Merge tag 'mac80211-for-davem-2016-01-26' of git://git.kernel.org/pub/scm/linux/kerne...
[cascardo/linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66
67 #include <asm/io.h>
68 #include <asm/pgalloc.h>
69 #include <asm/uaccess.h>
70 #include <asm/tlb.h>
71 #include <asm/tlbflush.h>
72 #include <asm/pgtable.h>
73
74 #include "internal.h"
75
76 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
77 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #endif
79
80 #ifndef CONFIG_NEED_MULTIPLE_NODES
81 /* use the per-pgdat data instead for discontigmem - mbligh */
82 unsigned long max_mapnr;
83 struct page *mem_map;
84
85 EXPORT_SYMBOL(max_mapnr);
86 EXPORT_SYMBOL(mem_map);
87 #endif
88
89 /*
90  * A number of key systems in x86 including ioremap() rely on the assumption
91  * that high_memory defines the upper bound on direct map memory, then end
92  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
93  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
94  * and ZONE_HIGHMEM.
95  */
96 void * high_memory;
97
98 EXPORT_SYMBOL(high_memory);
99
100 /*
101  * Randomize the address space (stacks, mmaps, brk, etc.).
102  *
103  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
104  *   as ancient (libc5 based) binaries can segfault. )
105  */
106 int randomize_va_space __read_mostly =
107 #ifdef CONFIG_COMPAT_BRK
108                                         1;
109 #else
110                                         2;
111 #endif
112
113 static int __init disable_randmaps(char *s)
114 {
115         randomize_va_space = 0;
116         return 1;
117 }
118 __setup("norandmaps", disable_randmaps);
119
120 unsigned long zero_pfn __read_mostly;
121 unsigned long highest_memmap_pfn __read_mostly;
122
123 EXPORT_SYMBOL(zero_pfn);
124
125 /*
126  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
127  */
128 static int __init init_zero_pfn(void)
129 {
130         zero_pfn = page_to_pfn(ZERO_PAGE(0));
131         return 0;
132 }
133 core_initcall(init_zero_pfn);
134
135
136 #if defined(SPLIT_RSS_COUNTING)
137
138 void sync_mm_rss(struct mm_struct *mm)
139 {
140         int i;
141
142         for (i = 0; i < NR_MM_COUNTERS; i++) {
143                 if (current->rss_stat.count[i]) {
144                         add_mm_counter(mm, i, current->rss_stat.count[i]);
145                         current->rss_stat.count[i] = 0;
146                 }
147         }
148         current->rss_stat.events = 0;
149 }
150
151 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
152 {
153         struct task_struct *task = current;
154
155         if (likely(task->mm == mm))
156                 task->rss_stat.count[member] += val;
157         else
158                 add_mm_counter(mm, member, val);
159 }
160 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
161 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
162
163 /* sync counter once per 64 page faults */
164 #define TASK_RSS_EVENTS_THRESH  (64)
165 static void check_sync_rss_stat(struct task_struct *task)
166 {
167         if (unlikely(task != current))
168                 return;
169         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
170                 sync_mm_rss(task->mm);
171 }
172 #else /* SPLIT_RSS_COUNTING */
173
174 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
175 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
176
177 static void check_sync_rss_stat(struct task_struct *task)
178 {
179 }
180
181 #endif /* SPLIT_RSS_COUNTING */
182
183 #ifdef HAVE_GENERIC_MMU_GATHER
184
185 static bool tlb_next_batch(struct mmu_gather *tlb)
186 {
187         struct mmu_gather_batch *batch;
188
189         batch = tlb->active;
190         if (batch->next) {
191                 tlb->active = batch->next;
192                 return true;
193         }
194
195         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
196                 return false;
197
198         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
199         if (!batch)
200                 return false;
201
202         tlb->batch_count++;
203         batch->next = NULL;
204         batch->nr   = 0;
205         batch->max  = MAX_GATHER_BATCH;
206
207         tlb->active->next = batch;
208         tlb->active = batch;
209
210         return true;
211 }
212
213 /* tlb_gather_mmu
214  *      Called to initialize an (on-stack) mmu_gather structure for page-table
215  *      tear-down from @mm. The @fullmm argument is used when @mm is without
216  *      users and we're going to destroy the full address space (exit/execve).
217  */
218 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
219 {
220         tlb->mm = mm;
221
222         /* Is it from 0 to ~0? */
223         tlb->fullmm     = !(start | (end+1));
224         tlb->need_flush_all = 0;
225         tlb->local.next = NULL;
226         tlb->local.nr   = 0;
227         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
228         tlb->active     = &tlb->local;
229         tlb->batch_count = 0;
230
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232         tlb->batch = NULL;
233 #endif
234
235         __tlb_reset_range(tlb);
236 }
237
238 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
239 {
240         if (!tlb->end)
241                 return;
242
243         tlb_flush(tlb);
244         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246         tlb_table_flush(tlb);
247 #endif
248         __tlb_reset_range(tlb);
249 }
250
251 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
252 {
253         struct mmu_gather_batch *batch;
254
255         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
256                 free_pages_and_swap_cache(batch->pages, batch->nr);
257                 batch->nr = 0;
258         }
259         tlb->active = &tlb->local;
260 }
261
262 void tlb_flush_mmu(struct mmu_gather *tlb)
263 {
264         tlb_flush_mmu_tlbonly(tlb);
265         tlb_flush_mmu_free(tlb);
266 }
267
268 /* tlb_finish_mmu
269  *      Called at the end of the shootdown operation to free up any resources
270  *      that were required.
271  */
272 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
273 {
274         struct mmu_gather_batch *batch, *next;
275
276         tlb_flush_mmu(tlb);
277
278         /* keep the page table cache within bounds */
279         check_pgt_cache();
280
281         for (batch = tlb->local.next; batch; batch = next) {
282                 next = batch->next;
283                 free_pages((unsigned long)batch, 0);
284         }
285         tlb->local.next = NULL;
286 }
287
288 /* __tlb_remove_page
289  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
290  *      handling the additional races in SMP caused by other CPUs caching valid
291  *      mappings in their TLBs. Returns the number of free page slots left.
292  *      When out of page slots we must call tlb_flush_mmu().
293  */
294 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
295 {
296         struct mmu_gather_batch *batch;
297
298         VM_BUG_ON(!tlb->end);
299
300         batch = tlb->active;
301         batch->pages[batch->nr++] = page;
302         if (batch->nr == batch->max) {
303                 if (!tlb_next_batch(tlb))
304                         return 0;
305                 batch = tlb->active;
306         }
307         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
308
309         return batch->max - batch->nr;
310 }
311
312 #endif /* HAVE_GENERIC_MMU_GATHER */
313
314 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
315
316 /*
317  * See the comment near struct mmu_table_batch.
318  */
319
320 static void tlb_remove_table_smp_sync(void *arg)
321 {
322         /* Simply deliver the interrupt */
323 }
324
325 static void tlb_remove_table_one(void *table)
326 {
327         /*
328          * This isn't an RCU grace period and hence the page-tables cannot be
329          * assumed to be actually RCU-freed.
330          *
331          * It is however sufficient for software page-table walkers that rely on
332          * IRQ disabling. See the comment near struct mmu_table_batch.
333          */
334         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
335         __tlb_remove_table(table);
336 }
337
338 static void tlb_remove_table_rcu(struct rcu_head *head)
339 {
340         struct mmu_table_batch *batch;
341         int i;
342
343         batch = container_of(head, struct mmu_table_batch, rcu);
344
345         for (i = 0; i < batch->nr; i++)
346                 __tlb_remove_table(batch->tables[i]);
347
348         free_page((unsigned long)batch);
349 }
350
351 void tlb_table_flush(struct mmu_gather *tlb)
352 {
353         struct mmu_table_batch **batch = &tlb->batch;
354
355         if (*batch) {
356                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
357                 *batch = NULL;
358         }
359 }
360
361 void tlb_remove_table(struct mmu_gather *tlb, void *table)
362 {
363         struct mmu_table_batch **batch = &tlb->batch;
364
365         /*
366          * When there's less then two users of this mm there cannot be a
367          * concurrent page-table walk.
368          */
369         if (atomic_read(&tlb->mm->mm_users) < 2) {
370                 __tlb_remove_table(table);
371                 return;
372         }
373
374         if (*batch == NULL) {
375                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
376                 if (*batch == NULL) {
377                         tlb_remove_table_one(table);
378                         return;
379                 }
380                 (*batch)->nr = 0;
381         }
382         (*batch)->tables[(*batch)->nr++] = table;
383         if ((*batch)->nr == MAX_TABLE_BATCH)
384                 tlb_table_flush(tlb);
385 }
386
387 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
388
389 /*
390  * Note: this doesn't free the actual pages themselves. That
391  * has been handled earlier when unmapping all the memory regions.
392  */
393 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
394                            unsigned long addr)
395 {
396         pgtable_t token = pmd_pgtable(*pmd);
397         pmd_clear(pmd);
398         pte_free_tlb(tlb, token, addr);
399         atomic_long_dec(&tlb->mm->nr_ptes);
400 }
401
402 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
403                                 unsigned long addr, unsigned long end,
404                                 unsigned long floor, unsigned long ceiling)
405 {
406         pmd_t *pmd;
407         unsigned long next;
408         unsigned long start;
409
410         start = addr;
411         pmd = pmd_offset(pud, addr);
412         do {
413                 next = pmd_addr_end(addr, end);
414                 if (pmd_none_or_clear_bad(pmd))
415                         continue;
416                 free_pte_range(tlb, pmd, addr);
417         } while (pmd++, addr = next, addr != end);
418
419         start &= PUD_MASK;
420         if (start < floor)
421                 return;
422         if (ceiling) {
423                 ceiling &= PUD_MASK;
424                 if (!ceiling)
425                         return;
426         }
427         if (end - 1 > ceiling - 1)
428                 return;
429
430         pmd = pmd_offset(pud, start);
431         pud_clear(pud);
432         pmd_free_tlb(tlb, pmd, start);
433         mm_dec_nr_pmds(tlb->mm);
434 }
435
436 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
437                                 unsigned long addr, unsigned long end,
438                                 unsigned long floor, unsigned long ceiling)
439 {
440         pud_t *pud;
441         unsigned long next;
442         unsigned long start;
443
444         start = addr;
445         pud = pud_offset(pgd, addr);
446         do {
447                 next = pud_addr_end(addr, end);
448                 if (pud_none_or_clear_bad(pud))
449                         continue;
450                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
451         } while (pud++, addr = next, addr != end);
452
453         start &= PGDIR_MASK;
454         if (start < floor)
455                 return;
456         if (ceiling) {
457                 ceiling &= PGDIR_MASK;
458                 if (!ceiling)
459                         return;
460         }
461         if (end - 1 > ceiling - 1)
462                 return;
463
464         pud = pud_offset(pgd, start);
465         pgd_clear(pgd);
466         pud_free_tlb(tlb, pud, start);
467 }
468
469 /*
470  * This function frees user-level page tables of a process.
471  */
472 void free_pgd_range(struct mmu_gather *tlb,
473                         unsigned long addr, unsigned long end,
474                         unsigned long floor, unsigned long ceiling)
475 {
476         pgd_t *pgd;
477         unsigned long next;
478
479         /*
480          * The next few lines have given us lots of grief...
481          *
482          * Why are we testing PMD* at this top level?  Because often
483          * there will be no work to do at all, and we'd prefer not to
484          * go all the way down to the bottom just to discover that.
485          *
486          * Why all these "- 1"s?  Because 0 represents both the bottom
487          * of the address space and the top of it (using -1 for the
488          * top wouldn't help much: the masks would do the wrong thing).
489          * The rule is that addr 0 and floor 0 refer to the bottom of
490          * the address space, but end 0 and ceiling 0 refer to the top
491          * Comparisons need to use "end - 1" and "ceiling - 1" (though
492          * that end 0 case should be mythical).
493          *
494          * Wherever addr is brought up or ceiling brought down, we must
495          * be careful to reject "the opposite 0" before it confuses the
496          * subsequent tests.  But what about where end is brought down
497          * by PMD_SIZE below? no, end can't go down to 0 there.
498          *
499          * Whereas we round start (addr) and ceiling down, by different
500          * masks at different levels, in order to test whether a table
501          * now has no other vmas using it, so can be freed, we don't
502          * bother to round floor or end up - the tests don't need that.
503          */
504
505         addr &= PMD_MASK;
506         if (addr < floor) {
507                 addr += PMD_SIZE;
508                 if (!addr)
509                         return;
510         }
511         if (ceiling) {
512                 ceiling &= PMD_MASK;
513                 if (!ceiling)
514                         return;
515         }
516         if (end - 1 > ceiling - 1)
517                 end -= PMD_SIZE;
518         if (addr > end - 1)
519                 return;
520
521         pgd = pgd_offset(tlb->mm, addr);
522         do {
523                 next = pgd_addr_end(addr, end);
524                 if (pgd_none_or_clear_bad(pgd))
525                         continue;
526                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
527         } while (pgd++, addr = next, addr != end);
528 }
529
530 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
531                 unsigned long floor, unsigned long ceiling)
532 {
533         while (vma) {
534                 struct vm_area_struct *next = vma->vm_next;
535                 unsigned long addr = vma->vm_start;
536
537                 /*
538                  * Hide vma from rmap and truncate_pagecache before freeing
539                  * pgtables
540                  */
541                 unlink_anon_vmas(vma);
542                 unlink_file_vma(vma);
543
544                 if (is_vm_hugetlb_page(vma)) {
545                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
546                                 floor, next? next->vm_start: ceiling);
547                 } else {
548                         /*
549                          * Optimization: gather nearby vmas into one call down
550                          */
551                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
552                                && !is_vm_hugetlb_page(next)) {
553                                 vma = next;
554                                 next = vma->vm_next;
555                                 unlink_anon_vmas(vma);
556                                 unlink_file_vma(vma);
557                         }
558                         free_pgd_range(tlb, addr, vma->vm_end,
559                                 floor, next? next->vm_start: ceiling);
560                 }
561                 vma = next;
562         }
563 }
564
565 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
566                 pmd_t *pmd, unsigned long address)
567 {
568         spinlock_t *ptl;
569         pgtable_t new = pte_alloc_one(mm, address);
570         if (!new)
571                 return -ENOMEM;
572
573         /*
574          * Ensure all pte setup (eg. pte page lock and page clearing) are
575          * visible before the pte is made visible to other CPUs by being
576          * put into page tables.
577          *
578          * The other side of the story is the pointer chasing in the page
579          * table walking code (when walking the page table without locking;
580          * ie. most of the time). Fortunately, these data accesses consist
581          * of a chain of data-dependent loads, meaning most CPUs (alpha
582          * being the notable exception) will already guarantee loads are
583          * seen in-order. See the alpha page table accessors for the
584          * smp_read_barrier_depends() barriers in page table walking code.
