Merge branch 'akpm' (patches from Andrew Morton)
[cascardo/linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69
70 #include "internal.h"
71
72 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
74 #endif
75
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
80
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
84
85 /*
86  * A number of key systems in x86 including ioremap() rely on the assumption
87  * that high_memory defines the upper bound on direct map memory, then end
88  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
89  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
90  * and ZONE_HIGHMEM.
91  */
92 void * high_memory;
93
94 EXPORT_SYMBOL(high_memory);
95
96 /*
97  * Randomize the address space (stacks, mmaps, brk, etc.).
98  *
99  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
100  *   as ancient (libc5 based) binaries can segfault. )
101  */
102 int randomize_va_space __read_mostly =
103 #ifdef CONFIG_COMPAT_BRK
104                                         1;
105 #else
106                                         2;
107 #endif
108
109 static int __init disable_randmaps(char *s)
110 {
111         randomize_va_space = 0;
112         return 1;
113 }
114 __setup("norandmaps", disable_randmaps);
115
116 unsigned long zero_pfn __read_mostly;
117 unsigned long highest_memmap_pfn __read_mostly;
118
119 /*
120  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
121  */
122 static int __init init_zero_pfn(void)
123 {
124         zero_pfn = page_to_pfn(ZERO_PAGE(0));
125         return 0;
126 }
127 core_initcall(init_zero_pfn);
128
129
130 #if defined(SPLIT_RSS_COUNTING)
131
132 void sync_mm_rss(struct mm_struct *mm)
133 {
134         int i;
135
136         for (i = 0; i < NR_MM_COUNTERS; i++) {
137                 if (current->rss_stat.count[i]) {
138                         add_mm_counter(mm, i, current->rss_stat.count[i]);
139                         current->rss_stat.count[i] = 0;
140                 }
141         }
142         current->rss_stat.events = 0;
143 }
144
145 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
146 {
147         struct task_struct *task = current;
148
149         if (likely(task->mm == mm))
150                 task->rss_stat.count[member] += val;
151         else
152                 add_mm_counter(mm, member, val);
153 }
154 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
155 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
156
157 /* sync counter once per 64 page faults */
158 #define TASK_RSS_EVENTS_THRESH  (64)
159 static void check_sync_rss_stat(struct task_struct *task)
160 {
161         if (unlikely(task != current))
162                 return;
163         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
164                 sync_mm_rss(task->mm);
165 }
166 #else /* SPLIT_RSS_COUNTING */
167
168 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
169 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
170
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 }
174
175 #endif /* SPLIT_RSS_COUNTING */
176
177 #ifdef HAVE_GENERIC_MMU_GATHER
178
179 static int tlb_next_batch(struct mmu_gather *tlb)
180 {
181         struct mmu_gather_batch *batch;
182
183         batch = tlb->active;
184         if (batch->next) {
185                 tlb->active = batch->next;
186                 return 1;
187         }
188
189         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
190                 return 0;
191
192         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
193         if (!batch)
194                 return 0;
195
196         tlb->batch_count++;
197         batch->next = NULL;
198         batch->nr   = 0;
199         batch->max  = MAX_GATHER_BATCH;
200
201         tlb->active->next = batch;
202         tlb->active = batch;
203
204         return 1;
205 }
206
207 /* tlb_gather_mmu
208  *      Called to initialize an (on-stack) mmu_gather structure for page-table
209  *      tear-down from @mm. The @fullmm argument is used when @mm is without
210  *      users and we're going to destroy the full address space (exit/execve).
211  */
212 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
213 {
214         tlb->mm = mm;
215
216         /* Is it from 0 to ~0? */
217         tlb->fullmm     = !(start | (end+1));
218         tlb->need_flush_all = 0;
219         tlb->start      = start;
220         tlb->end        = end;
221         tlb->need_flush = 0;
222         tlb->local.next = NULL;
223         tlb->local.nr   = 0;
224         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
225         tlb->active     = &tlb->local;
226         tlb->batch_count = 0;
227
228 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
229         tlb->batch = NULL;
230 #endif
231 }
232
233 void tlb_flush_mmu(struct mmu_gather *tlb)
234 {
235         struct mmu_gather_batch *batch;
236
237         if (!tlb->need_flush)
238                 return;
239         tlb->need_flush = 0;
240         tlb_flush(tlb);
241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
242         tlb_table_flush(tlb);
243 #endif
244
245         for (batch = &tlb->local; batch; batch = batch->next) {
246                 free_pages_and_swap_cache(batch->pages, batch->nr);
247                 batch->nr = 0;
248         }
249         tlb->active = &tlb->local;
250 }
251
252 /* tlb_finish_mmu
253  *      Called at the end of the shootdown operation to free up any resources
254  *      that were required.
255  */
256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
257 {
258         struct mmu_gather_batch *batch, *next;
259
260         tlb_flush_mmu(tlb);
261
262         /* keep the page table cache within bounds */
263         check_pgt_cache();
264
265         for (batch = tlb->local.next; batch; batch = next) {
266                 next = batch->next;
267                 free_pages((unsigned long)batch, 0);
268         }
269         tlb->local.next = NULL;
270 }
271
272 /* __tlb_remove_page
273  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
274  *      handling the additional races in SMP caused by other CPUs caching valid
275  *      mappings in their TLBs. Returns the number of free page slots left.
276  *      When out of page slots we must call tlb_flush_mmu().
277  */
278 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
279 {
280         struct mmu_gather_batch *batch;
281
282         VM_BUG_ON(!tlb->need_flush);
283
284         batch = tlb->active;
285         batch->pages[batch->nr++] = page;
286         if (batch->nr == batch->max) {
287                 if (!tlb_next_batch(tlb))
288                         return 0;
289                 batch = tlb->active;
290         }
291         VM_BUG_ON(batch->nr > batch->max);
292
293         return batch->max - batch->nr;
294 }
295
296 #endif /* HAVE_GENERIC_MMU_GATHER */
297
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
299
300 /*
301  * See the comment near struct mmu_table_batch.
302  */
303
304 static void tlb_remove_table_smp_sync(void *arg)
305 {
306         /* Simply deliver the interrupt */
307 }
308
309 static void tlb_remove_table_one(void *table)
310 {
311         /*
312          * This isn't an RCU grace period and hence the page-tables cannot be
313          * assumed to be actually RCU-freed.
314          *
315          * It is however sufficient for software page-table walkers that rely on
316          * IRQ disabling. See the comment near struct mmu_table_batch.
317          */
318         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319         __tlb_remove_table(table);
320 }
321
322 static void tlb_remove_table_rcu(struct rcu_head *head)
323 {
324         struct mmu_table_batch *batch;
325         int i;
326
327         batch = container_of(head, struct mmu_table_batch, rcu);
328
329         for (i = 0; i < batch->nr; i++)
330                 __tlb_remove_table(batch->tables[i]);
331
332         free_page((unsigned long)batch);
333 }
334
335 void tlb_table_flush(struct mmu_gather *tlb)
336 {
337         struct mmu_table_batch **batch = &tlb->batch;
338
339         if (*batch) {
340                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341                 *batch = NULL;
342         }
343 }
344
345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
346 {
347         struct mmu_table_batch **batch = &tlb->batch;
348
349         tlb->need_flush = 1;
350
351         /*
352          * When there's less then two users of this mm there cannot be a
353          * concurrent page-table walk.
354          */
355         if (atomic_read(&tlb->mm->mm_users) < 2) {
356                 __tlb_remove_table(table);
357                 return;
358         }
359
360         if (*batch == NULL) {
361                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362                 if (*batch == NULL) {
363                         tlb_remove_table_one(table);
364                         return;
365                 }
366                 (*batch)->nr = 0;
367         }
368         (*batch)->tables[(*batch)->nr++] = table;
369         if ((*batch)->nr == MAX_TABLE_BATCH)
370                 tlb_table_flush(tlb);
371 }
372
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
374
375 /*
376  * Note: this doesn't free the actual pages themselves. That
377  * has been handled earlier when unmapping all the memory regions.
378  */
379 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
380                            unsigned long addr)
381 {
382         pgtable_t token = pmd_pgtable(*pmd);
383         pmd_clear(pmd);
384         pte_free_tlb(tlb, token, addr);
385         tlb->mm->nr_ptes--;
386 }
387
388 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
389                                 unsigned long addr, unsigned long end,
390                                 unsigned long floor, unsigned long ceiling)
391 {
392         pmd_t *pmd;
393         unsigned long next;
394         unsigned long start;
395
396         start = addr;
397         pmd = pmd_offset(pud, addr);
398         do {
399                 next = pmd_addr_end(addr, end);
400                 if (pmd_none_or_clear_bad(pmd))
401                         continue;
402                 free_pte_range(tlb, pmd, addr);
403         } while (pmd++, addr = next, addr != end);
404
405         start &= PUD_MASK;
406         if (start < floor)
407                 return;
408         if (ceiling) {
409                 ceiling &= PUD_MASK;
410                 if (!ceiling)
411                         return;
412         }
413         if (end - 1 > ceiling - 1)
414                 return;
415
416         pmd = pmd_offset(pud, start);
417         pud_clear(pud);
418         pmd_free_tlb(tlb, pmd, start);
419 }
420
421 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
422                                 unsigned long addr, unsigned long end,
423                                 unsigned long floor, unsigned long ceiling)
424 {
425         pud_t *pud;
426         unsigned long next;
427         unsigned long start;
428
429         start = addr;
430         pud = pud_offset(pgd, addr);
431         do {
432                 next = pud_addr_end(addr, end);
433                 if (pud_none_or_clear_bad(pud))
434                         continue;
435                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
436         } while (pud++, addr = next, addr != end);
437
438         start &= PGDIR_MASK;
439         if (start < floor)
440                 return;
441         if (ceiling) {
442                 ceiling &= PGDIR_MASK;
443                 if (!ceiling)
444                         return;
445         }
446         if (end - 1 > ceiling - 1)
447                 return;
448
449         pud = pud_offset(pgd, start);
450         pgd_clear(pgd);
451         pud_free_tlb(tlb, pud, start);
452 }
453
454 /*
455  * This function frees user-level page tables of a process.
456  */
457 void free_pgd_range(struct mmu_gather *tlb,
458                         unsigned long addr, unsigned long end,
459                         unsigned long floor, unsigned long ceiling)
460 {
461         pgd_t *pgd;
462         unsigned long next;
463
464         /*
465          * The next few lines have given us lots of grief...
466          *
467          * Why are we testing PMD* at this top level?  Because often
468          * there will be no work to do at all, and we'd prefer not to
469          * go all the way down to the bottom just to discover that.
470          *
471          * Why all these "- 1"s?  Because 0 represents both the bottom
472          * of the address space and the top of it (using -1 for the
473          * top wouldn't help much: the masks would do the wrong thing).
474          * The rule is that addr 0 and floor 0 refer to the bottom of
475          * the address space, but end 0 and ceiling 0 refer to the top
476          * Comparisons need to use "end - 1" and "ceiling - 1" (though
477          * that end 0 case should be mythical).
478          *
479          * Wherever addr is brought up or ceiling brought down, we must
480          * be careful to reject "the opposite 0" before it confuses the
481          * subsequent tests.  But what about where end is brought down
482          * by PMD_SIZE below? no, end can't go down to 0 there.
483          *
484          * Whereas we round start (addr) and ceiling down, by different
485          * masks at different levels, in order to test whether a table
486          * now has no other vmas using it, so can be freed, we don't
487          * bother to round floor or end up - the tests don't need that.
488          */
489
490         addr &= PMD_MASK;
491         if (addr < floor) {
492                 addr += PMD_SIZE;
493                 if (!addr)
494                         return;
495         }
496         if (ceiling) {
497                 ceiling &= PMD_MASK;
498                 if (!ceiling)
499                         return;
500         }
501         if (end - 1 > ceiling - 1)
502                 end -= PMD_SIZE;
503         if (addr > end - 1)
504                 return;
505
506         pgd = pgd_offset(tlb->mm, addr);
507         do {
508                 next = pgd_addr_end(addr, end);
509                 if (pgd_none_or_clear_bad(pgd))
510                         continue;
511                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
512         } while (pgd++, addr = next, addr != end);
513 }
514
515 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
516                 unsigned long floor, unsigned long ceiling)
517 {
518         while (vma) {
519                 struct vm_area_struct *next = vma->vm_next;
520                 unsigned long addr = vma->vm_start;
521
522                 /*
523                  * Hide vma from rmap and truncate_pagecache before freeing
524                  * pgtables
525                  */
526                 unlink_anon_vmas(vma);
527                 unlink_file_vma(vma);
528
529                 if (is_vm_hugetlb_page(vma)) {
530                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
531                                 floor, next? next->vm_start: ceiling);
532                 } else {
533                         /*
534                          * Optimization: gather nearby vmas into one call down
535                          */
536                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
537                                && !is_vm_hugetlb_page(next)) {
538                                 vma = next;
539                                 next = vma->vm_next;
540                                 unlink_anon_vmas(vma);
541                                 unlink_file_vma(vma);
542                         }
543                         free_pgd_range(tlb, addr, vma->vm_end,
544                                 floor, next? next->vm_start: ceiling);
545                 }
546                 vma = next;
547         }
548 }
549
550 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
551                 pmd_t *pmd, unsigned long address)
552 {
553         pgtable_t new = pte_alloc_one(mm, address);
554         int wait_split_huge_page;
555         if (!new)
556                 return -ENOMEM;
557
558         /*
559          * Ensure all pte setup (eg. pte page lock and page clearing) are
560          * visible before the pte is made visible to other CPUs by being
561          * put into page tables.
562          *
563          * The other side of the story is the pointer chasing in the page
564          * table walking code (when walking the page table without locking;
565          * ie. most of the time). Fortunately, these data accesses consist
566          * of a chain of data-dependent loads, meaning most CPUs (alpha
567          * being the notable exception) will already guarantee loads are
568          * seen in-order. See the alpha page table accessors for the
569          * smp_read_barrier_depends() barriers in page table walking code.
570          */
571         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
572
573         spin_lock(&mm->page_table_lock);
574         wait_split_huge_page = 0;
575         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
576                 mm->nr_ptes++;
577                 pmd_populate(mm, pmd, new);
578                 new = NULL;
579         } else if (unlikely(pmd_trans_splitting(*pmd)))
580                 wait_split_huge_page = 1;
581         spin_unlock(&mm->page_table_lock);
582         if (new)
583                 pte_free(mm, new);
584         if (wait_split_huge_page)
585                 wait_split_huge_page(vma->anon_vma, pmd);
586         return 0;
587 }
588
589 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
590 {
591         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
592         if (!new)
593                 return -ENOMEM;
594
595         smp_wmb(); /* See comment in __pte_alloc */
596
597         spin_lock(&init_mm.page_table_lock);
598         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
599                 pmd_populate_kernel(&init_mm, pmd, new);
600                 new = NULL;
601         } else
602                 VM_BUG_ON(pmd_trans_splitting(*pmd));
603         spin_unlock(&init_mm.page_table_lock);
604         if (new)
605                 pte_free_kernel(&init_mm, new);
606         return 0;
607 }
608
609 static inline void init_rss_vec(int *rss)
610 {
611         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
612 }
613
614 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
615 {
616         int i;
617
618         if (current->mm == mm)
619                 sync_mm_rss(mm);
620         for (i = 0; i < NR_MM_COUNTERS; i++)
621                 if (rss[i])
622                         add_mm_counter(mm, i, rss[i]);
623 }
624
625 /*
626  * This function is called to print an error when a bad pte
627  * is found. For example, we might have a PFN-mapped pte in
628  * a region that doesn't allow it.
629  *
630  * The calling function must still handle the error.
631  */
632 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
633                           pte_t pte, struct page *page)
634 {
635         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
636         pud_t *pud = pud_offset(pgd, addr);
637         pmd_t *pmd = pmd_offset(pud, addr);
638         struct address_space *mapping;
639         pgoff_t index;
640         static unsigned long resume;
641         static unsigned long nr_shown;
642         static unsigned long nr_unshown;
643
644         /*
645          * Allow a burst of 60 reports, then keep quiet for that minute;
646          * or allow a steady drip of one report per second.
647          */
648         if (nr_shown == 60) {
649                 if (time_before(jiffies, resume)) {
650                         nr_unshown++;
651                         return;
652                 }
653                 if (nr_unshown) {
654                         printk(KERN_ALERT
655                                 "BUG: Bad page map: %lu messages suppressed\n",
656                                 nr_unshown);
657                         nr_unshown = 0;
658                 }
659                 nr_shown = 0;
660         }
661         if (nr_shown++ == 0)
662                 resume = jiffies + 60 * HZ;
663
664         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
665         index = linear_page_index(vma, addr);
666
667         printk(KERN_ALERT
668                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
669                 current->comm,
670                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
671         if (page)
672                 dump_page(page);
673         printk(KERN_ALERT
674                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
675                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
676         /*
677          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
678          */
679         if (vma->vm_ops)
680                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
681                        vma->vm_ops->fault);
682         if (vma->vm_file)
683                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
684                        vma->vm_file->f_op->mmap);
685         dump_stack();
686         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
687 }
688
689 static inline bool is_cow_mapping(vm_flags_t flags)
690 {
691         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
692 }
693
694 /*
695  * vm_normal_page -- This function gets the "struct page" associated with a pte.
