ath6kl: don't set hi_refclk_hz if hardware version doesn't need it
[cascardo/linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106                                         1;
107 #else
108                                         2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113         randomize_va_space = 0;
114         return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 /*
122  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123  */
124 static int __init init_zero_pfn(void)
125 {
126         zero_pfn = page_to_pfn(ZERO_PAGE(0));
127         return 0;
128 }
129 core_initcall(init_zero_pfn);
130
131
132 #if defined(SPLIT_RSS_COUNTING)
133
134 void sync_mm_rss(struct mm_struct *mm)
135 {
136         int i;
137
138         for (i = 0; i < NR_MM_COUNTERS; i++) {
139                 if (current->rss_stat.count[i]) {
140                         add_mm_counter(mm, i, current->rss_stat.count[i]);
141                         current->rss_stat.count[i] = 0;
142                 }
143         }
144         current->rss_stat.events = 0;
145 }
146
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148 {
149         struct task_struct *task = current;
150
151         if (likely(task->mm == mm))
152                 task->rss_stat.count[member] += val;
153         else
154                 add_mm_counter(mm, member, val);
155 }
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH  (64)
161 static void check_sync_rss_stat(struct task_struct *task)
162 {
163         if (unlikely(task != current))
164                 return;
165         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166                 sync_mm_rss(task->mm);
167 }
168 #else /* SPLIT_RSS_COUNTING */
169
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 }
176
177 #endif /* SPLIT_RSS_COUNTING */
178
179 #ifdef HAVE_GENERIC_MMU_GATHER
180
181 static int tlb_next_batch(struct mmu_gather *tlb)
182 {
183         struct mmu_gather_batch *batch;
184
185         batch = tlb->active;
186         if (batch->next) {
187                 tlb->active = batch->next;
188                 return 1;
189         }
190
191         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192                 return 0;
193
194         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195         if (!batch)
196                 return 0;
197
198         tlb->batch_count++;
199         batch->next = NULL;
200         batch->nr   = 0;
201         batch->max  = MAX_GATHER_BATCH;
202
203         tlb->active->next = batch;
204         tlb->active = batch;
205
206         return 1;
207 }
208
209 /* tlb_gather_mmu
210  *      Called to initialize an (on-stack) mmu_gather structure for page-table
211  *      tear-down from @mm. The @fullmm argument is used when @mm is without
212  *      users and we're going to destroy the full address space (exit/execve).
213  */
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
215 {
216         tlb->mm = mm;
217
218         /* Is it from 0 to ~0? */
219         tlb->fullmm     = !(start | (end+1));
220         tlb->need_flush_all = 0;
221         tlb->start      = start;
222         tlb->end        = end;
223         tlb->need_flush = 0;
224         tlb->local.next = NULL;
225         tlb->local.nr   = 0;
226         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
227         tlb->active     = &tlb->local;
228         tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231         tlb->batch = NULL;
232 #endif
233 }
234
235 void tlb_flush_mmu(struct mmu_gather *tlb)
236 {
237         struct mmu_gather_batch *batch;
238
239         if (!tlb->need_flush)
240                 return;
241         tlb->need_flush = 0;
242         tlb_flush(tlb);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244         tlb_table_flush(tlb);
245 #endif
246
247         for (batch = &tlb->local; batch; batch = batch->next) {
248                 free_pages_and_swap_cache(batch->pages, batch->nr);
249                 batch->nr = 0;
250         }
251         tlb->active = &tlb->local;
252 }
253
254 /* tlb_finish_mmu
255  *      Called at the end of the shootdown operation to free up any resources
256  *      that were required.
257  */
258 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
259 {
260         struct mmu_gather_batch *batch, *next;
261
262         tlb_flush_mmu(tlb);
263
264         /* keep the page table cache within bounds */
265         check_pgt_cache();
266
267         for (batch = tlb->local.next; batch; batch = next) {
268                 next = batch->next;
269                 free_pages((unsigned long)batch, 0);
270         }
271         tlb->local.next = NULL;
272 }
273
274 /* __tlb_remove_page
275  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
276  *      handling the additional races in SMP caused by other CPUs caching valid
277  *      mappings in their TLBs. Returns the number of free page slots left.
278  *      When out of page slots we must call tlb_flush_mmu().
279  */
280 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
281 {
282         struct mmu_gather_batch *batch;
283
284         VM_BUG_ON(!tlb->need_flush);
285
286         batch = tlb->active;
287         batch->pages[batch->nr++] = page;
288         if (batch->nr == batch->max) {
289                 if (!tlb_next_batch(tlb))
290                         return 0;
291                 batch = tlb->active;
292         }
293         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
294
295         return batch->max - batch->nr;
296 }
297
298 #endif /* HAVE_GENERIC_MMU_GATHER */
299
300 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
301
302 /*
303  * See the comment near struct mmu_table_batch.
304  */
305
306 static void tlb_remove_table_smp_sync(void *arg)
307 {
308         /* Simply deliver the interrupt */
309 }
310
311 static void tlb_remove_table_one(void *table)
312 {
313         /*
314          * This isn't an RCU grace period and hence the page-tables cannot be
315          * assumed to be actually RCU-freed.
316          *
317          * It is however sufficient for software page-table walkers that rely on
318          * IRQ disabling. See the comment near struct mmu_table_batch.
319          */
320         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
321         __tlb_remove_table(table);
322 }
323
324 static void tlb_remove_table_rcu(struct rcu_head *head)
325 {
326         struct mmu_table_batch *batch;
327         int i;
328
329         batch = container_of(head, struct mmu_table_batch, rcu);
330
331         for (i = 0; i < batch->nr; i++)
332                 __tlb_remove_table(batch->tables[i]);
333
334         free_page((unsigned long)batch);
335 }
336
337 void tlb_table_flush(struct mmu_gather *tlb)
338 {
339         struct mmu_table_batch **batch = &tlb->batch;
340
341         if (*batch) {
342                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
343                 *batch = NULL;
344         }
345 }
346
347 void tlb_remove_table(struct mmu_gather *tlb, void *table)
348 {
349         struct mmu_table_batch **batch = &tlb->batch;
350
351         tlb->need_flush = 1;
352
353         /*
354          * When there's less then two users of this mm there cannot be a
355          * concurrent page-table walk.
356          */
357         if (atomic_read(&tlb->mm->mm_users) < 2) {
358                 __tlb_remove_table(table);
359                 return;
360         }
361
362         if (*batch == NULL) {
363                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
364                 if (*batch == NULL) {
365                         tlb_remove_table_one(table);
366                         return;
367                 }
368                 (*batch)->nr = 0;
369         }
370         (*batch)->tables[(*batch)->nr++] = table;
371         if ((*batch)->nr == MAX_TABLE_BATCH)
372                 tlb_table_flush(tlb);
373 }
374
375 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
376
377 /*
378  * Note: this doesn't free the actual pages themselves. That
379  * has been handled earlier when unmapping all the memory regions.
380  */
381 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
382                            unsigned long addr)
383 {
384         pgtable_t token = pmd_pgtable(*pmd);
385         pmd_clear(pmd);
386         pte_free_tlb(tlb, token, addr);
387         atomic_long_dec(&tlb->mm->nr_ptes);
388 }
389
390 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
391                                 unsigned long addr, unsigned long end,
392                                 unsigned long floor, unsigned long ceiling)
393 {
394         pmd_t *pmd;
395         unsigned long next;
396         unsigned long start;
397
398         start = addr;
399         pmd = pmd_offset(pud, addr);
400         do {
401                 next = pmd_addr_end(addr, end);
402                 if (pmd_none_or_clear_bad(pmd))
403                         continue;
404                 free_pte_range(tlb, pmd, addr);
405         } while (pmd++, addr = next, addr != end);
406
407         start &= PUD_MASK;
408         if (start < floor)
409                 return;
410         if (ceiling) {
411                 ceiling &= PUD_MASK;
412                 if (!ceiling)
413                         return;
414         }
415         if (end - 1 > ceiling - 1)
416                 return;
417
418         pmd = pmd_offset(pud, start);
419         pud_clear(pud);
420         pmd_free_tlb(tlb, pmd, start);
421 }
422
423 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
424                                 unsigned long addr, unsigned long end,
425                                 unsigned long floor, unsigned long ceiling)
426 {
427         pud_t *pud;
428         unsigned long next;
429         unsigned long start;
430
431         start = addr;
432         pud = pud_offset(pgd, addr);
433         do {
434                 next = pud_addr_end(addr, end);
435                 if (pud_none_or_clear_bad(pud))
436                         continue;
437                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
438         } while (pud++, addr = next, addr != end);
439
440         start &= PGDIR_MASK;
441         if (start < floor)
442                 return;
443         if (ceiling) {
444                 ceiling &= PGDIR_MASK;
445                 if (!ceiling)
446                         return;
447         }
448         if (end - 1 > ceiling - 1)
449                 return;
450
451         pud = pud_offset(pgd, start);
452         pgd_clear(pgd);
453         pud_free_tlb(tlb, pud, start);
454 }
455
456 /*
457  * This function frees user-level page tables of a process.
458  */
459 void free_pgd_range(struct mmu_gather *tlb,
460                         unsigned long addr, unsigned long end,
461                         unsigned long floor, unsigned long ceiling)
462 {
463         pgd_t *pgd;
464         unsigned long next;
465
466         /*
467          * The next few lines have given us lots of grief...
468          *
469          * Why are we testing PMD* at this top level?  Because often
470          * there will be no work to do at all, and we'd prefer not to
471          * go all the way down to the bottom just to discover that.
472          *
473          * Why all these "- 1"s?  Because 0 represents both the bottom
474          * of the address space and the top of it (using -1 for the
475          * top wouldn't help much: the masks would do the wrong thing).
476          * The rule is that addr 0 and floor 0 refer to the bottom of
477          * the address space, but end 0 and ceiling 0 refer to the top
478          * Comparisons need to use "end - 1" and "ceiling - 1" (though
479          * that end 0 case should be mythical).
480          *
481          * Wherever addr is brought up or ceiling brought down, we must
482          * be careful to reject "the opposite 0" before it confuses the
483          * subsequent tests.  But what about where end is brought down
484          * by PMD_SIZE below? no, end can't go down to 0 there.
485          *
486          * Whereas we round start (addr) and ceiling down, by different
487          * masks at different levels, in order to test whether a table
488          * now has no other vmas using it, so can be freed, we don't
489          * bother to round floor or end up - the tests don't need that.
490          */
491
492         addr &= PMD_MASK;
493         if (addr < floor) {
494                 addr += PMD_SIZE;
495                 if (!addr)
496                         return;
497         }
498         if (ceiling) {
499                 ceiling &= PMD_MASK;
500                 if (!ceiling)
501                         return;
502         }
503         if (end - 1 > ceiling - 1)
504                 end -= PMD_SIZE;
505         if (addr > end - 1)
506                 return;
507
508         pgd = pgd_offset(tlb->mm, addr);
509         do {
510                 next = pgd_addr_end(addr, end);
511                 if (pgd_none_or_clear_bad(pgd))
512                         continue;
513                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
514         } while (pgd++, addr = next, addr != end);
515 }
516
517 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
518                 unsigned long floor, unsigned long ceiling)
519 {
520         while (vma) {
521                 struct vm_area_struct *next = vma->vm_next;
522                 unsigned long addr = vma->vm_start;
523
524                 /*
525                  * Hide vma from rmap and truncate_pagecache before freeing
526                  * pgtables
527                  */
528                 unlink_anon_vmas(vma);
529                 unlink_file_vma(vma);
530
531                 if (is_vm_hugetlb_page(vma)) {
532                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
533                                 floor, next? next->vm_start: ceiling);
534                 } else {
535                         /*
536                          * Optimization: gather nearby vmas into one call down
537                          */
538                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
539                                && !is_vm_hugetlb_page(next)) {
540                                 vma = next;
541                                 next = vma->vm_next;
542                                 unlink_anon_vmas(vma);
543                                 unlink_file_vma(vma);
544                         }
545                         free_pgd_range(tlb, addr, vma->vm_end,
546                                 floor, next? next->vm_start: ceiling);
547                 }
548                 vma = next;
549         }
550 }
551
552 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
553                 pmd_t *pmd, unsigned long address)
554 {
555         spinlock_t *ptl;
556         pgtable_t new = pte_alloc_one(mm, address);
557         int wait_split_huge_page;
558         if (!new)
559                 return -ENOMEM;
560
561         /*
562          * Ensure all pte setup (eg. pte page lock and page clearing) are
563          * visible before the pte is made visible to other CPUs by being
564          * put into page tables.
565          *
566          * The other side of the story is the pointer chasing in the page
567          * table walking code (when walking the page table without locking;
568          * ie. most of the time). Fortunately, these data accesses consist
569          * of a chain of data-dependent loads, meaning most CPUs (alpha
570          * being the notable exception) will already guarantee loads are
571          * seen in-order. See the alpha page table accessors for the
572          * smp_read_barrier_depends() barriers in page table walking code.
573          */
574         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
575
576         ptl = pmd_lock(mm, pmd);
577         wait_split_huge_page = 0;
578         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
579                 atomic_long_inc(&mm->nr_ptes);
580                 pmd_populate(mm, pmd, new);
581                 new = NULL;
582         } else if (unlikely(pmd_trans_splitting(*pmd)))
583                 wait_split_huge_page = 1;
584         spin_unlock(ptl);
585         if (new)
586                 pte_free(mm, new);
587         if (wait_split_huge_page)
588                 wait_split_huge_page(vma->anon_vma, pmd);
589         return 0;
590 }
591
592 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
593 {
594         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
595         if (!new)
596                 return -ENOMEM;
597
598         smp_wmb(); /* See comment in __pte_alloc */
599
600         spin_lock(&init_mm.page_table_lock);
601         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
602                 pmd_populate_kernel(&init_mm, pmd, new);
603                 new = NULL;
604         } else
605                 VM_BUG_ON(pmd_trans_splitting(*pmd));
606         spin_unlock(&init_mm.page_table_lock);
607         if (new)
608                 pte_free_kernel(&init_mm, new);
609         return 0;
610 }
611
612 static inline void init_rss_vec(int *rss)
613 {
614         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
615 }
616
617 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
618 {
619         int i;
620
621         if (current->mm == mm)
622                 sync_mm_rss(mm);
623         for (i = 0; i < NR_MM_COUNTERS; i++)
624                 if (rss[i])
625                         add_mm_counter(mm, i, rss[i]);
626 }
627
628 /*
629  * This function is called to print an error when a bad pte
630  * is found. For example, we might have a PFN-mapped pte in
631  * a region that doesn't allow it.
632  *
633  * The calling function must still handle the error.
634  */
635 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
636                           pte_t pte, struct page *page)
637 {
638         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
639         pud_t *pud = pud_offset(pgd, addr);
640         pmd_t *pmd = pmd_offset(pud, addr);
641         struct address_space *mapping;
642         pgoff_t index;
643         static unsigned long resume;
644         static unsigned long nr_shown;
645         static unsigned long nr_unshown;
646
647         /*
648          * Allow a burst of 60 reports, then keep quiet for that minute;
649          * or allow a steady drip of one report per second.
650          */
651         if (nr_shown == 60) {
652                 if (time_before(jiffies, resume)) {
653                         nr_unshown++;
654                         return;
655                 }
656                 if (nr_unshown) {
657                         printk(KERN_ALERT
658                                 "BUG: Bad page map: %lu messages suppressed\n",
659                                 nr_unshown);
660                         nr_unshown = 0;
661                 }
662                 nr_shown = 0;
663         }
664         if (nr_shown++ == 0)
665                 resume = jiffies + 60 * HZ;
666
667         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
668         index = linear_page_index(vma, addr);
669
670         printk(KERN_ALERT
671                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
672                 current->comm,
673                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
674         if (page)
675                 dump_page(page, "bad pte");
676         printk(KERN_ALERT
677                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
678                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
679         /*
680          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
681          */
682         if (vma->vm_ops)
683                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
684                        vma->vm_ops->fault);
685         if (vma->vm_file)
686                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
687                        vma->vm_file->f_op->mmap);
688         dump_stack();
689         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
690 }
691
692 static inline bool is_cow_mapping(vm_flags_t flags)
693 {
694         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
695 }
696
697 /*
698  * vm_normal_page -- This function gets the "struct page" associated with a pte.
699  *
700  * "Special" mappings do not wish to be associated with a "struct page" (either
701  * it doesn't exist, or it exists but they don't want to touch it). In this
702  * case, NULL is returned here. "Normal" mappings do have a struct page.
703  *
704  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
705  * pte bit, in which case this function is trivial. Secondly, an architecture
706  * may not have a spare pte bit, which requires a more complicated scheme,
707  * described below.
708  *
709  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
710  * special mapping (even if there are underlying and valid "struct pages").
711  * COWed pages of a VM_PFNMAP are always normal.
712  *
713  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
714  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
715  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
716  * mapping will always honor the rule
717  *
718  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
719  *
720  * And for normal mappings this is false.
721  *
722  * This restricts such mappings to be a linear translation from virtual address
723  * to pfn. To get around this restriction, we allow arbitrary mappings so long
724  * as the vma is not a COW mapping; in that case, we know that all ptes are
725  * special (because none can have been COWed).
