pte(vma, address, fault_page, pte, false, false);
2912         unlock_page(fault_page);
2913 unlock_out:
2914         pte_unmap_unlock(pte, ptl);
2915         return ret;
2916 }
2917
2918 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2919                 unsigned long address, pmd_t *pmd,
2920                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2921 {
2922         struct page *fault_page, *new_page;
2923         struct mem_cgroup *memcg;
2924         spinlock_t *ptl;
2925         pte_t *pte;
2926         int ret;
2927
2928         if (unlikely(anon_vma_prepare(vma)))
2929                 return VM_FAULT_OOM;
2930
2931         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2932         if (!new_page)
2933                 return VM_FAULT_OOM;
2934
2935         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2936                 page_cache_release(new_page);
2937                 return VM_FAULT_OOM;
2938         }
2939
2940         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2941         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2942                 goto uncharge_out;
2943
2944         copy_user_highpage(new_page, fault_page, address, vma);
2945         __SetPageUptodate(new_page);
2946
2947         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2948         if (unlikely(!pte_same(*pte, orig_pte))) {
2949                 pte_unmap_unlock(pte, ptl);
2950                 unlock_page(fault_page);
2951                 page_cache_release(fault_page);
2952                 goto uncharge_out;
2953         }
2954         do_set_pte(vma, address, new_page, pte, true, true);
2955         mem_cgroup_commit_charge(new_page, memcg, false);
2956         lru_cache_add_active_or_unevictable(new_page, vma);
2957         pte_unmap_unlock(pte, ptl);
2958         unlock_page(fault_page);
2959         page_cache_release(fault_page);
2960         return ret;
2961 uncharge_out:
2962         mem_cgroup_cancel_charge(new_page, memcg);
2963         page_cache_release(new_page);
2964         return ret;
2965 }
2966
2967 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2968                 unsigned long address, pmd_t *pmd,
2969                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2970 {
2971         struct page *fault_page;
2972         struct address_space *mapping;
2973         spinlock_t *ptl;
2974         pte_t *pte;
2975         int dirtied = 0;
2976         int ret, tmp;
2977
2978         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2979         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2980                 return ret;
2981
2982         /*
2983          * Check if the backing address space wants to know that the page is
2984          * about to become writable
2985          */
2986         if (vma->vm_ops->page_mkwrite) {
2987                 unlock_page(fault_page);
2988                 tmp = do_page_mkwrite(vma, fault_page, address);
2989                 if (unlikely(!tmp ||
2990                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2991                         page_cache_release(fault_page);
2992                         return tmp;
2993                 }
2994         }
2995
2996         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2997         if (unlikely(!pte_same(*pte, orig_pte))) {
2998                 pte_unmap_unlock(pte, ptl);
2999                 unlock_page(fault_page);
3000                 page_cache_release(fault_page);
3001                 return ret;
3002         }
3003         do_set_pte(vma, address, fault_page, pte, true, false);
3004         pte_unmap_unlock(pte, ptl);
3005
3006         if (set_page_dirty(fault_page))
3007                 dirtied = 1;
3008         mapping = fault_page->mapping;
3009         unlock_page(fault_page);
3010         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3011                 /*
3012                  * Some device drivers do not set page.mapping but still
3013                  * dirty their pages
3014                  */
3015                 balance_dirty_pages_ratelimited(mapping);
3016         }
3017
3018         /* file_update_time outside page_lock */
3019         if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3020                 file_update_time(vma->vm_file);
3021
3022         return ret;
3023 }
3024
3025 /*
3026  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3027  * but allow concurrent faults).
3028  * The mmap_sem may have been released depending on flags and our
3029  * return value.  See filemap_fault() and __lock_page_or_retry().
3030  */
3031 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3032                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3033                 unsigned int flags, pte_t orig_pte)
3034 {
3035         pgoff_t pgoff = (((address & PAGE_MASK)
3036                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3037
3038         pte_unmap(page_table);
3039         if (!(flags & FAULT_FLAG_WRITE))
3040                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3041                                 orig_pte);
3042         if (!(vma->vm_flags & VM_SHARED))
3043                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3044                                 orig_pte);
3045         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3046 }
3047
3048 /*
3049  * Fault of a previously existing named mapping. Repopulate the pte
3050  * from the encoded file_pte if possible. This enables swappable
3051  * nonlinear vmas.
