mm/core, x86/mm/pkeys: Add execute-only protection keys support
[cascardo/linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52
53 #include "internal.h"
54
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags)       (0)
57 #endif
58
59 #ifndef arch_rebalance_pgtables
60 #define arch_rebalance_pgtables(addr, len)              (addr)
61 #endif
62
63 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
64 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
65 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
66 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
67 #endif
68 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
69 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
70 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
71 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
72 #endif
73
74 static bool ignore_rlimit_data = true;
75 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
76
77 static void unmap_region(struct mm_struct *mm,
78                 struct vm_area_struct *vma, struct vm_area_struct *prev,
79                 unsigned long start, unsigned long end);
80
81 /* description of effects of mapping type and prot in current implementation.
82  * this is due to the limited x86 page protection hardware.  The expected
83  * behavior is in parens:
84  *
85  * map_type     prot
86  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
87  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
88  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
89  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
90  *
91  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
92  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
93  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
94  *
95  */
96 pgprot_t protection_map[16] = {
97         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
98         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
99 };
100
101 pgprot_t vm_get_page_prot(unsigned long vm_flags)
102 {
103         return __pgprot(pgprot_val(protection_map[vm_flags &
104                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
105                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
106 }
107 EXPORT_SYMBOL(vm_get_page_prot);
108
109 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
110 {
111         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
112 }
113
114 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
115 void vma_set_page_prot(struct vm_area_struct *vma)
116 {
117         unsigned long vm_flags = vma->vm_flags;
118
119         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
120         if (vma_wants_writenotify(vma)) {
121                 vm_flags &= ~VM_SHARED;
122                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
123                                                      vm_flags);
124         }
125 }
126
127
128 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
129 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
130 unsigned long sysctl_overcommit_kbytes __read_mostly;
131 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
132 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
133 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
134 /*
135  * Make sure vm_committed_as in one cacheline and not cacheline shared with
136  * other variables. It can be updated by several CPUs frequently.
137  */
138 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
139
140 /*
141  * The global memory commitment made in the system can be a metric
142  * that can be used to drive ballooning decisions when Linux is hosted
143  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
144  * balancing memory across competing virtual machines that are hosted.
145  * Several metrics drive this policy engine including the guest reported
146  * memory commitment.
147  */
148 unsigned long vm_memory_committed(void)
149 {
150         return percpu_counter_read_positive(&vm_committed_as);
151 }
152 EXPORT_SYMBOL_GPL(vm_memory_committed);
153
154 /*
155  * Check that a process has enough memory to allocate a new virtual
156  * mapping. 0 means there is enough memory for the allocation to
157  * succeed and -ENOMEM implies there is not.
158  *
159  * We currently support three overcommit policies, which are set via the
160  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
161  *
162  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
163  * Additional code 2002 Jul 20 by Robert Love.
164  *
165  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
166  *
167  * Note this is a helper function intended to be used by LSMs which
168  * wish to use this logic.
169  */
170 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
171 {
172         long free, allowed, reserve;
173
174         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
175                         -(s64)vm_committed_as_batch * num_online_cpus(),
176                         "memory commitment underflow");
177
178         vm_acct_memory(pages);
179
180         /*
181          * Sometimes we want to use more memory than we have
182          */
183         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
184                 return 0;
185
186         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
187                 free = global_page_state(NR_FREE_PAGES);
188                 free += global_page_state(NR_FILE_PAGES);
189
190                 /*
191                  * shmem pages shouldn't be counted as free in this
192                  * case, they can't be purged, only swapped out, and
193                  * that won't affect the overall amount of available
194                  * memory in the system.
195                  */
196                 free -= global_page_state(NR_SHMEM);
197
198                 free += get_nr_swap_pages();
199
200                 /*
201                  * Any slabs which are created with the
202                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
203                  * which are reclaimable, under pressure.  The dentry
204                  * cache and most inode caches should fall into this
205                  */
206                 free += global_page_state(NR_SLAB_RECLAIMABLE);
207
208                 /*
209                  * Leave reserved pages. The pages are not for anonymous pages.
210                  */
211                 if (free <= totalreserve_pages)
212                         goto error;
213                 else
214                         free -= totalreserve_pages;
215
216                 /*
217                  * Reserve some for root
218                  */
219                 if (!cap_sys_admin)
220                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
221
222                 if (free > pages)
223                         return 0;
224
225                 goto error;
226         }
227
228         allowed = vm_commit_limit();
229         /*
230          * Reserve some for root
231          */
232         if (!cap_sys_admin)
233                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
234
235         /*
236          * Don't let a single process grow so big a user can't recover
237          */
238         if (mm) {
239                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
240                 allowed -= min_t(long, mm->total_vm / 32, reserve);
241         }
242
243         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
244                 return 0;
245 error:
246         vm_unacct_memory(pages);
247
248         return -ENOMEM;
249 }
250
251 /*
252  * Requires inode->i_mapping->i_mmap_rwsem
253  */
254 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
255                 struct file *file, struct address_space *mapping)
256 {
257         if (vma->vm_flags & VM_DENYWRITE)
258                 atomic_inc(&file_inode(file)->i_writecount);
259         if (vma->vm_flags & VM_SHARED)
260                 mapping_unmap_writable(mapping);
261
262         flush_dcache_mmap_lock(mapping);
263         vma_interval_tree_remove(vma, &mapping->i_mmap);
264         flush_dcache_mmap_unlock(mapping);
265 }
266
267 /*
268  * Unlink a file-based vm structure from its interval tree, to hide
269  * vma from rmap and vmtruncate before freeing its page tables.
270  */
271 void unlink_file_vma(struct vm_area_struct *vma)
272 {
273         struct file *file = vma->vm_file;
274
275         if (file) {
276                 struct address_space *mapping = file->f_mapping;
277                 i_mmap_lock_write(mapping);
278                 __remove_shared_vm_struct(vma, file, mapping);
279                 i_mmap_unlock_write(mapping);
280         }
281 }
282
283 /*
284  * Close a vm structure and free it, returning the next.
285  */
286 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
287 {
288         struct vm_area_struct *next = vma->vm_next;
289
290         might_sleep();
291         if (vma->vm_ops && vma->vm_ops->close)
292                 vma->vm_ops->close(vma);
293         if (vma->vm_file)
294                 fput(vma->vm_file);
295         mpol_put(vma_policy(vma));
296         kmem_cache_free(vm_area_cachep, vma);
297         return next;
298 }
299
300 static unsigned long do_brk(unsigned long addr, unsigned long len);
301
302 SYSCALL_DEFINE1(brk, unsigned long, brk)
303 {
304         unsigned long retval;
305         unsigned long newbrk, oldbrk;
306         struct mm_struct *mm = current->mm;
307         unsigned long min_brk;
308         bool populate;
309
310         down_write(&mm->mmap_sem);
311
312 #ifdef CONFIG_COMPAT_BRK
313         /*
314          * CONFIG_COMPAT_BRK can still be overridden by setting
315          * randomize_va_space to 2, which will still cause mm->start_brk
316          * to be arbitrarily shifted
317          */
318         if (current->brk_randomized)
319                 min_brk = mm->start_brk;
320         else
321                 min_brk = mm->end_data;
322 #else
323         min_brk = mm->start_brk;
324 #endif
325         if (brk < min_brk)
326                 goto out;
327
328         /*
329          * Check against rlimit here. If this check is done later after the test
330          * of oldbrk with newbrk then it can escape the test and let the data
331          * segment grow beyond its set limit the in case where the limit is
332          * not page aligned -Ram Gupta
333          */
334         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
335                               mm->end_data, mm->start_data))
336                 goto out;
337
338         newbrk = PAGE_ALIGN(brk);
339         oldbrk = PAGE_ALIGN(mm->brk);
340         if (oldbrk == newbrk)
341                 goto set_brk;
342
343         /* Always allow shrinking brk. */
344         if (brk <= mm->brk) {
345                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
346                         goto set_brk;
347                 goto out;
348         }
349
350         /* Check against existing mmap mappings. */
351         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
352                 goto out;
353
354         /* Ok, looks good - let it rip. */
355         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
356                 goto out;
357
358 set_brk:
359         mm->brk = brk;
360         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
361         up_write(&mm->mmap_sem);
362         if (populate)
363                 mm_populate(oldbrk, newbrk - oldbrk);
364         return brk;
365
366 out:
367         retval = mm->brk;
368         up_write(&mm->mmap_sem);
369         return retval;
370 }
371
372 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
373 {
374         unsigned long max, subtree_gap;
375         max = vma->vm_start;
376         if (vma->vm_prev)
377                 max -= vma->vm_prev->vm_end;
378         if (vma->vm_rb.rb_left) {
379                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
380                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
381                 if (subtree_gap > max)
382                         max = subtree_gap;
383         }
384         if (vma->vm_rb.rb_right) {
385                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
386                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
387                 if (subtree_gap > max)
388                         max = subtree_gap;
389         }
390         return max;
391 }
392
393 #ifdef CONFIG_DEBUG_VM_RB
394 static int browse_rb(struct mm_struct *mm)
395 {
396         struct rb_root *root = &mm->mm_rb;
397         int i = 0, j, bug = 0;
398         struct rb_node *nd, *pn = NULL;
399         unsigned long prev = 0, pend = 0;
400
401         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402                 struct vm_area_struct *vma;
403                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404                 if (vma->vm_start < prev) {
405                         pr_emerg("vm_start %lx < prev %lx\n",
406                                   vma->vm_start, prev);
407                         bug = 1;
408                 }
409                 if (vma->vm_start < pend) {
410                         pr_emerg("vm_start %lx < pend %lx\n",
411                                   vma->vm_start, pend);
412                         bug = 1;
413                 }
414                 if (vma->vm_start > vma->vm_end) {
415                         pr_emerg("vm_start %lx > vm_end %lx\n",
416                                   vma->vm_start, vma->vm_end);
417                         bug = 1;
418                 }
419                 spin_lock(&mm->page_table_lock);
420                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
421                         pr_emerg("free gap %lx, correct %lx\n",
422                                vma->rb_subtree_gap,
423                                vma_compute_subtree_gap(vma));
424                         bug = 1;
425                 }
426                 spin_unlock(&mm->page_table_lock);
427                 i++;
428                 pn = nd;
429                 prev = vma->vm_start;
430                 pend = vma->vm_end;
431         }
432         j = 0;
433         for (nd = pn; nd; nd = rb_prev(nd))
434                 j++;
435         if (i != j) {
436                 pr_emerg("backwards %d, forwards %d\n", j, i);
437                 bug = 1;
438         }
439         return bug ? -1 : i;
440 }
441
442 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
443 {
444         struct rb_node *nd;
445
446         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
447                 struct vm_area_struct *vma;
448                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
449                 VM_BUG_ON_VMA(vma != ignore &&
450                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
451                         vma);
452         }
453 }
454
455 static void validate_mm(struct mm_struct *mm)
456 {
457         int bug = 0;
458         int i = 0;
459         unsigned long highest_address = 0;
460         struct vm_area_struct *vma = mm->mmap;
461
462         while (vma) {
463                 struct anon_vma *anon_vma = vma->anon_vma;
464                 struct anon_vma_chain *avc;
465
466                 if (anon_vma) {
467                         anon_vma_lock_read(anon_vma);
468                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
469                                 anon_vma_interval_tree_verify(avc);
470                         anon_vma_unlock_read(anon_vma);
471                 }
472
473                 highest_address = vma->vm_end;
474                 vma = vma->vm_next;
475                 i++;
476         }
477         if (i != mm->map_count) {
478                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
479                 bug = 1;
480         }
481         if (highest_address != mm->highest_vm_end) {
482                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
483                           mm->highest_vm_end, highest_address);
484                 bug = 1;
485         }
486         i = browse_rb(mm);
487         if (i != mm->map_count) {
488                 if (i != -1)
489                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
490                 bug = 1;
491         }
492         VM_BUG_ON_MM(bug, mm);
493 }
494 #else
495 #define validate_mm_rb(root, ignore) do { } while (0)
496 #define validate_mm(mm) do { } while (0)
497 #endif
498
499 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
500                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
501
502 /*
503  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
504  * vma->vm_prev->vm_end values changed, without modifying the vma's position
505  * in the rbtree.
506  */
507 static void vma_gap_update(struct vm_area_struct *vma)
508 {
509         /*
510          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
511          * function that does exacltly what we want.
512          */
513         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
514 }
515
516 static inline void vma_rb_insert(struct vm_area_struct *vma,
517                                  struct rb_root *root)
518 {
519         /* All rb_subtree_gap values must be consistent prior to insertion */
520         validate_mm_rb(root, NULL);
521
522         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
523 }
524
525 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
526 {
527         /*
528          * All rb_subtree_gap values must be consistent prior to erase,
529          * with the possible exception of the vma being erased.
530          */
531         validate_mm_rb(root, vma);
532
533         /*
534          * Note rb_erase_augmented is a fairly large inline function,
535          * so make sure we instantiate it only once with our desired
536          * augmented rbtree callbacks.