726  *
727  *
728  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
729  *
730  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
731  * page" backing, however the difference is that _all_ pages with a struct
732  * page (that is, those where pfn_valid is true) are refcounted and considered
733  * normal pages by the VM. The disadvantage is that pages are refcounted
734  * (which can be slower and simply not an option for some PFNMAP users). The
735  * advantage is that we don't have to follow the strict linearity rule of
736  * PFNMAP mappings in order to support COWable mappings.
737  *
738  */
739 #ifdef __HAVE_ARCH_PTE_SPECIAL
740 # define HAVE_PTE_SPECIAL 1
741 #else
742 # define HAVE_PTE_SPECIAL 0
743 #endif
744 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
745                                 pte_t pte)
746 {
747         unsigned long pfn = pte_pfn(pte);
748
749         if (HAVE_PTE_SPECIAL) {
750                 if (likely(!pte_special(pte)))
751                         goto check_pfn;
752                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
753                         return NULL;
754                 if (!is_zero_pfn(pfn))
755                         print_bad_pte(vma, addr, pte, NULL);
756                 return NULL;
757         }
758
759         /* !HAVE_PTE_SPECIAL case follows: */
760
761         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
762                 if (vma->vm_flags & VM_MIXEDMAP) {
763                         if (!pfn_valid(pfn))
764                                 return NULL;
765                         goto out;
766                 } else {
767                         unsigned long off;
768                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
769                         if (pfn == vma->vm_pgoff + off)
770                                 return NULL;
771                         if (!is_cow_mapping(vma->vm_flags))
772                                 return NULL;
773                 }
774         }
775
776         if (is_zero_pfn(pfn))
777                 return NULL;
778 check_pfn:
779         if (unlikely(pfn > highest_memmap_pfn)) {
780                 print_bad_pte(vma, addr, pte, NULL);
781                 return NULL;
782         }
783
784         /*
785          * NOTE! We still have PageReserved() pages in the page tables.
786          * eg. VDSO mappings can cause them to exist.
787          */
788 out:
789         return pfn_to_page(pfn);
790 }
791
792 /*
793  * copy one vm_area from one task to the other. Assumes the page tables
794  * already present in the new task to be cleared in the whole range
795  * covered by this vma.
796  */
797
798 static inline unsigned long
799 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
800                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
801                 unsigned long addr, int *rss)
802 {
803         unsigned long vm_flags = vma->vm_flags;
804         pte_t pte = *src_pte;
805         struct page *page;
806
807         /* pte contains position in swap or file, so copy. */
808         if (unlikely(!pte_present(pte))) {
809                 if (!pte_file(pte)) {
810                         swp_entry_t entry = pte_to_swp_entry(pte);
811
812                         if (swap_duplicate(entry) < 0)
813                                 return entry.val;
814
815                         /* make sure dst_mm is on swapoff's mmlist. */
816                         if (unlikely(list_empty(&dst_mm->mmlist))) {
817                                 spin_lock(&mmlist_lock);
818                                 if (list_empty(&dst_mm->mmlist))
819                                         list_add(&dst_mm->mmlist,
820                                                  &src_mm->mmlist);
821                                 spin_unlock(&mmlist_lock);
822                         }
823                         if (likely(!non_swap_entry(entry)))
824                                 rss[MM_SWAPENTS]++;
825                         else if (is_migration_entry(entry)) {
826                                 page = migration_entry_to_page(entry);
827
828                                 if (PageAnon(page))
829                                         rss[MM_ANONPAGES]++;
830                                 else
831                                         rss[MM_FILEPAGES]++;
832
833                                 if (is_write_migration_entry(entry) &&
834                                     is_cow_mapping(vm_flags)) {
835                                         /*
836                                          * COW mappings require pages in both
837                                          * parent and child to be set to read.
838                                          */
839                                         make_migration_entry_read(&entry);
840                                         pte = swp_entry_to_pte(entry);
841                                         if (pte_swp_soft_dirty(*src_pte))
842                                                 pte = pte_swp_mksoft_dirty(pte);
843                                         set_pte_at(src_mm, addr, src_pte, pte);
844                                 }
845                         }
846                 }
847                 goto out_set_pte;
848         }
849
850         /*
851          * If it's a COW mapping, write protect it both
852          * in the parent and the child
853          */
854         if (is_cow_mapping(vm_flags)) {
855                 ptep_set_wrprotect(src_mm, addr, src_pte);
856                 pte = pte_wrprotect(pte);
857         }
858
859         /*
860          * If it's a shared mapping, mark it clean in
861          * the child
862          */
863         if (vm_flags & VM_SHARED)
864                 pte = pte_mkclean(pte);
865         pte = pte_mkold(pte);
866
867         page = vm_normal_page(vma, addr, pte);
868         if (page) {
869                 get_page(page);
870                 page_dup_rmap(page);
871                 if (PageAnon(page))
872                         rss[MM_ANONPAGES]++;
873                 else
874                         rss[MM_FILEPAGES]++;
875         }
876
877 out_set_pte:
878         set_pte_at(dst_mm, addr, dst_pte, pte);
879         return 0;
880 }
881
882 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
883                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
884                    unsigned long addr, unsigned long end)
885 {
886         pte_t *orig_src_pte, *orig_dst_pte;
887         pte_t *src_pte, *dst_pte;
888         spinlock_t *src_ptl, *dst_ptl;
889         int progress = 0;
890         int rss[NR_MM_COUNTERS];
891         swp_entry_t entry = (swp_entry_t){0};
892
893 again:
894         init_rss_vec(rss);
895
896         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
897         if (!dst_pte)
898                 return -ENOMEM;
899         src_pte = pte_offset_map(src_pmd, addr);
900         src_ptl = pte_lockptr(src_mm, src_pmd);
901         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
902         orig_src_pte = src_pte;
903         orig_dst_pte = dst_pte;
904         arch_enter_lazy_mmu_mode();
905
906         do {
907                 /*
908                  * We are holding two locks at this point - either of them
909                  * could generate latencies in another task on another CPU.
910                  */
911                 if (progress >= 32) {
912                         progress = 0;
913                         if (need_resched() ||
914                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
915                                 break;
916                 }
917                 if (pte_none(*src_pte)) {
918                         progress++;
919                         continue;
920                 }
921                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
922                                                         vma, addr, rss);
923                 if (entry.val)
924                         break;
925                 progress += 8;
926         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
927
928         arch_leave_lazy_mmu_mode();
929         spin_unlock(src_ptl);
930         pte_unmap(orig_src_pte);
931         add_mm_rss_vec(dst_mm, rss);
932         pte_unmap_unlock(orig_dst_pte, dst_ptl);
933         cond_resched();
934
935         if (entry.val) {
936                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
937                         return -ENOMEM;
938                 progress = 0;
939         }
940         if (addr != end)
941                 goto again;
942         return 0;
943 }
944
945 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
947                 unsigned long addr, unsigned long end)
948 {
949         pmd_t *src_pmd, *dst_pmd;
950         unsigned long next;
951
952         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
953         if (!dst_pmd)
954                 return -ENOMEM;
955         src_pmd = pmd_offset(src_pud, addr);
956         do {
957                 next = pmd_addr_end(addr, end);
958                 if (pmd_trans_huge(*src_pmd)) {
959                         int err;
960                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
961                         err = copy_huge_pmd(dst_mm, src_mm,
962                                             dst_pmd, src_pmd, addr, vma);
963                         if (err == -ENOMEM)
964                                 return -ENOMEM;
965                         if (!err)
966                                 continue;
967                         /* fall through */
968                 }
969                 if (pmd_none_or_clear_bad(src_pmd))
970                         continue;
971                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
972                                                 vma, addr, next))
973                         return -ENOMEM;
974         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
975         return 0;
976 }
977
978 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
979                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
980                 unsigned long addr, unsigned long end)
981 {
982         pud_t *src_pud, *dst_pud;
983         unsigned long next;
984
985         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
986         if (!dst_pud)
987                 return -ENOMEM;
988         src_pud = pud_offset(src_pgd, addr);
989         do {
990                 next = pud_addr_end(addr, end);
991                 if (pud_none_or_clear_bad(src_pud))
992                         continue;
993                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
994                                                 vma, addr, next))
995                         return -ENOMEM;
996         } while (dst_pud++, src_pud++, addr = next, addr != end);
997         return 0;
998 }
999
1000 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1001                 struct vm_area_struct *vma)
1002 {
1003         pgd_t *src_pgd, *dst_pgd;
1004         unsigned long next;
1005         unsigned long addr = vma->vm_start;
1006         unsigned long end = vma->vm_end;
1007         unsigned long mmun_start;       /* For mmu_notifiers */
1008         unsigned long mmun_end;         /* For mmu_notifiers */
1009         bool is_cow;
1010         int ret;
1011
1012         /*
1013          * Don't copy ptes where a page fault will fill them correctly.
1014          * Fork becomes much lighter when there are big shared or private
1015          * readonly mappings. The tradeoff is that copy_page_range is more
1016          * efficient than faulting.
1017          */
1018         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1019                                VM_PFNMAP | VM_MIXEDMAP))) {
1020                 if (!vma->anon_vma)
1021                         return 0;
1022         }
1023
1024         if (is_vm_hugetlb_page(vma))
1025                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1026
1027         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1028                 /*
1029                  * We do not free on error cases below as remove_vma
1030                  * gets called on error from higher level routine
1031                  */
1032                 ret = track_pfn_copy(vma);
1033                 if (ret)
1034                         return ret;
1035         }
1036
1037         /*
1038          * We need to invalidate the secondary MMU mappings only when
1039          * there could be a permission downgrade on the ptes of the
1040          * parent mm. And a permission downgrade will only happen if
1041          * is_cow_mapping() returns true.
1042          */
1043         is_cow = is_cow_mapping(vma->vm_flags);
1044         mmun_start = addr;
1045         mmun_end   = end;
1046         if (is_cow)
1047                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1048                                                     mmun_end);
1049
1050         ret = 0;
1051         dst_pgd = pgd_offset(dst_mm, addr);
1052         src_pgd = pgd_offset(src_mm, addr);
1053         do {
1054                 next = pgd_addr_end(addr, end);
1055                 if (pgd_none_or_clear_bad(src_pgd))
1056                         continue;
1057                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1058                                             vma, addr, next))) {
1059                         ret = -ENOMEM;
1060                         break;
1061                 }
1062         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1063
1064         if (is_cow)
1065                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1066         return ret;
1067 }
1068
1069 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1070                                 struct vm_area_struct *vma, pmd_t *pmd,
1071                                 unsigned long addr, unsigned long end,
1072                                 struct zap_details *details)
1073 {
1074         struct mm_struct *mm = tlb->mm;
1075         int force_flush = 0;
1076         int rss[NR_MM_COUNTERS];
1077         spinlock_t *ptl;
1078         pte_t *start_pte;
1079         pte_t *pte;
1080
1081 again:
1082         init_rss_vec(rss);
1083         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1084         pte = start_pte;
1085         arch_enter_lazy_mmu_mode();
1086         do {
1087                 pte_t ptent = *pte;
1088                 if (pte_none(ptent)) {
1089                         continue;
1090                 }
1091
1092                 if (pte_present(ptent)) {
1093                         struct page *page;
1094
1095                         page = vm_normal_page(vma, addr, ptent);
1096                         if (unlikely(details) && page) {
1097                                 /*
1098                                  * unmap_shared_mapping_pages() wants to
1099                                  * invalidate cache without truncating:
1100                                  * unmap shared but keep private pages.
1101                                  */
1102                                 if (details->check_mapping &&
1103                                     details->check_mapping != page->mapping)
1104                                         continue;
1105                                 /*
1106                                  * Each page->index must be checked when
1107                                  * invalidating or truncating nonlinear.
1108                                  */
1109                                 if (details->nonlinear_vma &&
1110                                     (page->index < details->first_index ||
1111                                      page->index > details->last_index))
1112                                         continue;
1113                         }
1114                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1115                                                         tlb->fullmm);
1116                         tlb_remove_tlb_entry(tlb, pte, addr);
1117                         if (unlikely(!page))
1118                                 continue;
1119                         if (unlikely(details) && details->nonlinear_vma
1120                             && linear_page_index(details->nonlinear_vma,
1121                                                 addr) != page->index) {
1122                                 pte_t ptfile = pgoff_to_pte(page->index);
1123                                 if (pte_soft_dirty(ptent))
1124                                         pte_file_mksoft_dirty(ptfile);
1125                                 set_pte_at(mm, addr, pte, ptfile);
1126                         }
1127                         if (PageAnon(page))
1128                                 rss[MM_ANONPAGES]--;
1129                         else {
1130                                 if (pte_dirty(ptent))
1131                                         set_page_dirty(page);
1132                                 if (pte_young(ptent) &&
1133                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1134                                         mark_page_accessed(page);
1135                                 rss[MM_FILEPAGES]--;
1136                         }
1137                         page_remove_rmap(page);
1138                         if (unlikely(page_mapcount(page) < 0))
1139                                 print_bad_pte(vma, addr, ptent, page);
1140                         force_flush = !__tlb_remove_page(tlb, page);
1141                         if (force_flush)
1142                                 break;
1143                         continue;
1144                 }
1145                 /*
1146                  * If details->check_mapping, we leave swap entries;
1147                  * if details->nonlinear_vma, we leave file entries.
1148                  */
1149                 if (unlikely(details))
1150                         continue;
1151                 if (pte_file(ptent)) {
1152                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1153                                 print_bad_pte(vma, addr, ptent, NULL);
1154                 } else {
1155                         swp_entry_t entry = pte_to_swp_entry(ptent);
1156
1157                         if (!non_swap_entry(entry))
1158                                 rss[MM_SWAPENTS]--;
1159                         else if (is_migration_entry(entry)) {
1160                                 struct page *page;
1161
1162                                 page = migration_entry_to_page(entry);
1163
1164                                 if (PageAnon(page))
1165                                         rss[MM_ANONPAGES]--;
1166                                 else
1167                                         rss[MM_FILEPAGES]--;
1168                         }
1169                         if (unlikely(!free_swap_and_cache(entry)))
1170                                 print_bad_pte(vma, addr, ptent, NULL);
1171                 }
1172                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1173         } while (pte++, addr += PAGE_SIZE, addr != end);
1174
1175         add_mm_rss_vec(mm, rss);
1176         arch_leave_lazy_mmu_mode();
1177         pte_unmap_unlock(start_pte, ptl);
1178
1179         /*
1180          * mmu_gather ran out of room to batch pages, we break out of
1181          * the PTE lock to avoid doing the potential expensive TLB invalidate
1182          * and page-free while holding it.
1183          */
1184         if (force_flush) {
1185                 unsigned long old_end;
1186
1187                 force_flush = 0;
1188
1189                 /*
1190                  * Flush the TLB just for the previous segment,
1191                  * then update the range to be the remaining
1192                  * TLB range.
1193                  */
1194                 old_end = tlb->end;
1195                 tlb->end = addr;
1196
1197                 tlb_flush_mmu(tlb);
1198
1199                 tlb->start = addr;
1200                 tlb->end = old_end;
1201
1202                 if (addr != end)
1203                         goto again;
1204         }
1205
1206         return addr;
1207 }
1208
1209 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1210                                 struct vm_area_struct *vma, pud_t *pud,
1211                                 unsigned long addr, unsigned long end,
1212                                 struct zap_details *details)
1213 {
1214         pmd_t *pmd;
1215         unsigned long next;
1216
1217         pmd = pmd_offset(pud, addr);
1218         do {
1219                 next = pmd_addr_end(addr, end);
1220                 if (pmd_trans_huge(*pmd)) {
1221                         if (next - addr != HPAGE_PMD_SIZE) {
1222 #ifdef CONFIG_DEBUG_VM
1223                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1224                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1225                                                 __func__, addr, end,
1226                                                 vma->vm_start,
1227                                                 vma->vm_end);
1228                                         BUG();
1229                                 }
1230 #endif
1231                                 split_huge_page_pmd(vma, addr, pmd);
1232                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1233                                 goto next;
1234                         /* fall through */
1235                 }
1236                 /*
1237                  * Here there can be other concurrent MADV_DONTNEED or
1238                  * trans huge page faults running, and if the pmd is
1239                  * none or trans huge it can change under us. This is
1240                  * because MADV_DONTNEED holds the mmap_sem in read
1241                  * mode.