3052  *
3053  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3054  * but allow concurrent faults), and pte mapped but not yet locked.
3055  * We return with pte unmapped and unlocked.
3056  * The mmap_sem may have been released depending on flags and our
3057  * return value.  See filemap_fault() and __lock_page_or_retry().
3058  */
3059 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3060                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3061                 unsigned int flags, pte_t orig_pte)
3062 {
3063         pgoff_t pgoff;
3064
3065         flags |= FAULT_FLAG_NONLINEAR;
3066
3067         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3068                 return 0;
3069
3070         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3071                 /*
3072                  * Page table corrupted: show pte and kill process.
3073                  */
3074                 print_bad_pte(vma, address, orig_pte, NULL);
3075                 return VM_FAULT_SIGBUS;
3076         }
3077
3078         pgoff = pte_to_pgoff(orig_pte);
3079         if (!(flags & FAULT_FLAG_WRITE))
3080                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3081                                 orig_pte);
3082         if (!(vma->vm_flags & VM_SHARED))
3083                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3084                                 orig_pte);
3085         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3086 }
3087
3088 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3089                                 unsigned long addr, int page_nid,
3090                                 int *flags)
3091 {
3092         get_page(page);
3093
3094         count_vm_numa_event(NUMA_HINT_FAULTS);
3095         if (page_nid == numa_node_id()) {
3096                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3097                 *flags |= TNF_FAULT_LOCAL;
3098         }
3099
3100         return mpol_misplaced(page, vma, addr);
3101 }
3102
3103 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3104                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3105 {
3106         struct page *page = NULL;
3107         spinlock_t *ptl;
3108         int page_nid = -1;
3109         int last_cpupid;
3110         int target_nid;
3111         bool migrated = false;
3112         int flags = 0;
3113
3114         /*
3115         * The "pte" at this point cannot be used safely without
3116         * validation through pte_unmap_same(). It's of NUMA type but
3117         * the pfn may be screwed if the read is non atomic.
3118         *
3119         * ptep_modify_prot_start is not called as this is clearing
3120         * the _PAGE_NUMA bit and it is not really expected that there
3121         * would be concurrent hardware modifications to the PTE.
3122         */
3123         ptl = pte_lockptr(mm, pmd);
3124         spin_lock(ptl);
3125         if (unlikely(!pte_same(*ptep, pte))) {
3126                 pte_unmap_unlock(ptep, ptl);
3127                 goto out;
3128         }
3129
3130         pte = pte_mknonnuma(pte);
3131         set_pte_at(mm, addr, ptep, pte);
3132         update_mmu_cache(vma, addr, ptep);
3133
3134         page = vm_normal_page(vma, addr, pte);
3135         if (!page) {
3136                 pte_unmap_unlock(ptep, ptl);
3137                 return 0;
3138         }
3139         BUG_ON(is_zero_pfn(page_to_pfn(page)));
3140
3141         /*
3142          * Avoid grouping on DSO/COW pages in specific and RO pages
3143          * in general, RO pages shouldn't hurt as much anyway since
3144          * they can be in shared cache state.
3145          */
3146         if (!pte_write(pte))
3147                 flags |= TNF_NO_GROUP;
3148
3149         /*
3150          * Flag if the page is shared between multiple address spaces. This
3151          * is later used when determining whether to group tasks together
3152          */
3153         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3154                 flags |= TNF_SHARED;
3155
3156         last_cpupid = page_cpupid_last(page);
3157         page_nid = page_to_nid(page);
3158         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3159         pte_unmap_unlock(ptep, ptl);
3160         if (target_nid == -1) {
3161                 put_page(page);
3162                 goto out;
3163         }
3164
3165         /* Migrate to the requested node */
3166         migrated = migrate_misplaced_page(page, vma, target_nid);
3167         if (migrated) {
3168                 page_nid = target_nid;
3169                 flags |= TNF_MIGRATED;
3170         }
3171
3172 out:
3173         if (page_nid != -1)
3174                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3175         return 0;
3176 }
3177
3178 /*
3179  * These routines also need to handle stuff like marking pages dirty
3180  * and/or accessed for architectures that don't do it in hardware (most
3181  * RISC architectures).  The early dirtying is also good on the i386.