696  *
697  * "Special" mappings do not wish to be associated with a "struct page" (either
698  * it doesn't exist, or it exists but they don't want to touch it). In this
699  * case, NULL is returned here. "Normal" mappings do have a struct page.
700  *
701  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
702  * pte bit, in which case this function is trivial. Secondly, an architecture
703  * may not have a spare pte bit, which requires a more complicated scheme,
704  * described below.
705  *
706  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
707  * special mapping (even if there are underlying and valid "struct pages").
708  * COWed pages of a VM_PFNMAP are always normal.
709  *
710  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
711  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
712  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
713  * mapping will always honor the rule
714  *
715  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
716  *
717  * And for normal mappings this is false.
718  *
719  * This restricts such mappings to be a linear translation from virtual address
720  * to pfn. To get around this restriction, we allow arbitrary mappings so long
721  * as the vma is not a COW mapping; in that case, we know that all ptes are
722  * special (because none can have been COWed).
723  *
724  *
725  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
726  *
727  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
728  * page" backing, however the difference is that _all_ pages with a struct
729  * page (that is, those where pfn_valid is true) are refcounted and considered
730  * normal pages by the VM. The disadvantage is that pages are refcounted
731  * (which can be slower and simply not an option for some PFNMAP users). The
732  * advantage is that we don't have to follow the strict linearity rule of
733  * PFNMAP mappings in order to support COWable mappings.
734  *
735  */
736 #ifdef __HAVE_ARCH_PTE_SPECIAL
737 # define HAVE_PTE_SPECIAL 1
738 #else
739 # define HAVE_PTE_SPECIAL 0
740 #endif
741 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
742                                 pte_t pte)
743 {
744         unsigned long pfn = pte_pfn(pte);
745
746         if (HAVE_PTE_SPECIAL) {
747                 if (likely(!pte_special(pte)))
748                         goto check_pfn;
749                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
750                         return NULL;
751                 if (!is_zero_pfn(pfn))
752                         print_bad_pte(vma, addr, pte, NULL);
753                 return NULL;
754         }
755
756         /* !HAVE_PTE_SPECIAL case follows: */
757
758         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
759                 if (vma->vm_flags & VM_MIXEDMAP) {
760                         if (!pfn_valid(pfn))
761                                 return NULL;
762                         goto out;
763                 } else {
764                         unsigned long off;
765                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
766                         if (pfn == vma->vm_pgoff + off)
767                                 return NULL;
768                         if (!is_cow_mapping(vma->vm_flags))
769                                 return NULL;
770                 }
771         }
772
773         if (is_zero_pfn(pfn))
774                 return NULL;
775 check_pfn:
776         if (unlikely(pfn > highest_memmap_pfn)) {
777                 print_bad_pte(vma, addr, pte, NULL);
778                 return NULL;
779         }
780
781         /*
782          * NOTE! We still have PageReserved() pages in the page tables.
783          * eg. VDSO mappings can cause them to exist.
784          */
785 out:
786         return pfn_to_page(pfn);
787 }
788
789 /*
790  * copy one vm_area from one task to the other. Assumes the page tables
791  * already present in the new task to be cleared in the whole range
792  * covered by this vma.
793  */
794
795 static inline unsigned long
796 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
797                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
798                 unsigned long addr, int *rss)
799 {
800         unsigned long vm_flags = vma->vm_flags;
801         pte_t pte = *src_pte;
802         struct page *page;
803
804         /* pte contains position in swap or file, so copy. */
805         if (unlikely(!pte_present(pte))) {
806                 if (!pte_file(pte)) {
807                         swp_entry_t entry = pte_to_swp_entry(pte);
808
809                         if (swap_duplicate(entry) < 0)
810                                 return entry.val;
811
812                         /* make sure dst_mm is on swapoff's mmlist. */
813                         if (unlikely(list_empty(&dst_mm->mmlist))) {
814                                 spin_lock(&mmlist_lock);
815                                 if (list_empty(&dst_mm->mmlist))
816                                         list_add(&dst_mm->mmlist,
817                                                  &src_mm->mmlist);
818                                 spin_unlock(&mmlist_lock);
819                         }
820                         if (likely(!non_swap_entry(entry)))
821                                 rss[MM_SWAPENTS]++;
822                         else if (is_migration_entry(entry)) {
823                                 page = migration_entry_to_page(entry);
824
825                                 if (PageAnon(page))
826                                         rss[MM_ANONPAGES]++;
827                                 else
828                                         rss[MM_FILEPAGES]++;
829
830                                 if (is_write_migration_entry(entry) &&
831                                     is_cow_mapping(vm_flags)) {
832                                         /*
833                                          * COW mappings require pages in both
834                                          * parent and child to be set to read.
835                                          */
836                                         make_migration_entry_read(&entry);
837                                         pte = swp_entry_to_pte(entry);
838                                         if (pte_swp_soft_dirty(*src_pte))
839                                                 pte = pte_swp_mksoft_dirty(pte);
840                                         set_pte_at(src_mm, addr, src_pte, pte);
841                                 }
842                         }
843                 }
844                 goto out_set_pte;
845         }
846
847         /*
848          * If it's a COW mapping, write protect it both
849          * in the parent and the child
850          */
851         if (is_cow_mapping(vm_flags)) {
852                 ptep_set_wrprotect(src_mm, addr, src_pte);
853                 pte = pte_wrprotect(pte);
854         }
855
856         /*
857          * If it's a shared mapping, mark it clean in
858          * the child
859          */
860         if (vm_flags & VM_SHARED)
861                 pte = pte_mkclean(pte);
862         pte = pte_mkold(pte);
863
864         page = vm_normal_page(vma, addr, pte);
865         if (page) {
866                 get_page(page);
867                 page_dup_rmap(page);
868                 if (PageAnon(page))
869                         rss[MM_ANONPAGES]++;
870                 else
871                         rss[MM_FILEPAGES]++;
872         }
873
874 out_set_pte:
875         set_pte_at(dst_mm, addr, dst_pte, pte);
876         return 0;
877 }
878
879 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
880                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
881                    unsigned long addr, unsigned long end)
882 {
883         pte_t *orig_src_pte, *orig_dst_pte;
884         pte_t *src_pte, *dst_pte;
885         spinlock_t *src_ptl, *dst_ptl;
886         int progress = 0;
887         int rss[NR_MM_COUNTERS];
888         swp_entry_t entry = (swp_entry_t){0};
889
890 again:
891         init_rss_vec(rss);
892
893         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
894         if (!dst_pte)
895                 return -ENOMEM;
896         src_pte = pte_offset_map(src_pmd, addr);
897         src_ptl = pte_lockptr(src_mm, src_pmd);
898         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
899         orig_src_pte = src_pte;
900         orig_dst_pte = dst_pte;
901         arch_enter_lazy_mmu_mode();
902
903         do {
904                 /*
905                  * We are holding two locks at this point - either of them
906                  * could generate latencies in another task on another CPU.
907                  */
908                 if (progress >= 32) {
909                         progress = 0;
910                         if (need_resched() ||
911                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
912                                 break;
913                 }
914                 if (pte_none(*src_pte)) {
915                         progress++;
916                         continue;
917                 }
918                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
919                                                         vma, addr, rss);
920                 if (entry.val)
921                         break;
922                 progress += 8;
923         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
924
925         arch_leave_lazy_mmu_mode();
926         spin_unlock(src_ptl);
927         pte_unmap(orig_src_pte);
928         add_mm_rss_vec(dst_mm, rss);
929         pte_unmap_unlock(orig_dst_pte, dst_ptl);
930         cond_resched();
931
932         if (entry.val) {
933                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
934                         return -ENOMEM;
935                 progress = 0;
936         }
937         if (addr != end)
938                 goto again;
939         return 0;
940 }
941
942 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
944                 unsigned long addr, unsigned long end)
945 {
946         pmd_t *src_pmd, *dst_pmd;
947         unsigned long next;
948
949         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
950         if (!dst_pmd)
951                 return -ENOMEM;
952         src_pmd = pmd_offset(src_pud, addr);
953         do {
954                 next = pmd_addr_end(addr, end);
955                 if (pmd_trans_huge(*src_pmd)) {
956                         int err;
957                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
958                         err = copy_huge_pmd(dst_mm, src_mm,
959                                             dst_pmd, src_pmd, addr, vma);
960                         if (err == -ENOMEM)
961                                 return -ENOMEM;
962                         if (!err)
963                                 continue;
964                         /* fall through */
965                 }
966                 if (pmd_none_or_clear_bad(src_pmd))
967                         continue;
968                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
969                                                 vma, addr, next))
970                         return -ENOMEM;
971         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
972         return 0;
973 }
974
975 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
976                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
977                 unsigned long addr, unsigned long end)
978 {
979         pud_t *src_pud, *dst_pud;
980         unsigned long next;
981
982         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
983         if (!dst_pud)
984                 return -ENOMEM;
985         src_pud = pud_offset(src_pgd, addr);
986         do {
987                 next = pud_addr_end(addr, end);
988                 if (pud_none_or_clear_bad(src_pud))
989                         continue;
990                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
991                                                 vma, addr, next))
992                         return -ENOMEM;
993         } while (dst_pud++, src_pud++, addr = next, addr != end);
994         return 0;
995 }
996
997 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
998                 struct vm_area_struct *vma)
999 {
1000         pgd_t *src_pgd, *dst_pgd;
1001         unsigned long next;
1002         unsigned long addr = vma->vm_start;
1003         unsigned long end = vma->vm_end;
1004         unsigned long mmun_start;       /* For mmu_notifiers */
1005         unsigned long mmun_end;         /* For mmu_notifiers */
1006         bool is_cow;
1007         int ret;
1008
1009         /*
1010          * Don't copy ptes where a page fault will fill them correctly.
1011          * Fork becomes much lighter when there are big shared or private
1012          * readonly mappings. The tradeoff is that copy_page_range is more
1013          * efficient than faulting.
1014          */
1015         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1016                                VM_PFNMAP | VM_MIXEDMAP))) {
1017                 if (!vma->anon_vma)
1018                         return 0;
1019         }
1020
1021         if (is_vm_hugetlb_page(vma))
1022                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1023
1024         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1025                 /*
1026                  * We do not free on error cases below as remove_vma
1027                  * gets called on error from higher level routine
1028                  */
1029                 ret = track_pfn_copy(vma);
1030                 if (ret)
1031                         return ret;
1032         }
1033
1034         /*
1035          * We need to invalidate the secondary MMU mappings only when
1036          * there could be a permission downgrade on the ptes of the
1037          * parent mm. And a permission downgrade will only happen if
1038          * is_cow_mapping() returns true.
1039          */
1040         is_cow = is_cow_mapping(vma->vm_flags);
1041         mmun_start = addr;
1042         mmun_end   = end;
1043         if (is_cow)
1044                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1045                                                     mmun_end);
1046
1047         ret = 0;
1048         dst_pgd = pgd_offset(dst_mm, addr);
1049         src_pgd = pgd_offset(src_mm, addr);
1050         do {
1051                 next = pgd_addr_end(addr, end);
1052                 if (pgd_none_or_clear_bad(src_pgd))
1053                         continue;
1054                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1055                                             vma, addr, next))) {
1056                         ret = -ENOMEM;
1057                         break;
1058                 }
1059         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1060
1061         if (is_cow)
1062                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1063         return ret;
1064 }
1065
1066 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1067                                 struct vm_area_struct *vma, pmd_t *pmd,
1068                                 unsigned long addr, unsigned long end,
1069                                 struct zap_details *details)
1070 {
1071         struct mm_struct *mm = tlb->mm;
1072         int force_flush = 0;
1073         int rss[NR_MM_COUNTERS];
1074         spinlock_t *ptl;
1075         pte_t *start_pte;
1076         pte_t *pte;
1077
1078 again:
1079         init_rss_vec(rss);
1080         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1081         pte = start_pte;
1082         arch_enter_lazy_mmu_mode();
1083         do {
1084                 pte_t ptent = *pte;
1085                 if (pte_none(ptent)) {
1086                         continue;
1087                 }
1088
1089                 if (pte_present(ptent)) {
1090                         struct page *page;
1091
1092                         page = vm_normal_page(vma, addr, ptent);
1093                         if (unlikely(details) && page) {
1094                                 /*
1095                                  * unmap_shared_mapping_pages() wants to
1096                                  * invalidate cache without truncating:
1097                                  * unmap shared but keep private pages.
1098                                  */
1099                                 if (details->check_mapping &&
1100                                     details->check_mapping != page->mapping)
1101                                         continue;
1102                                 /*
1103                                  * Each page->index must be checked when
1104                                  * invalidating or truncating nonlinear.
1105                                  */
1106                                 if (details->nonlinear_vma &&
1107                                     (page->index < details->first_index ||
1108                                      page->index > details->last_index))
1109                                         continue;
1110                         }
1111                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1112                                                         tlb->fullmm);
1113                         tlb_remove_tlb_entry(tlb, pte, addr);
1114                         if (unlikely(!page))
1115                                 continue;
1116                         if (unlikely(details) && details->nonlinear_vma
1117                             && linear_page_index(details->nonlinear_vma,
1118                                                 addr) != page->index) {
1119                                 pte_t ptfile = pgoff_to_pte(page->index);
1120                                 if (pte_soft_dirty(ptent))
1121                                         pte_file_mksoft_dirty(ptfile);
1122                                 set_pte_at(mm, addr, pte, ptfile);
1123                         }
1124                         if (PageAnon(page))
1125                                 rss[MM_ANONPAGES]--;
1126                         else {
1127                                 if (pte_dirty(ptent))
1128                                         set_page_dirty(page);
1129                                 if (pte_young(ptent) &&
1130                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1131                                         mark_page_accessed(page);
1132                                 rss[MM_FILEPAGES]--;
1133                         }
1134                         page_remove_rmap(page);
1135                         if (unlikely(page_mapcount(page) < 0))
1136                                 print_bad_pte(vma, addr, ptent, page);
1137                         force_flush = !__tlb_remove_page(tlb, page);
1138                         if (force_flush)
1139                                 break;
1140                         continue;
1141                 }
1142                 /*
1143                  * If details->check_mapping, we leave swap entries;
1144                  * if details->nonlinear_vma, we leave file entries.
1145                  */
1146                 if (unlikely(details))
1147                         continue;
1148                 if (pte_file(ptent)) {
1149                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1150                                 print_bad_pte(vma, addr, ptent, NULL);
1151                 } else {
1152                         swp_entry_t entry = pte_to_swp_entry(ptent);
1153
1154                         if (!non_swap_entry(entry))
1155                                 rss[MM_SWAPENTS]--;
1156                         else if (is_migration_entry(entry)) {
1157                                 struct page *page;
1158
1159                                 page = migration_entry_to_page(entry);
1160
1161                                 if (PageAnon(page))
1162                                         rss[MM_ANONPAGES]--;
1163                                 else
1164                                         rss[MM_FILEPAGES]--;
1165                         }
1166                         if (unlikely(!free_swap_and_cache(entry)))
1167                                 print_bad_pte(vma, addr, ptent, NULL);
1168                 }
1169                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1170         } while (pte++, addr += PAGE_SIZE, addr != end);
1171
1172         add_mm_rss_vec(mm, rss);
1173         arch_leave_lazy_mmu_mode();
1174         pte_unmap_unlock(start_pte, ptl);
1175
1176         /*
1177          * mmu_gather ran out of room to batch pages, we break out of
1178          * the PTE lock to avoid doing the potential expensive TLB invalidate
1179          * and page-free while holding it.
1180          */
1181         if (force_flush) {
1182                 unsigned long old_end;
1183
1184                 force_flush = 0;
1185
1186                 /*
1187                  * Flush the TLB just for the previous segment,
1188                  * then update the range to be the remaining
1189                  * TLB range.
