drm: sti: fix module compilation issue
[cascardo/linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106                                         1;
107 #else
108                                         2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113         randomize_va_space = 0;
114         return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 EXPORT_SYMBOL(zero_pfn);
122
123 /*
124  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125  */
126 static int __init init_zero_pfn(void)
127 {
128         zero_pfn = page_to_pfn(ZERO_PAGE(0));
129         return 0;
130 }
131 core_initcall(init_zero_pfn);
132
133
134 #if defined(SPLIT_RSS_COUNTING)
135
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138         int i;
139
140         for (i = 0; i < NR_MM_COUNTERS; i++) {
141                 if (current->rss_stat.count[i]) {
142                         add_mm_counter(mm, i, current->rss_stat.count[i]);
143                         current->rss_stat.count[i] = 0;
144                 }
145         }
146         current->rss_stat.events = 0;
147 }
148
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151         struct task_struct *task = current;
152
153         if (likely(task->mm == mm))
154                 task->rss_stat.count[member] += val;
155         else
156                 add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH  (64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165         if (unlikely(task != current))
166                 return;
167         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168                 sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178
179 #endif /* SPLIT_RSS_COUNTING */
180
181 #ifdef HAVE_GENERIC_MMU_GATHER
182
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185         struct mmu_gather_batch *batch;
186
187         batch = tlb->active;
188         if (batch->next) {
189                 tlb->active = batch->next;
190                 return 1;
191         }
192
193         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194                 return 0;
195
196         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197         if (!batch)
198                 return 0;
199
200         tlb->batch_count++;
201         batch->next = NULL;
202         batch->nr   = 0;
203         batch->max  = MAX_GATHER_BATCH;
204
205         tlb->active->next = batch;
206         tlb->active = batch;
207
208         return 1;
209 }
210
211 /* tlb_gather_mmu
212  *      Called to initialize an (on-stack) mmu_gather structure for page-table
213  *      tear-down from @mm. The @fullmm argument is used when @mm is without
214  *      users and we're going to destroy the full address space (exit/execve).
215  */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218         tlb->mm = mm;
219
220         /* Is it from 0 to ~0? */
221         tlb->fullmm     = !(start | (end+1));
222         tlb->need_flush_all = 0;
223         tlb->start      = start;
224         tlb->end        = end;
225         tlb->need_flush = 0;
226         tlb->local.next = NULL;
227         tlb->local.nr   = 0;
228         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
229         tlb->active     = &tlb->local;
230         tlb->batch_count = 0;
231
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233         tlb->batch = NULL;
234 #endif
235 }
236
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238 {
239         tlb->need_flush = 0;
240         tlb_flush(tlb);
241         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
242 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
243         tlb_table_flush(tlb);
244 #endif
245 }
246
247 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
248 {
249         struct mmu_gather_batch *batch;
250
251         for (batch = &tlb->local; batch; batch = batch->next) {
252                 free_pages_and_swap_cache(batch->pages, batch->nr);
253                 batch->nr = 0;
254         }
255         tlb->active = &tlb->local;
256 }
257
258 void tlb_flush_mmu(struct mmu_gather *tlb)
259 {
260         if (!tlb->need_flush)
261                 return;
262         tlb_flush_mmu_tlbonly(tlb);
263         tlb_flush_mmu_free(tlb);
264 }
265
266 /* tlb_finish_mmu
267  *      Called at the end of the shootdown operation to free up any resources
268  *      that were required.
269  */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272         struct mmu_gather_batch *batch, *next;
273
274         tlb_flush_mmu(tlb);
275
276         /* keep the page table cache within bounds */
277         check_pgt_cache();
278
279         for (batch = tlb->local.next; batch; batch = next) {
280                 next = batch->next;
281                 free_pages((unsigned long)batch, 0);
282         }
283         tlb->local.next = NULL;
284 }
285
286 /* __tlb_remove_page
287  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288  *      handling the additional races in SMP caused by other CPUs caching valid
289  *      mappings in their TLBs. Returns the number of free page slots left.
290  *      When out of page slots we must call tlb_flush_mmu().
291  */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294         struct mmu_gather_batch *batch;
295
296         VM_BUG_ON(!tlb->need_flush);
297
298         batch = tlb->active;
299         batch->pages[batch->nr++] = page;
300         if (batch->nr == batch->max) {
301                 if (!tlb_next_batch(tlb))
302                         return 0;
303                 batch = tlb->active;
304         }
305         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
306
307         return batch->max - batch->nr;
308 }
309
310 #endif /* HAVE_GENERIC_MMU_GATHER */
311
312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
313
314 /*
315  * See the comment near struct mmu_table_batch.
316  */
317
318 static void tlb_remove_table_smp_sync(void *arg)
319 {
320         /* Simply deliver the interrupt */
321 }
322
323 static void tlb_remove_table_one(void *table)
324 {
325         /*
326          * This isn't an RCU grace period and hence the page-tables cannot be
327          * assumed to be actually RCU-freed.
328          *
329          * It is however sufficient for software page-table walkers that rely on
330          * IRQ disabling. See the comment near struct mmu_table_batch.
331          */
332         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
333         __tlb_remove_table(table);
334 }
335
336 static void tlb_remove_table_rcu(struct rcu_head *head)
337 {
338         struct mmu_table_batch *batch;
339         int i;
340
341         batch = container_of(head, struct mmu_table_batch, rcu);
342
343         for (i = 0; i < batch->nr; i++)
344                 __tlb_remove_table(batch->tables[i]);
345
346         free_page((unsigned long)batch);
347 }
348
349 void tlb_table_flush(struct mmu_gather *tlb)
350 {
351         struct mmu_table_batch **batch = &tlb->batch;
352
353         if (*batch) {
354                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
355                 *batch = NULL;
356         }
357 }
358
359 void tlb_remove_table(struct mmu_gather *tlb, void *table)
360 {
361         struct mmu_table_batch **batch = &tlb->batch;
362
363         tlb->need_flush = 1;
364
365         /*
366          * When there's less then two users of this mm there cannot be a
367          * concurrent page-table walk.
368          */
369         if (atomic_read(&tlb->mm->mm_users) < 2) {
370                 __tlb_remove_table(table);
371                 return;
372         }
373
374         if (*batch == NULL) {
375                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
376                 if (*batch == NULL) {
377                         tlb_remove_table_one(table);
378                         return;
379                 }
380                 (*batch)->nr = 0;
381         }
382         (*batch)->tables[(*batch)->nr++] = table;
383         if ((*batch)->nr == MAX_TABLE_BATCH)
384                 tlb_table_flush(tlb);
385 }
386
387 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
388
389 /*
390  * Note: this doesn't free the actual pages themselves. That
391  * has been handled earlier when unmapping all the memory regions.
392  */
393 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
394                            unsigned long addr)
395 {
396         pgtable_t token = pmd_pgtable(*pmd);
397         pmd_clear(pmd);
398         pte_free_tlb(tlb, token, addr);
399         atomic_long_dec(&tlb->mm->nr_ptes);
400 }
401
402 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
403                                 unsigned long addr, unsigned long end,
404                                 unsigned long floor, unsigned long ceiling)
405 {
406         pmd_t *pmd;
407         unsigned long next;
408         unsigned long start;
409
410         start = addr;
411         pmd = pmd_offset(pud, addr);
412         do {
413                 next = pmd_addr_end(addr, end);
414                 if (pmd_none_or_clear_bad(pmd))
415                         continue;
416                 free_pte_range(tlb, pmd, addr);
417         } while (pmd++, addr = next, addr != end);
418
419         start &= PUD_MASK;
420         if (start < floor)
421                 return;
422         if (ceiling) {
423                 ceiling &= PUD_MASK;
424                 if (!ceiling)
425                         return;
426         }
427         if (end - 1 > ceiling - 1)
428                 return;
429
430         pmd = pmd_offset(pud, start);
431         pud_clear(pud);
432         pmd_free_tlb(tlb, pmd, start);
433 }
434
435 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
436                                 unsigned long addr, unsigned long end,
437                                 unsigned long floor, unsigned long ceiling)
438 {
439         pud_t *pud;
440         unsigned long next;
441         unsigned long start;
442
443         start = addr;
444         pud = pud_offset(pgd, addr);
445         do {
446                 next = pud_addr_end(addr, end);
447                 if (pud_none_or_clear_bad(pud))
448                         continue;
449                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
450         } while (pud++, addr = next, addr != end);
451
452         start &= PGDIR_MASK;
453         if (start < floor)
454                 return;
455         if (ceiling) {
456                 ceiling &= PGDIR_MASK;
457                 if (!ceiling)
458                         return;
459         }
460         if (end - 1 > ceiling - 1)
461                 return;
462
463         pud = pud_offset(pgd, start);
464         pgd_clear(pgd);
465         pud_free_tlb(tlb, pud, start);
466 }
467
468 /*
469  * This function frees user-level page tables of a process.
470  */
471 void free_pgd_range(struct mmu_gather *tlb,
472                         unsigned long addr, unsigned long end,
473                         unsigned long floor, unsigned long ceiling)
474 {
475         pgd_t *pgd;
476         unsigned long next;
477
478         /*
479          * The next few lines have given us lots of grief...
480          *
481          * Why are we testing PMD* at this top level?  Because often
482          * there will be no work to do at all, and we'd prefer not to
483          * go all the way down to the bottom just to discover that.
484          *
485          * Why all these "- 1"s?  Because 0 represents both the bottom
486          * of the address space and the top of it (using -1 for the
487          * top wouldn't help much: the masks would do the wrong thing).
488          * The rule is that addr 0 and floor 0 refer to the bottom of
489          * the address space, but end 0 and ceiling 0 refer to the top
490          * Comparisons need to use "end - 1" and "ceiling - 1" (though
491          * that end 0 case should be mythical).
492          *
493          * Wherever addr is brought up or ceiling brought down, we must
494          * be careful to reject "the opposite 0" before it confuses the
495          * subsequent tests.  But what about where end is brought down
496          * by PMD_SIZE below? no, end can't go down to 0 there.
497          *
498          * Whereas we round start (addr) and ceiling down, by different
499          * masks at different levels, in order to test whether a table
500          * now has no other vmas using it, so can be freed, we don't
501          * bother to round floor or end up - the tests don't need that.
502          */
503
504         addr &= PMD_MASK;
505         if (addr < floor) {
506                 addr += PMD_SIZE;
507                 if (!addr)
508                         return;
509         }
510         if (ceiling) {
511                 ceiling &= PMD_MASK;
512                 if (!ceiling)
513                         return;
514         }
515         if (end - 1 > ceiling - 1)
516                 end -= PMD_SIZE;
517         if (addr > end - 1)
518                 return;
519
520         pgd = pgd_offset(tlb->mm, addr);
521         do {
522                 next = pgd_addr_end(addr, end);
523                 if (pgd_none_or_clear_bad(pgd))
524                         continue;
525                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
526         } while (pgd++, addr = next, addr != end);
527 }
528
529 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
530                 unsigned long floor, unsigned long ceiling)
531 {
532         while (vma) {
533                 struct vm_area_struct *next = vma->vm_next;
534                 unsigned long addr = vma->vm_start;
535
536                 /*
537                  * Hide vma from rmap and truncate_pagecache before freeing
538                  * pgtables
539                  */
540                 unlink_anon_vmas(vma);
541                 unlink_file_vma(vma);
542
543                 if (is_vm_hugetlb_page(vma)) {
544                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
545                                 floor, next? next->vm_start: ceiling);
546                 } else {
547                         /*
548                          * Optimization: gather nearby vmas into one call down
549                          */
550                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
551                                && !is_vm_hugetlb_page(next)) {
552                                 vma = next;
553                                 next = vma->vm_next;
554                                 unlink_anon_vmas(vma);
555                                 unlink_file_vma(vma);
556                         }
557                         free_pgd_range(tlb, addr, vma->vm_end,
558                                 floor, next? next->vm_start: ceiling);
559                 }
560                 vma = next;
561         }
562 }
563
564 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
565                 pmd_t *pmd, unsigned long address)
566 {
567         spinlock_t *ptl;
568         pgtable_t new = pte_alloc_one(mm, address);
569         int wait_split_huge_page;
570         if (!new)
571                 return -ENOMEM;
572
573         /*
574          * Ensure all pte setup (eg. pte page lock and page clearing) are
575          * visible before the pte is made visible to other CPUs by being
576          * put into page tables.
577          *
578          * The other side of the story is the pointer chasing in the page
579          * table walking code (when walking the page table without locking;
580          * ie. most of the time). Fortunately, these data accesses consist
581          * of a chain of data-dependent loads, meaning most CPUs (alpha
582          * being the notable exception) will already guarantee loads are
583          * seen in-order. See the alpha page table accessors for the
584          * smp_read_barrier_depends() barriers in page table walking code.
585          */
586         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
588         ptl = pmd_lock(mm, pmd);
589         wait_split_huge_page = 0;
590         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
591                 atomic_long_inc(&mm->nr_ptes);
592                 pmd_populate(mm, pmd, new);
593                 new = NULL;
594         } else if (unlikely(pmd_trans_splitting(*pmd)))
595                 wait_split_huge_page = 1;
596         spin_unlock(ptl);
597         if (new)
598                 pte_free(mm, new);
599         if (wait_split_huge_page)
600                 wait_split_huge_page(vma->anon_vma, pmd);
601         return 0;
602 }
603
604 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
605 {
606         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
607         if (!new)
608                 return -ENOMEM;
609
610         smp_wmb(); /* See comment in __pte_alloc */
611
612         spin_lock(&init_mm.page_table_lock);
613         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
614                 pmd_populate_kernel(&init_mm, pmd, new);
615                 new = NULL;
616         } else
617                 VM_BUG_ON(pmd_trans_splitting(*pmd));
618         spin_unlock(&init_mm.page_table_lock);
619         if (new)
620                 pte_free_kernel(&init_mm, new);
621         return 0;
622 }
623
624 static inline void init_rss_vec(int *rss)
625 {
626         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
627 }
628
629 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
630 {
631         int i;
632
633         if (current->mm == mm)
634                 sync_mm_rss(mm);
635         for (i = 0; i < NR_MM_COUNTERS; i++)
636                 if (rss[i])
637                         add_mm_counter(mm, i, rss[i]);
638 }
639
640 /*
641  * This function is called to print an error when a bad pte
642  * is found. For example, we might have a PFN-mapped pte in
643  * a region that doesn't allow it.