3182  *
3183  * There is also a hook called "update_mmu_cache()" that architectures
3184  * with external mmu caches can use to update those (ie the Sparc or
3185  * PowerPC hashed page tables that act as extended TLBs).
3186  *
3187  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3188  * but allow concurrent faults), and pte mapped but not yet locked.
3189  * We return with pte unmapped and unlocked.
3190  *
3191  * The mmap_sem may have been released depending on flags and our
3192  * return value.  See filemap_fault() and __lock_page_or_retry().
3193  */
3194 static int handle_pte_fault(struct mm_struct *mm,
3195                      struct vm_area_struct *vma, unsigned long address,
3196                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3197 {
3198         pte_t entry;
3199         spinlock_t *ptl;
3200
3201         entry = ACCESS_ONCE(*pte);
3202         if (!pte_present(entry)) {
3203                 if (pte_none(entry)) {
3204                         if (vma->vm_ops) {
3205                                 if (likely(vma->vm_ops->fault))
3206                                         return do_linear_fault(mm, vma, address,
3207                                                 pte, pmd, flags, entry);
3208                         }
3209                         return do_anonymous_page(mm, vma, address,
3210                                                  pte, pmd, flags);
3211                 }
3212                 if (pte_file(entry))
3213                         return do_nonlinear_fault(mm, vma, address,
3214                                         pte, pmd, flags, entry);
3215                 return do_swap_page(mm, vma, address,
3216                                         pte, pmd, flags, entry);
3217         }
3218
3219         if (pte_numa(entry))
3220                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3221
3222         ptl = pte_lockptr(mm, pmd);
3223         spin_lock(ptl);
3224         if (unlikely(!pte_same(*pte, entry)))
3225                 goto unlock;
3226         if (flags & FAULT_FLAG_WRITE) {
3227                 if (!pte_write(entry))
3228                         return do_wp_page(mm, vma, address,
3229                                         pte, pmd, ptl, entry);
3230                 entry = pte_mkdirty(entry);
3231         }
3232         entry = pte_mkyoung(entry);
3233         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3234                 update_mmu_cache(vma, address, pte);
3235         } else {
3236                 /*
3237                  * This is needed only for protection faults but the arch code
3238                  * is not yet telling us if this is a protection fault or not.
3239                  * This still avoids useless tlb flushes for .text page faults
3240                  * with threads.
3241                  */
3242                 if (flags & FAULT_FLAG_WRITE)
3243                         flush_tlb_fix_spurious_fault(vma, address);
3244         }
3245 unlock:
3246         pte_unmap_unlock(pte, ptl);
3247         return 0;
3248 }
3249
3250 /*
3251  * By the time we get here, we already hold the mm semaphore
3252  *
3253  * The mmap_sem may have been released depending on flags and our
3254  * return value.  See filemap_fault() and __lock_page_or_retry().
3255  */
3256 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3257                              unsigned long address, unsigned int flags)
3258 {
3259         pgd_t *pgd;
3260         pud_t *pud;
3261         pmd_t *pmd;
3262         pte_t *pte;
3263
3264         if (unlikely(is_vm_hugetlb_page(vma)))
3265                 return hugetlb_fault(mm, vma, address, flags);
3266
3267         pgd = pgd_offset(mm, address);
3268         pud = pud_alloc(mm, pgd, address);
3269         if (!pud)
3270                 return VM_FAULT_OOM;
3271         pmd = pmd_alloc(mm, pud, address);
3272         if (!pmd)
3273                 return VM_FAULT_OOM;
3274         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3275                 int ret = VM_FAULT_FALLBACK;
3276                 if (!vma->vm_ops)
3277                         ret = do_huge_pmd_anonymous_page(mm, vma, address,
3278                                         pmd, flags);
3279                 if (!(ret & VM_FAULT_FALLBACK))
3280                         return ret;
3281         } else {
3282                 pmd_t orig_pmd = *pmd;
3283                 int ret;
3284
3285                 barrier();
3286                 if (pmd_trans_huge(orig_pmd)) {
3287                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3288
3289                         /*
3290                          * If the pmd is splitting, return and retry the
3291                          * the fault.  Alternative: wait until the split
3292                          * is done, and goto retry.