537          */
538         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
539 }
540
541 /*
542  * vma has some anon_vma assigned, and is already inserted on that
543  * anon_vma's interval trees.
544  *
545  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
546  * vma must be removed from the anon_vma's interval trees using
547  * anon_vma_interval_tree_pre_update_vma().
548  *
549  * After the update, the vma will be reinserted using
550  * anon_vma_interval_tree_post_update_vma().
551  *
552  * The entire update must be protected by exclusive mmap_sem and by
553  * the root anon_vma's mutex.
554  */
555 static inline void
556 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
557 {
558         struct anon_vma_chain *avc;
559
560         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
561                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
562 }
563
564 static inline void
565 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
566 {
567         struct anon_vma_chain *avc;
568
569         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
570                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
571 }
572
573 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
574                 unsigned long end, struct vm_area_struct **pprev,
575                 struct rb_node ***rb_link, struct rb_node **rb_parent)
576 {
577         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
578
579         __rb_link = &mm->mm_rb.rb_node;
580         rb_prev = __rb_parent = NULL;
581
582         while (*__rb_link) {
583                 struct vm_area_struct *vma_tmp;
584
585                 __rb_parent = *__rb_link;
586                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
587
588                 if (vma_tmp->vm_end > addr) {
589                         /* Fail if an existing vma overlaps the area */
590                         if (vma_tmp->vm_start < end)
591                                 return -ENOMEM;
592                         __rb_link = &__rb_parent->rb_left;
593                 } else {
594                         rb_prev = __rb_parent;
595                         __rb_link = &__rb_parent->rb_right;
596                 }
597         }
598
599         *pprev = NULL;
600         if (rb_prev)
601                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
602         *rb_link = __rb_link;
603         *rb_parent = __rb_parent;
604         return 0;
605 }
606
607 static unsigned long count_vma_pages_range(struct mm_struct *mm,
608                 unsigned long addr, unsigned long end)
609 {
610         unsigned long nr_pages = 0;
611         struct vm_area_struct *vma;
612
613         /* Find first overlaping mapping */
614         vma = find_vma_intersection(mm, addr, end);
615         if (!vma)
616                 return 0;
617
618         nr_pages = (min(end, vma->vm_end) -
619                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
620
621         /* Iterate over the rest of the overlaps */
622         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
623                 unsigned long overlap_len;
624
625                 if (vma->vm_start > end)
626                         break;
627
628                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
629                 nr_pages += overlap_len >> PAGE_SHIFT;
630         }
631
632         return nr_pages;
633 }
634
635 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
636                 struct rb_node **rb_link, struct rb_node *rb_parent)
637 {
638         /* Update tracking information for the gap following the new vma. */
639         if (vma->vm_next)
640                 vma_gap_update(vma->vm_next);
641         else
642                 mm->highest_vm_end = vma->vm_end;
643
644         /*
645          * vma->vm_prev wasn't known when we followed the rbtree to find the
646          * correct insertion point for that vma. As a result, we could not
647          * update the vma vm_rb parents rb_subtree_gap values on the way down.
648          * So, we first insert the vma with a zero rb_subtree_gap value
649          * (to be consistent with what we did on the way down), and then
650          * immediately update the gap to the correct value. Finally we
651          * rebalance the rbtree after all augmented values have been set.
652          */
653         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
654         vma->rb_subtree_gap = 0;
655         vma_gap_update(vma);
656         vma_rb_insert(vma, &mm->mm_rb);
657 }
658
659 static void __vma_link_file(struct vm_area_struct *vma)
660 {
661         struct file *file;
662
663         file = vma->vm_file;
664         if (file) {
665                 struct address_space *mapping = file->f_mapping;
666
667                 if (vma->vm_flags & VM_DENYWRITE)
668                         atomic_dec(&file_inode(file)->i_writecount);
669                 if (vma->vm_flags & VM_SHARED)
670                         atomic_inc(&mapping->i_mmap_writable);
671
672                 flush_dcache_mmap_lock(mapping);
673                 vma_interval_tree_insert(vma, &mapping->i_mmap);
674                 flush_dcache_mmap_unlock(mapping);
675         }
676 }
677
678 static void
679 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
680         struct vm_area_struct *prev, struct rb_node **rb_link,
681         struct rb_node *rb_parent)
682 {
683         __vma_link_list(mm, vma, prev, rb_parent);
684         __vma_link_rb(mm, vma, rb_link, rb_parent);
685 }
686
687 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
688                         struct vm_area_struct *prev, struct rb_node **rb_link,
689                         struct rb_node *rb_parent)
690 {
691         struct address_space *mapping = NULL;
692
693         if (vma->vm_file) {
694                 mapping = vma->vm_file->f_mapping;
695                 i_mmap_lock_write(mapping);
696         }
697
698         __vma_link(mm, vma, prev, rb_link, rb_parent);
699         __vma_link_file(vma);
700
701         if (mapping)
702                 i_mmap_unlock_write(mapping);
703
704         mm->map_count++;
705         validate_mm(mm);
706 }
707
708 /*
709  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
710  * mm's list and rbtree.  It has already been inserted into the interval tree.
711  */
712 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
713 {
714         struct vm_area_struct *prev;
715         struct rb_node **rb_link, *rb_parent;
716
717         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
718                            &prev, &rb_link, &rb_parent))
719                 BUG();
720         __vma_link(mm, vma, prev, rb_link, rb_parent);
721         mm->map_count++;
722 }
723
724 static inline void
725 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
726                 struct vm_area_struct *prev)
727 {
728         struct vm_area_struct *next;
729
730         vma_rb_erase(vma, &mm->mm_rb);
731         prev->vm_next = next = vma->vm_next;
732         if (next)
733                 next->vm_prev = prev;
734
735         /* Kill the cache */
736         vmacache_invalidate(mm);
737 }
738
739 /*
740  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
741  * is already present in an i_mmap tree without adjusting the tree.
742  * The following helper function should be used when such adjustments
743  * are necessary.  The "insert" vma (if any) is to be inserted
744  * before we drop the necessary locks.
745  */
746 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
747         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
748 {
749         struct mm_struct *mm = vma->vm_mm;
750         struct vm_area_struct *next = vma->vm_next;
751         struct vm_area_struct *importer = NULL;
752         struct address_space *mapping = NULL;
753         struct rb_root *root = NULL;
754         struct anon_vma *anon_vma = NULL;
755         struct file *file = vma->vm_file;
756         bool start_changed = false, end_changed = false;
757         long adjust_next = 0;
758         int remove_next = 0;
759
760         if (next && !insert) {
761                 struct vm_area_struct *exporter = NULL;
762
763                 if (end >= next->vm_end) {
764                         /*
765                          * vma expands, overlapping all the next, and
766                          * perhaps the one after too (mprotect case 6).
767                          */
768 again:                  remove_next = 1 + (end > next->vm_end);
769                         end = next->vm_end;
770                         exporter = next;
771                         importer = vma;
772                 } else if (end > next->vm_start) {
773                         /*
774                          * vma expands, overlapping part of the next:
775                          * mprotect case 5 shifting the boundary up.
776                          */
777                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
778                         exporter = next;
779                         importer = vma;
780                 } else if (end < vma->vm_end) {
781                         /*
782                          * vma shrinks, and !insert tells it's not
783                          * split_vma inserting another: so it must be
784                          * mprotect case 4 shifting the boundary down.
785                          */
786                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
787                         exporter = vma;
788                         importer = next;
789                 }
790
791                 /*
792                  * Easily overlooked: when mprotect shifts the boundary,
793                  * make sure the expanding vma has anon_vma set if the
794                  * shrinking vma had, to cover any anon pages imported.
795                  */
796                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
797                         int error;
798
799                         importer->anon_vma = exporter->anon_vma;
800                         error = anon_vma_clone(importer, exporter);
801                         if (error)
802                                 return error;
803                 }
804         }
805
806         if (file) {
807                 mapping = file->f_mapping;
808                 root = &mapping->i_mmap;
809                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
810
811                 if (adjust_next)
812                         uprobe_munmap(next, next->vm_start, next->vm_end);
813
814                 i_mmap_lock_write(mapping);
815                 if (insert) {
816                         /*
817                          * Put into interval tree now, so instantiated pages
818                          * are visible to arm/parisc __flush_dcache_page
819                          * throughout; but we cannot insert into address
820                          * space until vma start or end is updated.
821                          */
822                         __vma_link_file(insert);
823                 }
824         }
825
826         vma_adjust_trans_huge(vma, start, end, adjust_next);
827
828         anon_vma = vma->anon_vma;
829         if (!anon_vma && adjust_next)
830                 anon_vma = next->anon_vma;
831         if (anon_vma) {
832                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
833                           anon_vma != next->anon_vma, next);
834                 anon_vma_lock_write(anon_vma);
835                 anon_vma_interval_tree_pre_update_vma(vma);
836                 if (adjust_next)
837                         anon_vma_interval_tree_pre_update_vma(next);
838         }
839
840         if (root) {
841                 flush_dcache_mmap_lock(mapping);
842                 vma_interval_tree_remove(vma, root);
843                 if (adjust_next)
844                         vma_interval_tree_remove(next, root);
845         }
846
847         if (start != vma->vm_start) {
848                 vma->vm_start = start;
849                 start_changed = true;
850         }
851         if (end != vma->vm_end) {
852                 vma->vm_end = end;
853                 end_changed = true;
854         }
855         vma->vm_pgoff = pgoff;
856         if (adjust_next) {
857                 next->vm_start += adjust_next << PAGE_SHIFT;
858                 next->vm_pgoff += adjust_next;
859         }
860
861         if (root) {
862                 if (adjust_next)
863                         vma_interval_tree_insert(next, root);
864                 vma_interval_tree_insert(vma, root);
865                 flush_dcache_mmap_unlock(mapping);
866         }
867
868         if (remove_next) {
869                 /*
870                  * vma_merge has merged next into vma, and needs
871                  * us to remove next before dropping the locks.
872                  */
873                 __vma_unlink(mm, next, vma);
874                 if (file)
875                         __remove_shared_vm_struct(next, file, mapping);
876         } else if (insert) {
877                 /*
878                  * split_vma has split insert from vma, and needs
879                  * us to insert it before dropping the locks
880                  * (it may either follow vma or precede it).
881                  */
882                 __insert_vm_struct(mm, insert);
883         } else {
884                 if (start_changed)
885                         vma_gap_update(vma);
886                 if (end_changed) {
887                         if (!next)
888                                 mm->highest_vm_end = end;
889                         else if (!adjust_next)
890                                 vma_gap_update(next);
891                 }
892         }
893
894         if (anon_vma) {
895                 anon_vma_interval_tree_post_update_vma(vma);
896                 if (adjust_next)
897                         anon_vma_interval_tree_post_update_vma(next);
898                 anon_vma_unlock_write(anon_vma);
899         }
900         if (mapping)
901                 i_mmap_unlock_write(mapping);
902
903         if (root) {
904                 uprobe_mmap(vma);
905
906                 if (adjust_next)
907                         uprobe_mmap(next);
908         }
909
910         if (remove_next) {
911                 if (file) {
912                         uprobe_munmap(next, next->vm_start, next->vm_end);
913                         fput(file);
914                 }
915                 if (next->anon_vma)
916                         anon_vma_merge(vma, next);
917                 mm->map_count--;
918                 mpol_put(vma_policy(next));
919                 kmem_cache_free(vm_area_cachep, next);
920                 /*
921                  * In mprotect's case 6 (see comments on vma_merge),
922                  * we must remove another next too. It would clutter
923                  * up the code too much to do both in one go.
924                  */
925                 next = vma->vm_next;
926                 if (remove_next == 2)
927                         goto again;
928                 else if (next)
929                         vma_gap_update(next);
930                 else
931                         mm->highest_vm_end = end;
932         }
933         if (insert && file)
934                 uprobe_mmap(insert);
935
936         validate_mm(mm);
937
938         return 0;
939 }
940
941 /*
942  * If the vma has a ->close operation then the driver probably needs to release
943  * per-vma resources, so we don't attempt to merge those.
944  */
945 static inline int is_mergeable_vma(struct vm_area_struct *vma,
946                                 struct file *file, unsigned long vm_flags,
947                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
948 {
949         /*
950          * VM_SOFTDIRTY should not prevent from VMA merging, if we
951          * match the flags but dirty bit -- the caller should mark
952          * merged VMA as dirty. If dirty bit won't be excluded from
953          * comparison, we increase pressue on the memory system forcing
954          * the kernel to generate new VMAs when old one could be
955          * extended instead.
956          */
957         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
958                 return 0;
959         if (vma->vm_file != file)
960                 return 0;
961         if (vma->vm_ops && vma->vm_ops->close)
962                 return 0;
963         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
964                 return 0;
965         return 1;
966 }
967
968 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
969                                         struct anon_vma *anon_vma2,
970                                         struct vm_area_struct *vma)
971 {
972         /*
973          * The list_is_singular() test is to avoid merging VMA cloned from
974          * parents. This can improve scalability caused by anon_vma lock.
