x86: mm: consolidate VM_FAULT_RETRY handling
[cascardo/linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106                                         1;
107 #else
108                                         2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113         randomize_va_space = 0;
114         return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 EXPORT_SYMBOL(zero_pfn);
122
123 /*
124  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125  */
126 static int __init init_zero_pfn(void)
127 {
128         zero_pfn = page_to_pfn(ZERO_PAGE(0));
129         return 0;
130 }
131 core_initcall(init_zero_pfn);
132
133
134 #if defined(SPLIT_RSS_COUNTING)
135
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138         int i;
139
140         for (i = 0; i < NR_MM_COUNTERS; i++) {
141                 if (current->rss_stat.count[i]) {
142                         add_mm_counter(mm, i, current->rss_stat.count[i]);
143                         current->rss_stat.count[i] = 0;
144                 }
145         }
146         current->rss_stat.events = 0;
147 }
148
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151         struct task_struct *task = current;
152
153         if (likely(task->mm == mm))
154                 task->rss_stat.count[member] += val;
155         else
156                 add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH  (64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165         if (unlikely(task != current))
166                 return;
167         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168                 sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178
179 #endif /* SPLIT_RSS_COUNTING */
180
181 #ifdef HAVE_GENERIC_MMU_GATHER
182
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185         struct mmu_gather_batch *batch;
186
187         batch = tlb->active;
188         if (batch->next) {
189                 tlb->active = batch->next;
190                 return 1;
191         }
192
193         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194                 return 0;
195
196         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197         if (!batch)
198                 return 0;
199
200         tlb->batch_count++;
201         batch->next = NULL;
202         batch->nr   = 0;
203         batch->max  = MAX_GATHER_BATCH;
204
205         tlb->active->next = batch;
206         tlb->active = batch;
207
208         return 1;
209 }
210
211 /* tlb_gather_mmu
212  *      Called to initialize an (on-stack) mmu_gather structure for page-table
213  *      tear-down from @mm. The @fullmm argument is used when @mm is without
214  *      users and we're going to destroy the full address space (exit/execve).
215  */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218         tlb->mm = mm;
219
220         /* Is it from 0 to ~0? */
221         tlb->fullmm     = !(start | (end+1));
222         tlb->need_flush_all = 0;
223         tlb->local.next = NULL;
224         tlb->local.nr   = 0;
225         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
226         tlb->active     = &tlb->local;
227         tlb->batch_count = 0;
228
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230         tlb->batch = NULL;
231 #endif
232
233         __tlb_reset_range(tlb);
234 }
235
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237 {
238         if (!tlb->end)
239                 return;
240
241         tlb_flush(tlb);
242 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
243         tlb_table_flush(tlb);
244 #endif
245         __tlb_reset_range(tlb);
246 }
247
248 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
249 {
250         struct mmu_gather_batch *batch;
251
252         for (batch = &tlb->local; batch; batch = batch->next) {
253                 free_pages_and_swap_cache(batch->pages, batch->nr);
254                 batch->nr = 0;
255         }
256         tlb->active = &tlb->local;
257 }
258
259 void tlb_flush_mmu(struct mmu_gather *tlb)
260 {
261         tlb_flush_mmu_tlbonly(tlb);
262         tlb_flush_mmu_free(tlb);
263 }
264
265 /* tlb_finish_mmu
266  *      Called at the end of the shootdown operation to free up any resources
267  *      that were required.
268  */
269 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
270 {
271         struct mmu_gather_batch *batch, *next;
272
273         tlb_flush_mmu(tlb);
274
275         /* keep the page table cache within bounds */
276         check_pgt_cache();
277
278         for (batch = tlb->local.next; batch; batch = next) {
279                 next = batch->next;
280                 free_pages((unsigned long)batch, 0);
281         }
282         tlb->local.next = NULL;
283 }
284
285 /* __tlb_remove_page
286  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
287  *      handling the additional races in SMP caused by other CPUs caching valid
288  *      mappings in their TLBs. Returns the number of free page slots left.
289  *      When out of page slots we must call tlb_flush_mmu().
290  */
291 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
292 {
293         struct mmu_gather_batch *batch;
294
295         VM_BUG_ON(!tlb->end);
296
297         batch = tlb->active;
298         batch->pages[batch->nr++] = page;
299         if (batch->nr == batch->max) {
300                 if (!tlb_next_batch(tlb))
301                         return 0;
302                 batch = tlb->active;
303         }
304         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
305
306         return batch->max - batch->nr;
307 }
308
309 #endif /* HAVE_GENERIC_MMU_GATHER */
310
311 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
312
313 /*
314  * See the comment near struct mmu_table_batch.
315  */
316
317 static void tlb_remove_table_smp_sync(void *arg)
318 {
319         /* Simply deliver the interrupt */
320 }
321
322 static void tlb_remove_table_one(void *table)
323 {
324         /*
325          * This isn't an RCU grace period and hence the page-tables cannot be
326          * assumed to be actually RCU-freed.
327          *
328          * It is however sufficient for software page-table walkers that rely on
329          * IRQ disabling. See the comment near struct mmu_table_batch.
330          */
331         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
332         __tlb_remove_table(table);
333 }
334
335 static void tlb_remove_table_rcu(struct rcu_head *head)
336 {
337         struct mmu_table_batch *batch;
338         int i;
339
340         batch = container_of(head, struct mmu_table_batch, rcu);
341
342         for (i = 0; i < batch->nr; i++)
343                 __tlb_remove_table(batch->tables[i]);
344
345         free_page((unsigned long)batch);
346 }
347
348 void tlb_table_flush(struct mmu_gather *tlb)
349 {
350         struct mmu_table_batch **batch = &tlb->batch;
351
352         if (*batch) {
353                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
354                 *batch = NULL;
355         }
356 }
357
358 void tlb_remove_table(struct mmu_gather *tlb, void *table)
359 {
360         struct mmu_table_batch **batch = &tlb->batch;
361
362         /*
363          * When there's less then two users of this mm there cannot be a
364          * concurrent page-table walk.
365          */
366         if (atomic_read(&tlb->mm->mm_users) < 2) {
367                 __tlb_remove_table(table);
368                 return;
369         }
370
371         if (*batch == NULL) {
372                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
373                 if (*batch == NULL) {
374                         tlb_remove_table_one(table);
375                         return;
376                 }
377                 (*batch)->nr = 0;
378         }
379         (*batch)->tables[(*batch)->nr++] = table;
380         if ((*batch)->nr == MAX_TABLE_BATCH)
381                 tlb_table_flush(tlb);
382 }
383
384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
385
386 /*
387  * Note: this doesn't free the actual pages themselves. That
388  * has been handled earlier when unmapping all the memory regions.
389  */
390 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
391                            unsigned long addr)
392 {
393         pgtable_t token = pmd_pgtable(*pmd);
394         pmd_clear(pmd);
395         pte_free_tlb(tlb, token, addr);
396         atomic_long_dec(&tlb->mm->nr_ptes);
397 }
398
399 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
400                                 unsigned long addr, unsigned long end,
401                                 unsigned long floor, unsigned long ceiling)
402 {
403         pmd_t *pmd;
404         unsigned long next;
405         unsigned long start;
406
407         start = addr;
408         pmd = pmd_offset(pud, addr);
409         do {
410                 next = pmd_addr_end(addr, end);
411                 if (pmd_none_or_clear_bad(pmd))
412                         continue;
413                 free_pte_range(tlb, pmd, addr);
414         } while (pmd++, addr = next, addr != end);
415
416         start &= PUD_MASK;
417         if (start < floor)
418                 return;
419         if (ceiling) {
420                 ceiling &= PUD_MASK;
421                 if (!ceiling)
422                         return;
423         }
424         if (end - 1 > ceiling - 1)
425                 return;
426
427         pmd = pmd_offset(pud, start);
428         pud_clear(pud);
429         pmd_free_tlb(tlb, pmd, start);
430 }
431
432 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
433                                 unsigned long addr, unsigned long end,
434                                 unsigned long floor, unsigned long ceiling)
435 {
436         pud_t *pud;
437         unsigned long next;
438         unsigned long start;
439
440         start = addr;
441         pud = pud_offset(pgd, addr);
442         do {
443                 next = pud_addr_end(addr, end);
444                 if (pud_none_or_clear_bad(pud))
445                         continue;
446                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
447         } while (pud++, addr = next, addr != end);
448
449         start &= PGDIR_MASK;
450         if (start < floor)
451                 return;
452         if (ceiling) {
453                 ceiling &= PGDIR_MASK;
454                 if (!ceiling)
455                         return;
456         }
457         if (end - 1 > ceiling - 1)
458                 return;
459
460         pud = pud_offset(pgd, start);
461         pgd_clear(pgd);
462         pud_free_tlb(tlb, pud, start);
463 }
464
465 /*
466  * This function frees user-level page tables of a process.
467  */
468 void free_pgd_range(struct mmu_gather *tlb,
469                         unsigned long addr, unsigned long end,
470                         unsigned long floor, unsigned long ceiling)
471 {
472         pgd_t *pgd;
473         unsigned long next;
474
475         /*
476          * The next few lines have given us lots of grief...
477          *
478          * Why are we testing PMD* at this top level?  Because often
479          * there will be no work to do at all, and we'd prefer not to
480          * go all the way down to the bottom just to discover that.
481          *
482          * Why all these "- 1"s?  Because 0 represents both the bottom
483          * of the address space and the top of it (using -1 for the
484          * top wouldn't help much: the masks would do the wrong thing).
485          * The rule is that addr 0 and floor 0 refer to the bottom of
486          * the address space, but end 0 and ceiling 0 refer to the top
487          * Comparisons need to use "end - 1" and "ceiling - 1" (though
488          * that end 0 case should be mythical).
489          *
490          * Wherever addr is brought up or ceiling brought down, we must
491          * be careful to reject "the opposite 0" before it confuses the
492          * subsequent tests.  But what about where end is brought down
493          * by PMD_SIZE below? no, end can't go down to 0 there.
494          *
495          * Whereas we round start (addr) and ceiling down, by different
496          * masks at different levels, in order to test whether a table
497          * now has no other vmas using it, so can be freed, we don't
498          * bother to round floor or end up - the tests don't need that.
499          */
500
501         addr &= PMD_MASK;
502         if (addr < floor) {
503                 addr += PMD_SIZE;
504                 if (!addr)
505                         return;
506         }
507         if (ceiling) {
508                 ceiling &= PMD_MASK;
509                 if (!ceiling)
510                         return;
511         }
512         if (end - 1 > ceiling - 1)
513                 end -= PMD_SIZE;
514         if (addr > end - 1)
515                 return;
516
517         pgd = pgd_offset(tlb->mm, addr);
518         do {
519                 next = pgd_addr_end(addr, end);
520                 if (pgd_none_or_clear_bad(pgd))
521                         continue;
522                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
523         } while (pgd++, addr = next, addr != end);
524 }
525
526 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
527                 unsigned long floor, unsigned long ceiling)
528 {
529         while (vma) {
530                 struct vm_area_struct *next = vma->vm_next;
531                 unsigned long addr = vma->vm_start;
532
533                 /*
534                  * Hide vma from rmap and truncate_pagecache before freeing
535                  * pgtables
536                  */
537                 unlink_anon_vmas(vma);
538                 unlink_file_vma(vma);
539
540                 if (is_vm_hugetlb_page(vma)) {
541                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
542                                 floor, next? next->vm_start: ceiling);
543                 } else {
544                         /*
545                          * Optimization: gather nearby vmas into one call down
546                          */
547                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
548                                && !is_vm_hugetlb_page(next)) {
549                                 vma = next;
550                                 next = vma->vm_next;
551                                 unlink_anon_vmas(vma);
552                                 unlink_file_vma(vma);
553                         }
554                         free_pgd_range(tlb, addr, vma->vm_end,
555                                 floor, next? next->vm_start: ceiling);
556                 }
557                 vma = next;
558         }
559 }
560
561 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
562                 pmd_t *pmd, unsigned long address)
563 {
564         spinlock_t *ptl;
565         pgtable_t new = pte_alloc_one(mm, address);
566         int wait_split_huge_page;
567         if (!new)
568                 return -ENOMEM;
569
570         /*
571          * Ensure all pte setup (eg. pte page lock and page clearing) are
572          * visible before the pte is made visible to other CPUs by being
573          * put into page tables.
574          *
575          * The other side of the story is the pointer chasing in the page
576          * table walking code (when walking the page table without locking;
577          * ie. most of the time). Fortunately, these data accesses consist
578          * of a chain of data-dependent loads, meaning most CPUs (alpha
579          * being the notable exception) will already guarantee loads are
580          * seen in-order. See the alpha page table accessors for the
581          * smp_read_barrier_depends() barriers in page table walking code.
582          */
583         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
584
585         ptl = pmd_lock(mm, pmd);
586         wait_split_huge_page = 0;
587         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
588                 atomic_long_inc(&mm->nr_ptes);
589                 pmd_populate(mm, pmd, new);
590                 new = NULL;
591         } else if (unlikely(pmd_trans_splitting(*pmd)))
592                 wait_split_huge_page = 1;
593         spin_unlock(ptl);
594         if (new)
595                 pte_free(mm, new);
596         if (wait_split_huge_page)
597                 wait_split_huge_page(vma->anon_vma, pmd);
598         return 0;
599 }
600
601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
602 {
603         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604         if (!new)
605                 return -ENOMEM;
606
607         smp_wmb(); /* See comment in __pte_alloc */
608
609         spin_lock(&init_mm.page_table_lock);
610         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
611                 pmd_populate_kernel(&init_mm, pmd, new);
612                 new = NULL;
613         } else
614                 VM_BUG_ON(pmd_trans_splitting(*pmd));
615         spin_unlock(&init_mm.page_table_lock);
616         if (new)
617                 pte_free_kernel(&init_mm, new);
618         return 0;
619 }
620
621 static inline void init_rss_vec(int *rss)
622 {
623         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
624 }
625
626 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
627 {
628         int i;
629
630         if (current->mm == mm)
631                 sync_mm_rss(mm);
632         for (i = 0; i < NR_MM_COUNTERS; i++)
633                 if (rss[i])
634                         add_mm_counter(mm, i, rss[i]);
635 }
636
637 /*
638  * This function is called to print an error when a bad pte
639  * is found. For example, we might have a PFN-mapped pte in
640  * a region that doesn't allow it.