1242                  */
1243                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1244                         goto next;
1245                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1246 next:
1247                 cond_resched();
1248         } while (pmd++, addr = next, addr != end);
1249
1250         return addr;
1251 }
1252
1253 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1254                                 struct vm_area_struct *vma, pgd_t *pgd,
1255                                 unsigned long addr, unsigned long end,
1256                                 struct zap_details *details)
1257 {
1258         pud_t *pud;
1259         unsigned long next;
1260
1261         pud = pud_offset(pgd, addr);
1262         do {
1263                 next = pud_addr_end(addr, end);
1264                 if (pud_none_or_clear_bad(pud))
1265                         continue;
1266                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1267         } while (pud++, addr = next, addr != end);
1268
1269         return addr;
1270 }
1271
1272 static void unmap_page_range(struct mmu_gather *tlb,
1273                              struct vm_area_struct *vma,
1274                              unsigned long addr, unsigned long end,
1275                              struct zap_details *details)
1276 {
1277         pgd_t *pgd;
1278         unsigned long next;
1279
1280         if (details && !details->check_mapping && !details->nonlinear_vma)
1281                 details = NULL;
1282
1283         BUG_ON(addr >= end);
1284         mem_cgroup_uncharge_start();
1285         tlb_start_vma(tlb, vma);
1286         pgd = pgd_offset(vma->vm_mm, addr);
1287         do {
1288                 next = pgd_addr_end(addr, end);
1289                 if (pgd_none_or_clear_bad(pgd))
1290                         continue;
1291                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1292         } while (pgd++, addr = next, addr != end);
1293         tlb_end_vma(tlb, vma);
1294         mem_cgroup_uncharge_end();
1295 }
1296
1297
1298 static void unmap_single_vma(struct mmu_gather *tlb,
1299                 struct vm_area_struct *vma, unsigned long start_addr,
1300                 unsigned long end_addr,
1301                 struct zap_details *details)
1302 {
1303         unsigned long start = max(vma->vm_start, start_addr);
1304         unsigned long end;
1305
1306         if (start >= vma->vm_end)
1307                 return;
1308         end = min(vma->vm_end, end_addr);
1309         if (end <= vma->vm_start)
1310                 return;
1311
1312         if (vma->vm_file)
1313                 uprobe_munmap(vma, start, end);
1314
1315         if (unlikely(vma->vm_flags & VM_PFNMAP))
1316                 untrack_pfn(vma, 0, 0);
1317
1318         if (start != end) {
1319                 if (unlikely(is_vm_hugetlb_page(vma))) {
1320                         /*
1321                          * It is undesirable to test vma->vm_file as it
1322                          * should be non-null for valid hugetlb area.
1323                          * However, vm_file will be NULL in the error
1324                          * cleanup path of mmap_region. When
1325                          * hugetlbfs ->mmap method fails,
1326                          * mmap_region() nullifies vma->vm_file
1327                          * before calling this function to clean up.
1328                          * Since no pte has actually been setup, it is
1329                          * safe to do nothing in this case.
1330                          */
1331                         if (vma->vm_file) {
1332                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1333                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1334                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1335                         }
1336                 } else
1337                         unmap_page_range(tlb, vma, start, end, details);
1338         }
1339 }
1340
1341 /**
1342  * unmap_vmas - unmap a range of memory covered by a list of vma's
1343  * @tlb: address of the caller's struct mmu_gather
1344  * @vma: the starting vma
1345  * @start_addr: virtual address at which to start unmapping
1346  * @end_addr: virtual address at which to end unmapping
1347  *
1348  * Unmap all pages in the vma list.
1349  *
1350  * Only addresses between `start' and `end' will be unmapped.
1351  *
1352  * The VMA list must be sorted in ascending virtual address order.
1353  *
1354  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1355  * range after unmap_vmas() returns.  So the only responsibility here is to
1356  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1357  * drops the lock and schedules.
1358  */
1359 void unmap_vmas(struct mmu_gather *tlb,
1360                 struct vm_area_struct *vma, unsigned long start_addr,
1361                 unsigned long end_addr)
1362 {
1363         struct mm_struct *mm = vma->vm_mm;
1364
1365         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1366         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1367                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1368         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1369 }
1370
1371 /**
1372  * zap_page_range - remove user pages in a given range
1373  * @vma: vm_area_struct holding the applicable pages
1374  * @start: starting address of pages to zap
1375  * @size: number of bytes to zap
1376  * @details: details of nonlinear truncation or shared cache invalidation
1377  *
1378  * Caller must protect the VMA list
1379  */
1380 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1381                 unsigned long size, struct zap_details *details)
1382 {
1383         struct mm_struct *mm = vma->vm_mm;
1384         struct mmu_gather tlb;
1385         unsigned long end = start + size;
1386
1387         lru_add_drain();
1388         tlb_gather_mmu(&tlb, mm, start, end);
1389         update_hiwater_rss(mm);
1390         mmu_notifier_invalidate_range_start(mm, start, end);
1391         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1392                 unmap_single_vma(&tlb, vma, start, end, details);
1393         mmu_notifier_invalidate_range_end(mm, start, end);
1394         tlb_finish_mmu(&tlb, start, end);
1395 }
1396
1397 /**
1398  * zap_page_range_single - remove user pages in a given range
1399  * @vma: vm_area_struct holding the applicable pages
1400  * @address: starting address of pages to zap
1401  * @size: number of bytes to zap
1402  * @details: details of nonlinear truncation or shared cache invalidation
1403  *
1404  * The range must fit into one VMA.
1405  */
1406 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1407                 unsigned long size, struct zap_details *details)
1408 {
1409         struct mm_struct *mm = vma->vm_mm;
1410         struct mmu_gather tlb;
1411         unsigned long end = address + size;
1412
1413         lru_add_drain();
1414         tlb_gather_mmu(&tlb, mm, address, end);
1415         update_hiwater_rss(mm);
1416         mmu_notifier_invalidate_range_start(mm, address, end);
1417         unmap_single_vma(&tlb, vma, address, end, details);
1418         mmu_notifier_invalidate_range_end(mm, address, end);
1419         tlb_finish_mmu(&tlb, address, end);
1420 }
1421
1422 /**
1423  * zap_vma_ptes - remove ptes mapping the vma
1424  * @vma: vm_area_struct holding ptes to be zapped
1425  * @address: starting address of pages to zap
1426  * @size: number of bytes to zap
1427  *
1428  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1429  *
1430  * The entire address range must be fully contained within the vma.
1431  *
1432  * Returns 0 if successful.
1433  */
1434 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1435                 unsigned long size)
1436 {
1437         if (address < vma->vm_start || address + size > vma->vm_end ||
1438                         !(vma->vm_flags & VM_PFNMAP))
1439                 return -1;
1440         zap_page_range_single(vma, address, size, NULL);
1441         return 0;
1442 }
1443 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1444
1445 /**
1446  * follow_page_mask - look up a page descriptor from a user-virtual address
1447  * @vma: vm_area_struct mapping @address
1448  * @address: virtual address to look up
1449  * @flags: flags modifying lookup behaviour
1450  * @page_mask: on output, *page_mask is set according to the size of the page
1451  *
1452  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1453  *
1454  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1455  * an error pointer if there is a mapping to something not represented
1456  * by a page descriptor (see also vm_normal_page()).
1457  */
1458 struct page *follow_page_mask(struct vm_area_struct *vma,
1459                               unsigned long address, unsigned int flags,
1460                               unsigned int *page_mask)
1461 {
1462         pgd_t *pgd;
1463         pud_t *pud;
1464         pmd_t *pmd;
1465         pte_t *ptep, pte;
1466         spinlock_t *ptl;
1467         struct page *page;
1468         struct mm_struct *mm = vma->vm_mm;
1469
1470         *page_mask = 0;
1471
1472         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1473         if (!IS_ERR(page)) {
1474                 BUG_ON(flags & FOLL_GET);
1475                 goto out;
1476         }
1477
1478         page = NULL;
1479         pgd = pgd_offset(mm, address);
1480         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1481                 goto no_page_table;
1482
1483         pud = pud_offset(pgd, address);
1484         if (pud_none(*pud))
1485                 goto no_page_table;
1486         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1487                 if (flags & FOLL_GET)
1488                         goto out;
1489                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1490                 goto out;
1491         }
1492         if (unlikely(pud_bad(*pud)))
1493                 goto no_page_table;
1494
1495         pmd = pmd_offset(pud, address);
1496         if (pmd_none(*pmd))
1497                 goto no_page_table;
1498         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1499                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1500                 if (flags & FOLL_GET) {
1501                         /*
1502                          * Refcount on tail pages are not well-defined and
1503                          * shouldn't be taken. The caller should handle a NULL
1504                          * return when trying to follow tail pages.
1505                          */
1506                         if (PageHead(page))
1507                                 get_page(page);
1508                         else {
1509                                 page = NULL;
1510                                 goto out;
1511                         }
1512                 }
1513                 goto out;
1514         }
1515         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1516                 goto no_page_table;
1517         if (pmd_trans_huge(*pmd)) {
1518                 if (flags & FOLL_SPLIT) {
1519                         split_huge_page_pmd(vma, address, pmd);
1520                         goto split_fallthrough;
1521                 }
1522                 ptl = pmd_lock(mm, pmd);
1523                 if (likely(pmd_trans_huge(*pmd))) {
1524                         if (unlikely(pmd_trans_splitting(*pmd))) {
1525                                 spin_unlock(ptl);
1526                                 wait_split_huge_page(vma->anon_vma, pmd);
1527                         } else {
1528                                 page = follow_trans_huge_pmd(vma, address,
1529                                                              pmd, flags);
1530                                 spin_unlock(ptl);
1531                                 *page_mask = HPAGE_PMD_NR - 1;
1532                                 goto out;
1533                         }
1534                 } else
1535                         spin_unlock(ptl);
1536                 /* fall through */
1537         }
1538 split_fallthrough:
1539         if (unlikely(pmd_bad(*pmd)))
1540                 goto no_page_table;
1541
1542         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1543
1544         pte = *ptep;
1545         if (!pte_present(pte)) {
1546                 swp_entry_t entry;
1547                 /*
1548                  * KSM's break_ksm() relies upon recognizing a ksm page
1549                  * even while it is being migrated, so for that case we
1550                  * need migration_entry_wait().
1551                  */
1552                 if (likely(!(flags & FOLL_MIGRATION)))
1553                         goto no_page;
1554                 if (pte_none(pte) || pte_file(pte))
1555                         goto no_page;
1556                 entry = pte_to_swp_entry(pte);
1557                 if (!is_migration_entry(entry))
1558                         goto no_page;
1559                 pte_unmap_unlock(ptep, ptl);
1560                 migration_entry_wait(mm, pmd, address);
1561                 goto split_fallthrough;
1562         }
1563         if ((flags & FOLL_NUMA) && pte_numa(pte))
1564                 goto no_page;
1565         if ((flags & FOLL_WRITE) && !pte_write(pte))
1566                 goto unlock;
1567
1568         page = vm_normal_page(vma, address, pte);
1569         if (unlikely(!page)) {
1570                 if ((flags & FOLL_DUMP) ||
1571                     !is_zero_pfn(pte_pfn(pte)))
1572                         goto bad_page;
1573                 page = pte_page(pte);
1574         }
1575
1576         if (flags & FOLL_GET)
1577                 get_page_foll(page);
1578         if (flags & FOLL_TOUCH) {
1579                 if ((flags & FOLL_WRITE) &&
1580                     !pte_dirty(pte) && !PageDirty(page))
1581                         set_page_dirty(page);
1582                 /*
1583                  * pte_mkyoung() would be more correct here, but atomic care
1584                  * is needed to avoid losing the dirty bit: it is easier to use
1585                  * mark_page_accessed().
1586                  */
1587                 mark_page_accessed(page);
1588         }
1589         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1590                 /*
1591                  * The preliminary mapping check is mainly to avoid the
1592                  * pointless overhead of lock_page on the ZERO_PAGE
1593                  * which might bounce very badly if there is contention.
1594                  *
1595                  * If the page is already locked, we don't need to
1596                  * handle it now - vmscan will handle it later if and
1597                  * when it attempts to reclaim the page.
1598                  */
1599                 if (page->mapping && trylock_page(page)) {
1600                         lru_add_drain();  /* push cached pages to LRU */
1601                         /*
1602                          * Because we lock page here, and migration is
1603                          * blocked by the pte's page reference, and we
1604                          * know the page is still mapped, we don't even
1605                          * need to check for file-cache page truncation.
1606                          */
1607                         mlock_vma_page(page);
1608                         unlock_page(page);
1609                 }
1610         }
1611 unlock:
1612         pte_unmap_unlock(ptep, ptl);
1613 out:
1614         return page;
1615
1616 bad_page:
1617         pte_unmap_unlock(ptep, ptl);
1618         return ERR_PTR(-EFAULT);
1619
1620 no_page:
1621         pte_unmap_unlock(ptep, ptl);
1622         if (!pte_none(pte))
1623                 return page;
1624
1625 no_page_table:
1626         /*
1627          * When core dumping an enormous anonymous area that nobody
1628          * has touched so far, we don't want to allocate unnecessary pages or
1629          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1630          * then get_dump_page() will return NULL to leave a hole in the dump.
1631          * But we can only make this optimization where a hole would surely
1632          * be zero-filled if handle_mm_fault() actually did handle it.
1633          */
1634         if ((flags & FOLL_DUMP) &&
1635             (!vma->vm_ops || !vma->vm_ops->fault))
1636                 return ERR_PTR(-EFAULT);
1637         return page;
1638 }
1639
1640 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1641 {
1642         return stack_guard_page_start(vma, addr) ||
1643                stack_guard_page_end(vma, addr+PAGE_SIZE);
1644 }
1645
1646 /**
1647  * __get_user_pages() - pin user pages in memory
1648  * @tsk:        task_struct of target task
1649  * @mm:         mm_struct of target mm
1650  * @start:      starting user address
1651  * @nr_pages:   number of pages from start to pin
1652  * @gup_flags:  flags modifying pin behaviour
1653  * @pages:      array that receives pointers to the pages pinned.
1654  *              Should be at least nr_pages long. Or NULL, if caller
1655  *              only intends to ensure the pages are faulted in.
1656  * @vmas:       array of pointers to vmas corresponding to each page.
1657  *              Or NULL if the caller does not require them.
1658  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1659  *
1660  * Returns number of pages pinned. This may be fewer than the number
1661  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1662  * were pinned, returns -errno. Each page returned must be released
1663  * with a put_page() call when it is finished with. vmas will only
1664  * remain valid while mmap_sem is held.
1665  *
1666  * Must be called with mmap_sem held for read or write.
1667  *
1668  * __get_user_pages walks a process's page tables and takes a reference to
1669  * each struct page that each user address corresponds to at a given
1670  * instant. That is, it takes the page that would be accessed if a user
1671  * thread accesses the given user virtual address at that instant.
1672  *
1673  * This does not guarantee that the page exists in the user mappings when
1674  * __get_user_pages returns, and there may even be a completely different
1675  * page there in some cases (eg. if mmapped pagecache has been invalidated
1676  * and subsequently re faulted). However it does guarantee that the page
1677  * won't be freed completely. And mostly callers simply care that the page
1678  * contains data that was valid *at some point in time*. Typically, an IO
1679  * or similar operation cannot guarantee anything stronger anyway because
1680  * locks can't be held over the syscall boundary.
1681  *
1682  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1683  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1684  * appropriate) must be called after the page is finished with, and
1685  * before put_page is called.
1686  *
1687  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1688  * or mmap_sem contention, and if waiting is needed to pin all pages,
1689  * *@nonblocking will be set to 0.
1690  *
1691  * In most cases, get_user_pages or get_user_pages_fast should be used
1692  * instead of __get_user_pages. __get_user_pages should be used only if
1693  * you need some special @gup_flags.
1694  */
1695 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1696                 unsigned long start, unsigned long nr_pages,
1697                 unsigned int gup_flags, struct page **pages,
1698                 struct vm_area_struct **vmas, int *nonblocking)
1699 {
1700         long i;
1701         unsigned long vm_flags;
1702         unsigned int page_mask;
1703
1704         if (!nr_pages)
1705                 return 0;
1706
1707         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1708
1709         /*
1710          * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1711          * would be called on PROT_NONE ranges. We must never invoke
1712          * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1713          * page faults would unprotect the PROT_NONE ranges if
1714          * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1715          * bitflag. So to avoid that, don't set FOLL_NUMA if
1716          * FOLL_FORCE is set.
1717          */
1718         if (!(gup_flags & FOLL_FORCE))
1719                 gup_flags |= FOLL_NUMA;
1720
1721         i = 0;
1722
1723         do {
1724                 struct vm_area_struct *vma;
1725
1726                 vma = find_extend_vma(mm, start);
1727                 if (!vma && in_gate_area(mm, start)) {
1728                         unsigned long pg = start & PAGE_MASK;
1729                         pgd_t *pgd;
1730                         pud_t *pud;
1731                         pmd_t *pmd;
1732                         pte_t *pte;
1733
1734                         /* user gate pages are read-only */
1735                         if (gup_flags & FOLL_WRITE)
1736                                 goto efault;
1737                         if (pg > TASK_SIZE)
1738                                 pgd = pgd_offset_k(pg);
1739                         else
1740                                 pgd = pgd_offset_gate(mm, pg);
1741                         BUG_ON(pgd_none(*pgd));
1742                         pud = pud_offset(pgd, pg);
1743                         BUG_ON(pud_none(*pud));
1744                         pmd = pmd_offset(pud, pg);
1745                         if (pmd_none(*pmd))
1746                                 goto efault;
1747                         VM_BUG_ON(pmd_trans_huge(*pmd));
1748                         pte = pte_offset_map(pmd, pg);
1749                         if (pte_none(*pte)) {
1750                                 pte_unmap(pte);
1751                                 goto efault;
1752                         }
1753                         vma = get_gate_vma(mm);
1754                         if (pages) {
1755                                 struct page *page;
1756
1757                                 page = vm_normal_page(vma, start, *pte);
1758                                 if (!page) {
1759                                         if (!(gup_flags & FOLL_DUMP) &&
1760                                              is_zero_pfn(pte_pfn(*pte)))
1761                                                 page = pte_page(*pte);
1762                                         else {
1763                                                 pte_unmap(pte);
1764                                                 goto efault;
1765                                         }
1766                                 }
1767                                 pages[i] = page;
1768                                 get_page(page);
1769                         }
1770                         pte_unmap(pte);
1771                         page_mask = 0;
1772                         goto next_page;
1773                 }
1774
1775                 if (!vma)
1776                         goto efault;
1777                 vm_flags = vma->vm_flags;
1778                 if (vm_flags & (VM_IO | VM_PFNMAP))
1779                         goto efault;
1780
1781                 if (gup_flags & FOLL_WRITE) {
1782                         if (!(vm_flags & VM_WRITE)) {
1783                                 if (!(gup_flags & FOLL_FORCE))
1784                                         goto efault;
1785                                 /*
1786                                  * We used to let the write,force case do COW
1787                                  * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so
1788                                  * ptrace could set a breakpoint in a read-only
1789                                  * mapping of an executable, without corrupting
1790                                  * the file (yet only when that file had been
1791                                  * opened for writing!).  Anon pages in shared
1792                                  * mappings are surprising: now just reject it.