3293                          */
3294                         if (pmd_trans_splitting(orig_pmd))
3295                                 return 0;
3296
3297                         if (pmd_numa(orig_pmd))
3298                                 return do_huge_pmd_numa_page(mm, vma, address,
3299                                                              orig_pmd, pmd);
3300
3301                         if (dirty && !pmd_write(orig_pmd)) {
3302                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3303                                                           orig_pmd);
3304                                 if (!(ret & VM_FAULT_FALLBACK))
3305                                         return ret;
3306                         } else {
3307                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3308                                                       orig_pmd, dirty);
3309                                 return 0;
3310                         }
3311                 }
3312         }
3313
3314         /*
3315          * Use __pte_alloc instead of pte_alloc_map, because we can't
3316          * run pte_offset_map on the pmd, if an huge pmd could
3317          * materialize from under us from a different thread.
3318          */
3319         if (unlikely(pmd_none(*pmd)) &&
3320             unlikely(__pte_alloc(mm, vma, pmd, address)))
3321                 return VM_FAULT_OOM;
3322         /* if an huge pmd materialized from under us just retry later */
3323         if (unlikely(pmd_trans_huge(*pmd)))
3324                 return 0;
3325         /*
3326          * A regular pmd is established and it can't morph into a huge pmd
3327          * from under us anymore at this point because we hold the mmap_sem
3328          * read mode and khugepaged takes it in write mode. So now it's
3329          * safe to run pte_offset_map().
3330          */
3331         pte = pte_offset_map(pmd, address);
3332
3333         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3334 }
3335
3336 /*
3337  * By the time we get here, we already hold the mm semaphore
3338  *
3339  * The mmap_sem may have been released depending on flags and our
3340  * return value.  See filemap_fault() and __lock_page_or_retry().
3341  */
3342 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3343                     unsigned long address, unsigned int flags)
3344 {
3345         int ret;
3346
3347         __set_current_state(TASK_RUNNING);
3348
3349         count_vm_event(PGFAULT);
3350         mem_cgroup_count_vm_event(mm, PGFAULT);
3351
3352         /* do counter updates before entering really critical section. */
3353         check_sync_rss_stat(current);
3354
3355         /*
3356          * Enable the memcg OOM handling for faults triggered in user
3357          * space.  Kernel faults are handled more gracefully.
3358          */
3359         if (flags & FAULT_FLAG_USER)
3360                 mem_cgroup_oom_enable();
3361
3362         ret = __handle_mm_fault(mm, vma, address, flags);
3363
3364         if (flags & FAULT_FLAG_USER) {
3365                 mem_cgroup_oom_disable();
3366                 /*
3367                  * The task may have entered a memcg OOM situation but
3368                  * if the allocation error was handled gracefully (no
3369                  * VM_FAULT_OOM), there is no need to kill anything.
3370                  * Just clean up the OOM state peacefully.
3371                  */
3372                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3373                         mem_cgroup_oom_synchronize(false);
3374         }
3375
3376         return ret;
3377 }
3378
3379 #ifndef __PAGETABLE_PUD_FOLDED
3380 /*
3381  * Allocate page upper directory.
3382  * We've already handled the fast-path in-line.
3383  */
3384 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3385 {
3386         pud_t *new = pud_alloc_one(mm, address);
3387         if (!new)
3388                 return -ENOMEM;
3389
3390         smp_wmb(); /* See comment in __pte_alloc */
3391
3392         spin_lock(&mm->page_table_lock);
3393         if (pgd_present(*pgd))          /* Another has populated it */
3394                 pud_free(mm, new);
3395         else
3396                 pgd_populate(mm, pgd, new);
3397         spin_unlock(&mm->page_table_lock);
3398         return 0;
3399 }
3400 #endif /* __PAGETABLE_PUD_FOLDED */
3401
3402 #ifndef __PAGETABLE_PMD_FOLDED
3403 /*
3404  * Allocate page middle directory.