1190                  */
1191                 old_end = tlb->end;
1192                 tlb->end = addr;
1193
1194                 tlb_flush_mmu(tlb);
1195
1196                 tlb->start = addr;
1197                 tlb->end = old_end;
1198
1199                 if (addr != end)
1200                         goto again;
1201         }
1202
1203         return addr;
1204 }
1205
1206 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1207                                 struct vm_area_struct *vma, pud_t *pud,
1208                                 unsigned long addr, unsigned long end,
1209                                 struct zap_details *details)
1210 {
1211         pmd_t *pmd;
1212         unsigned long next;
1213
1214         pmd = pmd_offset(pud, addr);
1215         do {
1216                 next = pmd_addr_end(addr, end);
1217                 if (pmd_trans_huge(*pmd)) {
1218                         if (next - addr != HPAGE_PMD_SIZE) {
1219 #ifdef CONFIG_DEBUG_VM
1220                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1221                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1222                                                 __func__, addr, end,
1223                                                 vma->vm_start,
1224                                                 vma->vm_end);
1225                                         BUG();
1226                                 }
1227 #endif
1228                                 split_huge_page_pmd(vma, addr, pmd);
1229                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1230                                 goto next;
1231                         /* fall through */
1232                 }
1233                 /*
1234                  * Here there can be other concurrent MADV_DONTNEED or
1235                  * trans huge page faults running, and if the pmd is
1236                  * none or trans huge it can change under us. This is
1237                  * because MADV_DONTNEED holds the mmap_sem in read
1238                  * mode.
1239                  */
1240                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1241                         goto next;
1242                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1243 next:
1244                 cond_resched();
1245         } while (pmd++, addr = next, addr != end);
1246
1247         return addr;
1248 }
1249
1250 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1251                                 struct vm_area_struct *vma, pgd_t *pgd,
1252                                 unsigned long addr, unsigned long end,
1253                                 struct zap_details *details)
1254 {
1255         pud_t *pud;
1256         unsigned long next;
1257
1258         pud = pud_offset(pgd, addr);
1259         do {
1260                 next = pud_addr_end(addr, end);
1261                 if (pud_none_or_clear_bad(pud))
1262                         continue;
1263                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1264         } while (pud++, addr = next, addr != end);
1265
1266         return addr;
1267 }
1268
1269 static void unmap_page_range(struct mmu_gather *tlb,
1270                              struct vm_area_struct *vma,
1271                              unsigned long addr, unsigned long end,
1272                              struct zap_details *details)
1273 {
1274         pgd_t *pgd;
1275         unsigned long next;
1276
1277         if (details && !details->check_mapping && !details->nonlinear_vma)
1278                 details = NULL;
1279
1280         BUG_ON(addr >= end);
1281         mem_cgroup_uncharge_start();
1282         tlb_start_vma(tlb, vma);
1283         pgd = pgd_offset(vma->vm_mm, addr);
1284         do {
1285                 next = pgd_addr_end(addr, end);
1286                 if (pgd_none_or_clear_bad(pgd))
1287                         continue;
1288                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1289         } while (pgd++, addr = next, addr != end);
1290         tlb_end_vma(tlb, vma);
1291         mem_cgroup_uncharge_end();
1292 }
1293
1294
1295 static void unmap_single_vma(struct mmu_gather *tlb,
1296                 struct vm_area_struct *vma, unsigned long start_addr,
1297                 unsigned long end_addr,
1298                 struct zap_details *details)
1299 {
1300         unsigned long start = max(vma->vm_start, start_addr);
1301         unsigned long end;
1302
1303         if (start >= vma->vm_end)
1304                 return;
1305         end = min(vma->vm_end, end_addr);
1306         if (end <= vma->vm_start)
1307                 return;
1308
1309         if (vma->vm_file)
1310                 uprobe_munmap(vma, start, end);
1311
1312         if (unlikely(vma->vm_flags & VM_PFNMAP))
1313                 untrack_pfn(vma, 0, 0);
1314
1315         if (start != end) {
1316                 if (unlikely(is_vm_hugetlb_page(vma))) {
1317                         /*
1318                          * It is undesirable to test vma->vm_file as it
1319                          * should be non-null for valid hugetlb area.
1320                          * However, vm_file will be NULL in the error
1321                          * cleanup path of do_mmap_pgoff. When
1322                          * hugetlbfs ->mmap method fails,
1323                          * do_mmap_pgoff() nullifies vma->vm_file
1324                          * before calling this function to clean up.
1325                          * Since no pte has actually been setup, it is
1326                          * safe to do nothing in this case.
1327                          */
1328                         if (vma->vm_file) {
1329                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1330                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1331                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1332                         }
1333                 } else
1334                         unmap_page_range(tlb, vma, start, end, details);
1335         }
1336 }
1337
1338 /**
1339  * unmap_vmas - unmap a range of memory covered by a list of vma's
1340  * @tlb: address of the caller's struct mmu_gather
1341  * @vma: the starting vma
1342  * @start_addr: virtual address at which to start unmapping
1343  * @end_addr: virtual address at which to end unmapping
1344  *
1345  * Unmap all pages in the vma list.
1346  *
1347  * Only addresses between `start' and `end' will be unmapped.
1348  *
1349  * The VMA list must be sorted in ascending virtual address order.
1350  *
1351  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1352  * range after unmap_vmas() returns.  So the only responsibility here is to
1353  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1354  * drops the lock and schedules.
1355  */
1356 void unmap_vmas(struct mmu_gather *tlb,
1357                 struct vm_area_struct *vma, unsigned long start_addr,
1358                 unsigned long end_addr)
1359 {
1360         struct mm_struct *mm = vma->vm_mm;
1361
1362         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1363         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1364                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1365         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1366 }
1367
1368 /**
1369  * zap_page_range - remove user pages in a given range
1370  * @vma: vm_area_struct holding the applicable pages
1371  * @start: starting address of pages to zap
1372  * @size: number of bytes to zap
1373  * @details: details of nonlinear truncation or shared cache invalidation
1374  *
1375  * Caller must protect the VMA list
1376  */
1377 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1378                 unsigned long size, struct zap_details *details)
1379 {
1380         struct mm_struct *mm = vma->vm_mm;
1381         struct mmu_gather tlb;
1382         unsigned long end = start + size;
1383
1384         lru_add_drain();
1385         tlb_gather_mmu(&tlb, mm, start, end);
1386         update_hiwater_rss(mm);
1387         mmu_notifier_invalidate_range_start(mm, start, end);
1388         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1389                 unmap_single_vma(&tlb, vma, start, end, details);
1390         mmu_notifier_invalidate_range_end(mm, start, end);
1391         tlb_finish_mmu(&tlb, start, end);
1392 }
1393
1394 /**
1395  * zap_page_range_single - remove user pages in a given range
1396  * @vma: vm_area_struct holding the applicable pages
1397  * @address: starting address of pages to zap
1398  * @size: number of bytes to zap
1399  * @details: details of nonlinear truncation or shared cache invalidation
1400  *
1401  * The range must fit into one VMA.
1402  */
1403 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1404                 unsigned long size, struct zap_details *details)
1405 {
1406         struct mm_struct *mm = vma->vm_mm;
1407         struct mmu_gather tlb;
1408         unsigned long end = address + size;
1409
1410         lru_add_drain();
1411         tlb_gather_mmu(&tlb, mm, address, end);
1412         update_hiwater_rss(mm);
1413         mmu_notifier_invalidate_range_start(mm, address, end);
1414         unmap_single_vma(&tlb, vma, address, end, details);
1415         mmu_notifier_invalidate_range_end(mm, address, end);
1416         tlb_finish_mmu(&tlb, address, end);
1417 }
1418
1419 /**
1420  * zap_vma_ptes - remove ptes mapping the vma
1421  * @vma: vm_area_struct holding ptes to be zapped
1422  * @address: starting address of pages to zap
1423  * @size: number of bytes to zap
1424  *
1425  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1426  *
1427  * The entire address range must be fully contained within the vma.
1428  *
1429  * Returns 0 if successful.
1430  */
1431 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1432                 unsigned long size)
1433 {
1434         if (address < vma->vm_start || address + size > vma->vm_end ||
1435                         !(vma->vm_flags & VM_PFNMAP))
1436                 return -1;
1437         zap_page_range_single(vma, address, size, NULL);
1438         return 0;
1439 }
1440 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1441
1442 /**
1443  * follow_page_mask - look up a page descriptor from a user-virtual address
1444  * @vma: vm_area_struct mapping @address
1445  * @address: virtual address to look up
1446  * @flags: flags modifying lookup behaviour
1447  * @page_mask: on output, *page_mask is set according to the size of the page
1448  *
1449  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1450  *
1451  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1452  * an error pointer if there is a mapping to something not represented
1453  * by a page descriptor (see also vm_normal_page()).
1454  */
1455 struct page *follow_page_mask(struct vm_area_struct *vma,
1456                               unsigned long address, unsigned int flags,
1457                               unsigned int *page_mask)
1458 {
1459         pgd_t *pgd;
1460         pud_t *pud;
1461         pmd_t *pmd;
1462         pte_t *ptep, pte;
1463         spinlock_t *ptl;
1464         struct page *page;
1465         struct mm_struct *mm = vma->vm_mm;
1466
1467         *page_mask = 0;
1468
1469         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1470         if (!IS_ERR(page)) {
1471                 BUG_ON(flags & FOLL_GET);
1472                 goto out;
1473         }
1474
1475         page = NULL;
1476         pgd = pgd_offset(mm, address);
1477         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1478                 goto no_page_table;
1479
1480         pud = pud_offset(pgd, address);
1481         if (pud_none(*pud))
1482                 goto no_page_table;
1483         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1484                 if (flags & FOLL_GET)
1485                         goto out;
1486                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1487                 goto out;
1488         }
1489         if (unlikely(pud_bad(*pud)))
1490                 goto no_page_table;
1491
1492         pmd = pmd_offset(pud, address);
1493         if (pmd_none(*pmd))
1494                 goto no_page_table;
1495         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1496                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1497                 if (flags & FOLL_GET) {
1498                         /*
1499                          * Refcount on tail pages are not well-defined and
1500                          * shouldn't be taken. The caller should handle a NULL
1501                          * return when trying to follow tail pages.
1502                          */
1503                         if (PageHead(page))
1504                                 get_page(page);
1505                         else {
1506                                 page = NULL;
1507                                 goto out;
1508                         }
1509                 }
1510                 goto out;
1511         }
1512         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1513                 goto no_page_table;
1514         if (pmd_trans_huge(*pmd)) {
1515                 if (flags & FOLL_SPLIT) {
1516                         split_huge_page_pmd(vma, address, pmd);
1517                         goto split_fallthrough;
1518                 }
1519                 spin_lock(&mm->page_table_lock);
1520                 if (likely(pmd_trans_huge(*pmd))) {
1521                         if (unlikely(pmd_trans_splitting(*pmd))) {
1522                                 spin_unlock(&mm->page_table_lock);
1523                                 wait_split_huge_page(vma->anon_vma, pmd);
1524                         } else {
1525                                 page = follow_trans_huge_pmd(vma, address,
1526                                                              pmd, flags);
1527                                 spin_unlock(&mm->page_table_lock);
1528                                 *page_mask = HPAGE_PMD_NR - 1;
1529                                 goto out;
1530                         }
1531                 } else
1532                         spin_unlock(&mm->page_table_lock);
1533                 /* fall through */
1534         }
1535 split_fallthrough:
1536         if (unlikely(pmd_bad(*pmd)))
1537                 goto no_page_table;
1538
1539         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1540
1541         pte = *ptep;
1542         if (!pte_present(pte)) {
1543                 swp_entry_t entry;
1544                 /*
1545                  * KSM's break_ksm() relies upon recognizing a ksm page
1546                  * even while it is being migrated, so for that case we
1547                  * need migration_entry_wait().
1548                  */
1549                 if (likely(!(flags & FOLL_MIGRATION)))
1550                         goto no_page;
1551                 if (pte_none(pte) || pte_file(pte))
1552                         goto no_page;
1553                 entry = pte_to_swp_entry(pte);
1554                 if (!is_migration_entry(entry))
1555                         goto no_page;
1556                 pte_unmap_unlock(ptep, ptl);
1557                 migration_entry_wait(mm, pmd, address);
1558                 goto split_fallthrough;
1559         }
1560         if ((flags & FOLL_NUMA) && pte_numa(pte))
1561                 goto no_page;
1562         if ((flags & FOLL_WRITE) && !pte_write(pte))
1563                 goto unlock;
1564
1565         page = vm_normal_page(vma, address, pte);
1566         if (unlikely(!page)) {
1567                 if ((flags & FOLL_DUMP) ||
1568                     !is_zero_pfn(pte_pfn(pte)))
1569                         goto bad_page;
1570                 page = pte_page(pte);
1571         }
1572
1573         if (flags & FOLL_GET)
1574                 get_page_foll(page);
1575         if (flags & FOLL_TOUCH) {
1576                 if ((flags & FOLL_WRITE) &&
1577                     !pte_dirty(pte) && !PageDirty(page))
1578                         set_page_dirty(page);
1579                 /*
1580                  * pte_mkyoung() would be more correct here, but atomic care
1581                  * is needed to avoid losing the dirty bit: it is easier to use
1582                  * mark_page_accessed().
1583                  */
1584                 mark_page_accessed(page);
1585         }
1586         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1587                 /*
1588                  * The preliminary mapping check is mainly to avoid the
1589                  * pointless overhead of lock_page on the ZERO_PAGE
1590                  * which might bounce very badly if there is contention.
1591                  *
1592                  * If the page is already locked, we don't need to
1593                  * handle it now - vmscan will handle it later if and
1594                  * when it attempts to reclaim the page.
1595                  */
1596                 if (page->mapping && trylock_page(page)) {
1597                         lru_add_drain();  /* push cached pages to LRU */
1598                         /*
1599                          * Because we lock page here, and migration is
1600                          * blocked by the pte's page reference, and we
1601                          * know the page is still mapped, we don't even
1602                          * need to check for file-cache page truncation.
1603                          */
1604                         mlock_vma_page(page);
1605                         unlock_page(page);
1606                 }
1607         }
1608 unlock:
1609         pte_unmap_unlock(ptep, ptl);
1610 out:
1611         return page;
1612
1613 bad_page:
1614         pte_unmap_unlock(ptep, ptl);
1615         return ERR_PTR(-EFAULT);
1616
1617 no_page:
1618         pte_unmap_unlock(ptep, ptl);
1619         if (!pte_none(pte))
1620                 return page;
1621
1622 no_page_table:
1623         /*
1624          * When core dumping an enormous anonymous area that nobody
1625          * has touched so far, we don't want to allocate unnecessary pages or
1626          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1627          * then get_dump_page() will return NULL to leave a hole in the dump.
1628          * But we can only make this optimization where a hole would surely
1629          * be zero-filled if handle_mm_fault() actually did handle it.
1630          */
1631         if ((flags & FOLL_DUMP) &&
1632             (!vma->vm_ops || !vma->vm_ops->fault))
1633                 return ERR_PTR(-EFAULT);
1634         return page;
1635 }
1636
1637 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1638 {
1639         return stack_guard_page_start(vma, addr) ||
1640                stack_guard_page_end(vma, addr+PAGE_SIZE);
1641 }
1642
1643 /**
1644  * __get_user_pages() - pin user pages in memory
1645  * @tsk:        task_struct of target task
1646  * @mm:         mm_struct of target mm
1647  * @start:      starting user address
1648  * @nr_pages:   number of pages from start to pin
1649  * @gup_flags:  flags modifying pin behaviour
1650  * @pages:      array that receives pointers to the pages pinned.
1651  *              Should be at least nr_pages long. Or NULL, if caller
1652  *              only intends to ensure the pages are faulted in.
1653  * @vmas:       array of pointers to vmas corresponding to each page.
1654  *              Or NULL if the caller does not require them.
1655  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1656  *
1657  * Returns number of pages pinned. This may be fewer than the number
1658  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1659  * were pinned, returns -errno. Each page returned must be released
1660  * with a put_page() call when it is finished with. vmas will only
1661  * remain valid while mmap_sem is held.
1662  *
1663  * Must be called with mmap_sem held for read or write.
1664  *
1665  * __get_user_pages walks a process's page tables and takes a reference to
1666  * each struct page that each user address corresponds to at a given
1667  * instant. That is, it takes the page that would be accessed if a user
1668  * thread accesses the given user virtual address at that instant.
1669  *
1670  * This does not guarantee that the page exists in the user mappings when
1671  * __get_user_pages returns, and there may even be a completely different
1672  * page there in some cases (eg. if mmapped pagecache has been invalidated
1673  * and subsequently re faulted). However it does guarantee that the page
1674  * won't be freed completely. And mostly callers simply care that the page
1675  * contains data that was valid *at some point in time*. Typically, an IO
1676  * or similar operation cannot guarantee anything stronger anyway because
1677  * locks can't be held over the syscall boundary.
1678  *
1679  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1680  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1681  * appropriate) must be called after the page is finished with, and
1682  * before put_page is called.
1683  *
1684  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1685  * or mmap_sem contention, and if waiting is needed to pin all pages,
1686  * *@nonblocking will be set to 0.
1687  *
1688  * In most cases, get_user_pages or get_user_pages_fast should be used
1689  * instead of __get_user_pages. __get_user_pages should be used only if
1690  * you need some special @gup_flags.