585          */
586         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
588         ptl = pmd_lock(mm, pmd);
589         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
590                 atomic_long_inc(&mm->nr_ptes);
591                 pmd_populate(mm, pmd, new);
592                 new = NULL;
593         }
594         spin_unlock(ptl);
595         if (new)
596                 pte_free(mm, new);
597         return 0;
598 }
599
600 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
601 {
602         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
603         if (!new)
604                 return -ENOMEM;
605
606         smp_wmb(); /* See comment in __pte_alloc */
607
608         spin_lock(&init_mm.page_table_lock);
609         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
610                 pmd_populate_kernel(&init_mm, pmd, new);
611                 new = NULL;
612         }
613         spin_unlock(&init_mm.page_table_lock);
614         if (new)
615                 pte_free_kernel(&init_mm, new);
616         return 0;
617 }
618
619 static inline void init_rss_vec(int *rss)
620 {
621         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
622 }
623
624 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
625 {
626         int i;
627
628         if (current->mm == mm)
629                 sync_mm_rss(mm);
630         for (i = 0; i < NR_MM_COUNTERS; i++)
631                 if (rss[i])
632                         add_mm_counter(mm, i, rss[i]);
633 }
634
635 /*
636  * This function is called to print an error when a bad pte
637  * is found. For example, we might have a PFN-mapped pte in
638  * a region that doesn't allow it.
639  *
640  * The calling function must still handle the error.
641  */
642 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
643                           pte_t pte, struct page *page)
644 {
645         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
646         pud_t *pud = pud_offset(pgd, addr);
647         pmd_t *pmd = pmd_offset(pud, addr);
648         struct address_space *mapping;
649         pgoff_t index;
650         static unsigned long resume;
651         static unsigned long nr_shown;
652         static unsigned long nr_unshown;
653
654         /*
655          * Allow a burst of 60 reports, then keep quiet for that minute;
656          * or allow a steady drip of one report per second.
657          */
658         if (nr_shown == 60) {
659                 if (time_before(jiffies, resume)) {
660                         nr_unshown++;
661                         return;
662                 }
663                 if (nr_unshown) {
664                         printk(KERN_ALERT
665                                 "BUG: Bad page map: %lu messages suppressed\n",
666                                 nr_unshown);
667                         nr_unshown = 0;
668                 }
669                 nr_shown = 0;
670         }
671         if (nr_shown++ == 0)
672                 resume = jiffies + 60 * HZ;
673
674         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
675         index = linear_page_index(vma, addr);
676
677         printk(KERN_ALERT
678                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
679                 current->comm,
680                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
681         if (page)
682                 dump_page(page, "bad pte");
683         printk(KERN_ALERT
684                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
685                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
686         /*
687          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
688          */
689         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
690                  vma->vm_file,
691                  vma->vm_ops ? vma->vm_ops->fault : NULL,
692                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
693                  mapping ? mapping->a_ops->readpage : NULL);
694         dump_stack();
695         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
696 }
697
698 /*
699  * vm_normal_page -- This function gets the "struct page" associated with a pte.
700  *
701  * "Special" mappings do not wish to be associated with a "struct page" (either
702  * it doesn't exist, or it exists but they don't want to touch it). In this
703  * case, NULL is returned here. "Normal" mappings do have a struct page.
704  *
705  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
706  * pte bit, in which case this function is trivial. Secondly, an architecture
707  * may not have a spare pte bit, which requires a more complicated scheme,
708  * described below.
709  *
710  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
711  * special mapping (even if there are underlying and valid "struct pages").
712  * COWed pages of a VM_PFNMAP are always normal.
713  *
714  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
715  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
716  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
717  * mapping will always honor the rule
718  *
719  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
720  *
721  * And for normal mappings this is false.
722  *
723  * This restricts such mappings to be a linear translation from virtual address
724  * to pfn. To get around this restriction, we allow arbitrary mappings so long
725  * as the vma is not a COW mapping; in that case, we know that all ptes are
726  * special (because none can have been COWed).
727  *
728  *
729  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
730  *
731  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
732  * page" backing, however the difference is that _all_ pages with a struct
733  * page (that is, those where pfn_valid is true) are refcounted and considered
734  * normal pages by the VM. The disadvantage is that pages are refcounted
735  * (which can be slower and simply not an option for some PFNMAP users). The
736  * advantage is that we don't have to follow the strict linearity rule of
737  * PFNMAP mappings in order to support COWable mappings.
738  *
739  */
740 #ifdef __HAVE_ARCH_PTE_SPECIAL
741 # define HAVE_PTE_SPECIAL 1
742 #else
743 # define HAVE_PTE_SPECIAL 0
744 #endif
745 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
746                                 pte_t pte)
747 {
748         unsigned long pfn = pte_pfn(pte);
749
750         if (HAVE_PTE_SPECIAL) {
751                 if (likely(!pte_special(pte)))
752                         goto check_pfn;
753                 if (vma->vm_ops && vma->vm_ops->find_special_page)
754                         return vma->vm_ops->find_special_page(vma, addr);
755                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
756                         return NULL;
757                 if (!is_zero_pfn(pfn))
758                         print_bad_pte(vma, addr, pte, NULL);
759                 return NULL;
760         }
761
762         /* !HAVE_PTE_SPECIAL case follows: */
763
764         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
765                 if (vma->vm_flags & VM_MIXEDMAP) {
766                         if (!pfn_valid(pfn))
767                                 return NULL;
768                         goto out;
769                 } else {
770                         unsigned long off;
771                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
772                         if (pfn == vma->vm_pgoff + off)
773                                 return NULL;
774                         if (!is_cow_mapping(vma->vm_flags))
775                                 return NULL;
776                 }
777         }
778
779         if (is_zero_pfn(pfn))
780                 return NULL;
781 check_pfn:
782         if (unlikely(pfn > highest_memmap_pfn)) {
783                 print_bad_pte(vma, addr, pte, NULL);
784                 return NULL;
785         }
786
787         /*
788          * NOTE! We still have PageReserved() pages in the page tables.
789          * eg. VDSO mappings can cause them to exist.
790          */
791 out:
792         return pfn_to_page(pfn);
793 }
794
795 /*
796  * copy one vm_area from one task to the other. Assumes the page tables
797  * already present in the new task to be cleared in the whole range
798  * covered by this vma.
799  */
800
801 static inline unsigned long
802 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
803                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
804                 unsigned long addr, int *rss)
805 {
806         unsigned long vm_flags = vma->vm_flags;
807         pte_t pte = *src_pte;
808         struct page *page;
809
810         /* pte contains position in swap or file, so copy. */
811         if (unlikely(!pte_present(pte))) {
812                 swp_entry_t entry = pte_to_swp_entry(pte);
813
814                 if (likely(!non_swap_entry(entry))) {
815                         if (swap_duplicate(entry) < 0)
816                                 return entry.val;
817
818                         /* make sure dst_mm is on swapoff's mmlist. */
819                         if (unlikely(list_empty(&dst_mm->mmlist))) {
820                                 spin_lock(&mmlist_lock);
821                                 if (list_empty(&dst_mm->mmlist))
822                                         list_add(&dst_mm->mmlist,
823                                                         &src_mm->mmlist);
824                                 spin_unlock(&mmlist_lock);
825                         }
826                         rss[MM_SWAPENTS]++;
827                 } else if (is_migration_entry(entry)) {
828                         page = migration_entry_to_page(entry);
829
830                         rss[mm_counter(page)]++;
831
832                         if (is_write_migration_entry(entry) &&
833                                         is_cow_mapping(vm_flags)) {
834                                 /*
835                                  * COW mappings require pages in both
836                                  * parent and child to be set to read.
837                                  */
838                                 make_migration_entry_read(&entry);
839                                 pte = swp_entry_to_pte(entry);
840                                 if (pte_swp_soft_dirty(*src_pte))
841                                         pte = pte_swp_mksoft_dirty(pte);
842                                 set_pte_at(src_mm, addr, src_pte, pte);
843                         }
844                 }
845                 goto out_set_pte;
846         }
847
848         /*
849          * If it's a COW mapping, write protect it both
850          * in the parent and the child
851          */
852         if (is_cow_mapping(vm_flags)) {
853                 ptep_set_wrprotect(src_mm, addr, src_pte);
854                 pte = pte_wrprotect(pte);
855         }
856
857         /*
858          * If it's a shared mapping, mark it clean in
859          * the child
860          */
861         if (vm_flags & VM_SHARED)
862                 pte = pte_mkclean(pte);
863         pte = pte_mkold(pte);
864
865         page = vm_normal_page(vma, addr, pte);
866         if (page) {
867                 get_page(page);
868                 page_dup_rmap(page, false);
869                 rss[mm_counter(page)]++;
870         }
871
872 out_set_pte:
873         set_pte_at(dst_mm, addr, dst_pte, pte);
874         return 0;
875 }
876
877 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
878                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
879                    unsigned long addr, unsigned long end)
880 {
881         pte_t *orig_src_pte, *orig_dst_pte;
882         pte_t *src_pte, *dst_pte;
883         spinlock_t *src_ptl, *dst_ptl;
884         int progress = 0;
885         int rss[NR_MM_COUNTERS];
886         swp_entry_t entry = (swp_entry_t){0};
887
888 again:
889         init_rss_vec(rss);
890
891         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
892         if (!dst_pte)
893                 return -ENOMEM;
894         src_pte = pte_offset_map(src_pmd, addr);
895         src_ptl = pte_lockptr(src_mm, src_pmd);
896         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
897         orig_src_pte = src_pte;
898         orig_dst_pte = dst_pte;
899         arch_enter_lazy_mmu_mode();
900
901         do {
902                 /*
903                  * We are holding two locks at this point - either of them
904                  * could generate latencies in another task on another CPU.
905                  */
906                 if (progress >= 32) {
907                         progress = 0;
908                         if (need_resched() ||
909                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
910                                 break;
911                 }
912                 if (pte_none(*src_pte)) {
913                         progress++;
914                         continue;
915                 }
916                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
917                                                         vma, addr, rss);
918                 if (entry.val)
919                         break;
920                 progress += 8;
921         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
922
923         arch_leave_lazy_mmu_mode();
924         spin_unlock(src_ptl);
925         pte_unmap(orig_src_pte);
926         add_mm_rss_vec(dst_mm, rss);
927         pte_unmap_unlock(orig_dst_pte, dst_ptl);
928         cond_resched();
929
930         if (entry.val) {
931                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
932                         return -ENOMEM;
933                 progress = 0;
934         }
935         if (addr != end)
936                 goto again;
937         return 0;
938 }
939
940 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
941                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
942                 unsigned long addr, unsigned long end)
943 {
944         pmd_t *src_pmd, *dst_pmd;
945         unsigned long next;
946
947         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
948         if (!dst_pmd)
949                 return -ENOMEM;
950         src_pmd = pmd_offset(src_pud, addr);
951         do {
952                 next = pmd_addr_end(addr, end);
953                 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
954                         int err;
955                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
956                         err = copy_huge_pmd(dst_mm, src_mm,
957                                             dst_pmd, src_pmd, addr, vma);
958                         if (err == -ENOMEM)
959                                 return -ENOMEM;
960                         if (!err)
961                                 continue;
962                         /* fall through */
963                 }
964                 if (pmd_none_or_clear_bad(src_pmd))
965                         continue;
966                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
967                                                 vma, addr, next))
968                         return -ENOMEM;
969         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
970         return 0;
971 }
972
973 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
974                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
975                 unsigned long addr, unsigned long end)
976 {
977         pud_t *src_pud, *dst_pud;
978         unsigned long next;
979
980         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
981         if (!dst_pud)
982                 return -ENOMEM;
983         src_pud = pud_offset(src_pgd, addr);
984         do {
985                 next = pud_addr_end(addr, end);
986                 if (pud_none_or_clear_bad(src_pud))
987                         continue;
988                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
989                                                 vma, addr, next))
990                         return -ENOMEM;
991         } while (dst_pud++, src_pud++, addr = next, addr != end);
992         return 0;
993 }
994
995 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
996                 struct vm_area_struct *vma)
997 {
998         pgd_t *src_pgd, *dst_pgd;
999         unsigned long next;
1000         unsigned long addr = vma->vm_start;
1001         unsigned long end = vma->vm_end;
1002         unsigned long mmun_start;       /* For mmu_notifiers */
1003         unsigned long mmun_end;         /* For mmu_notifiers */
1004         bool is_cow;
1005         int ret;
1006
1007         /*
1008          * Don't copy ptes where a page fault will fill them correctly.
1009          * Fork becomes much lighter when there are big shared or private
1010          * readonly mappings. The tradeoff is that copy_page_range is more
1011          * efficient than faulting.
1012          */
1013         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1014                         !vma->anon_vma)
1015                 return 0;
1016
1017         if (is_vm_hugetlb_page(vma))
1018                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1019
1020         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1021                 /*
1022                  * We do not free on error cases below as remove_vma
1023                  * gets called on error from higher level routine
1024                  */
1025                 ret = track_pfn_copy(vma);
1026                 if (ret)
1027                         return ret;
1028         }
1029
1030         /*
1031          * We need to invalidate the secondary MMU mappings only when
1032          * there could be a permission downgrade on the ptes of the
1033          * parent mm. And a permission downgrade will only happen if
1034          * is_cow_mapping() returns true.
1035          */
1036         is_cow = is_cow_mapping(vma->vm_flags);
1037         mmun_start = addr;
1038         mmun_end   = end;
1039         if (is_cow)
1040                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1041                                                     mmun_end);
1042
1043         ret = 0;
1044         dst_pgd = pgd_offset(dst_mm, addr);
1045         src_pgd = pgd_offset(src_mm, addr);
1046         do {
1047                 next = pgd_addr_end(addr, end);
1048                 if (pgd_none_or_clear_bad(src_pgd))
1049                         continue;
1050                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1051                                             vma, addr, next))) {
1052                         ret = -ENOMEM;
1053                         break;
1054                 }
1055         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1056
1057         if (is_cow)
1058                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1059         return ret;
1060 }
1061
1062 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1063                                 struct vm_area_struct *vma, pmd_t *pmd,
1064                                 unsigned long addr, unsigned long end,
1065                                 struct zap_details *details)
1066 {
1067         struct mm_struct *mm = tlb->mm;
1068         int force_flush = 0;
1069         int rss[NR_MM_COUNTERS];
1070         spinlock_t *ptl;
1071         pte_t *start_pte;
1072         pte_t *pte;
1073         swp_entry_t entry;
1074
1075 again:
1076         init_rss_vec(rss);
1077         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1078         pte = start_pte;
1079         arch_enter_lazy_mmu_mode();
1080         do {
1081                 pte_t ptent = *pte;
1082                 if (pte_none(ptent)) {
1083                         continue;
1084                 }
1085
1086                 if (pte_present(ptent)) {
1087                         struct page *page;
1088
1089                         page = vm_normal_page(vma, addr, ptent);
1090                         if (unlikely(details) && page) {
1091                                 /*
1092                                  * unmap_shared_mapping_pages() wants to
1093                                  * invalidate cache without truncating:
1094                                  * unmap shared but keep private pages.