641  *
642  * The calling function must still handle the error.
643  */
644 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
645                           pte_t pte, struct page *page)
646 {
647         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
648         pud_t *pud = pud_offset(pgd, addr);
649         pmd_t *pmd = pmd_offset(pud, addr);
650         struct address_space *mapping;
651         pgoff_t index;
652         static unsigned long resume;
653         static unsigned long nr_shown;
654         static unsigned long nr_unshown;
655
656         /*
657          * Allow a burst of 60 reports, then keep quiet for that minute;
658          * or allow a steady drip of one report per second.
659          */
660         if (nr_shown == 60) {
661                 if (time_before(jiffies, resume)) {
662                         nr_unshown++;
663                         return;
664                 }
665                 if (nr_unshown) {
666                         printk(KERN_ALERT
667                                 "BUG: Bad page map: %lu messages suppressed\n",
668                                 nr_unshown);
669                         nr_unshown = 0;
670                 }
671                 nr_shown = 0;
672         }
673         if (nr_shown++ == 0)
674                 resume = jiffies + 60 * HZ;
675
676         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
677         index = linear_page_index(vma, addr);
678
679         printk(KERN_ALERT
680                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
681                 current->comm,
682                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
683         if (page)
684                 dump_page(page, "bad pte");
685         printk(KERN_ALERT
686                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
687                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
688         /*
689          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
690          */
691         if (vma->vm_ops)
692                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
693                        vma->vm_ops->fault);
694         if (vma->vm_file)
695                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
696                        vma->vm_file->f_op->mmap);
697         dump_stack();
698         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
699 }
700
701 /*
702  * vm_normal_page -- This function gets the "struct page" associated with a pte.
703  *
704  * "Special" mappings do not wish to be associated with a "struct page" (either
705  * it doesn't exist, or it exists but they don't want to touch it). In this
706  * case, NULL is returned here. "Normal" mappings do have a struct page.
707  *
708  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
709  * pte bit, in which case this function is trivial. Secondly, an architecture
710  * may not have a spare pte bit, which requires a more complicated scheme,
711  * described below.
712  *
713  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
714  * special mapping (even if there are underlying and valid "struct pages").
715  * COWed pages of a VM_PFNMAP are always normal.
716  *
717  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
718  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
719  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
720  * mapping will always honor the rule
721  *
722  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
723  *
724  * And for normal mappings this is false.
725  *
726  * This restricts such mappings to be a linear translation from virtual address
727  * to pfn. To get around this restriction, we allow arbitrary mappings so long
728  * as the vma is not a COW mapping; in that case, we know that all ptes are
729  * special (because none can have been COWed).
730  *
731  *
732  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
733  *
734  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
735  * page" backing, however the difference is that _all_ pages with a struct
736  * page (that is, those where pfn_valid is true) are refcounted and considered
737  * normal pages by the VM. The disadvantage is that pages are refcounted
738  * (which can be slower and simply not an option for some PFNMAP users). The
739  * advantage is that we don't have to follow the strict linearity rule of
740  * PFNMAP mappings in order to support COWable mappings.
741  *
742  */
743 #ifdef __HAVE_ARCH_PTE_SPECIAL
744 # define HAVE_PTE_SPECIAL 1
745 #else
746 # define HAVE_PTE_SPECIAL 0
747 #endif
748 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
749                                 pte_t pte)
750 {
751         unsigned long pfn = pte_pfn(pte);
752
753         if (HAVE_PTE_SPECIAL) {
754                 if (likely(!pte_special(pte)))
755                         goto check_pfn;
756                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
757                         return NULL;
758                 if (!is_zero_pfn(pfn))
759                         print_bad_pte(vma, addr, pte, NULL);
760                 return NULL;
761         }
762
763         /* !HAVE_PTE_SPECIAL case follows: */
764
765         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
766                 if (vma->vm_flags & VM_MIXEDMAP) {
767                         if (!pfn_valid(pfn))
768                                 return NULL;
769                         goto out;
770                 } else {
771                         unsigned long off;
772                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
773                         if (pfn == vma->vm_pgoff + off)
774                                 return NULL;
775                         if (!is_cow_mapping(vma->vm_flags))
776                                 return NULL;
777                 }
778         }
779
780         if (is_zero_pfn(pfn))
781                 return NULL;
782 check_pfn:
783         if (unlikely(pfn > highest_memmap_pfn)) {
784                 print_bad_pte(vma, addr, pte, NULL);
785                 return NULL;
786         }
787
788         /*
789          * NOTE! We still have PageReserved() pages in the page tables.
790          * eg. VDSO mappings can cause them to exist.
791          */
792 out:
793         return pfn_to_page(pfn);
794 }
795
796 /*
797  * copy one vm_area from one task to the other. Assumes the page tables
798  * already present in the new task to be cleared in the whole range
799  * covered by this vma.
800  */
801
802 static inline unsigned long
803 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
804                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
805                 unsigned long addr, int *rss)
806 {
807         unsigned long vm_flags = vma->vm_flags;
808         pte_t pte = *src_pte;
809         struct page *page;
810
811         /* pte contains position in swap or file, so copy. */
812         if (unlikely(!pte_present(pte))) {
813                 if (!pte_file(pte)) {
814                         swp_entry_t entry = pte_to_swp_entry(pte);
815
816                         if (likely(!non_swap_entry(entry))) {
817                                 if (swap_duplicate(entry) < 0)
818                                         return entry.val;
819
820                                 /* make sure dst_mm is on swapoff's mmlist. */
821                                 if (unlikely(list_empty(&dst_mm->mmlist))) {
822                                         spin_lock(&mmlist_lock);
823                                         if (list_empty(&dst_mm->mmlist))
824                                                 list_add(&dst_mm->mmlist,
825                                                          &src_mm->mmlist);
826                                         spin_unlock(&mmlist_lock);
827                                 }
828                                 rss[MM_SWAPENTS]++;
829                         } else if (is_migration_entry(entry)) {
830                                 page = migration_entry_to_page(entry);
831
832                                 if (PageAnon(page))
833                                         rss[MM_ANONPAGES]++;
834                                 else
835                                         rss[MM_FILEPAGES]++;
836
837                                 if (is_write_migration_entry(entry) &&
838                                     is_cow_mapping(vm_flags)) {
839                                         /*
840                                          * COW mappings require pages in both
841                                          * parent and child to be set to read.
842                                          */
843                                         make_migration_entry_read(&entry);
844                                         pte = swp_entry_to_pte(entry);
845                                         if (pte_swp_soft_dirty(*src_pte))
846                                                 pte = pte_swp_mksoft_dirty(pte);
847                                         set_pte_at(src_mm, addr, src_pte, pte);
848                                 }
849                         }
850                 }
851                 goto out_set_pte;
852         }
853
854         /*
855          * If it's a COW mapping, write protect it both
856          * in the parent and the child
857          */
858         if (is_cow_mapping(vm_flags)) {
859                 ptep_set_wrprotect(src_mm, addr, src_pte);
860                 pte = pte_wrprotect(pte);
861         }
862
863         /*
864          * If it's a shared mapping, mark it clean in
865          * the child
866          */
867         if (vm_flags & VM_SHARED)
868                 pte = pte_mkclean(pte);
869         pte = pte_mkold(pte);
870
871         page = vm_normal_page(vma, addr, pte);
872         if (page) {
873                 get_page(page);
874                 page_dup_rmap(page);
875                 if (PageAnon(page))
876                         rss[MM_ANONPAGES]++;
877                 else
878                         rss[MM_FILEPAGES]++;
879         }
880
881 out_set_pte:
882         set_pte_at(dst_mm, addr, dst_pte, pte);
883         return 0;
884 }
885
886 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
887                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
888                    unsigned long addr, unsigned long end)
889 {
890         pte_t *orig_src_pte, *orig_dst_pte;
891         pte_t *src_pte, *dst_pte;
892         spinlock_t *src_ptl, *dst_ptl;
893         int progress = 0;
894         int rss[NR_MM_COUNTERS];
895         swp_entry_t entry = (swp_entry_t){0};
896
897 again:
898         init_rss_vec(rss);
899
900         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
901         if (!dst_pte)
902                 return -ENOMEM;
903         src_pte = pte_offset_map(src_pmd, addr);
904         src_ptl = pte_lockptr(src_mm, src_pmd);
905         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
906         orig_src_pte = src_pte;
907         orig_dst_pte = dst_pte;
908         arch_enter_lazy_mmu_mode();
909
910         do {
911                 /*
912                  * We are holding two locks at this point - either of them
913                  * could generate latencies in another task on another CPU.
914                  */
915                 if (progress >= 32) {
916                         progress = 0;
917                         if (need_resched() ||
918                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
919                                 break;
920                 }
921                 if (pte_none(*src_pte)) {
922                         progress++;
923                         continue;
924                 }
925                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
926                                                         vma, addr, rss);
927                 if (entry.val)
928                         break;
929                 progress += 8;
930         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
931
932         arch_leave_lazy_mmu_mode();
933         spin_unlock(src_ptl);
934         pte_unmap(orig_src_pte);
935         add_mm_rss_vec(dst_mm, rss);
936         pte_unmap_unlock(orig_dst_pte, dst_ptl);
937         cond_resched();
938
939         if (entry.val) {
940                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
941                         return -ENOMEM;
942                 progress = 0;
943         }
944         if (addr != end)
945                 goto again;
946         return 0;
947 }
948
949 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
951                 unsigned long addr, unsigned long end)
952 {
953         pmd_t *src_pmd, *dst_pmd;
954         unsigned long next;
955
956         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
957         if (!dst_pmd)
958                 return -ENOMEM;
959         src_pmd = pmd_offset(src_pud, addr);
960         do {
961                 next = pmd_addr_end(addr, end);
962                 if (pmd_trans_huge(*src_pmd)) {
963                         int err;
964                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
965                         err = copy_huge_pmd(dst_mm, src_mm,
966                                             dst_pmd, src_pmd, addr, vma);
967                         if (err == -ENOMEM)
968                                 return -ENOMEM;
969                         if (!err)
970                                 continue;
971                         /* fall through */
972                 }
973                 if (pmd_none_or_clear_bad(src_pmd))
974                         continue;
975                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
976                                                 vma, addr, next))
977                         return -ENOMEM;
978         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
979         return 0;
980 }
981
982 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
983                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
984                 unsigned long addr, unsigned long end)
985 {
986         pud_t *src_pud, *dst_pud;
987         unsigned long next;
988
989         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
990         if (!dst_pud)
991                 return -ENOMEM;
992         src_pud = pud_offset(src_pgd, addr);
993         do {
994                 next = pud_addr_end(addr, end);
995                 if (pud_none_or_clear_bad(src_pud))
996                         continue;
997                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
998                                                 vma, addr, next))
999                         return -ENOMEM;
1000         } while (dst_pud++, src_pud++, addr = next, addr != end);
1001         return 0;
1002 }
1003
1004 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1005                 struct vm_area_struct *vma)
1006 {
1007         pgd_t *src_pgd, *dst_pgd;
1008         unsigned long next;
1009         unsigned long addr = vma->vm_start;
1010         unsigned long end = vma->vm_end;
1011         unsigned long mmun_start;       /* For mmu_notifiers */
1012         unsigned long mmun_end;         /* For mmu_notifiers */
1013         bool is_cow;
1014         int ret;
1015
1016         /*
1017          * Don't copy ptes where a page fault will fill them correctly.
1018          * Fork becomes much lighter when there are big shared or private
1019          * readonly mappings. The tradeoff is that copy_page_range is more
1020          * efficient than faulting.
1021          */
1022         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1023                                VM_PFNMAP | VM_MIXEDMAP))) {
1024                 if (!vma->anon_vma)
1025                         return 0;
1026         }
1027
1028         if (is_vm_hugetlb_page(vma))
1029                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1030
1031         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1032                 /*
1033                  * We do not free on error cases below as remove_vma
1034                  * gets called on error from higher level routine
1035                  */
1036                 ret = track_pfn_copy(vma);
1037                 if (ret)
1038                         return ret;
1039         }
1040
1041         /*
1042          * We need to invalidate the secondary MMU mappings only when
1043          * there could be a permission downgrade on the ptes of the
1044          * parent mm. And a permission downgrade will only happen if
1045          * is_cow_mapping() returns true.
1046          */
1047         is_cow = is_cow_mapping(vma->vm_flags);
1048         mmun_start = addr;
1049         mmun_end   = end;
1050         if (is_cow)
1051                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1052                                                     mmun_end);
1053
1054         ret = 0;
1055         dst_pgd = pgd_offset(dst_mm, addr);
1056         src_pgd = pgd_offset(src_mm, addr);
1057         do {
1058                 next = pgd_addr_end(addr, end);
1059                 if (pgd_none_or_clear_bad(src_pgd))
1060                         continue;
1061                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1062                                             vma, addr, next))) {
1063                         ret = -ENOMEM;
1064                         break;
1065                 }
1066         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1067
1068         if (is_cow)
1069                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1070         return ret;
1071 }
1072
1073 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1074                                 struct vm_area_struct *vma, pmd_t *pmd,
1075                                 unsigned long addr, unsigned long end,
1076                                 struct zap_details *details)
1077 {
1078         struct mm_struct *mm = tlb->mm;
1079         int force_flush = 0;
1080         int rss[NR_MM_COUNTERS];
1081         spinlock_t *ptl;
1082         pte_t *start_pte;
1083         pte_t *pte;
1084
1085 again:
1086         init_rss_vec(rss);
1087         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1088         pte = start_pte;
1089         arch_enter_lazy_mmu_mode();
1090         do {
1091                 pte_t ptent = *pte;
1092                 if (pte_none(ptent)) {
1093                         continue;
1094                 }
1095
1096                 if (pte_present(ptent)) {
1097                         struct page *page;
1098
1099                         page = vm_normal_page(vma, addr, ptent);
1100                         if (unlikely(details) && page) {
1101                                 /*
1102                                  * unmap_shared_mapping_pages() wants to
1103                                  * invalidate cache without truncating:
1104                                  * unmap shared but keep private pages.
1105                                  */
1106                                 if (details->check_mapping &&
1107                                     details->check_mapping != page->mapping)
1108                                         continue;
1109                                 /*
1110                                  * Each page->index must be checked when
1111                                  * invalidating or truncating nonlinear.