1691  */
1692 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1693                 unsigned long start, unsigned long nr_pages,
1694                 unsigned int gup_flags, struct page **pages,
1695                 struct vm_area_struct **vmas, int *nonblocking)
1696 {
1697         long i;
1698         unsigned long vm_flags;
1699         unsigned int page_mask;
1700
1701         if (!nr_pages)
1702                 return 0;
1703
1704         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1705
1706         /* 
1707          * Require read or write permissions.
1708          * If FOLL_FORCE is set, we only require the "MAY" flags.
1709          */
1710         vm_flags  = (gup_flags & FOLL_WRITE) ?
1711                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1712         vm_flags &= (gup_flags & FOLL_FORCE) ?
1713                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1714
1715         /*
1716          * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1717          * would be called on PROT_NONE ranges. We must never invoke
1718          * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1719          * page faults would unprotect the PROT_NONE ranges if
1720          * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1721          * bitflag. So to avoid that, don't set FOLL_NUMA if
1722          * FOLL_FORCE is set.
1723          */
1724         if (!(gup_flags & FOLL_FORCE))
1725                 gup_flags |= FOLL_NUMA;
1726
1727         i = 0;
1728
1729         do {
1730                 struct vm_area_struct *vma;
1731
1732                 vma = find_extend_vma(mm, start);
1733                 if (!vma && in_gate_area(mm, start)) {
1734                         unsigned long pg = start & PAGE_MASK;
1735                         pgd_t *pgd;
1736                         pud_t *pud;
1737                         pmd_t *pmd;
1738                         pte_t *pte;
1739
1740                         /* user gate pages are read-only */
1741                         if (gup_flags & FOLL_WRITE)
1742                                 return i ? : -EFAULT;
1743                         if (pg > TASK_SIZE)
1744                                 pgd = pgd_offset_k(pg);
1745                         else
1746                                 pgd = pgd_offset_gate(mm, pg);
1747                         BUG_ON(pgd_none(*pgd));
1748                         pud = pud_offset(pgd, pg);
1749                         BUG_ON(pud_none(*pud));
1750                         pmd = pmd_offset(pud, pg);
1751                         if (pmd_none(*pmd))
1752                                 return i ? : -EFAULT;
1753                         VM_BUG_ON(pmd_trans_huge(*pmd));
1754                         pte = pte_offset_map(pmd, pg);
1755                         if (pte_none(*pte)) {
1756                                 pte_unmap(pte);
1757                                 return i ? : -EFAULT;
1758                         }
1759                         vma = get_gate_vma(mm);
1760                         if (pages) {
1761                                 struct page *page;
1762
1763                                 page = vm_normal_page(vma, start, *pte);
1764                                 if (!page) {
1765                                         if (!(gup_flags & FOLL_DUMP) &&
1766                                              is_zero_pfn(pte_pfn(*pte)))
1767                                                 page = pte_page(*pte);
1768                                         else {
1769                                                 pte_unmap(pte);
1770                                                 return i ? : -EFAULT;
1771                                         }
1772                                 }
1773                                 pages[i] = page;
1774                                 get_page(page);
1775                         }
1776                         pte_unmap(pte);
1777                         page_mask = 0;
1778                         goto next_page;
1779                 }
1780
1781                 if (!vma ||
1782                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1783                     !(vm_flags & vma->vm_flags))
1784                         return i ? : -EFAULT;
1785
1786                 if (is_vm_hugetlb_page(vma)) {
1787                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1788                                         &start, &nr_pages, i, gup_flags);
1789                         continue;
1790                 }
1791
1792                 do {
1793                         struct page *page;
1794                         unsigned int foll_flags = gup_flags;
1795                         unsigned int page_increm;
1796
1797                         /*
1798                          * If we have a pending SIGKILL, don't keep faulting
1799                          * pages and potentially allocating memory.
1800                          */
1801                         if (unlikely(fatal_signal_pending(current)))
1802                                 return i ? i : -ERESTARTSYS;
1803
1804                         cond_resched();
1805                         while (!(page = follow_page_mask(vma, start,
1806                                                 foll_flags, &page_mask))) {
1807                                 int ret;
1808                                 unsigned int fault_flags = 0;
1809
1810                                 /* For mlock, just skip the stack guard page. */
1811                                 if (foll_flags & FOLL_MLOCK) {
1812                                         if (stack_guard_page(vma, start))
1813                                                 goto next_page;
1814                                 }
1815                                 if (foll_flags & FOLL_WRITE)
1816                                         fault_flags |= FAULT_FLAG_WRITE;
1817                                 if (nonblocking)
1818                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1819                                 if (foll_flags & FOLL_NOWAIT)
1820                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1821
1822                                 ret = handle_mm_fault(mm, vma, start,
1823                                                         fault_flags);
1824
1825                                 if (ret & VM_FAULT_ERROR) {
1826                                         if (ret & VM_FAULT_OOM)
1827                                                 return i ? i : -ENOMEM;
1828                                         if (ret & (VM_FAULT_HWPOISON |
1829                                                    VM_FAULT_HWPOISON_LARGE)) {
1830                                                 if (i)
1831                                                         return i;
1832                                                 else if (gup_flags & FOLL_HWPOISON)
1833                                                         return -EHWPOISON;
1834                                                 else
1835                                                         return -EFAULT;
1836                                         }
1837                                         if (ret & VM_FAULT_SIGBUS)
1838                                                 return i ? i : -EFAULT;
1839                                         BUG();
1840                                 }
1841
1842                                 if (tsk) {
1843                                         if (ret & VM_FAULT_MAJOR)
1844                                                 tsk->maj_flt++;
1845                                         else
1846                                                 tsk->min_flt++;
1847                                 }
1848
1849                                 if (ret & VM_FAULT_RETRY) {
1850                                         if (nonblocking)
1851                                                 *nonblocking = 0;
1852                                         return i;
1853                                 }
1854
1855                                 /*
1856                                  * The VM_FAULT_WRITE bit tells us that
1857                                  * do_wp_page has broken COW when necessary,
1858                                  * even if maybe_mkwrite decided not to set
1859                                  * pte_write. We can thus safely do subsequent
1860                                  * page lookups as if they were reads. But only
1861                                  * do so when looping for pte_write is futile:
1862                                  * in some cases userspace may also be wanting
1863                                  * to write to the gotten user page, which a
1864                                  * read fault here might prevent (a readonly
1865                                  * page might get reCOWed by userspace write).
1866                                  */
1867                                 if ((ret & VM_FAULT_WRITE) &&
1868                                     !(vma->vm_flags & VM_WRITE))
1869                                         foll_flags &= ~FOLL_WRITE;
1870
1871                                 cond_resched();
1872                         }
1873                         if (IS_ERR(page))
1874                                 return i ? i : PTR_ERR(page);
1875                         if (pages) {
1876                                 pages[i] = page;
1877
1878                                 flush_anon_page(vma, page, start);
1879                                 flush_dcache_page(page);
1880                                 page_mask = 0;
1881                         }
1882 next_page:
1883                         if (vmas) {
1884                                 vmas[i] = vma;
1885                                 page_mask = 0;
1886                         }
1887                         page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1888                         if (page_increm > nr_pages)
1889                                 page_increm = nr_pages;
1890                         i += page_increm;
1891                         start += page_increm * PAGE_SIZE;
1892                         nr_pages -= page_increm;
1893                 } while (nr_pages && start < vma->vm_end);
1894         } while (nr_pages);
1895         return i;
1896 }
1897 EXPORT_SYMBOL(__get_user_pages);
1898
1899 /*
1900  * fixup_user_fault() - manually resolve a user page fault
1901  * @tsk:        the task_struct to use for page fault accounting, or
1902  *              NULL if faults are not to be recorded.
1903  * @mm:         mm_struct of target mm
1904  * @address:    user address
1905  * @fault_flags:flags to pass down to handle_mm_fault()
1906  *
1907  * This is meant to be called in the specific scenario where for locking reasons
1908  * we try to access user memory in atomic context (within a pagefault_disable()
1909  * section), this returns -EFAULT, and we want to resolve the user fault before
1910  * trying again.
1911  *
1912  * Typically this is meant to be used by the futex code.
1913  *
1914  * The main difference with get_user_pages() is that this function will
1915  * unconditionally call handle_mm_fault() which will in turn perform all the
1916  * necessary SW fixup of the dirty and young bits in the PTE, while
1917  * handle_mm_fault() only guarantees to update these in the struct page.
1918  *
1919  * This is important for some architectures where those bits also gate the
1920  * access permission to the page because they are maintained in software.  On
1921  * such architectures, gup() will not be enough to make a subsequent access
1922  * succeed.
1923  *
1924  * This should be called with the mm_sem held for read.
1925  */
1926 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1927                      unsigned long address, unsigned int fault_flags)
1928 {
1929         struct vm_area_struct *vma;
1930         int ret;
1931
1932         vma = find_extend_vma(mm, address);
1933         if (!vma || address < vma->vm_start)
1934                 return -EFAULT;
1935
1936         ret = handle_mm_fault(mm, vma, address, fault_flags);
1937         if (ret & VM_FAULT_ERROR) {
1938                 if (ret & VM_FAULT_OOM)
1939                         return -ENOMEM;
1940                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1941                         return -EHWPOISON;
1942                 if (ret & VM_FAULT_SIGBUS)
1943                         return -EFAULT;
1944                 BUG();
1945         }
1946         if (tsk) {
1947                 if (ret & VM_FAULT_MAJOR)
1948                         tsk->maj_flt++;
1949                 else
1950                         tsk->min_flt++;
1951         }
1952         return 0;
1953 }
1954
1955 /*
1956  * get_user_pages() - pin user pages in memory
1957  * @tsk:        the task_struct to use for page fault accounting, or
1958  *              NULL if faults are not to be recorded.
1959  * @mm:         mm_struct of target mm
1960  * @start:      starting user address
1961  * @nr_pages:   number of pages from start to pin
1962  * @write:      whether pages will be written to by the caller
1963  * @force:      whether to force write access even if user mapping is
1964  *              readonly. This will result in the page being COWed even
1965  *              in MAP_SHARED mappings. You do not want this.
1966  * @pages:      array that receives pointers to the pages pinned.
1967  *              Should be at least nr_pages long. Or NULL, if caller
1968  *              only intends to ensure the pages are faulted in.
1969  * @vmas:       array of pointers to vmas corresponding to each page.
1970  *              Or NULL if the caller does not require them.
1971  *
1972  * Returns number of pages pinned. This may be fewer than the number
1973  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1974  * were pinned, returns -errno. Each page returned must be released
1975  * with a put_page() call when it is finished with. vmas will only
1976  * remain valid while mmap_sem is held.
1977  *
1978  * Must be called with mmap_sem held for read or write.
1979  *
1980  * get_user_pages walks a process's page tables and takes a reference to
1981  * each struct page that each user address corresponds to at a given
1982  * instant. That is, it takes the page that would be accessed if a user
1983  * thread accesses the given user virtual address at that instant.
1984  *
1985  * This does not guarantee that the page exists in the user mappings when
1986  * get_user_pages returns, and there may even be a completely different
1987  * page there in some cases (eg. if mmapped pagecache has been invalidated
1988  * and subsequently re faulted). However it does guarantee that the page
1989  * won't be freed completely. And mostly callers simply care that the page
1990  * contains data that was valid *at some point in time*. Typically, an IO
1991  * or similar operation cannot guarantee anything stronger anyway because
1992  * locks can't be held over the syscall boundary.
1993  *
1994  * If write=0, the page must not be written to. If the page is written to,
1995  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1996  * after the page is finished with, and before put_page is called.
1997  *
1998  * get_user_pages is typically used for fewer-copy IO operations, to get a
1999  * handle on the memory by some means other than accesses via the user virtual
2000  * addresses. The pages may be submitted for DMA to devices or accessed via
2001  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2002  * use the correct cache flushing APIs.
2003  *
2004  * See also get_user_pages_fast, for performance critical applications.
2005  */
2006 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2007                 unsigned long start, unsigned long nr_pages, int write,
2008                 int force, struct page **pages, struct vm_area_struct **vmas)
2009 {
2010         int flags = FOLL_TOUCH;
2011
2012         if (pages)
2013                 flags |= FOLL_GET;
2014         if (write)
2015                 flags |= FOLL_WRITE;
2016         if (force)
2017                 flags |= FOLL_FORCE;
2018
2019         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2020                                 NULL);
2021 }
2022 EXPORT_SYMBOL(get_user_pages);
2023
2024 /**
2025  * get_dump_page() - pin user page in memory while writing it to core dump
2026  * @addr: user address
2027  *
2028  * Returns struct page pointer of user page pinned for dump,
2029  * to be freed afterwards by page_cache_release() or put_page().
2030  *
2031  * Returns NULL on any kind of failure - a hole must then be inserted into
2032  * the corefile, to preserve alignment with its headers; and also returns
2033  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2034  * allowing a hole to be left in the corefile to save diskspace.
2035  *
2036  * Called without mmap_sem, but after all other threads have been killed.
2037  */
2038 #ifdef CONFIG_ELF_CORE
2039 struct page *get_dump_page(unsigned long addr)
2040 {
2041         struct vm_area_struct *vma;
2042         struct page *page;
2043
2044         if (__get_user_pages(current, current->mm, addr, 1,
2045                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2046                              NULL) < 1)
2047                 return NULL;
2048         flush_cache_page(vma, addr, page_to_pfn(page));
2049         return page;
2050 }
2051 #endif /* CONFIG_ELF_CORE */
2052
2053 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2054                         spinlock_t **ptl)
2055 {
2056         pgd_t * pgd = pgd_offset(mm, addr);
2057         pud_t * pud = pud_alloc(mm, pgd, addr);
2058         if (pud) {
2059                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2060                 if (pmd) {
2061                         VM_BUG_ON(pmd_trans_huge(*pmd));
2062                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2063                 }
2064         }
2065         return NULL;
2066 }
2067
2068 /*
2069  * This is the old fallback for page remapping.
2070  *
2071  * For historical reasons, it only allows reserved pages. Only
2072  * old drivers should use this, and they needed to mark their
2073  * pages reserved for the old functions anyway.
2074  */
2075 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2076                         struct page *page, pgprot_t prot)
2077 {
2078         struct mm_struct *mm = vma->vm_mm;
2079         int retval;
2080         pte_t *pte;
2081         spinlock_t *ptl;
2082
2083         retval = -EINVAL;
2084         if (PageAnon(page))
2085                 goto out;
2086         retval = -ENOMEM;
2087         flush_dcache_page(page);
2088         pte = get_locked_pte(mm, addr, &ptl);
2089         if (!pte)
2090                 goto out;
2091         retval = -EBUSY;
2092         if (!pte_none(*pte))
2093                 goto out_unlock;
2094
2095         /* Ok, finally just insert the thing.. */
2096         get_page(page);
2097         inc_mm_counter_fast(mm, MM_FILEPAGES);
2098         page_add_file_rmap(page);
2099         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2100
2101         retval = 0;
2102         pte_unmap_unlock(pte, ptl);
2103         return retval;
2104 out_unlock:
2105         pte_unmap_unlock(pte, ptl);
2106 out:
2107         return retval;
2108 }
2109
2110 /**
2111  * vm_insert_page - insert single page into user vma
2112  * @vma: user vma to map to
2113  * @addr: target user address of this page
2114  * @page: source kernel page
2115  *
2116  * This allows drivers to insert individual pages they've allocated
2117  * into a user vma.
2118  *
2119  * The page has to be a nice clean _individual_ kernel allocation.
2120  * If you allocate a compound page, you need to have marked it as
2121  * such (__GFP_COMP), or manually just split the page up yourself
2122  * (see split_page()).
2123  *
2124  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2125  * took an arbitrary page protection parameter. This doesn't allow
2126  * that. Your vma protection will have to be set up correctly, which
2127  * means that if you want a shared writable mapping, you'd better
2128  * ask for a shared writable mapping!
2129  *
2130  * The page does not need to be reserved.
2131  *
2132  * Usually this function is called from f_op->mmap() handler
2133  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2134  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2135  * function from other places, for example from page-fault handler.