1095                                  */
1096                                 if (details->check_mapping &&
1097                                     details->check_mapping != page->mapping)
1098                                         continue;
1099                         }
1100                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1101                                                         tlb->fullmm);
1102                         tlb_remove_tlb_entry(tlb, pte, addr);
1103                         if (unlikely(!page))
1104                                 continue;
1105
1106                         if (!PageAnon(page)) {
1107                                 if (pte_dirty(ptent)) {
1108                                         force_flush = 1;
1109                                         set_page_dirty(page);
1110                                 }
1111                                 if (pte_young(ptent) &&
1112                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1113                                         mark_page_accessed(page);
1114                         }
1115                         rss[mm_counter(page)]--;
1116                         page_remove_rmap(page, false);
1117                         if (unlikely(page_mapcount(page) < 0))
1118                                 print_bad_pte(vma, addr, ptent, page);
1119                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1120                                 force_flush = 1;
1121                                 addr += PAGE_SIZE;
1122                                 break;
1123                         }
1124                         continue;
1125                 }
1126                 /* If details->check_mapping, we leave swap entries. */
1127                 if (unlikely(details))
1128                         continue;
1129
1130                 entry = pte_to_swp_entry(ptent);
1131                 if (!non_swap_entry(entry))
1132                         rss[MM_SWAPENTS]--;
1133                 else if (is_migration_entry(entry)) {
1134                         struct page *page;
1135
1136                         page = migration_entry_to_page(entry);
1137                         rss[mm_counter(page)]--;
1138                 }
1139                 if (unlikely(!free_swap_and_cache(entry)))
1140                         print_bad_pte(vma, addr, ptent, NULL);
1141                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1142         } while (pte++, addr += PAGE_SIZE, addr != end);
1143
1144         add_mm_rss_vec(mm, rss);
1145         arch_leave_lazy_mmu_mode();
1146
1147         /* Do the actual TLB flush before dropping ptl */
1148         if (force_flush)
1149                 tlb_flush_mmu_tlbonly(tlb);
1150         pte_unmap_unlock(start_pte, ptl);
1151
1152         /*
1153          * If we forced a TLB flush (either due to running out of
1154          * batch buffers or because we needed to flush dirty TLB
1155          * entries before releasing the ptl), free the batched
1156          * memory too. Restart if we didn't do everything.
1157          */
1158         if (force_flush) {
1159                 force_flush = 0;
1160                 tlb_flush_mmu_free(tlb);
1161
1162                 if (addr != end)
1163                         goto again;
1164         }
1165
1166         return addr;
1167 }
1168
1169 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1170                                 struct vm_area_struct *vma, pud_t *pud,
1171                                 unsigned long addr, unsigned long end,
1172                                 struct zap_details *details)
1173 {
1174         pmd_t *pmd;
1175         unsigned long next;
1176
1177         pmd = pmd_offset(pud, addr);
1178         do {
1179                 next = pmd_addr_end(addr, end);
1180                 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1181                         if (next - addr != HPAGE_PMD_SIZE) {
1182 #ifdef CONFIG_DEBUG_VM
1183                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1184                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1185                                                 __func__, addr, end,
1186                                                 vma->vm_start,
1187                                                 vma->vm_end);
1188                                         BUG();
1189                                 }
1190 #endif
1191                                 split_huge_pmd(vma, pmd, addr);
1192                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1193                                 goto next;
1194                         /* fall through */
1195                 }
1196                 /*
1197                  * Here there can be other concurrent MADV_DONTNEED or
1198                  * trans huge page faults running, and if the pmd is
1199                  * none or trans huge it can change under us. This is
1200                  * because MADV_DONTNEED holds the mmap_sem in read
1201                  * mode.
1202                  */
1203                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1204                         goto next;
1205                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1206 next:
1207                 cond_resched();
1208         } while (pmd++, addr = next, addr != end);
1209
1210         return addr;
1211 }
1212
1213 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1214                                 struct vm_area_struct *vma, pgd_t *pgd,
1215                                 unsigned long addr, unsigned long end,
1216                                 struct zap_details *details)
1217 {
1218         pud_t *pud;
1219         unsigned long next;
1220
1221         pud = pud_offset(pgd, addr);
1222         do {
1223                 next = pud_addr_end(addr, end);
1224                 if (pud_none_or_clear_bad(pud))
1225                         continue;
1226                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1227         } while (pud++, addr = next, addr != end);
1228
1229         return addr;
1230 }
1231
1232 static void unmap_page_range(struct mmu_gather *tlb,
1233                              struct vm_area_struct *vma,
1234                              unsigned long addr, unsigned long end,
1235                              struct zap_details *details)
1236 {
1237         pgd_t *pgd;
1238         unsigned long next;
1239
1240         if (details && !details->check_mapping)
1241                 details = NULL;
1242
1243         BUG_ON(addr >= end);
1244         tlb_start_vma(tlb, vma);
1245         pgd = pgd_offset(vma->vm_mm, addr);
1246         do {
1247                 next = pgd_addr_end(addr, end);
1248                 if (pgd_none_or_clear_bad(pgd))
1249                         continue;
1250                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1251         } while (pgd++, addr = next, addr != end);
1252         tlb_end_vma(tlb, vma);
1253 }
1254
1255
1256 static void unmap_single_vma(struct mmu_gather *tlb,
1257                 struct vm_area_struct *vma, unsigned long start_addr,
1258                 unsigned long end_addr,
1259                 struct zap_details *details)
1260 {
1261         unsigned long start = max(vma->vm_start, start_addr);
1262         unsigned long end;
1263
1264         if (start >= vma->vm_end)
1265                 return;
1266         end = min(vma->vm_end, end_addr);
1267         if (end <= vma->vm_start)
1268                 return;
1269
1270         if (vma->vm_file)
1271                 uprobe_munmap(vma, start, end);
1272
1273         if (unlikely(vma->vm_flags & VM_PFNMAP))
1274                 untrack_pfn(vma, 0, 0);
1275
1276         if (start != end) {
1277                 if (unlikely(is_vm_hugetlb_page(vma))) {
1278                         /*
1279                          * It is undesirable to test vma->vm_file as it
1280                          * should be non-null for valid hugetlb area.
1281                          * However, vm_file will be NULL in the error
1282                          * cleanup path of mmap_region. When
1283                          * hugetlbfs ->mmap method fails,
1284                          * mmap_region() nullifies vma->vm_file
1285                          * before calling this function to clean up.
1286                          * Since no pte has actually been setup, it is
1287                          * safe to do nothing in this case.
1288                          */
1289                         if (vma->vm_file) {
1290                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1291                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1292                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1293                         }
1294                 } else
1295                         unmap_page_range(tlb, vma, start, end, details);
1296         }
1297 }
1298
1299 /**
1300  * unmap_vmas - unmap a range of memory covered by a list of vma's
1301  * @tlb: address of the caller's struct mmu_gather
1302  * @vma: the starting vma
1303  * @start_addr: virtual address at which to start unmapping
1304  * @end_addr: virtual address at which to end unmapping
1305  *
1306  * Unmap all pages in the vma list.
1307  *
1308  * Only addresses between `start' and `end' will be unmapped.
1309  *
1310  * The VMA list must be sorted in ascending virtual address order.
1311  *
1312  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1313  * range after unmap_vmas() returns.  So the only responsibility here is to
1314  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1315  * drops the lock and schedules.
1316  */
1317 void unmap_vmas(struct mmu_gather *tlb,
1318                 struct vm_area_struct *vma, unsigned long start_addr,
1319                 unsigned long end_addr)
1320 {
1321         struct mm_struct *mm = vma->vm_mm;
1322
1323         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1324         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1325                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1326         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1327 }
1328
1329 /**
1330  * zap_page_range - remove user pages in a given range
1331  * @vma: vm_area_struct holding the applicable pages
1332  * @start: starting address of pages to zap
1333  * @size: number of bytes to zap
1334  * @details: details of shared cache invalidation
1335  *
1336  * Caller must protect the VMA list
1337  */
1338 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1339                 unsigned long size, struct zap_details *details)
1340 {
1341         struct mm_struct *mm = vma->vm_mm;
1342         struct mmu_gather tlb;
1343         unsigned long end = start + size;
1344
1345         lru_add_drain();
1346         tlb_gather_mmu(&tlb, mm, start, end);
1347         update_hiwater_rss(mm);
1348         mmu_notifier_invalidate_range_start(mm, start, end);
1349         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1350                 unmap_single_vma(&tlb, vma, start, end, details);
1351         mmu_notifier_invalidate_range_end(mm, start, end);
1352         tlb_finish_mmu(&tlb, start, end);
1353 }
1354
1355 /**
1356  * zap_page_range_single - remove user pages in a given range
1357  * @vma: vm_area_struct holding the applicable pages
1358  * @address: starting address of pages to zap
1359  * @size: number of bytes to zap
1360  * @details: details of shared cache invalidation
1361  *
1362  * The range must fit into one VMA.
1363  */
1364 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1365                 unsigned long size, struct zap_details *details)
1366 {
1367         struct mm_struct *mm = vma->vm_mm;
1368         struct mmu_gather tlb;
1369         unsigned long end = address + size;
1370
1371         lru_add_drain();
1372         tlb_gather_mmu(&tlb, mm, address, end);
1373         update_hiwater_rss(mm);
1374         mmu_notifier_invalidate_range_start(mm, address, end);
1375         unmap_single_vma(&tlb, vma, address, end, details);
1376         mmu_notifier_invalidate_range_end(mm, address, end);
1377         tlb_finish_mmu(&tlb, address, end);
1378 }
1379
1380 /**
1381  * zap_vma_ptes - remove ptes mapping the vma
1382  * @vma: vm_area_struct holding ptes to be zapped
1383  * @address: starting address of pages to zap
1384  * @size: number of bytes to zap
1385  *
1386  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1387  *
1388  * The entire address range must be fully contained within the vma.
1389  *
1390  * Returns 0 if successful.
1391  */
1392 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1393                 unsigned long size)
1394 {
1395         if (address < vma->vm_start || address + size > vma->vm_end ||
1396                         !(vma->vm_flags & VM_PFNMAP))
1397                 return -1;
1398         zap_page_range_single(vma, address, size, NULL);
1399         return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1402
1403 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1404                         spinlock_t **ptl)
1405 {
1406         pgd_t * pgd = pgd_offset(mm, addr);
1407         pud_t * pud = pud_alloc(mm, pgd, addr);
1408         if (pud) {
1409                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1410                 if (pmd) {
1411                         VM_BUG_ON(pmd_trans_huge(*pmd));
1412                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1413                 }
1414         }
1415         return NULL;
1416 }
1417
1418 /*
1419  * This is the old fallback for page remapping.
1420  *
1421  * For historical reasons, it only allows reserved pages. Only
1422  * old drivers should use this, and they needed to mark their
1423  * pages reserved for the old functions anyway.
1424  */
1425 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1426                         struct page *page, pgprot_t prot)
1427 {
1428         struct mm_struct *mm = vma->vm_mm;
1429         int retval;
1430         pte_t *pte;
1431         spinlock_t *ptl;
1432
1433         retval = -EINVAL;
1434         if (PageAnon(page))
1435                 goto out;
1436         retval = -ENOMEM;
1437         flush_dcache_page(page);
1438         pte = get_locked_pte(mm, addr, &ptl);
1439         if (!pte)
1440                 goto out;
1441         retval = -EBUSY;
1442         if (!pte_none(*pte))
1443                 goto out_unlock;
1444
1445         /* Ok, finally just insert the thing.. */
1446         get_page(page);
1447         inc_mm_counter_fast(mm, mm_counter_file(page));
1448         page_add_file_rmap(page);
1449         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1450
1451         retval = 0;
1452         pte_unmap_unlock(pte, ptl);
1453         return retval;
1454 out_unlock:
1455         pte_unmap_unlock(pte, ptl);
1456 out:
1457         return retval;
1458 }
1459
1460 /**
1461  * vm_insert_page - insert single page into user vma
1462  * @vma: user vma to map to
1463  * @addr: target user address of this page
1464  * @page: source kernel page
1465  *
1466  * This allows drivers to insert individual pages they've allocated
1467  * into a user vma.
1468  *
1469  * The page has to be a nice clean _individual_ kernel allocation.
1470  * If you allocate a compound page, you need to have marked it as
1471  * such (__GFP_COMP), or manually just split the page up yourself
1472  * (see split_page()).
1473  *
1474  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1475  * took an arbitrary page protection parameter. This doesn't allow
1476  * that. Your vma protection will have to be set up correctly, which
1477  * means that if you want a shared writable mapping, you'd better
1478  * ask for a shared writable mapping!
1479  *
1480  * The page does not need to be reserved.
1481  *
1482  * Usually this function is called from f_op->mmap() handler
1483  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1484  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1485  * function from other places, for example from page-fault handler.
1486  */
1487 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1488                         struct page *page)
1489 {
1490         if (addr < vma->vm_start || addr >= vma->vm_end)
1491                 return -EFAULT;
1492         if (!page_count(page))
1493                 return -EINVAL;
1494         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1495                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1496                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1497                 vma->vm_flags |= VM_MIXEDMAP;
1498         }
1499         return insert_page(vma, addr, page, vma->vm_page_prot);
1500 }
1501 EXPORT_SYMBOL(vm_insert_page);
1502
1503 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1504                         pfn_t pfn, pgprot_t prot)
1505 {
1506         struct mm_struct *mm = vma->vm_mm;
1507         int retval;
1508         pte_t *pte, entry;
1509         spinlock_t *ptl;
1510
1511         retval = -ENOMEM;
1512         pte = get_locked_pte(mm, addr, &ptl);
1513         if (!pte)
1514                 goto out;
1515         retval = -EBUSY;
1516         if (!pte_none(*pte))
1517                 goto out_unlock;
1518
1519         /* Ok, finally just insert the thing.. */
1520         if (pfn_t_devmap(pfn))
1521                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1522         else
1523                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1524         set_pte_at(mm, addr, pte, entry);
1525         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1526
1527         retval = 0;
1528 out_unlock:
1529         pte_unmap_unlock(pte, ptl);
1530 out:
1531         return retval;
1532 }
1533
1534 /**
1535  * vm_insert_pfn - insert single pfn into user vma
1536  * @vma: user vma to map to
1537  * @addr: target user address of this page
1538  * @pfn: source kernel pfn
1539  *
1540  * Similar to vm_insert_page, this allows drivers to insert individual pages
1541  * they've allocated into a user vma. Same comments apply.
1542  *
1543  * This function should only be called from a vm_ops->fault handler, and
1544  * in that case the handler should return NULL.
1545  *
1546  * vma cannot be a COW mapping.
1547  *
1548  * As this is called only for pages that do not currently exist, we
1549  * do not need to flush old virtual caches or the TLB.