975          */
976         if ((!anon_vma1 || !anon_vma2) && (!vma ||
977                 list_is_singular(&vma->anon_vma_chain)))
978                 return 1;
979         return anon_vma1 == anon_vma2;
980 }
981
982 /*
983  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
984  * in front of (at a lower virtual address and file offset than) the vma.
985  *
986  * We cannot merge two vmas if they have differently assigned (non-NULL)
987  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
988  *
989  * We don't check here for the merged mmap wrapping around the end of pagecache
990  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
991  * wrap, nor mmaps which cover the final page at index -1UL.
992  */
993 static int
994 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
995                      struct anon_vma *anon_vma, struct file *file,
996                      pgoff_t vm_pgoff,
997                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
998 {
999         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1000             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1001                 if (vma->vm_pgoff == vm_pgoff)
1002                         return 1;
1003         }
1004         return 0;
1005 }
1006
1007 /*
1008  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1009  * beyond (at a higher virtual address and file offset than) the vma.
1010  *
1011  * We cannot merge two vmas if they have differently assigned (non-NULL)
1012  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1013  */
1014 static int
1015 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1016                     struct anon_vma *anon_vma, struct file *file,
1017                     pgoff_t vm_pgoff,
1018                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1019 {
1020         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1021             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1022                 pgoff_t vm_pglen;
1023                 vm_pglen = vma_pages(vma);
1024                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1025                         return 1;
1026         }
1027         return 0;
1028 }
1029
1030 /*
1031  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1032  * whether that can be merged with its predecessor or its successor.
1033  * Or both (it neatly fills a hole).
1034  *
1035  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1036  * certain not to be mapped by the time vma_merge is called; but when
1037  * called for mprotect, it is certain to be already mapped (either at
1038  * an offset within prev, or at the start of next), and the flags of
1039  * this area are about to be changed to vm_flags - and the no-change
1040  * case has already been eliminated.
1041  *
1042  * The following mprotect cases have to be considered, where AAAA is
1043  * the area passed down from mprotect_fixup, never extending beyond one
1044  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1045  *
1046  *     AAAA             AAAA                AAAA          AAAA
1047  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1048  *    cannot merge    might become    might become    might become
1049  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1050  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1051  *    mremap move:                                    PPPPNNNNNNNN 8
1052  *        AAAA
1053  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1054  *    might become    case 1 below    case 2 below    case 3 below
1055  *
1056  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1057  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1058  */
1059 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1060                         struct vm_area_struct *prev, unsigned long addr,
1061                         unsigned long end, unsigned long vm_flags,
1062                         struct anon_vma *anon_vma, struct file *file,
1063                         pgoff_t pgoff, struct mempolicy *policy,
1064                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1065 {
1066         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1067         struct vm_area_struct *area, *next;
1068         int err;
1069
1070         /*
1071          * We later require that vma->vm_flags == vm_flags,
1072          * so this tests vma->vm_flags & VM_SPECIAL, too.
1073          */
1074         if (vm_flags & VM_SPECIAL)
1075                 return NULL;
1076
1077         if (prev)
1078                 next = prev->vm_next;
1079         else
1080                 next = mm->mmap;
1081         area = next;
1082         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1083                 next = next->vm_next;
1084
1085         /*
1086          * Can it merge with the predecessor?
1087          */
1088         if (prev && prev->vm_end == addr &&
1089                         mpol_equal(vma_policy(prev), policy) &&
1090                         can_vma_merge_after(prev, vm_flags,
1091                                             anon_vma, file, pgoff,
1092                                             vm_userfaultfd_ctx)) {
1093                 /*
1094                  * OK, it can.  Can we now merge in the successor as well?
1095                  */
1096                 if (next && end == next->vm_start &&
1097                                 mpol_equal(policy, vma_policy(next)) &&
1098                                 can_vma_merge_before(next, vm_flags,
1099                                                      anon_vma, file,
1100                                                      pgoff+pglen,
1101                                                      vm_userfaultfd_ctx) &&
1102                                 is_mergeable_anon_vma(prev->anon_vma,
1103                                                       next->anon_vma, NULL)) {
1104                                                         /* cases 1, 6 */
1105                         err = vma_adjust(prev, prev->vm_start,
1106                                 next->vm_end, prev->vm_pgoff, NULL);
1107                 } else                                  /* cases 2, 5, 7 */
1108                         err = vma_adjust(prev, prev->vm_start,
1109                                 end, prev->vm_pgoff, NULL);
1110                 if (err)
1111                         return NULL;
1112                 khugepaged_enter_vma_merge(prev, vm_flags);
1113                 return prev;
1114         }
1115
1116         /*
1117          * Can this new request be merged in front of next?
1118          */
1119         if (next && end == next->vm_start &&
1120                         mpol_equal(policy, vma_policy(next)) &&
1121                         can_vma_merge_before(next, vm_flags,
1122                                              anon_vma, file, pgoff+pglen,
1123                                              vm_userfaultfd_ctx)) {
1124                 if (prev && addr < prev->vm_end)        /* case 4 */
1125                         err = vma_adjust(prev, prev->vm_start,
1126                                 addr, prev->vm_pgoff, NULL);
1127                 else                                    /* cases 3, 8 */
1128                         err = vma_adjust(area, addr, next->vm_end,
1129                                 next->vm_pgoff - pglen, NULL);
1130                 if (err)
1131                         return NULL;
1132                 khugepaged_enter_vma_merge(area, vm_flags);
1133                 return area;
1134         }
1135
1136         return NULL;
1137 }
1138
1139 /*
1140  * Rough compatbility check to quickly see if it's even worth looking
1141  * at sharing an anon_vma.
1142  *
1143  * They need to have the same vm_file, and the flags can only differ
1144  * in things that mprotect may change.
1145  *
1146  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1147  * we can merge the two vma's. For example, we refuse to merge a vma if
1148  * there is a vm_ops->close() function, because that indicates that the
1149  * driver is doing some kind of reference counting. But that doesn't
1150  * really matter for the anon_vma sharing case.
1151  */
1152 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1153 {
1154         return a->vm_end == b->vm_start &&
1155                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1156                 a->vm_file == b->vm_file &&
1157                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1158                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1159 }
1160
1161 /*
1162  * Do some basic sanity checking to see if we can re-use the anon_vma
1163  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1164  * the same as 'old', the other will be the new one that is trying
1165  * to share the anon_vma.
1166  *
1167  * NOTE! This runs with mm_sem held for reading, so it is possible that
1168  * the anon_vma of 'old' is concurrently in the process of being set up
1169  * by another page fault trying to merge _that_. But that's ok: if it
1170  * is being set up, that automatically means that it will be a singleton
1171  * acceptable for merging, so we can do all of this optimistically. But
1172  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1173  *
1174  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1175  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1176  * is to return an anon_vma that is "complex" due to having gone through
1177  * a fork).
1178  *
1179  * We also make sure that the two vma's are compatible (adjacent,
1180  * and with the same memory policies). That's all stable, even with just
1181  * a read lock on the mm_sem.
1182  */
1183 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1184 {
1185         if (anon_vma_compatible(a, b)) {
1186                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1187
1188                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1189                         return anon_vma;
1190         }
1191         return NULL;
1192 }
1193
1194 /*
1195  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1196  * neighbouring vmas for a suitable anon_vma, before it goes off
1197  * to allocate a new anon_vma.  It checks because a repetitive
1198  * sequence of mprotects and faults may otherwise lead to distinct
1199  * anon_vmas being allocated, preventing vma merge in subsequent
1200  * mprotect.
1201  */
1202 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1203 {
1204         struct anon_vma *anon_vma;
1205         struct vm_area_struct *near;
1206
1207         near = vma->vm_next;
1208         if (!near)
1209                 goto try_prev;
1210
1211         anon_vma = reusable_anon_vma(near, vma, near);
1212         if (anon_vma)
1213                 return anon_vma;
1214 try_prev:
1215         near = vma->vm_prev;
1216         if (!near)
1217                 goto none;
1218
1219         anon_vma = reusable_anon_vma(near, near, vma);
1220         if (anon_vma)
1221                 return anon_vma;
1222 none:
1223         /*
1224          * There's no absolute need to look only at touching neighbours:
1225          * we could search further afield for "compatible" anon_vmas.
1226          * But it would probably just be a waste of time searching,
1227          * or lead to too many vmas hanging off the same anon_vma.
1228          * We're trying to allow mprotect remerging later on,
1229          * not trying to minimize memory used for anon_vmas.
1230          */
1231         return NULL;
1232 }
1233
1234 /*
1235  * If a hint addr is less than mmap_min_addr change hint to be as
1236  * low as possible but still greater than mmap_min_addr
1237  */
1238 static inline unsigned long round_hint_to_min(unsigned long hint)
1239 {
1240         hint &= PAGE_MASK;
1241         if (((void *)hint != NULL) &&
1242             (hint < mmap_min_addr))
1243                 return PAGE_ALIGN(mmap_min_addr);
1244         return hint;
1245 }
1246
1247 static inline int mlock_future_check(struct mm_struct *mm,
1248                                      unsigned long flags,
1249                                      unsigned long len)
1250 {
1251         unsigned long locked, lock_limit;
1252
1253         /*  mlock MCL_FUTURE? */
1254         if (flags & VM_LOCKED) {
1255                 locked = len >> PAGE_SHIFT;
1256                 locked += mm->locked_vm;
1257                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1258                 lock_limit >>= PAGE_SHIFT;
1259                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1260                         return -EAGAIN;
1261         }
1262         return 0;
1263 }
1264
1265 /*
1266  * The caller must hold down_write(&current->mm->mmap_sem).
1267  */
1268 unsigned long do_mmap(struct file *file, unsigned long addr,
1269                         unsigned long len, unsigned long prot,
1270                         unsigned long flags, vm_flags_t vm_flags,
1271                         unsigned long pgoff, unsigned long *populate)
1272 {
1273         struct mm_struct *mm = current->mm;
1274         int pkey = 0;
1275
1276         *populate = 0;
1277
1278         if (!len)
1279                 return -EINVAL;
1280
1281         /*
1282          * Does the application expect PROT_READ to imply PROT_EXEC?
1283          *
1284          * (the exception is when the underlying filesystem is noexec
1285          *  mounted, in which case we dont add PROT_EXEC.)
1286          */
1287         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1288                 if (!(file && path_noexec(&file->f_path)))
1289                         prot |= PROT_EXEC;
1290
1291         if (!(flags & MAP_FIXED))
1292                 addr = round_hint_to_min(addr);
1293
1294         /* Careful about overflows.. */
1295         len = PAGE_ALIGN(len);
1296         if (!len)
1297                 return -ENOMEM;
1298
1299         /* offset overflow? */
1300         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1301                 return -EOVERFLOW;
1302
1303         /* Too many mappings? */
1304         if (mm->map_count > sysctl_max_map_count)
1305                 return -ENOMEM;
1306
1307         /* Obtain the address to map to. we verify (or select) it and ensure
1308          * that it represents a valid section of the address space.
1309          */
1310         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1311         if (offset_in_page(addr))
1312                 return addr;
1313
1314         if (prot == PROT_EXEC) {
1315                 pkey = execute_only_pkey(mm);
1316                 if (pkey < 0)
1317                         pkey = 0;
1318         }
1319
1320         /* Do simple checking here so the lower-level routines won't have
1321          * to. we assume access permissions have been handled by the open
1322          * of the memory object, so we don't do any here.
1323          */
1324         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1325                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1326
1327         if (flags & MAP_LOCKED)
1328                 if (!can_do_mlock())
1329                         return -EPERM;
1330
1331         if (mlock_future_check(mm, vm_flags, len))
1332                 return -EAGAIN;
1333
1334         if (file) {
1335                 struct inode *inode = file_inode(file);
1336
1337                 switch (flags & MAP_TYPE) {
1338                 case MAP_SHARED:
1339                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1340                                 return -EACCES;
1341
1342                         /*
1343                          * Make sure we don't allow writing to an append-only
1344                          * file..
1345                          */
1346                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1347                                 return -EACCES;
1348
1349                         /*
1350                          * Make sure there are no mandatory locks on the file.
1351                          */
1352                         if (locks_verify_locked(file))
1353                                 return -EAGAIN;
1354
1355                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1356                         if (!(file->f_mode & FMODE_WRITE))
1357                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1358
1359                         /* fall through */
1360                 case MAP_PRIVATE:
1361                         if (!(file->f_mode & FMODE_READ))
1362                                 return -EACCES;
1363                         if (path_noexec(&file->f_path)) {
1364                                 if (vm_flags & VM_EXEC)
1365                                         return -EPERM;
1366                                 vm_flags &= ~VM_MAYEXEC;
1367                         }
1368
1369                         if (!file->f_op->mmap)
1370                                 return -ENODEV;
1371                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1372                                 return -EINVAL;
1373                         break;
1374
1375                 default:
1376                         return -EINVAL;
1377                 }
1378         } else {
1379                 switch (flags & MAP_TYPE) {
1380                 case MAP_SHARED:
1381                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1382                                 return -EINVAL;
1383                         /*
1384                          * Ignore pgoff.
1385                          */
1386                         pgoff = 0;
1387                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1388                         break;
1389                 case MAP_PRIVATE:
1390                         /*
1391                          * Set pgoff according to addr for anon_vma.
1392                          */
1393                         pgoff = addr >> PAGE_SHIFT;
1394                         break;
1395                 default:
1396                         return -EINVAL;
1397                 }
1398         }
1399
1400         /*
1401          * Set 'VM_NORESERVE' if we should not account for the
1402          * memory use of this mapping.
1403          */
1404         if (flags & MAP_NORESERVE) {
1405                 /* We honor MAP_NORESERVE if allowed to overcommit */
1406                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1407                         vm_flags |= VM_NORESERVE;
1408
1409                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1410                 if (file && is_file_hugepages(file))
1411                         vm_flags |= VM_NORESERVE;
1412         }
1413
1414         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1415         if (!IS_ERR_VALUE(addr) &&
1416             ((vm_flags & VM_LOCKED) ||
1417              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1418                 *populate = len;
1419         return addr;
1420 }
1421
1422 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1423                 unsigned long, prot, unsigned long, flags,
1424                 unsigned long, fd, unsigned long, pgoff)
1425 {
1426         struct file *file = NULL;
1427         unsigned long retval;
1428
1429         if (!(flags & MAP_ANONYMOUS)) {
1430                 audit_mmap_fd(fd, flags);
1431                 file = fget(fd);
1432                 if (!file)
1433                         return -EBADF;
1434                 if (is_file_hugepages(file))
1435                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1436                 retval = -EINVAL;
1437                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1438                         goto out_fput;
1439         } else if (flags & MAP_HUGETLB) {
1440                 struct user_struct *user = NULL;
1441                 struct hstate *hs;
1442
1443                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1444                 if (!hs)
1445                         return -EINVAL;
1446
1447                 len = ALIGN(len, huge_page_size(hs));
1448                 /*
1449                  * VM_NORESERVE is used because the reservations will be
1450                  * taken when vm_ops->mmap() is called
1451                  * A dummy user value is used because we are not locking
1452                  * memory so no accounting is necessary
1453                  */
1454                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1455                                 VM_NORESERVE,
1456                                 &user, HUGETLB_ANONHUGE_INODE,
1457                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1458                 if (IS_ERR(file))
1459                         return PTR_ERR(file);
1460         }
1461
1462         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1463
1464         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1465 out_fput:
1466         if (file)
1467                 fput(file);
1468         return retval;
1469 }
1470
1471 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1472 struct mmap_arg_struct {
1473         unsigned long addr;
1474         unsigned long len;
1475         unsigned long prot;
1476         unsigned long flags;
1477         unsigned long fd;
1478         unsigned long offset;
1479 };
1480
1481 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1482 {
1483         struct mmap_arg_struct a;
1484
1485         if (copy_from_user(&a, arg, sizeof(a)))
1486                 return -EFAULT;
1487         if (offset_in_page(a.offset))
1488                 return -EINVAL;
1489
1490         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1491                               a.offset >> PAGE_SHIFT);
1492 }
1493 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1494
1495 /*
1496  * Some shared mappigns will want the pages marked read-only
1497  * to track write events. If so, we'll downgrade vm_page_prot
1498  * to the private version (using protection_map[] without the
1499  * VM_SHARED bit).
1500  */
1501 int vma_wants_writenotify(struct vm_area_struct *vma)
1502 {
1503         vm_flags_t vm_flags = vma->vm_flags;
1504         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1505
1506         /* If it was private or non-writable, the write bit is already clear */
1507         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1508                 return 0;
1509
1510         /* The backer wishes to know when pages are first written to? */
1511         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1512                 return 1;
1513
1514         /* The open routine did something to the protections that pgprot_modify
1515          * won't preserve? */
1516         if (pgprot_val(vma->vm_page_prot) !=
1517             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1518                 return 0;
1519
1520         /* Do we need to track softdirty? */
1521         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1522                 return 1;
1523
1524         /* Specialty mapping? */
1525         if (vm_flags & VM_PFNMAP)
1526                 return 0;
1527
1528         /* Can the mapping track the dirty pages? */
1529         return vma->vm_file && vma->vm_file->f_mapping &&
1530                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1531 }
1532
1533 /*
1534  * We account for memory if it's a private writeable mapping,
1535  * not hugepages and VM_NORESERVE wasn't set.
1536  */
1537 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1538 {
1539         /*
1540          * hugetlb has its own accounting separate from the core VM
1541          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1542          */
1543         if (file && is_file_hugepages(file))
1544                 return 0;
1545
1546         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1547 }
1548
1549 unsigned long mmap_region(struct file *file, unsigned long addr,
1550                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1551 {
1552         struct mm_struct *mm = current->mm;
1553         struct vm_area_struct *vma, *prev;
1554         int error;
1555         struct rb_node **rb_link, *rb_parent;
1556         unsigned long charged = 0;
1557
1558         /* Check against address space limit. */
1559         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1560                 unsigned long nr_pages;
1561
1562                 /*
1563                  * MAP_FIXED may remove pages of mappings that intersects with
1564                  * requested mapping. Account for the pages it would unmap.
1565                  */
1566                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1567
1568                 if (!may_expand_vm(mm, vm_flags,
1569                                         (len >> PAGE_SHIFT) - nr_pages))
1570                         return -ENOMEM;
1571         }
1572
1573         /* Clear old maps */
1574         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1575                               &rb_parent)) {
1576                 if (do_munmap(mm, addr, len))
1577                         return -ENOMEM;
1578         }
1579
1580         /*
1581          * Private writable mapping: check memory availability
1582          */
1583         if (accountable_mapping(file, vm_flags)) {
1584                 charged = len >> PAGE_SHIFT;
1585                 if (security_vm_enough_memory_mm(mm, charged))
1586                         return -ENOMEM;
1587                 vm_flags |= VM_ACCOUNT;
1588         }
1589
1590         /*
1591          * Can we just expand an old mapping?
1592          */
1593         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1594                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1595         if (vma)
1596                 goto out;
1597
1598         /*
1599          * Determine the object being mapped and call the appropriate
1600          * specific mapper. the address has already been validated, but
1601          * not unmapped, but the maps are removed from the list.
1602          */
1603         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1604         if (!vma) {
1605                 error = -ENOMEM;
1606                 goto unacct_error;
1607         }
1608
1609         vma->vm_mm = mm;
1610         vma->vm_start = addr;
1611         vma->vm_end = addr + len;
1612         vma->vm_flags = vm_flags;
1613         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1614         vma->vm_pgoff = pgoff;
1615         INIT_LIST_HEAD(&vma->anon_vma_chain);
1616
1617         if (file) {
1618                 if (vm_flags & VM_DENYWRITE) {
1619                         error = deny_write_access(file);
1620                         if (error)
1621                                 goto free_vma;
1622                 }
1623                 if (vm_flags & VM_SHARED) {
1624                         error = mapping_map_writable(file->f_mapping);
1625                         if (error)
1626                                 goto allow_write_and_free_vma;
1627                 }
1628
1629                 /* ->mmap() can change vma->vm_file, but must guarantee that
1630                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1631                  * and map writably if VM_SHARED is set. This usually means the
1632                  * new file must not have been exposed to user-space, yet.
1633                  */
1634                 vma->vm_file = get_file(file);
1635                 error = file->f_op->mmap(file, vma);
1636                 if (error)
1637                         goto unmap_and_free_vma;
1638
1639                 /* Can addr have changed??
1640                  *
1641                  * Answer: Yes, several device drivers can do it in their
1642                  *         f_op->mmap method. -DaveM
1643                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1644                  *      be updated for vma_link()
1645                  */
1646                 WARN_ON_ONCE(addr != vma->vm_start);
1647
1648                 addr = vma->vm_start;
1649                 vm_flags = vma->vm_flags;
1650         } else if (vm_flags & VM_SHARED) {
1651                 error = shmem_zero_setup(vma);
1652                 if (error)
1653                         goto free_vma;
1654         }
1655
1656         vma_link(mm, vma, prev, rb_link, rb_parent);
1657         /* Once vma denies write, undo our temporary denial count */
1658         if (file) {
1659                 if (vm_flags & VM_SHARED)
1660                         mapping_unmap_writable(file->f_mapping);
1661                 if (vm_flags & VM_DENYWRITE)
1662                         allow_write_access(file);
1663         }
1664         file = vma->vm_file;
1665 out:
1666         perf_event_mmap(vma);
1667
1668         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1669         if (vm_flags & VM_LOCKED) {
1670                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1671                                         vma == get_gate_vma(current->mm)))
1672                         mm->locked_vm += (len >> PAGE_SHIFT);
1673                 else
1674                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1675         }
1676
1677         if (file)
1678                 uprobe_mmap(vma);
1679
1680         /*
1681          * New (or expanded) vma always get soft dirty status.
1682          * Otherwise user-space soft-dirty page tracker won't
1683          * be able to distinguish situation when vma area unmapped,
1684          * then new mapped in-place (which must be aimed as
1685          * a completely new data area).
1686          */
1687         vma->vm_flags |= VM_SOFTDIRTY;
1688
1689         vma_set_page_prot(vma);
1690
1691         return addr;
1692
1693 unmap_and_free_vma:
1694         vma->vm_file = NULL;
1695         fput(file);
1696
1697         /* Undo any partial mapping done by a device driver. */
1698         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1699         charged = 0;
1700         if (vm_flags & VM_SHARED)
1701                 mapping_unmap_writable(file->f_mapping);
1702 allow_write_and_free_vma:
1703         if (vm_flags & VM_DENYWRITE)
1704                 allow_write_access(file);
1705 free_vma:
1706         kmem_cache_free(vm_area_cachep, vma);
1707 unacct_error:
1708         if (charged)
1709                 vm_unacct_memory(charged);
1710         return error;
1711 }
1712
1713 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1714 {
1715         /*
1716          * We implement the search by looking for an rbtree node that
1717          * immediately follows a suitable gap. That is,
1718          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1719          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1720          * - gap_end - gap_start >= length
1721          */
1722
1723         struct mm_struct *mm = current->mm;
1724         struct vm_area_struct *vma;
1725         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1726
1727         /* Adjust search length to account for worst case alignment overhead */
1728         length = info->length + info->align_mask;
1729         if (length < info->length)
1730                 return -ENOMEM;
1731
1732         /* Adjust search limits by the desired length */
1733         if (info->high_limit < length)
1734                 return -ENOMEM;
1735         high_limit = info->high_limit - length;
1736
1737         if (info->low_limit > high_limit)
1738                 return -ENOMEM;
1739         low_limit = info->low_limit + length;
1740
1741         /* Check if rbtree root looks promising */
1742         if (RB_EMPTY_ROOT(&mm->mm_rb))
1743                 goto check_highest;
1744         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1745         if (vma->rb_subtree_gap < length)
1746                 goto check_highest;
1747
1748         while (true) {
1749                 /* Visit left subtree if it looks promising */
1750                 gap_end = vma->vm_start;
1751                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1752                         struct vm_area_struct *left =
1753                                 rb_entry(vma->vm_rb.rb_left,
1754                                          struct vm_area_struct, vm_rb);
1755                         if (left->rb_subtree_gap >= length) {
1756                                 vma = left;
1757                                 continue;
1758                         }
1759                 }
1760
1761                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1762 check_current:
1763                 /* Check if current node has a suitable gap */
1764                 if (gap_start > high_limit)
1765                         return -ENOMEM;
1766                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1767                         goto found;
1768
1769                 /* Visit right subtree if it looks promising */
1770                 if (vma->vm_rb.rb_right) {
1771                         struct vm_area_struct *right =
1772                                 rb_entry(vma->vm_rb.rb_right,
1773                                          struct vm_area_struct, vm_rb);
1774                         if (right->rb_subtree_gap >= length) {
1775                                 vma = right;
1776                                 continue;
1777                         }
1778                 }
1779
1780                 /* Go back up the rbtree to find next candidate node */
1781                 while (true) {
1782                         struct rb_node *prev = &vma->vm_rb;
1783                         if (!rb_parent(prev))
1784                                 goto check_highest;
1785                         vma = rb_entry(rb_parent(prev),
1786                                        struct vm_area_struct, vm_rb);
1787                         if (prev == vma->vm_rb.rb_left) {
1788                                 gap_start = vma->vm_prev->vm_end;
1789                                 gap_end = vma->vm_start;
1790                                 goto check_current;
1791                         }
1792                 }
1793         }
1794
1795 check_highest:
1796         /* Check highest gap, which does not precede any rbtree node */
1797         gap_start = mm->highest_vm_end;
1798         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1799         if (gap_start > high_limit)
1800                 return -ENOMEM;
1801
1802 found:
1803         /* We found a suitable gap. Clip it with the original low_limit. */
1804         if (gap_start < info->low_limit)
1805                 gap_start = info->low_limit;
1806
1807         /* Adjust gap address to the desired alignment */
1808         gap_start += (info->align_offset - gap_start) & info->align_mask;
1809
1810         VM_BUG_ON(gap_start + info->length > info->high_limit);
1811         VM_BUG_ON(gap_start + info->length > gap_end);
1812         return gap_start;
1813 }
1814
1815 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1816 {
1817         struct mm_struct *mm = current->mm;
1818         struct vm_area_struct *vma;
1819         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1820
1821         /* Adjust search length to account for worst case alignment overhead */
1822         length = info->length + info->align_mask;
1823         if (length < info->length)
1824                 return -ENOMEM;
1825
1826         /*
1827          * Adjust search limits by the desired length.
1828          * See implementation comment at top of unmapped_area().
1829          */
1830         gap_end = info->high_limit;
1831         if (gap_end < length)
1832                 return -ENOMEM;
1833         high_limit = gap_end - length;
1834
1835         if (info->low_limit > high_limit)
1836                 return -ENOMEM;
1837         low_limit = info->low_limit + length;
1838
1839         /* Check highest gap, which does not precede any rbtree node */
1840         gap_start = mm->highest_vm_end;
1841         if (gap_start <= high_limit)
1842                 goto found_highest;
1843
1844         /* Check if rbtree root looks promising */
1845         if (RB_EMPTY_ROOT(&mm->mm_rb))
1846                 return -ENOMEM;
1847         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1848         if (vma->rb_subtree_gap < length)
1849                 return -ENOMEM;
1850
1851         while (true) {
1852                 /* Visit right subtree if it looks promising */
1853                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1854                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1855                         struct vm_area_struct *right =
1856                                 rb_entry(vma->vm_rb.rb_right,
1857                                          struct vm_area_struct, vm_rb);
1858                         if (right->rb_subtree_gap >= length) {
1859                                 vma = right;
1860                                 continue;
1861                         }
1862                 }
1863
1864 check_current:
1865                 /* Check if current node has a suitable gap */
1866                 gap_end = vma->vm_start;
1867                 if (gap_end < low_limit)
1868                         return -ENOMEM;
1869                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1870                         goto found;
1871
1872                 /* Visit left subtree if it looks promising */
1873                 if (vma->vm_rb.rb_left) {
1874                         struct vm_area_struct *left =
1875                                 rb_entry(vma->vm_rb.rb_left,
1876                                          struct vm_area_struct, vm_rb);
1877                         if (left->rb_subtree_gap >= length) {
1878                                 vma = left;
1879                                 continue;
1880                         }
1881                 }
1882
1883                 /* Go back up the rbtree to find next candidate node */
1884                 while (true) {
1885                         struct rb_node *prev = &vma->vm_rb;
1886                         if (!rb_parent(prev))
1887                                 return -ENOMEM;
1888                         vma = rb_entry(rb_parent(prev),
1889                                        struct vm_area_struct, vm_rb);
1890                         if (prev == vma->vm_rb.rb_right) {
1891                                 gap_start = vma->vm_prev ?
1892                                         vma->vm_prev->vm_end : 0;
1893                                 goto check_current;
1894                         }
1895                 }
1896         }
1897
1898 found:
1899         /* We found a suitable gap. Clip it with the original high_limit. */
1900         if (gap_end > info->high_limit)
1901                 gap_end = info->high_limit;
1902
1903 found_highest:
1904         /* Compute highest gap address at the desired alignment */
1905         gap_end -= info->length;
1906         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1907
1908         VM_BUG_ON(gap_end < info->low_limit);
1909         VM_BUG_ON(gap_end < gap_start);
1910         return gap_end;
1911 }
1912
1913 /* Get an address range which is currently unmapped.
1914  * For shmat() with addr=0.
1915  *
1916  * Ugly calling convention alert:
1917  * Return value with the low bits set means error value,
1918  * ie
1919  *      if (ret & ~PAGE_MASK)
1920  *              error = ret;
1921  *
1922  * This function "knows" that -ENOMEM has the bits set.
1923  */
1924 #ifndef HAVE_ARCH_UNMAPPED_AREA
1925 unsigned long
1926 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1927                 unsigned long len, unsigned long pgoff, unsigned long flags)
1928 {
1929         struct mm_struct *mm = current->mm;
1930         struct vm_area_struct *vma;
1931         struct vm_unmapped_area_info info;
1932
1933         if (len > TASK_SIZE - mmap_min_addr)
1934                 return -ENOMEM;
1935
1936         if (flags & MAP_FIXED)
1937                 return addr;
1938
1939         if (addr) {
1940                 addr = PAGE_ALIGN(addr);
1941                 vma = find_vma(mm, addr);
1942                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1943                     (!vma || addr + len <= vma->vm_start))
1944                         return addr;
1945         }
1946
1947         info.flags = 0;
1948         info.length = len;
1949         info.low_limit = mm->mmap_base;
1950         info.high_limit = TASK_SIZE;
1951         info.align_mask = 0;
1952         return vm_unmapped_area(&info);
1953 }
1954 #endif
1955
1956 /*
1957  * This mmap-allocator allocates new areas top-down from below the
1958  * stack's low limit (the base):
1959  */
1960 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1961 unsigned long
1962 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1963                           const unsigned long len, const unsigned long pgoff,
1964                           const unsigned long flags)
1965 {
1966         struct vm_area_struct *vma;
1967         struct mm_struct *mm = current->mm;
1968         unsigned long addr = addr0;
1969         struct vm_unmapped_area_info info;
1970
1971         /* requested length too big for entire address space */
1972         if (len > TASK_SIZE - mmap_min_addr)
1973                 return -ENOMEM;
1974
1975         if (flags & MAP_FIXED)
1976                 return addr;
1977
1978         /* requesting a specific address */
1979         if (addr) {
1980                 addr = PAGE_ALIGN(addr);
1981                 vma = find_vma(mm, addr);
1982                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1983                                 (!vma || addr + len <= vma->vm_start))
1984                         return addr;
1985         }
1986
1987         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1988         info.length = len;
1989         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1990         info.high_limit = mm->mmap_base;
1991         info.align_mask = 0;
1992         addr = vm_unmapped_area(&info);
1993
1994         /*
1995          * A failed mmap() very likely causes application failure,
1996          * so fall back to the bottom-up function here. This scenario
1997          * can happen with large stack limits and large mmap()
1998          * allocations.
1999          */
2000         if (offset_in_page(addr)) {
2001                 VM_BUG_ON(addr != -ENOMEM);
2002                 info.flags = 0;
2003                 info.low_limit = TASK_UNMAPPED_BASE;
2004                 info.high_limit = TASK_SIZE;
2005                 addr = vm_unmapped_area(&info);
2006         }
2007
2008         return addr;
2009 }
2010 #endif
2011
2012 unsigned long
2013 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2014                 unsigned long pgoff, unsigned long flags)
2015 {
2016         unsigned long (*get_area)(struct file *, unsigned long,
2017                                   unsigned long, unsigned long, unsigned long);
2018
2019         unsigned long error = arch_mmap_check(addr, len, flags);
2020         if (error)
2021                 return error;
2022
2023         /* Careful about overflows.. */
2024         if (len > TASK_SIZE)
2025                 return -ENOMEM;
2026
2027         get_area = current->mm->get_unmapped_area;
2028         if (file && file->f_op->get_unmapped_area)
2029                 get_area = file->f_op->get_unmapped_area;
2030         addr = get_area(file, addr, len, pgoff, flags);
2031         if (IS_ERR_VALUE(addr))
2032                 return addr;
2033
2034         if (addr > TASK_SIZE - len)
2035                 return -ENOMEM;
2036         if (offset_in_page(addr))
2037                 return -EINVAL;
2038
2039         addr = arch_rebalance_pgtables(addr, len);
2040         error = security_mmap_addr(addr);
2041         return error ? error : addr;
2042 }
2043
2044 EXPORT_SYMBOL(get_unmapped_area);
2045
2046 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2047 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2048 {
2049         struct rb_node *rb_node;
2050         struct vm_area_struct *vma;
2051
2052         /* Check the cache first. */
2053         vma = vmacache_find(mm, addr);
2054         if (likely(vma))
2055                 return vma;
2056
2057         rb_node = mm->mm_rb.rb_node;
2058
2059         while (rb_node) {
2060                 struct vm_area_struct *tmp;
2061
2062                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2063
2064                 if (tmp->vm_end > addr) {
2065                         vma = tmp;
2066                         if (tmp->vm_start <= addr)
2067                                 break;
2068                         rb_node = rb_node->rb_left;
2069                 } else
2070                         rb_node = rb_node->rb_right;
2071         }
2072
2073         if (vma)
2074                 vmacache_update(addr, vma);
2075         return vma;
2076 }
2077
2078 EXPORT_SYMBOL(find_vma);
2079
2080 /*
2081  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2082  */
2083 struct vm_area_struct *
2084 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2085                         struct vm_area_struct **pprev)
2086 {
2087         struct vm_area_struct *vma;
2088
2089         vma = find_vma(mm, addr);
2090         if (vma) {
2091                 *pprev = vma->vm_prev;
2092         } else {
2093                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2094                 *pprev = NULL;
2095                 while (rb_node) {
2096                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2097                         rb_node = rb_node->rb_right;
2098                 }
2099         }
2100         return vma;
2101 }
2102
2103 /*
2104  * Verify that the stack growth is acceptable and
2105  * update accounting. This is shared with both the
2106  * grow-up and grow-down cases.
2107  */
2108 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2109 {
2110         struct mm_struct *mm = vma->vm_mm;
2111         struct rlimit *rlim = current->signal->rlim;
2112         unsigned long new_start, actual_size;
2113
2114         /* address space limit tests */
2115         if (!may_expand_vm(mm, vma->vm_flags, grow))
2116                 return -ENOMEM;
2117
2118         /* Stack limit test */
2119         actual_size = size;
2120         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2121                 actual_size -= PAGE_SIZE;
2122         if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2123                 return -ENOMEM;
2124
2125         /* mlock limit tests */
2126         if (vma->vm_flags & VM_LOCKED) {
2127                 unsigned long locked;
2128                 unsigned long limit;
2129                 locked = mm->locked_vm + grow;
2130                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2131                 limit >>= PAGE_SHIFT;
2132                 if (locked > limit && !capable(CAP_IPC_LOCK))
2133                         return -ENOMEM;
2134         }
2135
2136         /* Check to ensure the stack will not grow into a hugetlb-only region */
2137         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2138                         vma->vm_end - size;
2139         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2140                 return -EFAULT;
2141
2142         /*
2143          * Overcommit..  This must be the final test, as it will
2144          * update security statistics.
2145          */
2146         if (security_vm_enough_memory_mm(mm, grow))
2147                 return -ENOMEM;
2148
2149         return 0;
2150 }
2151
2152 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2153 /*
2154  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2155  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2156  */
2157 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2158 {
2159         struct mm_struct *mm = vma->vm_mm;
2160         int error = 0;
2161
2162         if (!(vma->vm_flags & VM_GROWSUP))
2163                 return -EFAULT;
2164
2165         /* Guard against wrapping around to address 0. */
2166         if (address < PAGE_ALIGN(address+4))
2167                 address = PAGE_ALIGN(address+4);
2168         else
2169                 return -ENOMEM;
2170
2171         /* We must make sure the anon_vma is allocated. */
2172         if (unlikely(anon_vma_prepare(vma)))
2173                 return -ENOMEM;
2174
2175         /*
2176          * vma->vm_start/vm_end cannot change under us because the caller
2177          * is required to hold the mmap_sem in read mode.  We need the
2178          * anon_vma lock to serialize against concurrent expand_stacks.
2179          */
2180         anon_vma_lock_write(vma->anon_vma);
2181
2182         /* Somebody else might have raced and expanded it already */
2183         if (address > vma->vm_end) {
2184                 unsigned long size, grow;
2185
2186                 size = address - vma->vm_start;
2187                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2188
2189                 error = -ENOMEM;
2190                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2191                         error = acct_stack_growth(vma, size, grow);
2192                         if (!error) {
2193                                 /*
2194                                  * vma_gap_update() doesn't support concurrent
2195                                  * updates, but we only hold a shared mmap_sem
2196                                  * lock here, so we need to protect against
2197                                  * concurrent vma expansions.
2198                                  * anon_vma_lock_write() doesn't help here, as
2199                                  * we don't guarantee that all growable vmas
2200                                  * in a mm share the same root anon vma.
2201                                  * So, we reuse mm->page_table_lock to guard
2202                                  * against concurrent vma expansions.
2203                                  */
2204                                 spin_lock(&mm->page_table_lock);
2205                                 if (vma->vm_flags & VM_LOCKED)
2206                                         mm->locked_vm += grow;
2207                                 vm_stat_account(mm, vma->vm_flags, grow);
2208                                 anon_vma_interval_tree_pre_update_vma(vma);
2209                                 vma->vm_end = address;
2210                                 anon_vma_interval_tree_post_update_vma(vma);
2211                                 if (vma->vm_next)
2212                                         vma_gap_update(vma->vm_next);
2213                                 else
2214                                         mm->highest_vm_end = address;
2215                                 spin_unlock(&mm->page_table_lock);
2216
2217                                 perf_event_mmap(vma);
2218                         }
2219                 }
2220         }
2221         anon_vma_unlock_write(vma->anon_vma);
2222         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2223         validate_mm(mm);
2224         return error;
2225 }
2226 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2227
2228 /*
2229  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2230  */
2231 int expand_downwards(struct vm_area_struct *vma,
2232                                    unsigned long address)
2233 {
2234         struct mm_struct *mm = vma->vm_mm;
2235         int error;
2236
2237         address &= PAGE_MASK;
2238         error = security_mmap_addr(address);
2239         if (error)
2240                 return error;
2241
2242         /* We must make sure the anon_vma is allocated. */
2243         if (unlikely(anon_vma_prepare(vma)))
2244                 return -ENOMEM;
2245
2246         /*
2247          * vma->vm_start/vm_end cannot change under us because the caller
2248          * is required to hold the mmap_sem in read mode.  We need the
2249          * anon_vma lock to serialize against concurrent expand_stacks.
2250          */
2251         anon_vma_lock_write(vma->anon_vma);
2252
2253         /* Somebody else might have raced and expanded it already */
2254         if (address < vma->vm_start) {
2255                 unsigned long size, grow;
2256
2257                 size = vma->vm_end - address;
2258                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2259
2260                 error = -ENOMEM;
2261                 if (grow <= vma->vm_pgoff) {
2262                         error = acct_stack_growth(vma, size, grow);
2263                         if (!error) {
2264                                 /*
2265                                  * vma_gap_update() doesn't support concurrent
2266                                  * updates, but we only hold a shared mmap_sem
2267                                  * lock here, so we need to protect against
2268                                  * concurrent vma expansions.
2269                                  * anon_vma_lock_write() doesn't help here, as
2270                                  * we don't guarantee that all growable vmas
2271                                  * in a mm share the same root anon vma.
2272                                  * So, we reuse mm->page_table_lock to guard
2273                                  * against concurrent vma expansions.
2274                                  */
2275                                 spin_lock(&mm->page_table_lock);
2276                                 if (vma->vm_flags & VM_LOCKED)
2277                                         mm->locked_vm += grow;
2278                                 vm_stat_account(mm, vma->vm_flags, grow);
2279                                 anon_vma_interval_tree_pre_update_vma(vma);
2280                                 vma->vm_start = address;
2281                                 vma->vm_pgoff -= grow;
2282                                 anon_vma_interval_tree_post_update_vma(vma);
2283                                 vma_gap_update(vma);
2284                                 spin_unlock(&mm->page_table_lock);
2285
2286                                 perf_event_mmap(vma);
2287                         }
2288                 }
2289         }
2290         anon_vma_unlock_write(vma->anon_vma);
2291         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2292         validate_mm(mm);
2293         return error;
2294 }
2295
2296 /*
2297  * Note how expand_stack() refuses to expand the stack all the way to
2298  * abut the next virtual mapping, *unless* that mapping itself is also
2299  * a stack mapping. We want to leave room for a guard page, after all
2300  * (the guard page itself is not added here, that is done by the
2301  * actual page faulting logic)
2302  *
2303  * This matches the behavior of the guard page logic (see mm/memory.c:
2304  * check_stack_guard_page()), which only allows the guard page to be
2305  * removed under these circumstances.
2306  */
2307 #ifdef CONFIG_STACK_GROWSUP
2308 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2309 {
2310         struct vm_area_struct *next;
2311
2312         address &= PAGE_MASK;
2313         next = vma->vm_next;
2314         if (next && next->vm_start == address + PAGE_SIZE) {
2315                 if (!(next->vm_flags & VM_GROWSUP))
2316                         return -ENOMEM;
2317         }
2318         return expand_upwards(vma, address);
2319 }
2320
2321 struct vm_area_struct *
2322 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2323 {
2324         struct vm_area_struct *vma, *prev;
2325
2326         addr &= PAGE_MASK;
2327         vma = find_vma_prev(mm, addr, &prev);
2328         if (vma && (vma->vm_start <= addr))
2329                 return vma;
2330         if (!prev || expand_stack(prev, addr))
2331                 return NULL;
2332         if (prev->vm_flags & VM_LOCKED)
2333                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2334         return prev;
2335 }
2336 #else
2337 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2338 {
2339         struct vm_area_struct *prev;
2340
2341         address &= PAGE_MASK;
2342         prev = vma->vm_prev;
2343         if (prev && prev->vm_end == address) {
2344                 if (!(prev->vm_flags & VM_GROWSDOWN))
2345                         return -ENOMEM;
2346         }
2347         return expand_downwards(vma, address);
2348 }
2349
2350 struct vm_area_struct *
2351 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2352 {
2353         struct vm_area_struct *vma;
2354         unsigned long start;
2355
2356         addr &= PAGE_MASK;
2357         vma = find_vma(mm, addr);
2358         if (!vma)
2359                 return NULL;
2360         if (vma->vm_start <= addr)
2361                 return vma;
2362         if (!(vma->vm_flags & VM_GROWSDOWN))
2363                 return NULL;
2364         start = vma->vm_start;
2365         if (expand_stack(vma, addr))
2366                 return NULL;
2367         if (vma->vm_flags & VM_LOCKED)
2368                 populate_vma_page_range(vma, addr, start, NULL);
2369         return vma;
2370 }
2371 #endif
2372
2373 EXPORT_SYMBOL_GPL(find_extend_vma);
2374
2375 /*
2376  * Ok - we have the memory areas we should free on the vma list,
2377  * so release them, and do the vma updates.
2378  *
2379  * Called with the mm semaphore held.
2380  */
2381 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2382 {
2383         unsigned long nr_accounted = 0;
2384
2385         /* Update high watermark before we lower total_vm */
2386         update_hiwater_vm(mm);
2387         do {
2388                 long nrpages = vma_pages(vma);
2389
2390                 if (vma->vm_flags & VM_ACCOUNT)
2391                         nr_accounted += nrpages;
2392                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2393                 vma = remove_vma(vma);
2394         } while (vma);
2395         vm_unacct_memory(nr_accounted);
2396         validate_mm(mm);
2397 }
2398
2399 /*
2400  * Get rid of page table information in the indicated region.
2401  *
2402  * Called with the mm semaphore held.
2403  */
2404 static void unmap_region(struct mm_struct *mm,
2405                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2406                 unsigned long start, unsigned long end)
2407 {
2408         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2409         struct mmu_gather tlb;
2410
2411         lru_add_drain();
2412         tlb_gather_mmu(&tlb, mm, start, end);
2413         update_hiwater_rss(mm);
2414         unmap_vmas(&tlb, vma, start, end);
2415         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2416                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2417         tlb_finish_mmu(&tlb, start, end);
2418 }
2419
2420 /*
2421  * Create a list of vma's touched by the unmap, removing them from the mm's
2422  * vma list as we go..
2423  */
2424 static void
2425 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2426         struct vm_area_struct *prev, unsigned long end)
2427 {
2428         struct vm_area_struct **insertion_point;
2429         struct vm_area_struct *tail_vma = NULL;
2430
2431         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2432         vma->vm_prev = NULL;
2433         do {
2434                 vma_rb_erase(vma, &mm->mm_rb);
2435                 mm->map_count--;
2436                 tail_vma = vma;
2437                 vma = vma->vm_next;
2438         } while (vma && vma->vm_start < end);
2439         *insertion_point = vma;
2440         if (vma) {
2441                 vma->vm_prev = prev;
2442                 vma_gap_update(vma);
2443         } else
2444                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2445         tail_vma->vm_next = NULL;
2446
2447         /* Kill the cache */
2448         vmacache_invalidate(mm);
2449 }
2450
2451 /*
2452  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2453  * munmap path where it doesn't make sense to fail.
2454  */
2455 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2456               unsigned long addr, int new_below)
2457 {
2458         struct vm_area_struct *new;
2459         int err;
2460
2461         if (is_vm_hugetlb_page(vma) && (addr &
2462                                         ~(huge_page_mask(hstate_vma(vma)))))
2463                 return -EINVAL;
2464
2465         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2466         if (!new)
2467                 return -ENOMEM;
2468
2469         /* most fields are the same, copy all, and then fixup */
2470         *new = *vma;
2471
2472         INIT_LIST_HEAD(&new->anon_vma_chain);
2473
2474         if (new_below)
2475                 new->vm_end = addr;
2476         else {
2477                 new->vm_start = addr;
2478                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2479         }
2480
2481         err = vma_dup_policy(vma, new);
2482         if (err)
2483                 goto out_free_vma;
2484
2485         err = anon_vma_clone(new, vma);
2486         if (err)
2487                 goto out_free_mpol;
2488
2489         if (new->vm_file)
2490                 get_file(new->vm_file);
2491
2492         if (new->vm_ops && new->vm_ops->open)
2493                 new->vm_ops->open(new);
2494
2495         if (new_below)
2496                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2497                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2498         else
2499                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2500
2501         /* Success. */
2502         if (!err)
2503                 return 0;
2504
2505         /* Clean everything up if vma_adjust failed. */
2506         if (new->vm_ops && new->vm_ops->close)
2507                 new->vm_ops->close(new);
2508         if (new->vm_file)
2509                 fput(new->vm_file);
2510         unlink_anon_vmas(new);
2511  out_free_mpol:
2512         mpol_put(vma_policy(new));
2513  out_free_vma:
2514         kmem_cache_free(vm_area_cachep, new);
2515         return err;
2516 }
2517
2518 /*
2519  * Split a vma into two pieces at address 'addr', a new vma is allocated
2520  * either for the first part or the tail.
2521  */
2522 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2523               unsigned long addr, int new_below)
2524 {
2525         if (mm->map_count >= sysctl_max_map_count)
2526                 return -ENOMEM;
2527
2528         return __split_vma(mm, vma, addr, new_below);
2529 }
2530
2531 /* Munmap is split into 2 main parts -- this part which finds
2532  * what needs doing, and the areas themselves, which do the
2533  * work.  This now handles partial unmappings.
2534  * Jeremy Fitzhardinge <jeremy@goop.org>
2535  */
2536 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2537 {
2538         unsigned long end;
2539         struct vm_area_struct *vma, *prev, *last;
2540
2541         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2542                 return -EINVAL;
2543
2544         len = PAGE_ALIGN(len);
2545         if (len == 0)
2546                 return -EINVAL;
2547
2548         /* Find the first overlapping VMA */
2549         vma = find_vma(mm, start);
2550         if (!vma)
2551                 return 0;
2552         prev = vma->vm_prev;
2553         /* we have  start < vma->vm_end  */
2554
2555         /* if it doesn't overlap, we have nothing.. */
2556         end = start + len;
2557         if (vma->vm_start >= end)
2558                 return 0;
2559
2560         /*
2561          * If we need to split any vma, do it now to save pain later.
2562          *
2563          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2564          * unmapped vm_area_struct will remain in use: so lower split_vma
2565          * places tmp vma above, and higher split_vma places tmp vma below.
2566          */
2567         if (start > vma->vm_start) {
2568                 int error;
2569
2570                 /*
2571                  * Make sure that map_count on return from munmap() will
2572                  * not exceed its limit; but let map_count go just above
2573                  * its limit temporarily, to help free resources as expected.
2574                  */
2575                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2576                         return -ENOMEM;
2577
2578                 error = __split_vma(mm, vma, start, 0);
2579                 if (error)
2580                         return error;
2581                 prev = vma;
2582         }
2583
2584         /* Does it split the last one? */
2585         last = find_vma(mm, end);
2586         if (last && end > last->vm_start) {
2587                 int error = __split_vma(mm, last, end, 1);
2588                 if (error)
2589                         return error;
2590         }
2591         vma = prev ? prev->vm_next : mm->mmap;
2592
2593         /*
2594          * unlock any mlock()ed ranges before detaching vmas
2595          */
2596         if (mm->locked_vm) {
2597                 struct vm_area_struct *tmp = vma;
2598                 while (tmp && tmp->vm_start < end) {
2599                         if (tmp->vm_flags & VM_LOCKED) {
2600                                 mm->locked_vm -= vma_pages(tmp);
2601                                 munlock_vma_pages_all(tmp);
2602                         }
2603                         tmp = tmp->vm_next;
2604                 }
2605         }
2606
2607         /*
2608          * Remove the vma's, and unmap the actual pages
2609          */
2610         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2611         unmap_region(mm, vma, prev, start, end);
2612
2613         arch_unmap(mm, vma, start, end);
2614
2615         /* Fix up all other VM information */
2616         remove_vma_list(mm, vma);
2617
2618         return 0;
2619 }
2620
2621 int vm_munmap(unsigned long start, size_t len)
2622 {
2623         int ret;
2624         struct mm_struct *mm = current->mm;
2625
2626         down_write(&mm->mmap_sem);
2627         ret = do_munmap(mm, start, len);
2628         up_write(&mm->mmap_sem);
2629         return ret;
2630 }
2631 EXPORT_SYMBOL(vm_munmap);
2632
2633 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2634 {
2635         profile_munmap(addr);
2636         return vm_munmap(addr, len);
2637 }
2638
2639
2640 /*
2641  * Emulation of deprecated remap_file_pages() syscall.
2642  */
2643 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2644                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2645 {
2646
2647         struct mm_struct *mm = current->mm;
2648         struct vm_area_struct *vma;
2649         unsigned long populate = 0;
2650         unsigned long ret = -EINVAL;
2651         struct file *file;
2652
2653         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2654                         "See Documentation/vm/remap_file_pages.txt.\n",
2655                         current->comm, current->pid);
2656
2657         if (prot)
2658                 return ret;
2659         start = start & PAGE_MASK;
2660         size = size & PAGE_MASK;
2661
2662         if (start + size <= start)
2663                 return ret;
2664
2665         /* Does pgoff wrap? */
2666         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2667                 return ret;
2668
2669         down_write(&mm->mmap_sem);
2670         vma = find_vma(mm, start);
2671
2672         if (!vma || !(vma->vm_flags & VM_SHARED))
2673                 goto out;
2674
2675         if (start < vma->vm_start || start + size > vma->vm_end)
2676                 goto out;
2677
2678         if (pgoff == linear_page_index(vma, start)) {
2679                 ret = 0;
2680                 goto out;
2681         }
2682
2683         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2684         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2685         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2686
2687         flags &= MAP_NONBLOCK;
2688         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2689         if (vma->vm_flags & VM_LOCKED) {
2690                 flags |= MAP_LOCKED;
2691                 /* drop PG_Mlocked flag for over-mapped range */
2692                 munlock_vma_pages_range(vma, start, start + size);
2693         }
2694
2695         file = get_file(vma->vm_file);
2696         ret = do_mmap_pgoff(vma->vm_file, start, size,
2697                         prot, flags, pgoff, &populate);
2698         fput(file);
2699 out:
2700         up_write(&mm->mmap_sem);
2701         if (populate)
2702                 mm_populate(ret, populate);
2703         if (!IS_ERR_VALUE(ret))
2704                 ret = 0;
2705         return ret;
2706 }
2707
2708 static inline void verify_mm_writelocked(struct mm_struct *mm)
2709 {
2710 #ifdef CONFIG_DEBUG_VM
2711         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2712                 WARN_ON(1);
2713                 up_read(&mm->mmap_sem);
2714         }
2715 #endif
2716 }
2717
2718 /*
2719  *  this is really a simplified "do_mmap".  it only handles
2720  *  anonymous maps.  eventually we may be able to do some
2721  *  brk-specific accounting here.
2722  */
2723 static unsigned long do_brk(unsigned long addr, unsigned long len)
2724 {
2725         struct mm_struct *mm = current->mm;
2726         struct vm_area_struct *vma, *prev;
2727         unsigned long flags;
2728         struct rb_node **rb_link, *rb_parent;
2729         pgoff_t pgoff = addr >> PAGE_SHIFT;
2730         int error;
2731
2732         len = PAGE_ALIGN(len);
2733         if (!len)
2734                 return addr;
2735
2736         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2737
2738         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2739         if (offset_in_page(error))
2740                 return error;
2741
2742         error = mlock_future_check(mm, mm->def_flags, len);
2743         if (error)
2744                 return error;
2745
2746         /*
2747          * mm->mmap_sem is required to protect against another thread
2748          * changing the mappings in case we sleep.
2749          */
2750         verify_mm_writelocked(mm);
2751
2752         /*
2753          * Clear old maps.  this also does some error checking for us
2754          */
2755         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2756                               &rb_parent)) {
2757                 if (do_munmap(mm, addr, len))
2758                         return -ENOMEM;
2759         }
2760
2761         /* Check against address space limits *after* clearing old maps... */
2762         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2763                 return -ENOMEM;
2764
2765         if (mm->map_count > sysctl_max_map_count)
2766                 return -ENOMEM;
2767
2768         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2769                 return -ENOMEM;
2770
2771         /* Can we just expand an old private anonymous mapping? */
2772         vma = vma_merge(mm, prev, addr, addr + len, flags,
2773                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2774         if (vma)
2775                 goto out;
2776
2777         /*
2778          * create a vma struct for an anonymous mapping
2779          */
2780         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2781         if (!vma) {
2782                 vm_unacct_memory(len >> PAGE_SHIFT);
2783                 return -ENOMEM;
2784         }
2785
2786         INIT_LIST_HEAD(&vma->anon_vma_chain);
2787         vma->vm_mm = mm;
2788         vma->vm_start = addr;
2789         vma->vm_end = addr + len;
2790         vma->vm_pgoff = pgoff;
2791         vma->vm_flags = flags;
2792         vma->vm_page_prot = vm_get_page_prot(flags);
2793         vma_link(mm, vma, prev, rb_link, rb_parent);
2794 out:
2795         perf_event_mmap(vma);
2796         mm->total_vm += len >> PAGE_SHIFT;
2797         mm->data_vm += len >> PAGE_SHIFT;
2798         if (flags & VM_LOCKED)
2799                 mm->locked_vm += (len >> PAGE_SHIFT);
2800         vma->vm_flags |= VM_SOFTDIRTY;
2801         return addr;
2802 }
2803
2804 unsigned long vm_brk(unsigned long addr, unsigned long len)
2805 {
2806         struct mm_struct *mm = current->mm;
2807         unsigned long ret;
2808         bool populate;
2809
2810         down_write(&mm->mmap_sem);
2811         ret = do_brk(addr, len);
2812         populate = ((mm->def_flags & VM_LOCKED) != 0);
2813         up_write(&mm->mmap_sem);
2814         if (populate)
2815                 mm_populate(addr, len);
2816         return ret;
2817 }
2818 EXPORT_SYMBOL(vm_brk);
2819
2820 /* Release all mmaps. */
2821 void exit_mmap(struct mm_struct *mm)
2822 {
2823         struct mmu_gather tlb;
2824         struct vm_area_struct *vma;
2825         unsigned long nr_accounted = 0;
2826
2827         /* mm's last user has gone, and its about to be pulled down */
2828         mmu_notifier_release(mm);
2829
2830         if (mm->locked_vm) {
2831                 vma = mm->mmap;
2832                 while (vma) {
2833                         if (vma->vm_flags & VM_LOCKED)
2834                                 munlock_vma_pages_all(vma);
2835                         vma = vma->vm_next;
2836                 }
2837         }
2838
2839         arch_exit_mmap(mm);
2840
2841         vma = mm->mmap;
2842         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2843                 return;
2844
2845         lru_add_drain();
2846         flush_cache_mm(mm);
2847         tlb_gather_mmu(&tlb, mm, 0, -1);
2848         /* update_hiwater_rss(mm) here? but nobody should be looking */
2849         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2850         unmap_vmas(&tlb, vma, 0, -1);
2851
2852         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2853         tlb_finish_mmu(&tlb, 0, -1);
2854
2855         /*
2856          * Walk the list again, actually closing and freeing it,
2857          * with preemption enabled, without holding any MM locks.
2858          */
2859         while (vma) {
2860                 if (vma->vm_flags & VM_ACCOUNT)
2861                         nr_accounted += vma_pages(vma);
2862                 vma = remove_vma(vma);
2863         }
2864         vm_unacct_memory(nr_accounted);
2865 }
2866
2867 /* Insert vm structure into process list sorted by address
2868  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2869  * then i_mmap_rwsem is taken here.
2870  */
2871 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2872 {
2873         struct vm_area_struct *prev;
2874         struct rb_node **rb_link, *rb_parent;
2875
2876         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2877                            &prev, &rb_link, &rb_parent))
2878                 return -ENOMEM;
2879         if ((vma->vm_flags & VM_ACCOUNT) &&
2880              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2881                 return -ENOMEM;
2882
2883         /*
2884          * The vm_pgoff of a purely anonymous vma should be irrelevant
2885          * until its first write fault, when page's anon_vma and index
2886          * are set.  But now set the vm_pgoff it will almost certainly
2887          * end up with (unless mremap moves it elsewhere before that
2888          * first wfault), so /proc/pid/maps tells a consistent story.
2889          *
2890          * By setting it to reflect the virtual start address of the
2891          * vma, merges and splits can happen in a seamless way, just
2892          * using the existing file pgoff checks and manipulations.
2893          * Similarly in do_mmap_pgoff and in do_brk.
2894          */
2895         if (vma_is_anonymous(vma)) {
2896                 BUG_ON(vma->anon_vma);
2897                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2898         }
2899
2900         vma_link(mm, vma, prev, rb_link, rb_parent);
2901         return 0;
2902 }
2903
2904 /*
2905  * Copy the vma structure to a new location in the same mm,
2906  * prior to moving page table entries, to effect an mremap move.
2907  */
2908 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2909         unsigned long addr, unsigned long len, pgoff_t pgoff,
2910         bool *need_rmap_locks)
2911 {
2912         struct vm_area_struct *vma = *vmap;
2913         unsigned long vma_start = vma->vm_start;
2914         struct mm_struct *mm = vma->vm_mm;
2915         struct vm_area_struct *new_vma, *prev;
2916         struct rb_node **rb_link, *rb_parent;
2917         bool faulted_in_anon_vma = true;
2918
2919         /*
2920          * If anonymous vma has not yet been faulted, update new pgoff
2921          * to match new location, to increase its chance of merging.
2922          */
2923         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2924                 pgoff = addr >> PAGE_SHIFT;
2925                 faulted_in_anon_vma = false;
2926         }
2927
2928         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2929                 return NULL;    /* should never get here */
2930         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2931                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2932                             vma->vm_userfaultfd_ctx);
2933         if (new_vma) {
2934                 /*
2935                  * Source vma may have been merged into new_vma
2936                  */
2937                 if (unlikely(vma_start >= new_vma->vm_start &&
2938                              vma_start < new_vma->vm_end)) {
2939                         /*
2940                          * The only way we can get a vma_merge with
2941                          * self during an mremap is if the vma hasn't
2942                          * been faulted in yet and we were allowed to
2943                          * reset the dst vma->vm_pgoff to the
2944                          * destination address of the mremap to allow
2945                          * the merge to happen. mremap must change the
2946                          * vm_pgoff linearity between src and dst vmas
2947                          * (in turn preventing a vma_merge) to be
2948                          * safe. It is only safe to keep the vm_pgoff
2949                          * linear if there are no pages mapped yet.
2950                          */
2951                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2952                         *vmap = vma = new_vma;
2953                 }
2954                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2955         } else {
2956                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2957                 if (!new_vma)
2958                         goto out;
2959                 *new_vma = *vma;
2960                 new_vma->vm_start = addr;
2961                 new_vma->vm_end = addr + len;
2962                 new_vma->vm_pgoff = pgoff;
2963                 if (vma_dup_policy(vma, new_vma))
2964                         goto out_free_vma;
2965                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2966                 if (anon_vma_clone(new_vma, vma))
2967                         goto out_free_mempol;
2968                 if (new_vma->vm_file)
2969                         get_file(new_vma->vm_file);
2970                 if (new_vma->vm_ops && new_vma->vm_ops->open)
2971                         new_vma->vm_ops->open(new_vma);
2972                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2973                 *need_rmap_locks = false;
2974         }
2975         return new_vma;
2976
2977 out_free_mempol:
2978         mpol_put(vma_policy(new_vma));
2979 out_free_vma:
2980         kmem_cache_free(vm_area_cachep, new_vma);
2981 out:
2982         return NULL;
2983 }
2984
2985 /*
2986  * Return true if the calling process may expand its vm space by the passed
2987  * number of pages
2988  */
2989 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2990 {
2991         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2992                 return false;
2993
2994         if (is_data_mapping(flags) &&
2995             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2996                 if (ignore_rlimit_data)
2997                         pr_warn_once("%s (%d): VmData %lu exceed data ulimit "
2998                                      "%lu. Will be forbidden soon.\n",
2999                                      current->comm, current->pid,
3000                                      (mm->data_vm + npages) << PAGE_SHIFT,
3001                                      rlimit(RLIMIT_DATA));
3002                 else
3003                         return false;
3004         }
3005
3006         return true;
3007 }
3008
3009 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3010 {
3011         mm->total_vm += npages;
3012
3013         if (is_exec_mapping(flags))
3014                 mm->exec_vm += npages;
3015         else if (is_stack_mapping(flags))
3016                 mm->stack_vm += npages;
3017         else if (is_data_mapping(flags))
3018                 mm->data_vm += npages;
3019 }
3020
3021 static int special_mapping_fault(struct vm_area_struct *vma,
3022                                  struct vm_fault *vmf);
3023
3024 /*
3025  * Having a close hook prevents vma merging regardless of flags.
3026  */
3027 static void special_mapping_close(struct vm_area_struct *vma)
3028 {
3029 }
3030
3031 static const char *special_mapping_name(struct vm_area_struct *vma)
3032 {
3033         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3034 }
3035
3036 static const struct vm_operations_struct special_mapping_vmops = {
3037         .close = special_mapping_close,
3038         .fault = special_mapping_fault,
3039         .name = special_mapping_name,
3040 };
3041
3042 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3043         .close = special_mapping_close,
3044         .fault = special_mapping_fault,
3045 };
3046
3047 static int special_mapping_fault(struct vm_area_struct *vma,
3048                                 struct vm_fault *vmf)
3049 {
3050         pgoff_t pgoff;
3051         struct page **pages;
3052
3053         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3054                 pages = vma->vm_private_data;
3055         } else {
3056                 struct vm_special_mapping *sm = vma->vm_private_data;
3057
3058                 if (sm->fault)
3059                         return sm->fault(sm, vma, vmf);
3060
3061                 pages = sm->pages;
3062         }
3063
3064         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3065                 pgoff--;
3066
3067         if (*pages) {
3068                 struct page *page = *pages;
3069                 get_page(page);
3070                 vmf->page = page;
3071                 return 0;
3072         }
3073
3074         return VM_FAULT_SIGBUS;
3075 }
3076
3077 static struct vm_area_struct *__install_special_mapping(
3078         struct mm_struct *mm,
3079         unsigned long addr, unsigned long len,
3080         unsigned long vm_flags, void *priv,
3081         const struct vm_operations_struct *ops)
3082 {
3083         int ret;
3084         struct vm_area_struct *vma;
3085
3086         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3087         if (unlikely(vma == NULL))
3088                 return ERR_PTR(-ENOMEM);
3089
3090         INIT_LIST_HEAD(&vma->anon_vma_chain);
3091         vma->vm_mm = mm;
3092         vma->vm_start = addr;
3093         vma->vm_end = addr + len;
3094
3095         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3096         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3097
3098         vma->vm_ops = ops;
3099         vma->vm_private_data = priv;
3100
3101         ret = insert_vm_struct(mm, vma);
3102         if (ret)
3103                 goto out;
3104
3105         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3106
3107         perf_event_mmap(vma);
3108
3109         return vma;
3110
3111 out:
3112         kmem_cache_free(vm_area_cachep, vma);
3113         return ERR_PTR(ret);
3114 }
3115
3116 /*
3117  * Called with mm->mmap_sem held for writing.
3118  * Insert a new vma covering the given region, with the given flags.
3119  * Its pages are supplied by the given array of struct page *.
3120  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3121  * The region past the last page supplied will always produce SIGBUS.
3122  * The array pointer and the pages it points to are assumed to stay alive
3123  * for as long as this mapping might exist.
3124  */
3125 struct vm_area_struct *_install_special_mapping(
3126         struct mm_struct *mm,
3127         unsigned long addr, unsigned long len,
3128         unsigned long vm_flags, const struct vm_special_mapping *spec)
3129 {
3130         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3131                                         &special_mapping_vmops);
3132 }
3133
3134 int install_special_mapping(struct mm_struct *mm,
3135                             unsigned long addr, unsigned long len,
3136                             unsigned long vm_flags, struct page **pages)
3137 {
3138         struct vm_area_struct *vma = __install_special_mapping(
3139                 mm, addr, len, vm_flags, (void *)pages,
3140                 &legacy_special_mapping_vmops);
3141
3142         return PTR_ERR_OR_ZERO(vma);
3143 }
3144
3145 static DEFINE_MUTEX(mm_all_locks_mutex);
3146
3147 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3148 {
3149         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3150                 /*
3151                  * The LSB of head.next can't change from under us
3152                  * because we hold the mm_all_locks_mutex.
3153                  */
3154                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3155                 /*
3156                  * We can safely modify head.next after taking the
3157                  * anon_vma->root->rwsem. If some other vma in this mm shares
3158                  * the same anon_vma we won't take it again.
3159                  *
3160                  * No need of atomic instructions here, head.next
3161                  * can't change from under us thanks to the
3162                  * anon_vma->root->rwsem.
3163                  */
3164                 if (__test_and_set_bit(0, (unsigned long *)
3165                                        &anon_vma->root->rb_root.rb_node))
3166                         BUG();
3167         }
3168 }
3169
3170 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3171 {
3172         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3173                 /*
3174                  * AS_MM_ALL_LOCKS can't change from under us because
3175                  * we hold the mm_all_locks_mutex.
3176                  *
3177                  * Operations on ->flags have to be atomic because
3178                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3179                  * mm_all_locks_mutex, there may be other cpus
3180                  * changing other bitflags in parallel to us.
3181                  */
3182                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3183                         BUG();
3184                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3185         }
3186 }
3187
3188 /*
3189  * This operation locks against the VM for all pte/vma/mm related
3190  * operations that could ever happen on a certain mm. This includes
3191  * vmtruncate, try_to_unmap, and all page faults.
3192  *
3193  * The caller must take the mmap_sem in write mode before calling
3194  * mm_take_all_locks(). The caller isn't allowed to release the
3195  * mmap_sem until mm_drop_all_locks() returns.
3196  *
3197  * mmap_sem in write mode is required in order to block all operations
3198  * that could modify pagetables and free pages without need of
3199  * altering the vma layout. It's also needed in write mode to avoid new
3200  * anon_vmas to be associated with existing vmas.
3201  *
3202  * A single task can't take more than one mm_take_all_locks() in a row
3203  * or it would deadlock.
3204  *
3205  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3206  * mapping->flags avoid to take the same lock twice, if more than one
3207  * vma in this mm is backed by the same anon_vma or address_space.
3208  *
3209  * We take locks in following order, accordingly to comment at beginning
3210  * of mm/rmap.c:
3211  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3212  *     hugetlb mapping);
3213  *   - all i_mmap_rwsem locks;
3214  *   - all anon_vma->rwseml
3215  *
3216  * We can take all locks within these types randomly because the VM code
3217  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3218  * mm_all_locks_mutex.
3219  *
3220  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3221  * that may have to take thousand of locks.
3222  *
3223  * mm_take_all_locks() can fail if it's interrupted by signals.
3224  */
3225 int mm_take_all_locks(struct mm_struct *mm)
3226 {
3227         struct vm_area_struct *vma;
3228         struct anon_vma_chain *avc;
3229
3230         BUG_ON(down_read_trylock(&mm->mmap_sem));
3231
3232         mutex_lock(&mm_all_locks_mutex);
3233
3234         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3235                 if (signal_pending(current))
3236                         goto out_unlock;
3237                 if (vma->vm_file && vma->vm_file->f_mapping &&
3238                                 is_vm_hugetlb_page(vma))
3239                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3240         }
3241
3242         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3243                 if (signal_pending(current))
3244                         goto out_unlock;
3245                 if (vma->vm_file && vma->vm_file->f_mapping &&
3246                                 !is_vm_hugetlb_page(vma))
3247                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3248         }
3249
3250         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3251                 if (signal_pending(current))
3252                         goto out_unlock;
3253                 if (vma->anon_vma)
3254                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3255                                 vm_lock_anon_vma(mm, avc->anon_vma);
3256         }
3257
3258         return 0;
3259
3260 out_unlock:
3261         mm_drop_all_locks(mm);
3262         return -EINTR;
3263 }
3264
3265 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3266 {
3267         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3268                 /*
3269                  * The LSB of head.next can't change to 0 from under
3270                  * us because we hold the mm_all_locks_mutex.
3271                  *
3272                  * We must however clear the bitflag before unlocking
3273                  * the vma so the users using the anon_vma->rb_root will
3274                  * never see our bitflag.
3275                  *
3276                  * No need of atomic instructions here, head.next
3277                  * can't change from under us until we release the
3278                  * anon_vma->root->rwsem.
3279                  */
3280                 if (!__test_and_clear_bit(0, (unsigned long *)
3281                                           &anon_vma->root->rb_root.rb_node))
3282                         BUG();
3283                 anon_vma_unlock_write(anon_vma);
3284         }
3285 }
3286
3287 static void vm_unlock_mapping(struct address_space *mapping)
3288 {
3289         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3290                 /*
3291                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3292                  * because we hold the mm_all_locks_mutex.
3293                  */
3294                 i_mmap_unlock_write(mapping);
3295                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3296                                         &mapping->flags))
3297                         BUG();
3298         }
3299 }
3300
3301 /*
3302  * The mmap_sem cannot be released by the caller until
3303  * mm_drop_all_locks() returns.
3304  */
3305 void mm_drop_all_locks(struct mm_struct *mm)
3306 {
3307         struct vm_area_struct *vma;
3308         struct anon_vma_chain *avc;
3309
3310         BUG_ON(down_read_trylock(&mm->mmap_sem));
3311         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3312
3313         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3314                 if (vma->anon_vma)
3315                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3316                                 vm_unlock_anon_vma(avc->anon_vma);
3317                 if (vma->vm_file && vma->vm_file->f_mapping)
3318                         vm_unlock_mapping(vma->vm_file->f_mapping);
3319         }
3320
3321         mutex_unlock(&mm_all_locks_mutex);
3322 }
3323
3324 /*
3325  * initialise the VMA slab
3326  */
3327 void __init mmap_init(void)
3328 {
3329         int ret;
3330
3331         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3332         VM_BUG_ON(ret);
3333 }
3334
3335 /*
3336  * Initialise sysctl_user_reserve_kbytes.
3337  *
3338  * This is intended to prevent a user from starting a single memory hogging
3339  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3340  * mode.
3341  *
3342  * The default value is min(3% of free memory, 128MB)
3343  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3344  */
3345 static int init_user_reserve(void)
3346 {
3347         unsigned long free_kbytes;
3348
3349         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3350
3351         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3352         return 0;
3353 }
3354 subsys_initcall(init_user_reserve);
3355
3356 /*
3357  * Initialise sysctl_admin_reserve_kbytes.
3358  *
3359  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3360  * to log in and kill a memory hogging process.
3361  *
3362  * Systems with more than 256MB will reserve 8MB, enough to recover
3363  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3364  * only reserve 3% of free pages by default.
3365  */
3366 static int init_admin_reserve(void)
3367 {
3368         unsigned long free_kbytes;
3369
3370         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3371
3372         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3373         return 0;
3374 }
3375 subsys_initcall(init_admin_reserve);
3376
3377 /*
3378  * Reinititalise user and admin reserves if memory is added or removed.
3379  *
3380  * The default user reserve max is 128MB, and the default max for the
3381  * admin reserve is 8MB. These are usually, but not always, enough to
3382  * enable recovery from a memory hogging process using login/sshd, a shell,
3383  * and tools like top. It may make sense to increase or even disable the
3384  * reserve depending on the existence of swap or variations in the recovery
3385  * tools. So, the admin may have changed them.
3386  *
3387  * If memory is added and the reserves have been eliminated or increased above
3388  * the default max, then we'll trust the admin.
3389  *
3390  * If memory is removed and there isn't enough free memory, then we
3391  * need to reset the reserves.
3392  *
3393  * Otherwise keep the reserve set by the admin.
3394  */
3395 static int reserve_mem_notifier(struct notifier_block *nb,
3396                              unsigned long action, void *data)
3397 {
3398         unsigned long tmp, free_kbytes;
3399
3400         switch (action) {
3401         case MEM_ONLINE:
3402                 /* Default max is 128MB. Leave alone if modified by operator. */
3403                 tmp = sysctl_user_reserve_kbytes;
3404                 if (0 < tmp && tmp < (1UL << 17))
3405                         init_user_reserve();
3406
3407                 /* Default max is 8MB.  Leave alone if modified by operator. */
3408                 tmp = sysctl_admin_reserve_kbytes;
3409                 if (0 < tmp && tmp < (1UL << 13))
3410                         init_admin_reserve();
3411
3412                 break;
3413         case MEM_OFFLINE:
3414                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3415
3416                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3417                         init_user_reserve();
3418                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3419                                 sysctl_user_reserve_kbytes);
3420                 }
3421
3422                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3423                         init_admin_reserve();
3424                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3425                                 sysctl_admin_reserve_kbytes);
3426                 }
3427                 break;
3428         default:
3429                 break;
3430         }
3431         return NOTIFY_OK;
3432 }
3433
3434 static struct notifier_block reserve_mem_nb = {
3435         .notifier_call = reserve_mem_notifier,
3436 };
3437
3438 static int __meminit init_reserve_notifier(void)
3439 {
3440         if (register_hotmemory_notifier(&reserve_mem_nb))
3441                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3442
3443         return 0;
3444 }
3445 subsys_initcall(init_reserve_notifier);