1112                                  */
1113                                 if (details->nonlinear_vma &&
1114                                     (page->index < details->first_index ||
1115                                      page->index > details->last_index))
1116                                         continue;
1117                         }
1118                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1119                                                         tlb->fullmm);
1120                         tlb_remove_tlb_entry(tlb, pte, addr);
1121                         if (unlikely(!page))
1122                                 continue;
1123                         if (unlikely(details) && details->nonlinear_vma
1124                             && linear_page_index(details->nonlinear_vma,
1125                                                 addr) != page->index) {
1126                                 pte_t ptfile = pgoff_to_pte(page->index);
1127                                 if (pte_soft_dirty(ptent))
1128                                         ptfile = pte_file_mksoft_dirty(ptfile);
1129                                 set_pte_at(mm, addr, pte, ptfile);
1130                         }
1131                         if (PageAnon(page))
1132                                 rss[MM_ANONPAGES]--;
1133                         else {
1134                                 if (pte_dirty(ptent)) {
1135                                         force_flush = 1;
1136                                         set_page_dirty(page);
1137                                 }
1138                                 if (pte_young(ptent) &&
1139                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1140                                         mark_page_accessed(page);
1141                                 rss[MM_FILEPAGES]--;
1142                         }
1143                         page_remove_rmap(page);
1144                         if (unlikely(page_mapcount(page) < 0))
1145                                 print_bad_pte(vma, addr, ptent, page);
1146                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1147                                 force_flush = 1;
1148                                 addr += PAGE_SIZE;
1149                                 break;
1150                         }
1151                         continue;
1152                 }
1153                 /*
1154                  * If details->check_mapping, we leave swap entries;
1155                  * if details->nonlinear_vma, we leave file entries.
1156                  */
1157                 if (unlikely(details))
1158                         continue;
1159                 if (pte_file(ptent)) {
1160                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1161                                 print_bad_pte(vma, addr, ptent, NULL);
1162                 } else {
1163                         swp_entry_t entry = pte_to_swp_entry(ptent);
1164
1165                         if (!non_swap_entry(entry))
1166                                 rss[MM_SWAPENTS]--;
1167                         else if (is_migration_entry(entry)) {
1168                                 struct page *page;
1169
1170                                 page = migration_entry_to_page(entry);
1171
1172                                 if (PageAnon(page))
1173                                         rss[MM_ANONPAGES]--;
1174                                 else
1175                                         rss[MM_FILEPAGES]--;
1176                         }
1177                         if (unlikely(!free_swap_and_cache(entry)))
1178                                 print_bad_pte(vma, addr, ptent, NULL);
1179                 }
1180                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1181         } while (pte++, addr += PAGE_SIZE, addr != end);
1182
1183         add_mm_rss_vec(mm, rss);
1184         arch_leave_lazy_mmu_mode();
1185
1186         /* Do the actual TLB flush before dropping ptl */
1187         if (force_flush)
1188                 tlb_flush_mmu_tlbonly(tlb);
1189         pte_unmap_unlock(start_pte, ptl);
1190
1191         /*
1192          * If we forced a TLB flush (either due to running out of
1193          * batch buffers or because we needed to flush dirty TLB
1194          * entries before releasing the ptl), free the batched
1195          * memory too. Restart if we didn't do everything.
1196          */
1197         if (force_flush) {
1198                 force_flush = 0;
1199                 tlb_flush_mmu_free(tlb);
1200
1201                 if (addr != end)
1202                         goto again;
1203         }
1204
1205         return addr;
1206 }
1207
1208 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1209                                 struct vm_area_struct *vma, pud_t *pud,
1210                                 unsigned long addr, unsigned long end,
1211                                 struct zap_details *details)
1212 {
1213         pmd_t *pmd;
1214         unsigned long next;
1215
1216         pmd = pmd_offset(pud, addr);
1217         do {
1218                 next = pmd_addr_end(addr, end);
1219                 if (pmd_trans_huge(*pmd)) {
1220                         if (next - addr != HPAGE_PMD_SIZE) {
1221 #ifdef CONFIG_DEBUG_VM
1222                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1223                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1224                                                 __func__, addr, end,
1225                                                 vma->vm_start,
1226                                                 vma->vm_end);
1227                                         BUG();
1228                                 }
1229 #endif
1230                                 split_huge_page_pmd(vma, addr, pmd);
1231                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1232                                 goto next;
1233                         /* fall through */
1234                 }
1235                 /*
1236                  * Here there can be other concurrent MADV_DONTNEED or
1237                  * trans huge page faults running, and if the pmd is
1238                  * none or trans huge it can change under us. This is
1239                  * because MADV_DONTNEED holds the mmap_sem in read
1240                  * mode.
1241                  */
1242                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1243                         goto next;
1244                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1245 next:
1246                 cond_resched();
1247         } while (pmd++, addr = next, addr != end);
1248
1249         return addr;
1250 }
1251
1252 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1253                                 struct vm_area_struct *vma, pgd_t *pgd,
1254                                 unsigned long addr, unsigned long end,
1255                                 struct zap_details *details)
1256 {
1257         pud_t *pud;
1258         unsigned long next;
1259
1260         pud = pud_offset(pgd, addr);
1261         do {
1262                 next = pud_addr_end(addr, end);
1263                 if (pud_none_or_clear_bad(pud))
1264                         continue;
1265                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1266         } while (pud++, addr = next, addr != end);
1267
1268         return addr;
1269 }
1270
1271 static void unmap_page_range(struct mmu_gather *tlb,
1272                              struct vm_area_struct *vma,
1273                              unsigned long addr, unsigned long end,
1274                              struct zap_details *details)
1275 {
1276         pgd_t *pgd;
1277         unsigned long next;
1278
1279         if (details && !details->check_mapping && !details->nonlinear_vma)
1280                 details = NULL;
1281
1282         BUG_ON(addr >= end);
1283         tlb_start_vma(tlb, vma);
1284         pgd = pgd_offset(vma->vm_mm, addr);
1285         do {
1286                 next = pgd_addr_end(addr, end);
1287                 if (pgd_none_or_clear_bad(pgd))
1288                         continue;
1289                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1290         } while (pgd++, addr = next, addr != end);
1291         tlb_end_vma(tlb, vma);
1292 }
1293
1294
1295 static void unmap_single_vma(struct mmu_gather *tlb,
1296                 struct vm_area_struct *vma, unsigned long start_addr,
1297                 unsigned long end_addr,
1298                 struct zap_details *details)
1299 {
1300         unsigned long start = max(vma->vm_start, start_addr);
1301         unsigned long end;
1302
1303         if (start >= vma->vm_end)
1304                 return;
1305         end = min(vma->vm_end, end_addr);
1306         if (end <= vma->vm_start)
1307                 return;
1308
1309         if (vma->vm_file)
1310                 uprobe_munmap(vma, start, end);
1311
1312         if (unlikely(vma->vm_flags & VM_PFNMAP))
1313                 untrack_pfn(vma, 0, 0);
1314
1315         if (start != end) {
1316                 if (unlikely(is_vm_hugetlb_page(vma))) {
1317                         /*
1318                          * It is undesirable to test vma->vm_file as it
1319                          * should be non-null for valid hugetlb area.
1320                          * However, vm_file will be NULL in the error
1321                          * cleanup path of mmap_region. When
1322                          * hugetlbfs ->mmap method fails,
1323                          * mmap_region() nullifies vma->vm_file
1324                          * before calling this function to clean up.
1325                          * Since no pte has actually been setup, it is
1326                          * safe to do nothing in this case.
1327                          */
1328                         if (vma->vm_file) {
1329                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1330                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1331                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1332                         }
1333                 } else
1334                         unmap_page_range(tlb, vma, start, end, details);
1335         }
1336 }
1337
1338 /**
1339  * unmap_vmas - unmap a range of memory covered by a list of vma's
1340  * @tlb: address of the caller's struct mmu_gather
1341  * @vma: the starting vma
1342  * @start_addr: virtual address at which to start unmapping
1343  * @end_addr: virtual address at which to end unmapping
1344  *
1345  * Unmap all pages in the vma list.
1346  *
1347  * Only addresses between `start' and `end' will be unmapped.
1348  *
1349  * The VMA list must be sorted in ascending virtual address order.
1350  *
1351  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1352  * range after unmap_vmas() returns.  So the only responsibility here is to
1353  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1354  * drops the lock and schedules.
1355  */
1356 void unmap_vmas(struct mmu_gather *tlb,
1357                 struct vm_area_struct *vma, unsigned long start_addr,
1358                 unsigned long end_addr)
1359 {
1360         struct mm_struct *mm = vma->vm_mm;
1361
1362         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1363         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1364                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1365         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1366 }
1367
1368 /**
1369  * zap_page_range - remove user pages in a given range
1370  * @vma: vm_area_struct holding the applicable pages
1371  * @start: starting address of pages to zap
1372  * @size: number of bytes to zap
1373  * @details: details of nonlinear truncation or shared cache invalidation
1374  *
1375  * Caller must protect the VMA list
1376  */
1377 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1378                 unsigned long size, struct zap_details *details)
1379 {
1380         struct mm_struct *mm = vma->vm_mm;
1381         struct mmu_gather tlb;
1382         unsigned long end = start + size;
1383
1384         lru_add_drain();
1385         tlb_gather_mmu(&tlb, mm, start, end);
1386         update_hiwater_rss(mm);
1387         mmu_notifier_invalidate_range_start(mm, start, end);
1388         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1389                 unmap_single_vma(&tlb, vma, start, end, details);
1390         mmu_notifier_invalidate_range_end(mm, start, end);
1391         tlb_finish_mmu(&tlb, start, end);
1392 }
1393
1394 /**
1395  * zap_page_range_single - remove user pages in a given range
1396  * @vma: vm_area_struct holding the applicable pages
1397  * @address: starting address of pages to zap
1398  * @size: number of bytes to zap
1399  * @details: details of nonlinear truncation or shared cache invalidation
1400  *
1401  * The range must fit into one VMA.
1402  */
1403 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1404                 unsigned long size, struct zap_details *details)
1405 {
1406         struct mm_struct *mm = vma->vm_mm;
1407         struct mmu_gather tlb;
1408         unsigned long end = address + size;
1409
1410         lru_add_drain();
1411         tlb_gather_mmu(&tlb, mm, address, end);
1412         update_hiwater_rss(mm);
1413         mmu_notifier_invalidate_range_start(mm, address, end);
1414         unmap_single_vma(&tlb, vma, address, end, details);
1415         mmu_notifier_invalidate_range_end(mm, address, end);
1416         tlb_finish_mmu(&tlb, address, end);
1417 }
1418
1419 /**
1420  * zap_vma_ptes - remove ptes mapping the vma
1421  * @vma: vm_area_struct holding ptes to be zapped
1422  * @address: starting address of pages to zap
1423  * @size: number of bytes to zap
1424  *
1425  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1426  *
1427  * The entire address range must be fully contained within the vma.
1428  *
1429  * Returns 0 if successful.
1430  */
1431 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1432                 unsigned long size)
1433 {
1434         if (address < vma->vm_start || address + size > vma->vm_end ||
1435                         !(vma->vm_flags & VM_PFNMAP))
1436                 return -1;
1437         zap_page_range_single(vma, address, size, NULL);
1438         return 0;
1439 }
1440 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1441
1442 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1443                         spinlock_t **ptl)
1444 {
1445         pgd_t * pgd = pgd_offset(mm, addr);
1446         pud_t * pud = pud_alloc(mm, pgd, addr);
1447         if (pud) {
1448                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1449                 if (pmd) {
1450                         VM_BUG_ON(pmd_trans_huge(*pmd));
1451                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1452                 }
1453         }
1454         return NULL;
1455 }
1456
1457 /*
1458  * This is the old fallback for page remapping.
1459  *
1460  * For historical reasons, it only allows reserved pages. Only
1461  * old drivers should use this, and they needed to mark their
1462  * pages reserved for the old functions anyway.
1463  */
1464 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1465                         struct page *page, pgprot_t prot)
1466 {
1467         struct mm_struct *mm = vma->vm_mm;
1468         int retval;
1469         pte_t *pte;
1470         spinlock_t *ptl;
1471
1472         retval = -EINVAL;
1473         if (PageAnon(page))
1474                 goto out;
1475         retval = -ENOMEM;
1476         flush_dcache_page(page);
1477         pte = get_locked_pte(mm, addr, &ptl);
1478         if (!pte)
1479                 goto out;
1480         retval = -EBUSY;
1481         if (!pte_none(*pte))
1482                 goto out_unlock;
1483
1484         /* Ok, finally just insert the thing.. */
1485         get_page(page);
1486         inc_mm_counter_fast(mm, MM_FILEPAGES);
1487         page_add_file_rmap(page);
1488         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1489
1490         retval = 0;
1491         pte_unmap_unlock(pte, ptl);
1492         return retval;
1493 out_unlock:
1494         pte_unmap_unlock(pte, ptl);
1495 out:
1496         return retval;
1497 }
1498
1499 /**
1500  * vm_insert_page - insert single page into user vma
1501  * @vma: user vma to map to
1502  * @addr: target user address of this page
1503  * @page: source kernel page
1504  *
1505  * This allows drivers to insert individual pages they've allocated
1506  * into a user vma.
1507  *
1508  * The page has to be a nice clean _individual_ kernel allocation.
1509  * If you allocate a compound page, you need to have marked it as
1510  * such (__GFP_COMP), or manually just split the page up yourself
1511  * (see split_page()).
1512  *
1513  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1514  * took an arbitrary page protection parameter. This doesn't allow
1515  * that. Your vma protection will have to be set up correctly, which
1516  * means that if you want a shared writable mapping, you'd better
1517  * ask for a shared writable mapping!
1518  *
1519  * The page does not need to be reserved.
1520  *
1521  * Usually this function is called from f_op->mmap() handler
1522  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1523  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1524  * function from other places, for example from page-fault handler.