1550  */
1551 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1552                         unsigned long pfn)
1553 {
1554         int ret;
1555         pgprot_t pgprot = vma->vm_page_prot;
1556         /*
1557          * Technically, architectures with pte_special can avoid all these
1558          * restrictions (same for remap_pfn_range).  However we would like
1559          * consistency in testing and feature parity among all, so we should
1560          * try to keep these invariants in place for everybody.
1561          */
1562         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1563         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1564                                                 (VM_PFNMAP|VM_MIXEDMAP));
1565         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1566         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1567
1568         if (addr < vma->vm_start || addr >= vma->vm_end)
1569                 return -EFAULT;
1570         if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1571                 return -EINVAL;
1572
1573         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1574
1575         return ret;
1576 }
1577 EXPORT_SYMBOL(vm_insert_pfn);
1578
1579 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1580                         pfn_t pfn)
1581 {
1582         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1583
1584         if (addr < vma->vm_start || addr >= vma->vm_end)
1585                 return -EFAULT;
1586
1587         /*
1588          * If we don't have pte special, then we have to use the pfn_valid()
1589          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1590          * refcount the page if pfn_valid is true (hence insert_page rather
1591          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1592          * without pte special, it would there be refcounted as a normal page.
1593          */
1594         if (!HAVE_PTE_SPECIAL && pfn_t_valid(pfn)) {
1595                 struct page *page;
1596
1597                 page = pfn_t_to_page(pfn);
1598                 return insert_page(vma, addr, page, vma->vm_page_prot);
1599         }
1600         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1601 }
1602 EXPORT_SYMBOL(vm_insert_mixed);
1603
1604 /*
1605  * maps a range of physical memory into the requested pages. the old
1606  * mappings are removed. any references to nonexistent pages results
1607  * in null mappings (currently treated as "copy-on-access")
1608  */
1609 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1610                         unsigned long addr, unsigned long end,
1611                         unsigned long pfn, pgprot_t prot)
1612 {
1613         pte_t *pte;
1614         spinlock_t *ptl;
1615
1616         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1617         if (!pte)
1618                 return -ENOMEM;
1619         arch_enter_lazy_mmu_mode();
1620         do {
1621                 BUG_ON(!pte_none(*pte));
1622                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1623                 pfn++;
1624         } while (pte++, addr += PAGE_SIZE, addr != end);
1625         arch_leave_lazy_mmu_mode();
1626         pte_unmap_unlock(pte - 1, ptl);
1627         return 0;
1628 }
1629
1630 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1631                         unsigned long addr, unsigned long end,
1632                         unsigned long pfn, pgprot_t prot)
1633 {
1634         pmd_t *pmd;
1635         unsigned long next;
1636
1637         pfn -= addr >> PAGE_SHIFT;
1638         pmd = pmd_alloc(mm, pud, addr);
1639         if (!pmd)
1640                 return -ENOMEM;
1641         VM_BUG_ON(pmd_trans_huge(*pmd));
1642         do {
1643                 next = pmd_addr_end(addr, end);
1644                 if (remap_pte_range(mm, pmd, addr, next,
1645                                 pfn + (addr >> PAGE_SHIFT), prot))
1646                         return -ENOMEM;
1647         } while (pmd++, addr = next, addr != end);
1648         return 0;
1649 }
1650
1651 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1652                         unsigned long addr, unsigned long end,
1653                         unsigned long pfn, pgprot_t prot)
1654 {
1655         pud_t *pud;
1656         unsigned long next;
1657
1658         pfn -= addr >> PAGE_SHIFT;
1659         pud = pud_alloc(mm, pgd, addr);
1660         if (!pud)
1661                 return -ENOMEM;
1662         do {
1663                 next = pud_addr_end(addr, end);
1664                 if (remap_pmd_range(mm, pud, addr, next,
1665                                 pfn + (addr >> PAGE_SHIFT), prot))
1666                         return -ENOMEM;
1667         } while (pud++, addr = next, addr != end);
1668         return 0;
1669 }
1670
1671 /**
1672  * remap_pfn_range - remap kernel memory to userspace
1673  * @vma: user vma to map to
1674  * @addr: target user address to start at
1675  * @pfn: physical address of kernel memory
1676  * @size: size of map area
1677  * @prot: page protection flags for this mapping
1678  *
1679  *  Note: this is only safe if the mm semaphore is held when called.
1680  */
1681 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1682                     unsigned long pfn, unsigned long size, pgprot_t prot)
1683 {
1684         pgd_t *pgd;
1685         unsigned long next;
1686         unsigned long end = addr + PAGE_ALIGN(size);
1687         struct mm_struct *mm = vma->vm_mm;
1688         int err;
1689
1690         /*
1691          * Physically remapped pages are special. Tell the
1692          * rest of the world about it:
1693          *   VM_IO tells people not to look at these pages
1694          *      (accesses can have side effects).
1695          *   VM_PFNMAP tells the core MM that the base pages are just
1696          *      raw PFN mappings, and do not have a "struct page" associated
1697          *      with them.
1698          *   VM_DONTEXPAND
1699          *      Disable vma merging and expanding with mremap().
1700          *   VM_DONTDUMP
1701          *      Omit vma from core dump, even when VM_IO turned off.
1702          *
1703          * There's a horrible special case to handle copy-on-write
1704          * behaviour that some programs depend on. We mark the "original"
1705          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1706          * See vm_normal_page() for details.
1707          */
1708         if (is_cow_mapping(vma->vm_flags)) {
1709                 if (addr != vma->vm_start || end != vma->vm_end)
1710                         return -EINVAL;
1711                 vma->vm_pgoff = pfn;
1712         }
1713
1714         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1715         if (err)
1716                 return -EINVAL;
1717
1718         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1719
1720         BUG_ON(addr >= end);
1721         pfn -= addr >> PAGE_SHIFT;
1722         pgd = pgd_offset(mm, addr);
1723         flush_cache_range(vma, addr, end);
1724         do {
1725                 next = pgd_addr_end(addr, end);
1726                 err = remap_pud_range(mm, pgd, addr, next,
1727                                 pfn + (addr >> PAGE_SHIFT), prot);
1728                 if (err)
1729                         break;
1730         } while (pgd++, addr = next, addr != end);
1731
1732         if (err)
1733                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1734
1735         return err;
1736 }
1737 EXPORT_SYMBOL(remap_pfn_range);
1738
1739 /**
1740  * vm_iomap_memory - remap memory to userspace
1741  * @vma: user vma to map to
1742  * @start: start of area
1743  * @len: size of area
1744  *
1745  * This is a simplified io_remap_pfn_range() for common driver use. The
1746  * driver just needs to give us the physical memory range to be mapped,
1747  * we'll figure out the rest from the vma information.
1748  *
1749  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1750  * whatever write-combining details or similar.
1751  */
1752 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1753 {
1754         unsigned long vm_len, pfn, pages;
1755
1756         /* Check that the physical memory area passed in looks valid */
1757         if (start + len < start)
1758                 return -EINVAL;
1759         /*
1760          * You *really* shouldn't map things that aren't page-aligned,
1761          * but we've historically allowed it because IO memory might
1762          * just have smaller alignment.
1763          */
1764         len += start & ~PAGE_MASK;
1765         pfn = start >> PAGE_SHIFT;
1766         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1767         if (pfn + pages < pfn)
1768                 return -EINVAL;
1769
1770         /* We start the mapping 'vm_pgoff' pages into the area */
1771         if (vma->vm_pgoff > pages)
1772                 return -EINVAL;
1773         pfn += vma->vm_pgoff;
1774         pages -= vma->vm_pgoff;
1775
1776         /* Can we fit all of the mapping? */
1777         vm_len = vma->vm_end - vma->vm_start;
1778         if (vm_len >> PAGE_SHIFT > pages)
1779                 return -EINVAL;
1780
1781         /* Ok, let it rip */
1782         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1783 }
1784 EXPORT_SYMBOL(vm_iomap_memory);
1785
1786 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1787                                      unsigned long addr, unsigned long end,
1788                                      pte_fn_t fn, void *data)
1789 {
1790         pte_t *pte;
1791         int err;
1792         pgtable_t token;
1793         spinlock_t *uninitialized_var(ptl);
1794
1795         pte = (mm == &init_mm) ?
1796                 pte_alloc_kernel(pmd, addr) :
1797                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1798         if (!pte)
1799                 return -ENOMEM;
1800
1801         BUG_ON(pmd_huge(*pmd));
1802
1803         arch_enter_lazy_mmu_mode();
1804
1805         token = pmd_pgtable(*pmd);
1806
1807         do {
1808                 err = fn(pte++, token, addr, data);
1809                 if (err)
1810                         break;
1811         } while (addr += PAGE_SIZE, addr != end);
1812
1813         arch_leave_lazy_mmu_mode();
1814
1815         if (mm != &init_mm)
1816                 pte_unmap_unlock(pte-1, ptl);
1817         return err;
1818 }
1819
1820 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1821                                      unsigned long addr, unsigned long end,
1822                                      pte_fn_t fn, void *data)
1823 {
1824         pmd_t *pmd;
1825         unsigned long next;
1826         int err;
1827
1828         BUG_ON(pud_huge(*pud));
1829
1830         pmd = pmd_alloc(mm, pud, addr);
1831         if (!pmd)
1832                 return -ENOMEM;
1833         do {
1834                 next = pmd_addr_end(addr, end);
1835                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1836                 if (err)
1837                         break;
1838         } while (pmd++, addr = next, addr != end);
1839         return err;
1840 }
1841
1842 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1843                                      unsigned long addr, unsigned long end,
1844                                      pte_fn_t fn, void *data)
1845 {
1846         pud_t *pud;
1847         unsigned long next;
1848         int err;
1849
1850         pud = pud_alloc(mm, pgd, addr);
1851         if (!pud)
1852                 return -ENOMEM;
1853         do {
1854                 next = pud_addr_end(addr, end);
1855                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1856                 if (err)
1857                         break;
1858         } while (pud++, addr = next, addr != end);
1859         return err;
1860 }
1861
1862 /*
1863  * Scan a region of virtual memory, filling in page tables as necessary
1864  * and calling a provided function on each leaf page table.
1865  */
1866 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1867                         unsigned long size, pte_fn_t fn, void *data)
1868 {
1869         pgd_t *pgd;
1870         unsigned long next;
1871         unsigned long end = addr + size;
1872         int err;
1873
1874         BUG_ON(addr >= end);
1875         pgd = pgd_offset(mm, addr);
1876         do {
1877                 next = pgd_addr_end(addr, end);
1878                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1879                 if (err)
1880                         break;
1881         } while (pgd++, addr = next, addr != end);
1882
1883         return err;
1884 }
1885 EXPORT_SYMBOL_GPL(apply_to_page_range);
1886
1887 /*
1888  * handle_pte_fault chooses page fault handler according to an entry which was
1889  * read non-atomically.  Before making any commitment, on those architectures
1890  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1891  * parts, do_swap_page must check under lock before unmapping the pte and
1892  * proceeding (but do_wp_page is only called after already making such a check;
1893  * and do_anonymous_page can safely check later on).
1894  */
1895 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1896                                 pte_t *page_table, pte_t orig_pte)
1897 {
1898         int same = 1;
1899 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1900         if (sizeof(pte_t) > sizeof(unsigned long)) {
1901                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1902                 spin_lock(ptl);
1903                 same = pte_same(*page_table, orig_pte);
1904                 spin_unlock(ptl);
1905         }
1906 #endif
1907         pte_unmap(page_table);
1908         return same;
1909 }
1910
1911 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1912 {
1913         debug_dma_assert_idle(src);
1914
1915         /*
1916          * If the source page was a PFN mapping, we don't have
1917          * a "struct page" for it. We do a best-effort copy by
1918          * just copying from the original user address. If that
1919          * fails, we just zero-fill it. Live with it.
1920          */
1921         if (unlikely(!src)) {
1922                 void *kaddr = kmap_atomic(dst);
1923                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1924
1925                 /*
1926                  * This really shouldn't fail, because the page is there
1927                  * in the page tables. But it might just be unreadable,
1928                  * in which case we just give up and fill the result with
1929                  * zeroes.
1930                  */
1931                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1932                         clear_page(kaddr);
1933                 kunmap_atomic(kaddr);
1934                 flush_dcache_page(dst);
1935         } else
1936                 copy_user_highpage(dst, src, va, vma);
1937 }
1938
1939 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1940 {
1941         struct file *vm_file = vma->vm_file;
1942
1943         if (vm_file)
1944                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1945
1946         /*
1947          * Special mappings (e.g. VDSO) do not have any file so fake
1948          * a default GFP_KERNEL for them.
1949          */
1950         return GFP_KERNEL;
1951 }
1952
1953 /*
1954  * Notify the address space that the page is about to become writable so that
1955  * it can prohibit this or wait for the page to get into an appropriate state.
1956  *
1957  * We do this without the lock held, so that it can sleep if it needs to.
1958  */
1959 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1960                unsigned long address)
1961 {
1962         struct vm_fault vmf;
1963         int ret;
1964
1965         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1966         vmf.pgoff = page->index;
1967         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1968         vmf.gfp_mask = __get_fault_gfp_mask(vma);
1969         vmf.page = page;
1970         vmf.cow_page = NULL;
1971
1972         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1973         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1974                 return ret;
1975         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1976                 lock_page(page);
1977                 if (!page->mapping) {
1978                         unlock_page(page);
1979                         return 0; /* retry */
1980                 }
1981                 ret |= VM_FAULT_LOCKED;
1982         } else
1983                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1984         return ret;
1985 }
1986
1987 /*
1988  * Handle write page faults for pages that can be reused in the current vma
1989  *
1990  * This can happen either due to the mapping being with the VM_SHARED flag,
1991  * or due to us being the last reference standing to the page. In either
1992  * case, all we need to do here is to mark the page as writable and update
1993  * any related book-keeping.
1994  */
1995 static inline int wp_page_reuse(struct mm_struct *mm,
1996                         struct vm_area_struct *vma, unsigned long address,
1997                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
1998                         struct page *page, int page_mkwrite,
1999                         int dirty_shared)
2000         __releases(ptl)
2001 {
2002         pte_t entry;
2003         /*
2004          * Clear the pages cpupid information as the existing
2005          * information potentially belongs to a now completely
2006          * unrelated process.
2007          */
2008         if (page)
2009                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2010
2011         flush_cache_page(vma, address, pte_pfn(orig_pte));
2012         entry = pte_mkyoung(orig_pte);
2013         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2014         if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2015                 update_mmu_cache(vma, address, page_table);
2016         pte_unmap_unlock(page_table, ptl);
2017
2018         if (dirty_shared) {
2019                 struct address_space *mapping;
2020                 int dirtied;
2021
2022                 if (!page_mkwrite)
2023                         lock_page(page);
2024
2025                 dirtied = set_page_dirty(page);
2026                 VM_BUG_ON_PAGE(PageAnon(page), page);
2027                 mapping = page->mapping;
2028                 unlock_page(page);
2029                 page_cache_release(page);
2030
2031                 if ((dirtied || page_mkwrite) && mapping) {
2032                         /*
2033                          * Some device drivers do not set page.mapping
2034                          * but still dirty their pages
2035                          */
2036                         balance_dirty_pages_ratelimited(mapping);
2037                 }
2038
2039                 if (!page_mkwrite)
2040                         file_update_time(vma->vm_file);
2041         }
2042
2043         return VM_FAULT_WRITE;
2044 }
2045
2046 /*
2047  * Handle the case of a page which we actually need to copy to a new page.