2136  */
2137 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2138                         struct page *page)
2139 {
2140         if (addr < vma->vm_start || addr >= vma->vm_end)
2141                 return -EFAULT;
2142         if (!page_count(page))
2143                 return -EINVAL;
2144         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2145                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2146                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2147                 vma->vm_flags |= VM_MIXEDMAP;
2148         }
2149         return insert_page(vma, addr, page, vma->vm_page_prot);
2150 }
2151 EXPORT_SYMBOL(vm_insert_page);
2152
2153 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2154                         unsigned long pfn, pgprot_t prot)
2155 {
2156         struct mm_struct *mm = vma->vm_mm;
2157         int retval;
2158         pte_t *pte, entry;
2159         spinlock_t *ptl;
2160
2161         retval = -ENOMEM;
2162         pte = get_locked_pte(mm, addr, &ptl);
2163         if (!pte)
2164                 goto out;
2165         retval = -EBUSY;
2166         if (!pte_none(*pte))
2167                 goto out_unlock;
2168
2169         /* Ok, finally just insert the thing.. */
2170         entry = pte_mkspecial(pfn_pte(pfn, prot));
2171         set_pte_at(mm, addr, pte, entry);
2172         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2173
2174         retval = 0;
2175 out_unlock:
2176         pte_unmap_unlock(pte, ptl);
2177 out:
2178         return retval;
2179 }
2180
2181 /**
2182  * vm_insert_pfn - insert single pfn into user vma
2183  * @vma: user vma to map to
2184  * @addr: target user address of this page
2185  * @pfn: source kernel pfn
2186  *
2187  * Similar to vm_insert_page, this allows drivers to insert individual pages
2188  * they've allocated into a user vma. Same comments apply.
2189  *
2190  * This function should only be called from a vm_ops->fault handler, and
2191  * in that case the handler should return NULL.
2192  *
2193  * vma cannot be a COW mapping.
2194  *
2195  * As this is called only for pages that do not currently exist, we
2196  * do not need to flush old virtual caches or the TLB.
2197  */
2198 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2199                         unsigned long pfn)
2200 {
2201         int ret;
2202         pgprot_t pgprot = vma->vm_page_prot;
2203         /*
2204          * Technically, architectures with pte_special can avoid all these
2205          * restrictions (same for remap_pfn_range).  However we would like
2206          * consistency in testing and feature parity among all, so we should
2207          * try to keep these invariants in place for everybody.
2208          */
2209         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2210         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2211                                                 (VM_PFNMAP|VM_MIXEDMAP));
2212         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2213         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2214
2215         if (addr < vma->vm_start || addr >= vma->vm_end)
2216                 return -EFAULT;
2217         if (track_pfn_insert(vma, &pgprot, pfn))
2218                 return -EINVAL;
2219
2220         ret = insert_pfn(vma, addr, pfn, pgprot);
2221
2222         return ret;
2223 }
2224 EXPORT_SYMBOL(vm_insert_pfn);
2225
2226 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2227                         unsigned long pfn)
2228 {
2229         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2230
2231         if (addr < vma->vm_start || addr >= vma->vm_end)
2232                 return -EFAULT;
2233
2234         /*
2235          * If we don't have pte special, then we have to use the pfn_valid()
2236          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2237          * refcount the page if pfn_valid is true (hence insert_page rather
2238          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2239          * without pte special, it would there be refcounted as a normal page.
2240          */
2241         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2242                 struct page *page;
2243
2244                 page = pfn_to_page(pfn);
2245                 return insert_page(vma, addr, page, vma->vm_page_prot);
2246         }
2247         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2248 }
2249 EXPORT_SYMBOL(vm_insert_mixed);
2250
2251 /*
2252  * maps a range of physical memory into the requested pages. the old
2253  * mappings are removed. any references to nonexistent pages results
2254  * in null mappings (currently treated as "copy-on-access")
2255  */
2256 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2257                         unsigned long addr, unsigned long end,
2258                         unsigned long pfn, pgprot_t prot)
2259 {
2260         pte_t *pte;
2261         spinlock_t *ptl;
2262
2263         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2264         if (!pte)
2265                 return -ENOMEM;
2266         arch_enter_lazy_mmu_mode();
2267         do {
2268                 BUG_ON(!pte_none(*pte));
2269                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2270                 pfn++;
2271         } while (pte++, addr += PAGE_SIZE, addr != end);
2272         arch_leave_lazy_mmu_mode();
2273         pte_unmap_unlock(pte - 1, ptl);
2274         return 0;
2275 }
2276
2277 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2278                         unsigned long addr, unsigned long end,
2279                         unsigned long pfn, pgprot_t prot)
2280 {
2281         pmd_t *pmd;
2282         unsigned long next;
2283
2284         pfn -= addr >> PAGE_SHIFT;
2285         pmd = pmd_alloc(mm, pud, addr);
2286         if (!pmd)
2287                 return -ENOMEM;
2288         VM_BUG_ON(pmd_trans_huge(*pmd));
2289         do {
2290                 next = pmd_addr_end(addr, end);
2291                 if (remap_pte_range(mm, pmd, addr, next,
2292                                 pfn + (addr >> PAGE_SHIFT), prot))
2293                         return -ENOMEM;
2294         } while (pmd++, addr = next, addr != end);
2295         return 0;
2296 }
2297
2298 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2299                         unsigned long addr, unsigned long end,
2300                         unsigned long pfn, pgprot_t prot)
2301 {
2302         pud_t *pud;
2303         unsigned long next;
2304
2305         pfn -= addr >> PAGE_SHIFT;
2306         pud = pud_alloc(mm, pgd, addr);
2307         if (!pud)
2308                 return -ENOMEM;
2309         do {
2310                 next = pud_addr_end(addr, end);
2311                 if (remap_pmd_range(mm, pud, addr, next,
2312                                 pfn + (addr >> PAGE_SHIFT), prot))
2313                         return -ENOMEM;
2314         } while (pud++, addr = next, addr != end);
2315         return 0;
2316 }
2317
2318 /**
2319  * remap_pfn_range - remap kernel memory to userspace
2320  * @vma: user vma to map to
2321  * @addr: target user address to start at
2322  * @pfn: physical address of kernel memory
2323  * @size: size of map area
2324  * @prot: page protection flags for this mapping
2325  *
2326  *  Note: this is only safe if the mm semaphore is held when called.
2327  */
2328 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2329                     unsigned long pfn, unsigned long size, pgprot_t prot)
2330 {
2331         pgd_t *pgd;
2332         unsigned long next;
2333         unsigned long end = addr + PAGE_ALIGN(size);
2334         struct mm_struct *mm = vma->vm_mm;
2335         int err;
2336
2337         /*
2338          * Physically remapped pages are special. Tell the
2339          * rest of the world about it:
2340          *   VM_IO tells people not to look at these pages
2341          *      (accesses can have side effects).
2342          *   VM_PFNMAP tells the core MM that the base pages are just
2343          *      raw PFN mappings, and do not have a "struct page" associated
2344          *      with them.
2345          *   VM_DONTEXPAND
2346          *      Disable vma merging and expanding with mremap().
2347          *   VM_DONTDUMP
2348          *      Omit vma from core dump, even when VM_IO turned off.
2349          *
2350          * There's a horrible special case to handle copy-on-write
2351          * behaviour that some programs depend on. We mark the "original"
2352          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2353          * See vm_normal_page() for details.
2354          */
2355         if (is_cow_mapping(vma->vm_flags)) {
2356                 if (addr != vma->vm_start || end != vma->vm_end)
2357                         return -EINVAL;
2358                 vma->vm_pgoff = pfn;
2359         }
2360
2361         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2362         if (err)
2363                 return -EINVAL;
2364
2365         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2366
2367         BUG_ON(addr >= end);
2368         pfn -= addr >> PAGE_SHIFT;
2369         pgd = pgd_offset(mm, addr);
2370         flush_cache_range(vma, addr, end);
2371         do {
2372                 next = pgd_addr_end(addr, end);
2373                 err = remap_pud_range(mm, pgd, addr, next,
2374                                 pfn + (addr >> PAGE_SHIFT), prot);
2375                 if (err)
2376                         break;
2377         } while (pgd++, addr = next, addr != end);
2378
2379         if (err)
2380                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2381
2382         return err;
2383 }
2384 EXPORT_SYMBOL(remap_pfn_range);
2385
2386 /**
2387  * vm_iomap_memory - remap memory to userspace
2388  * @vma: user vma to map to
2389  * @start: start of area
2390  * @len: size of area
2391  *
2392  * This is a simplified io_remap_pfn_range() for common driver use. The
2393  * driver just needs to give us the physical memory range to be mapped,
2394  * we'll figure out the rest from the vma information.
2395  *
2396  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2397  * whatever write-combining details or similar.
2398  */
2399 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2400 {
2401         unsigned long vm_len, pfn, pages;
2402
2403         /* Check that the physical memory area passed in looks valid */
2404         if (start + len < start)
2405                 return -EINVAL;
2406         /*
2407          * You *really* shouldn't map things that aren't page-aligned,
2408          * but we've historically allowed it because IO memory might
2409          * just have smaller alignment.
2410          */
2411         len += start & ~PAGE_MASK;
2412         pfn = start >> PAGE_SHIFT;
2413         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2414         if (pfn + pages < pfn)
2415                 return -EINVAL;
2416
2417         /* We start the mapping 'vm_pgoff' pages into the area */
2418         if (vma->vm_pgoff > pages)
2419                 return -EINVAL;
2420         pfn += vma->vm_pgoff;
2421         pages -= vma->vm_pgoff;
2422
2423         /* Can we fit all of the mapping? */
2424         vm_len = vma->vm_end - vma->vm_start;
2425         if (vm_len >> PAGE_SHIFT > pages)
2426                 return -EINVAL;
2427
2428         /* Ok, let it rip */
2429         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2430 }
2431 EXPORT_SYMBOL(vm_iomap_memory);
2432
2433 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2434                                      unsigned long addr, unsigned long end,
2435                                      pte_fn_t fn, void *data)
2436 {
2437         pte_t *pte;
2438         int err;
2439         pgtable_t token;
2440         spinlock_t *uninitialized_var(ptl);
2441
2442         pte = (mm == &init_mm) ?
2443                 pte_alloc_kernel(pmd, addr) :
2444                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2445         if (!pte)
2446                 return -ENOMEM;
2447
2448         BUG_ON(pmd_huge(*pmd));
2449
2450         arch_enter_lazy_mmu_mode();
2451
2452         token = pmd_pgtable(*pmd);
2453
2454         do {
2455                 err = fn(pte++, token, addr, data);
2456                 if (err)
2457                         break;
2458         } while (addr += PAGE_SIZE, addr != end);
2459
2460         arch_leave_lazy_mmu_mode();
2461
2462         if (mm != &init_mm)
2463                 pte_unmap_unlock(pte-1, ptl);
2464         return err;
2465 }
2466
2467 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2468                                      unsigned long addr, unsigned long end,
2469                                      pte_fn_t fn, void *data)
2470 {
2471         pmd_t *pmd;
2472         unsigned long next;
2473         int err;
2474
2475         BUG_ON(pud_huge(*pud));
2476
2477         pmd = pmd_alloc(mm, pud, addr);
2478         if (!pmd)
2479                 return -ENOMEM;
2480         do {
2481                 next = pmd_addr_end(addr, end);
2482                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2483                 if (err)
2484                         break;
2485         } while (pmd++, addr = next, addr != end);
2486         return err;
2487 }
2488
2489 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2490                                      unsigned long addr, unsigned long end,
2491                                      pte_fn_t fn, void *data)
2492 {
2493         pud_t *pud;
2494         unsigned long next;
2495         int err;
2496
2497         pud = pud_alloc(mm, pgd, addr);
2498         if (!pud)
2499                 return -ENOMEM;
2500         do {
2501                 next = pud_addr_end(addr, end);
2502                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2503                 if (err)
2504                         break;
2505         } while (pud++, addr = next, addr != end);
2506         return err;
2507 }
2508
2509 /*
2510  * Scan a region of virtual memory, filling in page tables as necessary
2511  * and calling a provided function on each leaf page table.
2512  */
2513 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2514                         unsigned long size, pte_fn_t fn, void *data)
2515 {
2516         pgd_t *pgd;
2517         unsigned long next;
2518         unsigned long end = addr + size;
2519         int err;
2520
2521         BUG_ON(addr >= end);
2522         pgd = pgd_offset(mm, addr);
2523         do {
2524                 next = pgd_addr_end(addr, end);
2525                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2526                 if (err)
2527                         break;
2528         } while (pgd++, addr = next, addr != end);
2529
2530         return err;
2531 }
2532 EXPORT_SYMBOL_GPL(apply_to_page_range);
2533
2534 /*
2535  * handle_pte_fault chooses page fault handler according to an entry
2536  * which was read non-atomically.  Before making any commitment, on
2537  * those architectures or configurations (e.g. i386 with PAE) which
2538  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2539  * must check under lock before unmapping the pte and proceeding
2540  * (but do_wp_page is only called after already making such a check;
2541  * and do_anonymous_page can safely check later on).
2542  */
2543 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2544                                 pte_t *page_table, pte_t orig_pte)
2545 {
2546         int same = 1;
2547 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2548         if (sizeof(pte_t) > sizeof(unsigned long)) {
2549                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2550                 spin_lock(ptl);
2551                 same = pte_same(*page_table, orig_pte);
2552                 spin_unlock(ptl);
2553         }
2554 #endif
2555         pte_unmap(page_table);
2556         return same;
2557 }
2558
2559 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2560 {
2561         /*
2562          * If the source page was a PFN mapping, we don't have
2563          * a "struct page" for it. We do a best-effort copy by
2564          * just copying from the original user address. If that
2565          * fails, we just zero-fill it. Live with it.
2566          */
2567         if (unlikely(!src)) {
2568                 void *kaddr = kmap_atomic(dst);
2569                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2570
2571                 /*
2572                  * This really shouldn't fail, because the page is there
2573                  * in the page tables. But it might just be unreadable,
2574                  * in which case we just give up and fill the result with
2575                  * zeroes.
2576                  */
2577                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2578                         clear_page(kaddr);
2579                 kunmap_atomic(kaddr);
2580                 flush_dcache_page(dst);
2581         } else
2582                 copy_user_highpage(dst, src, va, vma);
2583 }
2584
2585 /*
2586  * This routine handles present pages, when users try to write
2587  * to a shared page. It is done by copying the page to a new address
2588  * and decrementing the shared-page counter for the old page.
2589  *
2590  * Note that this routine assumes that the protection checks have been
2591  * done by the caller (the low-level page fault routine in most cases).
2592  * Thus we can safely just mark it writable once we've done any necessary
2593  * COW.
2594  *
2595  * We also mark the page dirty at this point even though the page will
2596  * change only once the write actually happens. This avoids a few races,
2597  * and potentially makes it more efficient.
2598  *
2599  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2600  * but allow concurrent faults), with pte both mapped and locked.
2601  * We return with mmap_sem still held, but pte unmapped and unlocked.
2602  */
2603 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2604                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2605                 spinlock_t *ptl, pte_t orig_pte)
2606         __releases(ptl)
2607 {
2608         struct page *old_page, *new_page = NULL;
2609         pte_t entry;
2610         int ret = 0;
2611         int page_mkwrite = 0;
2612         struct page *dirty_page = NULL;
2613         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2614         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2615
2616         old_page = vm_normal_page(vma, address, orig_pte);
2617         if (!old_page) {
2618                 /*
2619                  * VM_MIXEDMAP !pfn_valid() case
2620                  *
2621                  * We should not cow pages in a shared writeable mapping.
2622                  * Just mark the pages writable as we can't do any dirty
2623                  * accounting on raw pfn maps.
2624                  */
2625                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2626                                      (VM_WRITE|VM_SHARED))
2627                         goto reuse;
2628                 goto gotten;
2629         }
2630
2631         /*
2632          * Take out anonymous pages first, anonymous shared vmas are
2633          * not dirty accountable.
2634          */
2635         if (PageAnon(old_page) && !PageKsm(old_page)) {
2636                 if (!trylock_page(old_page)) {
2637                         page_cache_get(old_page);
2638                         pte_unmap_unlock(page_table, ptl);
2639                         lock_page(old_page);
2640                         page_table = pte_offset_map_lock(mm, pmd, address,
2641                                                          &ptl);
2642                         if (!pte_same(*page_table, orig_pte)) {
2643                                 unlock_page(old_page);
2644                                 goto unlock;
2645                         }
2646                         page_cache_release(old_page);
2647                 }
2648                 if (reuse_swap_page(old_page)) {
2649                         /*
2650                          * The page is all ours.  Move it to our anon_vma so
2651                          * the rmap code will not search our parent or siblings.
2652                          * Protected against the rmap code by the page lock.
2653                          */
2654                         page_move_anon_rmap(old_page, vma, address);
2655                         unlock_page(old_page);
2656                         goto reuse;
2657                 }
2658                 unlock_page(old_page);
2659         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2660                                         (VM_WRITE|VM_SHARED))) {
2661                 /*
2662                  * Only catch write-faults on shared writable pages,
2663                  * read-only shared pages can get COWed by
2664                  * get_user_pages(.write=1, .force=1).
2665                  */
2666                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2667                         struct vm_fault vmf;
2668                         int tmp;
2669
2670                         vmf.virtual_address = (void __user *)(address &
2671                                                                 PAGE_MASK);
2672                         vmf.pgoff = old_page->index;
2673                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2674                         vmf.page = old_page;
2675
2676                         /*
2677                          * Notify the address space that the page is about to
2678                          * become writable so that it can prohibit this or wait
2679                          * for the page to get into an appropriate state.