1525  */
1526 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1527                         struct page *page)
1528 {
1529         if (addr < vma->vm_start || addr >= vma->vm_end)
1530                 return -EFAULT;
1531         if (!page_count(page))
1532                 return -EINVAL;
1533         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1534                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1535                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1536                 vma->vm_flags |= VM_MIXEDMAP;
1537         }
1538         return insert_page(vma, addr, page, vma->vm_page_prot);
1539 }
1540 EXPORT_SYMBOL(vm_insert_page);
1541
1542 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1543                         unsigned long pfn, pgprot_t prot)
1544 {
1545         struct mm_struct *mm = vma->vm_mm;
1546         int retval;
1547         pte_t *pte, entry;
1548         spinlock_t *ptl;
1549
1550         retval = -ENOMEM;
1551         pte = get_locked_pte(mm, addr, &ptl);
1552         if (!pte)
1553                 goto out;
1554         retval = -EBUSY;
1555         if (!pte_none(*pte))
1556                 goto out_unlock;
1557
1558         /* Ok, finally just insert the thing.. */
1559         entry = pte_mkspecial(pfn_pte(pfn, prot));
1560         set_pte_at(mm, addr, pte, entry);
1561         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1562
1563         retval = 0;
1564 out_unlock:
1565         pte_unmap_unlock(pte, ptl);
1566 out:
1567         return retval;
1568 }
1569
1570 /**
1571  * vm_insert_pfn - insert single pfn into user vma
1572  * @vma: user vma to map to
1573  * @addr: target user address of this page
1574  * @pfn: source kernel pfn
1575  *
1576  * Similar to vm_insert_page, this allows drivers to insert individual pages
1577  * they've allocated into a user vma. Same comments apply.
1578  *
1579  * This function should only be called from a vm_ops->fault handler, and
1580  * in that case the handler should return NULL.
1581  *
1582  * vma cannot be a COW mapping.
1583  *
1584  * As this is called only for pages that do not currently exist, we
1585  * do not need to flush old virtual caches or the TLB.
1586  */
1587 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1588                         unsigned long pfn)
1589 {
1590         int ret;
1591         pgprot_t pgprot = vma->vm_page_prot;
1592         /*
1593          * Technically, architectures with pte_special can avoid all these
1594          * restrictions (same for remap_pfn_range).  However we would like
1595          * consistency in testing and feature parity among all, so we should
1596          * try to keep these invariants in place for everybody.
1597          */
1598         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1599         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1600                                                 (VM_PFNMAP|VM_MIXEDMAP));
1601         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1602         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1603
1604         if (addr < vma->vm_start || addr >= vma->vm_end)
1605                 return -EFAULT;
1606         if (track_pfn_insert(vma, &pgprot, pfn))
1607                 return -EINVAL;
1608
1609         ret = insert_pfn(vma, addr, pfn, pgprot);
1610
1611         return ret;
1612 }
1613 EXPORT_SYMBOL(vm_insert_pfn);
1614
1615 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1616                         unsigned long pfn)
1617 {
1618         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1619
1620         if (addr < vma->vm_start || addr >= vma->vm_end)
1621                 return -EFAULT;
1622
1623         /*
1624          * If we don't have pte special, then we have to use the pfn_valid()
1625          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1626          * refcount the page if pfn_valid is true (hence insert_page rather
1627          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1628          * without pte special, it would there be refcounted as a normal page.
1629          */
1630         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1631                 struct page *page;
1632
1633                 page = pfn_to_page(pfn);
1634                 return insert_page(vma, addr, page, vma->vm_page_prot);
1635         }
1636         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1637 }
1638 EXPORT_SYMBOL(vm_insert_mixed);
1639
1640 /*
1641  * maps a range of physical memory into the requested pages. the old
1642  * mappings are removed. any references to nonexistent pages results
1643  * in null mappings (currently treated as "copy-on-access")
1644  */
1645 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1646                         unsigned long addr, unsigned long end,
1647                         unsigned long pfn, pgprot_t prot)
1648 {
1649         pte_t *pte;
1650         spinlock_t *ptl;
1651
1652         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1653         if (!pte)
1654                 return -ENOMEM;
1655         arch_enter_lazy_mmu_mode();
1656         do {
1657                 BUG_ON(!pte_none(*pte));
1658                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1659                 pfn++;
1660         } while (pte++, addr += PAGE_SIZE, addr != end);
1661         arch_leave_lazy_mmu_mode();
1662         pte_unmap_unlock(pte - 1, ptl);
1663         return 0;
1664 }
1665
1666 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1667                         unsigned long addr, unsigned long end,
1668                         unsigned long pfn, pgprot_t prot)
1669 {
1670         pmd_t *pmd;
1671         unsigned long next;
1672
1673         pfn -= addr >> PAGE_SHIFT;
1674         pmd = pmd_alloc(mm, pud, addr);
1675         if (!pmd)
1676                 return -ENOMEM;
1677         VM_BUG_ON(pmd_trans_huge(*pmd));
1678         do {
1679                 next = pmd_addr_end(addr, end);
1680                 if (remap_pte_range(mm, pmd, addr, next,
1681                                 pfn + (addr >> PAGE_SHIFT), prot))
1682                         return -ENOMEM;
1683         } while (pmd++, addr = next, addr != end);
1684         return 0;
1685 }
1686
1687 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1688                         unsigned long addr, unsigned long end,
1689                         unsigned long pfn, pgprot_t prot)
1690 {
1691         pud_t *pud;
1692         unsigned long next;
1693
1694         pfn -= addr >> PAGE_SHIFT;
1695         pud = pud_alloc(mm, pgd, addr);
1696         if (!pud)
1697                 return -ENOMEM;
1698         do {
1699                 next = pud_addr_end(addr, end);
1700                 if (remap_pmd_range(mm, pud, addr, next,
1701                                 pfn + (addr >> PAGE_SHIFT), prot))
1702                         return -ENOMEM;
1703         } while (pud++, addr = next, addr != end);
1704         return 0;
1705 }
1706
1707 /**
1708  * remap_pfn_range - remap kernel memory to userspace
1709  * @vma: user vma to map to
1710  * @addr: target user address to start at
1711  * @pfn: physical address of kernel memory
1712  * @size: size of map area
1713  * @prot: page protection flags for this mapping
1714  *
1715  *  Note: this is only safe if the mm semaphore is held when called.
1716  */
1717 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1718                     unsigned long pfn, unsigned long size, pgprot_t prot)
1719 {
1720         pgd_t *pgd;
1721         unsigned long next;
1722         unsigned long end = addr + PAGE_ALIGN(size);
1723         struct mm_struct *mm = vma->vm_mm;
1724         int err;
1725
1726         /*
1727          * Physically remapped pages are special. Tell the
1728          * rest of the world about it:
1729          *   VM_IO tells people not to look at these pages
1730          *      (accesses can have side effects).
1731          *   VM_PFNMAP tells the core MM that the base pages are just
1732          *      raw PFN mappings, and do not have a "struct page" associated
1733          *      with them.
1734          *   VM_DONTEXPAND
1735          *      Disable vma merging and expanding with mremap().
1736          *   VM_DONTDUMP
1737          *      Omit vma from core dump, even when VM_IO turned off.
1738          *
1739          * There's a horrible special case to handle copy-on-write
1740          * behaviour that some programs depend on. We mark the "original"
1741          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1742          * See vm_normal_page() for details.
1743          */
1744         if (is_cow_mapping(vma->vm_flags)) {
1745                 if (addr != vma->vm_start || end != vma->vm_end)
1746                         return -EINVAL;
1747                 vma->vm_pgoff = pfn;
1748         }
1749
1750         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1751         if (err)
1752                 return -EINVAL;
1753
1754         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1755
1756         BUG_ON(addr >= end);
1757         pfn -= addr >> PAGE_SHIFT;
1758         pgd = pgd_offset(mm, addr);
1759         flush_cache_range(vma, addr, end);
1760         do {
1761                 next = pgd_addr_end(addr, end);
1762                 err = remap_pud_range(mm, pgd, addr, next,
1763                                 pfn + (addr >> PAGE_SHIFT), prot);
1764                 if (err)
1765                         break;
1766         } while (pgd++, addr = next, addr != end);
1767
1768         if (err)
1769                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1770
1771         return err;
1772 }
1773 EXPORT_SYMBOL(remap_pfn_range);
1774
1775 /**
1776  * vm_iomap_memory - remap memory to userspace
1777  * @vma: user vma to map to
1778  * @start: start of area
1779  * @len: size of area
1780  *
1781  * This is a simplified io_remap_pfn_range() for common driver use. The
1782  * driver just needs to give us the physical memory range to be mapped,
1783  * we'll figure out the rest from the vma information.
1784  *
1785  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1786  * whatever write-combining details or similar.
1787  */
1788 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1789 {
1790         unsigned long vm_len, pfn, pages;
1791
1792         /* Check that the physical memory area passed in looks valid */
1793         if (start + len < start)
1794                 return -EINVAL;
1795         /*
1796          * You *really* shouldn't map things that aren't page-aligned,
1797          * but we've historically allowed it because IO memory might
1798          * just have smaller alignment.
1799          */
1800         len += start & ~PAGE_MASK;
1801         pfn = start >> PAGE_SHIFT;
1802         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1803         if (pfn + pages < pfn)
1804                 return -EINVAL;
1805
1806         /* We start the mapping 'vm_pgoff' pages into the area */
1807         if (vma->vm_pgoff > pages)
1808                 return -EINVAL;
1809         pfn += vma->vm_pgoff;
1810         pages -= vma->vm_pgoff;
1811
1812         /* Can we fit all of the mapping? */
1813         vm_len = vma->vm_end - vma->vm_start;
1814         if (vm_len >> PAGE_SHIFT > pages)
1815                 return -EINVAL;
1816
1817         /* Ok, let it rip */
1818         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1819 }
1820 EXPORT_SYMBOL(vm_iomap_memory);
1821
1822 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1823                                      unsigned long addr, unsigned long end,
1824                                      pte_fn_t fn, void *data)
1825 {
1826         pte_t *pte;
1827         int err;
1828         pgtable_t token;
1829         spinlock_t *uninitialized_var(ptl);
1830
1831         pte = (mm == &init_mm) ?
1832                 pte_alloc_kernel(pmd, addr) :
1833                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1834         if (!pte)
1835                 return -ENOMEM;
1836
1837         BUG_ON(pmd_huge(*pmd));
1838
1839         arch_enter_lazy_mmu_mode();
1840
1841         token = pmd_pgtable(*pmd);
1842
1843         do {
1844                 err = fn(pte++, token, addr, data);
1845                 if (err)
1846                         break;
1847         } while (addr += PAGE_SIZE, addr != end);
1848
1849         arch_leave_lazy_mmu_mode();
1850
1851         if (mm != &init_mm)
1852                 pte_unmap_unlock(pte-1, ptl);
1853         return err;
1854 }
1855
1856 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1857                                      unsigned long addr, unsigned long end,
1858                                      pte_fn_t fn, void *data)
1859 {
1860         pmd_t *pmd;
1861         unsigned long next;
1862         int err;
1863
1864         BUG_ON(pud_huge(*pud));
1865
1866         pmd = pmd_alloc(mm, pud, addr);
1867         if (!pmd)
1868                 return -ENOMEM;
1869         do {
1870                 next = pmd_addr_end(addr, end);
1871                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1872                 if (err)
1873                         break;
1874         } while (pmd++, addr = next, addr != end);
1875         return err;
1876 }
1877
1878 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1879                                      unsigned long addr, unsigned long end,
1880                                      pte_fn_t fn, void *data)
1881 {
1882         pud_t *pud;
1883         unsigned long next;
1884         int err;
1885
1886         pud = pud_alloc(mm, pgd, addr);
1887         if (!pud)
1888                 return -ENOMEM;
1889         do {
1890                 next = pud_addr_end(addr, end);
1891                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1892                 if (err)
1893                         break;
1894         } while (pud++, addr = next, addr != end);
1895         return err;
1896 }
1897
1898 /*
1899  * Scan a region of virtual memory, filling in page tables as necessary
1900  * and calling a provided function on each leaf page table.
1901  */
1902 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1903                         unsigned long size, pte_fn_t fn, void *data)
1904 {
1905         pgd_t *pgd;
1906         unsigned long next;
1907         unsigned long end = addr + size;
1908         int err;
1909
1910         BUG_ON(addr >= end);
1911         pgd = pgd_offset(mm, addr);
1912         do {
1913                 next = pgd_addr_end(addr, end);
1914                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1915                 if (err)
1916                         break;
1917         } while (pgd++, addr = next, addr != end);
1918
1919         return err;
1920 }
1921 EXPORT_SYMBOL_GPL(apply_to_page_range);
1922
1923 /*
1924  * handle_pte_fault chooses page fault handler according to an entry
1925  * which was read non-atomically.  Before making any commitment, on
1926  * those architectures or configurations (e.g. i386 with PAE) which
1927  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1928  * must check under lock before unmapping the pte and proceeding
1929  * (but do_wp_page is only called after already making such a check;
1930  * and do_anonymous_page can safely check later on).
1931  */
1932 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1933                                 pte_t *page_table, pte_t orig_pte)
1934 {
1935         int same = 1;
1936 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1937         if (sizeof(pte_t) > sizeof(unsigned long)) {
1938                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1939                 spin_lock(ptl);
1940                 same = pte_same(*page_table, orig_pte);
1941                 spin_unlock(ptl);
1942         }
1943 #endif
1944         pte_unmap(page_table);
1945         return same;
1946 }
1947
1948 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1949 {
1950         debug_dma_assert_idle(src);
1951
1952         /*
1953          * If the source page was a PFN mapping, we don't have
1954          * a "struct page" for it. We do a best-effort copy by
1955          * just copying from the original user address. If that
1956          * fails, we just zero-fill it. Live with it.
1957          */
1958         if (unlikely(!src)) {
1959                 void *kaddr = kmap_atomic(dst);
1960                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1961
1962                 /*
1963                  * This really shouldn't fail, because the page is there
1964                  * in the page tables. But it might just be unreadable,
1965                  * in which case we just give up and fill the result with
1966                  * zeroes.
1967                  */
1968                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1969                         clear_page(kaddr);
1970                 kunmap_atomic(kaddr);
1971                 flush_dcache_page(dst);
1972         } else
1973                 copy_user_highpage(dst, src, va, vma);
1974 }
1975
1976 /*
1977  * Notify the address space that the page is about to become writable so that
1978  * it can prohibit this or wait for the page to get into an appropriate state.
1979  *
1980  * We do this without the lock held, so that it can sleep if it needs to.