2048  *
2049  * Called with mmap_sem locked and the old page referenced, but
2050  * without the ptl held.
2051  *
2052  * High level logic flow:
2053  *
2054  * - Allocate a page, copy the content of the old page to the new one.
2055  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2056  * - Take the PTL. If the pte changed, bail out and release the allocated page
2057  * - If the pte is still the way we remember it, update the page table and all
2058  *   relevant references. This includes dropping the reference the page-table
2059  *   held to the old page, as well as updating the rmap.
2060  * - In any case, unlock the PTL and drop the reference we took to the old page.
2061  */
2062 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2063                         unsigned long address, pte_t *page_table, pmd_t *pmd,
2064                         pte_t orig_pte, struct page *old_page)
2065 {
2066         struct page *new_page = NULL;
2067         spinlock_t *ptl = NULL;
2068         pte_t entry;
2069         int page_copied = 0;
2070         const unsigned long mmun_start = address & PAGE_MASK;   /* For mmu_notifiers */
2071         const unsigned long mmun_end = mmun_start + PAGE_SIZE;  /* For mmu_notifiers */
2072         struct mem_cgroup *memcg;
2073
2074         if (unlikely(anon_vma_prepare(vma)))
2075                 goto oom;
2076
2077         if (is_zero_pfn(pte_pfn(orig_pte))) {
2078                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2079                 if (!new_page)
2080                         goto oom;
2081         } else {
2082                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2083                 if (!new_page)
2084                         goto oom;
2085                 cow_user_page(new_page, old_page, address, vma);
2086         }
2087
2088         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2089                 goto oom_free_new;
2090
2091         __SetPageUptodate(new_page);
2092
2093         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2094
2095         /*
2096          * Re-check the pte - we dropped the lock
2097          */
2098         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2099         if (likely(pte_same(*page_table, orig_pte))) {
2100                 if (old_page) {
2101                         if (!PageAnon(old_page)) {
2102                                 dec_mm_counter_fast(mm,
2103                                                 mm_counter_file(old_page));
2104                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2105                         }
2106                 } else {
2107                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2108                 }
2109                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2110                 entry = mk_pte(new_page, vma->vm_page_prot);
2111                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2112                 /*
2113                  * Clear the pte entry and flush it first, before updating the
2114                  * pte with the new entry. This will avoid a race condition
2115                  * seen in the presence of one thread doing SMC and another
2116                  * thread doing COW.
2117                  */
2118                 ptep_clear_flush_notify(vma, address, page_table);
2119                 page_add_new_anon_rmap(new_page, vma, address, false);
2120                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2121                 lru_cache_add_active_or_unevictable(new_page, vma);
2122                 /*
2123                  * We call the notify macro here because, when using secondary
2124                  * mmu page tables (such as kvm shadow page tables), we want the
2125                  * new page to be mapped directly into the secondary page table.
2126                  */
2127                 set_pte_at_notify(mm, address, page_table, entry);
2128                 update_mmu_cache(vma, address, page_table);
2129                 if (old_page) {
2130                         /*
2131                          * Only after switching the pte to the new page may
2132                          * we remove the mapcount here. Otherwise another
2133                          * process may come and find the rmap count decremented
2134                          * before the pte is switched to the new page, and
2135                          * "reuse" the old page writing into it while our pte
2136                          * here still points into it and can be read by other
2137                          * threads.
2138                          *
2139                          * The critical issue is to order this
2140                          * page_remove_rmap with the ptp_clear_flush above.
2141                          * Those stores are ordered by (if nothing else,)
2142                          * the barrier present in the atomic_add_negative
2143                          * in page_remove_rmap.
2144                          *
2145                          * Then the TLB flush in ptep_clear_flush ensures that
2146                          * no process can access the old page before the
2147                          * decremented mapcount is visible. And the old page
2148                          * cannot be reused until after the decremented
2149                          * mapcount is visible. So transitively, TLBs to
2150                          * old page will be flushed before it can be reused.
2151                          */
2152                         page_remove_rmap(old_page, false);
2153                 }
2154
2155                 /* Free the old page.. */
2156                 new_page = old_page;
2157                 page_copied = 1;
2158         } else {
2159                 mem_cgroup_cancel_charge(new_page, memcg, false);
2160         }
2161
2162         if (new_page)
2163                 page_cache_release(new_page);
2164
2165         pte_unmap_unlock(page_table, ptl);
2166         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2167         if (old_page) {
2168                 /*
2169                  * Don't let another task, with possibly unlocked vma,
2170                  * keep the mlocked page.
2171                  */
2172                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2173                         lock_page(old_page);    /* LRU manipulation */
2174                         if (PageMlocked(old_page))
2175                                 munlock_vma_page(old_page);
2176                         unlock_page(old_page);
2177                 }
2178                 page_cache_release(old_page);
2179         }
2180         return page_copied ? VM_FAULT_WRITE : 0;
2181 oom_free_new:
2182         page_cache_release(new_page);
2183 oom:
2184         if (old_page)
2185                 page_cache_release(old_page);
2186         return VM_FAULT_OOM;
2187 }
2188
2189 /*
2190  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2191  * mapping
2192  */
2193 static int wp_pfn_shared(struct mm_struct *mm,
2194                         struct vm_area_struct *vma, unsigned long address,
2195                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2196                         pmd_t *pmd)
2197 {
2198         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2199                 struct vm_fault vmf = {
2200                         .page = NULL,
2201                         .pgoff = linear_page_index(vma, address),
2202                         .virtual_address = (void __user *)(address & PAGE_MASK),
2203                         .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2204                 };
2205                 int ret;
2206
2207                 pte_unmap_unlock(page_table, ptl);
2208                 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2209                 if (ret & VM_FAULT_ERROR)
2210                         return ret;
2211                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2212                 /*
2213                  * We might have raced with another page fault while we
2214                  * released the pte_offset_map_lock.
2215                  */
2216                 if (!pte_same(*page_table, orig_pte)) {
2217                         pte_unmap_unlock(page_table, ptl);
2218                         return 0;
2219                 }
2220         }
2221         return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2222                              NULL, 0, 0);
2223 }
2224
2225 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2226                           unsigned long address, pte_t *page_table,
2227                           pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2228                           struct page *old_page)
2229         __releases(ptl)
2230 {
2231         int page_mkwrite = 0;
2232
2233         page_cache_get(old_page);
2234
2235         /*
2236          * Only catch write-faults on shared writable pages,
2237          * read-only shared pages can get COWed by
2238          * get_user_pages(.write=1, .force=1).
2239          */
2240         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2241                 int tmp;
2242
2243                 pte_unmap_unlock(page_table, ptl);
2244                 tmp = do_page_mkwrite(vma, old_page, address);
2245                 if (unlikely(!tmp || (tmp &
2246                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2247                         page_cache_release(old_page);
2248                         return tmp;
2249                 }
2250                 /*
2251                  * Since we dropped the lock we need to revalidate
2252                  * the PTE as someone else may have changed it.  If
2253                  * they did, we just return, as we can count on the
2254                  * MMU to tell us if they didn't also make it writable.
2255                  */
2256                 page_table = pte_offset_map_lock(mm, pmd, address,
2257                                                  &ptl);
2258                 if (!pte_same(*page_table, orig_pte)) {
2259                         unlock_page(old_page);
2260                         pte_unmap_unlock(page_table, ptl);
2261                         page_cache_release(old_page);
2262                         return 0;
2263                 }
2264                 page_mkwrite = 1;
2265         }
2266
2267         return wp_page_reuse(mm, vma, address, page_table, ptl,
2268                              orig_pte, old_page, page_mkwrite, 1);
2269 }
2270
2271 /*
2272  * This routine handles present pages, when users try to write
2273  * to a shared page. It is done by copying the page to a new address
2274  * and decrementing the shared-page counter for the old page.
2275  *
2276  * Note that this routine assumes that the protection checks have been
2277  * done by the caller (the low-level page fault routine in most cases).
2278  * Thus we can safely just mark it writable once we've done any necessary
2279  * COW.
2280  *
2281  * We also mark the page dirty at this point even though the page will
2282  * change only once the write actually happens. This avoids a few races,
2283  * and potentially makes it more efficient.
2284  *
2285  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2286  * but allow concurrent faults), with pte both mapped and locked.
2287  * We return with mmap_sem still held, but pte unmapped and unlocked.
2288  */
2289 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2290                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2291                 spinlock_t *ptl, pte_t orig_pte)
2292         __releases(ptl)
2293 {
2294         struct page *old_page;
2295
2296         old_page = vm_normal_page(vma, address, orig_pte);
2297         if (!old_page) {
2298                 /*
2299                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2300                  * VM_PFNMAP VMA.
2301                  *
2302                  * We should not cow pages in a shared writeable mapping.
2303                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2304                  */
2305                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2306                                      (VM_WRITE|VM_SHARED))
2307                         return wp_pfn_shared(mm, vma, address, page_table, ptl,
2308                                              orig_pte, pmd);
2309
2310                 pte_unmap_unlock(page_table, ptl);
2311                 return wp_page_copy(mm, vma, address, page_table, pmd,
2312                                     orig_pte, old_page);
2313         }
2314
2315         /*
2316          * Take out anonymous pages first, anonymous shared vmas are
2317          * not dirty accountable.
2318          */
2319         if (PageAnon(old_page) && !PageKsm(old_page)) {
2320                 if (!trylock_page(old_page)) {
2321                         page_cache_get(old_page);
2322                         pte_unmap_unlock(page_table, ptl);
2323                         lock_page(old_page);
2324                         page_table = pte_offset_map_lock(mm, pmd, address,
2325                                                          &ptl);
2326                         if (!pte_same(*page_table, orig_pte)) {
2327                                 unlock_page(old_page);
2328                                 pte_unmap_unlock(page_table, ptl);
2329                                 page_cache_release(old_page);
2330                                 return 0;
2331                         }
2332                         page_cache_release(old_page);
2333                 }
2334                 if (reuse_swap_page(old_page)) {
2335                         /*
2336                          * The page is all ours.  Move it to our anon_vma so
2337                          * the rmap code will not search our parent or siblings.
2338                          * Protected against the rmap code by the page lock.
2339                          */
2340                         page_move_anon_rmap(old_page, vma, address);
2341                         unlock_page(old_page);
2342                         return wp_page_reuse(mm, vma, address, page_table, ptl,
2343                                              orig_pte, old_page, 0, 0);
2344                 }
2345                 unlock_page(old_page);
2346         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2347                                         (VM_WRITE|VM_SHARED))) {
2348                 return wp_page_shared(mm, vma, address, page_table, pmd,
2349                                       ptl, orig_pte, old_page);
2350         }
2351
2352         /*
2353          * Ok, we need to copy. Oh, well..
2354          */
2355         page_cache_get(old_page);
2356
2357         pte_unmap_unlock(page_table, ptl);
2358         return wp_page_copy(mm, vma, address, page_table, pmd,
2359                             orig_pte, old_page);
2360 }
2361
2362 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2363                 unsigned long start_addr, unsigned long end_addr,
2364                 struct zap_details *details)
2365 {
2366         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2367 }
2368
2369 static inline void unmap_mapping_range_tree(struct rb_root *root,
2370                                             struct zap_details *details)
2371 {
2372         struct vm_area_struct *vma;
2373         pgoff_t vba, vea, zba, zea;
2374
2375         vma_interval_tree_foreach(vma, root,
2376                         details->first_index, details->last_index) {
2377
2378                 vba = vma->vm_pgoff;
2379                 vea = vba + vma_pages(vma) - 1;
2380                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2381                 zba = details->first_index;
2382                 if (zba < vba)
2383                         zba = vba;
2384                 zea = details->last_index;
2385                 if (zea > vea)
2386                         zea = vea;
2387
2388                 unmap_mapping_range_vma(vma,
2389                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2390                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2391                                 details);
2392         }
2393 }
2394
2395 /**
2396  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2397  * address_space corresponding to the specified page range in the underlying
2398  * file.
2399  *
2400  * @mapping: the address space containing mmaps to be unmapped.
2401  * @holebegin: byte in first page to unmap, relative to the start of
2402  * the underlying file.  This will be rounded down to a PAGE_SIZE
2403  * boundary.  Note that this is different from truncate_pagecache(), which
2404  * must keep the partial page.  In contrast, we must get rid of
2405  * partial pages.
2406  * @holelen: size of prospective hole in bytes.  This will be rounded
2407  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2408  * end of the file.
2409  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2410  * but 0 when invalidating pagecache, don't throw away private data.
2411  */
2412 void unmap_mapping_range(struct address_space *mapping,
2413                 loff_t const holebegin, loff_t const holelen, int even_cows)
2414 {
2415         struct zap_details details;
2416         pgoff_t hba = holebegin >> PAGE_SHIFT;
2417         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2418
2419         /* Check for overflow. */
2420         if (sizeof(holelen) > sizeof(hlen)) {
2421                 long long holeend =
2422                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2423                 if (holeend & ~(long long)ULONG_MAX)
2424                         hlen = ULONG_MAX - hba + 1;
2425         }
2426
2427         details.check_mapping = even_cows? NULL: mapping;
2428         details.first_index = hba;
2429         details.last_index = hba + hlen - 1;
2430         if (details.last_index < details.first_index)
2431                 details.last_index = ULONG_MAX;
2432
2433
2434         /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2435         i_mmap_lock_write(mapping);
2436         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2437                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2438         i_mmap_unlock_write(mapping);
2439 }
2440 EXPORT_SYMBOL(unmap_mapping_range);
2441
2442 /*
2443  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2444  * but allow concurrent faults), and pte mapped but not yet locked.
2445  * We return with pte unmapped and unlocked.
2446  *
2447  * We return with the mmap_sem locked or unlocked in the same cases
2448  * as does filemap_fault().
2449  */
2450 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2451                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2452                 unsigned int flags, pte_t orig_pte)
2453 {
2454         spinlock_t *ptl;
2455         struct page *page, *swapcache;
2456         struct mem_cgroup *memcg;
2457         swp_entry_t entry;
2458         pte_t pte;
2459         int locked;
2460         int exclusive = 0;
2461         int ret = 0;
2462
2463         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2464                 goto out;
2465
2466         entry = pte_to_swp_entry(orig_pte);
2467         if (unlikely(non_swap_entry(entry))) {
2468                 if (is_migration_entry(entry)) {
2469                         migration_entry_wait(mm, pmd, address);
2470                 } else if (is_hwpoison_entry(entry)) {
2471                         ret = VM_FAULT_HWPOISON;
2472                 } else {
2473                         print_bad_pte(vma, address, orig_pte, NULL);
2474                         ret = VM_FAULT_SIGBUS;
2475                 }
2476                 goto out;
2477         }
2478         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2479         page = lookup_swap_cache(entry);
2480         if (!page) {
2481                 page = swapin_readahead(entry,
2482                                         GFP_HIGHUSER_MOVABLE, vma, address);
2483                 if (!page) {
2484                         /*
2485                          * Back out if somebody else faulted in this pte
2486                          * while we released the pte lock.