1793                                  */
1794                                 if (!is_cow_mapping(vm_flags)) {
1795                                         WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
1796                                         goto efault;
1797                                 }
1798                         }
1799                 } else {
1800                         if (!(vm_flags & VM_READ)) {
1801                                 if (!(gup_flags & FOLL_FORCE))
1802                                         goto efault;
1803                                 /*
1804                                  * Is there actually any vma we can reach here
1805                                  * which does not have VM_MAYREAD set?
1806                                  */
1807                                 if (!(vm_flags & VM_MAYREAD))
1808                                         goto efault;
1809                         }
1810                 }
1811
1812                 if (is_vm_hugetlb_page(vma)) {
1813                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1814                                         &start, &nr_pages, i, gup_flags);
1815                         continue;
1816                 }
1817
1818                 do {
1819                         struct page *page;
1820                         unsigned int foll_flags = gup_flags;
1821                         unsigned int page_increm;
1822
1823                         /*
1824                          * If we have a pending SIGKILL, don't keep faulting
1825                          * pages and potentially allocating memory.
1826                          */
1827                         if (unlikely(fatal_signal_pending(current)))
1828                                 return i ? i : -ERESTARTSYS;
1829
1830                         cond_resched();
1831                         while (!(page = follow_page_mask(vma, start,
1832                                                 foll_flags, &page_mask))) {
1833                                 int ret;
1834                                 unsigned int fault_flags = 0;
1835
1836                                 /* For mlock, just skip the stack guard page. */
1837                                 if (foll_flags & FOLL_MLOCK) {
1838                                         if (stack_guard_page(vma, start))
1839                                                 goto next_page;
1840                                 }
1841                                 if (foll_flags & FOLL_WRITE)
1842                                         fault_flags |= FAULT_FLAG_WRITE;
1843                                 if (nonblocking)
1844                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1845                                 if (foll_flags & FOLL_NOWAIT)
1846                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1847
1848                                 ret = handle_mm_fault(mm, vma, start,
1849                                                         fault_flags);
1850
1851                                 if (ret & VM_FAULT_ERROR) {
1852                                         if (ret & VM_FAULT_OOM)
1853                                                 return i ? i : -ENOMEM;
1854                                         if (ret & (VM_FAULT_HWPOISON |
1855                                                    VM_FAULT_HWPOISON_LARGE)) {
1856                                                 if (i)
1857                                                         return i;
1858                                                 else if (gup_flags & FOLL_HWPOISON)
1859                                                         return -EHWPOISON;
1860                                                 else
1861                                                         return -EFAULT;
1862                                         }
1863                                         if (ret & VM_FAULT_SIGBUS)
1864                                                 goto efault;
1865                                         BUG();
1866                                 }
1867
1868                                 if (tsk) {
1869                                         if (ret & VM_FAULT_MAJOR)
1870                                                 tsk->maj_flt++;
1871                                         else
1872                                                 tsk->min_flt++;
1873                                 }
1874
1875                                 if (ret & VM_FAULT_RETRY) {
1876                                         if (nonblocking)
1877                                                 *nonblocking = 0;
1878                                         return i;
1879                                 }
1880
1881                                 /*
1882                                  * The VM_FAULT_WRITE bit tells us that
1883                                  * do_wp_page has broken COW when necessary,
1884                                  * even if maybe_mkwrite decided not to set
1885                                  * pte_write. We can thus safely do subsequent
1886                                  * page lookups as if they were reads. But only
1887                                  * do so when looping for pte_write is futile:
1888                                  * in some cases userspace may also be wanting
1889                                  * to write to the gotten user page, which a
1890                                  * read fault here might prevent (a readonly
1891                                  * page might get reCOWed by userspace write).
1892                                  */
1893                                 if ((ret & VM_FAULT_WRITE) &&
1894                                     !(vma->vm_flags & VM_WRITE))
1895                                         foll_flags &= ~FOLL_WRITE;
1896
1897                                 cond_resched();
1898                         }
1899                         if (IS_ERR(page))
1900                                 return i ? i : PTR_ERR(page);
1901                         if (pages) {
1902                                 pages[i] = page;
1903
1904                                 flush_anon_page(vma, page, start);
1905                                 flush_dcache_page(page);
1906                                 page_mask = 0;
1907                         }
1908 next_page:
1909                         if (vmas) {
1910                                 vmas[i] = vma;
1911                                 page_mask = 0;
1912                         }
1913                         page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1914                         if (page_increm > nr_pages)
1915                                 page_increm = nr_pages;
1916                         i += page_increm;
1917                         start += page_increm * PAGE_SIZE;
1918                         nr_pages -= page_increm;
1919                 } while (nr_pages && start < vma->vm_end);
1920         } while (nr_pages);
1921         return i;
1922 efault:
1923         return i ? : -EFAULT;
1924 }
1925 EXPORT_SYMBOL(__get_user_pages);
1926
1927 /*
1928  * fixup_user_fault() - manually resolve a user page fault
1929  * @tsk:        the task_struct to use for page fault accounting, or
1930  *              NULL if faults are not to be recorded.
1931  * @mm:         mm_struct of target mm
1932  * @address:    user address
1933  * @fault_flags:flags to pass down to handle_mm_fault()
1934  *
1935  * This is meant to be called in the specific scenario where for locking reasons
1936  * we try to access user memory in atomic context (within a pagefault_disable()
1937  * section), this returns -EFAULT, and we want to resolve the user fault before
1938  * trying again.
1939  *
1940  * Typically this is meant to be used by the futex code.
1941  *
1942  * The main difference with get_user_pages() is that this function will
1943  * unconditionally call handle_mm_fault() which will in turn perform all the
1944  * necessary SW fixup of the dirty and young bits in the PTE, while
1945  * handle_mm_fault() only guarantees to update these in the struct page.
1946  *
1947  * This is important for some architectures where those bits also gate the
1948  * access permission to the page because they are maintained in software.  On
1949  * such architectures, gup() will not be enough to make a subsequent access
1950  * succeed.
1951  *
1952  * This should be called with the mm_sem held for read.
1953  */
1954 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1955                      unsigned long address, unsigned int fault_flags)
1956 {
1957         struct vm_area_struct *vma;
1958         int ret;
1959
1960         vma = find_extend_vma(mm, address);
1961         if (!vma || address < vma->vm_start)
1962                 return -EFAULT;
1963
1964         ret = handle_mm_fault(mm, vma, address, fault_flags);
1965         if (ret & VM_FAULT_ERROR) {
1966                 if (ret & VM_FAULT_OOM)
1967                         return -ENOMEM;
1968                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1969                         return -EHWPOISON;
1970                 if (ret & VM_FAULT_SIGBUS)
1971                         return -EFAULT;
1972                 BUG();
1973         }
1974         if (tsk) {
1975                 if (ret & VM_FAULT_MAJOR)
1976                         tsk->maj_flt++;
1977                 else
1978                         tsk->min_flt++;
1979         }
1980         return 0;
1981 }
1982
1983 /*
1984  * get_user_pages() - pin user pages in memory
1985  * @tsk:        the task_struct to use for page fault accounting, or
1986  *              NULL if faults are not to be recorded.
1987  * @mm:         mm_struct of target mm
1988  * @start:      starting user address
1989  * @nr_pages:   number of pages from start to pin
1990  * @write:      whether pages will be written to by the caller
1991  * @force:      whether to force access even when user mapping is currently
1992  *              protected (but never forces write access to shared mapping).
1993  * @pages:      array that receives pointers to the pages pinned.
1994  *              Should be at least nr_pages long. Or NULL, if caller
1995  *              only intends to ensure the pages are faulted in.
1996  * @vmas:       array of pointers to vmas corresponding to each page.
1997  *              Or NULL if the caller does not require them.
1998  *
1999  * Returns number of pages pinned. This may be fewer than the number
2000  * requested. If nr_pages is 0 or negative, returns 0. If no pages
2001  * were pinned, returns -errno. Each page returned must be released
2002  * with a put_page() call when it is finished with. vmas will only
2003  * remain valid while mmap_sem is held.
2004  *
2005  * Must be called with mmap_sem held for read or write.
2006  *
2007  * get_user_pages walks a process's page tables and takes a reference to
2008  * each struct page that each user address corresponds to at a given
2009  * instant. That is, it takes the page that would be accessed if a user
2010  * thread accesses the given user virtual address at that instant.
2011  *
2012  * This does not guarantee that the page exists in the user mappings when
2013  * get_user_pages returns, and there may even be a completely different
2014  * page there in some cases (eg. if mmapped pagecache has been invalidated
2015  * and subsequently re faulted). However it does guarantee that the page
2016  * won't be freed completely. And mostly callers simply care that the page
2017  * contains data that was valid *at some point in time*. Typically, an IO
2018  * or similar operation cannot guarantee anything stronger anyway because
2019  * locks can't be held over the syscall boundary.
2020  *
2021  * If write=0, the page must not be written to. If the page is written to,
2022  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2023  * after the page is finished with, and before put_page is called.
2024  *
2025  * get_user_pages is typically used for fewer-copy IO operations, to get a
2026  * handle on the memory by some means other than accesses via the user virtual
2027  * addresses. The pages may be submitted for DMA to devices or accessed via
2028  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2029  * use the correct cache flushing APIs.
2030  *
2031  * See also get_user_pages_fast, for performance critical applications.
2032  */
2033 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2034                 unsigned long start, unsigned long nr_pages, int write,
2035                 int force, struct page **pages, struct vm_area_struct **vmas)
2036 {
2037         int flags = FOLL_TOUCH;
2038
2039         if (pages)
2040                 flags |= FOLL_GET;
2041         if (write)
2042                 flags |= FOLL_WRITE;
2043         if (force)
2044                 flags |= FOLL_FORCE;
2045
2046         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2047                                 NULL);
2048 }
2049 EXPORT_SYMBOL(get_user_pages);
2050
2051 /**
2052  * get_dump_page() - pin user page in memory while writing it to core dump
2053  * @addr: user address
2054  *
2055  * Returns struct page pointer of user page pinned for dump,
2056  * to be freed afterwards by page_cache_release() or put_page().
2057  *
2058  * Returns NULL on any kind of failure - a hole must then be inserted into
2059  * the corefile, to preserve alignment with its headers; and also returns
2060  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2061  * allowing a hole to be left in the corefile to save diskspace.
2062  *
2063  * Called without mmap_sem, but after all other threads have been killed.
2064  */
2065 #ifdef CONFIG_ELF_CORE
2066 struct page *get_dump_page(unsigned long addr)
2067 {
2068         struct vm_area_struct *vma;
2069         struct page *page;
2070
2071         if (__get_user_pages(current, current->mm, addr, 1,
2072                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2073                              NULL) < 1)
2074                 return NULL;
2075         flush_cache_page(vma, addr, page_to_pfn(page));
2076         return page;
2077 }
2078 #endif /* CONFIG_ELF_CORE */
2079
2080 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2081                         spinlock_t **ptl)
2082 {
2083         pgd_t * pgd = pgd_offset(mm, addr);
2084         pud_t * pud = pud_alloc(mm, pgd, addr);
2085         if (pud) {
2086                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2087                 if (pmd) {
2088                         VM_BUG_ON(pmd_trans_huge(*pmd));
2089                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2090                 }
2091         }
2092         return NULL;
2093 }
2094
2095 /*
2096  * This is the old fallback for page remapping.
2097  *
2098  * For historical reasons, it only allows reserved pages. Only
2099  * old drivers should use this, and they needed to mark their
2100  * pages reserved for the old functions anyway.
2101  */
2102 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2103                         struct page *page, pgprot_t prot)
2104 {
2105         struct mm_struct *mm = vma->vm_mm;
2106         int retval;
2107         pte_t *pte;
2108         spinlock_t *ptl;
2109
2110         retval = -EINVAL;
2111         if (PageAnon(page))
2112                 goto out;
2113         retval = -ENOMEM;
2114         flush_dcache_page(page);
2115         pte = get_locked_pte(mm, addr, &ptl);
2116         if (!pte)
2117                 goto out;
2118         retval = -EBUSY;
2119         if (!pte_none(*pte))
2120                 goto out_unlock;
2121
2122         /* Ok, finally just insert the thing.. */
2123         get_page(page);
2124         inc_mm_counter_fast(mm, MM_FILEPAGES);
2125         page_add_file_rmap(page);
2126         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2127
2128         retval = 0;
2129         pte_unmap_unlock(pte, ptl);
2130         return retval;
2131 out_unlock:
2132         pte_unmap_unlock(pte, ptl);
2133 out:
2134         return retval;
2135 }
2136
2137 /**
2138  * vm_insert_page - insert single page into user vma
2139  * @vma: user vma to map to
2140  * @addr: target user address of this page
2141  * @page: source kernel page
2142  *
2143  * This allows drivers to insert individual pages they've allocated
2144  * into a user vma.
2145  *
2146  * The page has to be a nice clean _individual_ kernel allocation.
2147  * If you allocate a compound page, you need to have marked it as
2148  * such (__GFP_COMP), or manually just split the page up yourself
2149  * (see split_page()).
2150  *
2151  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2152  * took an arbitrary page protection parameter. This doesn't allow
2153  * that. Your vma protection will have to be set up correctly, which
2154  * means that if you want a shared writable mapping, you'd better
2155  * ask for a shared writable mapping!
2156  *
2157  * The page does not need to be reserved.
2158  *
2159  * Usually this function is called from f_op->mmap() handler
2160  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2161  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2162  * function from other places, for example from page-fault handler.
2163  */
2164 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2165                         struct page *page)
2166 {
2167         if (addr < vma->vm_start || addr >= vma->vm_end)
2168                 return -EFAULT;
2169         if (!page_count(page))
2170                 return -EINVAL;
2171         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2172                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2173                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2174                 vma->vm_flags |= VM_MIXEDMAP;
2175         }
2176         return insert_page(vma, addr, page, vma->vm_page_prot);
2177 }
2178 EXPORT_SYMBOL(vm_insert_page);
2179
2180 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2181                         unsigned long pfn, pgprot_t prot)
2182 {
2183         struct mm_struct *mm = vma->vm_mm;
2184         int retval;
2185         pte_t *pte, entry;
2186         spinlock_t *ptl;
2187
2188         retval = -ENOMEM;
2189         pte = get_locked_pte(mm, addr, &ptl);
2190         if (!pte)
2191                 goto out;
2192         retval = -EBUSY;
2193         if (!pte_none(*pte))
2194                 goto out_unlock;
2195
2196         /* Ok, finally just insert the thing.. */
2197         entry = pte_mkspecial(pfn_pte(pfn, prot));
2198         set_pte_at(mm, addr, pte, entry);
2199         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2200
2201         retval = 0;
2202 out_unlock:
2203         pte_unmap_unlock(pte, ptl);
2204 out:
2205         return retval;
2206 }
2207
2208 /**
2209  * vm_insert_pfn - insert single pfn into user vma
2210  * @vma: user vma to map to
2211  * @addr: target user address of this page
2212  * @pfn: source kernel pfn
2213  *
2214  * Similar to vm_insert_page, this allows drivers to insert individual pages
2215  * they've allocated into a user vma. Same comments apply.
2216  *
2217  * This function should only be called from a vm_ops->fault handler, and
2218  * in that case the handler should return NULL.
2219  *
2220  * vma cannot be a COW mapping.
2221  *
2222  * As this is called only for pages that do not currently exist, we
2223  * do not need to flush old virtual caches or the TLB.
2224  */
2225 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2226                         unsigned long pfn)
2227 {
2228         int ret;
2229         pgprot_t pgprot = vma->vm_page_prot;
2230         /*
2231          * Technically, architectures with pte_special can avoid all these
2232          * restrictions (same for remap_pfn_range).  However we would like
2233          * consistency in testing and feature parity among all, so we should
2234          * try to keep these invariants in place for everybody.
2235          */
2236         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2237         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2238                                                 (VM_PFNMAP|VM_MIXEDMAP));
2239         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2240         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2241
2242         if (addr < vma->vm_start || addr >= vma->vm_end)
2243                 return -EFAULT;
2244         if (track_pfn_insert(vma, &pgprot, pfn))
2245                 return -EINVAL;
2246
2247         ret = insert_pfn(vma, addr, pfn, pgprot);
2248
2249         return ret;
2250 }
2251 EXPORT_SYMBOL(vm_insert_pfn);
2252
2253 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2254                         unsigned long pfn)
2255 {
2256         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2257
2258         if (addr < vma->vm_start || addr >= vma->vm_end)
2259                 return -EFAULT;
2260
2261         /*
2262          * If we don't have pte special, then we have to use the pfn_valid()
2263          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2264          * refcount the page if pfn_valid is true (hence insert_page rather
2265          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2266          * without pte special, it would there be refcounted as a normal page.