644  *
645  * The calling function must still handle the error.
646  */
647 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
648                           pte_t pte, struct page *page)
649 {
650         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
651         pud_t *pud = pud_offset(pgd, addr);
652         pmd_t *pmd = pmd_offset(pud, addr);
653         struct address_space *mapping;
654         pgoff_t index;
655         static unsigned long resume;
656         static unsigned long nr_shown;
657         static unsigned long nr_unshown;
658
659         /*
660          * Allow a burst of 60 reports, then keep quiet for that minute;
661          * or allow a steady drip of one report per second.
662          */
663         if (nr_shown == 60) {
664                 if (time_before(jiffies, resume)) {
665                         nr_unshown++;
666                         return;
667                 }
668                 if (nr_unshown) {
669                         printk(KERN_ALERT
670                                 "BUG: Bad page map: %lu messages suppressed\n",
671                                 nr_unshown);
672                         nr_unshown = 0;
673                 }
674                 nr_shown = 0;
675         }
676         if (nr_shown++ == 0)
677                 resume = jiffies + 60 * HZ;
678
679         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
680         index = linear_page_index(vma, addr);
681
682         printk(KERN_ALERT
683                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
684                 current->comm,
685                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
686         if (page)
687                 dump_page(page, "bad pte");
688         printk(KERN_ALERT
689                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
690                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
691         /*
692          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
693          */
694         if (vma->vm_ops)
695                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
696                        vma->vm_ops->fault);
697         if (vma->vm_file)
698                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
699                        vma->vm_file->f_op->mmap);
700         dump_stack();
701         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
702 }
703
704 /*
705  * vm_normal_page -- This function gets the "struct page" associated with a pte.
706  *
707  * "Special" mappings do not wish to be associated with a "struct page" (either
708  * it doesn't exist, or it exists but they don't want to touch it). In this
709  * case, NULL is returned here. "Normal" mappings do have a struct page.
710  *
711  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
712  * pte bit, in which case this function is trivial. Secondly, an architecture
713  * may not have a spare pte bit, which requires a more complicated scheme,
714  * described below.
715  *
716  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
717  * special mapping (even if there are underlying and valid "struct pages").
718  * COWed pages of a VM_PFNMAP are always normal.
719  *
720  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
721  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
722  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
723  * mapping will always honor the rule
724  *
725  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
726  *
727  * And for normal mappings this is false.
728  *
729  * This restricts such mappings to be a linear translation from virtual address
730  * to pfn. To get around this restriction, we allow arbitrary mappings so long
731  * as the vma is not a COW mapping; in that case, we know that all ptes are
732  * special (because none can have been COWed).
733  *
734  *
735  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
736  *
737  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
738  * page" backing, however the difference is that _all_ pages with a struct
739  * page (that is, those where pfn_valid is true) are refcounted and considered
740  * normal pages by the VM. The disadvantage is that pages are refcounted
741  * (which can be slower and simply not an option for some PFNMAP users). The
742  * advantage is that we don't have to follow the strict linearity rule of
743  * PFNMAP mappings in order to support COWable mappings.
744  *
745  */
746 #ifdef __HAVE_ARCH_PTE_SPECIAL
747 # define HAVE_PTE_SPECIAL 1
748 #else
749 # define HAVE_PTE_SPECIAL 0
750 #endif
751 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
752                                 pte_t pte)
753 {
754         unsigned long pfn = pte_pfn(pte);
755
756         if (HAVE_PTE_SPECIAL) {
757                 if (likely(!pte_special(pte)))
758                         goto check_pfn;
759                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
760                         return NULL;
761                 if (!is_zero_pfn(pfn))
762                         print_bad_pte(vma, addr, pte, NULL);
763                 return NULL;
764         }
765
766         /* !HAVE_PTE_SPECIAL case follows: */
767
768         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
769                 if (vma->vm_flags & VM_MIXEDMAP) {
770                         if (!pfn_valid(pfn))
771                                 return NULL;
772                         goto out;
773                 } else {
774                         unsigned long off;
775                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
776                         if (pfn == vma->vm_pgoff + off)
777                                 return NULL;
778                         if (!is_cow_mapping(vma->vm_flags))
779                                 return NULL;
780                 }
781         }
782
783         if (is_zero_pfn(pfn))
784                 return NULL;
785 check_pfn:
786         if (unlikely(pfn > highest_memmap_pfn)) {
787                 print_bad_pte(vma, addr, pte, NULL);
788                 return NULL;
789         }
790
791         /*
792          * NOTE! We still have PageReserved() pages in the page tables.
793          * eg. VDSO mappings can cause them to exist.
794          */
795 out:
796         return pfn_to_page(pfn);
797 }
798
799 /*
800  * copy one vm_area from one task to the other. Assumes the page tables
801  * already present in the new task to be cleared in the whole range
802  * covered by this vma.
803  */
804
805 static inline unsigned long
806 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
807                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
808                 unsigned long addr, int *rss)
809 {
810         unsigned long vm_flags = vma->vm_flags;
811         pte_t pte = *src_pte;
812         struct page *page;
813
814         /* pte contains position in swap or file, so copy. */
815         if (unlikely(!pte_present(pte))) {
816                 if (!pte_file(pte)) {
817                         swp_entry_t entry = pte_to_swp_entry(pte);
818
819                         if (likely(!non_swap_entry(entry))) {
820                                 if (swap_duplicate(entry) < 0)
821                                         return entry.val;
822
823                                 /* make sure dst_mm is on swapoff's mmlist. */
824                                 if (unlikely(list_empty(&dst_mm->mmlist))) {
825                                         spin_lock(&mmlist_lock);
826                                         if (list_empty(&dst_mm->mmlist))
827                                                 list_add(&dst_mm->mmlist,
828                                                          &src_mm->mmlist);
829                                         spin_unlock(&mmlist_lock);
830                                 }
831                                 rss[MM_SWAPENTS]++;
832                         } else if (is_migration_entry(entry)) {
833                                 page = migration_entry_to_page(entry);
834
835                                 if (PageAnon(page))
836                                         rss[MM_ANONPAGES]++;
837                                 else
838                                         rss[MM_FILEPAGES]++;
839
840                                 if (is_write_migration_entry(entry) &&
841                                     is_cow_mapping(vm_flags)) {
842                                         /*
843                                          * COW mappings require pages in both
844                                          * parent and child to be set to read.
845                                          */
846                                         make_migration_entry_read(&entry);
847                                         pte = swp_entry_to_pte(entry);
848                                         if (pte_swp_soft_dirty(*src_pte))
849                                                 pte = pte_swp_mksoft_dirty(pte);
850                                         set_pte_at(src_mm, addr, src_pte, pte);
851                                 }
852                         }
853                 }
854                 goto out_set_pte;
855         }
856
857         /*
858          * If it's a COW mapping, write protect it both
859          * in the parent and the child
860          */
861         if (is_cow_mapping(vm_flags)) {
862                 ptep_set_wrprotect(src_mm, addr, src_pte);
863                 pte = pte_wrprotect(pte);
864         }
865
866         /*
867          * If it's a shared mapping, mark it clean in
868          * the child
869          */
870         if (vm_flags & VM_SHARED)
871                 pte = pte_mkclean(pte);
872         pte = pte_mkold(pte);
873
874         page = vm_normal_page(vma, addr, pte);
875         if (page) {
876                 get_page(page);
877                 page_dup_rmap(page);
878                 if (PageAnon(page))
879                         rss[MM_ANONPAGES]++;
880                 else
881                         rss[MM_FILEPAGES]++;
882         }
883
884 out_set_pte:
885         set_pte_at(dst_mm, addr, dst_pte, pte);
886         return 0;
887 }
888
889 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
890                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
891                    unsigned long addr, unsigned long end)
892 {
893         pte_t *orig_src_pte, *orig_dst_pte;
894         pte_t *src_pte, *dst_pte;
895         spinlock_t *src_ptl, *dst_ptl;
896         int progress = 0;
897         int rss[NR_MM_COUNTERS];
898         swp_entry_t entry = (swp_entry_t){0};
899
900 again:
901         init_rss_vec(rss);
902
903         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
904         if (!dst_pte)
905                 return -ENOMEM;
906         src_pte = pte_offset_map(src_pmd, addr);
907         src_ptl = pte_lockptr(src_mm, src_pmd);
908         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
909         orig_src_pte = src_pte;
910         orig_dst_pte = dst_pte;
911         arch_enter_lazy_mmu_mode();
912
913         do {
914                 /*
915                  * We are holding two locks at this point - either of them
916                  * could generate latencies in another task on another CPU.
917                  */
918                 if (progress >= 32) {
919                         progress = 0;
920                         if (need_resched() ||
921                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
922                                 break;
923                 }
924                 if (pte_none(*src_pte)) {
925                         progress++;
926                         continue;
927                 }
928                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
929                                                         vma, addr, rss);
930                 if (entry.val)
931                         break;
932                 progress += 8;
933         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
934
935         arch_leave_lazy_mmu_mode();
936         spin_unlock(src_ptl);
937         pte_unmap(orig_src_pte);
938         add_mm_rss_vec(dst_mm, rss);
939         pte_unmap_unlock(orig_dst_pte, dst_ptl);
940         cond_resched();
941
942         if (entry.val) {
943                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
944                         return -ENOMEM;
945                 progress = 0;
946         }
947         if (addr != end)
948                 goto again;
949         return 0;
950 }
951
952 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
953                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
954                 unsigned long addr, unsigned long end)
955 {
956         pmd_t *src_pmd, *dst_pmd;
957         unsigned long next;
958
959         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
960         if (!dst_pmd)
961                 return -ENOMEM;
962         src_pmd = pmd_offset(src_pud, addr);
963         do {
964                 next = pmd_addr_end(addr, end);
965                 if (pmd_trans_huge(*src_pmd)) {
966                         int err;
967                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
968                         err = copy_huge_pmd(dst_mm, src_mm,
969                                             dst_pmd, src_pmd, addr, vma);
970                         if (err == -ENOMEM)
971                                 return -ENOMEM;
972                         if (!err)
973                                 continue;
974                         /* fall through */
975                 }
976                 if (pmd_none_or_clear_bad(src_pmd))
977                         continue;
978                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
979                                                 vma, addr, next))
980                         return -ENOMEM;
981         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
982         return 0;
983 }
984
985 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
986                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
987                 unsigned long addr, unsigned long end)
988 {
989         pud_t *src_pud, *dst_pud;
990         unsigned long next;
991
992         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
993         if (!dst_pud)
994                 return -ENOMEM;
995         src_pud = pud_offset(src_pgd, addr);
996         do {
997                 next = pud_addr_end(addr, end);
998                 if (pud_none_or_clear_bad(src_pud))
999                         continue;
1000                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1001                                                 vma, addr, next))
1002                         return -ENOMEM;
1003         } while (dst_pud++, src_pud++, addr = next, addr != end);
1004         return 0;
1005 }
1006
1007 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1008                 struct vm_area_struct *vma)
1009 {
1010         pgd_t *src_pgd, *dst_pgd;
1011         unsigned long next;
1012         unsigned long addr = vma->vm_start;
1013         unsigned long end = vma->vm_end;
1014         unsigned long mmun_start;       /* For mmu_notifiers */
1015         unsigned long mmun_end;         /* For mmu_notifiers */
1016         bool is_cow;
1017         int ret;
1018
1019         /*
1020          * Don't copy ptes where a page fault will fill them correctly.
1021          * Fork becomes much lighter when there are big shared or private
1022          * readonly mappings. The tradeoff is that copy_page_range is more
1023          * efficient than faulting.
1024          */
1025         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1026                                VM_PFNMAP | VM_MIXEDMAP))) {
1027                 if (!vma->anon_vma)
1028                         return 0;
1029         }
1030
1031         if (is_vm_hugetlb_page(vma))
1032                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1033
1034         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1035                 /*
1036                  * We do not free on error cases below as remove_vma
1037                  * gets called on error from higher level routine
1038                  */
1039                 ret = track_pfn_copy(vma);
1040                 if (ret)
1041                         return ret;
1042         }
1043
1044         /*
1045          * We need to invalidate the secondary MMU mappings only when
1046          * there could be a permission downgrade on the ptes of the
1047          * parent mm. And a permission downgrade will only happen if
1048          * is_cow_mapping() returns true.
1049          */
1050         is_cow = is_cow_mapping(vma->vm_flags);
1051         mmun_start = addr;
1052         mmun_end   = end;
1053         if (is_cow)
1054                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1055                                                     mmun_end);
1056
1057         ret = 0;
1058         dst_pgd = pgd_offset(dst_mm, addr);
1059         src_pgd = pgd_offset(src_mm, addr);
1060         do {
1061                 next = pgd_addr_end(addr, end);
1062                 if (pgd_none_or_clear_bad(src_pgd))
1063                         continue;
1064                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1065                                             vma, addr, next))) {
1066                         ret = -ENOMEM;
1067                         break;
1068                 }
1069         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1070
1071         if (is_cow)
1072                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1073         return ret;
1074 }
1075
1076 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1077                                 struct vm_area_struct *vma, pmd_t *pmd,
1078                                 unsigned long addr, unsigned long end,
1079                                 struct zap_details *details)
1080 {
1081         struct mm_struct *mm = tlb->mm;
1082         int force_flush = 0;
1083         int rss[NR_MM_COUNTERS];
1084         spinlock_t *ptl;
1085         pte_t *start_pte;
1086         pte_t *pte;
1087
1088 again:
1089         init_rss_vec(rss);
1090         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1091         pte = start_pte;
1092         arch_enter_lazy_mmu_mode();
1093         do {
1094                 pte_t ptent = *pte;
1095                 if (pte_none(ptent)) {
1096                         continue;
1097                 }
1098
1099                 if (pte_present(ptent)) {
1100                         struct page *page;
1101
1102                         page = vm_normal_page(vma, addr, ptent);
1103                         if (unlikely(details) && page) {
1104                                 /*
1105                                  * unmap_shared_mapping_pages() wants to
1106                                  * invalidate cache without truncating:
1107                                  * unmap shared but keep private pages.
1108                                  */
1109                                 if (details->check_mapping &&
1110                                     details->check_mapping != page->mapping)
1111                                         continue;
1112                                 /*
1113                                  * Each page->index must be checked when
1114                                  * invalidating or truncating nonlinear.