2487                          */
2488                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2489                         if (likely(pte_same(*page_table, orig_pte)))
2490                                 ret = VM_FAULT_OOM;
2491                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2492                         goto unlock;
2493                 }
2494
2495                 /* Had to read the page from swap area: Major fault */
2496                 ret = VM_FAULT_MAJOR;
2497                 count_vm_event(PGMAJFAULT);
2498                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2499         } else if (PageHWPoison(page)) {
2500                 /*
2501                  * hwpoisoned dirty swapcache pages are kept for killing
2502                  * owner processes (which may be unknown at hwpoison time)
2503                  */
2504                 ret = VM_FAULT_HWPOISON;
2505                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2506                 swapcache = page;
2507                 goto out_release;
2508         }
2509
2510         swapcache = page;
2511         locked = lock_page_or_retry(page, mm, flags);
2512
2513         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2514         if (!locked) {
2515                 ret |= VM_FAULT_RETRY;
2516                 goto out_release;
2517         }
2518
2519         /*
2520          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2521          * release the swapcache from under us.  The page pin, and pte_same
2522          * test below, are not enough to exclude that.  Even if it is still
2523          * swapcache, we need to check that the page's swap has not changed.
2524          */
2525         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2526                 goto out_page;
2527
2528         page = ksm_might_need_to_copy(page, vma, address);
2529         if (unlikely(!page)) {
2530                 ret = VM_FAULT_OOM;
2531                 page = swapcache;
2532                 goto out_page;
2533         }
2534
2535         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2536                 ret = VM_FAULT_OOM;
2537                 goto out_page;
2538         }
2539
2540         /*
2541          * Back out if somebody else already faulted in this pte.
2542          */
2543         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2544         if (unlikely(!pte_same(*page_table, orig_pte)))
2545                 goto out_nomap;
2546
2547         if (unlikely(!PageUptodate(page))) {
2548                 ret = VM_FAULT_SIGBUS;
2549                 goto out_nomap;
2550         }
2551
2552         /*
2553          * The page isn't present yet, go ahead with the fault.
2554          *
2555          * Be careful about the sequence of operations here.
2556          * To get its accounting right, reuse_swap_page() must be called
2557          * while the page is counted on swap but not yet in mapcount i.e.
2558          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2559          * must be called after the swap_free(), or it will never succeed.
2560          */
2561
2562         inc_mm_counter_fast(mm, MM_ANONPAGES);
2563         dec_mm_counter_fast(mm, MM_SWAPENTS);
2564         pte = mk_pte(page, vma->vm_page_prot);
2565         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2566                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2567                 flags &= ~FAULT_FLAG_WRITE;
2568                 ret |= VM_FAULT_WRITE;
2569                 exclusive = RMAP_EXCLUSIVE;
2570         }
2571         flush_icache_page(vma, page);
2572         if (pte_swp_soft_dirty(orig_pte))
2573                 pte = pte_mksoft_dirty(pte);
2574         set_pte_at(mm, address, page_table, pte);
2575         if (page == swapcache) {
2576                 do_page_add_anon_rmap(page, vma, address, exclusive);
2577                 mem_cgroup_commit_charge(page, memcg, true, false);
2578         } else { /* ksm created a completely new copy */
2579                 page_add_new_anon_rmap(page, vma, address, false);
2580                 mem_cgroup_commit_charge(page, memcg, false, false);
2581                 lru_cache_add_active_or_unevictable(page, vma);
2582         }
2583
2584         swap_free(entry);
2585         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2586                 try_to_free_swap(page);
2587         unlock_page(page);
2588         if (page != swapcache) {
2589                 /*
2590                  * Hold the lock to avoid the swap entry to be reused
2591                  * until we take the PT lock for the pte_same() check
2592                  * (to avoid false positives from pte_same). For
2593                  * further safety release the lock after the swap_free
2594                  * so that the swap count won't change under a
2595                  * parallel locked swapcache.
2596                  */
2597                 unlock_page(swapcache);
2598                 page_cache_release(swapcache);
2599         }
2600
2601         if (flags & FAULT_FLAG_WRITE) {
2602                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2603                 if (ret & VM_FAULT_ERROR)
2604                         ret &= VM_FAULT_ERROR;
2605                 goto out;
2606         }
2607
2608         /* No need to invalidate - it was non-present before */
2609         update_mmu_cache(vma, address, page_table);
2610 unlock:
2611         pte_unmap_unlock(page_table, ptl);
2612 out:
2613         return ret;
2614 out_nomap:
2615         mem_cgroup_cancel_charge(page, memcg, false);
2616         pte_unmap_unlock(page_table, ptl);
2617 out_page:
2618         unlock_page(page);
2619 out_release:
2620         page_cache_release(page);
2621         if (page != swapcache) {
2622                 unlock_page(swapcache);
2623                 page_cache_release(swapcache);
2624         }
2625         return ret;
2626 }
2627
2628 /*
2629  * This is like a special single-page "expand_{down|up}wards()",
2630  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2631  * doesn't hit another vma.
2632  */
2633 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2634 {
2635         address &= PAGE_MASK;
2636         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2637                 struct vm_area_struct *prev = vma->vm_prev;
2638
2639                 /*
2640                  * Is there a mapping abutting this one below?
2641                  *
2642                  * That's only ok if it's the same stack mapping
2643                  * that has gotten split..
2644                  */
2645                 if (prev && prev->vm_end == address)
2646                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2647
2648                 return expand_downwards(vma, address - PAGE_SIZE);
2649         }
2650         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2651                 struct vm_area_struct *next = vma->vm_next;
2652
2653                 /* As VM_GROWSDOWN but s/below/above/ */
2654                 if (next && next->vm_start == address + PAGE_SIZE)
2655                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2656
2657                 return expand_upwards(vma, address + PAGE_SIZE);
2658         }
2659         return 0;
2660 }
2661
2662 /*
2663  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2664  * but allow concurrent faults), and pte mapped but not yet locked.
2665  * We return with mmap_sem still held, but pte unmapped and unlocked.
2666  */
2667 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2668                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2669                 unsigned int flags)
2670 {
2671         struct mem_cgroup *memcg;
2672         struct page *page;
2673         spinlock_t *ptl;
2674         pte_t entry;
2675
2676         pte_unmap(page_table);
2677
2678         /* File mapping without ->vm_ops ? */
2679         if (vma->vm_flags & VM_SHARED)
2680                 return VM_FAULT_SIGBUS;
2681
2682         /* Check if we need to add a guard page to the stack */
2683         if (check_stack_guard_page(vma, address) < 0)
2684                 return VM_FAULT_SIGSEGV;
2685
2686         /* Use the zero-page for reads */
2687         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2688                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2689                                                 vma->vm_page_prot));
2690                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2691                 if (!pte_none(*page_table))
2692                         goto unlock;
2693                 /* Deliver the page fault to userland, check inside PT lock */
2694                 if (userfaultfd_missing(vma)) {
2695                         pte_unmap_unlock(page_table, ptl);
2696                         return handle_userfault(vma, address, flags,
2697                                                 VM_UFFD_MISSING);
2698                 }
2699                 goto setpte;
2700         }
2701
2702         /* Allocate our own private page. */
2703         if (unlikely(anon_vma_prepare(vma)))
2704                 goto oom;
2705         page = alloc_zeroed_user_highpage_movable(vma, address);
2706         if (!page)
2707                 goto oom;
2708
2709         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2710                 goto oom_free_page;
2711
2712         /*
2713          * The memory barrier inside __SetPageUptodate makes sure that
2714          * preceeding stores to the page contents become visible before
2715          * the set_pte_at() write.
2716          */
2717         __SetPageUptodate(page);
2718
2719         entry = mk_pte(page, vma->vm_page_prot);
2720         if (vma->vm_flags & VM_WRITE)
2721                 entry = pte_mkwrite(pte_mkdirty(entry));
2722
2723         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2724         if (!pte_none(*page_table))
2725                 goto release;
2726
2727         /* Deliver the page fault to userland, check inside PT lock */
2728         if (userfaultfd_missing(vma)) {
2729                 pte_unmap_unlock(page_table, ptl);
2730                 mem_cgroup_cancel_charge(page, memcg, false);
2731                 page_cache_release(page);
2732                 return handle_userfault(vma, address, flags,
2733                                         VM_UFFD_MISSING);
2734         }
2735
2736         inc_mm_counter_fast(mm, MM_ANONPAGES);
2737         page_add_new_anon_rmap(page, vma, address, false);
2738         mem_cgroup_commit_charge(page, memcg, false, false);
2739         lru_cache_add_active_or_unevictable(page, vma);
2740 setpte:
2741         set_pte_at(mm, address, page_table, entry);
2742
2743         /* No need to invalidate - it was non-present before */
2744         update_mmu_cache(vma, address, page_table);
2745 unlock:
2746         pte_unmap_unlock(page_table, ptl);
2747         return 0;
2748 release:
2749         mem_cgroup_cancel_charge(page, memcg, false);
2750         page_cache_release(page);
2751         goto unlock;
2752 oom_free_page:
2753         page_cache_release(page);
2754 oom:
2755         return VM_FAULT_OOM;
2756 }
2757
2758 /*
2759  * The mmap_sem must have been held on entry, and may have been
2760  * released depending on flags and vma->vm_ops->fault() return value.
2761  * See filemap_fault() and __lock_page_retry().
2762  */
2763 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2764                         pgoff_t pgoff, unsigned int flags,
2765                         struct page *cow_page, struct page **page)
2766 {
2767         struct vm_fault vmf;
2768         int ret;
2769
2770         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2771         vmf.pgoff = pgoff;
2772         vmf.flags = flags;
2773         vmf.page = NULL;
2774         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2775         vmf.cow_page = cow_page;
2776
2777         ret = vma->vm_ops->fault(vma, &vmf);
2778         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2779                 return ret;
2780         if (!vmf.page)
2781                 goto out;
2782
2783         if (unlikely(PageHWPoison(vmf.page))) {
2784                 if (ret & VM_FAULT_LOCKED)
2785                         unlock_page(vmf.page);
2786                 page_cache_release(vmf.page);
2787                 return VM_FAULT_HWPOISON;
2788         }
2789
2790         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2791                 lock_page(vmf.page);
2792         else
2793                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2794
2795  out:
2796         *page = vmf.page;
2797         return ret;
2798 }
2799
2800 /**
2801  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2802  *
2803  * @vma: virtual memory area
2804  * @address: user virtual address
2805  * @page: page to map
2806  * @pte: pointer to target page table entry
2807  * @write: true, if new entry is writable
2808  * @anon: true, if it's anonymous page
2809  *
2810  * Caller must hold page table lock relevant for @pte.
2811  *
2812  * Target users are page handler itself and implementations of
2813  * vm_ops->map_pages.
2814  */
2815 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2816                 struct page *page, pte_t *pte, bool write, bool anon)
2817 {
2818         pte_t entry;
2819
2820         flush_icache_page(vma, page);
2821         entry = mk_pte(page, vma->vm_page_prot);
2822         if (write)
2823                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2824         if (anon) {
2825                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2826                 page_add_new_anon_rmap(page, vma, address, false);
2827         } else {
2828                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2829                 page_add_file_rmap(page);
2830         }
2831         set_pte_at(vma->vm_mm, address, pte, entry);
2832
2833         /* no need to invalidate: a not-present page won't be cached */
2834         update_mmu_cache(vma, address, pte);
2835 }
2836
2837 static unsigned long fault_around_bytes __read_mostly =
2838         rounddown_pow_of_two(65536);
2839
2840 #ifdef CONFIG_DEBUG_FS
2841 static int fault_around_bytes_get(void *data, u64 *val)
2842 {
2843         *val = fault_around_bytes;
2844         return 0;
2845 }
2846
2847 /*
2848  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2849  * rounded down to nearest page order. It's what do_fault_around() expects to
2850  * see.
2851  */
2852 static int fault_around_bytes_set(void *data, u64 val)
2853 {
2854         if (val / PAGE_SIZE > PTRS_PER_PTE)
2855                 return -EINVAL;
2856         if (val > PAGE_SIZE)
2857                 fault_around_bytes = rounddown_pow_of_two(val);
2858         else
2859                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2860         return 0;
2861 }
2862 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2863                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2864
2865 static int __init fault_around_debugfs(void)
2866 {
2867         void *ret;
2868
2869         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2870                         &fault_around_bytes_fops);
2871         if (!ret)
2872                 pr_warn("Failed to create fault_around_bytes in debugfs");
2873         return 0;
2874 }
2875 late_initcall(fault_around_debugfs);
2876 #endif
2877
2878 /*
2879  * do_fault_around() tries to map few pages around the fault address. The hope
2880  * is that the pages will be needed soon and this will lower the number of
2881  * faults to handle.
2882  *
2883  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2884  * not ready to be mapped: not up-to-date, locked, etc.
2885  *
2886  * This function is called with the page table lock taken. In the split ptlock
2887  * case the page table lock only protects only those entries which belong to
2888  * the page table corresponding to the fault address.
2889  *
2890  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2891  * only once.
2892  *
2893  * fault_around_pages() defines how many pages we'll try to map.
2894  * do_fault_around() expects it to return a power of two less than or equal to
2895  * PTRS_PER_PTE.
2896  *
2897  * The virtual address of the area that we map is naturally aligned to the
2898  * fault_around_pages() value (and therefore to page order).  This way it's
2899  * easier to guarantee that we don't cross page table boundaries.
2900  */
2901 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2902                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2903 {
2904         unsigned long start_addr, nr_pages, mask;
2905         pgoff_t max_pgoff;
2906         struct vm_fault vmf;
2907         int off;
2908
2909         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2910         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2911
2912         start_addr = max(address & mask, vma->vm_start);
2913         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2914         pte -= off;
2915         pgoff -= off;
2916
2917         /*
2918          *  max_pgoff is either end of page table or end of vma
2919          *  or fault_around_pages() from pgoff, depending what is nearest.