2267          */
2268         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2269                 struct page *page;
2270
2271                 page = pfn_to_page(pfn);
2272                 return insert_page(vma, addr, page, vma->vm_page_prot);
2273         }
2274         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2275 }
2276 EXPORT_SYMBOL(vm_insert_mixed);
2277
2278 /*
2279  * maps a range of physical memory into the requested pages. the old
2280  * mappings are removed. any references to nonexistent pages results
2281  * in null mappings (currently treated as "copy-on-access")
2282  */
2283 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2284                         unsigned long addr, unsigned long end,
2285                         unsigned long pfn, pgprot_t prot)
2286 {
2287         pte_t *pte;
2288         spinlock_t *ptl;
2289
2290         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2291         if (!pte)
2292                 return -ENOMEM;
2293         arch_enter_lazy_mmu_mode();
2294         do {
2295                 BUG_ON(!pte_none(*pte));
2296                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2297                 pfn++;
2298         } while (pte++, addr += PAGE_SIZE, addr != end);
2299         arch_leave_lazy_mmu_mode();
2300         pte_unmap_unlock(pte - 1, ptl);
2301         return 0;
2302 }
2303
2304 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2305                         unsigned long addr, unsigned long end,
2306                         unsigned long pfn, pgprot_t prot)
2307 {
2308         pmd_t *pmd;
2309         unsigned long next;
2310
2311         pfn -= addr >> PAGE_SHIFT;
2312         pmd = pmd_alloc(mm, pud, addr);
2313         if (!pmd)
2314                 return -ENOMEM;
2315         VM_BUG_ON(pmd_trans_huge(*pmd));
2316         do {
2317                 next = pmd_addr_end(addr, end);
2318                 if (remap_pte_range(mm, pmd, addr, next,
2319                                 pfn + (addr >> PAGE_SHIFT), prot))
2320                         return -ENOMEM;
2321         } while (pmd++, addr = next, addr != end);
2322         return 0;
2323 }
2324
2325 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2326                         unsigned long addr, unsigned long end,
2327                         unsigned long pfn, pgprot_t prot)
2328 {
2329         pud_t *pud;
2330         unsigned long next;
2331
2332         pfn -= addr >> PAGE_SHIFT;
2333         pud = pud_alloc(mm, pgd, addr);
2334         if (!pud)
2335                 return -ENOMEM;
2336         do {
2337                 next = pud_addr_end(addr, end);
2338                 if (remap_pmd_range(mm, pud, addr, next,
2339                                 pfn + (addr >> PAGE_SHIFT), prot))
2340                         return -ENOMEM;
2341         } while (pud++, addr = next, addr != end);
2342         return 0;
2343 }
2344
2345 /**
2346  * remap_pfn_range - remap kernel memory to userspace
2347  * @vma: user vma to map to
2348  * @addr: target user address to start at
2349  * @pfn: physical address of kernel memory
2350  * @size: size of map area
2351  * @prot: page protection flags for this mapping
2352  *
2353  *  Note: this is only safe if the mm semaphore is held when called.
2354  */
2355 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2356                     unsigned long pfn, unsigned long size, pgprot_t prot)
2357 {
2358         pgd_t *pgd;
2359         unsigned long next;
2360         unsigned long end = addr + PAGE_ALIGN(size);
2361         struct mm_struct *mm = vma->vm_mm;
2362         int err;
2363
2364         /*
2365          * Physically remapped pages are special. Tell the
2366          * rest of the world about it:
2367          *   VM_IO tells people not to look at these pages
2368          *      (accesses can have side effects).
2369          *   VM_PFNMAP tells the core MM that the base pages are just
2370          *      raw PFN mappings, and do not have a "struct page" associated
2371          *      with them.
2372          *   VM_DONTEXPAND
2373          *      Disable vma merging and expanding with mremap().
2374          *   VM_DONTDUMP
2375          *      Omit vma from core dump, even when VM_IO turned off.
2376          *
2377          * There's a horrible special case to handle copy-on-write
2378          * behaviour that some programs depend on. We mark the "original"
2379          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2380          * See vm_normal_page() for details.
2381          */
2382         if (is_cow_mapping(vma->vm_flags)) {
2383                 if (addr != vma->vm_start || end != vma->vm_end)
2384                         return -EINVAL;
2385                 vma->vm_pgoff = pfn;
2386         }
2387
2388         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2389         if (err)
2390                 return -EINVAL;
2391
2392         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2393
2394         BUG_ON(addr >= end);
2395         pfn -= addr >> PAGE_SHIFT;
2396         pgd = pgd_offset(mm, addr);
2397         flush_cache_range(vma, addr, end);
2398         do {
2399                 next = pgd_addr_end(addr, end);
2400                 err = remap_pud_range(mm, pgd, addr, next,
2401                                 pfn + (addr >> PAGE_SHIFT), prot);
2402                 if (err)
2403                         break;
2404         } while (pgd++, addr = next, addr != end);
2405
2406         if (err)
2407                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2408
2409         return err;
2410 }
2411 EXPORT_SYMBOL(remap_pfn_range);
2412
2413 /**
2414  * vm_iomap_memory - remap memory to userspace
2415  * @vma: user vma to map to
2416  * @start: start of area
2417  * @len: size of area
2418  *
2419  * This is a simplified io_remap_pfn_range() for common driver use. The
2420  * driver just needs to give us the physical memory range to be mapped,
2421  * we'll figure out the rest from the vma information.
2422  *
2423  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2424  * whatever write-combining details or similar.
2425  */
2426 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2427 {
2428         unsigned long vm_len, pfn, pages;
2429
2430         /* Check that the physical memory area passed in looks valid */
2431         if (start + len < start)
2432                 return -EINVAL;
2433         /*
2434          * You *really* shouldn't map things that aren't page-aligned,
2435          * but we've historically allowed it because IO memory might
2436          * just have smaller alignment.
2437          */
2438         len += start & ~PAGE_MASK;
2439         pfn = start >> PAGE_SHIFT;
2440         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2441         if (pfn + pages < pfn)
2442                 return -EINVAL;
2443
2444         /* We start the mapping 'vm_pgoff' pages into the area */
2445         if (vma->vm_pgoff > pages)
2446                 return -EINVAL;
2447         pfn += vma->vm_pgoff;
2448         pages -= vma->vm_pgoff;
2449
2450         /* Can we fit all of the mapping? */
2451         vm_len = vma->vm_end - vma->vm_start;
2452         if (vm_len >> PAGE_SHIFT > pages)
2453                 return -EINVAL;
2454
2455         /* Ok, let it rip */
2456         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2457 }
2458 EXPORT_SYMBOL(vm_iomap_memory);
2459
2460 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2461                                      unsigned long addr, unsigned long end,
2462                                      pte_fn_t fn, void *data)
2463 {
2464         pte_t *pte;
2465         int err;
2466         pgtable_t token;
2467         spinlock_t *uninitialized_var(ptl);
2468
2469         pte = (mm == &init_mm) ?
2470                 pte_alloc_kernel(pmd, addr) :
2471                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2472         if (!pte)
2473                 return -ENOMEM;
2474
2475         BUG_ON(pmd_huge(*pmd));
2476
2477         arch_enter_lazy_mmu_mode();
2478
2479         token = pmd_pgtable(*pmd);
2480
2481         do {
2482                 err = fn(pte++, token, addr, data);
2483                 if (err)
2484                         break;
2485         } while (addr += PAGE_SIZE, addr != end);
2486
2487         arch_leave_lazy_mmu_mode();
2488
2489         if (mm != &init_mm)
2490                 pte_unmap_unlock(pte-1, ptl);
2491         return err;
2492 }
2493
2494 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2495                                      unsigned long addr, unsigned long end,
2496                                      pte_fn_t fn, void *data)
2497 {
2498         pmd_t *pmd;
2499         unsigned long next;
2500         int err;
2501
2502         BUG_ON(pud_huge(*pud));
2503
2504         pmd = pmd_alloc(mm, pud, addr);
2505         if (!pmd)
2506                 return -ENOMEM;
2507         do {
2508                 next = pmd_addr_end(addr, end);
2509                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2510                 if (err)
2511                         break;
2512         } while (pmd++, addr = next, addr != end);
2513         return err;
2514 }
2515
2516 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2517                                      unsigned long addr, unsigned long end,
2518                                      pte_fn_t fn, void *data)
2519 {
2520         pud_t *pud;
2521         unsigned long next;
2522         int err;
2523
2524         pud = pud_alloc(mm, pgd, addr);
2525         if (!pud)
2526                 return -ENOMEM;
2527         do {
2528                 next = pud_addr_end(addr, end);
2529                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2530                 if (err)
2531                         break;
2532         } while (pud++, addr = next, addr != end);
2533         return err;
2534 }
2535
2536 /*
2537  * Scan a region of virtual memory, filling in page tables as necessary
2538  * and calling a provided function on each leaf page table.
2539  */
2540 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2541                         unsigned long size, pte_fn_t fn, void *data)
2542 {
2543         pgd_t *pgd;
2544         unsigned long next;
2545         unsigned long end = addr + size;
2546         int err;
2547
2548         BUG_ON(addr >= end);
2549         pgd = pgd_offset(mm, addr);
2550         do {
2551                 next = pgd_addr_end(addr, end);
2552                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2553                 if (err)
2554                         break;
2555         } while (pgd++, addr = next, addr != end);
2556
2557         return err;
2558 }
2559 EXPORT_SYMBOL_GPL(apply_to_page_range);
2560
2561 /*
2562  * handle_pte_fault chooses page fault handler according to an entry
2563  * which was read non-atomically.  Before making any commitment, on
2564  * those architectures or configurations (e.g. i386 with PAE) which
2565  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2566  * must check under lock before unmapping the pte and proceeding
2567  * (but do_wp_page is only called after already making such a check;
2568  * and do_anonymous_page can safely check later on).
2569  */
2570 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2571                                 pte_t *page_table, pte_t orig_pte)
2572 {
2573         int same = 1;
2574 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2575         if (sizeof(pte_t) > sizeof(unsigned long)) {
2576                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2577                 spin_lock(ptl);
2578                 same = pte_same(*page_table, orig_pte);
2579                 spin_unlock(ptl);
2580         }
2581 #endif
2582         pte_unmap(page_table);
2583         return same;
2584 }
2585
2586 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2587 {
2588         debug_dma_assert_idle(src);
2589
2590         /*
2591          * If the source page was a PFN mapping, we don't have
2592          * a "struct page" for it. We do a best-effort copy by
2593          * just copying from the original user address. If that
2594          * fails, we just zero-fill it. Live with it.
2595          */
2596         if (unlikely(!src)) {
2597                 void *kaddr = kmap_atomic(dst);
2598                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2599
2600                 /*
2601                  * This really shouldn't fail, because the page is there
2602                  * in the page tables. But it might just be unreadable,
2603                  * in which case we just give up and fill the result with
2604                  * zeroes.
2605                  */
2606                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2607                         clear_page(kaddr);
2608                 kunmap_atomic(kaddr);
2609                 flush_dcache_page(dst);
2610         } else
2611                 copy_user_highpage(dst, src, va, vma);
2612 }
2613
2614 /*
2615  * Notify the address space that the page is about to become writable so that
2616  * it can prohibit this or wait for the page to get into an appropriate state.
2617  *
2618  * We do this without the lock held, so that it can sleep if it needs to.
2619  */
2620 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2621                unsigned long address)
2622 {
2623         struct vm_fault vmf;
2624         int ret;
2625
2626         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2627         vmf.pgoff = page->index;
2628         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2629         vmf.page = page;
2630
2631         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2632         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2633                 return ret;
2634         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2635                 lock_page(page);
2636                 if (!page->mapping) {
2637                         unlock_page(page);
2638                         return 0; /* retry */
2639                 }
2640                 ret |= VM_FAULT_LOCKED;
2641         } else
2642                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2643         return ret;
2644 }
2645
2646 /*
2647  * This routine handles present pages, when users try to write
2648  * to a shared page. It is done by copying the page to a new address
2649  * and decrementing the shared-page counter for the old page.
2650  *
2651  * Note that this routine assumes that the protection checks have been
2652  * done by the caller (the low-level page fault routine in most cases).
2653  * Thus we can safely just mark it writable once we've done any necessary
2654  * COW.
2655  *
2656  * We also mark the page dirty at this point even though the page will
2657  * change only once the write actually happens. This avoids a few races,
2658  * and potentially makes it more efficient.
2659  *
2660  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2661  * but allow concurrent faults), with pte both mapped and locked.
2662  * We return with mmap_sem still held, but pte unmapped and unlocked.
2663  */
2664 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2665                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2666                 spinlock_t *ptl, pte_t orig_pte)
2667         __releases(ptl)
2668 {
2669         struct page *old_page, *new_page = NULL;
2670         pte_t entry;
2671         int ret = 0;
2672         int page_mkwrite = 0;
2673         struct page *dirty_page = NULL;
2674         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2675         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2676
2677         old_page = vm_normal_page(vma, address, orig_pte);
2678         if (!old_page) {
2679                 /*
2680                  * VM_MIXEDMAP !pfn_valid() case
2681                  *
2682                  * We should not cow pages in a shared writeable mapping.
2683                  * Just mark the pages writable as we can't do any dirty
2684                  * accounting on raw pfn maps.
2685                  */
2686                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2687                                      (VM_WRITE|VM_SHARED))
2688                         goto reuse;
2689                 goto gotten;
2690         }
2691
2692         /*
2693          * Take out anonymous pages first, anonymous shared vmas are
2694          * not dirty accountable.
2695          */
2696         if (PageAnon(old_page) && !PageKsm(old_page)) {
2697                 if (!trylock_page(old_page)) {
2698                         page_cache_get(old_page);
2699                         pte_unmap_unlock(page_table, ptl);
2700                         lock_page(old_page);
2701                         page_table = pte_offset_map_lock(mm, pmd, address,
2702                                                          &ptl);
2703                         if (!pte_same(*page_table, orig_pte)) {
2704                                 unlock_page(old_page);
2705                                 goto unlock;
2706                         }
2707                         page_cache_release(old_page);
2708                 }
2709                 if (reuse_swap_page(old_page)) {
2710                         /*
2711                          * The page is all ours.  Move it to our anon_vma so
2712                          * the rmap code will not search our parent or siblings.
2713                          * Protected against the rmap code by the page lock.
2714                          */
2715                         page_move_anon_rmap(old_page, vma, address);
2716                         unlock_page(old_page);
2717                         goto reuse;
2718                 }
2719                 unlock_page(old_page);
2720         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2721                                         (VM_WRITE|VM_SHARED))) {
2722                 /*
2723                  * Only catch write-faults on shared writable pages,
2724                  * read-only shared pages can get COWed by
2725                  * get_user_pages(.write=1, .force=1).
2726                  */
2727                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2728                         int tmp;
2729                         page_cache_get(old_page);
2730                         pte_unmap_unlock(page_table, ptl);
2731                         tmp = do_page_mkwrite(vma, old_page, address);
2732                         if (unlikely(!tmp || (tmp &
2733                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2734                                 page_cache_release(old_page);
2735                                 return tmp;
2736                         }
2737                         /*
2738                          * Since we dropped the lock we need to revalidate
2739                          * the PTE as someone else may have changed it.  If
2740                          * they did, we just return, as we can count on the
2741                          * MMU to tell us if they didn't also make it writable.
2742                          */
2743                         page_table = pte_offset_map_lock(mm, pmd, address,
2744                                                          &ptl);
2745                         if (!pte_same(*page_table, orig_pte)) {
2746                                 unlock_page(old_page);
2747                                 goto unlock;
2748                         }
2749
2750                         page_mkwrite = 1;
2751                 }
2752                 dirty_page = old_page;
2753                 get_page(dirty_page);
2754
2755 reuse:
2756                 /*
2757                  * Clear the pages cpupid information as the existing
2758                  * information potentially belongs to a now completely
2759                  * unrelated process.
2760                  */
2761                 if (old_page)
2762                         page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2763
2764                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2765                 entry = pte_mkyoung(orig_pte);
2766                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2767                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2768                         update_mmu_cache(vma, address, page_table);
2769                 pte_unmap_unlock(page_table, ptl);
2770                 ret |= VM_FAULT_WRITE;
2771
2772                 if (!dirty_page)
2773                         return ret;
2774
2775                 /*
2776                  * Yes, Virginia, this is actually required to prevent a race
2777                  * with clear_page_dirty_for_io() from clearing the page dirty
2778                  * bit after it clear all dirty ptes, but before a racing
2779                  * do_wp_page installs a dirty pte.
2780                  *
2781                  * do_shared_fault is protected similarly.