1115                                  */
1116                                 if (details->nonlinear_vma &&
1117                                     (page->index < details->first_index ||
1118                                      page->index > details->last_index))
1119                                         continue;
1120                         }
1121                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1122                                                         tlb->fullmm);
1123                         tlb_remove_tlb_entry(tlb, pte, addr);
1124                         if (unlikely(!page))
1125                                 continue;
1126                         if (unlikely(details) && details->nonlinear_vma
1127                             && linear_page_index(details->nonlinear_vma,
1128                                                 addr) != page->index) {
1129                                 pte_t ptfile = pgoff_to_pte(page->index);
1130                                 if (pte_soft_dirty(ptent))
1131                                         ptfile = pte_file_mksoft_dirty(ptfile);
1132                                 set_pte_at(mm, addr, pte, ptfile);
1133                         }
1134                         if (PageAnon(page))
1135                                 rss[MM_ANONPAGES]--;
1136                         else {
1137                                 if (pte_dirty(ptent)) {
1138                                         force_flush = 1;
1139                                         set_page_dirty(page);
1140                                 }
1141                                 if (pte_young(ptent) &&
1142                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1143                                         mark_page_accessed(page);
1144                                 rss[MM_FILEPAGES]--;
1145                         }
1146                         page_remove_rmap(page);
1147                         if (unlikely(page_mapcount(page) < 0))
1148                                 print_bad_pte(vma, addr, ptent, page);
1149                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1150                                 force_flush = 1;
1151                                 addr += PAGE_SIZE;
1152                                 break;
1153                         }
1154                         continue;
1155                 }
1156                 /*
1157                  * If details->check_mapping, we leave swap entries;
1158                  * if details->nonlinear_vma, we leave file entries.
1159                  */
1160                 if (unlikely(details))
1161                         continue;
1162                 if (pte_file(ptent)) {
1163                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1164                                 print_bad_pte(vma, addr, ptent, NULL);
1165                 } else {
1166                         swp_entry_t entry = pte_to_swp_entry(ptent);
1167
1168                         if (!non_swap_entry(entry))
1169                                 rss[MM_SWAPENTS]--;
1170                         else if (is_migration_entry(entry)) {
1171                                 struct page *page;
1172
1173                                 page = migration_entry_to_page(entry);
1174
1175                                 if (PageAnon(page))
1176                                         rss[MM_ANONPAGES]--;
1177                                 else
1178                                         rss[MM_FILEPAGES]--;
1179                         }
1180                         if (unlikely(!free_swap_and_cache(entry)))
1181                                 print_bad_pte(vma, addr, ptent, NULL);
1182                 }
1183                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1184         } while (pte++, addr += PAGE_SIZE, addr != end);
1185
1186         add_mm_rss_vec(mm, rss);
1187         arch_leave_lazy_mmu_mode();
1188
1189         /* Do the actual TLB flush before dropping ptl */
1190         if (force_flush) {
1191                 unsigned long old_end;
1192
1193                 /*
1194                  * Flush the TLB just for the previous segment,
1195                  * then update the range to be the remaining
1196                  * TLB range.
1197                  */
1198                 old_end = tlb->end;
1199                 tlb->end = addr;
1200                 tlb_flush_mmu_tlbonly(tlb);
1201                 tlb->start = addr;
1202                 tlb->end = old_end;
1203         }
1204         pte_unmap_unlock(start_pte, ptl);
1205
1206         /*
1207          * If we forced a TLB flush (either due to running out of
1208          * batch buffers or because we needed to flush dirty TLB
1209          * entries before releasing the ptl), free the batched
1210          * memory too. Restart if we didn't do everything.
1211          */
1212         if (force_flush) {
1213                 force_flush = 0;
1214                 tlb_flush_mmu_free(tlb);
1215
1216                 if (addr != end)
1217                         goto again;
1218         }
1219
1220         return addr;
1221 }
1222
1223 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1224                                 struct vm_area_struct *vma, pud_t *pud,
1225                                 unsigned long addr, unsigned long end,
1226                                 struct zap_details *details)
1227 {
1228         pmd_t *pmd;
1229         unsigned long next;
1230
1231         pmd = pmd_offset(pud, addr);
1232         do {
1233                 next = pmd_addr_end(addr, end);
1234                 if (pmd_trans_huge(*pmd)) {
1235                         if (next - addr != HPAGE_PMD_SIZE) {
1236 #ifdef CONFIG_DEBUG_VM
1237                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1238                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1239                                                 __func__, addr, end,
1240                                                 vma->vm_start,
1241                                                 vma->vm_end);
1242                                         BUG();
1243                                 }
1244 #endif
1245                                 split_huge_page_pmd(vma, addr, pmd);
1246                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1247                                 goto next;
1248                         /* fall through */
1249                 }
1250                 /*
1251                  * Here there can be other concurrent MADV_DONTNEED or
1252                  * trans huge page faults running, and if the pmd is
1253                  * none or trans huge it can change under us. This is
1254                  * because MADV_DONTNEED holds the mmap_sem in read
1255                  * mode.
1256                  */
1257                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1258                         goto next;
1259                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1260 next:
1261                 cond_resched();
1262         } while (pmd++, addr = next, addr != end);
1263
1264         return addr;
1265 }
1266
1267 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1268                                 struct vm_area_struct *vma, pgd_t *pgd,
1269                                 unsigned long addr, unsigned long end,
1270                                 struct zap_details *details)
1271 {
1272         pud_t *pud;
1273         unsigned long next;
1274
1275         pud = pud_offset(pgd, addr);
1276         do {
1277                 next = pud_addr_end(addr, end);
1278                 if (pud_none_or_clear_bad(pud))
1279                         continue;
1280                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1281         } while (pud++, addr = next, addr != end);
1282
1283         return addr;
1284 }
1285
1286 static void unmap_page_range(struct mmu_gather *tlb,
1287                              struct vm_area_struct *vma,
1288                              unsigned long addr, unsigned long end,
1289                              struct zap_details *details)
1290 {
1291         pgd_t *pgd;
1292         unsigned long next;
1293
1294         if (details && !details->check_mapping && !details->nonlinear_vma)
1295                 details = NULL;
1296
1297         BUG_ON(addr >= end);
1298         tlb_start_vma(tlb, vma);
1299         pgd = pgd_offset(vma->vm_mm, addr);
1300         do {
1301                 next = pgd_addr_end(addr, end);
1302                 if (pgd_none_or_clear_bad(pgd))
1303                         continue;
1304                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1305         } while (pgd++, addr = next, addr != end);
1306         tlb_end_vma(tlb, vma);
1307 }
1308
1309
1310 static void unmap_single_vma(struct mmu_gather *tlb,
1311                 struct vm_area_struct *vma, unsigned long start_addr,
1312                 unsigned long end_addr,
1313                 struct zap_details *details)
1314 {
1315         unsigned long start = max(vma->vm_start, start_addr);
1316         unsigned long end;
1317
1318         if (start >= vma->vm_end)
1319                 return;
1320         end = min(vma->vm_end, end_addr);
1321         if (end <= vma->vm_start)
1322                 return;
1323
1324         if (vma->vm_file)
1325                 uprobe_munmap(vma, start, end);
1326
1327         if (unlikely(vma->vm_flags & VM_PFNMAP))
1328                 untrack_pfn(vma, 0, 0);
1329
1330         if (start != end) {
1331                 if (unlikely(is_vm_hugetlb_page(vma))) {
1332                         /*
1333                          * It is undesirable to test vma->vm_file as it
1334                          * should be non-null for valid hugetlb area.
1335                          * However, vm_file will be NULL in the error
1336                          * cleanup path of mmap_region. When
1337                          * hugetlbfs ->mmap method fails,
1338                          * mmap_region() nullifies vma->vm_file
1339                          * before calling this function to clean up.
1340                          * Since no pte has actually been setup, it is
1341                          * safe to do nothing in this case.
1342                          */
1343                         if (vma->vm_file) {
1344                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1345                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1346                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1347                         }
1348                 } else
1349                         unmap_page_range(tlb, vma, start, end, details);
1350         }
1351 }
1352
1353 /**
1354  * unmap_vmas - unmap a range of memory covered by a list of vma's
1355  * @tlb: address of the caller's struct mmu_gather
1356  * @vma: the starting vma
1357  * @start_addr: virtual address at which to start unmapping
1358  * @end_addr: virtual address at which to end unmapping
1359  *
1360  * Unmap all pages in the vma list.
1361  *
1362  * Only addresses between `start' and `end' will be unmapped.
1363  *
1364  * The VMA list must be sorted in ascending virtual address order.
1365  *
1366  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1367  * range after unmap_vmas() returns.  So the only responsibility here is to
1368  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1369  * drops the lock and schedules.
1370  */
1371 void unmap_vmas(struct mmu_gather *tlb,
1372                 struct vm_area_struct *vma, unsigned long start_addr,
1373                 unsigned long end_addr)
1374 {
1375         struct mm_struct *mm = vma->vm_mm;
1376
1377         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1378         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1379                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1380         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1381 }
1382
1383 /**
1384  * zap_page_range - remove user pages in a given range
1385  * @vma: vm_area_struct holding the applicable pages
1386  * @start: starting address of pages to zap
1387  * @size: number of bytes to zap
1388  * @details: details of nonlinear truncation or shared cache invalidation
1389  *
1390  * Caller must protect the VMA list
1391  */
1392 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1393                 unsigned long size, struct zap_details *details)
1394 {
1395         struct mm_struct *mm = vma->vm_mm;
1396         struct mmu_gather tlb;
1397         unsigned long end = start + size;
1398
1399         lru_add_drain();
1400         tlb_gather_mmu(&tlb, mm, start, end);
1401         update_hiwater_rss(mm);
1402         mmu_notifier_invalidate_range_start(mm, start, end);
1403         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1404                 unmap_single_vma(&tlb, vma, start, end, details);
1405         mmu_notifier_invalidate_range_end(mm, start, end);
1406         tlb_finish_mmu(&tlb, start, end);
1407 }
1408
1409 /**
1410  * zap_page_range_single - remove user pages in a given range
1411  * @vma: vm_area_struct holding the applicable pages
1412  * @address: starting address of pages to zap
1413  * @size: number of bytes to zap
1414  * @details: details of nonlinear truncation or shared cache invalidation
1415  *
1416  * The range must fit into one VMA.
1417  */
1418 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1419                 unsigned long size, struct zap_details *details)
1420 {
1421         struct mm_struct *mm = vma->vm_mm;
1422         struct mmu_gather tlb;
1423         unsigned long end = address + size;
1424
1425         lru_add_drain();
1426         tlb_gather_mmu(&tlb, mm, address, end);
1427         update_hiwater_rss(mm);
1428         mmu_notifier_invalidate_range_start(mm, address, end);
1429         unmap_single_vma(&tlb, vma, address, end, details);
1430         mmu_notifier_invalidate_range_end(mm, address, end);
1431         tlb_finish_mmu(&tlb, address, end);
1432 }
1433
1434 /**
1435  * zap_vma_ptes - remove ptes mapping the vma
1436  * @vma: vm_area_struct holding ptes to be zapped
1437  * @address: starting address of pages to zap
1438  * @size: number of bytes to zap
1439  *
1440  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1441  *
1442  * The entire address range must be fully contained within the vma.
1443  *
1444  * Returns 0 if successful.
1445  */
1446 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1447                 unsigned long size)
1448 {
1449         if (address < vma->vm_start || address + size > vma->vm_end ||
1450                         !(vma->vm_flags & VM_PFNMAP))
1451                 return -1;
1452         zap_page_range_single(vma, address, size, NULL);
1453         return 0;
1454 }
1455 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1456
1457 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1458                         spinlock_t **ptl)
1459 {
1460         pgd_t * pgd = pgd_offset(mm, addr);
1461         pud_t * pud = pud_alloc(mm, pgd, addr);
1462         if (pud) {
1463                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1464                 if (pmd) {
1465                         VM_BUG_ON(pmd_trans_huge(*pmd));
1466                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1467                 }
1468         }
1469         return NULL;
1470 }
1471
1472 /*
1473  * This is the old fallback for page remapping.
1474  *
1475  * For historical reasons, it only allows reserved pages. Only
1476  * old drivers should use this, and they needed to mark their
1477  * pages reserved for the old functions anyway.
1478  */
1479 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1480                         struct page *page, pgprot_t prot)
1481 {
1482         struct mm_struct *mm = vma->vm_mm;
1483         int retval;
1484         pte_t *pte;
1485         spinlock_t *ptl;
1486
1487         retval = -EINVAL;
1488         if (PageAnon(page))
1489                 goto out;
1490         retval = -ENOMEM;
1491         flush_dcache_page(page);
1492         pte = get_locked_pte(mm, addr, &ptl);
1493         if (!pte)
1494                 goto out;
1495         retval = -EBUSY;
1496         if (!pte_none(*pte))
1497                 goto out_unlock;
1498
1499         /* Ok, finally just insert the thing.. */
1500         get_page(page);
1501         inc_mm_counter_fast(mm, MM_FILEPAGES);
1502         page_add_file_rmap(page);
1503         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1504
1505         retval = 0;
1506         pte_unmap_unlock(pte, ptl);
1507         return retval;
1508 out_unlock:
1509         pte_unmap_unlock(pte, ptl);
1510 out:
1511         return retval;
1512 }
1513
1514 /**
1515  * vm_insert_page - insert single page into user vma
1516  * @vma: user vma to map to
1517  * @addr: target user address of this page
1518  * @page: source kernel page
1519  *
1520  * This allows drivers to insert individual pages they've allocated
1521  * into a user vma.
1522  *
1523  * The page has to be a nice clean _individual_ kernel allocation.
1524  * If you allocate a compound page, you need to have marked it as
1525  * such (__GFP_COMP), or manually just split the page up yourself
1526  * (see split_page()).
1527  *
1528  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1529  * took an arbitrary page protection parameter. This doesn't allow
1530  * that. Your vma protection will have to be set up correctly, which
1531  * means that if you want a shared writable mapping, you'd better
1532  * ask for a shared writable mapping!
1533  *
1534  * The page does not need to be reserved.
1535  *
1536  * Usually this function is called from f_op->mmap() handler
1537  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1538  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1539  * function from other places, for example from page-fault handler.