2920          */
2921         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2922                 PTRS_PER_PTE - 1;
2923         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2924                         pgoff + nr_pages - 1);
2925
2926         /* Check if it makes any sense to call ->map_pages */
2927         while (!pte_none(*pte)) {
2928                 if (++pgoff > max_pgoff)
2929                         return;
2930                 start_addr += PAGE_SIZE;
2931                 if (start_addr >= vma->vm_end)
2932                         return;
2933                 pte++;
2934         }
2935
2936         vmf.virtual_address = (void __user *) start_addr;
2937         vmf.pte = pte;
2938         vmf.pgoff = pgoff;
2939         vmf.max_pgoff = max_pgoff;
2940         vmf.flags = flags;
2941         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2942         vma->vm_ops->map_pages(vma, &vmf);
2943 }
2944
2945 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2946                 unsigned long address, pmd_t *pmd,
2947                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2948 {
2949         struct page *fault_page;
2950         spinlock_t *ptl;
2951         pte_t *pte;
2952         int ret = 0;
2953
2954         /*
2955          * Let's call ->map_pages() first and use ->fault() as fallback
2956          * if page by the offset is not ready to be mapped (cold cache or
2957          * something).
2958          */
2959         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2960                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2961                 do_fault_around(vma, address, pte, pgoff, flags);
2962                 if (!pte_same(*pte, orig_pte))
2963                         goto unlock_out;
2964                 pte_unmap_unlock(pte, ptl);
2965         }
2966
2967         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2968         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2969                 return ret;
2970
2971         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2972         if (unlikely(!pte_same(*pte, orig_pte))) {
2973                 pte_unmap_unlock(pte, ptl);
2974                 unlock_page(fault_page);
2975                 page_cache_release(fault_page);
2976                 return ret;
2977         }
2978         do_set_pte(vma, address, fault_page, pte, false, false);
2979         unlock_page(fault_page);
2980 unlock_out:
2981         pte_unmap_unlock(pte, ptl);
2982         return ret;
2983 }
2984
2985 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2986                 unsigned long address, pmd_t *pmd,
2987                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2988 {
2989         struct page *fault_page, *new_page;
2990         struct mem_cgroup *memcg;
2991         spinlock_t *ptl;
2992         pte_t *pte;
2993         int ret;
2994
2995         if (unlikely(anon_vma_prepare(vma)))
2996                 return VM_FAULT_OOM;
2997
2998         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2999         if (!new_page)
3000                 return VM_FAULT_OOM;
3001
3002         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3003                 page_cache_release(new_page);
3004                 return VM_FAULT_OOM;
3005         }
3006
3007         ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3008         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3009                 goto uncharge_out;
3010
3011         if (fault_page)
3012                 copy_user_highpage(new_page, fault_page, address, vma);
3013         __SetPageUptodate(new_page);
3014
3015         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3016         if (unlikely(!pte_same(*pte, orig_pte))) {
3017                 pte_unmap_unlock(pte, ptl);
3018                 if (fault_page) {
3019                         unlock_page(fault_page);
3020                         page_cache_release(fault_page);
3021                 } else {
3022                         /*
3023                          * The fault handler has no page to lock, so it holds
3024                          * i_mmap_lock for read to protect against truncate.
3025                          */
3026                         i_mmap_unlock_read(vma->vm_file->f_mapping);
3027                 }
3028                 goto uncharge_out;
3029         }
3030         do_set_pte(vma, address, new_page, pte, true, true);
3031         mem_cgroup_commit_charge(new_page, memcg, false, false);
3032         lru_cache_add_active_or_unevictable(new_page, vma);
3033         pte_unmap_unlock(pte, ptl);
3034         if (fault_page) {
3035                 unlock_page(fault_page);
3036                 page_cache_release(fault_page);
3037         } else {
3038                 /*
3039                  * The fault handler has no page to lock, so it holds
3040                  * i_mmap_lock for read to protect against truncate.
3041                  */
3042                 i_mmap_unlock_read(vma->vm_file->f_mapping);
3043         }
3044         return ret;
3045 uncharge_out:
3046         mem_cgroup_cancel_charge(new_page, memcg, false);
3047         page_cache_release(new_page);
3048         return ret;
3049 }
3050
3051 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3052                 unsigned long address, pmd_t *pmd,
3053                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3054 {
3055         struct page *fault_page;
3056         struct address_space *mapping;
3057         spinlock_t *ptl;
3058         pte_t *pte;
3059         int dirtied = 0;
3060         int ret, tmp;
3061
3062         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3063         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3064                 return ret;
3065
3066         /*
3067          * Check if the backing address space wants to know that the page is
3068          * about to become writable
3069          */
3070         if (vma->vm_ops->page_mkwrite) {
3071                 unlock_page(fault_page);
3072                 tmp = do_page_mkwrite(vma, fault_page, address);
3073                 if (unlikely(!tmp ||
3074                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3075                         page_cache_release(fault_page);
3076                         return tmp;
3077                 }
3078         }
3079
3080         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3081         if (unlikely(!pte_same(*pte, orig_pte))) {
3082                 pte_unmap_unlock(pte, ptl);
3083                 unlock_page(fault_page);
3084                 page_cache_release(fault_page);
3085                 return ret;
3086         }
3087         do_set_pte(vma, address, fault_page, pte, true, false);
3088         pte_unmap_unlock(pte, ptl);
3089
3090         if (set_page_dirty(fault_page))
3091                 dirtied = 1;
3092         /*
3093          * Take a local copy of the address_space - page.mapping may be zeroed
3094          * by truncate after unlock_page().   The address_space itself remains
3095          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3096          * release semantics to prevent the compiler from undoing this copying.
3097          */
3098         mapping = page_rmapping(fault_page);
3099         unlock_page(fault_page);
3100         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3101                 /*
3102                  * Some device drivers do not set page.mapping but still
3103                  * dirty their pages
3104                  */
3105                 balance_dirty_pages_ratelimited(mapping);
3106         }
3107
3108         if (!vma->vm_ops->page_mkwrite)
3109                 file_update_time(vma->vm_file);
3110
3111         return ret;
3112 }
3113
3114 /*
3115  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3116  * but allow concurrent faults).
3117  * The mmap_sem may have been released depending on flags and our
3118  * return value.  See filemap_fault() and __lock_page_or_retry().
3119  */
3120 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3121                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3122                 unsigned int flags, pte_t orig_pte)
3123 {
3124         pgoff_t pgoff = (((address & PAGE_MASK)
3125                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3126
3127         pte_unmap(page_table);
3128         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3129         if (!vma->vm_ops->fault)
3130                 return VM_FAULT_SIGBUS;
3131         if (!(flags & FAULT_FLAG_WRITE))
3132                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3133                                 orig_pte);
3134         if (!(vma->vm_flags & VM_SHARED))
3135                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3136                                 orig_pte);
3137         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3138 }
3139
3140 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3141                                 unsigned long addr, int page_nid,
3142                                 int *flags)
3143 {
3144         get_page(page);
3145
3146         count_vm_numa_event(NUMA_HINT_FAULTS);
3147         if (page_nid == numa_node_id()) {
3148                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3149                 *flags |= TNF_FAULT_LOCAL;
3150         }
3151
3152         return mpol_misplaced(page, vma, addr);
3153 }
3154
3155 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3156                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3157 {
3158         struct page *page = NULL;
3159         spinlock_t *ptl;
3160         int page_nid = -1;
3161         int last_cpupid;
3162         int target_nid;
3163         bool migrated = false;
3164         bool was_writable = pte_write(pte);
3165         int flags = 0;
3166
3167         /* A PROT_NONE fault should not end up here */
3168         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3169
3170         /*
3171         * The "pte" at this point cannot be used safely without
3172         * validation through pte_unmap_same(). It's of NUMA type but
3173         * the pfn may be screwed if the read is non atomic.
3174         *
3175         * We can safely just do a "set_pte_at()", because the old
3176         * page table entry is not accessible, so there would be no
3177         * concurrent hardware modifications to the PTE.
3178         */
3179         ptl = pte_lockptr(mm, pmd);
3180         spin_lock(ptl);
3181         if (unlikely(!pte_same(*ptep, pte))) {
3182                 pte_unmap_unlock(ptep, ptl);
3183                 goto out;
3184         }
3185
3186         /* Make it present again */
3187         pte = pte_modify(pte, vma->vm_page_prot);
3188         pte = pte_mkyoung(pte);
3189         if (was_writable)
3190                 pte = pte_mkwrite(pte);
3191         set_pte_at(mm, addr, ptep, pte);
3192         update_mmu_cache(vma, addr, ptep);
3193
3194         page = vm_normal_page(vma, addr, pte);
3195         if (!page) {
3196                 pte_unmap_unlock(ptep, ptl);
3197                 return 0;
3198         }
3199
3200         /* TODO: handle PTE-mapped THP */
3201         if (PageCompound(page)) {
3202                 pte_unmap_unlock(ptep, ptl);
3203                 return 0;
3204         }
3205
3206         /*
3207          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3208          * much anyway since they can be in shared cache state. This misses
3209          * the case where a mapping is writable but the process never writes
3210          * to it but pte_write gets cleared during protection updates and
3211          * pte_dirty has unpredictable behaviour between PTE scan updates,
3212          * background writeback, dirty balancing and application behaviour.
3213          */
3214         if (!(vma->vm_flags & VM_WRITE))
3215                 flags |= TNF_NO_GROUP;
3216
3217         /*
3218          * Flag if the page is shared between multiple address spaces. This
3219          * is later used when determining whether to group tasks together
3220          */
3221         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3222                 flags |= TNF_SHARED;
3223
3224         last_cpupid = page_cpupid_last(page);
3225         page_nid = page_to_nid(page);
3226         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3227         pte_unmap_unlock(ptep, ptl);
3228         if (target_nid == -1) {
3229                 put_page(page);
3230                 goto out;
3231         }
3232
3233         /* Migrate to the requested node */
3234         migrated = migrate_misplaced_page(page, vma, target_nid);
3235         if (migrated) {
3236                 page_nid = target_nid;
3237                 flags |= TNF_MIGRATED;
3238         } else
3239                 flags |= TNF_MIGRATE_FAIL;
3240
3241 out:
3242         if (page_nid != -1)
3243                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3244         return 0;
3245 }
3246
3247 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3248                         unsigned long address, pmd_t *pmd, unsigned int flags)
3249 {
3250         if (vma_is_anonymous(vma))
3251                 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3252         if (vma->vm_ops->pmd_fault)
3253                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3254         return VM_FAULT_FALLBACK;
3255 }
3256
3257 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3258                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3259                         unsigned int flags)
3260 {
3261         if (vma_is_anonymous(vma))
3262                 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3263         if (vma->vm_ops->pmd_fault)
3264                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3265         return VM_FAULT_FALLBACK;
3266 }
3267
3268 /*
3269  * These routines also need to handle stuff like marking pages dirty
3270  * and/or accessed for architectures that don't do it in hardware (most
3271  * RISC architectures).  The early dirtying is also good on the i386.
3272  *
3273  * There is also a hook called "update_mmu_cache()" that architectures
3274  * with external mmu caches can use to update those (ie the Sparc or
3275  * PowerPC hashed page tables that act as extended TLBs).
3276  *
3277  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3278  * but allow concurrent faults), and pte mapped but not yet locked.
3279  * We return with pte unmapped and unlocked.
3280  *
3281  * The mmap_sem may have been released depending on flags and our
3282  * return value.  See filemap_fault() and __lock_page_or_retry().
3283  */
3284 static int handle_pte_fault(struct mm_struct *mm,
3285                      struct vm_area_struct *vma, unsigned long address,
3286                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3287 {
3288         pte_t entry;
3289         spinlock_t *ptl;
3290
3291         /*
3292          * some architectures can have larger ptes than wordsize,
3293          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3294          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3295          * The code below just needs a consistent view for the ifs and
3296          * we later double check anyway with the ptl lock held. So here
3297          * a barrier will do.
3298          */
3299         entry = *pte;
3300         barrier();
3301         if (!pte_present(entry)) {
3302                 if (pte_none(entry)) {
3303                         if (vma_is_anonymous(vma))
3304                                 return do_anonymous_page(mm, vma, address,
3305                                                          pte, pmd, flags);
3306                         else
3307                                 return do_fault(mm, vma, address, pte, pmd,
3308                                                 flags, entry);
3309                 }
3310                 return do_swap_page(mm, vma, address,
3311                                         pte, pmd, flags, entry);
3312         }
3313
3314         if (pte_protnone(entry))
3315                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3316
3317         ptl = pte_lockptr(mm, pmd);
3318         spin_lock(ptl);
3319         if (unlikely(!pte_same(*pte, entry)))
3320                 goto unlock;
3321         if (flags & FAULT_FLAG_WRITE) {
3322                 if (!pte_write(entry))
3323                         return do_wp_page(mm, vma, address,
3324                                         pte, pmd, ptl, entry);
3325                 entry = pte_mkdirty(entry);
3326         }
3327         entry = pte_mkyoung(entry);
3328         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3329                 update_mmu_cache(vma, address, pte);
3330         } else {
3331                 /*
3332                  * This is needed only for protection faults but the arch code
3333                  * is not yet telling us if this is a protection fault or not.
3334                  * This still avoids useless tlb flushes for .text page faults
3335                  * with threads.
3336                  */
3337                 if (flags & FAULT_FLAG_WRITE)
3338                         flush_tlb_fix_spurious_fault(vma, address);
3339         }
3340 unlock:
3341         pte_unmap_unlock(pte, ptl);
3342         return 0;
3343 }
3344
3345 /*
3346  * By the time we get here, we already hold the mm semaphore
3347  *
3348  * The mmap_sem may have been released depending on flags and our
3349  * return value.  See filemap_fault() and __lock_page_or_retry().
3350  */
3351 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3352                              unsigned long address, unsigned int flags)
3353 {
3354         pgd_t *pgd;
3355         pud_t *pud;
3356         pmd_t *pmd;
3357         pte_t *pte;
3358
3359         if (unlikely(is_vm_hugetlb_page(vma)))
3360                 return hugetlb_fault(mm, vma, address, flags);
3361
3362         pgd = pgd_offset(mm, address);
3363         pud = pud_alloc(mm, pgd, address);
3364         if (!pud)
3365                 return VM_FAULT_OOM;
3366         pmd = pmd_alloc(mm, pud, address);
3367         if (!pmd)
3368                 return VM_FAULT_OOM;
3369         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3370                 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3371                 if (!(ret & VM_FAULT_FALLBACK))
3372                         return ret;
3373         } else {
3374                 pmd_t orig_pmd = *pmd;
3375                 int ret;
3376
3377                 barrier();
3378                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3379                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3380
3381                         if (pmd_protnone(orig_pmd))
3382                                 return do_huge_pmd_numa_page(mm, vma, address,
3383                                                              orig_pmd, pmd);
3384
3385                         if (dirty && !pmd_write(orig_pmd)) {
3386                                 ret = wp_huge_pmd(mm, vma, address, pmd,
3387                                                         orig_pmd, flags);
3388                                 if (!(ret & VM_FAULT_FALLBACK))
3389                                         return ret;
3390                         } else {
3391                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3392                                                       orig_pmd, dirty);
3393                                 return 0;
3394                         }
3395                 }
3396         }
3397
3398         /*
3399          * Use __pte_alloc instead of pte_alloc_map, because we can't
3400          * run pte_offset_map on the pmd, if an huge pmd could
3401          * materialize from under us from a different thread.