2782                  */
2783                 if (!page_mkwrite) {
2784                         wait_on_page_locked(dirty_page);
2785                         set_page_dirty_balance(dirty_page);
2786                         /* file_update_time outside page_lock */
2787                         if (vma->vm_file)
2788                                 file_update_time(vma->vm_file);
2789                 }
2790                 put_page(dirty_page);
2791                 if (page_mkwrite) {
2792                         struct address_space *mapping = dirty_page->mapping;
2793
2794                         set_page_dirty(dirty_page);
2795                         unlock_page(dirty_page);
2796                         page_cache_release(dirty_page);
2797                         if (mapping)    {
2798                                 /*
2799                                  * Some device drivers do not set page.mapping
2800                                  * but still dirty their pages
2801                                  */
2802                                 balance_dirty_pages_ratelimited(mapping);
2803                         }
2804                 }
2805
2806                 return ret;
2807         }
2808
2809         /*
2810          * Ok, we need to copy. Oh, well..
2811          */
2812         page_cache_get(old_page);
2813 gotten:
2814         pte_unmap_unlock(page_table, ptl);
2815
2816         if (unlikely(anon_vma_prepare(vma)))
2817                 goto oom;
2818
2819         if (is_zero_pfn(pte_pfn(orig_pte))) {
2820                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2821                 if (!new_page)
2822                         goto oom;
2823         } else {
2824                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2825                 if (!new_page)
2826                         goto oom;
2827                 cow_user_page(new_page, old_page, address, vma);
2828         }
2829         __SetPageUptodate(new_page);
2830
2831         if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
2832                 goto oom_free_new;
2833
2834         mmun_start  = address & PAGE_MASK;
2835         mmun_end    = mmun_start + PAGE_SIZE;
2836         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2837
2838         /*
2839          * Re-check the pte - we dropped the lock
2840          */
2841         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2842         if (likely(pte_same(*page_table, orig_pte))) {
2843                 if (old_page) {
2844                         if (!PageAnon(old_page)) {
2845                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2846                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2847                         }
2848                 } else
2849                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2850                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2851                 entry = mk_pte(new_page, vma->vm_page_prot);
2852                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2853                 /*
2854                  * Clear the pte entry and flush it first, before updating the
2855                  * pte with the new entry. This will avoid a race condition
2856                  * seen in the presence of one thread doing SMC and another
2857                  * thread doing COW.
2858                  */
2859                 ptep_clear_flush(vma, address, page_table);
2860                 page_add_new_anon_rmap(new_page, vma, address);
2861                 /*
2862                  * We call the notify macro here because, when using secondary
2863                  * mmu page tables (such as kvm shadow page tables), we want the
2864                  * new page to be mapped directly into the secondary page table.
2865                  */
2866                 set_pte_at_notify(mm, address, page_table, entry);
2867                 update_mmu_cache(vma, address, page_table);
2868                 if (old_page) {
2869                         /*
2870                          * Only after switching the pte to the new page may
2871                          * we remove the mapcount here. Otherwise another
2872                          * process may come and find the rmap count decremented
2873                          * before the pte is switched to the new page, and
2874                          * "reuse" the old page writing into it while our pte
2875                          * here still points into it and can be read by other
2876                          * threads.
2877                          *
2878                          * The critical issue is to order this
2879                          * page_remove_rmap with the ptp_clear_flush above.
2880                          * Those stores are ordered by (if nothing else,)
2881                          * the barrier present in the atomic_add_negative
2882                          * in page_remove_rmap.
2883                          *
2884                          * Then the TLB flush in ptep_clear_flush ensures that
2885                          * no process can access the old page before the
2886                          * decremented mapcount is visible. And the old page
2887                          * cannot be reused until after the decremented
2888                          * mapcount is visible. So transitively, TLBs to
2889                          * old page will be flushed before it can be reused.
2890                          */
2891                         page_remove_rmap(old_page);
2892                 }
2893
2894                 /* Free the old page.. */
2895                 new_page = old_page;
2896                 ret |= VM_FAULT_WRITE;
2897         } else
2898                 mem_cgroup_uncharge_page(new_page);
2899
2900         if (new_page)
2901                 page_cache_release(new_page);
2902 unlock:
2903         pte_unmap_unlock(page_table, ptl);
2904         if (mmun_end > mmun_start)
2905                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2906         if (old_page) {
2907                 /*
2908                  * Don't let another task, with possibly unlocked vma,
2909                  * keep the mlocked page.
2910                  */
2911                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2912                         lock_page(old_page);    /* LRU manipulation */
2913                         munlock_vma_page(old_page);
2914                         unlock_page(old_page);
2915                 }
2916                 page_cache_release(old_page);
2917         }
2918         return ret;
2919 oom_free_new:
2920         page_cache_release(new_page);
2921 oom:
2922         if (old_page)
2923                 page_cache_release(old_page);
2924         return VM_FAULT_OOM;
2925 }
2926
2927 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2928                 unsigned long start_addr, unsigned long end_addr,
2929                 struct zap_details *details)
2930 {
2931         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2932 }
2933
2934 static inline void unmap_mapping_range_tree(struct rb_root *root,
2935                                             struct zap_details *details)
2936 {
2937         struct vm_area_struct *vma;
2938         pgoff_t vba, vea, zba, zea;
2939
2940         vma_interval_tree_foreach(vma, root,
2941                         details->first_index, details->last_index) {
2942
2943                 vba = vma->vm_pgoff;
2944                 vea = vba + vma_pages(vma) - 1;
2945                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2946                 zba = details->first_index;
2947                 if (zba < vba)
2948                         zba = vba;
2949                 zea = details->last_index;
2950                 if (zea > vea)
2951                         zea = vea;
2952
2953                 unmap_mapping_range_vma(vma,
2954                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2955                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2956                                 details);
2957         }
2958 }
2959
2960 static inline void unmap_mapping_range_list(struct list_head *head,
2961                                             struct zap_details *details)
2962 {
2963         struct vm_area_struct *vma;
2964
2965         /*
2966          * In nonlinear VMAs there is no correspondence between virtual address
2967          * offset and file offset.  So we must perform an exhaustive search
2968          * across *all* the pages in each nonlinear VMA, not just the pages
2969          * whose virtual address lies outside the file truncation point.
2970          */
2971         list_for_each_entry(vma, head, shared.nonlinear) {
2972                 details->nonlinear_vma = vma;
2973                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2974         }
2975 }
2976
2977 /**
2978  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2979  * @mapping: the address space containing mmaps to be unmapped.
2980  * @holebegin: byte in first page to unmap, relative to the start of
2981  * the underlying file.  This will be rounded down to a PAGE_SIZE
2982  * boundary.  Note that this is different from truncate_pagecache(), which
2983  * must keep the partial page.  In contrast, we must get rid of
2984  * partial pages.
2985  * @holelen: size of prospective hole in bytes.  This will be rounded
2986  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2987  * end of the file.
2988  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2989  * but 0 when invalidating pagecache, don't throw away private data.
2990  */
2991 void unmap_mapping_range(struct address_space *mapping,
2992                 loff_t const holebegin, loff_t const holelen, int even_cows)
2993 {
2994         struct zap_details details;
2995         pgoff_t hba = holebegin >> PAGE_SHIFT;
2996         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2997
2998         /* Check for overflow. */
2999         if (sizeof(holelen) > sizeof(hlen)) {
3000                 long long holeend =
3001                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3002                 if (holeend & ~(long long)ULONG_MAX)
3003                         hlen = ULONG_MAX - hba + 1;
3004         }
3005
3006         details.check_mapping = even_cows? NULL: mapping;
3007         details.nonlinear_vma = NULL;
3008         details.first_index = hba;
3009         details.last_index = hba + hlen - 1;
3010         if (details.last_index < details.first_index)
3011                 details.last_index = ULONG_MAX;
3012
3013
3014         mutex_lock(&mapping->i_mmap_mutex);
3015         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
3016                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3017         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
3018                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3019         mutex_unlock(&mapping->i_mmap_mutex);
3020 }
3021 EXPORT_SYMBOL(unmap_mapping_range);
3022
3023 /*
3024  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3025  * but allow concurrent faults), and pte mapped but not yet locked.
3026  * We return with mmap_sem still held, but pte unmapped and unlocked.
3027  */
3028 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3029                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3030                 unsigned int flags, pte_t orig_pte)
3031 {
3032         spinlock_t *ptl;
3033         struct page *page, *swapcache;
3034         swp_entry_t entry;
3035         pte_t pte;
3036         int locked;
3037         struct mem_cgroup *ptr;
3038         int exclusive = 0;
3039         int ret = 0;
3040
3041         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3042                 goto out;
3043
3044         entry = pte_to_swp_entry(orig_pte);
3045         if (unlikely(non_swap_entry(entry))) {
3046                 if (is_migration_entry(entry)) {
3047                         migration_entry_wait(mm, pmd, address);
3048                 } else if (is_hwpoison_entry(entry)) {
3049                         ret = VM_FAULT_HWPOISON;
3050                 } else {
3051                         print_bad_pte(vma, address, orig_pte, NULL);
3052                         ret = VM_FAULT_SIGBUS;
3053                 }
3054                 goto out;
3055         }
3056         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3057         page = lookup_swap_cache(entry);
3058         if (!page) {
3059                 page = swapin_readahead(entry,
3060                                         GFP_HIGHUSER_MOVABLE, vma, address);
3061                 if (!page) {
3062                         /*
3063                          * Back out if somebody else faulted in this pte
3064                          * while we released the pte lock.
3065                          */
3066                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3067                         if (likely(pte_same(*page_table, orig_pte)))
3068                                 ret = VM_FAULT_OOM;
3069                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3070                         goto unlock;
3071                 }
3072
3073                 /* Had to read the page from swap area: Major fault */
3074                 ret = VM_FAULT_MAJOR;
3075                 count_vm_event(PGMAJFAULT);
3076                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3077         } else if (PageHWPoison(page)) {
3078                 /*
3079                  * hwpoisoned dirty swapcache pages are kept for killing
3080                  * owner processes (which may be unknown at hwpoison time)
3081                  */
3082                 ret = VM_FAULT_HWPOISON;
3083                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3084                 swapcache = page;
3085                 goto out_release;
3086         }
3087
3088         swapcache = page;
3089         locked = lock_page_or_retry(page, mm, flags);
3090
3091         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3092         if (!locked) {
3093                 ret |= VM_FAULT_RETRY;
3094                 goto out_release;
3095         }
3096
3097         /*
3098          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3099          * release the swapcache from under us.  The page pin, and pte_same
3100          * test below, are not enough to exclude that.  Even if it is still
3101          * swapcache, we need to check that the page's swap has not changed.
3102          */
3103         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3104                 goto out_page;
3105
3106         page = ksm_might_need_to_copy(page, vma, address);
3107         if (unlikely(!page)) {
3108                 ret = VM_FAULT_OOM;
3109                 page = swapcache;
3110                 goto out_page;
3111         }
3112
3113         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3114                 ret = VM_FAULT_OOM;
3115                 goto out_page;
3116         }
3117
3118         /*
3119          * Back out if somebody else already faulted in this pte.
3120          */
3121         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3122         if (unlikely(!pte_same(*page_table, orig_pte)))
3123                 goto out_nomap;
3124
3125         if (unlikely(!PageUptodate(page))) {
3126                 ret = VM_FAULT_SIGBUS;
3127                 goto out_nomap;
3128         }
3129
3130         /*
3131          * The page isn't present yet, go ahead with the fault.
3132          *
3133          * Be careful about the sequence of operations here.
3134          * To get its accounting right, reuse_swap_page() must be called
3135          * while the page is counted on swap but not yet in mapcount i.e.
3136          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3137          * must be called after the swap_free(), or it will never succeed.
3138          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3139          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3140          * in page->private. In this case, a record in swap_cgroup  is silently
3141          * discarded at swap_free().
3142          */
3143
3144         inc_mm_counter_fast(mm, MM_ANONPAGES);
3145         dec_mm_counter_fast(mm, MM_SWAPENTS);
3146         pte = mk_pte(page, vma->vm_page_prot);
3147         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3148                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3149                 flags &= ~FAULT_FLAG_WRITE;
3150                 ret |= VM_FAULT_WRITE;
3151                 exclusive = 1;
3152         }
3153         flush_icache_page(vma, page);
3154         if (pte_swp_soft_dirty(orig_pte))
3155                 pte = pte_mksoft_dirty(pte);
3156         set_pte_at(mm, address, page_table, pte);
3157         if (page == swapcache)
3158                 do_page_add_anon_rmap(page, vma, address, exclusive);
3159         else /* ksm created a completely new copy */
3160                 page_add_new_anon_rmap(page, vma, address);
3161         /* It's better to call commit-charge after rmap is established */
3162         mem_cgroup_commit_charge_swapin(page, ptr);
3163
3164         swap_free(entry);
3165         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3166                 try_to_free_swap(page);
3167         unlock_page(page);
3168         if (page != swapcache) {
3169                 /*
3170                  * Hold the lock to avoid the swap entry to be reused
3171                  * until we take the PT lock for the pte_same() check
3172                  * (to avoid false positives from pte_same). For
3173                  * further safety release the lock after the swap_free
3174                  * so that the swap count won't change under a
3175                  * parallel locked swapcache.
3176                  */
3177                 unlock_page(swapcache);
3178                 page_cache_release(swapcache);
3179         }
3180
3181         if (flags & FAULT_FLAG_WRITE) {
3182                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3183                 if (ret & VM_FAULT_ERROR)
3184                         ret &= VM_FAULT_ERROR;
3185                 goto out;
3186         }
3187
3188         /* No need to invalidate - it was non-present before */
3189         update_mmu_cache(vma, address, page_table);
3190 unlock:
3191         pte_unmap_unlock(page_table, ptl);
3192 out:
3193         return ret;
3194 out_nomap:
3195         mem_cgroup_cancel_charge_swapin(ptr);
3196         pte_unmap_unlock(page_table, ptl);
3197 out_page:
3198         unlock_page(page);
3199 out_release:
3200         page_cache_release(page);
3201         if (page != swapcache) {
3202                 unlock_page(swapcache);
3203                 page_cache_release(swapcache);
3204         }
3205         return ret;
3206 }
3207
3208 /*
3209  * This is like a special single-page "expand_{down|up}wards()",
3210  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3211  * doesn't hit another vma.
3212  */
3213 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3214 {
3215         address &= PAGE_MASK;
3216         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3217                 struct vm_area_struct *prev = vma->vm_prev;
3218
3219                 /*
3220                  * Is there a mapping abutting this one below?
3221                  *
3222                  * That's only ok if it's the same stack mapping
3223                  * that has gotten split..
3224                  */
3225                 if (prev && prev->vm_end == address)
3226                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3227
3228                 expand_downwards(vma, address - PAGE_SIZE);
3229         }
3230         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3231                 struct vm_area_struct *next = vma->vm_next;
3232
3233                 /* As VM_GROWSDOWN but s/below/above/ */
3234                 if (next && next->vm_start == address + PAGE_SIZE)
3235                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3236
3237                 expand_upwards(vma, address + PAGE_SIZE);
3238         }
3239         return 0;
3240 }
3241
3242 /*
3243  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3244  * but allow concurrent faults), and pte mapped but not yet locked.
3245  * We return with mmap_sem still held, but pte unmapped and unlocked.
3246  */
3247 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3248                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3249                 unsigned int flags)
3250 {
3251         struct page *page;
3252         spinlock_t *ptl;
3253         pte_t entry;
3254
3255         pte_unmap(page_table);
3256
3257         /* Check if we need to add a guard page to the stack */
3258         if (check_stack_guard_page(vma, address) < 0)
3259                 return VM_FAULT_SIGBUS;
3260
3261         /* Use the zero-page for reads */
3262         if (!(flags & FAULT_FLAG_WRITE)) {
3263                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3264                                                 vma->vm_page_prot));
3265                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3266                 if (!pte_none(*page_table))
3267                         goto unlock;
3268                 goto setpte;
3269         }
3270
3271         /* Allocate our own private page. */
3272         if (unlikely(anon_vma_prepare(vma)))
3273                 goto oom;
3274         page = alloc_zeroed_user_highpage_movable(vma, address);
3275         if (!page)
3276                 goto oom;
3277         /*
3278          * The memory barrier inside __SetPageUptodate makes sure that
3279          * preceeding stores to the page contents become visible before
3280          * the set_pte_at() write.