1981  */
1982 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1983                unsigned long address)
1984 {
1985         struct vm_fault vmf;
1986         int ret;
1987
1988         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1989         vmf.pgoff = page->index;
1990         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1991         vmf.page = page;
1992
1993         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1994         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1995                 return ret;
1996         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1997                 lock_page(page);
1998                 if (!page->mapping) {
1999                         unlock_page(page);
2000                         return 0; /* retry */
2001                 }
2002                 ret |= VM_FAULT_LOCKED;
2003         } else
2004                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2005         return ret;
2006 }
2007
2008 /*
2009  * This routine handles present pages, when users try to write
2010  * to a shared page. It is done by copying the page to a new address
2011  * and decrementing the shared-page counter for the old page.
2012  *
2013  * Note that this routine assumes that the protection checks have been
2014  * done by the caller (the low-level page fault routine in most cases).
2015  * Thus we can safely just mark it writable once we've done any necessary
2016  * COW.
2017  *
2018  * We also mark the page dirty at this point even though the page will
2019  * change only once the write actually happens. This avoids a few races,
2020  * and potentially makes it more efficient.
2021  *
2022  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2023  * but allow concurrent faults), with pte both mapped and locked.
2024  * We return with mmap_sem still held, but pte unmapped and unlocked.
2025  */
2026 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2027                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2028                 spinlock_t *ptl, pte_t orig_pte)
2029         __releases(ptl)
2030 {
2031         struct page *old_page, *new_page = NULL;
2032         pte_t entry;
2033         int ret = 0;
2034         int page_mkwrite = 0;
2035         struct page *dirty_page = NULL;
2036         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2037         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2038         struct mem_cgroup *memcg;
2039
2040         old_page = vm_normal_page(vma, address, orig_pte);
2041         if (!old_page) {
2042                 /*
2043                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2044                  * VM_PFNMAP VMA.
2045                  *
2046                  * We should not cow pages in a shared writeable mapping.
2047                  * Just mark the pages writable as we can't do any dirty
2048                  * accounting on raw pfn maps.
2049                  */
2050                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2051                                      (VM_WRITE|VM_SHARED))
2052                         goto reuse;
2053                 goto gotten;
2054         }
2055
2056         /*
2057          * Take out anonymous pages first, anonymous shared vmas are
2058          * not dirty accountable.
2059          */
2060         if (PageAnon(old_page) && !PageKsm(old_page)) {
2061                 if (!trylock_page(old_page)) {
2062                         page_cache_get(old_page);
2063                         pte_unmap_unlock(page_table, ptl);
2064                         lock_page(old_page);
2065                         page_table = pte_offset_map_lock(mm, pmd, address,
2066                                                          &ptl);
2067                         if (!pte_same(*page_table, orig_pte)) {
2068                                 unlock_page(old_page);
2069                                 goto unlock;
2070                         }
2071                         page_cache_release(old_page);
2072                 }
2073                 if (reuse_swap_page(old_page)) {
2074                         /*
2075                          * The page is all ours.  Move it to our anon_vma so
2076                          * the rmap code will not search our parent or siblings.
2077                          * Protected against the rmap code by the page lock.
2078                          */
2079                         page_move_anon_rmap(old_page, vma, address);
2080                         unlock_page(old_page);
2081                         goto reuse;
2082                 }
2083                 unlock_page(old_page);
2084         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2085                                         (VM_WRITE|VM_SHARED))) {
2086                 /*
2087                  * Only catch write-faults on shared writable pages,
2088                  * read-only shared pages can get COWed by
2089                  * get_user_pages(.write=1, .force=1).
2090                  */
2091                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2092                         int tmp;
2093                         page_cache_get(old_page);
2094                         pte_unmap_unlock(page_table, ptl);
2095                         tmp = do_page_mkwrite(vma, old_page, address);
2096                         if (unlikely(!tmp || (tmp &
2097                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2098                                 page_cache_release(old_page);
2099                                 return tmp;
2100                         }
2101                         /*
2102                          * Since we dropped the lock we need to revalidate
2103                          * the PTE as someone else may have changed it.  If
2104                          * they did, we just return, as we can count on the
2105                          * MMU to tell us if they didn't also make it writable.
2106                          */
2107                         page_table = pte_offset_map_lock(mm, pmd, address,
2108                                                          &ptl);
2109                         if (!pte_same(*page_table, orig_pte)) {
2110                                 unlock_page(old_page);
2111                                 goto unlock;
2112                         }
2113
2114                         page_mkwrite = 1;
2115                 }
2116                 dirty_page = old_page;
2117                 get_page(dirty_page);
2118
2119 reuse:
2120                 /*
2121                  * Clear the pages cpupid information as the existing
2122                  * information potentially belongs to a now completely
2123                  * unrelated process.
2124                  */
2125                 if (old_page)
2126                         page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2127
2128                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2129                 entry = pte_mkyoung(orig_pte);
2130                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2131                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2132                         update_mmu_cache(vma, address, page_table);
2133                 pte_unmap_unlock(page_table, ptl);
2134                 ret |= VM_FAULT_WRITE;
2135
2136                 if (!dirty_page)
2137                         return ret;
2138
2139                 /*
2140                  * Yes, Virginia, this is actually required to prevent a race
2141                  * with clear_page_dirty_for_io() from clearing the page dirty
2142                  * bit after it clear all dirty ptes, but before a racing
2143                  * do_wp_page installs a dirty pte.
2144                  *
2145                  * do_shared_fault is protected similarly.
2146                  */
2147                 if (!page_mkwrite) {
2148                         wait_on_page_locked(dirty_page);
2149                         set_page_dirty_balance(dirty_page);
2150                         /* file_update_time outside page_lock */
2151                         if (vma->vm_file)
2152                                 file_update_time(vma->vm_file);
2153                 }
2154                 put_page(dirty_page);
2155                 if (page_mkwrite) {
2156                         struct address_space *mapping = dirty_page->mapping;
2157
2158                         set_page_dirty(dirty_page);
2159                         unlock_page(dirty_page);
2160                         page_cache_release(dirty_page);
2161                         if (mapping)    {
2162                                 /*
2163                                  * Some device drivers do not set page.mapping
2164                                  * but still dirty their pages
2165                                  */
2166                                 balance_dirty_pages_ratelimited(mapping);
2167                         }
2168                 }
2169
2170                 return ret;
2171         }
2172
2173         /*
2174          * Ok, we need to copy. Oh, well..
2175          */
2176         page_cache_get(old_page);
2177 gotten:
2178         pte_unmap_unlock(page_table, ptl);
2179
2180         if (unlikely(anon_vma_prepare(vma)))
2181                 goto oom;
2182
2183         if (is_zero_pfn(pte_pfn(orig_pte))) {
2184                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2185                 if (!new_page)
2186                         goto oom;
2187         } else {
2188                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2189                 if (!new_page)
2190                         goto oom;
2191                 cow_user_page(new_page, old_page, address, vma);
2192         }
2193         __SetPageUptodate(new_page);
2194
2195         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2196                 goto oom_free_new;
2197
2198         mmun_start  = address & PAGE_MASK;
2199         mmun_end    = mmun_start + PAGE_SIZE;
2200         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2201
2202         /*
2203          * Re-check the pte - we dropped the lock
2204          */
2205         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2206         if (likely(pte_same(*page_table, orig_pte))) {
2207                 if (old_page) {
2208                         if (!PageAnon(old_page)) {
2209                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2210                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2211                         }
2212                 } else
2213                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2214                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2215                 entry = mk_pte(new_page, vma->vm_page_prot);
2216                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2217                 /*
2218                  * Clear the pte entry and flush it first, before updating the
2219                  * pte with the new entry. This will avoid a race condition
2220                  * seen in the presence of one thread doing SMC and another
2221                  * thread doing COW.
2222                  */
2223                 ptep_clear_flush(vma, address, page_table);
2224                 page_add_new_anon_rmap(new_page, vma, address);
2225                 mem_cgroup_commit_charge(new_page, memcg, false);
2226                 lru_cache_add_active_or_unevictable(new_page, vma);
2227                 /*
2228                  * We call the notify macro here because, when using secondary
2229                  * mmu page tables (such as kvm shadow page tables), we want the
2230                  * new page to be mapped directly into the secondary page table.
2231                  */
2232                 set_pte_at_notify(mm, address, page_table, entry);
2233                 update_mmu_cache(vma, address, page_table);
2234                 if (old_page) {
2235                         /*
2236                          * Only after switching the pte to the new page may
2237                          * we remove the mapcount here. Otherwise another
2238                          * process may come and find the rmap count decremented
2239                          * before the pte is switched to the new page, and
2240                          * "reuse" the old page writing into it while our pte
2241                          * here still points into it and can be read by other
2242                          * threads.
2243                          *
2244                          * The critical issue is to order this
2245                          * page_remove_rmap with the ptp_clear_flush above.
2246                          * Those stores are ordered by (if nothing else,)
2247                          * the barrier present in the atomic_add_negative
2248                          * in page_remove_rmap.
2249                          *
2250                          * Then the TLB flush in ptep_clear_flush ensures that
2251                          * no process can access the old page before the
2252                          * decremented mapcount is visible. And the old page
2253                          * cannot be reused until after the decremented
2254                          * mapcount is visible. So transitively, TLBs to
2255                          * old page will be flushed before it can be reused.
2256                          */
2257                         page_remove_rmap(old_page);
2258                 }
2259
2260                 /* Free the old page.. */
2261                 new_page = old_page;
2262                 ret |= VM_FAULT_WRITE;
2263         } else
2264                 mem_cgroup_cancel_charge(new_page, memcg);
2265
2266         if (new_page)
2267                 page_cache_release(new_page);
2268 unlock:
2269         pte_unmap_unlock(page_table, ptl);
2270         if (mmun_end > mmun_start)
2271                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2272         if (old_page) {
2273                 /*
2274                  * Don't let another task, with possibly unlocked vma,
2275                  * keep the mlocked page.
2276                  */
2277                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2278                         lock_page(old_page);    /* LRU manipulation */
2279                         munlock_vma_page(old_page);
2280                         unlock_page(old_page);
2281                 }
2282                 page_cache_release(old_page);
2283         }
2284         return ret;
2285 oom_free_new:
2286         page_cache_release(new_page);
2287 oom:
2288         if (old_page)
2289                 page_cache_release(old_page);
2290         return VM_FAULT_OOM;
2291 }
2292
2293 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2294                 unsigned long start_addr, unsigned long end_addr,
2295                 struct zap_details *details)
2296 {
2297         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2298 }
2299
2300 static inline void unmap_mapping_range_tree(struct rb_root *root,
2301                                             struct zap_details *details)
2302 {
2303         struct vm_area_struct *vma;
2304         pgoff_t vba, vea, zba, zea;
2305
2306         vma_interval_tree_foreach(vma, root,
2307                         details->first_index, details->last_index) {
2308
2309                 vba = vma->vm_pgoff;
2310                 vea = vba + vma_pages(vma) - 1;
2311                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2312                 zba = details->first_index;
2313                 if (zba < vba)
2314                         zba = vba;
2315                 zea = details->last_index;
2316                 if (zea > vea)
2317                         zea = vea;
2318
2319                 unmap_mapping_range_vma(vma,
2320                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2321                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2322                                 details);
2323         }
2324 }
2325
2326 static inline void unmap_mapping_range_list(struct list_head *head,
2327                                             struct zap_details *details)
2328 {
2329         struct vm_area_struct *vma;
2330
2331         /*
2332          * In nonlinear VMAs there is no correspondence between virtual address
2333          * offset and file offset.  So we must perform an exhaustive search
2334          * across *all* the pages in each nonlinear VMA, not just the pages
2335          * whose virtual address lies outside the file truncation point.
2336          */
2337         list_for_each_entry(vma, head, shared.nonlinear) {
2338                 details->nonlinear_vma = vma;
2339                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2340         }
2341 }
2342
2343 /**
2344  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2345  * @mapping: the address space containing mmaps to be unmapped.
2346  * @holebegin: byte in first page to unmap, relative to the start of
2347  * the underlying file.  This will be rounded down to a PAGE_SIZE
2348  * boundary.  Note that this is different from truncate_pagecache(), which
2349  * must keep the partial page.  In contrast, we must get rid of
2350  * partial pages.
2351  * @holelen: size of prospective hole in bytes.  This will be rounded
2352  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2353  * end of the file.
2354  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2355  * but 0 when invalidating pagecache, don't throw away private data.
2356  */
2357 void unmap_mapping_range(struct address_space *mapping,
2358                 loff_t const holebegin, loff_t const holelen, int even_cows)
2359 {
2360         struct zap_details details;
2361         pgoff_t hba = holebegin >> PAGE_SHIFT;
2362         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2363
2364         /* Check for overflow. */
2365         if (sizeof(holelen) > sizeof(hlen)) {
2366                 long long holeend =
2367                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2368                 if (holeend & ~(long long)ULONG_MAX)
2369                         hlen = ULONG_MAX - hba + 1;
2370         }
2371
2372         details.check_mapping = even_cows? NULL: mapping;
2373         details.nonlinear_vma = NULL;
2374         details.first_index = hba;
2375         details.last_index = hba + hlen - 1;
2376         if (details.last_index < details.first_index)
2377                 details.last_index = ULONG_MAX;
2378
2379
2380         i_mmap_lock_read(mapping);
2381         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2382                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2383         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2384                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2385         i_mmap_unlock_read(mapping);
2386 }
2387 EXPORT_SYMBOL(unmap_mapping_range);
2388
2389 /*
2390  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2391  * but allow concurrent faults), and pte mapped but not yet locked.
2392  * We return with pte unmapped and unlocked.
2393  *
2394  * We return with the mmap_sem locked or unlocked in the same cases
2395  * as does filemap_fault().
2396  */
2397 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2398                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2399                 unsigned int flags, pte_t orig_pte)
2400 {
2401         spinlock_t *ptl;
2402         struct page *page, *swapcache;
2403         struct mem_cgroup *memcg;
2404         swp_entry_t entry;
2405         pte_t pte;
2406         int locked;
2407         int exclusive = 0;
2408         int ret = 0;
2409
2410         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2411                 goto out;
2412
2413         entry = pte_to_swp_entry(orig_pte);
2414         if (unlikely(non_swap_entry(entry))) {
2415                 if (is_migration_entry(entry)) {
2416                         migration_entry_wait(mm, pmd, address);
2417                 } else if (is_hwpoison_entry(entry)) {
2418                         ret = VM_FAULT_HWPOISON;
2419                 } else {
2420                         print_bad_pte(vma, address, orig_pte, NULL);
2421                         ret = VM_FAULT_SIGBUS;
2422                 }
2423                 goto out;
2424         }
2425         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2426         page = lookup_swap_cache(entry);
2427         if (!page) {
2428                 page = swapin_readahead(entry,
2429                                         GFP_HIGHUSER_MOVABLE, vma, address);
2430                 if (!page) {
2431                         /*
2432                          * Back out if somebody else faulted in this pte
2433                          * while we released the pte lock.