3402          */
3403         if (unlikely(pmd_none(*pmd)) &&
3404             unlikely(__pte_alloc(mm, vma, pmd, address)))
3405                 return VM_FAULT_OOM;
3406         /* if an huge pmd materialized from under us just retry later */
3407         if (unlikely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
3408                 return 0;
3409         /*
3410          * A regular pmd is established and it can't morph into a huge pmd
3411          * from under us anymore at this point because we hold the mmap_sem
3412          * read mode and khugepaged takes it in write mode. So now it's
3413          * safe to run pte_offset_map().
3414          */
3415         pte = pte_offset_map(pmd, address);
3416
3417         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3418 }
3419
3420 /*
3421  * By the time we get here, we already hold the mm semaphore
3422  *
3423  * The mmap_sem may have been released depending on flags and our
3424  * return value.  See filemap_fault() and __lock_page_or_retry().
3425  */
3426 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3427                     unsigned long address, unsigned int flags)
3428 {
3429         int ret;
3430
3431         __set_current_state(TASK_RUNNING);
3432
3433         count_vm_event(PGFAULT);
3434         mem_cgroup_count_vm_event(mm, PGFAULT);
3435
3436         /* do counter updates before entering really critical section. */
3437         check_sync_rss_stat(current);
3438
3439         /*
3440          * Enable the memcg OOM handling for faults triggered in user
3441          * space.  Kernel faults are handled more gracefully.
3442          */
3443         if (flags & FAULT_FLAG_USER)
3444                 mem_cgroup_oom_enable();
3445
3446         ret = __handle_mm_fault(mm, vma, address, flags);
3447
3448         if (flags & FAULT_FLAG_USER) {
3449                 mem_cgroup_oom_disable();
3450                 /*
3451                  * The task may have entered a memcg OOM situation but
3452                  * if the allocation error was handled gracefully (no
3453                  * VM_FAULT_OOM), there is no need to kill anything.
3454                  * Just clean up the OOM state peacefully.
3455                  */
3456                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3457                         mem_cgroup_oom_synchronize(false);
3458         }
3459
3460         return ret;
3461 }
3462 EXPORT_SYMBOL_GPL(handle_mm_fault);
3463
3464 #ifndef __PAGETABLE_PUD_FOLDED
3465 /*
3466  * Allocate page upper directory.
3467  * We've already handled the fast-path in-line.
3468  */
3469 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3470 {
3471         pud_t *new = pud_alloc_one(mm, address);
3472         if (!new)
3473                 return -ENOMEM;
3474
3475         smp_wmb(); /* See comment in __pte_alloc */
3476
3477         spin_lock(&mm->page_table_lock);
3478         if (pgd_present(*pgd))          /* Another has populated it */
3479                 pud_free(mm, new);
3480         else
3481                 pgd_populate(mm, pgd, new);
3482         spin_unlock(&mm->page_table_lock);
3483         return 0;
3484 }
3485 #endif /* __PAGETABLE_PUD_FOLDED */
3486
3487 #ifndef __PAGETABLE_PMD_FOLDED
3488 /*
3489  * Allocate page middle directory.
3490  * We've already handled the fast-path in-line.
3491  */
3492 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3493 {
3494         pmd_t *new = pmd_alloc_one(mm, address);
3495         if (!new)
3496                 return -ENOMEM;
3497
3498         smp_wmb(); /* See comment in __pte_alloc */
3499
3500         spin_lock(&mm->page_table_lock);
3501 #ifndef __ARCH_HAS_4LEVEL_HACK
3502         if (!pud_present(*pud)) {
3503                 mm_inc_nr_pmds(mm);
3504                 pud_populate(mm, pud, new);
3505         } else  /* Another has populated it */
3506                 pmd_free(mm, new);
3507 #else
3508         if (!pgd_present(*pud)) {
3509                 mm_inc_nr_pmds(mm);
3510                 pgd_populate(mm, pud, new);
3511         } else /* Another has populated it */
3512                 pmd_free(mm, new);
3513 #endif /* __ARCH_HAS_4LEVEL_HACK */
3514         spin_unlock(&mm->page_table_lock);
3515         return 0;
3516 }
3517 #endif /* __PAGETABLE_PMD_FOLDED */
3518
3519 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3520                 pte_t **ptepp, spinlock_t **ptlp)
3521 {
3522         pgd_t *pgd;
3523         pud_t *pud;
3524         pmd_t *pmd;
3525         pte_t *ptep;
3526
3527         pgd = pgd_offset(mm, address);
3528         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3529                 goto out;
3530
3531         pud = pud_offset(pgd, address);
3532         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3533                 goto out;
3534
3535         pmd = pmd_offset(pud, address);
3536         VM_BUG_ON(pmd_trans_huge(*pmd));
3537         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3538                 goto out;
3539
3540         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3541         if (pmd_huge(*pmd))
3542                 goto out;
3543
3544         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3545         if (!ptep)
3546                 goto out;
3547         if (!pte_present(*ptep))
3548                 goto unlock;
3549         *ptepp = ptep;
3550         return 0;
3551 unlock:
3552         pte_unmap_unlock(ptep, *ptlp);
3553 out:
3554         return -EINVAL;
3555 }
3556
3557 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3558                              pte_t **ptepp, spinlock_t **ptlp)
3559 {
3560         int res;
3561
3562         /* (void) is needed to make gcc happy */
3563         (void) __cond_lock(*ptlp,
3564                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3565         return res;
3566 }
3567
3568 /**
3569  * follow_pfn - look up PFN at a user virtual address
3570  * @vma: memory mapping
3571  * @address: user virtual address
3572  * @pfn: location to store found PFN
3573  *
3574  * Only IO mappings and raw PFN mappings are allowed.
3575  *
3576  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3577  */
3578 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3579         unsigned long *pfn)
3580 {
3581         int ret = -EINVAL;
3582         spinlock_t *ptl;
3583         pte_t *ptep;
3584
3585         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3586                 return ret;
3587
3588         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3589         if (ret)
3590                 return ret;
3591         *pfn = pte_pfn(*ptep);
3592         pte_unmap_unlock(ptep, ptl);
3593         return 0;
3594 }
3595 EXPORT_SYMBOL(follow_pfn);
3596
3597 #ifdef CONFIG_HAVE_IOREMAP_PROT
3598 int follow_phys(struct vm_area_struct *vma,
3599                 unsigned long address, unsigned int flags,
3600                 unsigned long *prot, resource_size_t *phys)
3601 {
3602         int ret = -EINVAL;
3603         pte_t *ptep, pte;
3604         spinlock_t *ptl;
3605
3606         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3607                 goto out;
3608
3609         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3610                 goto out;
3611         pte = *ptep;
3612
3613         if ((flags & FOLL_WRITE) && !pte_write(pte))
3614                 goto unlock;
3615
3616         *prot = pgprot_val(pte_pgprot(pte));
3617         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3618
3619         ret = 0;
3620 unlock:
3621         pte_unmap_unlock(ptep, ptl);
3622 out:
3623         return ret;
3624 }
3625
3626 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3627                         void *buf, int len, int write)
3628 {
3629         resource_size_t phys_addr;
3630         unsigned long prot = 0;
3631         void __iomem *maddr;
3632         int offset = addr & (PAGE_SIZE-1);
3633
3634         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3635                 return -EINVAL;
3636
3637         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3638         if (write)
3639                 memcpy_toio(maddr + offset, buf, len);
3640         else
3641                 memcpy_fromio(buf, maddr + offset, len);
3642         iounmap(maddr);
3643
3644         return len;
3645 }
3646 EXPORT_SYMBOL_GPL(generic_access_phys);
3647 #endif
3648
3649 /*
3650  * Access another process' address space as given in mm.  If non-NULL, use the
3651  * given task for page fault accounting.
3652  */
3653 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3654                 unsigned long addr, void *buf, int len, int write)
3655 {
3656         struct vm_area_struct *vma;
3657         void *old_buf = buf;
3658
3659         down_read(&mm->mmap_sem);
3660         /* ignore errors, just check how much was successfully transferred */
3661         while (len) {
3662                 int bytes, ret, offset;
3663                 void *maddr;
3664                 struct page *page = NULL;
3665
3666                 ret = get_user_pages(tsk, mm, addr, 1,
3667                                 write, 1, &page, &vma);
3668                 if (ret <= 0) {
3669 #ifndef CONFIG_HAVE_IOREMAP_PROT
3670                         break;
3671 #else
3672                         /*
3673                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3674                          * we can access using slightly different code.
3675                          */
3676                         vma = find_vma(mm, addr);
3677                         if (!vma || vma->vm_start > addr)
3678                                 break;
3679                         if (vma->vm_ops && vma->vm_ops->access)
3680                                 ret = vma->vm_ops->access(vma, addr, buf,
3681                                                           len, write);
3682                         if (ret <= 0)
3683                                 break;
3684                         bytes = ret;
3685 #endif
3686                 } else {
3687                         bytes = len;
3688                         offset = addr & (PAGE_SIZE-1);
3689                         if (bytes > PAGE_SIZE-offset)
3690                                 bytes = PAGE_SIZE-offset;
3691
3692                         maddr = kmap(page);
3693                         if (write) {
3694                                 copy_to_user_page(vma, page, addr,
3695                                                   maddr + offset, buf, bytes);
3696                                 set_page_dirty_lock(page);
3697                         } else {
3698                                 copy_from_user_page(vma, page, addr,
3699                                                     buf, maddr + offset, bytes);
3700                         }
3701                         kunmap(page);
3702                         page_cache_release(page);
3703                 }
3704                 len -= bytes;
3705                 buf += bytes;
3706                 addr += bytes;
3707         }
3708         up_read(&mm->mmap_sem);
3709
3710         return buf - old_buf;
3711 }
3712
3713 /**
3714  * access_remote_vm - access another process' address space
3715  * @mm:         the mm_struct of the target address space
3716  * @addr:       start address to access
3717  * @buf:        source or destination buffer
3718  * @len:        number of bytes to transfer
3719  * @write:      whether the access is a write
3720  *
3721  * The caller must hold a reference on @mm.
3722  */
3723 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3724                 void *buf, int len, int write)
3725 {
3726         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3727 }
3728
3729 /*
3730  * Access another process' address space.
3731  * Source/target buffer must be kernel space,
3732  * Do not walk the page table directly, use get_user_pages
3733  */
3734 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3735                 void *buf, int len, int write)
3736 {
3737         struct mm_struct *mm;
3738         int ret;
3739
3740         mm = get_task_mm(tsk);
3741         if (!mm)
3742                 return 0;
3743
3744         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3745         mmput(mm);
3746
3747         return ret;
3748 }
3749
3750 /*
3751  * Print the name of a VMA.
3752  */
3753 void print_vma_addr(char *prefix, unsigned long ip)
3754 {
3755         struct mm_struct *mm = current->mm;
3756         struct vm_area_struct *vma;
3757
3758         /*
3759          * Do not print if we are in atomic
3760          * contexts (in exception stacks, etc.):
3761          */
3762         if (preempt_count())
3763                 return;
3764
3765         down_read(&mm->mmap_sem);
3766         vma = find_vma(mm, ip);
3767         if (vma && vma->vm_file) {
3768                 struct file *f = vma->vm_file;
3769                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3770                 if (buf) {
3771                         char *p;
3772
3773                         p = file_path(f, buf, PAGE_SIZE);
3774                         if (IS_ERR(p))
3775                                 p = "?";
3776                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3777                                         vma->vm_start,
3778                                         vma->vm_end - vma->vm_start);
3779                         free_page((unsigned long)buf);
3780                 }
3781         }
3782         up_read(&mm->mmap_sem);
3783 }
3784
3785 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3786 void __might_fault(const char *file, int line)
3787 {
3788         /*
3789          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3790          * holding the mmap_sem, this is safe because kernel memory doesn't
3791          * get paged out, therefore we'll never actually fault, and the
3792          * below annotations will generate false positives.
3793          */
3794         if (segment_eq(get_fs(), KERNEL_DS))
3795                 return;
3796         if (pagefault_disabled())
3797                 return;
3798         __might_sleep(file, line, 0);
3799 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3800         if (current->mm)
3801                 might_lock_read(&current->mm->mmap_sem);
3802 #endif
3803 }
3804 EXPORT_SYMBOL(__might_fault);
3805 #endif
3806
3807 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3808 static void clear_gigantic_page(struct page *page,
3809                                 unsigned long addr,
3810                                 unsigned int pages_per_huge_page)
3811 {
3812         int i;
3813         struct page *p = page;
3814
3815         might_sleep();
3816         for (i = 0; i < pages_per_huge_page;
3817              i++, p = mem_map_next(p, page, i)) {
3818                 cond_resched();
3819                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3820         }
3821 }
3822 void clear_huge_page(struct page *page,
3823                      unsigned long addr, unsigned int pages_per_huge_page)
3824 {
3825         int i;
3826
3827         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3828                 clear_gigantic_page(page, addr, pages_per_huge_page);
3829                 return;
3830         }
3831
3832         might_sleep();
3833         for (i = 0; i < pages_per_huge_page; i++) {
3834                 cond_resched();
3835                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3836         }
3837 }
3838
3839 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3840                                     unsigned long addr,
3841                                     struct vm_area_struct *vma,
3842                                     unsigned int pages_per_huge_page)
3843 {
3844         int i;
3845         struct page *dst_base = dst;
3846         struct page *src_base = src;
3847
3848         for (i = 0; i < pages_per_huge_page; ) {
3849                 cond_resched();
3850                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3851
3852                 i++;
3853                 dst = mem_map_next(dst, dst_base, i);
3854                 src = mem_map_next(src, src_base, i);
3855         }
3856 }
3857
3858 void copy_user_huge_page(struct page *dst, struct page *src,
3859                          unsigned long addr, struct vm_area_struct *vma,
3860                          unsigned int pages_per_huge_page)
3861 {
3862         int i;
3863
3864         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3865                 copy_user_gigantic_page(dst, src, addr, vma,
3866                                         pages_per_huge_page);
3867                 return;
3868         }
3869
3870         might_sleep();
3871         for (i = 0; i < pages_per_huge_page; i++) {
3872                 cond_resched();
3873                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3874         }
3875 }
3876 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3877
3878 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3879
3880 static struct kmem_cache *page_ptl_cachep;
3881
3882 void __init ptlock_cache_init(void)
3883 {
3884         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3885                         SLAB_PANIC, NULL);
3886 }
3887
3888 bool ptlock_alloc(struct page *page)
3889 {
3890         spinlock_t *ptl;
3891
3892         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3893         if (!ptl)
3894                 return false;
3895         page->ptl = ptl;
3896         return true;
3897 }
3898
3899 void ptlock_free(struct page *page)
3900 {
3901         kmem_cache_free(page_ptl_cachep, page->ptl);
3902 }
3903 #endif