3281          */
3282         __SetPageUptodate(page);
3283
3284         if (mem_cgroup_charge_anon(page, mm, GFP_KERNEL))
3285                 goto oom_free_page;
3286
3287         entry = mk_pte(page, vma->vm_page_prot);
3288         if (vma->vm_flags & VM_WRITE)
3289                 entry = pte_mkwrite(pte_mkdirty(entry));
3290
3291         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3292         if (!pte_none(*page_table))
3293                 goto release;
3294
3295         inc_mm_counter_fast(mm, MM_ANONPAGES);
3296         page_add_new_anon_rmap(page, vma, address);
3297 setpte:
3298         set_pte_at(mm, address, page_table, entry);
3299
3300         /* No need to invalidate - it was non-present before */
3301         update_mmu_cache(vma, address, page_table);
3302 unlock:
3303         pte_unmap_unlock(page_table, ptl);
3304         return 0;
3305 release:
3306         mem_cgroup_uncharge_page(page);
3307         page_cache_release(page);
3308         goto unlock;
3309 oom_free_page:
3310         page_cache_release(page);
3311 oom:
3312         return VM_FAULT_OOM;
3313 }
3314
3315 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
3316                 pgoff_t pgoff, unsigned int flags, struct page **page)
3317 {
3318         struct vm_fault vmf;
3319         int ret;
3320
3321         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3322         vmf.pgoff = pgoff;
3323         vmf.flags = flags;
3324         vmf.page = NULL;
3325
3326         ret = vma->vm_ops->fault(vma, &vmf);
3327         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3328                 return ret;
3329
3330         if (unlikely(PageHWPoison(vmf.page))) {
3331                 if (ret & VM_FAULT_LOCKED)
3332                         unlock_page(vmf.page);
3333                 page_cache_release(vmf.page);
3334                 return VM_FAULT_HWPOISON;
3335         }
3336
3337         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3338                 lock_page(vmf.page);
3339         else
3340                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
3341
3342         *page = vmf.page;
3343         return ret;
3344 }
3345
3346 /**
3347  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
3348  *
3349  * @vma: virtual memory area
3350  * @address: user virtual address
3351  * @page: page to map
3352  * @pte: pointer to target page table entry
3353  * @write: true, if new entry is writable
3354  * @anon: true, if it's anonymous page
3355  *
3356  * Caller must hold page table lock relevant for @pte.
3357  *
3358  * Target users are page handler itself and implementations of
3359  * vm_ops->map_pages.
3360  */
3361 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3362                 struct page *page, pte_t *pte, bool write, bool anon)
3363 {
3364         pte_t entry;
3365
3366         flush_icache_page(vma, page);
3367         entry = mk_pte(page, vma->vm_page_prot);
3368         if (write)
3369                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3370         else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
3371                 pte_mksoft_dirty(entry);
3372         if (anon) {
3373                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3374                 page_add_new_anon_rmap(page, vma, address);
3375         } else {
3376                 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
3377                 page_add_file_rmap(page);
3378         }
3379         set_pte_at(vma->vm_mm, address, pte, entry);
3380
3381         /* no need to invalidate: a not-present page won't be cached */
3382         update_mmu_cache(vma, address, pte);
3383 }
3384
3385 #define FAULT_AROUND_ORDER 4
3386
3387 #ifdef CONFIG_DEBUG_FS
3388 static unsigned int fault_around_order = FAULT_AROUND_ORDER;
3389
3390 static int fault_around_order_get(void *data, u64 *val)
3391 {
3392         *val = fault_around_order;
3393         return 0;
3394 }
3395
3396 static int fault_around_order_set(void *data, u64 val)
3397 {
3398         BUILD_BUG_ON((1UL << FAULT_AROUND_ORDER) > PTRS_PER_PTE);
3399         if (1UL << val > PTRS_PER_PTE)
3400                 return -EINVAL;
3401         fault_around_order = val;
3402         return 0;
3403 }
3404 DEFINE_SIMPLE_ATTRIBUTE(fault_around_order_fops,
3405                 fault_around_order_get, fault_around_order_set, "%llu\n");
3406
3407 static int __init fault_around_debugfs(void)
3408 {
3409         void *ret;
3410
3411         ret = debugfs_create_file("fault_around_order", 0644, NULL, NULL,
3412                         &fault_around_order_fops);
3413         if (!ret)
3414                 pr_warn("Failed to create fault_around_order in debugfs");
3415         return 0;
3416 }
3417 late_initcall(fault_around_debugfs);
3418
3419 static inline unsigned long fault_around_pages(void)
3420 {
3421         return 1UL << fault_around_order;
3422 }
3423
3424 static inline unsigned long fault_around_mask(void)
3425 {
3426         return ~((1UL << (PAGE_SHIFT + fault_around_order)) - 1);
3427 }
3428 #else
3429 static inline unsigned long fault_around_pages(void)
3430 {
3431         unsigned long nr_pages;
3432
3433         nr_pages = 1UL << FAULT_AROUND_ORDER;
3434         BUILD_BUG_ON(nr_pages > PTRS_PER_PTE);
3435         return nr_pages;
3436 }
3437
3438 static inline unsigned long fault_around_mask(void)
3439 {
3440         return ~((1UL << (PAGE_SHIFT + FAULT_AROUND_ORDER)) - 1);
3441 }
3442 #endif
3443
3444 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
3445                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
3446 {
3447         unsigned long start_addr;
3448         pgoff_t max_pgoff;
3449         struct vm_fault vmf;
3450         int off;
3451
3452         start_addr = max(address & fault_around_mask(), vma->vm_start);
3453         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3454         pte -= off;
3455         pgoff -= off;
3456
3457         /*
3458          *  max_pgoff is either end of page table or end of vma
3459          *  or fault_around_pages() from pgoff, depending what is neast.
3460          */
3461         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3462                 PTRS_PER_PTE - 1;
3463         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
3464                         pgoff + fault_around_pages() - 1);
3465
3466         /* Check if it makes any sense to call ->map_pages */
3467         while (!pte_none(*pte)) {
3468                 if (++pgoff > max_pgoff)
3469                         return;
3470                 start_addr += PAGE_SIZE;
3471                 if (start_addr >= vma->vm_end)
3472                         return;
3473                 pte++;
3474         }
3475
3476         vmf.virtual_address = (void __user *) start_addr;
3477         vmf.pte = pte;
3478         vmf.pgoff = pgoff;
3479         vmf.max_pgoff = max_pgoff;
3480         vmf.flags = flags;
3481         vma->vm_ops->map_pages(vma, &vmf);
3482 }
3483
3484 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3485                 unsigned long address, pmd_t *pmd,
3486                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3487 {
3488         struct page *fault_page;
3489         spinlock_t *ptl;
3490         pte_t *pte;
3491         int ret = 0;
3492
3493         /*
3494          * Let's call ->map_pages() first and use ->fault() as fallback
3495          * if page by the offset is not ready to be mapped (cold cache or
3496          * something).
3497          */
3498         if (vma->vm_ops->map_pages) {
3499                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3500                 do_fault_around(vma, address, pte, pgoff, flags);
3501                 if (!pte_same(*pte, orig_pte))
3502                         goto unlock_out;
3503                 pte_unmap_unlock(pte, ptl);
3504         }
3505
3506         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3507         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3508                 return ret;
3509
3510         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3511         if (unlikely(!pte_same(*pte, orig_pte))) {
3512                 pte_unmap_unlock(pte, ptl);
3513                 unlock_page(fault_page);
3514                 page_cache_release(fault_page);
3515                 return ret;
3516         }
3517         do_set_pte(vma, address, fault_page, pte, false, false);
3518         unlock_page(fault_page);
3519 unlock_out:
3520         pte_unmap_unlock(pte, ptl);
3521         return ret;
3522 }
3523
3524 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3525                 unsigned long address, pmd_t *pmd,
3526                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3527 {
3528         struct page *fault_page, *new_page;
3529         spinlock_t *ptl;
3530         pte_t *pte;
3531         int ret;
3532
3533         if (unlikely(anon_vma_prepare(vma)))
3534                 return VM_FAULT_OOM;
3535
3536         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3537         if (!new_page)
3538                 return VM_FAULT_OOM;
3539
3540         if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)) {
3541                 page_cache_release(new_page);
3542                 return VM_FAULT_OOM;
3543         }
3544
3545         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3546         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3547                 goto uncharge_out;
3548
3549         copy_user_highpage(new_page, fault_page, address, vma);
3550         __SetPageUptodate(new_page);
3551
3552         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3553         if (unlikely(!pte_same(*pte, orig_pte))) {
3554                 pte_unmap_unlock(pte, ptl);
3555                 unlock_page(fault_page);
3556                 page_cache_release(fault_page);
3557                 goto uncharge_out;
3558         }
3559         do_set_pte(vma, address, new_page, pte, true, true);
3560         pte_unmap_unlock(pte, ptl);
3561         unlock_page(fault_page);
3562         page_cache_release(fault_page);
3563         return ret;
3564 uncharge_out:
3565         mem_cgroup_uncharge_page(new_page);
3566         page_cache_release(new_page);
3567         return ret;
3568 }
3569
3570 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3571                 unsigned long address, pmd_t *pmd,
3572                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3573 {
3574         struct page *fault_page;
3575         struct address_space *mapping;
3576         spinlock_t *ptl;
3577         pte_t *pte;
3578         int dirtied = 0;
3579         int ret, tmp;
3580
3581         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3582         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3583                 return ret;
3584
3585         /*
3586          * Check if the backing address space wants to know that the page is
3587          * about to become writable
3588          */
3589         if (vma->vm_ops->page_mkwrite) {
3590                 unlock_page(fault_page);
3591                 tmp = do_page_mkwrite(vma, fault_page, address);
3592                 if (unlikely(!tmp ||
3593                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3594                         page_cache_release(fault_page);
3595                         return tmp;
3596                 }
3597         }
3598
3599         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3600         if (unlikely(!pte_same(*pte, orig_pte))) {
3601                 pte_unmap_unlock(pte, ptl);
3602                 unlock_page(fault_page);
3603                 page_cache_release(fault_page);
3604                 return ret;
3605         }
3606         do_set_pte(vma, address, fault_page, pte, true, false);
3607         pte_unmap_unlock(pte, ptl);
3608
3609         if (set_page_dirty(fault_page))
3610                 dirtied = 1;
3611         mapping = fault_page->mapping;
3612         unlock_page(fault_page);
3613         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3614                 /*
3615                  * Some device drivers do not set page.mapping but still
3616                  * dirty their pages
3617                  */
3618                 balance_dirty_pages_ratelimited(mapping);
3619         }
3620
3621         /* file_update_time outside page_lock */
3622         if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3623                 file_update_time(vma->vm_file);
3624
3625         return ret;
3626 }
3627
3628 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3629                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3630                 unsigned int flags, pte_t orig_pte)
3631 {
3632         pgoff_t pgoff = (((address & PAGE_MASK)
3633                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3634
3635         pte_unmap(page_table);
3636         if (!(flags & FAULT_FLAG_WRITE))
3637                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3638                                 orig_pte);
3639         if (!(vma->vm_flags & VM_SHARED))
3640                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3641                                 orig_pte);
3642         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3643 }
3644
3645 /*
3646  * Fault of a previously existing named mapping. Repopulate the pte
3647  * from the encoded file_pte if possible. This enables swappable
3648  * nonlinear vmas.
3649  *
3650  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3651  * but allow concurrent faults), and pte mapped but not yet locked.
3652  * We return with mmap_sem still held, but pte unmapped and unlocked.
3653  */
3654 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3655                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3656                 unsigned int flags, pte_t orig_pte)
3657 {
3658         pgoff_t pgoff;
3659
3660         flags |= FAULT_FLAG_NONLINEAR;
3661
3662         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3663                 return 0;
3664
3665         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3666                 /*
3667                  * Page table corrupted: show pte and kill process.
3668                  */
3669                 print_bad_pte(vma, address, orig_pte, NULL);
3670                 return VM_FAULT_SIGBUS;
3671         }
3672
3673         pgoff = pte_to_pgoff(orig_pte);
3674         if (!(flags & FAULT_FLAG_WRITE))
3675                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3676                                 orig_pte);
3677         if (!(vma->vm_flags & VM_SHARED))
3678                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3679                                 orig_pte);
3680         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3681 }
3682
3683 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3684                                 unsigned long addr, int page_nid,
3685                                 int *flags)
3686 {
3687         get_page(page);
3688
3689         count_vm_numa_event(NUMA_HINT_FAULTS);
3690         if (page_nid == numa_node_id()) {
3691                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3692                 *flags |= TNF_FAULT_LOCAL;
3693         }
3694
3695         return mpol_misplaced(page, vma, addr);
3696 }
3697
3698 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3699                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3700 {
3701         struct page *page = NULL;
3702         spinlock_t *ptl;
3703         int page_nid = -1;
3704         int last_cpupid;
3705         int target_nid;
3706         bool migrated = false;
3707         int flags = 0;
3708
3709         /*
3710         * The "pte" at this point cannot be used safely without
3711         * validation through pte_unmap_same(). It's of NUMA type but
3712         * the pfn may be screwed if the read is non atomic.
3713         *
3714         * ptep_modify_prot_start is not called as this is clearing
3715         * the _PAGE_NUMA bit and it is not really expected that there
3716         * would be concurrent hardware modifications to the PTE.
3717         */
3718         ptl = pte_lockptr(mm, pmd);
3719         spin_lock(ptl);
3720         if (unlikely(!pte_same(*ptep, pte))) {
3721                 pte_unmap_unlock(ptep, ptl);
3722                 goto out;
3723         }
3724
3725         pte = pte_mknonnuma(pte);
3726         set_pte_at(mm, addr, ptep, pte);
3727         update_mmu_cache(vma, addr, ptep);
3728
3729         page = vm_normal_page(vma, addr, pte);
3730         if (!page) {
3731                 pte_unmap_unlock(ptep, ptl);
3732                 return 0;
3733         }
3734         BUG_ON(is_zero_pfn(page_to_pfn(page)));
3735
3736         /*
3737          * Avoid grouping on DSO/COW pages in specific and RO pages
3738          * in general, RO pages shouldn't hurt as much anyway since
3739          * they can be in shared cache state.
3740          */
3741         if (!pte_write(pte))
3742                 flags |= TNF_NO_GROUP;
3743
3744         /*
3745          * Flag if the page is shared between multiple address spaces. This
3746          * is later used when determining whether to group tasks together
3747          */
3748         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3749                 flags |= TNF_SHARED;
3750
3751         last_cpupid = page_cpupid_last(page);
3752         page_nid = page_to_nid(page);
3753         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3754         pte_unmap_unlock(ptep, ptl);
3755         if (target_nid == -1) {
3756                 put_page(page);
3757                 goto out;
3758         }
3759
3760         /* Migrate to the requested node */
3761         migrated = migrate_misplaced_page(page, vma, target_nid);
3762         if (migrated) {
3763                 page_nid = target_nid;
3764                 flags |= TNF_MIGRATED;
3765         }
3766
3767 out:
3768         if (page_nid != -1)
3769                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3770         return 0;
3771 }
3772
3773 /*
3774  * These routines also need to handle stuff like marking pages dirty
3775  * and/or accessed for architectures that don't do it in hardware (most
3776  * RISC architectures).  The early dirtying is also good on the i386.
3777  *
3778  * There is also a hook called "update_mmu_cache()" that architectures
3779  * with external mmu caches can use to update those (ie the Sparc or
3780  * PowerPC hashed page tables that act as extended TLBs).
3781  *
3782  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3783  * but allow concurrent faults), and pte mapped but not yet locked.
3784  * We return with mmap_sem still held, but pte unmapped and unlocked.
3785  */
3786 static int handle_pte_fault(struct mm_struct *mm,
3787                      struct vm_area_struct *vma, unsigned long address,
3788                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3789 {
3790         pte_t entry;
3791         spinlock_t *ptl;
3792
3793         entry = *pte;
3794         if (!pte_present(entry)) {
3795                 if (pte_none(entry)) {
3796                         if (vma->vm_ops) {
3797                                 if (likely(vma->vm_ops->fault))
3798                                         return do_linear_fault(mm, vma, address,
3799                                                 pte, pmd, flags, entry);
3800                         }
3801                         return do_anonymous_page(mm, vma, address,
3802                                                  pte, pmd, flags);
3803                 }
3804                 if (pte_file(entry))
3805                         return do_nonlinear_fault(mm, vma, address,
3806                                         pte, pmd, flags, entry);
3807                 return do_swap_page(mm, vma, address,
3808                                         pte, pmd, flags, entry);
3809         }
3810
3811         if (pte_numa(entry))
3812                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3813
3814         ptl = pte_lockptr(mm, pmd);
3815         spin_lock(ptl);
3816         if (unlikely(!pte_same(*pte, entry)))
3817                 goto unlock;
3818         if (flags & FAULT_FLAG_WRITE) {
3819                 if (!pte_write(entry))
3820                         return do_wp_page(mm, vma, address,
3821                                         pte, pmd, ptl, entry);
3822                 entry = pte_mkdirty(entry);
3823         }
3824         entry = pte_mkyoung(entry);
3825         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3826                 update_mmu_cache(vma, address, pte);
3827         } else {
3828                 /*
3829                  * This is needed only for protection faults but the arch code
3830                  * is not yet telling us if this is a protection fault or not.
3831                  * This still avoids useless tlb flushes for .text page faults
3832                  * with threads.
3833                  */
3834                 if (flags & FAULT_FLAG_WRITE)
3835                         flush_tlb_fix_spurious_fault(vma, address);
3836         }
3837 unlock:
3838         pte_unmap_unlock(pte, ptl);
3839         return 0;
3840 }
3841
3842 /*
3843  * By the time we get here, we already hold the mm semaphore
3844  */
3845 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3846                              unsigned long address, unsigned int flags)
3847 {
3848         pgd_t *pgd;
3849         pud_t *pud;
3850         pmd_t *pmd;
3851         pte_t *pte;
3852
3853         if (unlikely(is_vm_hugetlb_page(vma)))
3854                 return hugetlb_fault(mm, vma, address, flags);
3855
3856         pgd = pgd_offset(mm, address);
3857         pud = pud_alloc(mm, pgd, address);
3858         if (!pud)
3859                 return VM_FAULT_OOM;
3860         pmd = pmd_alloc(mm, pud, address);
3861         if (!pmd)
3862                 return VM_FAULT_OOM;
3863         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3864                 int ret = VM_FAULT_FALLBACK;
3865                 if (!vma->vm_ops)
3866                         ret = do_huge_pmd_anonymous_page(mm, vma, address,
3867                                         pmd, flags);
3868                 if (!(ret & VM_FAULT_FALLBACK))
3869                         return ret;
3870         } else {
3871                 pmd_t orig_pmd = *pmd;
3872                 int ret;
3873
3874                 barrier();
3875                 if (pmd_trans_huge(orig_pmd)) {
3876                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3877
3878                         /*
3879                          * If the pmd is splitting, return and retry the
3880                          * the fault.  Alternative: wait until the split
3881                          * is done, and goto retry.