2434                          */
2435                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2436                         if (likely(pte_same(*page_table, orig_pte)))
2437                                 ret = VM_FAULT_OOM;
2438                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2439                         goto unlock;
2440                 }
2441
2442                 /* Had to read the page from swap area: Major fault */
2443                 ret = VM_FAULT_MAJOR;
2444                 count_vm_event(PGMAJFAULT);
2445                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2446         } else if (PageHWPoison(page)) {
2447                 /*
2448                  * hwpoisoned dirty swapcache pages are kept for killing
2449                  * owner processes (which may be unknown at hwpoison time)
2450                  */
2451                 ret = VM_FAULT_HWPOISON;
2452                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2453                 swapcache = page;
2454                 goto out_release;
2455         }
2456
2457         swapcache = page;
2458         locked = lock_page_or_retry(page, mm, flags);
2459
2460         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2461         if (!locked) {
2462                 ret |= VM_FAULT_RETRY;
2463                 goto out_release;
2464         }
2465
2466         /*
2467          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2468          * release the swapcache from under us.  The page pin, and pte_same
2469          * test below, are not enough to exclude that.  Even if it is still
2470          * swapcache, we need to check that the page's swap has not changed.
2471          */
2472         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2473                 goto out_page;
2474
2475         page = ksm_might_need_to_copy(page, vma, address);
2476         if (unlikely(!page)) {
2477                 ret = VM_FAULT_OOM;
2478                 page = swapcache;
2479                 goto out_page;
2480         }
2481
2482         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2483                 ret = VM_FAULT_OOM;
2484                 goto out_page;
2485         }
2486
2487         /*
2488          * Back out if somebody else already faulted in this pte.
2489          */
2490         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2491         if (unlikely(!pte_same(*page_table, orig_pte)))
2492                 goto out_nomap;
2493
2494         if (unlikely(!PageUptodate(page))) {
2495                 ret = VM_FAULT_SIGBUS;
2496                 goto out_nomap;
2497         }
2498
2499         /*
2500          * The page isn't present yet, go ahead with the fault.
2501          *
2502          * Be careful about the sequence of operations here.
2503          * To get its accounting right, reuse_swap_page() must be called
2504          * while the page is counted on swap but not yet in mapcount i.e.
2505          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2506          * must be called after the swap_free(), or it will never succeed.
2507          */
2508
2509         inc_mm_counter_fast(mm, MM_ANONPAGES);
2510         dec_mm_counter_fast(mm, MM_SWAPENTS);
2511         pte = mk_pte(page, vma->vm_page_prot);
2512         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2513                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2514                 flags &= ~FAULT_FLAG_WRITE;
2515                 ret |= VM_FAULT_WRITE;
2516                 exclusive = 1;
2517         }
2518         flush_icache_page(vma, page);
2519         if (pte_swp_soft_dirty(orig_pte))
2520                 pte = pte_mksoft_dirty(pte);
2521         set_pte_at(mm, address, page_table, pte);
2522         if (page == swapcache) {
2523                 do_page_add_anon_rmap(page, vma, address, exclusive);
2524                 mem_cgroup_commit_charge(page, memcg, true);
2525         } else { /* ksm created a completely new copy */
2526                 page_add_new_anon_rmap(page, vma, address);
2527                 mem_cgroup_commit_charge(page, memcg, false);
2528                 lru_cache_add_active_or_unevictable(page, vma);
2529         }
2530
2531         swap_free(entry);
2532         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2533                 try_to_free_swap(page);
2534         unlock_page(page);
2535         if (page != swapcache) {
2536                 /*
2537                  * Hold the lock to avoid the swap entry to be reused
2538                  * until we take the PT lock for the pte_same() check
2539                  * (to avoid false positives from pte_same). For
2540                  * further safety release the lock after the swap_free
2541                  * so that the swap count won't change under a
2542                  * parallel locked swapcache.
2543                  */
2544                 unlock_page(swapcache);
2545                 page_cache_release(swapcache);
2546         }
2547
2548         if (flags & FAULT_FLAG_WRITE) {
2549                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2550                 if (ret & VM_FAULT_ERROR)
2551                         ret &= VM_FAULT_ERROR;
2552                 goto out;
2553         }
2554
2555         /* No need to invalidate - it was non-present before */
2556         update_mmu_cache(vma, address, page_table);
2557 unlock:
2558         pte_unmap_unlock(page_table, ptl);
2559 out:
2560         return ret;
2561 out_nomap:
2562         mem_cgroup_cancel_charge(page, memcg);
2563         pte_unmap_unlock(page_table, ptl);
2564 out_page:
2565         unlock_page(page);
2566 out_release:
2567         page_cache_release(page);
2568         if (page != swapcache) {
2569                 unlock_page(swapcache);
2570                 page_cache_release(swapcache);
2571         }
2572         return ret;
2573 }
2574
2575 /*
2576  * This is like a special single-page "expand_{down|up}wards()",
2577  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2578  * doesn't hit another vma.
2579  */
2580 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2581 {
2582         address &= PAGE_MASK;
2583         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2584                 struct vm_area_struct *prev = vma->vm_prev;
2585
2586                 /*
2587                  * Is there a mapping abutting this one below?
2588                  *
2589                  * That's only ok if it's the same stack mapping
2590                  * that has gotten split..
2591                  */
2592                 if (prev && prev->vm_end == address)
2593                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2594
2595                 expand_downwards(vma, address - PAGE_SIZE);
2596         }
2597         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2598                 struct vm_area_struct *next = vma->vm_next;
2599
2600                 /* As VM_GROWSDOWN but s/below/above/ */
2601                 if (next && next->vm_start == address + PAGE_SIZE)
2602                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2603
2604                 expand_upwards(vma, address + PAGE_SIZE);
2605         }
2606         return 0;
2607 }
2608
2609 /*
2610  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2611  * but allow concurrent faults), and pte mapped but not yet locked.
2612  * We return with mmap_sem still held, but pte unmapped and unlocked.
2613  */
2614 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2615                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2616                 unsigned int flags)
2617 {
2618         struct mem_cgroup *memcg;
2619         struct page *page;
2620         spinlock_t *ptl;
2621         pte_t entry;
2622
2623         pte_unmap(page_table);
2624
2625         /* Check if we need to add a guard page to the stack */
2626         if (check_stack_guard_page(vma, address) < 0)
2627                 return VM_FAULT_SIGBUS;
2628
2629         /* Use the zero-page for reads */
2630         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2631                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2632                                                 vma->vm_page_prot));
2633                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2634                 if (!pte_none(*page_table))
2635                         goto unlock;
2636                 goto setpte;
2637         }
2638
2639         /* Allocate our own private page. */
2640         if (unlikely(anon_vma_prepare(vma)))
2641                 goto oom;
2642         page = alloc_zeroed_user_highpage_movable(vma, address);
2643         if (!page)
2644                 goto oom;
2645         /*
2646          * The memory barrier inside __SetPageUptodate makes sure that
2647          * preceeding stores to the page contents become visible before
2648          * the set_pte_at() write.
2649          */
2650         __SetPageUptodate(page);
2651
2652         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2653                 goto oom_free_page;
2654
2655         entry = mk_pte(page, vma->vm_page_prot);
2656         if (vma->vm_flags & VM_WRITE)
2657                 entry = pte_mkwrite(pte_mkdirty(entry));
2658
2659         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2660         if (!pte_none(*page_table))
2661                 goto release;
2662
2663         inc_mm_counter_fast(mm, MM_ANONPAGES);
2664         page_add_new_anon_rmap(page, vma, address);
2665         mem_cgroup_commit_charge(page, memcg, false);
2666         lru_cache_add_active_or_unevictable(page, vma);
2667 setpte:
2668         set_pte_at(mm, address, page_table, entry);
2669
2670         /* No need to invalidate - it was non-present before */
2671         update_mmu_cache(vma, address, page_table);
2672 unlock:
2673         pte_unmap_unlock(page_table, ptl);
2674         return 0;
2675 release:
2676         mem_cgroup_cancel_charge(page, memcg);
2677         page_cache_release(page);
2678         goto unlock;
2679 oom_free_page:
2680         page_cache_release(page);
2681 oom:
2682         return VM_FAULT_OOM;
2683 }
2684
2685 /*
2686  * The mmap_sem must have been held on entry, and may have been
2687  * released depending on flags and vma->vm_ops->fault() return value.
2688  * See filemap_fault() and __lock_page_retry().
2689  */
2690 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2691                 pgoff_t pgoff, unsigned int flags, struct page **page)
2692 {
2693         struct vm_fault vmf;
2694         int ret;
2695
2696         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2697         vmf.pgoff = pgoff;
2698         vmf.flags = flags;
2699         vmf.page = NULL;
2700
2701         ret = vma->vm_ops->fault(vma, &vmf);
2702         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2703                 return ret;
2704
2705         if (unlikely(PageHWPoison(vmf.page))) {
2706                 if (ret & VM_FAULT_LOCKED)
2707                         unlock_page(vmf.page);
2708                 page_cache_release(vmf.page);
2709                 return VM_FAULT_HWPOISON;
2710         }
2711
2712         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2713                 lock_page(vmf.page);
2714         else
2715                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2716
2717         *page = vmf.page;
2718         return ret;
2719 }
2720
2721 /**
2722  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2723  *
2724  * @vma: virtual memory area
2725  * @address: user virtual address
2726  * @page: page to map
2727  * @pte: pointer to target page table entry
2728  * @write: true, if new entry is writable
2729  * @anon: true, if it's anonymous page
2730  *
2731  * Caller must hold page table lock relevant for @pte.
2732  *
2733  * Target users are page handler itself and implementations of
2734  * vm_ops->map_pages.
2735  */
2736 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2737                 struct page *page, pte_t *pte, bool write, bool anon)
2738 {
2739         pte_t entry;
2740
2741         flush_icache_page(vma, page);
2742         entry = mk_pte(page, vma->vm_page_prot);
2743         if (write)
2744                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2745         else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2746                 entry = pte_mksoft_dirty(entry);
2747         if (anon) {
2748                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2749                 page_add_new_anon_rmap(page, vma, address);
2750         } else {
2751                 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2752                 page_add_file_rmap(page);
2753         }
2754         set_pte_at(vma->vm_mm, address, pte, entry);
2755
2756         /* no need to invalidate: a not-present page won't be cached */
2757         update_mmu_cache(vma, address, pte);
2758 }
2759
2760 static unsigned long fault_around_bytes __read_mostly =
2761         rounddown_pow_of_two(65536);
2762
2763 #ifdef CONFIG_DEBUG_FS
2764 static int fault_around_bytes_get(void *data, u64 *val)
2765 {
2766         *val = fault_around_bytes;
2767         return 0;
2768 }
2769
2770 /*
2771  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2772  * rounded down to nearest page order. It's what do_fault_around() expects to
2773  * see.
2774  */
2775 static int fault_around_bytes_set(void *data, u64 val)
2776 {
2777         if (val / PAGE_SIZE > PTRS_PER_PTE)
2778                 return -EINVAL;
2779         if (val > PAGE_SIZE)
2780                 fault_around_bytes = rounddown_pow_of_two(val);
2781         else
2782                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2783         return 0;
2784 }
2785 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2786                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2787
2788 static int __init fault_around_debugfs(void)
2789 {
2790         void *ret;
2791
2792         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2793                         &fault_around_bytes_fops);
2794         if (!ret)
2795                 pr_warn("Failed to create fault_around_bytes in debugfs");
2796         return 0;
2797 }
2798 late_initcall(fault_around_debugfs);
2799 #endif
2800
2801 /*
2802  * do_fault_around() tries to map few pages around the fault address. The hope
2803  * is that the pages will be needed soon and this will lower the number of
2804  * faults to handle.
2805  *
2806  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2807  * not ready to be mapped: not up-to-date, locked, etc.
2808  *
2809  * This function is called with the page table lock taken. In the split ptlock
2810  * case the page table lock only protects only those entries which belong to
2811  * the page table corresponding to the fault address.
2812  *
2813  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2814  * only once.
2815  *
2816  * fault_around_pages() defines how many pages we'll try to map.
2817  * do_fault_around() expects it to return a power of two less than or equal to
2818  * PTRS_PER_PTE.
2819  *
2820  * The virtual address of the area that we map is naturally aligned to the
2821  * fault_around_pages() value (and therefore to page order).  This way it's
2822  * easier to guarantee that we don't cross page table boundaries.
2823  */
2824 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2825                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2826 {
2827         unsigned long start_addr, nr_pages, mask;
2828         pgoff_t max_pgoff;
2829         struct vm_fault vmf;
2830         int off;
2831
2832         nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2833         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2834
2835         start_addr = max(address & mask, vma->vm_start);
2836         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2837         pte -= off;
2838         pgoff -= off;
2839
2840         /*
2841          *  max_pgoff is either end of page table or end of vma
2842          *  or fault_around_pages() from pgoff, depending what is nearest.
2843          */
2844         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2845                 PTRS_PER_PTE - 1;
2846         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2847                         pgoff + nr_pages - 1);
2848
2849         /* Check if it makes any sense to call ->map_pages */
2850         while (!pte_none(*pte)) {
2851                 if (++pgoff > max_pgoff)
2852                         return;
2853                 start_addr += PAGE_SIZE;
2854                 if (start_addr >= vma->vm_end)
2855                         return;
2856                 pte++;
2857         }
2858
2859         vmf.virtual_address = (void __user *) start_addr;
2860         vmf.pte = pte;
2861         vmf.pgoff = pgoff;
2862         vmf.max_pgoff = max_pgoff;
2863         vmf.flags = flags;
2864         vma->vm_ops->map_pages(vma, &vmf);
2865 }
2866
2867 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2868                 unsigned long address, pmd_t *pmd,
2869                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2870 {
2871         struct page *fault_page;
2872         spinlock_t *ptl;
2873         pte_t *pte;
2874         int ret = 0;
2875
2876         /*
2877          * Let's call ->map_pages() first and use ->fault() as fallback
2878          * if page by the offset is not ready to be mapped (cold cache or
2879          * something).