3405  * We've already handled the fast-path in-line.
3406  */
3407 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3408 {
3409         pmd_t *new = pmd_alloc_one(mm, address);
3410         if (!new)
3411                 return -ENOMEM;
3412
3413         smp_wmb(); /* See comment in __pte_alloc */
3414
3415         spin_lock(&mm->page_table_lock);
3416 #ifndef __ARCH_HAS_4LEVEL_HACK
3417         if (pud_present(*pud))          /* Another has populated it */
3418                 pmd_free(mm, new);
3419         else
3420                 pud_populate(mm, pud, new);
3421 #else
3422         if (pgd_present(*pud))          /* Another has populated it */
3423                 pmd_free(mm, new);
3424         else
3425                 pgd_populate(mm, pud, new);
3426 #endif /* __ARCH_HAS_4LEVEL_HACK */
3427         spin_unlock(&mm->page_table_lock);
3428         return 0;
3429 }
3430 #endif /* __PAGETABLE_PMD_FOLDED */
3431
3432 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3433                 pte_t **ptepp, spinlock_t **ptlp)
3434 {
3435         pgd_t *pgd;
3436         pud_t *pud;
3437         pmd_t *pmd;
3438         pte_t *ptep;
3439
3440         pgd = pgd_offset(mm, address);
3441         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3442                 goto out;
3443
3444         pud = pud_offset(pgd, address);
3445         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3446                 goto out;
3447
3448         pmd = pmd_offset(pud, address);
3449         VM_BUG_ON(pmd_trans_huge(*pmd));
3450         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3451                 goto out;
3452
3453         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3454         if (pmd_huge(*pmd))
3455                 goto out;
3456
3457         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3458         if (!ptep)
3459                 goto out;
3460         if (!pte_present(*ptep))
3461                 goto unlock;
3462         *ptepp = ptep;
3463         return 0;
3464 unlock:
3465         pte_unmap_unlock(ptep, *ptlp);
3466 out:
3467         return -EINVAL;
3468 }
3469
3470 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3471                              pte_t **ptepp, spinlock_t **ptlp)
3472 {
3473         int res;
3474
3475         /* (void) is needed to make gcc happy */
3476         (void) __cond_lock(*ptlp,
3477                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3478         return res;
3479 }
3480
3481 /**
3482  * follow_pfn - look up PFN at a user virtual address
3483  * @vma: memory mapping
3484  * @address: user virtual address
3485  * @pfn: location to store found PFN
3486  *
3487  * Only IO mappings and raw PFN mappings are allowed.
3488  *
3489  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3490  */
3491 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3492         unsigned long *pfn)
3493 {
3494         int ret = -EINVAL;
3495         spinlock_t *ptl;
3496         pte_t *ptep;
3497
3498         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3499                 return ret;
3500
3501         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3502         if (ret)
3503                 return ret;
3504         *pfn = pte_pfn(*ptep);
3505         pte_unmap_unlock(ptep, ptl);
3506         return 0;
3507 }
3508 EXPORT_SYMBOL(follow_pfn);
3509
3510 #ifdef CONFIG_HAVE_IOREMAP_PROT
3511 int follow_phys(struct vm_area_struct *vma,
3512                 unsigned long address, unsigned int flags,
3513                 unsigned long *prot, resource_size_t *phys)
3514 {
3515         int ret = -EINVAL;
3516         pte_t *ptep, pte;
3517         spinlock_t *ptl;
3518
3519         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3520                 goto out;
3521
3522         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3523                 goto out;
3524         pte = *ptep;
3525
3526         if ((flags & FOLL_WRITE) && !pte_write(pte))
3527                 goto unlock;
3528
3529         *prot = pgprot_val(pte_pgprot(pte));
3530         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3531
3532         ret = 0;
3533 unlock:
3534         pte_unmap_unlock(ptep, ptl);
3535 out:
3536         return ret;
3537 }
3538
3539 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3540                         void *buf, int len, int write)
3541 {
3542         resource_size_t phys_addr;
3543         unsigned long prot = 0;
3544         void __iomem *maddr;
3545         int offset = addr & (PAGE_SIZE-1);
3546
3547         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3548                 return -EINVAL;
3549
3550         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3551         if (write)
3552                 memcpy_toio(maddr + offset, buf, len);
3553         else
3554                 memcpy_fromio(buf, maddr + offset, len);
3555         iounmap(maddr);
3556
3557         return len;
3558 }
3559 EXPORT_SYMBOL_GPL(generic_access_phys);
3560 #endif
3561
3562 /*
3563  * Access another process' address space as given in mm.  If non-NULL, use the
3564  * given task for page fault accounting.