2680                          *
2681                          * We do this without the lock held, so that it can
2682                          * sleep if it needs to.
2683                          */
2684                         page_cache_get(old_page);
2685                         pte_unmap_unlock(page_table, ptl);
2686
2687                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2688                         if (unlikely(tmp &
2689                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2690                                 ret = tmp;
2691                                 goto unwritable_page;
2692                         }
2693                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2694                                 lock_page(old_page);
2695                                 if (!old_page->mapping) {
2696                                         ret = 0; /* retry the fault */
2697                                         unlock_page(old_page);
2698                                         goto unwritable_page;
2699                                 }
2700                         } else
2701                                 VM_BUG_ON(!PageLocked(old_page));
2702
2703                         /*
2704                          * Since we dropped the lock we need to revalidate
2705                          * the PTE as someone else may have changed it.  If
2706                          * they did, we just return, as we can count on the
2707                          * MMU to tell us if they didn't also make it writable.
2708                          */
2709                         page_table = pte_offset_map_lock(mm, pmd, address,
2710                                                          &ptl);
2711                         if (!pte_same(*page_table, orig_pte)) {
2712                                 unlock_page(old_page);
2713                                 goto unlock;
2714                         }
2715
2716                         page_mkwrite = 1;
2717                 }
2718                 dirty_page = old_page;
2719                 get_page(dirty_page);
2720
2721 reuse:
2722                 /*
2723                  * Clear the pages cpupid information as the existing
2724                  * information potentially belongs to a now completely
2725                  * unrelated process.
2726                  */
2727                 if (old_page)
2728                         page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2729
2730                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2731                 entry = pte_mkyoung(orig_pte);
2732                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2733                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2734                         update_mmu_cache(vma, address, page_table);
2735                 pte_unmap_unlock(page_table, ptl);
2736                 ret |= VM_FAULT_WRITE;
2737
2738                 if (!dirty_page)
2739                         return ret;
2740
2741                 /*
2742                  * Yes, Virginia, this is actually required to prevent a race
2743                  * with clear_page_dirty_for_io() from clearing the page dirty
2744                  * bit after it clear all dirty ptes, but before a racing
2745                  * do_wp_page installs a dirty pte.
2746                  *
2747                  * __do_fault is protected similarly.
2748                  */
2749                 if (!page_mkwrite) {
2750                         wait_on_page_locked(dirty_page);
2751                         set_page_dirty_balance(dirty_page, page_mkwrite);
2752                         /* file_update_time outside page_lock */
2753                         if (vma->vm_file)
2754                                 file_update_time(vma->vm_file);
2755                 }
2756                 put_page(dirty_page);
2757                 if (page_mkwrite) {
2758                         struct address_space *mapping = dirty_page->mapping;
2759
2760                         set_page_dirty(dirty_page);
2761                         unlock_page(dirty_page);
2762                         page_cache_release(dirty_page);
2763                         if (mapping)    {
2764                                 /*
2765                                  * Some device drivers do not set page.mapping
2766                                  * but still dirty their pages
2767                                  */
2768                                 balance_dirty_pages_ratelimited(mapping);
2769                         }
2770                 }
2771
2772                 return ret;
2773         }
2774
2775         /*
2776          * Ok, we need to copy. Oh, well..
2777          */
2778         page_cache_get(old_page);
2779 gotten:
2780         pte_unmap_unlock(page_table, ptl);
2781
2782         if (unlikely(anon_vma_prepare(vma)))
2783                 goto oom;
2784
2785         if (is_zero_pfn(pte_pfn(orig_pte))) {
2786                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2787                 if (!new_page)
2788                         goto oom;
2789         } else {
2790                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2791                 if (!new_page)
2792                         goto oom;
2793                 cow_user_page(new_page, old_page, address, vma);
2794         }
2795         __SetPageUptodate(new_page);
2796
2797         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2798                 goto oom_free_new;
2799
2800         mmun_start  = address & PAGE_MASK;
2801         mmun_end    = mmun_start + PAGE_SIZE;
2802         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2803
2804         /*
2805          * Re-check the pte - we dropped the lock
2806          */
2807         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2808         if (likely(pte_same(*page_table, orig_pte))) {
2809                 if (old_page) {
2810                         if (!PageAnon(old_page)) {
2811                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2812                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2813                         }
2814                 } else
2815                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2816                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2817                 entry = mk_pte(new_page, vma->vm_page_prot);
2818                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2819                 /*
2820                  * Clear the pte entry and flush it first, before updating the
2821                  * pte with the new entry. This will avoid a race condition
2822                  * seen in the presence of one thread doing SMC and another
2823                  * thread doing COW.
2824                  */
2825                 ptep_clear_flush(vma, address, page_table);
2826                 page_add_new_anon_rmap(new_page, vma, address);
2827                 /*
2828                  * We call the notify macro here because, when using secondary
2829                  * mmu page tables (such as kvm shadow page tables), we want the
2830                  * new page to be mapped directly into the secondary page table.
2831                  */
2832                 set_pte_at_notify(mm, address, page_table, entry);
2833                 update_mmu_cache(vma, address, page_table);
2834                 if (old_page) {
2835                         /*
2836                          * Only after switching the pte to the new page may
2837                          * we remove the mapcount here. Otherwise another
2838                          * process may come and find the rmap count decremented
2839                          * before the pte is switched to the new page, and
2840                          * "reuse" the old page writing into it while our pte
2841                          * here still points into it and can be read by other
2842                          * threads.
2843                          *
2844                          * The critical issue is to order this
2845                          * page_remove_rmap with the ptp_clear_flush above.
2846                          * Those stores are ordered by (if nothing else,)
2847                          * the barrier present in the atomic_add_negative
2848                          * in page_remove_rmap.
2849                          *
2850                          * Then the TLB flush in ptep_clear_flush ensures that
2851                          * no process can access the old page before the
2852                          * decremented mapcount is visible. And the old page
2853                          * cannot be reused until after the decremented
2854                          * mapcount is visible. So transitively, TLBs to
2855                          * old page will be flushed before it can be reused.
2856                          */
2857                         page_remove_rmap(old_page);
2858                 }
2859
2860                 /* Free the old page.. */
2861                 new_page = old_page;
2862                 ret |= VM_FAULT_WRITE;
2863         } else
2864                 mem_cgroup_uncharge_page(new_page);
2865
2866         if (new_page)
2867                 page_cache_release(new_page);
2868 unlock:
2869         pte_unmap_unlock(page_table, ptl);
2870         if (mmun_end > mmun_start)
2871                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2872         if (old_page) {
2873                 /*
2874                  * Don't let another task, with possibly unlocked vma,
2875                  * keep the mlocked page.
2876                  */
2877                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2878                         lock_page(old_page);    /* LRU manipulation */
2879                         munlock_vma_page(old_page);
2880                         unlock_page(old_page);
2881                 }
2882                 page_cache_release(old_page);
2883         }
2884         return ret;
2885 oom_free_new:
2886         page_cache_release(new_page);
2887 oom:
2888         if (old_page)
2889                 page_cache_release(old_page);
2890         return VM_FAULT_OOM;
2891
2892 unwritable_page:
2893         page_cache_release(old_page);
2894         return ret;
2895 }
2896
2897 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2898                 unsigned long start_addr, unsigned long end_addr,
2899                 struct zap_details *details)
2900 {
2901         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2902 }
2903
2904 static inline void unmap_mapping_range_tree(struct rb_root *root,
2905                                             struct zap_details *details)
2906 {
2907         struct vm_area_struct *vma;
2908         pgoff_t vba, vea, zba, zea;
2909
2910         vma_interval_tree_foreach(vma, root,
2911                         details->first_index, details->last_index) {
2912
2913                 vba = vma->vm_pgoff;
2914                 vea = vba + vma_pages(vma) - 1;
2915                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2916                 zba = details->first_index;
2917                 if (zba < vba)
2918                         zba = vba;
2919                 zea = details->last_index;
2920                 if (zea > vea)
2921                         zea = vea;
2922
2923                 unmap_mapping_range_vma(vma,
2924                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2925                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2926                                 details);
2927         }
2928 }
2929
2930 static inline void unmap_mapping_range_list(struct list_head *head,
2931                                             struct zap_details *details)
2932 {
2933         struct vm_area_struct *vma;
2934
2935         /*
2936          * In nonlinear VMAs there is no correspondence between virtual address
2937          * offset and file offset.  So we must perform an exhaustive search
2938          * across *all* the pages in each nonlinear VMA, not just the pages
2939          * whose virtual address lies outside the file truncation point.
2940          */
2941         list_for_each_entry(vma, head, shared.nonlinear) {
2942                 details->nonlinear_vma = vma;
2943                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2944         }
2945 }
2946
2947 /**
2948  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2949  * @mapping: the address space containing mmaps to be unmapped.
2950  * @holebegin: byte in first page to unmap, relative to the start of
2951  * the underlying file.  This will be rounded down to a PAGE_SIZE
2952  * boundary.  Note that this is different from truncate_pagecache(), which
2953  * must keep the partial page.  In contrast, we must get rid of
2954  * partial pages.
2955  * @holelen: size of prospective hole in bytes.  This will be rounded
2956  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2957  * end of the file.
2958  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2959  * but 0 when invalidating pagecache, don't throw away private data.
2960  */
2961 void unmap_mapping_range(struct address_space *mapping,
2962                 loff_t const holebegin, loff_t const holelen, int even_cows)
2963 {
2964         struct zap_details details;
2965         pgoff_t hba = holebegin >> PAGE_SHIFT;
2966         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2967
2968         /* Check for overflow. */
2969         if (sizeof(holelen) > sizeof(hlen)) {
2970                 long long holeend =
2971                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2972                 if (holeend & ~(long long)ULONG_MAX)
2973                         hlen = ULONG_MAX - hba + 1;
2974         }
2975
2976         details.check_mapping = even_cows? NULL: mapping;
2977         details.nonlinear_vma = NULL;
2978         details.first_index = hba;
2979         details.last_index = hba + hlen - 1;
2980         if (details.last_index < details.first_index)
2981                 details.last_index = ULONG_MAX;
2982
2983
2984         mutex_lock(&mapping->i_mmap_mutex);
2985         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2986                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2987         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2988                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2989         mutex_unlock(&mapping->i_mmap_mutex);
2990 }
2991 EXPORT_SYMBOL(unmap_mapping_range);
2992
2993 /*
2994  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2995  * but allow concurrent faults), and pte mapped but not yet locked.
2996  * We return with mmap_sem still held, but pte unmapped and unlocked.
2997  */
2998 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2999                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3000                 unsigned int flags, pte_t orig_pte)
3001 {
3002         spinlock_t *ptl;
3003         struct page *page, *swapcache;
3004         swp_entry_t entry;
3005         pte_t pte;
3006         int locked;
3007         struct mem_cgroup *ptr;
3008         int exclusive = 0;
3009         int ret = 0;
3010
3011         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3012                 goto out;
3013
3014         entry = pte_to_swp_entry(orig_pte);
3015         if (unlikely(non_swap_entry(entry))) {
3016                 if (is_migration_entry(entry)) {
3017                         migration_entry_wait(mm, pmd, address);
3018                 } else if (is_hwpoison_entry(entry)) {
3019                         ret = VM_FAULT_HWPOISON;
3020                 } else {
3021                         print_bad_pte(vma, address, orig_pte, NULL);
3022                         ret = VM_FAULT_SIGBUS;
3023                 }
3024                 goto out;
3025         }
3026         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3027         page = lookup_swap_cache(entry);
3028         if (!page) {
3029                 page = swapin_readahead(entry,
3030                                         GFP_HIGHUSER_MOVABLE, vma, address);
3031                 if (!page) {
3032                         /*
3033                          * Back out if somebody else faulted in this pte
3034                          * while we released the pte lock.
3035                          */
3036                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3037                         if (likely(pte_same(*page_table, orig_pte)))
3038                                 ret = VM_FAULT_OOM;
3039                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3040                         goto unlock;
3041                 }
3042
3043                 /* Had to read the page from swap area: Major fault */
3044                 ret = VM_FAULT_MAJOR;
3045                 count_vm_event(PGMAJFAULT);
3046                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3047         } else if (PageHWPoison(page)) {
3048                 /*
3049                  * hwpoisoned dirty swapcache pages are kept for killing
3050                  * owner processes (which may be unknown at hwpoison time)
3051                  */
3052                 ret = VM_FAULT_HWPOISON;
3053                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3054                 swapcache = page;
3055                 goto out_release;
3056         }
3057
3058         swapcache = page;
3059         locked = lock_page_or_retry(page, mm, flags);
3060
3061         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3062         if (!locked) {
3063                 ret |= VM_FAULT_RETRY;
3064                 goto out_release;
3065         }
3066
3067         /*
3068          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3069          * release the swapcache from under us.  The page pin, and pte_same
3070          * test below, are not enough to exclude that.  Even if it is still
3071          * swapcache, we need to check that the page's swap has not changed.
3072          */
3073         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3074                 goto out_page;
3075
3076         page = ksm_might_need_to_copy(page, vma, address);
3077         if (unlikely(!page)) {
3078                 ret = VM_FAULT_OOM;
3079                 page = swapcache;
3080                 goto out_page;
3081         }
3082
3083         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3084                 ret = VM_FAULT_OOM;
3085                 goto out_page;
3086         }
3087
3088         /*
3089          * Back out if somebody else already faulted in this pte.
3090          */
3091         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3092         if (unlikely(!pte_same(*page_table, orig_pte)))
3093                 goto out_nomap;
3094
3095         if (unlikely(!PageUptodate(page))) {
3096                 ret = VM_FAULT_SIGBUS;
3097                 goto out_nomap;
3098         }
3099
3100         /*
3101          * The page isn't present yet, go ahead with the fault.
3102          *
3103          * Be careful about the sequence of operations here.
3104          * To get its accounting right, reuse_swap_page() must be called
3105          * while the page is counted on swap but not yet in mapcount i.e.
3106          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3107          * must be called after the swap_free(), or it will never succeed.
3108          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3109          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3110          * in page->private. In this case, a record in swap_cgroup  is silently
3111          * discarded at swap_free().
3112          */
3113
3114         inc_mm_counter_fast(mm, MM_ANONPAGES);
3115         dec_mm_counter_fast(mm, MM_SWAPENTS);
3116         pte = mk_pte(page, vma->vm_page_prot);
3117         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3118                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3119                 flags &= ~FAULT_FLAG_WRITE;
3120                 ret |= VM_FAULT_WRITE;
3121                 exclusive = 1;
3122         }
3123         flush_icache_page(vma, page);
3124         if (pte_swp_soft_dirty(orig_pte))
3125                 pte = pte_mksoft_dirty(pte);
3126         set_pte_at(mm, address, page_table, pte);
3127         if (page == swapcache)
3128                 do_page_add_anon_rmap(page, vma, address, exclusive);
3129         else /* ksm created a completely new copy */
3130                 page_add_new_anon_rmap(page, vma, address);
3131         /* It's better to call commit-charge after rmap is established */
3132         mem_cgroup_commit_charge_swapin(page, ptr);
3133
3134         swap_free(entry);
3135         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3136                 try_to_free_swap(page);
3137         unlock_page(page);
3138         if (page != swapcache) {
3139                 /*
3140                  * Hold the lock to avoid the swap entry to be reused
3141                  * until we take the PT lock for the pte_same() check
3142                  * (to avoid false positives from pte_same). For
3143                  * further safety release the lock after the swap_free
3144                  * so that the swap count won't change under a
3145                  * parallel locked swapcache.
3146                  */
3147                 unlock_page(swapcache);
3148                 page_cache_release(swapcache);
3149         }
3150
3151         if (flags & FAULT_FLAG_WRITE) {
3152                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3153                 if (ret & VM_FAULT_ERROR)
3154                         ret &= VM_FAULT_ERROR;
3155                 goto out;
3156         }
3157
3158         /* No need to invalidate - it was non-present before */
3159         update_mmu_cache(vma, address, page_table);
3160 unlock:
3161         pte_unmap_unlock(page_table, ptl);
3162 out:
3163         return ret;
3164 out_nomap:
3165         mem_cgroup_cancel_charge_swapin(ptr);
3166         pte_unmap_unlock(page_table, ptl);
3167 out_page:
3168         unlock_page(page);
3169 out_release:
3170         page_cache_release(page);
3171         if (page != swapcache) {
3172                 unlock_page(swapcache);
3173                 page_cache_release(swapcache);
3174         }
3175         return ret;
3176 }
3177
3178 /*
3179  * This is like a special single-page "expand_{down|up}wards()",
3180  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3181  * doesn't hit another vma.