2880          */
2881         if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2882             fault_around_bytes >> PAGE_SHIFT > 1) {
2883                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2884                 do_fault_around(vma, address, pte, pgoff, flags);
2885                 if (!pte_same(*pte, orig_pte))
2886                         goto unlock_out;
2887                 pte_unmap_unlock(pte, ptl);
2888         }
2889
2890         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2891         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2892                 return ret;
2893
2894         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2895         if (unlikely(!pte_same(*pte, orig_pte))) {
2896                 pte_unmap_unlock(pte, ptl);
2897                 unlock_page(fault_page);
2898                 page_cache_release(fault_page);
2899                 return ret;
2900         }
2901         do_set_pte(vma, address, fault_page, pte, false, false);
2902         unlock_page(fault_page);
2903 unlock_out:
2904         pte_unmap_unlock(pte, ptl);
2905         return ret;
2906 }
2907
2908 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2909                 unsigned long address, pmd_t *pmd,
2910                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2911 {
2912         struct page *fault_page, *new_page;
2913         struct mem_cgroup *memcg;
2914         spinlock_t *ptl;
2915         pte_t *pte;
2916         int ret;
2917
2918         if (unlikely(anon_vma_prepare(vma)))
2919                 return VM_FAULT_OOM;
2920
2921         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2922         if (!new_page)
2923                 return VM_FAULT_OOM;
2924
2925         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2926                 page_cache_release(new_page);
2927                 return VM_FAULT_OOM;
2928         }
2929
2930         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2931         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2932                 goto uncharge_out;
2933
2934         copy_user_highpage(new_page, fault_page, address, vma);
2935         __SetPageUptodate(new_page);
2936
2937         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2938         if (unlikely(!pte_same(*pte, orig_pte))) {
2939                 pte_unmap_unlock(pte, ptl);
2940                 unlock_page(fault_page);
2941                 page_cache_release(fault_page);
2942                 goto uncharge_out;
2943         }
2944         do_set_pte(vma, address, new_page, pte, true, true);
2945         mem_cgroup_commit_charge(new_page, memcg, false);
2946         lru_cache_add_active_or_unevictable(new_page, vma);
2947         pte_unmap_unlock(pte, ptl);
2948         unlock_page(fault_page);
2949         page_cache_release(fault_page);
2950         return ret;
2951 uncharge_out:
2952         mem_cgroup_cancel_charge(new_page, memcg);
2953         page_cache_release(new_page);
2954         return ret;
2955 }
2956
2957 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2958                 unsigned long address, pmd_t *pmd,
2959                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2960 {
2961         struct page *fault_page;
2962         struct address_space *mapping;
2963         spinlock_t *ptl;
2964         pte_t *pte;
2965         int dirtied = 0;
2966         int ret, tmp;
2967
2968         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2969         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2970                 return ret;
2971
2972         /*
2973          * Check if the backing address space wants to know that the page is
2974          * about to become writable
2975          */
2976         if (vma->vm_ops->page_mkwrite) {
2977                 unlock_page(fault_page);
2978                 tmp = do_page_mkwrite(vma, fault_page, address);
2979                 if (unlikely(!tmp ||
2980                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2981                         page_cache_release(fault_page);
2982                         return tmp;
2983                 }
2984         }
2985
2986         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2987         if (unlikely(!pte_same(*pte, orig_pte))) {
2988                 pte_unmap_unlock(pte, ptl);
2989                 unlock_page(fault_page);
2990                 page_cache_release(fault_page);
2991                 return ret;
2992         }
2993         do_set_pte(vma, address, fault_page, pte, true, false);
2994         pte_unmap_unlock(pte, ptl);
2995
2996         if (set_page_dirty(fault_page))
2997                 dirtied = 1;
2998         mapping = fault_page->mapping;
2999         unlock_page(fault_page);
3000         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3001                 /*
3002                  * Some device drivers do not set page.mapping but still
3003                  * dirty their pages
3004                  */
3005                 balance_dirty_pages_ratelimited(mapping);
3006         }
3007
3008         /* file_update_time outside page_lock */
3009         if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3010                 file_update_time(vma->vm_file);
3011
3012         return ret;
3013 }
3014
3015 /*
3016  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3017  * but allow concurrent faults).
3018  * The mmap_sem may have been released depending on flags and our
3019  * return value.  See filemap_fault() and __lock_page_or_retry().
3020  */
3021 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3022                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3023                 unsigned int flags, pte_t orig_pte)
3024 {
3025         pgoff_t pgoff = (((address & PAGE_MASK)
3026                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3027
3028         pte_unmap(page_table);
3029         if (!(flags & FAULT_FLAG_WRITE))
3030                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3031                                 orig_pte);
3032         if (!(vma->vm_flags & VM_SHARED))
3033                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3034                                 orig_pte);
3035         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3036 }
3037
3038 /*
3039  * Fault of a previously existing named mapping. Repopulate the pte
3040  * from the encoded file_pte if possible. This enables swappable
3041  * nonlinear vmas.
3042  *
3043  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3044  * but allow concurrent faults), and pte mapped but not yet locked.
3045  * We return with pte unmapped and unlocked.
3046  * The mmap_sem may have been released depending on flags and our
3047  * return value.  See filemap_fault() and __lock_page_or_retry().
3048  */
3049 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3050                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3051                 unsigned int flags, pte_t orig_pte)
3052 {
3053         pgoff_t pgoff;
3054
3055         flags |= FAULT_FLAG_NONLINEAR;
3056
3057         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3058                 return 0;
3059
3060         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3061                 /*
3062                  * Page table corrupted: show pte and kill process.
3063                  */
3064                 print_bad_pte(vma, address, orig_pte, NULL);
3065                 return VM_FAULT_SIGBUS;
3066         }
3067
3068         pgoff = pte_to_pgoff(orig_pte);
3069         if (!(flags & FAULT_FLAG_WRITE))
3070                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3071                                 orig_pte);
3072         if (!(vma->vm_flags & VM_SHARED))
3073                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3074                                 orig_pte);
3075         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3076 }
3077
3078 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3079                                 unsigned long addr, int page_nid,
3080                                 int *flags)
3081 {
3082         get_page(page);
3083
3084         count_vm_numa_event(NUMA_HINT_FAULTS);
3085         if (page_nid == numa_node_id()) {
3086                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3087                 *flags |= TNF_FAULT_LOCAL;
3088         }
3089
3090         return mpol_misplaced(page, vma, addr);
3091 }
3092
3093 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3094                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3095 {
3096         struct page *page = NULL;
3097         spinlock_t *ptl;
3098         int page_nid = -1;
3099         int last_cpupid;
3100         int target_nid;
3101         bool migrated = false;
3102         int flags = 0;
3103
3104         /*
3105         * The "pte" at this point cannot be used safely without
3106         * validation through pte_unmap_same(). It's of NUMA type but
3107         * the pfn may be screwed if the read is non atomic.
3108         *
3109         * ptep_modify_prot_start is not called as this is clearing
3110         * the _PAGE_NUMA bit and it is not really expected that there
3111         * would be concurrent hardware modifications to the PTE.
3112         */
3113         ptl = pte_lockptr(mm, pmd);
3114         spin_lock(ptl);
3115         if (unlikely(!pte_same(*ptep, pte))) {
3116                 pte_unmap_unlock(ptep, ptl);
3117                 goto out;
3118         }
3119
3120         pte = pte_mknonnuma(pte);
3121         set_pte_at(mm, addr, ptep, pte);
3122         update_mmu_cache(vma, addr, ptep);
3123
3124         page = vm_normal_page(vma, addr, pte);
3125         if (!page) {
3126                 pte_unmap_unlock(ptep, ptl);
3127                 return 0;
3128         }
3129         BUG_ON(is_zero_pfn(page_to_pfn(page)));
3130
3131         /*
3132          * Avoid grouping on DSO/COW pages in specific and RO pages
3133          * in general, RO pages shouldn't hurt as much anyway since
3134          * they can be in shared cache state.
3135          */
3136         if (!pte_write(pte))
3137                 flags |= TNF_NO_GROUP;
3138
3139         /*
3140          * Flag if the page is shared between multiple address spaces. This
3141          * is later used when determining whether to group tasks together
3142          */
3143         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3144                 flags |= TNF_SHARED;
3145
3146         last_cpupid = page_cpupid_last(page);
3147         page_nid = page_to_nid(page);
3148         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3149         pte_unmap_unlock(ptep, ptl);
3150         if (target_nid == -1) {
3151                 put_page(page);
3152                 goto out;
3153         }
3154
3155         /* Migrate to the requested node */
3156         migrated = migrate_misplaced_page(page, vma, target_nid);
3157         if (migrated) {
3158                 page_nid = target_nid;
3159                 flags |= TNF_MIGRATED;
3160         }
3161
3162 out:
3163         if (page_nid != -1)
3164                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3165         return 0;
3166 }
3167
3168 /*
3169  * These routines also need to handle stuff like marking pages dirty
3170  * and/or accessed for architectures that don't do it in hardware (most
3171  * RISC architectures).  The early dirtying is also good on the i386.
3172  *
3173  * There is also a hook called "update_mmu_cache()" that architectures
3174  * with external mmu caches can use to update those (ie the Sparc or
3175  * PowerPC hashed page tables that act as extended TLBs).
3176  *
3177  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3178  * but allow concurrent faults), and pte mapped but not yet locked.
3179  * We return with pte unmapped and unlocked.
3180  *
3181  * The mmap_sem may have been released depending on flags and our
3182  * return value.  See filemap_fault() and __lock_page_or_retry().
3183  */
3184 static int handle_pte_fault(struct mm_struct *mm,
3185                      struct vm_area_struct *vma, unsigned long address,
3186                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3187 {
3188         pte_t entry;
3189         spinlock_t *ptl;
3190
3191         entry = ACCESS_ONCE(*pte);
3192         if (!pte_present(entry)) {
3193                 if (pte_none(entry)) {
3194                         if (vma->vm_ops) {
3195                                 if (likely(vma->vm_ops->fault))
3196                                         return do_linear_fault(mm, vma, address,
3197                                                 pte, pmd, flags, entry);
3198                         }
3199                         return do_anonymous_page(mm, vma, address,
3200                                                  pte, pmd, flags);
3201                 }
3202                 if (pte_file(entry))
3203                         return do_nonlinear_fault(mm, vma, address,
3204                                         pte, pmd, flags, entry);
3205                 return do_swap_page(mm, vma, address,
3206                                         pte, pmd, flags, entry);
3207         }
3208
3209         if (pte_numa(entry))
3210                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3211
3212         ptl = pte_lockptr(mm, pmd);
3213         spin_lock(ptl);
3214         if (unlikely(!pte_same(*pte, entry)))
3215                 goto unlock;
3216         if (flags & FAULT_FLAG_WRITE) {
3217                 if (!pte_write(entry))
3218                         return do_wp_page(mm, vma, address,
3219                                         pte, pmd, ptl, entry);
3220                 entry = pte_mkdirty(entry);
3221         }
3222         entry = pte_mkyoung(entry);
3223         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3224                 update_mmu_cache(vma, address, pte);
3225         } else {
3226                 /*
3227                  * This is needed only for protection faults but the arch code
3228                  * is not yet telling us if this is a protection fault or not.
3229                  * This still avoids useless tlb flushes for .text page faults
3230                  * with threads.
3231                  */
3232                 if (flags & FAULT_FLAG_WRITE)
3233                         flush_tlb_fix_spurious_fault(vma, address);
3234         }
3235 unlock:
3236         pte_unmap_unlock(pte, ptl);
3237         return 0;
3238 }
3239
3240 /*
3241  * By the time we get here, we already hold the mm semaphore
3242  *
3243  * The mmap_sem may have been released depending on flags and our
3244  * return value.  See filemap_fault() and __lock_page_or_retry().
3245  */
3246 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3247                              unsigned long address, unsigned int flags)
3248 {
3249         pgd_t *pgd;
3250         pud_t *pud;
3251         pmd_t *pmd;
3252         pte_t *pte;
3253
3254         if (unlikely(is_vm_hugetlb_page(vma)))
3255                 return hugetlb_fault(mm, vma, address, flags);
3256
3257         pgd = pgd_offset(mm, address);
3258         pud = pud_alloc(mm, pgd, address);
3259         if (!pud)
3260                 return VM_FAULT_OOM;
3261         pmd = pmd_alloc(mm, pud, address);
3262         if (!pmd)
3263                 return VM_FAULT_OOM;
3264         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3265                 int ret = VM_FAULT_FALLBACK;
3266                 if (!vma->vm_ops)
3267                         ret = do_huge_pmd_anonymous_page(mm, vma, address,
3268                                         pmd, flags);
3269                 if (!(ret & VM_FAULT_FALLBACK))
3270                         return ret;
3271         } else {
3272                 pmd_t orig_pmd = *pmd;
3273                 int ret;
3274
3275                 barrier();
3276                 if (pmd_trans_huge(orig_pmd)) {
3277                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3278
3279                         /*
3280                          * If the pmd is splitting, return and retry the
3281                          * the fault.  Alternative: wait until the split
3282                          * is done, and goto retry.
3283                          */
3284                         if (pmd_trans_splitting(orig_pmd))
3285                                 return 0;
3286
3287                         if (pmd_numa(orig_pmd))
3288                                 return do_huge_pmd_numa_page(mm, vma, address,
3289                                                              orig_pmd, pmd);
3290
3291                         if (dirty && !pmd_write(orig_pmd)) {
3292                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3293                                                           orig_pmd);
3294                                 if (!(ret & VM_FAULT_FALLBACK))
3295                                         return ret;
3296                         } else {
3297                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3298                                                       orig_pmd, dirty);
3299                                 return 0;
3300                         }
3301                 }
3302         }
3303
3304         /*
3305          * Use __pte_alloc instead of pte_alloc_map, because we can't
3306          * run pte_offset_map on the pmd, if an huge pmd could
3307          * materialize from under us from a different thread.
3308          */
3309         if (unlikely(pmd_none(*pmd)) &&
3310             unlikely(__pte_alloc(mm, vma, pmd, address)))
3311                 return VM_FAULT_OOM;
3312         /* if an huge pmd materialized from under us just retry later */
3313         if (unlikely(pmd_trans_huge(*pmd)))
3314                 return 0;
3315         /*
3316          * A regular pmd is established and it can't morph into a huge pmd
3317          * from under us anymore at this point because we hold the mmap_sem
3318          * read mode and khugepaged takes it in write mode. So now it's
3319          * safe to run pte_offset_map().