3882                          */
3883                         if (pmd_trans_splitting(orig_pmd))
3884                                 return 0;
3885
3886                         if (pmd_numa(orig_pmd))
3887                                 return do_huge_pmd_numa_page(mm, vma, address,
3888                                                              orig_pmd, pmd);
3889
3890                         if (dirty && !pmd_write(orig_pmd)) {
3891                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3892                                                           orig_pmd);
3893                                 if (!(ret & VM_FAULT_FALLBACK))
3894                                         return ret;
3895                         } else {
3896                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3897                                                       orig_pmd, dirty);
3898                                 return 0;
3899                         }
3900                 }
3901         }
3902
3903         /* THP should already have been handled */
3904         BUG_ON(pmd_numa(*pmd));
3905
3906         /*
3907          * Use __pte_alloc instead of pte_alloc_map, because we can't
3908          * run pte_offset_map on the pmd, if an huge pmd could
3909          * materialize from under us from a different thread.
3910          */
3911         if (unlikely(pmd_none(*pmd)) &&
3912             unlikely(__pte_alloc(mm, vma, pmd, address)))
3913                 return VM_FAULT_OOM;
3914         /* if an huge pmd materialized from under us just retry later */
3915         if (unlikely(pmd_trans_huge(*pmd)))
3916                 return 0;
3917         /*
3918          * A regular pmd is established and it can't morph into a huge pmd
3919          * from under us anymore at this point because we hold the mmap_sem
3920          * read mode and khugepaged takes it in write mode. So now it's
3921          * safe to run pte_offset_map().
3922          */
3923         pte = pte_offset_map(pmd, address);
3924
3925         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3926 }
3927
3928 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3929                     unsigned long address, unsigned int flags)
3930 {
3931         int ret;
3932
3933         __set_current_state(TASK_RUNNING);
3934
3935         count_vm_event(PGFAULT);
3936         mem_cgroup_count_vm_event(mm, PGFAULT);
3937
3938         /* do counter updates before entering really critical section. */
3939         check_sync_rss_stat(current);
3940
3941         /*
3942          * Enable the memcg OOM handling for faults triggered in user
3943          * space.  Kernel faults are handled more gracefully.
3944          */
3945         if (flags & FAULT_FLAG_USER)
3946                 mem_cgroup_oom_enable();
3947
3948         ret = __handle_mm_fault(mm, vma, address, flags);
3949
3950         if (flags & FAULT_FLAG_USER) {
3951                 mem_cgroup_oom_disable();
3952                 /*
3953                  * The task may have entered a memcg OOM situation but
3954                  * if the allocation error was handled gracefully (no
3955                  * VM_FAULT_OOM), there is no need to kill anything.
3956                  * Just clean up the OOM state peacefully.
3957                  */
3958                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3959                         mem_cgroup_oom_synchronize(false);
3960         }
3961
3962         return ret;
3963 }
3964
3965 #ifndef __PAGETABLE_PUD_FOLDED
3966 /*
3967  * Allocate page upper directory.
3968  * We've already handled the fast-path in-line.
3969  */
3970 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3971 {
3972         pud_t *new = pud_alloc_one(mm, address);
3973         if (!new)
3974                 return -ENOMEM;
3975
3976         smp_wmb(); /* See comment in __pte_alloc */
3977
3978         spin_lock(&mm->page_table_lock);
3979         if (pgd_present(*pgd))          /* Another has populated it */
3980                 pud_free(mm, new);
3981         else
3982                 pgd_populate(mm, pgd, new);
3983         spin_unlock(&mm->page_table_lock);
3984         return 0;
3985 }
3986 #endif /* __PAGETABLE_PUD_FOLDED */
3987
3988 #ifndef __PAGETABLE_PMD_FOLDED
3989 /*
3990  * Allocate page middle directory.
3991  * We've already handled the fast-path in-line.
3992  */
3993 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3994 {
3995         pmd_t *new = pmd_alloc_one(mm, address);
3996         if (!new)
3997                 return -ENOMEM;
3998
3999         smp_wmb(); /* See comment in __pte_alloc */
4000
4001         spin_lock(&mm->page_table_lock);
4002 #ifndef __ARCH_HAS_4LEVEL_HACK
4003         if (pud_present(*pud))          /* Another has populated it */
4004                 pmd_free(mm, new);
4005         else
4006                 pud_populate(mm, pud, new);
4007 #else
4008         if (pgd_present(*pud))          /* Another has populated it */
4009                 pmd_free(mm, new);
4010         else
4011                 pgd_populate(mm, pud, new);
4012 #endif /* __ARCH_HAS_4LEVEL_HACK */
4013         spin_unlock(&mm->page_table_lock);
4014         return 0;
4015 }
4016 #endif /* __PAGETABLE_PMD_FOLDED */
4017
4018 #if !defined(__HAVE_ARCH_GATE_AREA)
4019
4020 #if defined(AT_SYSINFO_EHDR)
4021 static struct vm_area_struct gate_vma;
4022
4023 static int __init gate_vma_init(void)
4024 {
4025         gate_vma.vm_mm = NULL;
4026         gate_vma.vm_start = FIXADDR_USER_START;
4027         gate_vma.vm_end = FIXADDR_USER_END;
4028         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
4029         gate_vma.vm_page_prot = __P101;
4030
4031         return 0;
4032 }
4033 __initcall(gate_vma_init);
4034 #endif
4035
4036 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
4037 {
4038 #ifdef AT_SYSINFO_EHDR
4039         return &gate_vma;
4040 #else
4041         return NULL;
4042 #endif
4043 }
4044
4045 int in_gate_area_no_mm(unsigned long addr)
4046 {
4047 #ifdef AT_SYSINFO_EHDR
4048         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
4049                 return 1;
4050 #endif
4051         return 0;
4052 }
4053
4054 #endif  /* __HAVE_ARCH_GATE_AREA */
4055
4056 static int __follow_pte(struct mm_struct *mm, unsigned long address,
4057                 pte_t **ptepp, spinlock_t **ptlp)
4058 {
4059         pgd_t *pgd;
4060         pud_t *pud;
4061         pmd_t *pmd;
4062         pte_t *ptep;
4063
4064         pgd = pgd_offset(mm, address);
4065         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4066                 goto out;
4067
4068         pud = pud_offset(pgd, address);
4069         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4070                 goto out;
4071
4072         pmd = pmd_offset(pud, address);
4073         VM_BUG_ON(pmd_trans_huge(*pmd));
4074         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4075                 goto out;
4076
4077         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
4078         if (pmd_huge(*pmd))
4079                 goto out;
4080
4081         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4082         if (!ptep)
4083                 goto out;
4084         if (!pte_present(*ptep))
4085                 goto unlock;
4086         *ptepp = ptep;
4087         return 0;
4088 unlock:
4089         pte_unmap_unlock(ptep, *ptlp);
4090 out:
4091         return -EINVAL;
4092 }
4093
4094 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4095                              pte_t **ptepp, spinlock_t **ptlp)
4096 {
4097         int res;
4098
4099         /* (void) is needed to make gcc happy */
4100         (void) __cond_lock(*ptlp,
4101                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
4102         return res;
4103 }
4104
4105 /**
4106  * follow_pfn - look up PFN at a user virtual address
4107  * @vma: memory mapping
4108  * @address: user virtual address
4109  * @pfn: location to store found PFN
4110  *
4111  * Only IO mappings and raw PFN mappings are allowed.
4112  *
4113  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4114  */
4115 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4116         unsigned long *pfn)
4117 {
4118         int ret = -EINVAL;
4119         spinlock_t *ptl;
4120         pte_t *ptep;
4121
4122         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4123                 return ret;
4124
4125         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4126         if (ret)
4127                 return ret;
4128         *pfn = pte_pfn(*ptep);
4129         pte_unmap_unlock(ptep, ptl);
4130         return 0;
4131 }
4132 EXPORT_SYMBOL(follow_pfn);
4133
4134 #ifdef CONFIG_HAVE_IOREMAP_PROT
4135 int follow_phys(struct vm_area_struct *vma,
4136                 unsigned long address, unsigned int flags,
4137                 unsigned long *prot, resource_size_t *phys)
4138 {
4139         int ret = -EINVAL;
4140         pte_t *ptep, pte;
4141         spinlock_t *ptl;
4142
4143         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4144                 goto out;
4145
4146         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4147                 goto out;
4148         pte = *ptep;
4149
4150         if ((flags & FOLL_WRITE) && !pte_write(pte))
4151                 goto unlock;
4152
4153         *prot = pgprot_val(pte_pgprot(pte));
4154         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4155
4156         ret = 0;
4157 unlock:
4158         pte_unmap_unlock(ptep, ptl);
4159 out:
4160         return ret;
4161 }
4162
4163 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4164                         void *buf, int len, int write)
4165 {
4166         resource_size_t phys_addr;
4167         unsigned long prot = 0;
4168         void __iomem *maddr;
4169         int offset = addr & (PAGE_SIZE-1);
4170
4171         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4172                 return -EINVAL;
4173
4174         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4175         if (write)
4176                 memcpy_toio(maddr + offset, buf, len);
4177         else
4178                 memcpy_fromio(buf, maddr + offset, len);
4179         iounmap(maddr);
4180
4181         return len;
4182 }
4183 EXPORT_SYMBOL_GPL(generic_access_phys);
4184 #endif
4185
4186 /*
4187  * Access another process' address space as given in mm.  If non-NULL, use the
4188  * given task for page fault accounting.
4189  */
4190 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4191                 unsigned long addr, void *buf, int len, int write)
4192 {
4193         struct vm_area_struct *vma;
4194         void *old_buf = buf;
4195
4196         down_read(&mm->mmap_sem);
4197         /* ignore errors, just check how much was successfully transferred */
4198         while (len) {
4199                 int bytes, ret, offset;
4200                 void *maddr;
4201                 struct page *page = NULL;
4202
4203                 ret = get_user_pages(tsk, mm, addr, 1,
4204                                 write, 1, &page, &vma);
4205                 if (ret <= 0) {
4206                         /*
4207                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4208                          * we can access using slightly different code.
4209                          */
4210 #ifdef CONFIG_HAVE_IOREMAP_PROT
4211                         vma = find_vma(mm, addr);
4212                         if (!vma || vma->vm_start > addr)
4213                                 break;
4214                         if (vma->vm_ops && vma->vm_ops->access)
4215                                 ret = vma->vm_ops->access(vma, addr, buf,
4216                                                           len, write);
4217                         if (ret <= 0)
4218 #endif
4219                                 break;
4220                         bytes = ret;
4221                 } else {
4222                         bytes = len;
4223                         offset = addr & (PAGE_SIZE-1);
4224                         if (bytes > PAGE_SIZE-offset)
4225                                 bytes = PAGE_SIZE-offset;
4226
4227                         maddr = kmap(page);
4228                         if (write) {
4229                                 copy_to_user_page(vma, page, addr,
4230                                                   maddr + offset, buf, bytes);
4231                                 set_page_dirty_lock(page);
4232                         } else {
4233                                 copy_from_user_page(vma, page, addr,
4234                                                     buf, maddr + offset, bytes);
4235                         }
4236                         kunmap(page);
4237                         page_cache_release(page);
4238                 }
4239                 len -= bytes;
4240                 buf += bytes;
4241                 addr += bytes;
4242         }
4243         up_read(&mm->mmap_sem);
4244
4245         return buf - old_buf;
4246 }
4247
4248 /**
4249  * access_remote_vm - access another process' address space
4250  * @mm:         the mm_struct of the target address space
4251  * @addr:       start address to access
4252  * @buf:        source or destination buffer
4253  * @len:        number of bytes to transfer
4254  * @write:      whether the access is a write
4255  *
4256  * The caller must hold a reference on @mm.
4257  */
4258 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4259                 void *buf, int len, int write)
4260 {
4261         return __access_remote_vm(NULL, mm, addr, buf, len, write);
4262 }
4263
4264 /*
4265  * Access another process' address space.
4266  * Source/target buffer must be kernel space,
4267  * Do not walk the page table directly, use get_user_pages
4268  */
4269 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4270                 void *buf, int len, int write)
4271 {
4272         struct mm_struct *mm;
4273         int ret;
4274
4275         mm = get_task_mm(tsk);
4276         if (!mm)
4277                 return 0;
4278
4279         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4280         mmput(mm);
4281
4282         return ret;
4283 }
4284
4285 /*
4286  * Print the name of a VMA.
4287  */
4288 void print_vma_addr(char *prefix, unsigned long ip)
4289 {
4290         struct mm_struct *mm = current->mm;
4291         struct vm_area_struct *vma;
4292
4293         /*
4294          * Do not print if we are in atomic
4295          * contexts (in exception stacks, etc.):
4296          */
4297         if (preempt_count())
4298                 return;
4299
4300         down_read(&mm->mmap_sem);
4301         vma = find_vma(mm, ip);
4302         if (vma && vma->vm_file) {
4303                 struct file *f = vma->vm_file;
4304                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4305                 if (buf) {
4306                         char *p;
4307
4308                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4309                         if (IS_ERR(p))
4310                                 p = "?";
4311                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4312                                         vma->vm_start,
4313                                         vma->vm_end - vma->vm_start);
4314                         free_page((unsigned long)buf);
4315                 }
4316         }
4317         up_read(&mm->mmap_sem);
4318 }
4319
4320 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4321 void might_fault(void)
4322 {
4323         /*
4324          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4325          * holding the mmap_sem, this is safe because kernel memory doesn't
4326          * get paged out, therefore we'll never actually fault, and the
4327          * below annotations will generate false positives.
4328          */
4329         if (segment_eq(get_fs(), KERNEL_DS))
4330                 return;
4331
4332         /*
4333          * it would be nicer only to annotate paths which are not under
4334          * pagefault_disable, however that requires a larger audit and
4335          * providing helpers like get_user_atomic.
4336          */
4337         if (in_atomic())
4338                 return;
4339
4340         __might_sleep(__FILE__, __LINE__, 0);
4341
4342         if (current->mm)
4343                 might_lock_read(&current->mm->mmap_sem);
4344 }
4345 EXPORT_SYMBOL(might_fault);
4346 #endif
4347
4348 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4349 static void clear_gigantic_page(struct page *page,
4350                                 unsigned long addr,
4351                                 unsigned int pages_per_huge_page)
4352 {
4353         int i;
4354         struct page *p = page;
4355
4356         might_sleep();
4357         for (i = 0; i < pages_per_huge_page;
4358              i++, p = mem_map_next(p, page, i)) {
4359                 cond_resched();
4360                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4361         }
4362 }
4363 void clear_huge_page(struct page *page,
4364                      unsigned long addr, unsigned int pages_per_huge_page)
4365 {
4366         int i;
4367
4368         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4369                 clear_gigantic_page(page, addr, pages_per_huge_page);
4370                 return;
4371         }
4372
4373         might_sleep();
4374         for (i = 0; i < pages_per_huge_page; i++) {
4375                 cond_resched();
4376                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4377         }
4378 }
4379
4380 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4381                                     unsigned long addr,
4382                                     struct vm_area_struct *vma,
4383                                     unsigned int pages_per_huge_page)
4384 {
4385         int i;
4386         struct page *dst_base = dst;
4387         struct page *src_base = src;
4388
4389         for (i = 0; i < pages_per_huge_page; ) {
4390                 cond_resched();
4391                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4392
4393                 i++;
4394                 dst = mem_map_next(dst, dst_base, i);
4395                 src = mem_map_next(src, src_base, i);
4396         }
4397 }
4398
4399 void copy_user_huge_page(struct page *dst, struct page *src,
4400                          unsigned long addr, struct vm_area_struct *vma,
4401                          unsigned int pages_per_huge_page)
4402 {
4403         int i;
4404
4405         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4406                 copy_user_gigantic_page(dst, src, addr, vma,
4407                                         pages_per_huge_page);
4408                 return;
4409         }
4410
4411         might_sleep();
4412         for (i = 0; i < pages_per_huge_page; i++) {
4413                 cond_resched();
4414                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4415         }
4416 }
4417 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4418
4419 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4420
4421 static struct kmem_cache *page_ptl_cachep;
4422
4423 void __init ptlock_cache_init(void)
4424 {
4425         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4426                         SLAB_PANIC, NULL);
4427 }
4428
4429 bool ptlock_alloc(struct page *page)
4430 {
4431         spinlock_t *ptl;
4432
4433         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4434         if (!ptl)
4435                 return false;
4436         page->ptl = ptl;
4437         return true;
4438 }
4439
4440 void ptlock_free(struct page *page)
4441 {
4442         kmem_cache_free(page_ptl_cachep, page->ptl);
4443 }
4444 #endif