3182  */
3183 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3184 {
3185         address &= PAGE_MASK;
3186         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3187                 struct vm_area_struct *prev = vma->vm_prev;
3188
3189                 /*
3190                  * Is there a mapping abutting this one below?
3191                  *
3192                  * That's only ok if it's the same stack mapping
3193                  * that has gotten split..
3194                  */
3195                 if (prev && prev->vm_end == address)
3196                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3197
3198                 expand_downwards(vma, address - PAGE_SIZE);
3199         }
3200         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3201                 struct vm_area_struct *next = vma->vm_next;
3202
3203                 /* As VM_GROWSDOWN but s/below/above/ */
3204                 if (next && next->vm_start == address + PAGE_SIZE)
3205                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3206
3207                 expand_upwards(vma, address + PAGE_SIZE);
3208         }
3209         return 0;
3210 }
3211
3212 /*
3213  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3214  * but allow concurrent faults), and pte mapped but not yet locked.
3215  * We return with mmap_sem still held, but pte unmapped and unlocked.
3216  */
3217 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3218                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3219                 unsigned int flags)
3220 {
3221         struct page *page;
3222         spinlock_t *ptl;
3223         pte_t entry;
3224
3225         pte_unmap(page_table);
3226
3227         /* Check if we need to add a guard page to the stack */
3228         if (check_stack_guard_page(vma, address) < 0)
3229                 return VM_FAULT_SIGBUS;
3230
3231         /* Use the zero-page for reads */
3232         if (!(flags & FAULT_FLAG_WRITE)) {
3233                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3234                                                 vma->vm_page_prot));
3235                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3236                 if (!pte_none(*page_table))
3237                         goto unlock;
3238                 goto setpte;
3239         }
3240
3241         /* Allocate our own private page. */
3242         if (unlikely(anon_vma_prepare(vma)))
3243                 goto oom;
3244         page = alloc_zeroed_user_highpage_movable(vma, address);
3245         if (!page)
3246                 goto oom;
3247         /*
3248          * The memory barrier inside __SetPageUptodate makes sure that
3249          * preceeding stores to the page contents become visible before
3250          * the set_pte_at() write.
3251          */
3252         __SetPageUptodate(page);
3253
3254         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3255                 goto oom_free_page;
3256
3257         entry = mk_pte(page, vma->vm_page_prot);
3258         if (vma->vm_flags & VM_WRITE)
3259                 entry = pte_mkwrite(pte_mkdirty(entry));
3260
3261         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3262         if (!pte_none(*page_table))
3263                 goto release;
3264
3265         inc_mm_counter_fast(mm, MM_ANONPAGES);
3266         page_add_new_anon_rmap(page, vma, address);
3267 setpte:
3268         set_pte_at(mm, address, page_table, entry);
3269
3270         /* No need to invalidate - it was non-present before */
3271         update_mmu_cache(vma, address, page_table);
3272 unlock:
3273         pte_unmap_unlock(page_table, ptl);
3274         return 0;
3275 release:
3276         mem_cgroup_uncharge_page(page);
3277         page_cache_release(page);
3278         goto unlock;
3279 oom_free_page:
3280         page_cache_release(page);
3281 oom:
3282         return VM_FAULT_OOM;
3283 }
3284
3285 /*
3286  * __do_fault() tries to create a new page mapping. It aggressively
3287  * tries to share with existing pages, but makes a separate copy if
3288  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3289  * the next page fault.
3290  *
3291  * As this is called only for pages that do not currently exist, we
3292  * do not need to flush old virtual caches or the TLB.
3293  *
3294  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3295  * but allow concurrent faults), and pte neither mapped nor locked.
3296  * We return with mmap_sem still held, but pte unmapped and unlocked.
3297  */
3298 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3299                 unsigned long address, pmd_t *pmd,
3300                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3301 {
3302         pte_t *page_table;
3303         spinlock_t *ptl;
3304         struct page *page;
3305         struct page *cow_page;
3306         pte_t entry;
3307         int anon = 0;
3308         struct page *dirty_page = NULL;
3309         struct vm_fault vmf;
3310         int ret;
3311         int page_mkwrite = 0;
3312
3313         /*
3314          * If we do COW later, allocate page befor taking lock_page()
3315          * on the file cache page. This will reduce lock holding time.
3316          */
3317         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3318
3319                 if (unlikely(anon_vma_prepare(vma)))
3320                         return VM_FAULT_OOM;
3321
3322                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3323                 if (!cow_page)
3324                         return VM_FAULT_OOM;
3325
3326                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3327                         page_cache_release(cow_page);
3328                         return VM_FAULT_OOM;
3329                 }
3330         } else
3331                 cow_page = NULL;
3332
3333         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3334         vmf.pgoff = pgoff;
3335         vmf.flags = flags;
3336         vmf.page = NULL;
3337
3338         ret = vma->vm_ops->fault(vma, &vmf);
3339         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3340                             VM_FAULT_RETRY)))
3341                 goto uncharge_out;
3342
3343         if (unlikely(PageHWPoison(vmf.page))) {
3344                 if (ret & VM_FAULT_LOCKED)
3345                         unlock_page(vmf.page);
3346                 ret = VM_FAULT_HWPOISON;
3347                 goto uncharge_out;
3348         }
3349
3350         /*
3351          * For consistency in subsequent calls, make the faulted page always
3352          * locked.
3353          */
3354         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3355                 lock_page(vmf.page);
3356         else
3357                 VM_BUG_ON(!PageLocked(vmf.page));
3358
3359         /*
3360          * Should we do an early C-O-W break?
3361          */
3362         page = vmf.page;
3363         if (flags & FAULT_FLAG_WRITE) {
3364                 if (!(vma->vm_flags & VM_SHARED)) {
3365                         page = cow_page;
3366                         anon = 1;
3367                         copy_user_highpage(page, vmf.page, address, vma);
3368                         __SetPageUptodate(page);
3369                 } else {
3370                         /*
3371                          * If the page will be shareable, see if the backing
3372                          * address space wants to know that the page is about
3373                          * to become writable
3374                          */
3375                         if (vma->vm_ops->page_mkwrite) {
3376                                 int tmp;
3377
3378                                 unlock_page(page);
3379                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3380                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3381                                 if (unlikely(tmp &
3382                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3383                                         ret = tmp;
3384                                         goto unwritable_page;
3385                                 }
3386                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3387                                         lock_page(page);
3388                                         if (!page->mapping) {
3389                                                 ret = 0; /* retry the fault */
3390                                                 unlock_page(page);
3391                                                 goto unwritable_page;
3392                                         }
3393                                 } else
3394                                         VM_BUG_ON(!PageLocked(page));
3395                                 page_mkwrite = 1;
3396                         }
3397                 }
3398
3399         }
3400
3401         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3402
3403         /*
3404          * This silly early PAGE_DIRTY setting removes a race
3405          * due to the bad i386 page protection. But it's valid
3406          * for other architectures too.
3407          *
3408          * Note that if FAULT_FLAG_WRITE is set, we either now have
3409          * an exclusive copy of the page, or this is a shared mapping,
3410          * so we can make it writable and dirty to avoid having to
3411          * handle that later.
3412          */
3413         /* Only go through if we didn't race with anybody else... */
3414         if (likely(pte_same(*page_table, orig_pte))) {
3415                 flush_icache_page(vma, page);
3416                 entry = mk_pte(page, vma->vm_page_prot);
3417                 if (flags & FAULT_FLAG_WRITE)
3418                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3419                 else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
3420                         pte_mksoft_dirty(entry);
3421                 if (anon) {
3422                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3423                         page_add_new_anon_rmap(page, vma, address);
3424                 } else {
3425                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3426                         page_add_file_rmap(page);
3427                         if (flags & FAULT_FLAG_WRITE) {
3428                                 dirty_page = page;
3429                                 get_page(dirty_page);
3430                         }
3431                 }
3432                 set_pte_at(mm, address, page_table, entry);
3433
3434                 /* no need to invalidate: a not-present page won't be cached */
3435                 update_mmu_cache(vma, address, page_table);
3436         } else {
3437                 if (cow_page)
3438                         mem_cgroup_uncharge_page(cow_page);
3439                 if (anon)
3440                         page_cache_release(page);
3441                 else
3442                         anon = 1; /* no anon but release faulted_page */
3443         }
3444
3445         pte_unmap_unlock(page_table, ptl);
3446
3447         if (dirty_page) {
3448                 struct address_space *mapping = page->mapping;
3449                 int dirtied = 0;
3450
3451                 if (set_page_dirty(dirty_page))
3452                         dirtied = 1;
3453                 unlock_page(dirty_page);
3454                 put_page(dirty_page);
3455                 if ((dirtied || page_mkwrite) && mapping) {
3456                         /*
3457                          * Some device drivers do not set page.mapping but still
3458                          * dirty their pages
3459                          */
3460                         balance_dirty_pages_ratelimited(mapping);
3461                 }
3462
3463                 /* file_update_time outside page_lock */
3464                 if (vma->vm_file && !page_mkwrite)
3465                         file_update_time(vma->vm_file);
3466         } else {
3467                 unlock_page(vmf.page);
3468                 if (anon)
3469                         page_cache_release(vmf.page);
3470         }
3471
3472         return ret;
3473
3474 unwritable_page:
3475         page_cache_release(page);
3476         return ret;
3477 uncharge_out:
3478         /* fs's fault handler get error */
3479         if (cow_page) {
3480                 mem_cgroup_uncharge_page(cow_page);
3481                 page_cache_release(cow_page);
3482         }
3483         return ret;
3484 }
3485
3486 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3487                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3488                 unsigned int flags, pte_t orig_pte)
3489 {
3490         pgoff_t pgoff = (((address & PAGE_MASK)
3491                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3492
3493         pte_unmap(page_table);
3494         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3495 }
3496
3497 /*
3498  * Fault of a previously existing named mapping. Repopulate the pte
3499  * from the encoded file_pte if possible. This enables swappable
3500  * nonlinear vmas.
3501  *
3502  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3503  * but allow concurrent faults), and pte mapped but not yet locked.
3504  * We return with mmap_sem still held, but pte unmapped and unlocked.
3505  */
3506 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3507                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3508                 unsigned int flags, pte_t orig_pte)
3509 {
3510         pgoff_t pgoff;
3511
3512         flags |= FAULT_FLAG_NONLINEAR;
3513
3514         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3515                 return 0;
3516
3517         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3518                 /*
3519                  * Page table corrupted: show pte and kill process.
3520                  */
3521                 print_bad_pte(vma, address, orig_pte, NULL);
3522                 return VM_FAULT_SIGBUS;
3523         }
3524
3525         pgoff = pte_to_pgoff(orig_pte);
3526         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3527 }
3528
3529 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3530                                 unsigned long addr, int page_nid,
3531                                 int *flags)
3532 {
3533         get_page(page);
3534
3535         count_vm_numa_event(NUMA_HINT_FAULTS);
3536         if (page_nid == numa_node_id()) {
3537                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3538                 *flags |= TNF_FAULT_LOCAL;
3539         }
3540
3541         return mpol_misplaced(page, vma, addr);
3542 }
3543
3544 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3545                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3546 {
3547         struct page *page = NULL;
3548         spinlock_t *ptl;
3549         int page_nid = -1;
3550         int last_cpupid;
3551         int target_nid;
3552         bool migrated = false;
3553         int flags = 0;
3554
3555         /*
3556         * The "pte" at this point cannot be used safely without
3557         * validation through pte_unmap_same(). It's of NUMA type but
3558         * the pfn may be screwed if the read is non atomic.
3559         *
3560         * ptep_modify_prot_start is not called as this is clearing
3561         * the _PAGE_NUMA bit and it is not really expected that there
3562         * would be concurrent hardware modifications to the PTE.
3563         */
3564         ptl = pte_lockptr(mm, pmd);
3565         spin_lock(ptl);
3566         if (unlikely(!pte_same(*ptep, pte))) {
3567                 pte_unmap_unlock(ptep, ptl);
3568                 goto out;
3569         }
3570
3571         pte = pte_mknonnuma(pte);
3572         set_pte_at(mm, addr, ptep, pte);
3573         update_mmu_cache(vma, addr, ptep);
3574
3575         page = vm_normal_page(vma, addr, pte);
3576         if (!page) {
3577                 pte_unmap_unlock(ptep, ptl);
3578                 return 0;
3579         }
3580         BUG_ON(is_zero_pfn(page_to_pfn(page)));
3581
3582         /*
3583          * Avoid grouping on DSO/COW pages in specific and RO pages
3584          * in general, RO pages shouldn't hurt as much anyway since
3585          * they can be in shared cache state.
3586          */
3587         if (!pte_write(pte))
3588                 flags |= TNF_NO_GROUP;
3589
3590         /*
3591          * Flag if the page is shared between multiple address spaces. This
3592          * is later used when determining whether to group tasks together
3593          */
3594         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3595                 flags |= TNF_SHARED;
3596
3597         last_cpupid = page_cpupid_last(page);
3598         page_nid = page_to_nid(page);
3599         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3600         pte_unmap_unlock(ptep, ptl);
3601         if (target_nid == -1) {
3602                 put_page(page);
3603                 goto out;
3604         }
3605
3606         /* Migrate to the requested node */
3607         migrated = migrate_misplaced_page(page, vma, target_nid);
3608         if (migrated) {
3609                 page_nid = target_nid;
3610                 flags |= TNF_MIGRATED;
3611         }
3612
3613 out:
3614         if (page_nid != -1)
3615                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3616         return 0;
3617 }
3618
3619 /*
3620  * These routines also need to handle stuff like marking pages dirty
3621  * and/or accessed for architectures that don't do it in hardware (most
3622  * RISC architectures).  The early dirtying is also good on the i386.
3623  *
3624  * There is also a hook called "update_mmu_cache()" that architectures
3625  * with external mmu caches can use to update those (ie the Sparc or
3626  * PowerPC hashed page tables that act as extended TLBs).
3627  *
3628  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3629  * but allow concurrent faults), and pte mapped but not yet locked.
3630  * We return with mmap_sem still held, but pte unmapped and unlocked.
3631  */
3632 static int handle_pte_fault(struct mm_struct *mm,
3633                      struct vm_area_struct *vma, unsigned long address,
3634                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3635 {
3636         pte_t entry;
3637         spinlock_t *ptl;
3638
3639         entry = *pte;
3640         if (!pte_present(entry)) {
3641                 if (pte_none(entry)) {
3642                         if (vma->vm_ops) {
3643                                 if (likely(vma->vm_ops->fault))
3644                                         return do_linear_fault(mm, vma, address,
3645                                                 pte, pmd, flags, entry);
3646                         }
3647                         return do_anonymous_page(mm, vma, address,
3648                                                  pte, pmd, flags);
3649                 }
3650                 if (pte_file(entry))
3651                         return do_nonlinear_fault(mm, vma, address,
3652                                         pte, pmd, flags, entry);
3653                 return do_swap_page(mm, vma, address,
3654                                         pte, pmd, flags, entry);
3655         }
3656
3657         if (pte_numa(entry))
3658                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3659
3660         ptl = pte_lockptr(mm, pmd);
3661         spin_lock(ptl);
3662         if (unlikely(!pte_same(*pte, entry)))
3663                 goto unlock;
3664         if (flags & FAULT_FLAG_WRITE) {
3665                 if (!pte_write(entry))
3666                         return do_wp_page(mm, vma, address,
3667                                         pte, pmd, ptl, entry);
3668                 entry = pte_mkdirty(entry);
3669         }
3670         entry = pte_mkyoung(entry);
3671         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3672                 update_mmu_cache(vma, address, pte);
3673         } else {
3674                 /*
3675                  * This is needed only for protection faults but the arch code
3676                  * is not yet telling us if this is a protection fault or not.
3677                  * This still avoids useless tlb flushes for .text page faults
3678                  * with threads.
3679                  */
3680                 if (flags & FAULT_FLAG_WRITE)
3681                         flush_tlb_fix_spurious_fault(vma, address);
3682         }
3683 unlock:
3684         pte_unmap_unlock(pte, ptl);
3685         return 0;
3686 }
3687
3688 /*
3689  * By the time we get here, we already hold the mm semaphore
3690  */
3691 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3692                              unsigned long address, unsigned int flags)
3693 {
3694         pgd_t *pgd;
3695         pud_t *pud;
3696         pmd_t *pmd;
3697         pte_t *pte;
3698
3699         if (unlikely(is_vm_hugetlb_page(vma)))
3700                 return hugetlb_fault(mm, vma, address, flags);
3701
3702 retry:
3703         pgd = pgd_offset(mm, address);
3704         pud = pud_alloc(mm, pgd, address);
3705         if (!pud)
3706                 return VM_FAULT_OOM;
3707         pmd = pmd_alloc(mm, pud, address);
3708         if (!pmd)
3709                 return VM_FAULT_OOM;
3710         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3711                 int ret = VM_FAULT_FALLBACK;
3712                 if (!vma->vm_ops)
3713                         ret = do_huge_pmd_anonymous_page(mm, vma, address,
3714                                         pmd, flags);
3715                 if (!(ret & VM_FAULT_FALLBACK))
3716                         return ret;
3717         } else {
3718                 pmd_t orig_pmd = *pmd;
3719                 int ret;
3720
3721                 barrier();
3722                 if (pmd_trans_huge(orig_pmd)) {
3723                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3724
3725                         /*
3726                          * If the pmd is splitting, return and retry the
3727                          * the fault.  Alternative: wait until the split
3728                          * is done, and goto retry.