3565  */
3566 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3567                 unsigned long addr, void *buf, int len, int write)
3568 {
3569         struct vm_area_struct *vma;
3570         void *old_buf = buf;
3571
3572         down_read(&mm->mmap_sem);
3573         /* ignore errors, just check how much was successfully transferred */
3574         while (len) {
3575                 int bytes, ret, offset;
3576                 void *maddr;
3577                 struct page *page = NULL;
3578
3579                 ret = get_user_pages(tsk, mm, addr, 1,
3580                                 write, 1, &page, &vma);
3581                 if (ret <= 0) {
3582 #ifndef CONFIG_HAVE_IOREMAP_PROT
3583                         break;
3584 #else
3585                         /*
3586                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3587                          * we can access using slightly different code.
3588                          */
3589                         vma = find_vma(mm, addr);
3590                         if (!vma || vma->vm_start > addr)
3591                                 break;
3592                         if (vma->vm_ops && vma->vm_ops->access)
3593                                 ret = vma->vm_ops->access(vma, addr, buf,
3594                                                           len, write);
3595                         if (ret <= 0)
3596                                 break;
3597                         bytes = ret;
3598 #endif
3599                 } else {
3600                         bytes = len;
3601                         offset = addr & (PAGE_SIZE-1);
3602                         if (bytes > PAGE_SIZE-offset)
3603                                 bytes = PAGE_SIZE-offset;
3604
3605                         maddr = kmap(page);
3606                         if (write) {
3607                                 copy_to_user_page(vma, page, addr,
3608                                                   maddr + offset, buf, bytes);
3609                                 set_page_dirty_lock(page);
3610                         } else {
3611                                 copy_from_user_page(vma, page, addr,
3612                                                     buf, maddr + offset, bytes);
3613                         }
3614                         kunmap(page);
3615                         page_cache_release(page);
3616                 }
3617                 len -= bytes;
3618                 buf += bytes;
3619                 addr += bytes;
3620         }
3621         up_read(&mm->mmap_sem);
3622
3623         return buf - old_buf;
3624 }
3625
3626 /**
3627  * access_remote_vm - access another process' address space
3628  * @mm:         the mm_struct of the target address space
3629  * @addr:       start address to access
3630  * @buf:        source or destination buffer
3631  * @len:        number of bytes to transfer
3632  * @write:      whether the access is a write
3633  *
3634  * The caller must hold a reference on @mm.
3635  */
3636 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3637                 void *buf, int len, int write)
3638 {
3639         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3640 }
3641
3642 /*
3643  * Access another process' address space.
3644  * Source/target buffer must be kernel space,
3645  * Do not walk the page table directly, use get_user_pages
3646  */
3647 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3648                 void *buf, int len, int write)
3649 {
3650         struct mm_struct *mm;
3651         int ret;
3652
3653         mm = get_task_mm(tsk);
3654         if (!mm)
3655                 return 0;
3656
3657         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3658         mmput(mm);
3659
3660         return ret;
3661 }
3662
3663 /*
3664  * Print the name of a VMA.