1540  */
1541 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1542                         struct page *page)
1543 {
1544         if (addr < vma->vm_start || addr >= vma->vm_end)
1545                 return -EFAULT;
1546         if (!page_count(page))
1547                 return -EINVAL;
1548         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1549                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1550                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1551                 vma->vm_flags |= VM_MIXEDMAP;
1552         }
1553         return insert_page(vma, addr, page, vma->vm_page_prot);
1554 }
1555 EXPORT_SYMBOL(vm_insert_page);
1556
1557 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1558                         unsigned long pfn, pgprot_t prot)
1559 {
1560         struct mm_struct *mm = vma->vm_mm;
1561         int retval;
1562         pte_t *pte, entry;
1563         spinlock_t *ptl;
1564
1565         retval = -ENOMEM;
1566         pte = get_locked_pte(mm, addr, &ptl);
1567         if (!pte)
1568                 goto out;
1569         retval = -EBUSY;
1570         if (!pte_none(*pte))
1571                 goto out_unlock;
1572
1573         /* Ok, finally just insert the thing.. */
1574         entry = pte_mkspecial(pfn_pte(pfn, prot));
1575         set_pte_at(mm, addr, pte, entry);
1576         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1577
1578         retval = 0;
1579 out_unlock:
1580         pte_unmap_unlock(pte, ptl);
1581 out:
1582         return retval;
1583 }
1584
1585 /**
1586  * vm_insert_pfn - insert single pfn into user vma
1587  * @vma: user vma to map to
1588  * @addr: target user address of this page
1589  * @pfn: source kernel pfn
1590  *
1591  * Similar to vm_insert_page, this allows drivers to insert individual pages
1592  * they've allocated into a user vma. Same comments apply.
1593  *
1594  * This function should only be called from a vm_ops->fault handler, and
1595  * in that case the handler should return NULL.
1596  *
1597  * vma cannot be a COW mapping.
1598  *
1599  * As this is called only for pages that do not currently exist, we
1600  * do not need to flush old virtual caches or the TLB.
1601  */
1602 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1603                         unsigned long pfn)
1604 {
1605         int ret;
1606         pgprot_t pgprot = vma->vm_page_prot;
1607         /*
1608          * Technically, architectures with pte_special can avoid all these
1609          * restrictions (same for remap_pfn_range).  However we would like
1610          * consistency in testing and feature parity among all, so we should
1611          * try to keep these invariants in place for everybody.
1612          */
1613         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1614         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1615                                                 (VM_PFNMAP|VM_MIXEDMAP));
1616         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1617         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1618
1619         if (addr < vma->vm_start || addr >= vma->vm_end)
1620                 return -EFAULT;
1621         if (track_pfn_insert(vma, &pgprot, pfn))
1622                 return -EINVAL;
1623
1624         ret = insert_pfn(vma, addr, pfn, pgprot);
1625
1626         return ret;
1627 }
1628 EXPORT_SYMBOL(vm_insert_pfn);
1629
1630 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1631                         unsigned long pfn)
1632 {
1633         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1634
1635         if (addr < vma->vm_start || addr >= vma->vm_end)
1636                 return -EFAULT;
1637
1638         /*
1639          * If we don't have pte special, then we have to use the pfn_valid()
1640          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1641          * refcount the page if pfn_valid is true (hence insert_page rather
1642          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1643          * without pte special, it would there be refcounted as a normal page.
1644          */
1645         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1646                 struct page *page;
1647
1648                 page = pfn_to_page(pfn);
1649                 return insert_page(vma, addr, page, vma->vm_page_prot);
1650         }
1651         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1652 }
1653 EXPORT_SYMBOL(vm_insert_mixed);
1654
1655 /*
1656  * maps a range of physical memory into the requested pages. the old
1657  * mappings are removed. any references to nonexistent pages results
1658  * in null mappings (currently treated as "copy-on-access")
1659  */
1660 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1661                         unsigned long addr, unsigned long end,
1662                         unsigned long pfn, pgprot_t prot)
1663 {
1664         pte_t *pte;
1665         spinlock_t *ptl;
1666
1667         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1668         if (!pte)
1669                 return -ENOMEM;
1670         arch_enter_lazy_mmu_mode();
1671         do {
1672                 BUG_ON(!pte_none(*pte));
1673                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1674                 pfn++;
1675         } while (pte++, addr += PAGE_SIZE, addr != end);
1676         arch_leave_lazy_mmu_mode();
1677         pte_unmap_unlock(pte - 1, ptl);
1678         return 0;
1679 }
1680
1681 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1682                         unsigned long addr, unsigned long end,
1683                         unsigned long pfn, pgprot_t prot)
1684 {
1685         pmd_t *pmd;
1686         unsigned long next;
1687
1688         pfn -= addr >> PAGE_SHIFT;
1689         pmd = pmd_alloc(mm, pud, addr);
1690         if (!pmd)
1691                 return -ENOMEM;
1692         VM_BUG_ON(pmd_trans_huge(*pmd));
1693         do {
1694                 next = pmd_addr_end(addr, end);
1695                 if (remap_pte_range(mm, pmd, addr, next,
1696                                 pfn + (addr >> PAGE_SHIFT), prot))
1697                         return -ENOMEM;
1698         } while (pmd++, addr = next, addr != end);
1699         return 0;
1700 }
1701
1702 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1703                         unsigned long addr, unsigned long end,
1704                         unsigned long pfn, pgprot_t prot)
1705 {
1706         pud_t *pud;
1707         unsigned long next;
1708
1709         pfn -= addr >> PAGE_SHIFT;
1710         pud = pud_alloc(mm, pgd, addr);
1711         if (!pud)
1712                 return -ENOMEM;
1713         do {
1714                 next = pud_addr_end(addr, end);
1715                 if (remap_pmd_range(mm, pud, addr, next,
1716                                 pfn + (addr >> PAGE_SHIFT), prot))
1717                         return -ENOMEM;
1718         } while (pud++, addr = next, addr != end);
1719         return 0;
1720 }
1721
1722 /**
1723  * remap_pfn_range - remap kernel memory to userspace
1724  * @vma: user vma to map to
1725  * @addr: target user address to start at
1726  * @pfn: physical address of kernel memory
1727  * @size: size of map area
1728  * @prot: page protection flags for this mapping
1729  *
1730  *  Note: this is only safe if the mm semaphore is held when called.
1731  */
1732 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1733                     unsigned long pfn, unsigned long size, pgprot_t prot)
1734 {
1735         pgd_t *pgd;
1736         unsigned long next;
1737         unsigned long end = addr + PAGE_ALIGN(size);
1738         struct mm_struct *mm = vma->vm_mm;
1739         int err;
1740
1741         /*
1742          * Physically remapped pages are special. Tell the
1743          * rest of the world about it:
1744          *   VM_IO tells people not to look at these pages
1745          *      (accesses can have side effects).
1746          *   VM_PFNMAP tells the core MM that the base pages are just
1747          *      raw PFN mappings, and do not have a "struct page" associated
1748          *      with them.
1749          *   VM_DONTEXPAND
1750          *      Disable vma merging and expanding with mremap().
1751          *   VM_DONTDUMP
1752          *      Omit vma from core dump, even when VM_IO turned off.
1753          *
1754          * There's a horrible special case to handle copy-on-write
1755          * behaviour that some programs depend on. We mark the "original"
1756          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1757          * See vm_normal_page() for details.
1758          */
1759         if (is_cow_mapping(vma->vm_flags)) {
1760                 if (addr != vma->vm_start || end != vma->vm_end)
1761                         return -EINVAL;
1762                 vma->vm_pgoff = pfn;
1763         }
1764
1765         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1766         if (err)
1767                 return -EINVAL;
1768
1769         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1770
1771         BUG_ON(addr >= end);
1772         pfn -= addr >> PAGE_SHIFT;
1773         pgd = pgd_offset(mm, addr);
1774         flush_cache_range(vma, addr, end);
1775         do {
1776                 next = pgd_addr_end(addr, end);
1777                 err = remap_pud_range(mm, pgd, addr, next,
1778                                 pfn + (addr >> PAGE_SHIFT), prot);
1779                 if (err)
1780                         break;
1781         } while (pgd++, addr = next, addr != end);
1782
1783         if (err)
1784                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1785
1786         return err;
1787 }
1788 EXPORT_SYMBOL(remap_pfn_range);
1789
1790 /**
1791  * vm_iomap_memory - remap memory to userspace
1792  * @vma: user vma to map to
1793  * @start: start of area
1794  * @len: size of area
1795  *
1796  * This is a simplified io_remap_pfn_range() for common driver use. The
1797  * driver just needs to give us the physical memory range to be mapped,
1798  * we'll figure out the rest from the vma information.
1799  *
1800  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1801  * whatever write-combining details or similar.
1802  */
1803 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1804 {
1805         unsigned long vm_len, pfn, pages;
1806
1807         /* Check that the physical memory area passed in looks valid */
1808         if (start + len < start)
1809                 return -EINVAL;
1810         /*
1811          * You *really* shouldn't map things that aren't page-aligned,
1812          * but we've historically allowed it because IO memory might
1813          * just have smaller alignment.
1814          */
1815         len += start & ~PAGE_MASK;
1816         pfn = start >> PAGE_SHIFT;
1817         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1818         if (pfn + pages < pfn)
1819                 return -EINVAL;
1820
1821         /* We start the mapping 'vm_pgoff' pages into the area */
1822         if (vma->vm_pgoff > pages)
1823                 return -EINVAL;
1824         pfn += vma->vm_pgoff;
1825         pages -= vma->vm_pgoff;
1826
1827         /* Can we fit all of the mapping? */
1828         vm_len = vma->vm_end - vma->vm_start;
1829         if (vm_len >> PAGE_SHIFT > pages)
1830                 return -EINVAL;
1831
1832         /* Ok, let it rip */
1833         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1834 }
1835 EXPORT_SYMBOL(vm_iomap_memory);
1836
1837 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1838                                      unsigned long addr, unsigned long end,
1839                                      pte_fn_t fn, void *data)
1840 {
1841         pte_t *pte;
1842         int err;
1843         pgtable_t token;
1844         spinlock_t *uninitialized_var(ptl);
1845
1846         pte = (mm == &init_mm) ?
1847                 pte_alloc_kernel(pmd, addr) :
1848                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1849         if (!pte)
1850                 return -ENOMEM;
1851
1852         BUG_ON(pmd_huge(*pmd));
1853
1854         arch_enter_lazy_mmu_mode();
1855
1856         token = pmd_pgtable(*pmd);
1857
1858         do {
1859                 err = fn(pte++, token, addr, data);
1860                 if (err)
1861                         break;
1862         } while (addr += PAGE_SIZE, addr != end);
1863
1864         arch_leave_lazy_mmu_mode();
1865
1866         if (mm != &init_mm)
1867                 pte_unmap_unlock(pte-1, ptl);
1868         return err;
1869 }
1870
1871 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1872                                      unsigned long addr, unsigned long end,
1873                                      pte_fn_t fn, void *data)
1874 {
1875         pmd_t *pmd;
1876         unsigned long next;
1877         int err;
1878
1879         BUG_ON(pud_huge(*pud));
1880
1881         pmd = pmd_alloc(mm, pud, addr);
1882         if (!pmd)
1883                 return -ENOMEM;
1884         do {
1885                 next = pmd_addr_end(addr, end);
1886                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1887                 if (err)
1888                         break;
1889         } while (pmd++, addr = next, addr != end);
1890         return err;
1891 }
1892
1893 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1894                                      unsigned long addr, unsigned long end,
1895                                      pte_fn_t fn, void *data)
1896 {
1897         pud_t *pud;
1898         unsigned long next;
1899         int err;
1900
1901         pud = pud_alloc(mm, pgd, addr);
1902         if (!pud)
1903                 return -ENOMEM;
1904         do {
1905                 next = pud_addr_end(addr, end);
1906                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1907                 if (err)
1908                         break;
1909         } while (pud++, addr = next, addr != end);
1910         return err;
1911 }
1912
1913 /*
1914  * Scan a region of virtual memory, filling in page tables as necessary
1915  * and calling a provided function on each leaf page table.
1916  */
1917 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1918                         unsigned long size, pte_fn_t fn, void *data)
1919 {
1920         pgd_t *pgd;
1921         unsigned long next;
1922         unsigned long end = addr + size;
1923         int err;
1924
1925         BUG_ON(addr >= end);
1926         pgd = pgd_offset(mm, addr);
1927         do {
1928                 next = pgd_addr_end(addr, end);
1929                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1930                 if (err)
1931                         break;
1932         } while (pgd++, addr = next, addr != end);
1933
1934         return err;
1935 }
1936 EXPORT_SYMBOL_GPL(apply_to_page_range);
1937
1938 /*
1939  * handle_pte_fault chooses page fault handler according to an entry
1940  * which was read non-atomically.  Before making any commitment, on
1941  * those architectures or configurations (e.g. i386 with PAE) which
1942  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1943  * must check under lock before unmapping the pte and proceeding
1944  * (but do_wp_page is only called after already making such a check;
1945  * and do_anonymous_page can safely check later on).
1946  */
1947 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1948                                 pte_t *page_table, pte_t orig_pte)
1949 {
1950         int same = 1;
1951 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1952         if (sizeof(pte_t) > sizeof(unsigned long)) {
1953                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1954                 spin_lock(ptl);
1955                 same = pte_same(*page_table, orig_pte);
1956                 spin_unlock(ptl);
1957         }
1958 #endif
1959         pte_unmap(page_table);
1960         return same;
1961 }
1962
1963 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1964 {
1965         debug_dma_assert_idle(src);
1966
1967         /*
1968          * If the source page was a PFN mapping, we don't have
1969          * a "struct page" for it. We do a best-effort copy by
1970          * just copying from the original user address. If that
1971          * fails, we just zero-fill it. Live with it.
1972          */
1973         if (unlikely(!src)) {
1974                 void *kaddr = kmap_atomic(dst);
1975                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1976
1977                 /*
1978                  * This really shouldn't fail, because the page is there
1979                  * in the page tables. But it might just be unreadable,
1980                  * in which case we just give up and fill the result with
1981                  * zeroes.
1982                  */
1983                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1984                         clear_page(kaddr);
1985                 kunmap_atomic(kaddr);
1986                 flush_dcache_page(dst);
1987         } else
1988                 copy_user_highpage(dst, src, va, vma);
1989 }
1990
1991 /*
1992  * Notify the address space that the page is about to become writable so that
1993  * it can prohibit this or wait for the page to get into an appropriate state.
1994  *
1995  * We do this without the lock held, so that it can sleep if it needs to.