3729                          */
3730                         if (pmd_trans_splitting(orig_pmd))
3731                                 return 0;
3732
3733                         if (pmd_numa(orig_pmd))
3734                                 return do_huge_pmd_numa_page(mm, vma, address,
3735                                                              orig_pmd, pmd);
3736
3737                         if (dirty && !pmd_write(orig_pmd)) {
3738                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3739                                                           orig_pmd);
3740                                 /*
3741                                  * If COW results in an oom, the huge pmd will
3742                                  * have been split, so retry the fault on the
3743                                  * pte for a smaller charge.
3744                                  */
3745                                 if (unlikely(ret & VM_FAULT_OOM))
3746                                         goto retry;
3747                                 return ret;
3748                         } else {
3749                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3750                                                       orig_pmd, dirty);
3751                         }
3752
3753                         return 0;
3754                 }
3755         }
3756
3757         /* THP should already have been handled */
3758         BUG_ON(pmd_numa(*pmd));
3759
3760         /*
3761          * Use __pte_alloc instead of pte_alloc_map, because we can't
3762          * run pte_offset_map on the pmd, if an huge pmd could
3763          * materialize from under us from a different thread.
3764          */
3765         if (unlikely(pmd_none(*pmd)) &&
3766             unlikely(__pte_alloc(mm, vma, pmd, address)))
3767                 return VM_FAULT_OOM;
3768         /* if an huge pmd materialized from under us just retry later */
3769         if (unlikely(pmd_trans_huge(*pmd)))
3770                 return 0;
3771         /*
3772          * A regular pmd is established and it can't morph into a huge pmd
3773          * from under us anymore at this point because we hold the mmap_sem
3774          * read mode and khugepaged takes it in write mode. So now it's
3775          * safe to run pte_offset_map().
3776          */
3777         pte = pte_offset_map(pmd, address);
3778
3779         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3780 }
3781
3782 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3783                     unsigned long address, unsigned int flags)
3784 {
3785         int ret;
3786
3787         __set_current_state(TASK_RUNNING);
3788
3789         count_vm_event(PGFAULT);
3790         mem_cgroup_count_vm_event(mm, PGFAULT);
3791
3792         /* do counter updates before entering really critical section. */
3793         check_sync_rss_stat(current);
3794
3795         /*
3796          * Enable the memcg OOM handling for faults triggered in user
3797          * space.  Kernel faults are handled more gracefully.
3798          */
3799         if (flags & FAULT_FLAG_USER)
3800                 mem_cgroup_oom_enable();
3801
3802         ret = __handle_mm_fault(mm, vma, address, flags);
3803
3804         if (flags & FAULT_FLAG_USER) {
3805                 mem_cgroup_oom_disable();
3806                 /*
3807                  * The task may have entered a memcg OOM situation but
3808                  * if the allocation error was handled gracefully (no
3809                  * VM_FAULT_OOM), there is no need to kill anything.
3810                  * Just clean up the OOM state peacefully.
3811                  */
3812                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3813                         mem_cgroup_oom_synchronize(false);
3814         }
3815
3816         return ret;
3817 }
3818
3819 #ifndef __PAGETABLE_PUD_FOLDED
3820 /*
3821  * Allocate page upper directory.
3822  * We've already handled the fast-path in-line.
3823  */
3824 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3825 {
3826         pud_t *new = pud_alloc_one(mm, address);
3827         if (!new)
3828                 return -ENOMEM;
3829
3830         smp_wmb(); /* See comment in __pte_alloc */
3831
3832         spin_lock(&mm->page_table_lock);
3833         if (pgd_present(*pgd))          /* Another has populated it */
3834                 pud_free(mm, new);
3835         else
3836                 pgd_populate(mm, pgd, new);
3837         spin_unlock(&mm->page_table_lock);
3838         return 0;
3839 }
3840 #endif /* __PAGETABLE_PUD_FOLDED */
3841
3842 #ifndef __PAGETABLE_PMD_FOLDED
3843 /*
3844  * Allocate page middle directory.
3845  * We've already handled the fast-path in-line.
3846  */
3847 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3848 {
3849         pmd_t *new = pmd_alloc_one(mm, address);
3850         if (!new)
3851                 return -ENOMEM;
3852
3853         smp_wmb(); /* See comment in __pte_alloc */
3854
3855         spin_lock(&mm->page_table_lock);
3856 #ifndef __ARCH_HAS_4LEVEL_HACK
3857         if (pud_present(*pud))          /* Another has populated it */
3858                 pmd_free(mm, new);
3859         else
3860                 pud_populate(mm, pud, new);
3861 #else
3862         if (pgd_present(*pud))          /* Another has populated it */
3863                 pmd_free(mm, new);
3864         else
3865                 pgd_populate(mm, pud, new);
3866 #endif /* __ARCH_HAS_4LEVEL_HACK */
3867         spin_unlock(&mm->page_table_lock);
3868         return 0;
3869 }
3870 #endif /* __PAGETABLE_PMD_FOLDED */
3871
3872 #if !defined(__HAVE_ARCH_GATE_AREA)
3873
3874 #if defined(AT_SYSINFO_EHDR)
3875 static struct vm_area_struct gate_vma;
3876
3877 static int __init gate_vma_init(void)
3878 {
3879         gate_vma.vm_mm = NULL;
3880         gate_vma.vm_start = FIXADDR_USER_START;
3881         gate_vma.vm_end = FIXADDR_USER_END;
3882         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3883         gate_vma.vm_page_prot = __P101;
3884
3885         return 0;
3886 }
3887 __initcall(gate_vma_init);
3888 #endif
3889
3890 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3891 {
3892 #ifdef AT_SYSINFO_EHDR
3893         return &gate_vma;
3894 #else
3895         return NULL;
3896 #endif
3897 }
3898
3899 int in_gate_area_no_mm(unsigned long addr)
3900 {
3901 #ifdef AT_SYSINFO_EHDR
3902         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3903                 return 1;
3904 #endif
3905         return 0;
3906 }
3907
3908 #endif  /* __HAVE_ARCH_GATE_AREA */
3909
3910 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3911                 pte_t **ptepp, spinlock_t **ptlp)
3912 {
3913         pgd_t *pgd;
3914         pud_t *pud;
3915         pmd_t *pmd;
3916         pte_t *ptep;
3917
3918         pgd = pgd_offset(mm, address);
3919         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3920                 goto out;
3921
3922         pud = pud_offset(pgd, address);
3923         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3924                 goto out;
3925
3926         pmd = pmd_offset(pud, address);
3927         VM_BUG_ON(pmd_trans_huge(*pmd));
3928         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3929                 goto out;
3930
3931         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3932         if (pmd_huge(*pmd))
3933                 goto out;
3934
3935         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3936         if (!ptep)
3937                 goto out;
3938         if (!pte_present(*ptep))
3939                 goto unlock;
3940         *ptepp = ptep;
3941         return 0;
3942 unlock:
3943         pte_unmap_unlock(ptep, *ptlp);
3944 out:
3945         return -EINVAL;
3946 }
3947
3948 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3949                              pte_t **ptepp, spinlock_t **ptlp)
3950 {
3951         int res;
3952
3953         /* (void) is needed to make gcc happy */
3954         (void) __cond_lock(*ptlp,
3955                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3956         return res;
3957 }
3958
3959 /**
3960  * follow_pfn - look up PFN at a user virtual address
3961  * @vma: memory mapping
3962  * @address: user virtual address
3963  * @pfn: location to store found PFN
3964  *
3965  * Only IO mappings and raw PFN mappings are allowed.
3966  *
3967  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3968  */
3969 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3970         unsigned long *pfn)
3971 {
3972         int ret = -EINVAL;
3973         spinlock_t *ptl;
3974         pte_t *ptep;
3975
3976         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3977                 return ret;
3978
3979         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3980         if (ret)
3981                 return ret;
3982         *pfn = pte_pfn(*ptep);
3983         pte_unmap_unlock(ptep, ptl);
3984         return 0;
3985 }
3986 EXPORT_SYMBOL(follow_pfn);
3987
3988 #ifdef CONFIG_HAVE_IOREMAP_PROT
3989 int follow_phys(struct vm_area_struct *vma,
3990                 unsigned long address, unsigned int flags,
3991                 unsigned long *prot, resource_size_t *phys)
3992 {
3993         int ret = -EINVAL;
3994         pte_t *ptep, pte;
3995         spinlock_t *ptl;
3996
3997         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3998                 goto out;
3999
4000         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4001                 goto out;
4002         pte = *ptep;
4003
4004         if ((flags & FOLL_WRITE) && !pte_write(pte))
4005                 goto unlock;
4006
4007         *prot = pgprot_val(pte_pgprot(pte));
4008         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4009
4010         ret = 0;
4011 unlock:
4012         pte_unmap_unlock(ptep, ptl);
4013 out:
4014         return ret;
4015 }
4016
4017 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4018                         void *buf, int len, int write)
4019 {
4020         resource_size_t phys_addr;
4021         unsigned long prot = 0;
4022         void __iomem *maddr;
4023         int offset = addr & (PAGE_SIZE-1);
4024
4025         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4026                 return -EINVAL;
4027
4028         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4029         if (write)
4030                 memcpy_toio(maddr + offset, buf, len);
4031         else
4032                 memcpy_fromio(buf, maddr + offset, len);
4033         iounmap(maddr);
4034
4035         return len;
4036 }
4037 EXPORT_SYMBOL_GPL(generic_access_phys);
4038 #endif
4039
4040 /*
4041  * Access another process' address space as given in mm.  If non-NULL, use the
4042  * given task for page fault accounting.
4043  */
4044 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4045                 unsigned long addr, void *buf, int len, int write)
4046 {
4047         struct vm_area_struct *vma;
4048         void *old_buf = buf;
4049
4050         down_read(&mm->mmap_sem);
4051         /* ignore errors, just check how much was successfully transferred */
4052         while (len) {
4053                 int bytes, ret, offset;
4054                 void *maddr;
4055                 struct page *page = NULL;
4056
4057                 ret = get_user_pages(tsk, mm, addr, 1,
4058                                 write, 1, &page, &vma);
4059                 if (ret <= 0) {
4060                         /*
4061                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4062                          * we can access using slightly different code.
4063                          */
4064 #ifdef CONFIG_HAVE_IOREMAP_PROT
4065                         vma = find_vma(mm, addr);
4066                         if (!vma || vma->vm_start > addr)
4067                                 break;
4068                         if (vma->vm_ops && vma->vm_ops->access)
4069                                 ret = vma->vm_ops->access(vma, addr, buf,
4070                                                           len, write);
4071                         if (ret <= 0)
4072 #endif
4073                                 break;
4074                         bytes = ret;
4075                 } else {
4076                         bytes = len;
4077                         offset = addr & (PAGE_SIZE-1);
4078                         if (bytes > PAGE_SIZE-offset)
4079                                 bytes = PAGE_SIZE-offset;
4080
4081                         maddr = kmap(page);
4082                         if (write) {
4083                                 copy_to_user_page(vma, page, addr,
4084                                                   maddr + offset, buf, bytes);
4085                                 set_page_dirty_lock(page);
4086                         } else {
4087                                 copy_from_user_page(vma, page, addr,
4088                                                     buf, maddr + offset, bytes);
4089                         }
4090                         kunmap(page);
4091                         page_cache_release(page);
4092                 }
4093                 len -= bytes;
4094                 buf += bytes;
4095                 addr += bytes;
4096         }
4097         up_read(&mm->mmap_sem);
4098
4099         return buf - old_buf;
4100 }
4101
4102 /**
4103  * access_remote_vm - access another process' address space
4104  * @mm:         the mm_struct of the target address space
4105  * @addr:       start address to access
4106  * @buf:        source or destination buffer
4107  * @len:        number of bytes to transfer
4108  * @write:      whether the access is a write
4109  *
4110  * The caller must hold a reference on @mm.
4111  */
4112 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4113                 void *buf, int len, int write)
4114 {
4115         return __access_remote_vm(NULL, mm, addr, buf, len, write);
4116 }
4117
4118 /*
4119  * Access another process' address space.
4120  * Source/target buffer must be kernel space,
4121  * Do not walk the page table directly, use get_user_pages
4122  */
4123 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4124                 void *buf, int len, int write)
4125 {
4126         struct mm_struct *mm;
4127         int ret;
4128
4129         mm = get_task_mm(tsk);
4130         if (!mm)
4131                 return 0;
4132
4133         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4134         mmput(mm);
4135
4136         return ret;
4137 }
4138
4139 /*
4140  * Print the name of a VMA.
4141  */
4142 void print_vma_addr(char *prefix, unsigned long ip)
4143 {
4144         struct mm_struct *mm = current->mm;
4145         struct vm_area_struct *vma;
4146
4147         /*
4148          * Do not print if we are in atomic
4149          * contexts (in exception stacks, etc.):
4150          */
4151         if (preempt_count())
4152                 return;
4153
4154         down_read(&mm->mmap_sem);
4155         vma = find_vma(mm, ip);
4156         if (vma && vma->vm_file) {
4157                 struct file *f = vma->vm_file;
4158                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4159                 if (buf) {
4160                         char *p;
4161
4162                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4163                         if (IS_ERR(p))
4164                                 p = "?";
4165                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4166                                         vma->vm_start,
4167                                         vma->vm_end - vma->vm_start);
4168                         free_page((unsigned long)buf);
4169                 }
4170         }
4171         up_read(&mm->mmap_sem);
4172 }
4173
4174 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4175 void might_fault(void)
4176 {
4177         /*
4178          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4179          * holding the mmap_sem, this is safe because kernel memory doesn't
4180          * get paged out, therefore we'll never actually fault, and the
4181          * below annotations will generate false positives.
4182          */
4183         if (segment_eq(get_fs(), KERNEL_DS))
4184                 return;
4185
4186         /*
4187          * it would be nicer only to annotate paths which are not under
4188          * pagefault_disable, however that requires a larger audit and
4189          * providing helpers like get_user_atomic.
4190          */
4191         if (in_atomic())
4192                 return;
4193
4194         __might_sleep(__FILE__, __LINE__, 0);
4195
4196         if (current->mm)
4197                 might_lock_read(&current->mm->mmap_sem);
4198 }
4199 EXPORT_SYMBOL(might_fault);
4200 #endif
4201
4202 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4203 static void clear_gigantic_page(struct page *page,
4204                                 unsigned long addr,
4205                                 unsigned int pages_per_huge_page)
4206 {
4207         int i;
4208         struct page *p = page;
4209
4210         might_sleep();
4211         for (i = 0; i < pages_per_huge_page;
4212              i++, p = mem_map_next(p, page, i)) {
4213                 cond_resched();
4214                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4215         }
4216 }
4217 void clear_huge_page(struct page *page,
4218                      unsigned long addr, unsigned int pages_per_huge_page)
4219 {
4220         int i;
4221
4222         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4223                 clear_gigantic_page(page, addr, pages_per_huge_page);
4224                 return;
4225         }
4226
4227         might_sleep();
4228         for (i = 0; i < pages_per_huge_page; i++) {
4229                 cond_resched();
4230                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4231         }
4232 }
4233
4234 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4235                                     unsigned long addr,
4236                                     struct vm_area_struct *vma,
4237                                     unsigned int pages_per_huge_page)
4238 {
4239         int i;
4240         struct page *dst_base = dst;
4241         struct page *src_base = src;
4242
4243         for (i = 0; i < pages_per_huge_page; ) {
4244                 cond_resched();
4245                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4246
4247                 i++;
4248                 dst = mem_map_next(dst, dst_base, i);
4249                 src = mem_map_next(src, src_base, i);
4250         }
4251 }
4252
4253 void copy_user_huge_page(struct page *dst, struct page *src,
4254                          unsigned long addr, struct vm_area_struct *vma,
4255                          unsigned int pages_per_huge_page)
4256 {
4257         int i;
4258
4259         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4260                 copy_user_gigantic_page(dst, src, addr, vma,
4261                                         pages_per_huge_page);
4262                 return;
4263         }
4264
4265         might_sleep();
4266         for (i = 0; i < pages_per_huge_page; i++) {
4267                 cond_resched();
4268                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4269         }
4270 }
4271 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */