mm: fix corner case in anon_vma endless growing prevention
[cascardo/linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49
50 #include "internal.h"
51
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags)       (0)
54 #endif
55
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len)              (addr)
58 #endif
59
60 static void unmap_region(struct mm_struct *mm,
61                 struct vm_area_struct *vma, struct vm_area_struct *prev,
62                 unsigned long start, unsigned long end);
63
64 /* description of effects of mapping type and prot in current implementation.
65  * this is due to the limited x86 page protection hardware.  The expected
66  * behavior is in parens:
67  *
68  * map_type     prot
69  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
70  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *
74  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
75  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
76  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
77  *
78  */
79 pgprot_t protection_map[16] = {
80         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
82 };
83
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
85 {
86         return __pgprot(pgprot_val(protection_map[vm_flags &
87                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
89 }
90 EXPORT_SYMBOL(vm_get_page_prot);
91
92 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
93 {
94         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
95 }
96
97 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
98 void vma_set_page_prot(struct vm_area_struct *vma)
99 {
100         unsigned long vm_flags = vma->vm_flags;
101
102         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
103         if (vma_wants_writenotify(vma)) {
104                 vm_flags &= ~VM_SHARED;
105                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
106                                                      vm_flags);
107         }
108 }
109
110
111 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
112 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
113 unsigned long sysctl_overcommit_kbytes __read_mostly;
114 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
115 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
116 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
117 /*
118  * Make sure vm_committed_as in one cacheline and not cacheline shared with
119  * other variables. It can be updated by several CPUs frequently.
120  */
121 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
122
123 /*
124  * The global memory commitment made in the system can be a metric
125  * that can be used to drive ballooning decisions when Linux is hosted
126  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
127  * balancing memory across competing virtual machines that are hosted.
128  * Several metrics drive this policy engine including the guest reported
129  * memory commitment.
130  */
131 unsigned long vm_memory_committed(void)
132 {
133         return percpu_counter_read_positive(&vm_committed_as);
134 }
135 EXPORT_SYMBOL_GPL(vm_memory_committed);
136
137 /*
138  * Check that a process has enough memory to allocate a new virtual
139  * mapping. 0 means there is enough memory for the allocation to
140  * succeed and -ENOMEM implies there is not.
141  *
142  * We currently support three overcommit policies, which are set via the
143  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
144  *
145  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
146  * Additional code 2002 Jul 20 by Robert Love.
147  *
148  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
149  *
150  * Note this is a helper function intended to be used by LSMs which
151  * wish to use this logic.
152  */
153 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
154 {
155         unsigned long free, allowed, reserve;
156
157         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
158                         -(s64)vm_committed_as_batch * num_online_cpus(),
159                         "memory commitment underflow");
160
161         vm_acct_memory(pages);
162
163         /*
164          * Sometimes we want to use more memory than we have
165          */
166         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
167                 return 0;
168
169         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
170                 free = global_page_state(NR_FREE_PAGES);
171                 free += global_page_state(NR_FILE_PAGES);
172
173                 /*
174                  * shmem pages shouldn't be counted as free in this
175                  * case, they can't be purged, only swapped out, and
176                  * that won't affect the overall amount of available
177                  * memory in the system.
178                  */
179                 free -= global_page_state(NR_SHMEM);
180
181                 free += get_nr_swap_pages();
182
183                 /*
184                  * Any slabs which are created with the
185                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
186                  * which are reclaimable, under pressure.  The dentry
187                  * cache and most inode caches should fall into this
188                  */
189                 free += global_page_state(NR_SLAB_RECLAIMABLE);
190
191                 /*
192                  * Leave reserved pages. The pages are not for anonymous pages.
193                  */
194                 if (free <= totalreserve_pages)
195                         goto error;
196                 else
197                         free -= totalreserve_pages;
198
199                 /*
200                  * Reserve some for root
201                  */
202                 if (!cap_sys_admin)
203                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
204
205                 if (free > pages)
206                         return 0;
207
208                 goto error;
209         }
210
211         allowed = vm_commit_limit();
212         /*
213          * Reserve some for root
214          */
215         if (!cap_sys_admin)
216                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
217
218         /*
219          * Don't let a single process grow so big a user can't recover
220          */
221         if (mm) {
222                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
223                 allowed -= min(mm->total_vm / 32, reserve);
224         }
225
226         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
227                 return 0;
228 error:
229         vm_unacct_memory(pages);
230
231         return -ENOMEM;
232 }
233
234 /*
235  * Requires inode->i_mapping->i_mmap_rwsem
236  */
237 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
238                 struct file *file, struct address_space *mapping)
239 {
240         if (vma->vm_flags & VM_DENYWRITE)
241                 atomic_inc(&file_inode(file)->i_writecount);
242         if (vma->vm_flags & VM_SHARED)
243                 mapping_unmap_writable(mapping);
244
245         flush_dcache_mmap_lock(mapping);
246         if (unlikely(vma->vm_flags & VM_NONLINEAR))
247                 list_del_init(&vma->shared.nonlinear);
248         else
249                 vma_interval_tree_remove(vma, &mapping->i_mmap);
250         flush_dcache_mmap_unlock(mapping);
251 }
252
253 /*
254  * Unlink a file-based vm structure from its interval tree, to hide
255  * vma from rmap and vmtruncate before freeing its page tables.
256  */
257 void unlink_file_vma(struct vm_area_struct *vma)
258 {
259         struct file *file = vma->vm_file;
260
261         if (file) {
262                 struct address_space *mapping = file->f_mapping;
263                 i_mmap_lock_write(mapping);
264                 __remove_shared_vm_struct(vma, file, mapping);
265                 i_mmap_unlock_write(mapping);
266         }
267 }
268
269 /*
270  * Close a vm structure and free it, returning the next.
271  */
272 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
273 {
274         struct vm_area_struct *next = vma->vm_next;
275
276         might_sleep();
277         if (vma->vm_ops && vma->vm_ops->close)
278                 vma->vm_ops->close(vma);
279         if (vma->vm_file)
280                 fput(vma->vm_file);
281         mpol_put(vma_policy(vma));
282         kmem_cache_free(vm_area_cachep, vma);
283         return next;
284 }
285
286 static unsigned long do_brk(unsigned long addr, unsigned long len);
287
288 SYSCALL_DEFINE1(brk, unsigned long, brk)
289 {
290         unsigned long retval;
291         unsigned long newbrk, oldbrk;
292         struct mm_struct *mm = current->mm;
293         unsigned long min_brk;
294         bool populate;
295
296         down_write(&mm->mmap_sem);
297
298 #ifdef CONFIG_COMPAT_BRK
299         /*
300          * CONFIG_COMPAT_BRK can still be overridden by setting
301          * randomize_va_space to 2, which will still cause mm->start_brk
302          * to be arbitrarily shifted
303          */
304         if (current->brk_randomized)
305                 min_brk = mm->start_brk;
306         else
307                 min_brk = mm->end_data;
308 #else
309         min_brk = mm->start_brk;
310 #endif
311         if (brk < min_brk)
312                 goto out;
313
314         /*
315          * Check against rlimit here. If this check is done later after the test
316          * of oldbrk with newbrk then it can escape the test and let the data
317          * segment grow beyond its set limit the in case where the limit is
318          * not page aligned -Ram Gupta
319          */
320         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
321                               mm->end_data, mm->start_data))
322                 goto out;
323
324         newbrk = PAGE_ALIGN(brk);
325         oldbrk = PAGE_ALIGN(mm->brk);
326         if (oldbrk == newbrk)
327                 goto set_brk;
328
329         /* Always allow shrinking brk. */
330         if (brk <= mm->brk) {
331                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
332                         goto set_brk;
333                 goto out;
334         }
335
336         /* Check against existing mmap mappings. */
337         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
338                 goto out;
339
340         /* Ok, looks good - let it rip. */
341         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
342                 goto out;
343
344 set_brk:
345         mm->brk = brk;
346         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
347         up_write(&mm->mmap_sem);
348         if (populate)
349                 mm_populate(oldbrk, newbrk - oldbrk);
350         return brk;
351
352 out:
353         retval = mm->brk;
354         up_write(&mm->mmap_sem);
355         return retval;
356 }
357
358 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
359 {
360         unsigned long max, subtree_gap;
361         max = vma->vm_start;
362         if (vma->vm_prev)
363                 max -= vma->vm_prev->vm_end;
364         if (vma->vm_rb.rb_left) {
365                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
366                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
367                 if (subtree_gap > max)
368                         max = subtree_gap;
369         }
370         if (vma->vm_rb.rb_right) {
371                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
372                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
373                 if (subtree_gap > max)
374                         max = subtree_gap;
375         }
376         return max;
377 }
378
379 #ifdef CONFIG_DEBUG_VM_RB
380 static int browse_rb(struct rb_root *root)
381 {
382         int i = 0, j, bug = 0;
383         struct rb_node *nd, *pn = NULL;
384         unsigned long prev = 0, pend = 0;
385
386         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
387                 struct vm_area_struct *vma;
388                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
389                 if (vma->vm_start < prev) {
390                         pr_emerg("vm_start %lx < prev %lx\n",
391                                   vma->vm_start, prev);
392                         bug = 1;
393                 }
394                 if (vma->vm_start < pend) {
395                         pr_emerg("vm_start %lx < pend %lx\n",
396                                   vma->vm_start, pend);
397                         bug = 1;
398                 }
399                 if (vma->vm_start > vma->vm_end) {
400                         pr_emerg("vm_start %lx > vm_end %lx\n",
401                                   vma->vm_start, vma->vm_end);
402                         bug = 1;
403                 }
404                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
405                         pr_emerg("free gap %lx, correct %lx\n",
406                                vma->rb_subtree_gap,
407                                vma_compute_subtree_gap(vma));
408                         bug = 1;
409                 }
410                 i++;
411                 pn = nd;
412                 prev = vma->vm_start;
413                 pend = vma->vm_end;
414         }
415         j = 0;
416         for (nd = pn; nd; nd = rb_prev(nd))
417                 j++;
418         if (i != j) {
419                 pr_emerg("backwards %d, forwards %d\n", j, i);
420                 bug = 1;
421         }
422         return bug ? -1 : i;
423 }
424
425 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
426 {
427         struct rb_node *nd;
428
429         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
430                 struct vm_area_struct *vma;
431                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
432                 VM_BUG_ON_VMA(vma != ignore &&
433                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
434                         vma);
435         }
436 }
437
438 static void validate_mm(struct mm_struct *mm)
439 {
440         int bug = 0;
441         int i = 0;
442         unsigned long highest_address = 0;
443         struct vm_area_struct *vma = mm->mmap;
444
445         while (vma) {
446                 struct anon_vma_chain *avc;
447
448                 vma_lock_anon_vma(vma);
449                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
450                         anon_vma_interval_tree_verify(avc);
451                 vma_unlock_anon_vma(vma);
452                 highest_address = vma->vm_end;
453                 vma = vma->vm_next;
454                 i++;
455         }
456         if (i != mm->map_count) {
457                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
458                 bug = 1;
459         }
460         if (highest_address != mm->highest_vm_end) {
461                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
462                           mm->highest_vm_end, highest_address);
463                 bug = 1;
464         }
465         i = browse_rb(&mm->mm_rb);
466         if (i != mm->map_count) {
467                 if (i != -1)
468                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
469                 bug = 1;
470         }
471         VM_BUG_ON_MM(bug, mm);
472 }
473 #else
474 #define validate_mm_rb(root, ignore) do { } while (0)
475 #define validate_mm(mm) do { } while (0)
476 #endif
477
478 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
479                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
480
481 /*
482  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
483  * vma->vm_prev->vm_end values changed, without modifying the vma's position
484  * in the rbtree.
485  */
486 static void vma_gap_update(struct vm_area_struct *vma)
487 {
488         /*
489          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
490          * function that does exacltly what we want.
491          */
492         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
493 }
494
495 static inline void vma_rb_insert(struct vm_area_struct *vma,
496                                  struct rb_root *root)
497 {
498         /* All rb_subtree_gap values must be consistent prior to insertion */
499         validate_mm_rb(root, NULL);
500
501         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
502 }
503
504 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
505 {
506         /*
507          * All rb_subtree_gap values must be consistent prior to erase,
508          * with the possible exception of the vma being erased.
509          */
510         validate_mm_rb(root, vma);
511
512         /*
513          * Note rb_erase_augmented is a fairly large inline function,
514          * so make sure we instantiate it only once with our desired
515          * augmented rbtree callbacks.
516          */
517         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
518 }
519
520 /*
521  * vma has some anon_vma assigned, and is already inserted on that
522  * anon_vma's interval trees.
523  *
524  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
525  * vma must be removed from the anon_vma's interval trees using
526  * anon_vma_interval_tree_pre_update_vma().
527  *
528  * After the update, the vma will be reinserted using
529  * anon_vma_interval_tree_post_update_vma().
530  *
531  * The entire update must be protected by exclusive mmap_sem and by
532  * the root anon_vma's mutex.
533  */
534 static inline void
535 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
536 {
537         struct anon_vma_chain *avc;
538
539         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
540                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
541 }
542
543 static inline void
544 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
545 {
546         struct anon_vma_chain *avc;
547
548         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
549                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
550 }
551
552 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
553                 unsigned long end, struct vm_area_struct **pprev,
554                 struct rb_node ***rb_link, struct rb_node **rb_parent)
555 {
556         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
557
558         __rb_link = &mm->mm_rb.rb_node;
559         rb_prev = __rb_parent = NULL;
560
561         while (*__rb_link) {
562                 struct vm_area_struct *vma_tmp;
563
564                 __rb_parent = *__rb_link;
565                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
566
567                 if (vma_tmp->vm_end > addr) {
568                         /* Fail if an existing vma overlaps the area */
569                         if (vma_tmp->vm_start < end)
570                                 return -ENOMEM;
571                         __rb_link = &__rb_parent->rb_left;
572                 } else {
573                         rb_prev = __rb_parent;
574                         __rb_link = &__rb_parent->rb_right;
575                 }
576         }
577
578         *pprev = NULL;
579         if (rb_prev)
580                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
581         *rb_link = __rb_link;
582         *rb_parent = __rb_parent;
583         return 0;
584 }
585
586 static unsigned long count_vma_pages_range(struct mm_struct *mm,
587                 unsigned long addr, unsigned long end)
588 {
589         unsigned long nr_pages = 0;
590         struct vm_area_struct *vma;
591
592         /* Find first overlaping mapping */
593         vma = find_vma_intersection(mm, addr, end);
594         if (!vma)
595                 return 0;
596
597         nr_pages = (min(end, vma->vm_end) -
598                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
599
600         /* Iterate over the rest of the overlaps */
601         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
602                 unsigned long overlap_len;
603
604                 if (vma->vm_start > end)
605                         break;
606
607                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
608                 nr_pages += overlap_len >> PAGE_SHIFT;
609         }
610
611         return nr_pages;
612 }
613
614 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
615                 struct rb_node **rb_link, struct rb_node *rb_parent)
616 {
617         /* Update tracking information for the gap following the new vma. */
618         if (vma->vm_next)
619                 vma_gap_update(vma->vm_next);
620         else
621                 mm->highest_vm_end = vma->vm_end;
622
623         /*
624          * vma->vm_prev wasn't known when we followed the rbtree to find the
625          * correct insertion point for that vma. As a result, we could not
626          * update the vma vm_rb parents rb_subtree_gap values on the way down.
627          * So, we first insert the vma with a zero rb_subtree_gap value
628          * (to be consistent with what we did on the way down), and then
629          * immediately update the gap to the correct value. Finally we
630          * rebalance the rbtree after all augmented values have been set.
631          */
632         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
633         vma->rb_subtree_gap = 0;
634         vma_gap_update(vma);
635         vma_rb_insert(vma, &mm->mm_rb);
636 }
637
638 static void __vma_link_file(struct vm_area_struct *vma)
639 {
640         struct file *file;
641
642         file = vma->vm_file;
643         if (file) {
644                 struct address_space *mapping = file->f_mapping;
645
646                 if (vma->vm_flags & VM_DENYWRITE)
647                         atomic_dec(&file_inode(file)->i_writecount);
648                 if (vma->vm_flags & VM_SHARED)
649                         atomic_inc(&mapping->i_mmap_writable);
650
651                 flush_dcache_mmap_lock(mapping);
652                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
653                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
654                 else
655                         vma_interval_tree_insert(vma, &mapping->i_mmap);
656                 flush_dcache_mmap_unlock(mapping);
657         }
658 }
659
660 static void
661 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
662         struct vm_area_struct *prev, struct rb_node **rb_link,
663         struct rb_node *rb_parent)
664 {
665         __vma_link_list(mm, vma, prev, rb_parent);
666         __vma_link_rb(mm, vma, rb_link, rb_parent);
667 }
668
669 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
670                         struct vm_area_struct *prev, struct rb_node **rb_link,
671                         struct rb_node *rb_parent)
672 {
673         struct address_space *mapping = NULL;
674
675         if (vma->vm_file) {
676                 mapping = vma->vm_file->f_mapping;
677                 i_mmap_lock_write(mapping);
678         }
679
680         __vma_link(mm, vma, prev, rb_link, rb_parent);
681         __vma_link_file(vma);
682
683         if (mapping)
684                 i_mmap_unlock_write(mapping);
685
686         mm->map_count++;
687         validate_mm(mm);
688 }
689
690 /*
691  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
692  * mm's list and rbtree.  It has already been inserted into the interval tree.
693  */
694 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
695 {
696         struct vm_area_struct *prev;
697         struct rb_node **rb_link, *rb_parent;
698
699         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
700                            &prev, &rb_link, &rb_parent))
701                 BUG();
702         __vma_link(mm, vma, prev, rb_link, rb_parent);
703         mm->map_count++;
704 }
705
706 static inline void
707 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
708                 struct vm_area_struct *prev)
709 {
710         struct vm_area_struct *next;
711
712         vma_rb_erase(vma, &mm->mm_rb);
713         prev->vm_next = next = vma->vm_next;
714         if (next)
715                 next->vm_prev = prev;
716
717         /* Kill the cache */
718         vmacache_invalidate(mm);
719 }
720
721 /*
722  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
723  * is already present in an i_mmap tree without adjusting the tree.
724  * The following helper function should be used when such adjustments
725  * are necessary.  The "insert" vma (if any) is to be inserted
726  * before we drop the necessary locks.
727  */
728 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
729         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
730 {
731         struct mm_struct *mm = vma->vm_mm;
732         struct vm_area_struct *next = vma->vm_next;
733         struct vm_area_struct *importer = NULL;
734         struct address_space *mapping = NULL;
735         struct rb_root *root = NULL;
736         struct anon_vma *anon_vma = NULL;
737         struct file *file = vma->vm_file;
738         bool start_changed = false, end_changed = false;
739         long adjust_next = 0;
740         int remove_next = 0;
741
742         if (next && !insert) {
743                 struct vm_area_struct *exporter = NULL;
744
745                 if (end >= next->vm_end) {
746                         /*
747                          * vma expands, overlapping all the next, and
748                          * perhaps the one after too (mprotect case 6).
749                          */
750 again:                  remove_next = 1 + (end > next->vm_end);
751                         end = next->vm_end;
752                         exporter = next;
753                         importer = vma;
754                 } else if (end > next->vm_start) {
755                         /*
756                          * vma expands, overlapping part of the next:
757                          * mprotect case 5 shifting the boundary up.
758                          */
759                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
760                         exporter = next;
761                         importer = vma;
762                 } else if (end < vma->vm_end) {
763                         /*
764                          * vma shrinks, and !insert tells it's not
765                          * split_vma inserting another: so it must be
766                          * mprotect case 4 shifting the boundary down.
767                          */
768                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
769                         exporter = vma;
770                         importer = next;
771                 }
772
773                 /*
774                  * Easily overlooked: when mprotect shifts the boundary,
775                  * make sure the expanding vma has anon_vma set if the
776                  * shrinking vma had, to cover any anon pages imported.
777                  */
778                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
779                         int error;
780
781                         importer->anon_vma = exporter->anon_vma;
782                         error = anon_vma_clone(importer, exporter);
783                         if (error) {
784                                 importer->anon_vma = NULL;
785                                 return error;
786                         }
787                 }
788         }
789
790         if (file) {
791                 mapping = file->f_mapping;
792                 if (!(vma->vm_flags & VM_NONLINEAR)) {
793                         root = &mapping->i_mmap;
794                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
795
796                         if (adjust_next)
797                                 uprobe_munmap(next, next->vm_start,
798                                                         next->vm_end);
799                 }
800
801                 i_mmap_lock_write(mapping);
802                 if (insert) {
803                         /*
804                          * Put into interval tree now, so instantiated pages
805                          * are visible to arm/parisc __flush_dcache_page
806                          * throughout; but we cannot insert into address
807                          * space until vma start or end is updated.
808                          */
809                         __vma_link_file(insert);
810                 }
811         }
812
813         vma_adjust_trans_huge(vma, start, end, adjust_next);
814
815         anon_vma = vma->anon_vma;
816         if (!anon_vma && adjust_next)
817                 anon_vma = next->anon_vma;
818         if (anon_vma) {
819                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
820                           anon_vma != next->anon_vma, next);
821                 anon_vma_lock_write(anon_vma);
822                 anon_vma_interval_tree_pre_update_vma(vma);
823                 if (adjust_next)
824                         anon_vma_interval_tree_pre_update_vma(next);
825         }
826
827         if (root) {
828                 flush_dcache_mmap_lock(mapping);
829                 vma_interval_tree_remove(vma, root);
830                 if (adjust_next)
831                         vma_interval_tree_remove(next, root);
832         }
833
834         if (start != vma->vm_start) {
835                 vma->vm_start = start;
836                 start_changed = true;
837         }
838         if (end != vma->vm_end) {
839                 vma->vm_end = end;
840                 end_changed = true;
841         }
842         vma->vm_pgoff = pgoff;
843         if (adjust_next) {
844                 next->vm_start += adjust_next << PAGE_SHIFT;
845                 next->vm_pgoff += adjust_next;
846         }
847
848         if (root) {
849                 if (adjust_next)
850                         vma_interval_tree_insert(next, root);
851                 vma_interval_tree_insert(vma, root);
852                 flush_dcache_mmap_unlock(mapping);
853         }
854
855         if (remove_next) {
856                 /*
857                  * vma_merge has merged next into vma, and needs
858                  * us to remove next before dropping the locks.
859                  */
860                 __vma_unlink(mm, next, vma);
861                 if (file)
862                         __remove_shared_vm_struct(next, file, mapping);
863         } else if (insert) {
864                 /*
865                  * split_vma has split insert from vma, and needs
866                  * us to insert it before dropping the locks
867                  * (it may either follow vma or precede it).
868                  */
869                 __insert_vm_struct(mm, insert);
870         } else {
871                 if (start_changed)
872                         vma_gap_update(vma);
873                 if (end_changed) {
874                         if (!next)
875                                 mm->highest_vm_end = end;
876                         else if (!adjust_next)
877                                 vma_gap_update(next);
878                 }
879         }
880
881         if (anon_vma) {
882                 anon_vma_interval_tree_post_update_vma(vma);
883                 if (adjust_next)
884                         anon_vma_interval_tree_post_update_vma(next);
885                 anon_vma_unlock_write(anon_vma);
886         }
887         if (mapping)
888                 i_mmap_unlock_write(mapping);
889
890         if (root) {
891                 uprobe_mmap(vma);
892
893                 if (adjust_next)
894                         uprobe_mmap(next);
895         }
896
897         if (remove_next) {
898                 if (file) {
899                         uprobe_munmap(next, next->vm_start, next->vm_end);
900                         fput(file);
901                 }
902                 if (next->anon_vma)
903                         anon_vma_merge(vma, next);
904                 mm->map_count--;
905                 mpol_put(vma_policy(next));
906                 kmem_cache_free(vm_area_cachep, next);
907                 /*
908                  * In mprotect's case 6 (see comments on vma_merge),
909                  * we must remove another next too. It would clutter
910                  * up the code too much to do both in one go.
911                  */
912                 next = vma->vm_next;
913                 if (remove_next == 2)
914                         goto again;
915                 else if (next)
916                         vma_gap_update(next);
917                 else
918                         mm->highest_vm_end = end;
919         }
920         if (insert && file)
921                 uprobe_mmap(insert);
922
923         validate_mm(mm);
924
925         return 0;
926 }
927
928 /*
929  * If the vma has a ->close operation then the driver probably needs to release
930  * per-vma resources, so we don't attempt to merge those.
931  */
932 static inline int is_mergeable_vma(struct vm_area_struct *vma,
933                         struct file *file, unsigned long vm_flags)
934 {
935         /*
936          * VM_SOFTDIRTY should not prevent from VMA merging, if we
937          * match the flags but dirty bit -- the caller should mark
938          * merged VMA as dirty. If dirty bit won't be excluded from
939          * comparison, we increase pressue on the memory system forcing
940          * the kernel to generate new VMAs when old one could be
941          * extended instead.
942          */
943         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
944                 return 0;
945         if (vma->vm_file != file)
946                 return 0;
947         if (vma->vm_ops && vma->vm_ops->close)
948                 return 0;
949         return 1;
950 }
951
952 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
953                                         struct anon_vma *anon_vma2,
954                                         struct vm_area_struct *vma)
955 {
956         /*
957          * The list_is_singular() test is to avoid merging VMA cloned from
958          * parents. This can improve scalability caused by anon_vma lock.
959          */
960         if ((!anon_vma1 || !anon_vma2) && (!vma ||
961                 list_is_singular(&vma->anon_vma_chain)))
962                 return 1;
963         return anon_vma1 == anon_vma2;
964 }
965
966 /*
967  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
968  * in front of (at a lower virtual address and file offset than) the vma.
969  *
970  * We cannot merge two vmas if they have differently assigned (non-NULL)
971  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
972  *
973  * We don't check here for the merged mmap wrapping around the end of pagecache
974  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
975  * wrap, nor mmaps which cover the final page at index -1UL.
976  */
977 static int
978 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
979         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
980 {
981         if (is_mergeable_vma(vma, file, vm_flags) &&
982             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
983                 if (vma->vm_pgoff == vm_pgoff)
984                         return 1;
985         }
986         return 0;
987 }
988
989 /*
990  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
991  * beyond (at a higher virtual address and file offset than) the vma.
992  *
993  * We cannot merge two vmas if they have differently assigned (non-NULL)
994  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
995  */
996 static int
997 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
998         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
999 {
1000         if (is_mergeable_vma(vma, file, vm_flags) &&
1001             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1002                 pgoff_t vm_pglen;
1003                 vm_pglen = vma_pages(vma);
1004                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1005                         return 1;
1006         }
1007         return 0;
1008 }
1009
1010 /*
1011  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1012  * whether that can be merged with its predecessor or its successor.
1013  * Or both (it neatly fills a hole).
1014  *
1015  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1016  * certain not to be mapped by the time vma_merge is called; but when
1017  * called for mprotect, it is certain to be already mapped (either at
1018  * an offset within prev, or at the start of next), and the flags of
1019  * this area are about to be changed to vm_flags - and the no-change
1020  * case has already been eliminated.
1021  *
1022  * The following mprotect cases have to be considered, where AAAA is
1023  * the area passed down from mprotect_fixup, never extending beyond one
1024  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1025  *
1026  *     AAAA             AAAA                AAAA          AAAA
1027  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1028  *    cannot merge    might become    might become    might become
1029  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1030  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1031  *    mremap move:                                    PPPPNNNNNNNN 8
1032  *        AAAA
1033  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1034  *    might become    case 1 below    case 2 below    case 3 below
1035  *
1036  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1037  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1038  */
1039 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1040                         struct vm_area_struct *prev, unsigned long addr,
1041                         unsigned long end, unsigned long vm_flags,
1042                         struct anon_vma *anon_vma, struct file *file,
1043                         pgoff_t pgoff, struct mempolicy *policy)
1044 {
1045         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1046         struct vm_area_struct *area, *next;
1047         int err;
1048
1049         /*
1050          * We later require that vma->vm_flags == vm_flags,
1051          * so this tests vma->vm_flags & VM_SPECIAL, too.
1052          */
1053         if (vm_flags & VM_SPECIAL)
1054                 return NULL;
1055
1056         if (prev)
1057                 next = prev->vm_next;
1058         else
1059                 next = mm->mmap;
1060         area = next;
1061         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1062                 next = next->vm_next;
1063
1064         /*
1065          * Can it merge with the predecessor?
1066          */
1067         if (prev && prev->vm_end == addr &&
1068                         mpol_equal(vma_policy(prev), policy) &&
1069                         can_vma_merge_after(prev, vm_flags,
1070                                                 anon_vma, file, pgoff)) {
1071                 /*
1072                  * OK, it can.  Can we now merge in the successor as well?
1073                  */
1074                 if (next && end == next->vm_start &&
1075                                 mpol_equal(policy, vma_policy(next)) &&
1076                                 can_vma_merge_before(next, vm_flags,
1077                                         anon_vma, file, pgoff+pglen) &&
1078                                 is_mergeable_anon_vma(prev->anon_vma,
1079                                                       next->anon_vma, NULL)) {
1080                                                         /* cases 1, 6 */
1081                         err = vma_adjust(prev, prev->vm_start,
1082                                 next->vm_end, prev->vm_pgoff, NULL);
1083                 } else                                  /* cases 2, 5, 7 */
1084                         err = vma_adjust(prev, prev->vm_start,
1085                                 end, prev->vm_pgoff, NULL);
1086                 if (err)
1087                         return NULL;
1088                 khugepaged_enter_vma_merge(prev, vm_flags);
1089                 return prev;
1090         }
1091
1092         /*
1093          * Can this new request be merged in front of next?
1094          */
1095         if (next && end == next->vm_start &&
1096                         mpol_equal(policy, vma_policy(next)) &&
1097                         can_vma_merge_before(next, vm_flags,
1098                                         anon_vma, file, pgoff+pglen)) {
1099                 if (prev && addr < prev->vm_end)        /* case 4 */
1100                         err = vma_adjust(prev, prev->vm_start,
1101                                 addr, prev->vm_pgoff, NULL);
1102                 else                                    /* cases 3, 8 */
1103                         err = vma_adjust(area, addr, next->vm_end,
1104                                 next->vm_pgoff - pglen, NULL);
1105                 if (err)
1106                         return NULL;
1107                 khugepaged_enter_vma_merge(area, vm_flags);
1108                 return area;
1109         }
1110
1111         return NULL;
1112 }
1113
1114 /*
1115  * Rough compatbility check to quickly see if it's even worth looking
1116  * at sharing an anon_vma.
1117  *
1118  * They need to have the same vm_file, and the flags can only differ
1119  * in things that mprotect may change.
1120  *
1121  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1122  * we can merge the two vma's. For example, we refuse to merge a vma if
1123  * there is a vm_ops->close() function, because that indicates that the
1124  * driver is doing some kind of reference counting. But that doesn't
1125  * really matter for the anon_vma sharing case.
1126  */
1127 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1128 {
1129         return a->vm_end == b->vm_start &&
1130                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1131                 a->vm_file == b->vm_file &&
1132                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1133                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1134 }
1135
1136 /*
1137  * Do some basic sanity checking to see if we can re-use the anon_vma
1138  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1139  * the same as 'old', the other will be the new one that is trying
1140  * to share the anon_vma.
1141  *
1142  * NOTE! This runs with mm_sem held for reading, so it is possible that
1143  * the anon_vma of 'old' is concurrently in the process of being set up
1144  * by another page fault trying to merge _that_. But that's ok: if it
1145  * is being set up, that automatically means that it will be a singleton
1146  * acceptable for merging, so we can do all of this optimistically. But
1147  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1148  *
1149  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1150  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1151  * is to return an anon_vma that is "complex" due to having gone through
1152  * a fork).
1153  *
1154  * We also make sure that the two vma's are compatible (adjacent,
1155  * and with the same memory policies). That's all stable, even with just
1156  * a read lock on the mm_sem.
1157  */
1158 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1159 {
1160         if (anon_vma_compatible(a, b)) {
1161                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1162
1163                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1164                         return anon_vma;
1165         }
1166         return NULL;
1167 }
1168
1169 /*
1170  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1171  * neighbouring vmas for a suitable anon_vma, before it goes off
1172  * to allocate a new anon_vma.  It checks because a repetitive
1173  * sequence of mprotects and faults may otherwise lead to distinct
1174  * anon_vmas being allocated, preventing vma merge in subsequent
1175  * mprotect.
1176  */
1177 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1178 {
1179         struct anon_vma *anon_vma;
1180         struct vm_area_struct *near;
1181
1182         near = vma->vm_next;
1183         if (!near)
1184                 goto try_prev;
1185
1186         anon_vma = reusable_anon_vma(near, vma, near);
1187         if (anon_vma)
1188                 return anon_vma;
1189 try_prev:
1190         near = vma->vm_prev;
1191         if (!near)
1192                 goto none;
1193
1194         anon_vma = reusable_anon_vma(near, near, vma);
1195         if (anon_vma)
1196                 return anon_vma;
1197 none:
1198         /*
1199          * There's no absolute need to look only at touching neighbours:
1200          * we could search further afield for "compatible" anon_vmas.
1201          * But it would probably just be a waste of time searching,
1202          * or lead to too many vmas hanging off the same anon_vma.
1203          * We're trying to allow mprotect remerging later on,
1204          * not trying to minimize memory used for anon_vmas.
1205          */
1206         return NULL;
1207 }
1208
1209 #ifdef CONFIG_PROC_FS
1210 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1211                                                 struct file *file, long pages)
1212 {
1213         const unsigned long stack_flags
1214                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1215
1216         mm->total_vm += pages;
1217
1218         if (file) {
1219                 mm->shared_vm += pages;
1220                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1221                         mm->exec_vm += pages;
1222         } else if (flags & stack_flags)
1223                 mm->stack_vm += pages;
1224 }
1225 #endif /* CONFIG_PROC_FS */
1226
1227 /*
1228  * If a hint addr is less than mmap_min_addr change hint to be as
1229  * low as possible but still greater than mmap_min_addr
1230  */
1231 static inline unsigned long round_hint_to_min(unsigned long hint)
1232 {
1233         hint &= PAGE_MASK;
1234         if (((void *)hint != NULL) &&
1235             (hint < mmap_min_addr))
1236                 return PAGE_ALIGN(mmap_min_addr);
1237         return hint;
1238 }
1239
1240 static inline int mlock_future_check(struct mm_struct *mm,
1241                                      unsigned long flags,
1242                                      unsigned long len)
1243 {
1244         unsigned long locked, lock_limit;
1245
1246         /*  mlock MCL_FUTURE? */
1247         if (flags & VM_LOCKED) {
1248                 locked = len >> PAGE_SHIFT;
1249                 locked += mm->locked_vm;
1250                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1251                 lock_limit >>= PAGE_SHIFT;
1252                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1253                         return -EAGAIN;
1254         }
1255         return 0;
1256 }
1257
1258 /*
1259  * The caller must hold down_write(&current->mm->mmap_sem).
1260  */
1261
1262 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1263                         unsigned long len, unsigned long prot,
1264                         unsigned long flags, unsigned long pgoff,
1265                         unsigned long *populate)
1266 {
1267         struct mm_struct *mm = current->mm;
1268         vm_flags_t vm_flags;
1269
1270         *populate = 0;
1271
1272         /*
1273          * Does the application expect PROT_READ to imply PROT_EXEC?
1274          *
1275          * (the exception is when the underlying filesystem is noexec
1276          *  mounted, in which case we dont add PROT_EXEC.)
1277          */
1278         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1279                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1280                         prot |= PROT_EXEC;
1281
1282         if (!len)
1283                 return -EINVAL;
1284
1285         if (!(flags & MAP_FIXED))
1286                 addr = round_hint_to_min(addr);
1287
1288         /* Careful about overflows.. */
1289         len = PAGE_ALIGN(len);
1290         if (!len)
1291                 return -ENOMEM;
1292
1293         /* offset overflow? */
1294         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1295                 return -EOVERFLOW;
1296
1297         /* Too many mappings? */
1298         if (mm->map_count > sysctl_max_map_count)
1299                 return -ENOMEM;
1300
1301         /* Obtain the address to map to. we verify (or select) it and ensure
1302          * that it represents a valid section of the address space.
1303          */
1304         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1305         if (addr & ~PAGE_MASK)
1306                 return addr;
1307
1308         /* Do simple checking here so the lower-level routines won't have
1309          * to. we assume access permissions have been handled by the open
1310          * of the memory object, so we don't do any here.
1311          */
1312         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1313                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1314
1315         if (flags & MAP_LOCKED)
1316                 if (!can_do_mlock())
1317                         return -EPERM;
1318
1319         if (mlock_future_check(mm, vm_flags, len))
1320                 return -EAGAIN;
1321
1322         if (file) {
1323                 struct inode *inode = file_inode(file);
1324
1325                 switch (flags & MAP_TYPE) {
1326                 case MAP_SHARED:
1327                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1328                                 return -EACCES;
1329
1330                         /*
1331                          * Make sure we don't allow writing to an append-only
1332                          * file..
1333                          */
1334                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1335                                 return -EACCES;
1336
1337                         /*
1338                          * Make sure there are no mandatory locks on the file.
1339                          */
1340                         if (locks_verify_locked(file))
1341                                 return -EAGAIN;
1342
1343                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1344                         if (!(file->f_mode & FMODE_WRITE))
1345                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1346
1347                         /* fall through */
1348                 case MAP_PRIVATE:
1349                         if (!(file->f_mode & FMODE_READ))
1350                                 return -EACCES;
1351                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1352                                 if (vm_flags & VM_EXEC)
1353                                         return -EPERM;
1354                                 vm_flags &= ~VM_MAYEXEC;
1355                         }
1356
1357                         if (!file->f_op->mmap)
1358                                 return -ENODEV;
1359                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1360                                 return -EINVAL;
1361                         break;
1362
1363                 default:
1364                         return -EINVAL;
1365                 }
1366         } else {
1367                 switch (flags & MAP_TYPE) {
1368                 case MAP_SHARED:
1369                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1370                                 return -EINVAL;
1371                         /*
1372                          * Ignore pgoff.
1373                          */
1374                         pgoff = 0;
1375                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1376                         break;
1377                 case MAP_PRIVATE:
1378                         /*
1379                          * Set pgoff according to addr for anon_vma.
1380                          */
1381                         pgoff = addr >> PAGE_SHIFT;
1382                         break;
1383                 default:
1384                         return -EINVAL;
1385                 }
1386         }
1387
1388         /*
1389          * Set 'VM_NORESERVE' if we should not account for the
1390          * memory use of this mapping.
1391          */
1392         if (flags & MAP_NORESERVE) {
1393                 /* We honor MAP_NORESERVE if allowed to overcommit */
1394                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1395                         vm_flags |= VM_NORESERVE;
1396
1397                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1398                 if (file && is_file_hugepages(file))
1399                         vm_flags |= VM_NORESERVE;
1400         }
1401
1402         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1403         if (!IS_ERR_VALUE(addr) &&
1404             ((vm_flags & VM_LOCKED) ||
1405              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1406                 *populate = len;
1407         return addr;
1408 }
1409
1410 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1411                 unsigned long, prot, unsigned long, flags,
1412                 unsigned long, fd, unsigned long, pgoff)
1413 {
1414         struct file *file = NULL;
1415         unsigned long retval = -EBADF;
1416
1417         if (!(flags & MAP_ANONYMOUS)) {
1418                 audit_mmap_fd(fd, flags);
1419                 file = fget(fd);
1420                 if (!file)
1421                         goto out;
1422                 if (is_file_hugepages(file))
1423                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1424                 retval = -EINVAL;
1425                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1426                         goto out_fput;
1427         } else if (flags & MAP_HUGETLB) {
1428                 struct user_struct *user = NULL;
1429                 struct hstate *hs;
1430
1431                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1432                 if (!hs)
1433                         return -EINVAL;
1434
1435                 len = ALIGN(len, huge_page_size(hs));
1436                 /*
1437                  * VM_NORESERVE is used because the reservations will be
1438                  * taken when vm_ops->mmap() is called
1439                  * A dummy user value is used because we are not locking
1440                  * memory so no accounting is necessary
1441                  */
1442                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1443                                 VM_NORESERVE,
1444                                 &user, HUGETLB_ANONHUGE_INODE,
1445                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1446                 if (IS_ERR(file))
1447                         return PTR_ERR(file);
1448         }
1449
1450         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1451
1452         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1453 out_fput:
1454         if (file)
1455                 fput(file);
1456 out:
1457         return retval;
1458 }
1459
1460 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1461 struct mmap_arg_struct {
1462         unsigned long addr;
1463         unsigned long len;
1464         unsigned long prot;
1465         unsigned long flags;
1466         unsigned long fd;
1467         unsigned long offset;
1468 };
1469
1470 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1471 {
1472         struct mmap_arg_struct a;
1473
1474         if (copy_from_user(&a, arg, sizeof(a)))
1475                 return -EFAULT;
1476         if (a.offset & ~PAGE_MASK)
1477                 return -EINVAL;
1478
1479         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1480                               a.offset >> PAGE_SHIFT);
1481 }
1482 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1483
1484 /*
1485  * Some shared mappigns will want the pages marked read-only
1486  * to track write events. If so, we'll downgrade vm_page_prot
1487  * to the private version (using protection_map[] without the
1488  * VM_SHARED bit).
1489  */
1490 int vma_wants_writenotify(struct vm_area_struct *vma)
1491 {
1492         vm_flags_t vm_flags = vma->vm_flags;
1493
1494         /* If it was private or non-writable, the write bit is already clear */
1495         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1496                 return 0;
1497
1498         /* The backer wishes to know when pages are first written to? */
1499         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1500                 return 1;
1501
1502         /* The open routine did something to the protections that pgprot_modify
1503          * won't preserve? */
1504         if (pgprot_val(vma->vm_page_prot) !=
1505             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1506                 return 0;
1507
1508         /* Do we need to track softdirty? */
1509         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1510                 return 1;
1511
1512         /* Specialty mapping? */
1513         if (vm_flags & VM_PFNMAP)
1514                 return 0;
1515
1516         /* Can the mapping track the dirty pages? */
1517         return vma->vm_file && vma->vm_file->f_mapping &&
1518                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1519 }
1520
1521 /*
1522  * We account for memory if it's a private writeable mapping,
1523  * not hugepages and VM_NORESERVE wasn't set.
1524  */
1525 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1526 {
1527         /*
1528          * hugetlb has its own accounting separate from the core VM
1529          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1530          */
1531         if (file && is_file_hugepages(file))
1532                 return 0;
1533
1534         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1535 }
1536
1537 unsigned long mmap_region(struct file *file, unsigned long addr,
1538                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1539 {
1540         struct mm_struct *mm = current->mm;
1541         struct vm_area_struct *vma, *prev;
1542         int error;
1543         struct rb_node **rb_link, *rb_parent;
1544         unsigned long charged = 0;
1545
1546         /* Check against address space limit. */
1547         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1548                 unsigned long nr_pages;
1549
1550                 /*
1551                  * MAP_FIXED may remove pages of mappings that intersects with
1552                  * requested mapping. Account for the pages it would unmap.
1553                  */
1554                 if (!(vm_flags & MAP_FIXED))
1555                         return -ENOMEM;
1556
1557                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1558
1559                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1560                         return -ENOMEM;
1561         }
1562
1563         /* Clear old maps */
1564         error = -ENOMEM;
1565 munmap_back:
1566         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1567                 if (do_munmap(mm, addr, len))
1568                         return -ENOMEM;
1569                 goto munmap_back;
1570         }
1571
1572         /*
1573          * Private writable mapping: check memory availability
1574          */
1575         if (accountable_mapping(file, vm_flags)) {
1576                 charged = len >> PAGE_SHIFT;
1577                 if (security_vm_enough_memory_mm(mm, charged))
1578                         return -ENOMEM;
1579                 vm_flags |= VM_ACCOUNT;
1580         }
1581
1582         /*
1583          * Can we just expand an old mapping?
1584          */
1585         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1586         if (vma)
1587                 goto out;
1588
1589         /*
1590          * Determine the object being mapped and call the appropriate
1591          * specific mapper. the address has already been validated, but
1592          * not unmapped, but the maps are removed from the list.
1593          */
1594         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1595         if (!vma) {
1596                 error = -ENOMEM;
1597                 goto unacct_error;
1598         }
1599
1600         vma->vm_mm = mm;
1601         vma->vm_start = addr;
1602         vma->vm_end = addr + len;
1603         vma->vm_flags = vm_flags;
1604         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1605         vma->vm_pgoff = pgoff;
1606         INIT_LIST_HEAD(&vma->anon_vma_chain);
1607
1608         if (file) {
1609                 if (vm_flags & VM_DENYWRITE) {
1610                         error = deny_write_access(file);
1611                         if (error)
1612                                 goto free_vma;
1613                 }
1614                 if (vm_flags & VM_SHARED) {
1615                         error = mapping_map_writable(file->f_mapping);
1616                         if (error)
1617                                 goto allow_write_and_free_vma;
1618                 }
1619
1620                 /* ->mmap() can change vma->vm_file, but must guarantee that
1621                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1622                  * and map writably if VM_SHARED is set. This usually means the
1623                  * new file must not have been exposed to user-space, yet.
1624                  */
1625                 vma->vm_file = get_file(file);
1626                 error = file->f_op->mmap(file, vma);
1627                 if (error)
1628                         goto unmap_and_free_vma;
1629
1630                 /* Can addr have changed??
1631                  *
1632                  * Answer: Yes, several device drivers can do it in their
1633                  *         f_op->mmap method. -DaveM
1634                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1635                  *      be updated for vma_link()
1636                  */
1637                 WARN_ON_ONCE(addr != vma->vm_start);
1638
1639                 addr = vma->vm_start;
1640                 vm_flags = vma->vm_flags;
1641         } else if (vm_flags & VM_SHARED) {
1642                 error = shmem_zero_setup(vma);
1643                 if (error)
1644                         goto free_vma;
1645         }
1646
1647         vma_link(mm, vma, prev, rb_link, rb_parent);
1648         /* Once vma denies write, undo our temporary denial count */
1649         if (file) {
1650                 if (vm_flags & VM_SHARED)
1651                         mapping_unmap_writable(file->f_mapping);
1652                 if (vm_flags & VM_DENYWRITE)
1653                         allow_write_access(file);
1654         }
1655         file = vma->vm_file;
1656 out:
1657         perf_event_mmap(vma);
1658
1659         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1660         if (vm_flags & VM_LOCKED) {
1661                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1662                                         vma == get_gate_vma(current->mm)))
1663                         mm->locked_vm += (len >> PAGE_SHIFT);
1664                 else
1665                         vma->vm_flags &= ~VM_LOCKED;
1666         }
1667
1668         if (file)
1669                 uprobe_mmap(vma);
1670
1671         /*
1672          * New (or expanded) vma always get soft dirty status.
1673          * Otherwise user-space soft-dirty page tracker won't
1674          * be able to distinguish situation when vma area unmapped,
1675          * then new mapped in-place (which must be aimed as
1676          * a completely new data area).
1677          */
1678         vma->vm_flags |= VM_SOFTDIRTY;
1679
1680         vma_set_page_prot(vma);
1681
1682         return addr;
1683
1684 unmap_and_free_vma:
1685         vma->vm_file = NULL;
1686         fput(file);
1687
1688         /* Undo any partial mapping done by a device driver. */
1689         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1690         charged = 0;
1691         if (vm_flags & VM_SHARED)
1692                 mapping_unmap_writable(file->f_mapping);
1693 allow_write_and_free_vma:
1694         if (vm_flags & VM_DENYWRITE)
1695                 allow_write_access(file);
1696 free_vma:
1697         kmem_cache_free(vm_area_cachep, vma);
1698 unacct_error:
1699         if (charged)
1700                 vm_unacct_memory(charged);
1701         return error;
1702 }
1703
1704 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1705 {
1706         /*
1707          * We implement the search by looking for an rbtree node that
1708          * immediately follows a suitable gap. That is,
1709          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1710          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1711          * - gap_end - gap_start >= length
1712          */
1713
1714         struct mm_struct *mm = current->mm;
1715         struct vm_area_struct *vma;
1716         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1717
1718         /* Adjust search length to account for worst case alignment overhead */
1719         length = info->length + info->align_mask;
1720         if (length < info->length)
1721                 return -ENOMEM;
1722
1723         /* Adjust search limits by the desired length */
1724         if (info->high_limit < length)
1725                 return -ENOMEM;
1726         high_limit = info->high_limit - length;
1727
1728         if (info->low_limit > high_limit)
1729                 return -ENOMEM;
1730         low_limit = info->low_limit + length;
1731
1732         /* Check if rbtree root looks promising */
1733         if (RB_EMPTY_ROOT(&mm->mm_rb))
1734                 goto check_highest;
1735         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1736         if (vma->rb_subtree_gap < length)
1737                 goto check_highest;
1738
1739         while (true) {
1740                 /* Visit left subtree if it looks promising */
1741                 gap_end = vma->vm_start;
1742                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1743                         struct vm_area_struct *left =
1744                                 rb_entry(vma->vm_rb.rb_left,
1745                                          struct vm_area_struct, vm_rb);
1746                         if (left->rb_subtree_gap >= length) {
1747                                 vma = left;
1748                                 continue;
1749                         }
1750                 }
1751
1752                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1753 check_current:
1754                 /* Check if current node has a suitable gap */
1755                 if (gap_start > high_limit)
1756                         return -ENOMEM;
1757                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1758                         goto found;
1759
1760                 /* Visit right subtree if it looks promising */
1761                 if (vma->vm_rb.rb_right) {
1762                         struct vm_area_struct *right =
1763                                 rb_entry(vma->vm_rb.rb_right,
1764                                          struct vm_area_struct, vm_rb);
1765                         if (right->rb_subtree_gap >= length) {
1766                                 vma = right;
1767                                 continue;
1768                         }
1769                 }
1770
1771                 /* Go back up the rbtree to find next candidate node */
1772                 while (true) {
1773                         struct rb_node *prev = &vma->vm_rb;
1774                         if (!rb_parent(prev))
1775                                 goto check_highest;
1776                         vma = rb_entry(rb_parent(prev),
1777                                        struct vm_area_struct, vm_rb);
1778                         if (prev == vma->vm_rb.rb_left) {
1779                                 gap_start = vma->vm_prev->vm_end;
1780                                 gap_end = vma->vm_start;
1781                                 goto check_current;
1782                         }
1783                 }
1784         }
1785
1786 check_highest:
1787         /* Check highest gap, which does not precede any rbtree node */
1788         gap_start = mm->highest_vm_end;
1789         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1790         if (gap_start > high_limit)
1791                 return -ENOMEM;
1792
1793 found:
1794         /* We found a suitable gap. Clip it with the original low_limit. */
1795         if (gap_start < info->low_limit)
1796                 gap_start = info->low_limit;
1797
1798         /* Adjust gap address to the desired alignment */
1799         gap_start += (info->align_offset - gap_start) & info->align_mask;
1800
1801         VM_BUG_ON(gap_start + info->length > info->high_limit);
1802         VM_BUG_ON(gap_start + info->length > gap_end);
1803         return gap_start;
1804 }
1805
1806 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1807 {
1808         struct mm_struct *mm = current->mm;
1809         struct vm_area_struct *vma;
1810         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1811
1812         /* Adjust search length to account for worst case alignment overhead */
1813         length = info->length + info->align_mask;
1814         if (length < info->length)
1815                 return -ENOMEM;
1816
1817         /*
1818          * Adjust search limits by the desired length.
1819          * See implementation comment at top of unmapped_area().
1820          */
1821         gap_end = info->high_limit;
1822         if (gap_end < length)
1823                 return -ENOMEM;
1824         high_limit = gap_end - length;
1825
1826         if (info->low_limit > high_limit)
1827                 return -ENOMEM;
1828         low_limit = info->low_limit + length;
1829
1830         /* Check highest gap, which does not precede any rbtree node */
1831         gap_start = mm->highest_vm_end;
1832         if (gap_start <= high_limit)
1833                 goto found_highest;
1834
1835         /* Check if rbtree root looks promising */
1836         if (RB_EMPTY_ROOT(&mm->mm_rb))
1837                 return -ENOMEM;
1838         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1839         if (vma->rb_subtree_gap < length)
1840                 return -ENOMEM;
1841
1842         while (true) {
1843                 /* Visit right subtree if it looks promising */
1844                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1845                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1846                         struct vm_area_struct *right =
1847                                 rb_entry(vma->vm_rb.rb_right,
1848                                          struct vm_area_struct, vm_rb);
1849                         if (right->rb_subtree_gap >= length) {
1850                                 vma = right;
1851                                 continue;
1852                         }
1853                 }
1854
1855 check_current:
1856                 /* Check if current node has a suitable gap */
1857                 gap_end = vma->vm_start;
1858                 if (gap_end < low_limit)
1859                         return -ENOMEM;
1860                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1861                         goto found;
1862
1863                 /* Visit left subtree if it looks promising */
1864                 if (vma->vm_rb.rb_left) {
1865                         struct vm_area_struct *left =
1866                                 rb_entry(vma->vm_rb.rb_left,
1867                                          struct vm_area_struct, vm_rb);
1868                         if (left->rb_subtree_gap >= length) {
1869                                 vma = left;
1870                                 continue;
1871                         }
1872                 }
1873
1874                 /* Go back up the rbtree to find next candidate node */
1875                 while (true) {
1876                         struct rb_node *prev = &vma->vm_rb;
1877                         if (!rb_parent(prev))
1878                                 return -ENOMEM;
1879                         vma = rb_entry(rb_parent(prev),
1880                                        struct vm_area_struct, vm_rb);
1881                         if (prev == vma->vm_rb.rb_right) {
1882                                 gap_start = vma->vm_prev ?
1883                                         vma->vm_prev->vm_end : 0;
1884                                 goto check_current;
1885                         }
1886                 }
1887         }
1888
1889 found:
1890         /* We found a suitable gap. Clip it with the original high_limit. */
1891         if (gap_end > info->high_limit)
1892                 gap_end = info->high_limit;
1893
1894 found_highest:
1895         /* Compute highest gap address at the desired alignment */
1896         gap_end -= info->length;
1897         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1898
1899         VM_BUG_ON(gap_end < info->low_limit);
1900         VM_BUG_ON(gap_end < gap_start);
1901         return gap_end;
1902 }
1903
1904 /* Get an address range which is currently unmapped.
1905  * For shmat() with addr=0.
1906  *
1907  * Ugly calling convention alert:
1908  * Return value with the low bits set means error value,
1909  * ie
1910  *      if (ret & ~PAGE_MASK)
1911  *              error = ret;
1912  *
1913  * This function "knows" that -ENOMEM has the bits set.
1914  */
1915 #ifndef HAVE_ARCH_UNMAPPED_AREA
1916 unsigned long
1917 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1918                 unsigned long len, unsigned long pgoff, unsigned long flags)
1919 {
1920         struct mm_struct *mm = current->mm;
1921         struct vm_area_struct *vma;
1922         struct vm_unmapped_area_info info;
1923
1924         if (len > TASK_SIZE - mmap_min_addr)
1925                 return -ENOMEM;
1926
1927         if (flags & MAP_FIXED)
1928                 return addr;
1929
1930         if (addr) {
1931                 addr = PAGE_ALIGN(addr);
1932                 vma = find_vma(mm, addr);
1933                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1934                     (!vma || addr + len <= vma->vm_start))
1935                         return addr;
1936         }
1937
1938         info.flags = 0;
1939         info.length = len;
1940         info.low_limit = mm->mmap_base;
1941         info.high_limit = TASK_SIZE;
1942         info.align_mask = 0;
1943         return vm_unmapped_area(&info);
1944 }
1945 #endif
1946
1947 /*
1948  * This mmap-allocator allocates new areas top-down from below the
1949  * stack's low limit (the base):
1950  */
1951 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1952 unsigned long
1953 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1954                           const unsigned long len, const unsigned long pgoff,
1955                           const unsigned long flags)
1956 {
1957         struct vm_area_struct *vma;
1958         struct mm_struct *mm = current->mm;
1959         unsigned long addr = addr0;
1960         struct vm_unmapped_area_info info;
1961
1962         /* requested length too big for entire address space */
1963         if (len > TASK_SIZE - mmap_min_addr)
1964                 return -ENOMEM;
1965
1966         if (flags & MAP_FIXED)
1967                 return addr;
1968
1969         /* requesting a specific address */
1970         if (addr) {
1971                 addr = PAGE_ALIGN(addr);
1972                 vma = find_vma(mm, addr);
1973                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1974                                 (!vma || addr + len <= vma->vm_start))
1975                         return addr;
1976         }
1977
1978         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1979         info.length = len;
1980         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1981         info.high_limit = mm->mmap_base;
1982         info.align_mask = 0;
1983         addr = vm_unmapped_area(&info);
1984
1985         /*
1986          * A failed mmap() very likely causes application failure,
1987          * so fall back to the bottom-up function here. This scenario
1988          * can happen with large stack limits and large mmap()
1989          * allocations.
1990          */
1991         if (addr & ~PAGE_MASK) {
1992                 VM_BUG_ON(addr != -ENOMEM);
1993                 info.flags = 0;
1994                 info.low_limit = TASK_UNMAPPED_BASE;
1995                 info.high_limit = TASK_SIZE;
1996                 addr = vm_unmapped_area(&info);
1997         }
1998
1999         return addr;
2000 }
2001 #endif
2002
2003 unsigned long
2004 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2005                 unsigned long pgoff, unsigned long flags)
2006 {
2007         unsigned long (*get_area)(struct file *, unsigned long,
2008                                   unsigned long, unsigned long, unsigned long);
2009
2010         unsigned long error = arch_mmap_check(addr, len, flags);
2011         if (error)
2012                 return error;
2013
2014         /* Careful about overflows.. */
2015         if (len > TASK_SIZE)
2016                 return -ENOMEM;
2017
2018         get_area = current->mm->get_unmapped_area;
2019         if (file && file->f_op->get_unmapped_area)
2020                 get_area = file->f_op->get_unmapped_area;
2021         addr = get_area(file, addr, len, pgoff, flags);
2022         if (IS_ERR_VALUE(addr))
2023                 return addr;
2024
2025         if (addr > TASK_SIZE - len)
2026                 return -ENOMEM;
2027         if (addr & ~PAGE_MASK)
2028                 return -EINVAL;
2029
2030         addr = arch_rebalance_pgtables(addr, len);
2031         error = security_mmap_addr(addr);
2032         return error ? error : addr;
2033 }
2034
2035 EXPORT_SYMBOL(get_unmapped_area);
2036
2037 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2038 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2039 {
2040         struct rb_node *rb_node;
2041         struct vm_area_struct *vma;
2042
2043         /* Check the cache first. */
2044         vma = vmacache_find(mm, addr);
2045         if (likely(vma))
2046                 return vma;
2047
2048         rb_node = mm->mm_rb.rb_node;
2049         vma = NULL;
2050
2051         while (rb_node) {
2052                 struct vm_area_struct *tmp;
2053
2054                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2055
2056                 if (tmp->vm_end > addr) {
2057                         vma = tmp;
2058                         if (tmp->vm_start <= addr)
2059                                 break;
2060                         rb_node = rb_node->rb_left;
2061                 } else
2062                         rb_node = rb_node->rb_right;
2063         }
2064
2065         if (vma)
2066                 vmacache_update(addr, vma);
2067         return vma;
2068 }
2069
2070 EXPORT_SYMBOL(find_vma);
2071
2072 /*
2073  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2074  */
2075 struct vm_area_struct *
2076 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2077                         struct vm_area_struct **pprev)
2078 {
2079         struct vm_area_struct *vma;
2080
2081         vma = find_vma(mm, addr);
2082         if (vma) {
2083                 *pprev = vma->vm_prev;
2084         } else {
2085                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2086                 *pprev = NULL;
2087                 while (rb_node) {
2088                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2089                         rb_node = rb_node->rb_right;
2090                 }
2091         }
2092         return vma;
2093 }
2094
2095 /*
2096  * Verify that the stack growth is acceptable and
2097  * update accounting. This is shared with both the
2098  * grow-up and grow-down cases.
2099  */
2100 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2101 {
2102         struct mm_struct *mm = vma->vm_mm;
2103         struct rlimit *rlim = current->signal->rlim;
2104         unsigned long new_start, actual_size;
2105
2106         /* address space limit tests */
2107         if (!may_expand_vm(mm, grow))
2108                 return -ENOMEM;
2109
2110         /* Stack limit test */
2111         actual_size = size;
2112         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2113                 actual_size -= PAGE_SIZE;
2114         if (actual_size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2115                 return -ENOMEM;
2116
2117         /* mlock limit tests */
2118         if (vma->vm_flags & VM_LOCKED) {
2119                 unsigned long locked;
2120                 unsigned long limit;
2121                 locked = mm->locked_vm + grow;
2122                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2123                 limit >>= PAGE_SHIFT;
2124                 if (locked > limit && !capable(CAP_IPC_LOCK))
2125                         return -ENOMEM;
2126         }
2127
2128         /* Check to ensure the stack will not grow into a hugetlb-only region */
2129         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2130                         vma->vm_end - size;
2131         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2132                 return -EFAULT;
2133
2134         /*
2135          * Overcommit..  This must be the final test, as it will
2136          * update security statistics.
2137          */
2138         if (security_vm_enough_memory_mm(mm, grow))
2139                 return -ENOMEM;
2140
2141         /* Ok, everything looks good - let it rip */
2142         if (vma->vm_flags & VM_LOCKED)
2143                 mm->locked_vm += grow;
2144         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2145         return 0;
2146 }
2147
2148 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2149 /*
2150  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2151  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2152  */
2153 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2154 {
2155         int error;
2156
2157         if (!(vma->vm_flags & VM_GROWSUP))
2158                 return -EFAULT;
2159
2160         /*
2161          * We must make sure the anon_vma is allocated
2162          * so that the anon_vma locking is not a noop.
2163          */
2164         if (unlikely(anon_vma_prepare(vma)))
2165                 return -ENOMEM;
2166         vma_lock_anon_vma(vma);
2167
2168         /*
2169          * vma->vm_start/vm_end cannot change under us because the caller
2170          * is required to hold the mmap_sem in read mode.  We need the
2171          * anon_vma lock to serialize against concurrent expand_stacks.
2172          * Also guard against wrapping around to address 0.
2173          */
2174         if (address < PAGE_ALIGN(address+4))
2175                 address = PAGE_ALIGN(address+4);
2176         else {
2177                 vma_unlock_anon_vma(vma);
2178                 return -ENOMEM;
2179         }
2180         error = 0;
2181
2182         /* Somebody else might have raced and expanded it already */
2183         if (address > vma->vm_end) {
2184                 unsigned long size, grow;
2185
2186                 size = address - vma->vm_start;
2187                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2188
2189                 error = -ENOMEM;
2190                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2191                         error = acct_stack_growth(vma, size, grow);
2192                         if (!error) {
2193                                 /*
2194                                  * vma_gap_update() doesn't support concurrent
2195                                  * updates, but we only hold a shared mmap_sem
2196                                  * lock here, so we need to protect against
2197                                  * concurrent vma expansions.
2198                                  * vma_lock_anon_vma() doesn't help here, as
2199                                  * we don't guarantee that all growable vmas
2200                                  * in a mm share the same root anon vma.
2201                                  * So, we reuse mm->page_table_lock to guard
2202                                  * against concurrent vma expansions.
2203                                  */
2204                                 spin_lock(&vma->vm_mm->page_table_lock);
2205                                 anon_vma_interval_tree_pre_update_vma(vma);
2206                                 vma->vm_end = address;
2207                                 anon_vma_interval_tree_post_update_vma(vma);
2208                                 if (vma->vm_next)
2209                                         vma_gap_update(vma->vm_next);
2210                                 else
2211                                         vma->vm_mm->highest_vm_end = address;
2212                                 spin_unlock(&vma->vm_mm->page_table_lock);
2213
2214                                 perf_event_mmap(vma);
2215                         }
2216                 }
2217         }
2218         vma_unlock_anon_vma(vma);
2219         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2220         validate_mm(vma->vm_mm);
2221         return error;
2222 }
2223 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2224
2225 /*
2226  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2227  */
2228 int expand_downwards(struct vm_area_struct *vma,
2229                                    unsigned long address)
2230 {
2231         int error;
2232
2233         /*
2234          * We must make sure the anon_vma is allocated
2235          * so that the anon_vma locking is not a noop.
2236          */
2237         if (unlikely(anon_vma_prepare(vma)))
2238                 return -ENOMEM;
2239
2240         address &= PAGE_MASK;
2241         error = security_mmap_addr(address);
2242         if (error)
2243                 return error;
2244
2245         vma_lock_anon_vma(vma);
2246
2247         /*
2248          * vma->vm_start/vm_end cannot change under us because the caller
2249          * is required to hold the mmap_sem in read mode.  We need the
2250          * anon_vma lock to serialize against concurrent expand_stacks.
2251          */
2252
2253         /* Somebody else might have raced and expanded it already */
2254         if (address < vma->vm_start) {
2255                 unsigned long size, grow;
2256
2257                 size = vma->vm_end - address;
2258                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2259
2260                 error = -ENOMEM;
2261                 if (grow <= vma->vm_pgoff) {
2262                         error = acct_stack_growth(vma, size, grow);
2263                         if (!error) {
2264                                 /*
2265                                  * vma_gap_update() doesn't support concurrent
2266                                  * updates, but we only hold a shared mmap_sem
2267                                  * lock here, so we need to protect against
2268                                  * concurrent vma expansions.
2269                                  * vma_lock_anon_vma() doesn't help here, as
2270                                  * we don't guarantee that all growable vmas
2271                                  * in a mm share the same root anon vma.
2272                                  * So, we reuse mm->page_table_lock to guard
2273                                  * against concurrent vma expansions.
2274                                  */
2275                                 spin_lock(&vma->vm_mm->page_table_lock);
2276                                 anon_vma_interval_tree_pre_update_vma(vma);
2277                                 vma->vm_start = address;
2278                                 vma->vm_pgoff -= grow;
2279                                 anon_vma_interval_tree_post_update_vma(vma);
2280                                 vma_gap_update(vma);
2281                                 spin_unlock(&vma->vm_mm->page_table_lock);
2282
2283                                 perf_event_mmap(vma);
2284                         }
2285                 }
2286         }
2287         vma_unlock_anon_vma(vma);
2288         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2289         validate_mm(vma->vm_mm);
2290         return error;
2291 }
2292
2293 /*
2294  * Note how expand_stack() refuses to expand the stack all the way to
2295  * abut the next virtual mapping, *unless* that mapping itself is also
2296  * a stack mapping. We want to leave room for a guard page, after all
2297  * (the guard page itself is not added here, that is done by the
2298  * actual page faulting logic)
2299  *
2300  * This matches the behavior of the guard page logic (see mm/memory.c:
2301  * check_stack_guard_page()), which only allows the guard page to be
2302  * removed under these circumstances.
2303  */
2304 #ifdef CONFIG_STACK_GROWSUP
2305 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2306 {
2307         struct vm_area_struct *next;
2308
2309         address &= PAGE_MASK;
2310         next = vma->vm_next;
2311         if (next && next->vm_start == address + PAGE_SIZE) {
2312                 if (!(next->vm_flags & VM_GROWSUP))
2313                         return -ENOMEM;
2314         }
2315         return expand_upwards(vma, address);
2316 }
2317
2318 struct vm_area_struct *
2319 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2320 {
2321         struct vm_area_struct *vma, *prev;
2322
2323         addr &= PAGE_MASK;
2324         vma = find_vma_prev(mm, addr, &prev);
2325         if (vma && (vma->vm_start <= addr))
2326                 return vma;
2327         if (!prev || expand_stack(prev, addr))
2328                 return NULL;
2329         if (prev->vm_flags & VM_LOCKED)
2330                 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2331         return prev;
2332 }
2333 #else
2334 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2335 {
2336         struct vm_area_struct *prev;
2337
2338         address &= PAGE_MASK;
2339         prev = vma->vm_prev;
2340         if (prev && prev->vm_end == address) {
2341                 if (!(prev->vm_flags & VM_GROWSDOWN))
2342                         return -ENOMEM;
2343         }
2344         return expand_downwards(vma, address);
2345 }
2346
2347 struct vm_area_struct *
2348 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2349 {
2350         struct vm_area_struct *vma;
2351         unsigned long start;
2352
2353         addr &= PAGE_MASK;
2354         vma = find_vma(mm, addr);
2355         if (!vma)
2356                 return NULL;
2357         if (vma->vm_start <= addr)
2358                 return vma;
2359         if (!(vma->vm_flags & VM_GROWSDOWN))
2360                 return NULL;
2361         start = vma->vm_start;
2362         if (expand_stack(vma, addr))
2363                 return NULL;
2364         if (vma->vm_flags & VM_LOCKED)
2365                 __mlock_vma_pages_range(vma, addr, start, NULL);
2366         return vma;
2367 }
2368 #endif
2369
2370 EXPORT_SYMBOL_GPL(find_extend_vma);
2371
2372 /*
2373  * Ok - we have the memory areas we should free on the vma list,
2374  * so release them, and do the vma updates.
2375  *
2376  * Called with the mm semaphore held.
2377  */
2378 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2379 {
2380         unsigned long nr_accounted = 0;
2381
2382         /* Update high watermark before we lower total_vm */
2383         update_hiwater_vm(mm);
2384         do {
2385                 long nrpages = vma_pages(vma);
2386
2387                 if (vma->vm_flags & VM_ACCOUNT)
2388                         nr_accounted += nrpages;
2389                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2390                 vma = remove_vma(vma);
2391         } while (vma);
2392         vm_unacct_memory(nr_accounted);
2393         validate_mm(mm);
2394 }
2395
2396 /*
2397  * Get rid of page table information in the indicated region.
2398  *
2399  * Called with the mm semaphore held.
2400  */
2401 static void unmap_region(struct mm_struct *mm,
2402                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2403                 unsigned long start, unsigned long end)
2404 {
2405         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2406         struct mmu_gather tlb;
2407
2408         lru_add_drain();
2409         tlb_gather_mmu(&tlb, mm, start, end);
2410         update_hiwater_rss(mm);
2411         unmap_vmas(&tlb, vma, start, end);
2412         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2413                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2414         tlb_finish_mmu(&tlb, start, end);
2415 }
2416
2417 /*
2418  * Create a list of vma's touched by the unmap, removing them from the mm's
2419  * vma list as we go..
2420  */
2421 static void
2422 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2423         struct vm_area_struct *prev, unsigned long end)
2424 {
2425         struct vm_area_struct **insertion_point;
2426         struct vm_area_struct *tail_vma = NULL;
2427
2428         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2429         vma->vm_prev = NULL;
2430         do {
2431                 vma_rb_erase(vma, &mm->mm_rb);
2432                 mm->map_count--;
2433                 tail_vma = vma;
2434                 vma = vma->vm_next;
2435         } while (vma && vma->vm_start < end);
2436         *insertion_point = vma;
2437         if (vma) {
2438                 vma->vm_prev = prev;
2439                 vma_gap_update(vma);
2440         } else
2441                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2442         tail_vma->vm_next = NULL;
2443
2444         /* Kill the cache */
2445         vmacache_invalidate(mm);
2446 }
2447
2448 /*
2449  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2450  * munmap path where it doesn't make sense to fail.
2451  */
2452 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2453               unsigned long addr, int new_below)
2454 {
2455         struct vm_area_struct *new;
2456         int err = -ENOMEM;
2457
2458         if (is_vm_hugetlb_page(vma) && (addr &
2459                                         ~(huge_page_mask(hstate_vma(vma)))))
2460                 return -EINVAL;
2461
2462         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2463         if (!new)
2464                 goto out_err;
2465
2466         /* most fields are the same, copy all, and then fixup */
2467         *new = *vma;
2468
2469         INIT_LIST_HEAD(&new->anon_vma_chain);
2470
2471         if (new_below)
2472                 new->vm_end = addr;
2473         else {
2474                 new->vm_start = addr;
2475                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2476         }
2477
2478         err = vma_dup_policy(vma, new);
2479         if (err)
2480                 goto out_free_vma;
2481
2482         err = anon_vma_clone(new, vma);
2483         if (err)
2484                 goto out_free_mpol;
2485
2486         if (new->vm_file)
2487                 get_file(new->vm_file);
2488
2489         if (new->vm_ops && new->vm_ops->open)
2490                 new->vm_ops->open(new);
2491
2492         if (new_below)
2493                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2494                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2495         else
2496                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2497
2498         /* Success. */
2499         if (!err)
2500                 return 0;
2501
2502         /* Clean everything up if vma_adjust failed. */
2503         if (new->vm_ops && new->vm_ops->close)
2504                 new->vm_ops->close(new);
2505         if (new->vm_file)
2506                 fput(new->vm_file);
2507         unlink_anon_vmas(new);
2508  out_free_mpol:
2509         mpol_put(vma_policy(new));
2510  out_free_vma:
2511         kmem_cache_free(vm_area_cachep, new);
2512  out_err:
2513         return err;
2514 }
2515
2516 /*
2517  * Split a vma into two pieces at address 'addr', a new vma is allocated
2518  * either for the first part or the tail.
2519  */
2520 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2521               unsigned long addr, int new_below)
2522 {
2523         if (mm->map_count >= sysctl_max_map_count)
2524                 return -ENOMEM;
2525
2526         return __split_vma(mm, vma, addr, new_below);
2527 }
2528
2529 /* Munmap is split into 2 main parts -- this part which finds
2530  * what needs doing, and the areas themselves, which do the
2531  * work.  This now handles partial unmappings.
2532  * Jeremy Fitzhardinge <jeremy@goop.org>
2533  */
2534 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2535 {
2536         unsigned long end;
2537         struct vm_area_struct *vma, *prev, *last;
2538
2539         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2540                 return -EINVAL;
2541
2542         len = PAGE_ALIGN(len);
2543         if (len == 0)
2544                 return -EINVAL;
2545
2546         /* Find the first overlapping VMA */
2547         vma = find_vma(mm, start);
2548         if (!vma)
2549                 return 0;
2550         prev = vma->vm_prev;
2551         /* we have  start < vma->vm_end  */
2552
2553         /* if it doesn't overlap, we have nothing.. */
2554         end = start + len;
2555         if (vma->vm_start >= end)
2556                 return 0;
2557
2558         /*
2559          * If we need to split any vma, do it now to save pain later.
2560          *
2561          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2562          * unmapped vm_area_struct will remain in use: so lower split_vma
2563          * places tmp vma above, and higher split_vma places tmp vma below.
2564          */
2565         if (start > vma->vm_start) {
2566                 int error;
2567
2568                 /*
2569                  * Make sure that map_count on return from munmap() will
2570                  * not exceed its limit; but let map_count go just above
2571                  * its limit temporarily, to help free resources as expected.
2572                  */
2573                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2574                         return -ENOMEM;
2575
2576                 error = __split_vma(mm, vma, start, 0);
2577                 if (error)
2578                         return error;
2579                 prev = vma;
2580         }
2581
2582         /* Does it split the last one? */
2583         last = find_vma(mm, end);
2584         if (last && end > last->vm_start) {
2585                 int error = __split_vma(mm, last, end, 1);
2586                 if (error)
2587                         return error;
2588         }
2589         vma = prev ? prev->vm_next : mm->mmap;
2590
2591         /*
2592          * unlock any mlock()ed ranges before detaching vmas
2593          */
2594         if (mm->locked_vm) {
2595                 struct vm_area_struct *tmp = vma;
2596                 while (tmp && tmp->vm_start < end) {
2597                         if (tmp->vm_flags & VM_LOCKED) {
2598                                 mm->locked_vm -= vma_pages(tmp);
2599                                 munlock_vma_pages_all(tmp);
2600                         }
2601                         tmp = tmp->vm_next;
2602                 }
2603         }
2604
2605         /*
2606          * Remove the vma's, and unmap the actual pages
2607          */
2608         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2609         unmap_region(mm, vma, prev, start, end);
2610
2611         arch_unmap(mm, vma, start, end);
2612
2613         /* Fix up all other VM information */
2614         remove_vma_list(mm, vma);
2615
2616         return 0;
2617 }
2618
2619 int vm_munmap(unsigned long start, size_t len)
2620 {
2621         int ret;
2622         struct mm_struct *mm = current->mm;
2623
2624         down_write(&mm->mmap_sem);
2625         ret = do_munmap(mm, start, len);
2626         up_write(&mm->mmap_sem);
2627         return ret;
2628 }
2629 EXPORT_SYMBOL(vm_munmap);
2630
2631 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2632 {
2633         profile_munmap(addr);
2634         return vm_munmap(addr, len);
2635 }
2636
2637 static inline void verify_mm_writelocked(struct mm_struct *mm)
2638 {
2639 #ifdef CONFIG_DEBUG_VM
2640         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2641                 WARN_ON(1);
2642                 up_read(&mm->mmap_sem);
2643         }
2644 #endif
2645 }
2646
2647 /*
2648  *  this is really a simplified "do_mmap".  it only handles
2649  *  anonymous maps.  eventually we may be able to do some
2650  *  brk-specific accounting here.
2651  */
2652 static unsigned long do_brk(unsigned long addr, unsigned long len)
2653 {
2654         struct mm_struct *mm = current->mm;
2655         struct vm_area_struct *vma, *prev;
2656         unsigned long flags;
2657         struct rb_node **rb_link, *rb_parent;
2658         pgoff_t pgoff = addr >> PAGE_SHIFT;
2659         int error;
2660
2661         len = PAGE_ALIGN(len);
2662         if (!len)
2663                 return addr;
2664
2665         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2666
2667         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2668         if (error & ~PAGE_MASK)
2669                 return error;
2670
2671         error = mlock_future_check(mm, mm->def_flags, len);
2672         if (error)
2673                 return error;
2674
2675         /*
2676          * mm->mmap_sem is required to protect against another thread
2677          * changing the mappings in case we sleep.
2678          */
2679         verify_mm_writelocked(mm);
2680
2681         /*
2682          * Clear old maps.  this also does some error checking for us
2683          */
2684  munmap_back:
2685         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2686                 if (do_munmap(mm, addr, len))
2687                         return -ENOMEM;
2688                 goto munmap_back;
2689         }
2690
2691         /* Check against address space limits *after* clearing old maps... */
2692         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2693                 return -ENOMEM;
2694
2695         if (mm->map_count > sysctl_max_map_count)
2696                 return -ENOMEM;
2697
2698         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2699                 return -ENOMEM;
2700
2701         /* Can we just expand an old private anonymous mapping? */
2702         vma = vma_merge(mm, prev, addr, addr + len, flags,
2703                                         NULL, NULL, pgoff, NULL);
2704         if (vma)
2705                 goto out;
2706
2707         /*
2708          * create a vma struct for an anonymous mapping
2709          */
2710         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2711         if (!vma) {
2712                 vm_unacct_memory(len >> PAGE_SHIFT);
2713                 return -ENOMEM;
2714         }
2715
2716         INIT_LIST_HEAD(&vma->anon_vma_chain);
2717         vma->vm_mm = mm;
2718         vma->vm_start = addr;
2719         vma->vm_end = addr + len;
2720         vma->vm_pgoff = pgoff;
2721         vma->vm_flags = flags;
2722         vma->vm_page_prot = vm_get_page_prot(flags);
2723         vma_link(mm, vma, prev, rb_link, rb_parent);
2724 out:
2725         perf_event_mmap(vma);
2726         mm->total_vm += len >> PAGE_SHIFT;
2727         if (flags & VM_LOCKED)
2728                 mm->locked_vm += (len >> PAGE_SHIFT);
2729         vma->vm_flags |= VM_SOFTDIRTY;
2730         return addr;
2731 }
2732
2733 unsigned long vm_brk(unsigned long addr, unsigned long len)
2734 {
2735         struct mm_struct *mm = current->mm;
2736         unsigned long ret;
2737         bool populate;
2738
2739         down_write(&mm->mmap_sem);
2740         ret = do_brk(addr, len);
2741         populate = ((mm->def_flags & VM_LOCKED) != 0);
2742         up_write(&mm->mmap_sem);
2743         if (populate)
2744                 mm_populate(addr, len);
2745         return ret;
2746 }
2747 EXPORT_SYMBOL(vm_brk);
2748
2749 /* Release all mmaps. */
2750 void exit_mmap(struct mm_struct *mm)
2751 {
2752         struct mmu_gather tlb;
2753         struct vm_area_struct *vma;
2754         unsigned long nr_accounted = 0;
2755
2756         /* mm's last user has gone, and its about to be pulled down */
2757         mmu_notifier_release(mm);
2758
2759         if (mm->locked_vm) {
2760                 vma = mm->mmap;
2761                 while (vma) {
2762                         if (vma->vm_flags & VM_LOCKED)
2763                                 munlock_vma_pages_all(vma);
2764                         vma = vma->vm_next;
2765                 }
2766         }
2767
2768         arch_exit_mmap(mm);
2769
2770         vma = mm->mmap;
2771         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2772                 return;
2773
2774         lru_add_drain();
2775         flush_cache_mm(mm);
2776         tlb_gather_mmu(&tlb, mm, 0, -1);
2777         /* update_hiwater_rss(mm) here? but nobody should be looking */
2778         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2779         unmap_vmas(&tlb, vma, 0, -1);
2780
2781         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2782         tlb_finish_mmu(&tlb, 0, -1);
2783
2784         /*
2785          * Walk the list again, actually closing and freeing it,
2786          * with preemption enabled, without holding any MM locks.
2787          */
2788         while (vma) {
2789                 if (vma->vm_flags & VM_ACCOUNT)
2790                         nr_accounted += vma_pages(vma);
2791                 vma = remove_vma(vma);
2792         }
2793         vm_unacct_memory(nr_accounted);
2794
2795         WARN_ON(atomic_long_read(&mm->nr_ptes) >
2796                         (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2797 }
2798
2799 /* Insert vm structure into process list sorted by address
2800  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2801  * then i_mmap_rwsem is taken here.
2802  */
2803 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2804 {
2805         struct vm_area_struct *prev;
2806         struct rb_node **rb_link, *rb_parent;
2807
2808         /*
2809          * The vm_pgoff of a purely anonymous vma should be irrelevant
2810          * until its first write fault, when page's anon_vma and index
2811          * are set.  But now set the vm_pgoff it will almost certainly
2812          * end up with (unless mremap moves it elsewhere before that
2813          * first wfault), so /proc/pid/maps tells a consistent story.
2814          *
2815          * By setting it to reflect the virtual start address of the
2816          * vma, merges and splits can happen in a seamless way, just
2817          * using the existing file pgoff checks and manipulations.
2818          * Similarly in do_mmap_pgoff and in do_brk.
2819          */
2820         if (!vma->vm_file) {
2821                 BUG_ON(vma->anon_vma);
2822                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2823         }
2824         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2825                            &prev, &rb_link, &rb_parent))
2826                 return -ENOMEM;
2827         if ((vma->vm_flags & VM_ACCOUNT) &&
2828              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2829                 return -ENOMEM;
2830
2831         vma_link(mm, vma, prev, rb_link, rb_parent);
2832         return 0;
2833 }
2834
2835 /*
2836  * Copy the vma structure to a new location in the same mm,
2837  * prior to moving page table entries, to effect an mremap move.
2838  */
2839 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2840         unsigned long addr, unsigned long len, pgoff_t pgoff,
2841         bool *need_rmap_locks)
2842 {
2843         struct vm_area_struct *vma = *vmap;
2844         unsigned long vma_start = vma->vm_start;
2845         struct mm_struct *mm = vma->vm_mm;
2846         struct vm_area_struct *new_vma, *prev;
2847         struct rb_node **rb_link, *rb_parent;
2848         bool faulted_in_anon_vma = true;
2849
2850         /*
2851          * If anonymous vma has not yet been faulted, update new pgoff
2852          * to match new location, to increase its chance of merging.
2853          */
2854         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2855                 pgoff = addr >> PAGE_SHIFT;
2856                 faulted_in_anon_vma = false;
2857         }
2858
2859         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2860                 return NULL;    /* should never get here */
2861         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2862                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2863         if (new_vma) {
2864                 /*
2865                  * Source vma may have been merged into new_vma
2866                  */
2867                 if (unlikely(vma_start >= new_vma->vm_start &&
2868                              vma_start < new_vma->vm_end)) {
2869                         /*
2870                          * The only way we can get a vma_merge with
2871                          * self during an mremap is if the vma hasn't
2872                          * been faulted in yet and we were allowed to
2873                          * reset the dst vma->vm_pgoff to the
2874                          * destination address of the mremap to allow
2875                          * the merge to happen. mremap must change the
2876                          * vm_pgoff linearity between src and dst vmas
2877                          * (in turn preventing a vma_merge) to be
2878                          * safe. It is only safe to keep the vm_pgoff
2879                          * linear if there are no pages mapped yet.
2880                          */
2881                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2882                         *vmap = vma = new_vma;
2883                 }
2884                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2885         } else {
2886                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2887                 if (new_vma) {
2888                         *new_vma = *vma;
2889                         new_vma->vm_start = addr;
2890                         new_vma->vm_end = addr + len;
2891                         new_vma->vm_pgoff = pgoff;
2892                         if (vma_dup_policy(vma, new_vma))
2893                                 goto out_free_vma;
2894                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2895                         if (anon_vma_clone(new_vma, vma))
2896                                 goto out_free_mempol;
2897                         if (new_vma->vm_file)
2898                                 get_file(new_vma->vm_file);
2899                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2900                                 new_vma->vm_ops->open(new_vma);
2901                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2902                         *need_rmap_locks = false;
2903                 }
2904         }
2905         return new_vma;
2906
2907  out_free_mempol:
2908         mpol_put(vma_policy(new_vma));
2909  out_free_vma:
2910         kmem_cache_free(vm_area_cachep, new_vma);
2911         return NULL;
2912 }
2913
2914 /*
2915  * Return true if the calling process may expand its vm space by the passed
2916  * number of pages
2917  */
2918 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2919 {
2920         unsigned long cur = mm->total_vm;       /* pages */
2921         unsigned long lim;
2922
2923         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2924
2925         if (cur + npages > lim)
2926                 return 0;
2927         return 1;
2928 }
2929
2930 static int special_mapping_fault(struct vm_area_struct *vma,
2931                                  struct vm_fault *vmf);
2932
2933 /*
2934  * Having a close hook prevents vma merging regardless of flags.
2935  */
2936 static void special_mapping_close(struct vm_area_struct *vma)
2937 {
2938 }
2939
2940 static const char *special_mapping_name(struct vm_area_struct *vma)
2941 {
2942         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2943 }
2944
2945 static const struct vm_operations_struct special_mapping_vmops = {
2946         .close = special_mapping_close,
2947         .fault = special_mapping_fault,
2948         .name = special_mapping_name,
2949 };
2950
2951 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2952         .close = special_mapping_close,
2953         .fault = special_mapping_fault,
2954 };
2955
2956 static int special_mapping_fault(struct vm_area_struct *vma,
2957                                 struct vm_fault *vmf)
2958 {
2959         pgoff_t pgoff;
2960         struct page **pages;
2961
2962         /*
2963          * special mappings have no vm_file, and in that case, the mm
2964          * uses vm_pgoff internally. So we have to subtract it from here.
2965          * We are allowed to do this because we are the mm; do not copy
2966          * this code into drivers!
2967          */
2968         pgoff = vmf->pgoff - vma->vm_pgoff;
2969
2970         if (vma->vm_ops == &legacy_special_mapping_vmops)
2971                 pages = vma->vm_private_data;
2972         else
2973                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
2974                         pages;
2975
2976         for (; pgoff && *pages; ++pages)
2977                 pgoff--;
2978
2979         if (*pages) {
2980                 struct page *page = *pages;
2981                 get_page(page);
2982                 vmf->page = page;
2983                 return 0;
2984         }
2985
2986         return VM_FAULT_SIGBUS;
2987 }
2988
2989 static struct vm_area_struct *__install_special_mapping(
2990         struct mm_struct *mm,
2991         unsigned long addr, unsigned long len,
2992         unsigned long vm_flags, const struct vm_operations_struct *ops,
2993         void *priv)
2994 {
2995         int ret;
2996         struct vm_area_struct *vma;
2997
2998         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2999         if (unlikely(vma == NULL))
3000                 return ERR_PTR(-ENOMEM);
3001
3002         INIT_LIST_HEAD(&vma->anon_vma_chain);
3003         vma->vm_mm = mm;
3004         vma->vm_start = addr;
3005         vma->vm_end = addr + len;
3006
3007         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3008         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3009
3010         vma->vm_ops = ops;
3011         vma->vm_private_data = priv;
3012
3013         ret = insert_vm_struct(mm, vma);
3014         if (ret)
3015                 goto out;
3016
3017         mm->total_vm += len >> PAGE_SHIFT;
3018
3019         perf_event_mmap(vma);
3020
3021         return vma;
3022
3023 out:
3024         kmem_cache_free(vm_area_cachep, vma);
3025         return ERR_PTR(ret);
3026 }
3027
3028 /*
3029  * Called with mm->mmap_sem held for writing.
3030  * Insert a new vma covering the given region, with the given flags.
3031  * Its pages are supplied by the given array of struct page *.
3032  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3033  * The region past the last page supplied will always produce SIGBUS.
3034  * The array pointer and the pages it points to are assumed to stay alive
3035  * for as long as this mapping might exist.
3036  */
3037 struct vm_area_struct *_install_special_mapping(
3038         struct mm_struct *mm,
3039         unsigned long addr, unsigned long len,
3040         unsigned long vm_flags, const struct vm_special_mapping *spec)
3041 {
3042         return __install_special_mapping(mm, addr, len, vm_flags,
3043                                          &special_mapping_vmops, (void *)spec);
3044 }
3045
3046 int install_special_mapping(struct mm_struct *mm,
3047                             unsigned long addr, unsigned long len,
3048                             unsigned long vm_flags, struct page **pages)
3049 {
3050         struct vm_area_struct *vma = __install_special_mapping(
3051                 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3052                 (void *)pages);
3053
3054         return PTR_ERR_OR_ZERO(vma);
3055 }
3056
3057 static DEFINE_MUTEX(mm_all_locks_mutex);
3058
3059 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3060 {
3061         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3062                 /*
3063                  * The LSB of head.next can't change from under us
3064                  * because we hold the mm_all_locks_mutex.
3065                  */
3066                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3067                 /*
3068                  * We can safely modify head.next after taking the
3069                  * anon_vma->root->rwsem. If some other vma in this mm shares
3070                  * the same anon_vma we won't take it again.
3071                  *
3072                  * No need of atomic instructions here, head.next
3073                  * can't change from under us thanks to the
3074                  * anon_vma->root->rwsem.
3075                  */
3076                 if (__test_and_set_bit(0, (unsigned long *)
3077                                        &anon_vma->root->rb_root.rb_node))
3078                         BUG();
3079         }
3080 }
3081
3082 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3083 {
3084         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3085                 /*
3086                  * AS_MM_ALL_LOCKS can't change from under us because
3087                  * we hold the mm_all_locks_mutex.
3088                  *
3089                  * Operations on ->flags have to be atomic because
3090                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3091                  * mm_all_locks_mutex, there may be other cpus
3092                  * changing other bitflags in parallel to us.
3093                  */
3094                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3095                         BUG();
3096                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3097         }
3098 }
3099
3100 /*
3101  * This operation locks against the VM for all pte/vma/mm related
3102  * operations that could ever happen on a certain mm. This includes
3103  * vmtruncate, try_to_unmap, and all page faults.
3104  *
3105  * The caller must take the mmap_sem in write mode before calling
3106  * mm_take_all_locks(). The caller isn't allowed to release the
3107  * mmap_sem until mm_drop_all_locks() returns.
3108  *
3109  * mmap_sem in write mode is required in order to block all operations
3110  * that could modify pagetables and free pages without need of
3111  * altering the vma layout (for example populate_range() with
3112  * nonlinear vmas). It's also needed in write mode to avoid new
3113  * anon_vmas to be associated with existing vmas.
3114  *
3115  * A single task can't take more than one mm_take_all_locks() in a row
3116  * or it would deadlock.
3117  *
3118  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3119  * mapping->flags avoid to take the same lock twice, if more than one
3120  * vma in this mm is backed by the same anon_vma or address_space.
3121  *
3122  * We can take all the locks in random order because the VM code
3123  * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3124  * takes more than one of them in a row. Secondly we're protected
3125  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3126  *
3127  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3128  * that may have to take thousand of locks.
3129  *
3130  * mm_take_all_locks() can fail if it's interrupted by signals.
3131  */
3132 int mm_take_all_locks(struct mm_struct *mm)
3133 {
3134         struct vm_area_struct *vma;
3135         struct anon_vma_chain *avc;
3136
3137         BUG_ON(down_read_trylock(&mm->mmap_sem));
3138
3139         mutex_lock(&mm_all_locks_mutex);
3140
3141         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3142                 if (signal_pending(current))
3143                         goto out_unlock;
3144                 if (vma->vm_file && vma->vm_file->f_mapping)
3145                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3146         }
3147
3148         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3149                 if (signal_pending(current))
3150                         goto out_unlock;
3151                 if (vma->anon_vma)
3152                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3153                                 vm_lock_anon_vma(mm, avc->anon_vma);
3154         }
3155
3156         return 0;
3157
3158 out_unlock:
3159         mm_drop_all_locks(mm);
3160         return -EINTR;
3161 }
3162
3163 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3164 {
3165         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3166                 /*
3167                  * The LSB of head.next can't change to 0 from under
3168                  * us because we hold the mm_all_locks_mutex.
3169                  *
3170                  * We must however clear the bitflag before unlocking
3171                  * the vma so the users using the anon_vma->rb_root will
3172                  * never see our bitflag.
3173                  *
3174                  * No need of atomic instructions here, head.next
3175                  * can't change from under us until we release the
3176                  * anon_vma->root->rwsem.
3177                  */
3178                 if (!__test_and_clear_bit(0, (unsigned long *)
3179                                           &anon_vma->root->rb_root.rb_node))
3180                         BUG();
3181                 anon_vma_unlock_write(anon_vma);
3182         }
3183 }
3184
3185 static void vm_unlock_mapping(struct address_space *mapping)
3186 {
3187         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3188                 /*
3189                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3190                  * because we hold the mm_all_locks_mutex.
3191                  */
3192                 i_mmap_unlock_write(mapping);
3193                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3194                                         &mapping->flags))
3195                         BUG();
3196         }
3197 }
3198
3199 /*
3200  * The mmap_sem cannot be released by the caller until
3201  * mm_drop_all_locks() returns.
3202  */
3203 void mm_drop_all_locks(struct mm_struct *mm)
3204 {
3205         struct vm_area_struct *vma;
3206         struct anon_vma_chain *avc;
3207
3208         BUG_ON(down_read_trylock(&mm->mmap_sem));
3209         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3210
3211         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3212                 if (vma->anon_vma)
3213                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3214                                 vm_unlock_anon_vma(avc->anon_vma);
3215                 if (vma->vm_file && vma->vm_file->f_mapping)
3216                         vm_unlock_mapping(vma->vm_file->f_mapping);
3217         }
3218
3219         mutex_unlock(&mm_all_locks_mutex);
3220 }
3221
3222 /*
3223  * initialise the VMA slab
3224  */
3225 void __init mmap_init(void)
3226 {
3227         int ret;
3228
3229         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3230         VM_BUG_ON(ret);
3231 }
3232
3233 /*
3234  * Initialise sysctl_user_reserve_kbytes.
3235  *
3236  * This is intended to prevent a user from starting a single memory hogging
3237  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3238  * mode.
3239  *
3240  * The default value is min(3% of free memory, 128MB)
3241  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3242  */
3243 static int init_user_reserve(void)
3244 {
3245         unsigned long free_kbytes;
3246
3247         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3248
3249         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3250         return 0;
3251 }
3252 subsys_initcall(init_user_reserve);
3253
3254 /*
3255  * Initialise sysctl_admin_reserve_kbytes.
3256  *
3257  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3258  * to log in and kill a memory hogging process.
3259  *
3260  * Systems with more than 256MB will reserve 8MB, enough to recover
3261  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3262  * only reserve 3% of free pages by default.
3263  */
3264 static int init_admin_reserve(void)
3265 {
3266         unsigned long free_kbytes;
3267
3268         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3269
3270         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3271         return 0;
3272 }
3273 subsys_initcall(init_admin_reserve);
3274
3275 /*
3276  * Reinititalise user and admin reserves if memory is added or removed.
3277  *
3278  * The default user reserve max is 128MB, and the default max for the
3279  * admin reserve is 8MB. These are usually, but not always, enough to
3280  * enable recovery from a memory hogging process using login/sshd, a shell,
3281  * and tools like top. It may make sense to increase or even disable the
3282  * reserve depending on the existence of swap or variations in the recovery
3283  * tools. So, the admin may have changed them.
3284  *
3285  * If memory is added and the reserves have been eliminated or increased above
3286  * the default max, then we'll trust the admin.
3287  *
3288  * If memory is removed and there isn't enough free memory, then we
3289  * need to reset the reserves.
3290  *
3291  * Otherwise keep the reserve set by the admin.
3292  */
3293 static int reserve_mem_notifier(struct notifier_block *nb,
3294                              unsigned long action, void *data)
3295 {
3296         unsigned long tmp, free_kbytes;
3297
3298         switch (action) {
3299         case MEM_ONLINE:
3300                 /* Default max is 128MB. Leave alone if modified by operator. */
3301                 tmp = sysctl_user_reserve_kbytes;
3302                 if (0 < tmp && tmp < (1UL << 17))
3303                         init_user_reserve();
3304
3305                 /* Default max is 8MB.  Leave alone if modified by operator. */
3306                 tmp = sysctl_admin_reserve_kbytes;
3307                 if (0 < tmp && tmp < (1UL << 13))
3308                         init_admin_reserve();
3309
3310                 break;
3311         case MEM_OFFLINE:
3312                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3313
3314                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3315                         init_user_reserve();
3316                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3317                                 sysctl_user_reserve_kbytes);
3318                 }
3319
3320                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3321                         init_admin_reserve();
3322                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3323                                 sysctl_admin_reserve_kbytes);
3324                 }
3325                 break;
3326         default:
3327                 break;
3328         }
3329         return NOTIFY_OK;
3330 }
3331
3332 static struct notifier_block reserve_mem_nb = {
3333         .notifier_call = reserve_mem_notifier,
3334 };
3335
3336 static int __meminit init_reserve_notifier(void)
3337 {
3338         if (register_hotmemory_notifier(&reserve_mem_nb))
3339                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3340
3341         return 0;
3342 }
3343 subsys_initcall(init_reserve_notifier);