1996  */
1997 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1998                unsigned long address)
1999 {
2000         struct vm_fault vmf;
2001         int ret;
2002
2003         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2004         vmf.pgoff = page->index;
2005         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2006         vmf.page = page;
2007
2008         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2009         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2010                 return ret;
2011         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2012                 lock_page(page);
2013                 if (!page->mapping) {
2014                         unlock_page(page);
2015                         return 0; /* retry */
2016                 }
2017                 ret |= VM_FAULT_LOCKED;
2018         } else
2019                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2020         return ret;
2021 }
2022
2023 /*
2024  * This routine handles present pages, when users try to write
2025  * to a shared page. It is done by copying the page to a new address
2026  * and decrementing the shared-page counter for the old page.
2027  *
2028  * Note that this routine assumes that the protection checks have been
2029  * done by the caller (the low-level page fault routine in most cases).
2030  * Thus we can safely just mark it writable once we've done any necessary
2031  * COW.
2032  *
2033  * We also mark the page dirty at this point even though the page will
2034  * change only once the write actually happens. This avoids a few races,
2035  * and potentially makes it more efficient.
2036  *
2037  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2038  * but allow concurrent faults), with pte both mapped and locked.
2039  * We return with mmap_sem still held, but pte unmapped and unlocked.
2040  */
2041 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2042                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2043                 spinlock_t *ptl, pte_t orig_pte)
2044         __releases(ptl)
2045 {
2046         struct page *old_page, *new_page = NULL;
2047         pte_t entry;
2048         int ret = 0;
2049         int page_mkwrite = 0;
2050         struct page *dirty_page = NULL;
2051         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2052         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2053         struct mem_cgroup *memcg;
2054
2055         old_page = vm_normal_page(vma, address, orig_pte);
2056         if (!old_page) {
2057                 /*
2058                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2059                  * VM_PFNMAP VMA.
2060                  *
2061                  * We should not cow pages in a shared writeable mapping.
2062                  * Just mark the pages writable as we can't do any dirty
2063                  * accounting on raw pfn maps.
2064                  */
2065                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2066                                      (VM_WRITE|VM_SHARED))
2067                         goto reuse;
2068                 goto gotten;
2069         }
2070
2071         /*
2072          * Take out anonymous pages first, anonymous shared vmas are
2073          * not dirty accountable.
2074          */
2075         if (PageAnon(old_page) && !PageKsm(old_page)) {
2076                 if (!trylock_page(old_page)) {
2077                         page_cache_get(old_page);
2078                         pte_unmap_unlock(page_table, ptl);
2079                         lock_page(old_page);
2080                         page_table = pte_offset_map_lock(mm, pmd, address,
2081                                                          &ptl);
2082                         if (!pte_same(*page_table, orig_pte)) {
2083                                 unlock_page(old_page);
2084                                 goto unlock;
2085                         }
2086                         page_cache_release(old_page);
2087                 }
2088                 if (reuse_swap_page(old_page)) {
2089                         /*
2090                          * The page is all ours.  Move it to our anon_vma so
2091                          * the rmap code will not search our parent or siblings.
2092                          * Protected against the rmap code by the page lock.
2093                          */
2094                         page_move_anon_rmap(old_page, vma, address);
2095                         unlock_page(old_page);
2096                         goto reuse;
2097                 }
2098                 unlock_page(old_page);
2099         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2100                                         (VM_WRITE|VM_SHARED))) {
2101                 /*
2102                  * Only catch write-faults on shared writable pages,
2103                  * read-only shared pages can get COWed by
2104                  * get_user_pages(.write=1, .force=1).
2105                  */
2106                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2107                         int tmp;
2108                         page_cache_get(old_page);
2109                         pte_unmap_unlock(page_table, ptl);
2110                         tmp = do_page_mkwrite(vma, old_page, address);
2111                         if (unlikely(!tmp || (tmp &
2112                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2113                                 page_cache_release(old_page);
2114                                 return tmp;
2115                         }
2116                         /*
2117                          * Since we dropped the lock we need to revalidate
2118                          * the PTE as someone else may have changed it.  If
2119                          * they did, we just return, as we can count on the
2120                          * MMU to tell us if they didn't also make it writable.
2121                          */
2122                         page_table = pte_offset_map_lock(mm, pmd, address,
2123                                                          &ptl);
2124                         if (!pte_same(*page_table, orig_pte)) {
2125                                 unlock_page(old_page);
2126                                 goto unlock;
2127                         }
2128
2129                         page_mkwrite = 1;
2130                 }
2131                 dirty_page = old_page;
2132                 get_page(dirty_page);
2133
2134 reuse:
2135                 /*
2136                  * Clear the pages cpupid information as the existing
2137                  * information potentially belongs to a now completely
2138                  * unrelated process.
2139                  */
2140                 if (old_page)
2141                         page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2142
2143                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2144                 entry = pte_mkyoung(orig_pte);
2145                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2146                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2147                         update_mmu_cache(vma, address, page_table);
2148                 pte_unmap_unlock(page_table, ptl);
2149                 ret |= VM_FAULT_WRITE;
2150
2151                 if (!dirty_page)
2152                         return ret;
2153
2154                 /*
2155                  * Yes, Virginia, this is actually required to prevent a race
2156                  * with clear_page_dirty_for_io() from clearing the page dirty
2157                  * bit after it clear all dirty ptes, but before a racing
2158                  * do_wp_page installs a dirty pte.
2159                  *
2160                  * do_shared_fault is protected similarly.
2161                  */
2162                 if (!page_mkwrite) {
2163                         wait_on_page_locked(dirty_page);
2164                         set_page_dirty_balance(dirty_page);
2165                         /* file_update_time outside page_lock */
2166                         if (vma->vm_file)
2167                                 file_update_time(vma->vm_file);
2168                 }
2169                 put_page(dirty_page);
2170                 if (page_mkwrite) {
2171                         struct address_space *mapping = dirty_page->mapping;
2172
2173                         set_page_dirty(dirty_page);
2174                         unlock_page(dirty_page);
2175                         page_cache_release(dirty_page);
2176                         if (mapping)    {
2177                                 /*
2178                                  * Some device drivers do not set page.mapping
2179                                  * but still dirty their pages
2180                                  */
2181                                 balance_dirty_pages_ratelimited(mapping);
2182                         }
2183                 }
2184
2185                 return ret;
2186         }
2187
2188         /*
2189          * Ok, we need to copy. Oh, well..
2190          */
2191         page_cache_get(old_page);
2192 gotten:
2193         pte_unmap_unlock(page_table, ptl);
2194
2195         if (unlikely(anon_vma_prepare(vma)))
2196                 goto oom;
2197
2198         if (is_zero_pfn(pte_pfn(orig_pte))) {
2199                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2200                 if (!new_page)
2201                         goto oom;
2202         } else {
2203                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2204                 if (!new_page)
2205                         goto oom;
2206                 cow_user_page(new_page, old_page, address, vma);
2207         }
2208         __SetPageUptodate(new_page);
2209
2210         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2211                 goto oom_free_new;
2212
2213         mmun_start  = address & PAGE_MASK;
2214         mmun_end    = mmun_start + PAGE_SIZE;
2215         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2216
2217         /*
2218          * Re-check the pte - we dropped the lock
2219          */
2220         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2221         if (likely(pte_same(*page_table, orig_pte))) {
2222                 if (old_page) {
2223                         if (!PageAnon(old_page)) {
2224                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2225                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2226                         }
2227                 } else
2228                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2229                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2230                 entry = mk_pte(new_page, vma->vm_page_prot);
2231                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2232                 /*
2233                  * Clear the pte entry and flush it first, before updating the
2234                  * pte with the new entry. This will avoid a race condition
2235                  * seen in the presence of one thread doing SMC and another
2236                  * thread doing COW.
2237                  */
2238                 ptep_clear_flush_notify(vma, address, page_table);
2239                 page_add_new_anon_rmap(new_page, vma, address);
2240                 mem_cgroup_commit_charge(new_page, memcg, false);
2241                 lru_cache_add_active_or_unevictable(new_page, vma);
2242                 /*
2243                  * We call the notify macro here because, when using secondary
2244                  * mmu page tables (such as kvm shadow page tables), we want the
2245                  * new page to be mapped directly into the secondary page table.
2246                  */
2247                 set_pte_at_notify(mm, address, page_table, entry);
2248                 update_mmu_cache(vma, address, page_table);
2249                 if (old_page) {
2250                         /*
2251                          * Only after switching the pte to the new page may
2252                          * we remove the mapcount here. Otherwise another
2253                          * process may come and find the rmap count decremented
2254                          * before the pte is switched to the new page, and
2255                          * "reuse" the old page writing into it while our pte
2256                          * here still points into it and can be read by other
2257                          * threads.
2258                          *
2259                          * The critical issue is to order this
2260                          * page_remove_rmap with the ptp_clear_flush above.
2261                          * Those stores are ordered by (if nothing else,)
2262                          * the barrier present in the atomic_add_negative
2263                          * in page_remove_rmap.
2264                          *
2265                          * Then the TLB flush in ptep_clear_flush ensures that
2266                          * no process can access the old page before the
2267                          * decremented mapcount is visible. And the old page
2268                          * cannot be reused until after the decremented
2269                          * mapcount is visible. So transitively, TLBs to
2270                          * old page will be flushed before it can be reused.
2271                          */
2272                         page_remove_rmap(old_page);
2273                 }
2274
2275                 /* Free the old page.. */
2276                 new_page = old_page;
2277                 ret |= VM_FAULT_WRITE;
2278         } else
2279                 mem_cgroup_cancel_charge(new_page, memcg);
2280
2281         if (new_page)
2282                 page_cache_release(new_page);
2283 unlock:
2284         pte_unmap_unlock(page_table, ptl);
2285         if (mmun_end > mmun_start)
2286                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2287         if (old_page) {
2288                 /*
2289                  * Don't let another task, with possibly unlocked vma,
2290                  * keep the mlocked page.
2291                  */
2292                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2293                         lock_page(old_page);    /* LRU manipulation */
2294                         munlock_vma_page(old_page);
2295                         unlock_page(old_page);
2296                 }
2297                 page_cache_release(old_page);
2298         }
2299         return ret;
2300 oom_free_new:
2301         page_cache_release(new_page);
2302 oom:
2303         if (old_page)
2304                 page_cache_release(old_page);
2305         return VM_FAULT_OOM;
2306 }
2307
2308 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2309                 unsigned long start_addr, unsigned long end_addr,
2310                 struct zap_details *details)
2311 {
2312         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2313 }
2314
2315 static inline void unmap_mapping_range_tree(struct rb_root *root,
2316                                             struct zap_details *details)
2317 {
2318         struct vm_area_struct *vma;
2319         pgoff_t vba, vea, zba, zea;
2320
2321         vma_interval_tree_foreach(vma, root,
2322                         details->first_index, details->last_index) {
2323
2324                 vba = vma->vm_pgoff;
2325                 vea = vba + vma_pages(vma) - 1;
2326                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2327                 zba = details->first_index;
2328                 if (zba < vba)
2329                         zba = vba;
2330                 zea = details->last_index;
2331                 if (zea > vea)
2332                         zea = vea;
2333
2334                 unmap_mapping_range_vma(vma,
2335                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2336                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2337                                 details);
2338         }
2339 }
2340
2341 static inline void unmap_mapping_range_list(struct list_head *head,
2342                                             struct zap_details *details)
2343 {
2344         struct vm_area_struct *vma;
2345
2346         /*
2347          * In nonlinear VMAs there is no correspondence between virtual address
2348          * offset and file offset.  So we must perform an exhaustive search
2349          * across *all* the pages in each nonlinear VMA, not just the pages
2350          * whose virtual address lies outside the file truncation point.
2351          */
2352         list_for_each_entry(vma, head, shared.nonlinear) {
2353                 details->nonlinear_vma = vma;
2354                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2355         }
2356 }
2357
2358 /**
2359  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2360  * @mapping: the address space containing mmaps to be unmapped.
2361  * @holebegin: byte in first page to unmap, relative to the start of
2362  * the underlying file.  This will be rounded down to a PAGE_SIZE
2363  * boundary.  Note that this is different from truncate_pagecache(), which
2364  * must keep the partial page.  In contrast, we must get rid of
2365  * partial pages.
2366  * @holelen: size of prospective hole in bytes.  This will be rounded
2367  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2368  * end of the file.
2369  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2370  * but 0 when invalidating pagecache, don't throw away private data.
2371  */
2372 void unmap_mapping_range(struct address_space *mapping,
2373                 loff_t const holebegin, loff_t const holelen, int even_cows)
2374 {
2375         struct zap_details details;
2376         pgoff_t hba = holebegin >> PAGE_SHIFT;
2377         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2378
2379         /* Check for overflow. */
2380         if (sizeof(holelen) > sizeof(hlen)) {
2381                 long long holeend =
2382                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2383                 if (holeend & ~(long long)ULONG_MAX)
2384                         hlen = ULONG_MAX - hba + 1;
2385         }
2386
2387         details.check_mapping = even_cows? NULL: mapping;
2388         details.nonlinear_vma = NULL;
2389         details.first_index = hba;
2390         details.last_index = hba + hlen - 1;
2391         if (details.last_index < details.first_index)
2392                 details.last_index = ULONG_MAX;
2393
2394
2395         mutex_lock(&mapping->i_mmap_mutex);
2396         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2397                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2398         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2399                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2400         mutex_unlock(&mapping->i_mmap_mutex);
2401 }
2402 EXPORT_SYMBOL(unmap_mapping_range);
2403
2404 /*
2405  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2406  * but allow concurrent faults), and pte mapped but not yet locked.
2407  * We return with pte unmapped and unlocked.
2408  *
2409  * We return with the mmap_sem locked or unlocked in the same cases
2410  * as does filemap_fault().
2411  */
2412 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2413                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2414                 unsigned int flags, pte_t orig_pte)
2415 {
2416         spinlock_t *ptl;
2417         struct page *page, *swapcache;
2418         struct mem_cgroup *memcg;
2419         swp_entry_t entry;
2420         pte_t pte;
2421         int locked;
2422         int exclusive = 0;
2423         int ret = 0;
2424
2425         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2426                 goto out;
2427
2428         entry = pte_to_swp_entry(orig_pte);
2429         if (unlikely(non_swap_entry(entry))) {
2430                 if (is_migration_entry(entry)) {
2431                         migration_entry_wait(mm, pmd, address);
2432                 } else if (is_hwpoison_entry(entry)) {
2433                         ret = VM_FAULT_HWPOISON;
2434                 } else {
2435                         print_bad_pte(vma, address, orig_pte, NULL);
2436                         ret = VM_FAULT_SIGBUS;
2437                 }
2438                 goto out;
2439         }
2440         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2441         page = lookup_swap_cache(entry);
2442         if (!page) {
2443                 page = swapin_readahead(entry,
2444                                         GFP_HIGHUSER_MOVABLE, vma, address);
2445                 if (!page) {
2446                         /*
2447                          * Back out if somebody else faulted in this pte
2448                          * while we released the pte lock.
2449                          */
2450                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2451                         if (likely(pte_same(*page_table, orig_pte)))
2452                                 ret = VM_FAULT_OOM;
2453                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2454                         goto unlock;
2455                 }
2456
2457                 /* Had to read the page from swap area: Major fault */
2458                 ret = VM_FAULT_MAJOR;
2459                 count_vm_event(PGMAJFAULT);
2460                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2461         } else if (PageHWPoison(page)) {
2462                 /*
2463                  * hwpoisoned dirty swapcache pages are kept for killing
2464                  * owner processes (which may be unknown at hwpoison time)
2465                  */
2466                 ret = VM_FAULT_HWPOISON;
2467                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2468                 swapcache = page;
2469                 goto out_release;
2470         }
2471
2472         swapcache = page;
2473         locked = lock_page_or_retry(page, mm, flags);
2474
2475         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2476         if (!locked) {
2477                 ret |= VM_FAULT_RETRY;
2478                 goto out_release;
2479         }
2480
2481         /*
2482          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2483          * release the swapcache from under us.  The page pin, and pte_same
2484          * test below, are not enough to exclude that.  Even if it is still
2485          * swapcache, we need to check that the page's swap has not changed.
2486          */
2487         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2488                 goto out_page;
2489
2490         page = ksm_might_need_to_copy(page, vma, address);
2491         if (unlikely(!page)) {
2492                 ret = VM_FAULT_OOM;
2493                 page = swapcache;
2494                 goto out_page;
2495         }
2496
2497         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2498                 ret = VM_FAULT_OOM;
2499                 goto out_page;
2500         }
2501
2502         /*
2503          * Back out if somebody else already faulted in this pte.
2504          */
2505         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2506         if (unlikely(!pte_same(*page_table, orig_pte)))
2507                 goto out_nomap;
2508
2509         if (unlikely(!PageUptodate(page))) {
2510                 ret = VM_FAULT_SIGBUS;
2511                 goto out_nomap;
2512         }
2513
2514         /*
2515          * The page isn't present yet, go ahead with the fault.
2516          *
2517          * Be careful about the sequence of operations here.
2518          * To get its accounting right, reuse_swap_page() must be called
2519          * while the page is counted on swap but not yet in mapcount i.e.
2520          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2521          * must be called after the swap_free(), or it will never succeed.
2522          */
2523
2524         inc_mm_counter_fast(mm, MM_ANONPAGES);
2525         dec_mm_counter_fast(mm, MM_SWAPENTS);
2526         pte = mk_pte(page, vma->vm_page_prot);
2527         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2528                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2529                 flags &= ~FAULT_FLAG_WRITE;
2530                 ret |= VM_FAULT_WRITE;
2531                 exclusive = 1;
2532         }
2533         flush_icache_page(vma, page);
2534         if (pte_swp_soft_dirty(orig_pte))
2535                 pte = pte_mksoft_dirty(pte);
2536         set_pte_at(mm, address, page_table, pte);
2537         if (page == swapcache) {
2538                 do_page_add_anon_rmap(page, vma, address, exclusive);
2539                 mem_cgroup_commit_charge(page, memcg, true);
2540         } else { /* ksm created a completely new copy */
2541                 page_add_new_anon_rmap(page, vma, address);
2542                 mem_cgroup_commit_charge(page, memcg, false);
2543                 lru_cache_add_active_or_unevictable(page, vma);
2544         }
2545
2546         swap_free(entry);
2547         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2548                 try_to_free_swap(page);
2549         unlock_page(page);
2550         if (page != swapcache) {
2551                 /*
2552                  * Hold the lock to avoid the swap entry to be reused
2553                  * until we take the PT lock for the pte_same() check
2554                  * (to avoid false positives from pte_same). For
2555                  * further safety release the lock after the swap_free
2556                  * so that the swap count won't change under a
2557                  * parallel locked swapcache.
2558                  */
2559                 unlock_page(swapcache);
2560                 page_cache_release(swapcache);
2561         }
2562
2563         if (flags & FAULT_FLAG_WRITE) {
2564                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2565                 if (ret & VM_FAULT_ERROR)
2566                         ret &= VM_FAULT_ERROR;
2567                 goto out;
2568         }
2569
2570         /* No need to invalidate - it was non-present before */
2571         update_mmu_cache(vma, address, page_table);
2572 unlock:
2573         pte_unmap_unlock(page_table, ptl);
2574 out:
2575         return ret;
2576 out_nomap:
2577         mem_cgroup_cancel_charge(page, memcg);
2578         pte_unmap_unlock(page_table, ptl);
2579 out_page:
2580         unlock_page(page);
2581 out_release:
2582         page_cache_release(page);
2583         if (page != swapcache) {
2584                 unlock_page(swapcache);
2585                 page_cache_release(swapcache);
2586         }
2587         return ret;
2588 }
2589
2590 /*
2591  * This is like a special single-page "expand_{down|up}wards()",
2592  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2593  * doesn't hit another vma.
2594  */
2595 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2596 {
2597         address &= PAGE_MASK;
2598         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2599                 struct vm_area_struct *prev = vma->vm_prev;
2600
2601                 /*
2602                  * Is there a mapping abutting this one below?
2603                  *
2604                  * That's only ok if it's the same stack mapping
2605                  * that has gotten split..
2606                  */
2607                 if (prev && prev->vm_end == address)
2608                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2609
2610                 expand_downwards(vma, address - PAGE_SIZE);
2611         }
2612         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2613                 struct vm_area_struct *next = vma->vm_next;
2614
2615                 /* As VM_GROWSDOWN but s/below/above/ */
2616                 if (next && next->vm_start == address + PAGE_SIZE)
2617                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2618
2619                 expand_upwards(vma, address + PAGE_SIZE);
2620         }
2621         return 0;
2622 }
2623
2624 /*
2625  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2626  * but allow concurrent faults), and pte mapped but not yet locked.
2627  * We return with mmap_sem still held, but pte unmapped and unlocked.
2628  */
2629 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2630                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2631                 unsigned int flags)
2632 {
2633         struct mem_cgroup *memcg;
2634         struct page *page;
2635         spinlock_t *ptl;
2636         pte_t entry;
2637
2638         pte_unmap(page_table);
2639
2640         /* Check if we need to add a guard page to the stack */
2641         if (check_stack_guard_page(vma, address) < 0)
2642                 return VM_FAULT_SIGBUS;
2643
2644         /* Use the zero-page for reads */
2645         if (!(flags & FAULT_FLAG_WRITE)) {
2646                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2647                                                 vma->vm_page_prot));
2648                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2649                 if (!pte_none(*page_table))
2650                         goto unlock;
2651                 goto setpte;
2652         }
2653
2654         /* Allocate our own private page. */
2655         if (unlikely(anon_vma_prepare(vma)))
2656                 goto oom;
2657         page = alloc_zeroed_user_highpage_movable(vma, address);
2658         if (!page)
2659                 goto oom;
2660         /*
2661          * The memory barrier inside __SetPageUptodate makes sure that
2662          * preceeding stores to the page contents become visible before
2663          * the set_pte_at() write.
2664          */
2665         __SetPageUptodate(page);
2666
2667         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2668                 goto oom_free_page;
2669
2670         entry = mk_pte(page, vma->vm_page_prot);
2671         if (vma->vm_flags & VM_WRITE)
2672                 entry = pte_mkwrite(pte_mkdirty(entry));
2673
2674         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2675         if (!pte_none(*page_table))
2676                 goto release;
2677
2678         inc_mm_counter_fast(mm, MM_ANONPAGES);
2679         page_add_new_anon_rmap(page, vma, address);
2680         mem_cgroup_commit_charge(page, memcg, false);
2681         lru_cache_add_active_or_unevictable(page, vma);
2682 setpte:
2683         set_pte_at(mm, address, page_table, entry);
2684
2685         /* No need to invalidate - it was non-present before */
2686         update_mmu_cache(vma, address, page_table);
2687 unlock:
2688         pte_unmap_unlock(page_table, ptl);
2689         return 0;
2690 release:
2691         mem_cgroup_cancel_charge(page, memcg);
2692         page_cache_release(page);
2693         goto unlock;
2694 oom_free_page:
2695         page_cache_release(page);
2696 oom:
2697         return VM_FAULT_OOM;
2698 }
2699
2700 /*
2701  * The mmap_sem must have been held on entry, and may have been
2702  * released depending on flags and vma->vm_ops->fault() return value.
2703  * See filemap_fault() and __lock_page_retry().
2704  */
2705 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2706                 pgoff_t pgoff, unsigned int flags, struct page **page)
2707 {
2708         struct vm_fault vmf;
2709         int ret;
2710
2711         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2712         vmf.pgoff = pgoff;
2713         vmf.flags = flags;
2714         vmf.page = NULL;
2715
2716         ret = vma->vm_ops->fault(vma, &vmf);
2717         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2718                 return ret;
2719
2720         if (unlikely(PageHWPoison(vmf.page))) {
2721                 if (ret & VM_FAULT_LOCKED)
2722                         unlock_page(vmf.page);
2723                 page_cache_release(vmf.page);
2724                 return VM_FAULT_HWPOISON;
2725         }
2726
2727         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2728                 lock_page(vmf.page);
2729         else
2730                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2731
2732         *page = vmf.page;
2733         return ret;
2734 }
2735
2736 /**
2737  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2738  *
2739  * @vma: virtual memory area
2740  * @address: user virtual address
2741  * @page: page to map
2742  * @pte: pointer to target page table entry
2743  * @write: true, if new entry is writable
2744  * @anon: true, if it's anonymous page
2745  *
2746  * Caller must hold page table lock relevant for @pte.
2747  *
2748  * Target users are page handler itself and implementations of
2749  * vm_ops->map_pages.
2750  */
2751 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2752                 struct page *page, pte_t *pte, bool write, bool anon)
2753 {
2754         pte_t entry;
2755
2756         flush_icache_page(vma, page);
2757         entry = mk_pte(page, vma->vm_page_prot);
2758         if (write)
2759                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2760         else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2761                 entry = pte_mksoft_dirty(entry);
2762         if (anon) {
2763                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2764                 page_add_new_anon_rmap(page, vma, address);
2765         } else {
2766                 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2767                 page_add_file_rmap(page);
2768         }
2769         set_pte_at(vma->vm_mm, address, pte, entry);
2770
2771         /* no need to invalidate: a not-present page won't be cached */
2772         update_mmu_cache(vma, address, pte);
2773 }
2774
2775 static unsigned long fault_around_bytes __read_mostly =
2776         rounddown_pow_of_two(65536);
2777
2778 #ifdef CONFIG_DEBUG_FS
2779 static int fault_around_bytes_get(void *data, u64 *val)
2780 {
2781         *val = fault_around_bytes;
2782         return 0;
2783 }
2784
2785 /*
2786  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2787  * rounded down to nearest page order. It's what do_fault_around() expects to
2788  * see.
2789  */
2790 static int fault_around_bytes_set(void *data, u64 val)
2791 {
2792         if (val / PAGE_SIZE > PTRS_PER_PTE)
2793                 return -EINVAL;
2794         if (val > PAGE_SIZE)
2795                 fault_around_bytes = rounddown_pow_of_two(val);
2796         else
2797                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2798         return 0;
2799 }
2800 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2801                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2802
2803 static int __init fault_around_debugfs(void)
2804 {
2805         void *ret;
2806
2807         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2808                         &fault_around_bytes_fops);
2809         if (!ret)
2810                 pr_warn("Failed to create fault_around_bytes in debugfs");
2811         return 0;
2812 }
2813 late_initcall(fault_around_debugfs);
2814 #endif
2815
2816 /*
2817  * do_fault_around() tries to map few pages around the fault address. The hope
2818  * is that the pages will be needed soon and this will lower the number of
2819  * faults to handle.
2820  *
2821  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2822  * not ready to be mapped: not up-to-date, locked, etc.
2823  *
2824  * This function is called with the page table lock taken. In the split ptlock
2825  * case the page table lock only protects only those entries which belong to
2826  * the page table corresponding to the fault address.
2827  *
2828  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2829  * only once.
2830  *
2831  * fault_around_pages() defines how many pages we'll try to map.
2832  * do_fault_around() expects it to return a power of two less than or equal to
2833  * PTRS_PER_PTE.
2834  *
2835  * The virtual address of the area that we map is naturally aligned to the
2836  * fault_around_pages() value (and therefore to page order).  This way it's
2837  * easier to guarantee that we don't cross page table boundaries.
2838  */
2839 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2840                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2841 {
2842         unsigned long start_addr, nr_pages, mask;
2843         pgoff_t max_pgoff;
2844         struct vm_fault vmf;
2845         int off;
2846
2847         nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2848         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2849
2850         start_addr = max(address & mask, vma->vm_start);
2851         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2852         pte -= off;
2853         pgoff -= off;
2854
2855         /*
2856          *  max_pgoff is either end of page table or end of vma
2857          *  or fault_around_pages() from pgoff, depending what is nearest.
2858          */
2859         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2860                 PTRS_PER_PTE - 1;
2861         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2862                         pgoff + nr_pages - 1);
2863
2864         /* Check if it makes any sense to call ->map_pages */
2865         while (!pte_none(*pte)) {
2866                 if (++pgoff > max_pgoff)
2867                         return;
2868                 start_addr += PAGE_SIZE;
2869                 if (start_addr >= vma->vm_end)
2870                         return;
2871                 pte++;
2872         }
2873
2874         vmf.virtual_address = (void __user *) start_addr;
2875         vmf.pte = pte;
2876         vmf.pgoff = pgoff;
2877         vmf.max_pgoff = max_pgoff;
2878         vmf.flags = flags;
2879         vma->vm_ops->map_pages(vma, &vmf);
2880 }
2881
2882 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2883                 unsigned long address, pmd_t *pmd,
2884                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2885 {
2886         struct page *fault_page;
2887         spinlock_t *ptl;
2888         pte_t *pte;
2889         int ret = 0;
2890
2891         /*
2892          * Let's call ->map_pages() first and use ->fault() as fallback
2893          * if page by the offset is not ready to be mapped (cold cache or
2894          * something).
2895          */
2896         if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2897             fault_around_bytes >> PAGE_SHIFT > 1) {
2898                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2899                 do_fault_around(vma, address, pte, pgoff, flags);
2900                 if (!pte_same(*pte, orig_pte))
2901                         goto unlock_out;
2902                 pte_unmap_unlock(pte, ptl);
2903         }
2904
2905         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2906         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2907                 return ret;
2908
2909         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2910         if (unlikely(!pte_same(*pte, orig_pte))) {
2911                 pte_unmap_unlock(pte, ptl);
2912                 unlock_page(fault_page);
2913                 page_cache_release(fault_page);
2914                 return ret;
2915         }
2916         do_set_pte(vma, address, fault_page, pte, false, false);
2917         unlock_page(fault_page);
2918 unlock_out:
2919         pte_unmap_unlock(pte, ptl);
2920         return ret;
2921 }
2922
2923 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2924                 unsigned long address, pmd_t *pmd,
2925                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2926 {
2927         struct page *fault_page, *new_page;
2928         struct mem_cgroup *memcg;
2929         spinlock_t *ptl;
2930         pte_t *pte;
2931         int ret;
2932
2933         if (unlikely(anon_vma_prepare(vma)))
2934                 return VM_FAULT_OOM;
2935
2936         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2937         if (!new_page)
2938                 return VM_FAULT_OOM;
2939
2940         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2941                 page_cache_release(new_page);
2942                 return VM_FAULT_OOM;
2943         }
2944
2945         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2946         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2947                 goto uncharge_out;
2948
2949         copy_user_highpage(new_page, fault_page, address, vma);
2950         __SetPageUptodate(new_page);
2951
2952         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2953         if (unlikely(!pte_same(*pte, orig_pte))) {
2954                 pte_unmap_unlock(pte, ptl);
2955                 unlock_page(fault_page);
2956                 page_cache_release(fault_page);
2957                 goto uncharge_out;
2958         }
2959         do_set_pte(vma, address, new_page, pte, true, true);
2960         mem_cgroup_commit_charge(new_page, memcg, false);
2961         lru_cache_add_active_or_unevictable(new_page, vma);
2962         pte_unmap_unlock(pte, ptl);
2963         unlock_page(fault_page);
2964         page_cache_release(fault_page);
2965         return ret;
2966 uncharge_out:
2967         mem_cgroup_cancel_charge(new_page, memcg);
2968         page_cache_release(new_page);
2969         return ret;
2970 }
2971
2972 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2973                 unsigned long address, pmd_t *pmd,
2974                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2975 {
2976         struct page *fault_page;
2977         struct address_space *mapping;
2978         spinlock_t *ptl;
2979         pte_t *pte;
2980         int dirtied = 0;
2981         int ret, tmp;
2982
2983         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2984         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2985                 return ret;
2986
2987         /*
2988          * Check if the backing address space wants to know that the page is
2989          * about to become writable
2990          */
2991         if (vma->vm_ops->page_mkwrite) {
2992                 unlock_page(fault_page);
2993                 tmp = do_page_mkwrite(vma, fault_page, address);
2994                 if (unlikely(!tmp ||
2995                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2996                         page_cache_release(fault_page);
2997                         return tmp;
2998                 }
2999         }
3000
3001         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3002         if (unlikely(!pte_same(*pte, orig_pte))) {
3003                 pte_unmap_unlock(pte, ptl);
3004                 unlock_page(fault_page);
3005                 page_cache_release(fault_page);
3006                 return ret;
3007         }
3008         do_set_pte(vma, address, fault_page, pte, true, false);
3009         pte_unmap_unlock(pte, ptl);
3010
3011         if (set_page_dirty(fault_page))
3012                 dirtied = 1;
3013         mapping = fault_page->mapping;
3014         unlock_page(fault_page);
3015         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3016                 /*
3017                  * Some device drivers do not set page.mapping but still
3018                  * dirty their pages
3019                  */
3020                 balance_dirty_pages_ratelimited(mapping);
3021         }
3022
3023         /* file_update_time outside page_lock */
3024         if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3025                 file_update_time(vma->vm_file);
3026
3027         return ret;
3028 }
3029
3030 /*
3031  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3032  * but allow concurrent faults).
3033  * The mmap_sem may have been released depending on flags and our
3034  * return value.  See filemap_fault() and __lock_page_or_retry().
3035  */
3036 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3037                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3038                 unsigned int flags, pte_t orig_pte)
3039 {
3040         pgoff_t pgoff = (((address & PAGE_MASK)
3041                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3042
3043         pte_unmap(page_table);
3044         if (!(flags & FAULT_FLAG_WRITE))
3045                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3046                                 orig_pte);
3047         if (!(vma->vm_flags & VM_SHARED))
3048                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3049                                 orig_pte);
3050         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3051 }
3052
3053 /*
3054  * Fault of a previously existing named mapping. Repopulate the pte
3055  * from the encoded file_pte if possible. This enables swappable
3056  * nonlinear vmas.
3057  *
3058  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3059  * but allow concurrent faults), and pte mapped but not yet locked.
3060  * We return with pte unmapped and unlocked.
3061  * The mmap_sem may have been released depending on flags and our
3062  * return value.  See filemap_fault() and __lock_page_or_retry().
3063  */
3064 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3065                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3066                 unsigned int flags, pte_t orig_pte)
3067 {
3068         pgoff_t pgoff;
3069
3070         flags |= FAULT_FLAG_NONLINEAR;
3071
3072         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3073                 return 0;
3074
3075         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3076                 /*
3077                  * Page table corrupted: show pte and kill process.
3078                  */
3079                 print_bad_pte(vma, address, orig_pte, NULL);
3080                 return VM_FAULT_SIGBUS;
3081         }
3082
3083         pgoff = pte_to_pgoff(orig_pte);
3084         if (!(flags & FAULT_FLAG_WRITE))
3085                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3086                                 orig_pte);
3087         if (!(vma->vm_flags & VM_SHARED))
3088                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3089                                 orig_pte);
3090         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3091 }
3092
3093 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3094                                 unsigned long addr, int page_nid,
3095                                 int *flags)
3096 {
3097         get_page(page);
3098
3099         count_vm_numa_event(NUMA_HINT_FAULTS);
3100         if (page_nid == numa_node_id()) {
3101                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3102                 *flags |= TNF_FAULT_LOCAL;
3103         }
3104
3105         return mpol_misplaced(page, vma, addr);
3106 }
3107
3108 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3109                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3110 {
3111         struct page *page = NULL;
3112         spinlock_t *ptl;
3113         int page_nid = -1;
3114         int last_cpupid;
3115         int target_nid;
3116         bool migrated = false;
3117         int flags = 0;
3118
3119         /*
3120         * The "pte" at this point cannot be used safely without
3121         * validation through pte_unmap_same(). It's of NUMA type but
3122         * the pfn may be screwed if the read is non atomic.
3123         *
3124         * ptep_modify_prot_start is not called as this is clearing
3125         * the _PAGE_NUMA bit and it is not really expected that there
3126         * would be concurrent hardware modifications to the PTE.
3127         */
3128         ptl = pte_lockptr(mm, pmd);
3129         spin_lock(ptl);
3130         if (unlikely(!pte_same(*ptep, pte))) {
3131                 pte_unmap_unlock(ptep, ptl);
3132                 goto out;
3133         }
3134
3135         pte = pte_mknonnuma(pte);
3136         set_pte_at(mm, addr, ptep, pte);
3137         update_mmu_cache(vma, addr, ptep);
3138
3139         page = vm_normal_page(vma, addr, pte);
3140         if (!page) {
3141                 pte_unmap_unlock(ptep, ptl);
3142                 return 0;
3143         }
3144         BUG_ON(is_zero_pfn(page_to_pfn(page)));
3145
3146         /*
3147          * Avoid grouping on DSO/COW pages in specific and RO pages
3148          * in general, RO pages shouldn't hurt as much anyway since
3149          * they can be in shared cache state.
3150          */
3151         if (!pte_write(pte))
3152                 flags |= TNF_NO_GROUP;
3153
3154         /*
3155          * Flag if the page is shared between multiple address spaces. This
3156          * is later used when determining whether to group tasks together
3157          */
3158         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3159                 flags |= TNF_SHARED;
3160
3161         last_cpupid = page_cpupid_last(page);
3162         page_nid = page_to_nid(page);
3163         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3164         pte_unmap_unlock(ptep, ptl);
3165         if (target_nid == -1) {
3166                 put_page(page);
3167                 goto out;
3168         }
3169
3170         /* Migrate to the requested node */
3171         migrated = migrate_misplaced_page(page, vma, target_nid);
3172         if (migrated) {
3173                 page_nid = target_nid;
3174                 flags |= TNF_MIGRATED;
3175         }
3176
3177 out:
3178         if (page_nid != -1)
3179                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3180         return 0;
3181 }
3182
3183 /*
3184  * These routines also need to handle stuff like marking pages dirty
3185  * and/or accessed for architectures that don't do it in hardware (most
3186  * RISC architectures).  The early dirtying is also good on the i386.
3187  *
3188  * There is also a hook called "update_mmu_cache()" that architectures
3189  * with external mmu caches can use to update those (ie the Sparc or
3190  * PowerPC hashed page tables that act as extended TLBs).
3191  *
3192  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3193  * but allow concurrent faults), and pte mapped but not yet locked.
3194  * We return with pte unmapped and unlocked.
3195  *
3196  * The mmap_sem may have been released depending on flags and our
3197  * return value.  See filemap_fault() and __lock_page_or_retry().
3198  */
3199 static int handle_pte_fault(struct mm_struct *mm,
3200                      struct vm_area_struct *vma, unsigned long address,
3201                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3202 {
3203         pte_t entry;
3204         spinlock_t *ptl;
3205
3206         entry = ACCESS_ONCE(*pte);
3207         if (!pte_present(entry)) {
3208                 if (pte_none(entry)) {
3209                         if (vma->vm_ops) {
3210                                 if (likely(vma->vm_ops->fault))
3211                                         return do_linear_fault(mm, vma, address,
3212                                                 pte, pmd, flags, entry);
3213                         }
3214                         return do_anonymous_page(mm, vma, address,
3215                                                  pte, pmd, flags);
3216                 }
3217                 if (pte_file(entry))
3218                         return do_nonlinear_fault(mm, vma, address,
3219                                         pte, pmd, flags, entry);
3220                 return do_swap_page(mm, vma, address,
3221                                         pte, pmd, flags, entry);
3222         }
3223
3224         if (pte_numa(entry))
3225                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3226
3227         ptl = pte_lockptr(mm, pmd);
3228         spin_lock(ptl);
3229         if (unlikely(!pte_same(*pte, entry)))
3230                 goto unlock;
3231         if (flags & FAULT_FLAG_WRITE) {
3232                 if (!pte_write(entry))
3233                         return do_wp_page(mm, vma, address,
3234                                         pte, pmd, ptl, entry);
3235                 entry = pte_mkdirty(entry);
3236         }
3237         entry = pte_mkyoung(entry);
3238         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3239                 update_mmu_cache(vma, address, pte);
3240         } else {
3241                 /*
3242                  * This is needed only for protection faults but the arch code
3243                  * is not yet telling us if this is a protection fault or not.
3244                  * This still avoids useless tlb flushes for .text page faults
3245                  * with threads.
3246                  */
3247                 if (flags & FAULT_FLAG_WRITE)
3248                         flush_tlb_fix_spurious_fault(vma, address);
3249         }
3250 unlock:
3251         pte_unmap_unlock(pte, ptl);
3252         return 0;
3253 }
3254
3255 /*
3256  * By the time we get here, we already hold the mm semaphore
3257  *
3258  * The mmap_sem may have been released depending on flags and our
3259  * return value.  See filemap_fault() and __lock_page_or_retry().
3260  */
3261 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3262                              unsigned long address, unsigned int flags)
3263 {
3264         pgd_t *pgd;
3265         pud_t *pud;
3266         pmd_t *pmd;
3267         pte_t *pte;
3268
3269         if (unlikely(is_vm_hugetlb_page(vma)))
3270                 return hugetlb_fault(mm, vma, address, flags);
3271
3272         pgd = pgd_offset(mm, address);
3273         pud = pud_alloc(mm, pgd, address);
3274         if (!pud)
3275                 return VM_FAULT_OOM;
3276         pmd = pmd_alloc(mm, pud, address);
3277         if (!pmd)
3278                 return VM_FAULT_OOM;
3279         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3280                 int ret = VM_FAULT_FALLBACK;
3281                 if (!vma->vm_ops)
3282                         ret = do_huge_pmd_anonymous_page(mm, vma, address,
3283                                         pmd, flags);
3284                 if (!(ret & VM_FAULT_FALLBACK))
3285                         return ret;
3286         } else {
3287                 pmd_t orig_pmd = *pmd;
3288                 int ret;
3289
3290                 barrier();
3291                 if (pmd_trans_huge(orig_pmd)) {
3292                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3293
3294                         /*
3295                          * If the pmd is splitting, return and retry the
3296                          * the fault.  Alternative: wait until the split
3297                          * is done, and goto retry.
3298                          */
3299                         if (pmd_trans_splitting(orig_pmd))
3300                                 return 0;
3301
3302                         if (pmd_numa(orig_pmd))
3303                                 return do_huge_pmd_numa_page(mm, vma, address,
3304                                                              orig_pmd, pmd);
3305
3306                         if (dirty && !pmd_write(orig_pmd)) {
3307                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3308                                                           orig_pmd);
3309                                 if (!(ret & VM_FAULT_FALLBACK))
3310                                         return ret;
3311                         } else {
3312                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3313                                                       orig_pmd, dirty);
3314                                 return 0;
3315                         }
3316                 }
3317         }
3318
3319         /*
3320          * Use __pte_alloc instead of pte_alloc_map, because we can't
3321          * run pte_offset_map on the pmd, if an huge pmd could
3322          * materialize from under us from a different thread.
3323          */
3324         if (unlikely(pmd_none(*pmd)) &&
3325             unlikely(__pte_alloc(mm, vma, pmd, address)))
3326                 return VM_FAULT_OOM;
3327         /* if an huge pmd materialized from under us just retry later */
3328         if (unlikely(pmd_trans_huge(*pmd)))
3329                 return 0;
3330         /*
3331          * A regular pmd is established and it can't morph into a huge pmd
3332          * from under us anymore at this point because we hold the mmap_sem
3333          * read mode and khugepaged takes it in write mode. So now it's
3334          * safe to run pte_offset_map().
3335          */
3336         pte = pte_offset_map(pmd, address);
3337
3338         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3339 }
3340
3341 /*
3342  * By the time we get here, we already hold the mm semaphore
3343  *
3344  * The mmap_sem may have been released depending on flags and our
3345  * return value.  See filemap_fault() and __lock_page_or_retry().
3346  */
3347 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3348                     unsigned long address, unsigned int flags)
3349 {
3350         int ret;
3351
3352         __set_current_state(TASK_RUNNING);
3353
3354         count_vm_event(PGFAULT);
3355         mem_cgroup_count_vm_event(mm, PGFAULT);
3356
3357         /* do counter updates before entering really critical section. */
3358         check_sync_rss_stat(current);
3359
3360         /*
3361          * Enable the memcg OOM handling for faults triggered in user
3362          * space.  Kernel faults are handled more gracefully.
3363          */
3364         if (flags & FAULT_FLAG_USER)
3365                 mem_cgroup_oom_enable();
3366
3367         ret = __handle_mm_fault(mm, vma, address, flags);
3368
3369         if (flags & FAULT_FLAG_USER) {
3370                 mem_cgroup_oom_disable();
3371                 /*
3372                  * The task may have entered a memcg OOM situation but
3373                  * if the allocation error was handled gracefully (no
3374                  * VM_FAULT_OOM), there is no need to kill anything.
3375                  * Just clean up the OOM state peacefully.
3376                  */
3377                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3378                         mem_cgroup_oom_synchronize(false);
3379         }
3380
3381         return ret;
3382 }
3383
3384 #ifndef __PAGETABLE_PUD_FOLDED
3385 /*
3386  * Allocate page upper directory.
3387  * We've already handled the fast-path in-line.
3388  */
3389 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3390 {
3391         pud_t *new = pud_alloc_one(mm, address);
3392         if (!new)
3393                 return -ENOMEM;
3394
3395         smp_wmb(); /* See comment in __pte_alloc */
3396
3397         spin_lock(&mm->page_table_lock);
3398         if (pgd_present(*pgd))          /* Another has populated it */
3399                 pud_free(mm, new);
3400         else
3401                 pgd_populate(mm, pgd, new);
3402         spin_unlock(&mm->page_table_lock);
3403         return 0;
3404 }
3405 #endif /* __PAGETABLE_PUD_FOLDED */
3406
3407 #ifndef __PAGETABLE_PMD_FOLDED
3408 /*
3409  * Allocate page middle directory.
3410  * We've already handled the fast-path in-line.
3411  */
3412 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3413 {
3414         pmd_t *new = pmd_alloc_one(mm, address);
3415         if (!new)
3416                 return -ENOMEM;
3417
3418         smp_wmb(); /* See comment in __pte_alloc */
3419
3420         spin_lock(&mm->page_table_lock);
3421 #ifndef __ARCH_HAS_4LEVEL_HACK
3422         if (pud_present(*pud))          /* Another has populated it */
3423                 pmd_free(mm, new);
3424         else
3425                 pud_populate(mm, pud, new);
3426 #else
3427         if (pgd_present(*pud))          /* Another has populated it */
3428                 pmd_free(mm, new);
3429         else
3430                 pgd_populate(mm, pud, new);
3431 #endif /* __ARCH_HAS_4LEVEL_HACK */
3432         spin_unlock(&mm->page_table_lock);
3433         return 0;
3434 }
3435 #endif /* __PAGETABLE_PMD_FOLDED */
3436
3437 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3438                 pte_t **ptepp, spinlock_t **ptlp)
3439 {
3440         pgd_t *pgd;
3441         pud_t *pud;
3442         pmd_t *pmd;
3443         pte_t *ptep;
3444
3445         pgd = pgd_offset(mm, address);
3446         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3447                 goto out;
3448
3449         pud = pud_offset(pgd, address);
3450         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3451                 goto out;
3452
3453         pmd = pmd_offset(pud, address);
3454         VM_BUG_ON(pmd_trans_huge(*pmd));
3455         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3456                 goto out;
3457
3458         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3459         if (pmd_huge(*pmd))
3460                 goto out;
3461
3462         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3463         if (!ptep)
3464                 goto out;
3465         if (!pte_present(*ptep))
3466                 goto unlock;
3467         *ptepp = ptep;
3468         return 0;
3469 unlock:
3470         pte_unmap_unlock(ptep, *ptlp);
3471 out:
3472         return -EINVAL;
3473 }
3474
3475 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3476                              pte_t **ptepp, spinlock_t **ptlp)
3477 {
3478         int res;
3479
3480         /* (void) is needed to make gcc happy */
3481         (void) __cond_lock(*ptlp,
3482                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3483         return res;
3484 }
3485
3486 /**
3487  * follow_pfn - look up PFN at a user virtual address
3488  * @vma: memory mapping
3489  * @address: user virtual address
3490  * @pfn: location to store found PFN
3491  *
3492  * Only IO mappings and raw PFN mappings are allowed.
3493  *
3494  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3495  */
3496 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3497         unsigned long *pfn)
3498 {
3499         int ret = -EINVAL;
3500         spinlock_t *ptl;
3501         pte_t *ptep;
3502
3503         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3504                 return ret;
3505
3506         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3507         if (ret)
3508                 return ret;
3509         *pfn = pte_pfn(*ptep);
3510         pte_unmap_unlock(ptep, ptl);
3511         return 0;
3512 }
3513 EXPORT_SYMBOL(follow_pfn);
3514
3515 #ifdef CONFIG_HAVE_IOREMAP_PROT
3516 int follow_phys(struct vm_area_struct *vma,
3517                 unsigned long address, unsigned int flags,
3518                 unsigned long *prot, resource_size_t *phys)
3519 {
3520         int ret = -EINVAL;
3521         pte_t *ptep, pte;
3522         spinlock_t *ptl;
3523
3524         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3525                 goto out;
3526
3527         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3528                 goto out;
3529         pte = *ptep;
3530
3531         if ((flags & FOLL_WRITE) && !pte_write(pte))
3532                 goto unlock;
3533
3534         *prot = pgprot_val(pte_pgprot(pte));
3535         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3536
3537         ret = 0;
3538 unlock:
3539         pte_unmap_unlock(ptep, ptl);
3540 out:
3541         return ret;
3542 }
3543
3544 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3545                         void *buf, int len, int write)
3546 {
3547         resource_size_t phys_addr;
3548         unsigned long prot = 0;
3549         void __iomem *maddr;
3550         int offset = addr & (PAGE_SIZE-1);
3551
3552         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3553                 return -EINVAL;
3554
3555         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3556         if (write)
3557                 memcpy_toio(maddr + offset, buf, len);
3558         else
3559                 memcpy_fromio(buf, maddr + offset, len);
3560         iounmap(maddr);
3561
3562         return len;
3563 }
3564 EXPORT_SYMBOL_GPL(generic_access_phys);
3565 #endif
3566
3567 /*
3568  * Access another process' address space as given in mm.  If non-NULL, use the
3569  * given task for page fault accounting.
3570  */
3571 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3572                 unsigned long addr, void *buf, int len, int write)
3573 {
3574         struct vm_area_struct *vma;
3575         void *old_buf = buf;
3576
3577         down_read(&mm->mmap_sem);
3578         /* ignore errors, just check how much was successfully transferred */
3579         while (len) {
3580                 int bytes, ret, offset;
3581                 void *maddr;
3582                 struct page *page = NULL;
3583
3584                 ret = get_user_pages(tsk, mm, addr, 1,
3585                                 write, 1, &page, &vma);
3586                 if (ret <= 0) {
3587 #ifndef CONFIG_HAVE_IOREMAP_PROT
3588                         break;
3589 #else
3590                         /*
3591                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3592                          * we can access using slightly different code.
3593                          */
3594                         vma = find_vma(mm, addr);
3595                         if (!vma || vma->vm_start > addr)
3596                                 break;
3597                         if (vma->vm_ops && vma->vm_ops->access)
3598                                 ret = vma->vm_ops->access(vma, addr, buf,
3599                                                           len, write);
3600                         if (ret <= 0)
3601                                 break;
3602                         bytes = ret;
3603 #endif
3604                 } else {
3605                         bytes = len;
3606                         offset = addr & (PAGE_SIZE-1);
3607                         if (bytes > PAGE_SIZE-offset)
3608                                 bytes = PAGE_SIZE-offset;
3609
3610                         maddr = kmap(page);
3611                         if (write) {
3612                                 copy_to_user_page(vma, page, addr,
3613                                                   maddr + offset, buf, bytes);
3614                                 set_page_dirty_lock(page);
3615                         } else {
3616                                 copy_from_user_page(vma, page, addr,
3617                                                     buf, maddr + offset, bytes);
3618                         }
3619                         kunmap(page);
3620                         page_cache_release(page);
3621                 }
3622                 len -= bytes;
3623                 buf += bytes;
3624                 addr += bytes;
3625         }
3626         up_read(&mm->mmap_sem);
3627
3628         return buf - old_buf;
3629 }
3630
3631 /**
3632  * access_remote_vm - access another process' address space
3633  * @mm:         the mm_struct of the target address space
3634  * @addr:       start address to access
3635  * @buf:        source or destination buffer
3636  * @len:        number of bytes to transfer
3637  * @write:      whether the access is a write
3638  *
3639  * The caller must hold a reference on @mm.
3640  */
3641 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3642                 void *buf, int len, int write)
3643 {
3644         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3645 }
3646
3647 /*
3648  * Access another process' address space.
3649  * Source/target buffer must be kernel space,
3650  * Do not walk the page table directly, use get_user_pages
3651  */
3652 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3653                 void *buf, int len, int write)
3654 {
3655         struct mm_struct *mm;
3656         int ret;
3657
3658         mm = get_task_mm(tsk);
3659         if (!mm)
3660                 return 0;
3661
3662         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3663         mmput(mm);
3664
3665         return ret;
3666 }
3667
3668 /*
3669  * Print the name of a VMA.
3670  */
3671 void print_vma_addr(char *prefix, unsigned long ip)
3672 {
3673         struct mm_struct *mm = current->mm;
3674         struct vm_area_struct *vma;
3675
3676         /*
3677          * Do not print if we are in atomic
3678          * contexts (in exception stacks, etc.):
3679          */
3680         if (preempt_count())
3681                 return;
3682
3683         down_read(&mm->mmap_sem);
3684         vma = find_vma(mm, ip);
3685         if (vma && vma->vm_file) {
3686                 struct file *f = vma->vm_file;
3687                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3688                 if (buf) {
3689                         char *p;
3690
3691                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3692                         if (IS_ERR(p))
3693                                 p = "?";
3694                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3695                                         vma->vm_start,
3696                                         vma->vm_end - vma->vm_start);
3697                         free_page((unsigned long)buf);
3698                 }
3699         }
3700         up_read(&mm->mmap_sem);
3701 }
3702
3703 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3704 void might_fault(void)
3705 {
3706         /*
3707          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3708          * holding the mmap_sem, this is safe because kernel memory doesn't
3709          * get paged out, therefore we'll never actually fault, and the
3710          * below annotations will generate false positives.
3711          */
3712         if (segment_eq(get_fs(), KERNEL_DS))
3713                 return;
3714
3715         /*
3716          * it would be nicer only to annotate paths which are not under
3717          * pagefault_disable, however that requires a larger audit and
3718          * providing helpers like get_user_atomic.
3719          */
3720         if (in_atomic())
3721                 return;
3722
3723         __might_sleep(__FILE__, __LINE__, 0);
3724
3725         if (current->mm)
3726                 might_lock_read(&current->mm->mmap_sem);
3727 }
3728 EXPORT_SYMBOL(might_fault);
3729 #endif
3730
3731 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3732 static void clear_gigantic_page(struct page *page,
3733                                 unsigned long addr,
3734                                 unsigned int pages_per_huge_page)
3735 {
3736         int i;
3737         struct page *p = page;
3738
3739         might_sleep();
3740         for (i = 0; i < pages_per_huge_page;
3741              i++, p = mem_map_next(p, page, i)) {
3742                 cond_resched();
3743                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3744         }
3745 }
3746 void clear_huge_page(struct page *page,
3747                      unsigned long addr, unsigned int pages_per_huge_page)
3748 {
3749         int i;
3750
3751         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3752                 clear_gigantic_page(page, addr, pages_per_huge_page);
3753                 return;
3754         }
3755
3756         might_sleep();
3757         for (i = 0; i < pages_per_huge_page; i++) {
3758                 cond_resched();
3759                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3760         }
3761 }
3762
3763 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3764                                     unsigned long addr,
3765                                     struct vm_area_struct *vma,
3766                                     unsigned int pages_per_huge_page)
3767 {
3768         int i;
3769         struct page *dst_base = dst;
3770         struct page *src_base = src;
3771
3772         for (i = 0; i < pages_per_huge_page; ) {
3773                 cond_resched();
3774                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3775
3776                 i++;
3777                 dst = mem_map_next(dst, dst_base, i);
3778                 src = mem_map_next(src, src_base, i);
3779         }
3780 }
3781
3782 void copy_user_huge_page(struct page *dst, struct page *src,
3783                          unsigned long addr, struct vm_area_struct *vma,
3784                          unsigned int pages_per_huge_page)
3785 {
3786         int i;
3787
3788         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3789                 copy_user_gigantic_page(dst, src, addr, vma,
3790                                         pages_per_huge_page);
3791                 return;
3792         }
3793
3794         might_sleep();
3795         for (i = 0; i < pages_per_huge_page; i++) {
3796                 cond_resched();
3797                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3798         }
3799 }
3800 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3801
3802 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3803
3804 static struct kmem_cache *page_ptl_cachep;
3805
3806 void __init ptlock_cache_init(void)
3807 {
3808         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3809                         SLAB_PANIC, NULL);
3810 }
3811
3812 bool ptlock_alloc(struct page *page)
3813 {
3814         spinlock_t *ptl;
3815
3816         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3817         if (!ptl)
3818                 return false;
3819         page->ptl = ptl;
3820         return true;
3821 }
3822
3823 void ptlock_free(struct page *page)
3824 {
3825         kmem_cache_free(page_ptl_cachep, page->ptl);
3826 }
3827 #endif