3665  */
3666 void print_vma_addr(char *prefix, unsigned long ip)
3667 {
3668         struct mm_struct *mm = current->mm;
3669         struct vm_area_struct *vma;
3670
3671         /*
3672          * Do not print if we are in atomic
3673          * contexts (in exception stacks, etc.):
3674          */
3675         if (preempt_count())
3676                 return;
3677
3678         down_read(&mm->mmap_sem);
3679         vma = find_vma(mm, ip);
3680         if (vma && vma->vm_file) {
3681                 struct file *f = vma->vm_file;
3682                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3683                 if (buf) {
3684                         char *p;
3685
3686                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3687                         if (IS_ERR(p))
3688                                 p = "?";
3689                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3690                                         vma->vm_start,
3691                                         vma->vm_end - vma->vm_start);
3692                         free_page((unsigned long)buf);
3693                 }
3694         }
3695         up_read(&mm->mmap_sem);
3696 }
3697
3698 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3699 void might_fault(void)
3700 {
3701         /*
3702          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3703          * holding the mmap_sem, this is safe because kernel memory doesn't
3704          * get paged out, therefore we'll never actually fault, and the
3705          * below annotations will generate false positives.
3706          */
3707         if (segment_eq(get_fs(), KERNEL_DS))
3708                 return;
3709
3710         /*
3711          * it would be nicer only to annotate paths which are not under
3712          * pagefault_disable, however that requires a larger audit and
3713          * providing helpers like get_user_atomic.
3714          */
3715         if (in_atomic())
3716                 return;
3717
3718         __might_sleep(__FILE__, __LINE__, 0);
3719
3720         if (current->mm)
3721                 might_lock_read(&current->mm->mmap_sem);
3722 }
3723 EXPORT_SYMBOL(might_fault);
3724 #endif
3725
3726 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3727 static void clear_gigantic_page(struct page *page,
3728                                 unsigned long addr,
3729                                 unsigned int pages_per_huge_page)
3730 {
3731         int i;
3732         struct page *p = page;
3733
3734         might_sleep();
3735         for (i = 0; i < pages_per_huge_page;
3736              i++, p = mem_map_next(p, page, i)) {
3737                 cond_resched();
3738                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3739         }
3740 }
3741 void clear_huge_page(struct page *page,
3742                      unsigned long addr, unsigned int pages_per_huge_page)
3743 {
3744         int i;
3745
3746         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3747                 clear_gigantic_page(page, addr, pages_per_huge_page);
3748                 return;
3749         }
3750
3751         might_sleep();
3752         for (i = 0; i < pages_per_huge_page; i++) {
3753                 cond_resched();
3754                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3755         }
3756 }
3757
3758 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3759                                     unsigned long addr,
3760                                     struct vm_area_struct *vma,
3761                                     unsigned int pages_per_huge_page)
3762 {
3763         int i;
3764         struct page *dst_base = dst;
3765         struct page *src_base = src;
3766
3767         for (i = 0; i < pages_per_huge_page; ) {
3768                 cond_resched();
3769                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3770
3771                 i++;
3772                 dst = mem_map_next(dst, dst_base, i);
3773                 src = mem_map_next(src, src_base, i);
3774         }
3775 }
3776
3777 void copy_user_huge_page(struct page *dst, struct page *src,
3778                          unsigned long addr, struct vm_area_struct *vma,
3779                          unsigned int pages_per_huge_page)
3780 {
3781         int i;
3782
3783         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3784                 copy_user_gigantic_page(dst, src, addr, vma,
3785                                         pages_per_huge_page);
3786                 return;
3787         }
3788
3789         might_sleep();
3790         for (i = 0; i < pages_per_huge_page; i++) {
3791                 cond_resched();
3792                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3793         }
3794 }
3795 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3796
3797 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3798
3799 static struct kmem_cache *page_ptl_cachep;
3800
3801 void __init ptlock_cache_init(void)
3802 {
3803         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3804                         SLAB_PANIC, NULL);
3805 }
3806
3807 bool ptlock_alloc(struct page *page)
3808 {
3809         spinlock_t *ptl;
3810
3811         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3812         if (!ptl)
3813                 return false;
3814         page->ptl = ptl;
3815         return true;
3816 }
3817
3818 void ptlock_free(struct page *page)
3819 {
3820         kmem_cache_free(page_ptl_cachep, page->ptl);
3821 }
3822 #endif