3320          */
3321         pte = pte_offset_map(pmd, address);
3322
3323         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3324 }
3325
3326 /*
3327  * By the time we get here, we already hold the mm semaphore
3328  *
3329  * The mmap_sem may have been released depending on flags and our
3330  * return value.  See filemap_fault() and __lock_page_or_retry().
3331  */
3332 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3333                     unsigned long address, unsigned int flags)
3334 {
3335         int ret;
3336
3337         __set_current_state(TASK_RUNNING);
3338
3339         count_vm_event(PGFAULT);
3340         mem_cgroup_count_vm_event(mm, PGFAULT);
3341
3342         /* do counter updates before entering really critical section. */
3343         check_sync_rss_stat(current);
3344
3345         /*
3346          * Enable the memcg OOM handling for faults triggered in user
3347          * space.  Kernel faults are handled more gracefully.
3348          */
3349         if (flags & FAULT_FLAG_USER)
3350                 mem_cgroup_oom_enable();
3351
3352         ret = __handle_mm_fault(mm, vma, address, flags);
3353
3354         if (flags & FAULT_FLAG_USER) {
3355                 mem_cgroup_oom_disable();
3356                 /*
3357                  * The task may have entered a memcg OOM situation but
3358                  * if the allocation error was handled gracefully (no
3359                  * VM_FAULT_OOM), there is no need to kill anything.
3360                  * Just clean up the OOM state peacefully.
3361                  */
3362                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3363                         mem_cgroup_oom_synchronize(false);
3364         }
3365
3366         return ret;
3367 }
3368 EXPORT_SYMBOL_GPL(handle_mm_fault);
3369
3370 #ifndef __PAGETABLE_PUD_FOLDED
3371 /*
3372  * Allocate page upper directory.
3373  * We've already handled the fast-path in-line.
3374  */
3375 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3376 {
3377         pud_t *new = pud_alloc_one(mm, address);
3378         if (!new)
3379                 return -ENOMEM;
3380
3381         smp_wmb(); /* See comment in __pte_alloc */
3382
3383         spin_lock(&mm->page_table_lock);
3384         if (pgd_present(*pgd))          /* Another has populated it */
3385                 pud_free(mm, new);
3386         else
3387                 pgd_populate(mm, pgd, new);
3388         spin_unlock(&mm->page_table_lock);
3389         return 0;
3390 }
3391 #endif /* __PAGETABLE_PUD_FOLDED */
3392
3393 #ifndef __PAGETABLE_PMD_FOLDED
3394 /*
3395  * Allocate page middle directory.
3396  * We've already handled the fast-path in-line.
3397  */
3398 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3399 {
3400         pmd_t *new = pmd_alloc_one(mm, address);
3401         if (!new)
3402                 return -ENOMEM;
3403
3404         smp_wmb(); /* See comment in __pte_alloc */
3405
3406         spin_lock(&mm->page_table_lock);
3407 #ifndef __ARCH_HAS_4LEVEL_HACK
3408         if (pud_present(*pud))          /* Another has populated it */
3409                 pmd_free(mm, new);
3410         else
3411                 pud_populate(mm, pud, new);
3412 #else
3413         if (pgd_present(*pud))          /* Another has populated it */
3414                 pmd_free(mm, new);
3415         else
3416                 pgd_populate(mm, pud, new);
3417 #endif /* __ARCH_HAS_4LEVEL_HACK */
3418         spin_unlock(&mm->page_table_lock);
3419         return 0;
3420 }
3421 #endif /* __PAGETABLE_PMD_FOLDED */
3422
3423 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3424                 pte_t **ptepp, spinlock_t **ptlp)
3425 {
3426         pgd_t *pgd;
3427         pud_t *pud;
3428         pmd_t *pmd;
3429         pte_t *ptep;
3430
3431         pgd = pgd_offset(mm, address);
3432         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3433                 goto out;
3434
3435         pud = pud_offset(pgd, address);
3436         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3437                 goto out;
3438
3439         pmd = pmd_offset(pud, address);
3440         VM_BUG_ON(pmd_trans_huge(*pmd));
3441         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3442                 goto out;
3443
3444         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3445         if (pmd_huge(*pmd))
3446                 goto out;
3447
3448         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3449         if (!ptep)
3450                 goto out;
3451         if (!pte_present(*ptep))
3452                 goto unlock;
3453         *ptepp = ptep;
3454         return 0;
3455 unlock:
3456         pte_unmap_unlock(ptep, *ptlp);
3457 out:
3458         return -EINVAL;
3459 }
3460
3461 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3462                              pte_t **ptepp, spinlock_t **ptlp)
3463 {
3464         int res;
3465
3466         /* (void) is needed to make gcc happy */
3467         (void) __cond_lock(*ptlp,
3468                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3469         return res;
3470 }
3471
3472 /**
3473  * follow_pfn - look up PFN at a user virtual address
3474  * @vma: memory mapping
3475  * @address: user virtual address
3476  * @pfn: location to store found PFN
3477  *
3478  * Only IO mappings and raw PFN mappings are allowed.
3479  *
3480  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3481  */
3482 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3483         unsigned long *pfn)
3484 {
3485         int ret = -EINVAL;
3486         spinlock_t *ptl;
3487         pte_t *ptep;
3488
3489         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3490                 return ret;
3491
3492         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3493         if (ret)
3494                 return ret;
3495         *pfn = pte_pfn(*ptep);
3496         pte_unmap_unlock(ptep, ptl);
3497         return 0;
3498 }
3499 EXPORT_SYMBOL(follow_pfn);
3500
3501 #ifdef CONFIG_HAVE_IOREMAP_PROT
3502 int follow_phys(struct vm_area_struct *vma,
3503                 unsigned long address, unsigned int flags,
3504                 unsigned long *prot, resource_size_t *phys)
3505 {
3506         int ret = -EINVAL;
3507         pte_t *ptep, pte;
3508         spinlock_t *ptl;
3509
3510         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3511                 goto out;
3512
3513         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3514                 goto out;
3515         pte = *ptep;
3516
3517         if ((flags & FOLL_WRITE) && !pte_write(pte))
3518                 goto unlock;
3519
3520         *prot = pgprot_val(pte_pgprot(pte));
3521         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3522
3523         ret = 0;
3524 unlock:
3525         pte_unmap_unlock(ptep, ptl);
3526 out:
3527         return ret;
3528 }
3529
3530 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3531                         void *buf, int len, int write)
3532 {
3533         resource_size_t phys_addr;
3534         unsigned long prot = 0;
3535         void __iomem *maddr;
3536         int offset = addr & (PAGE_SIZE-1);
3537
3538         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3539                 return -EINVAL;
3540
3541         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3542         if (write)
3543                 memcpy_toio(maddr + offset, buf, len);
3544         else
3545                 memcpy_fromio(buf, maddr + offset, len);
3546         iounmap(maddr);
3547
3548         return len;
3549 }
3550 EXPORT_SYMBOL_GPL(generic_access_phys);
3551 #endif
3552
3553 /*
3554  * Access another process' address space as given in mm.  If non-NULL, use the
3555  * given task for page fault accounting.
3556  */
3557 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3558                 unsigned long addr, void *buf, int len, int write)
3559 {
3560         struct vm_area_struct *vma;
3561         void *old_buf = buf;
3562
3563         down_read(&mm->mmap_sem);
3564         /* ignore errors, just check how much was successfully transferred */
3565         while (len) {
3566                 int bytes, ret, offset;
3567                 void *maddr;
3568                 struct page *page = NULL;
3569
3570                 ret = get_user_pages(tsk, mm, addr, 1,
3571                                 write, 1, &page, &vma);
3572                 if (ret <= 0) {
3573 #ifndef CONFIG_HAVE_IOREMAP_PROT
3574                         break;
3575 #else
3576                         /*
3577                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3578                          * we can access using slightly different code.
3579                          */
3580                         vma = find_vma(mm, addr);
3581                         if (!vma || vma->vm_start > addr)
3582                                 break;
3583                         if (vma->vm_ops && vma->vm_ops->access)
3584                                 ret = vma->vm_ops->access(vma, addr, buf,
3585                                                           len, write);
3586                         if (ret <= 0)
3587                                 break;
3588                         bytes = ret;
3589 #endif
3590                 } else {
3591                         bytes = len;
3592                         offset = addr & (PAGE_SIZE-1);
3593                         if (bytes > PAGE_SIZE-offset)
3594                                 bytes = PAGE_SIZE-offset;
3595
3596                         maddr = kmap(page);
3597                         if (write) {
3598                                 copy_to_user_page(vma, page, addr,
3599                                                   maddr + offset, buf, bytes);
3600                                 set_page_dirty_lock(page);
3601                         } else {
3602                                 copy_from_user_page(vma, page, addr,
3603                                                     buf, maddr + offset, bytes);
3604                         }
3605                         kunmap(page);
3606                         page_cache_release(page);
3607                 }
3608                 len -= bytes;
3609                 buf += bytes;
3610                 addr += bytes;
3611         }
3612         up_read(&mm->mmap_sem);
3613
3614         return buf - old_buf;
3615 }
3616
3617 /**
3618  * access_remote_vm - access another process' address space
3619  * @mm:         the mm_struct of the target address space
3620  * @addr:       start address to access
3621  * @buf:        source or destination buffer
3622  * @len:        number of bytes to transfer
3623  * @write:      whether the access is a write
3624  *
3625  * The caller must hold a reference on @mm.
3626  */
3627 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3628                 void *buf, int len, int write)
3629 {
3630         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3631 }
3632
3633 /*
3634  * Access another process' address space.
3635  * Source/target buffer must be kernel space,
3636  * Do not walk the page table directly, use get_user_pages
3637  */
3638 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3639                 void *buf, int len, int write)
3640 {
3641         struct mm_struct *mm;
3642         int ret;
3643
3644         mm = get_task_mm(tsk);
3645         if (!mm)
3646                 return 0;
3647
3648         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3649         mmput(mm);
3650
3651         return ret;
3652 }
3653
3654 /*
3655  * Print the name of a VMA.
3656  */
3657 void print_vma_addr(char *prefix, unsigned long ip)
3658 {
3659         struct mm_struct *mm = current->mm;
3660         struct vm_area_struct *vma;
3661
3662         /*
3663          * Do not print if we are in atomic
3664          * contexts (in exception stacks, etc.):
3665          */
3666         if (preempt_count())
3667                 return;
3668
3669         down_read(&mm->mmap_sem);
3670         vma = find_vma(mm, ip);
3671         if (vma && vma->vm_file) {
3672                 struct file *f = vma->vm_file;
3673                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3674                 if (buf) {
3675                         char *p;
3676
3677                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3678                         if (IS_ERR(p))
3679                                 p = "?";
3680                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3681                                         vma->vm_start,
3682                                         vma->vm_end - vma->vm_start);
3683                         free_page((unsigned long)buf);
3684                 }
3685         }
3686         up_read(&mm->mmap_sem);
3687 }
3688
3689 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3690 void might_fault(void)
3691 {
3692         /*
3693          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3694          * holding the mmap_sem, this is safe because kernel memory doesn't
3695          * get paged out, therefore we'll never actually fault, and the
3696          * below annotations will generate false positives.
3697          */
3698         if (segment_eq(get_fs(), KERNEL_DS))
3699                 return;
3700
3701         /*
3702          * it would be nicer only to annotate paths which are not under
3703          * pagefault_disable, however that requires a larger audit and
3704          * providing helpers like get_user_atomic.
3705          */
3706         if (in_atomic())
3707                 return;
3708
3709         __might_sleep(__FILE__, __LINE__, 0);
3710
3711         if (current->mm)
3712                 might_lock_read(&current->mm->mmap_sem);
3713 }
3714 EXPORT_SYMBOL(might_fault);
3715 #endif
3716
3717 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3718 static void clear_gigantic_page(struct page *page,
3719                                 unsigned long addr,
3720                                 unsigned int pages_per_huge_page)
3721 {
3722         int i;
3723         struct page *p = page;
3724
3725         might_sleep();
3726         for (i = 0; i < pages_per_huge_page;
3727              i++, p = mem_map_next(p, page, i)) {
3728                 cond_resched();
3729                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3730         }
3731 }
3732 void clear_huge_page(struct page *page,
3733                      unsigned long addr, unsigned int pages_per_huge_page)
3734 {
3735         int i;
3736
3737         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3738                 clear_gigantic_page(page, addr, pages_per_huge_page);
3739                 return;
3740         }
3741
3742         might_sleep();
3743         for (i = 0; i < pages_per_huge_page; i++) {
3744                 cond_resched();
3745                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3746         }
3747 }
3748
3749 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3750                                     unsigned long addr,
3751                                     struct vm_area_struct *vma,
3752                                     unsigned int pages_per_huge_page)
3753 {
3754         int i;
3755         struct page *dst_base = dst;
3756         struct page *src_base = src;
3757
3758         for (i = 0; i < pages_per_huge_page; ) {
3759                 cond_resched();
3760                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3761
3762                 i++;
3763                 dst = mem_map_next(dst, dst_base, i);
3764                 src = mem_map_next(src, src_base, i);
3765         }
3766 }
3767
3768 void copy_user_huge_page(struct page *dst, struct page *src,
3769                          unsigned long addr, struct vm_area_struct *vma,
3770                          unsigned int pages_per_huge_page)
3771 {
3772         int i;
3773
3774         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3775                 copy_user_gigantic_page(dst, src, addr, vma,
3776                                         pages_per_huge_page);
3777                 return;
3778         }
3779
3780         might_sleep();
3781         for (i = 0; i < pages_per_huge_page; i++) {
3782                 cond_resched();
3783                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3784         }
3785 }
3786 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3787
3788 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3789
3790 static struct kmem_cache *page_ptl_cachep;
3791
3792 void __init ptlock_cache_init(void)
3793 {
3794         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3795                         SLAB_PANIC, NULL);
3796 }
3797
3798 bool ptlock_alloc(struct page *page)
3799 {
3800         spinlock_t *ptl;
3801
3802         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3803         if (!ptl)
3804                 return false;
3805         page->ptl = ptl;
3806         return true;
3807 }
3808
3809 void ptlock_free(struct page *page)
3810 {
3811         kmem_cache_free(page_ptl_cachep, page->ptl);
3812 }
3813 #endif