ASoC: fsl-asoc-card: add cs4271 and cs4272 support
[cascardo/linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlb.h>
49 #include <asm/mmu_context.h>
50
51 #include "internal.h"
52
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags)       (0)
55 #endif
56
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len)              (addr)
59 #endif
60
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
71
72
73 static void unmap_region(struct mm_struct *mm,
74                 struct vm_area_struct *vma, struct vm_area_struct *prev,
75                 unsigned long start, unsigned long end);
76
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type     prot
82  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
83  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
84  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
85  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
86  *
87  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
88  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
89  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
90  *
91  */
92 pgprot_t protection_map[16] = {
93         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
94         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
95 };
96
97 pgprot_t vm_get_page_prot(unsigned long vm_flags)
98 {
99         return __pgprot(pgprot_val(protection_map[vm_flags &
100                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
101                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
102 }
103 EXPORT_SYMBOL(vm_get_page_prot);
104
105 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
106 {
107         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
108 }
109
110 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
111 void vma_set_page_prot(struct vm_area_struct *vma)
112 {
113         unsigned long vm_flags = vma->vm_flags;
114
115         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
116         if (vma_wants_writenotify(vma)) {
117                 vm_flags &= ~VM_SHARED;
118                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
119                                                      vm_flags);
120         }
121 }
122
123
124 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
125 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
126 unsigned long sysctl_overcommit_kbytes __read_mostly;
127 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
128 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
129 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
130 /*
131  * Make sure vm_committed_as in one cacheline and not cacheline shared with
132  * other variables. It can be updated by several CPUs frequently.
133  */
134 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
135
136 /*
137  * The global memory commitment made in the system can be a metric
138  * that can be used to drive ballooning decisions when Linux is hosted
139  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
140  * balancing memory across competing virtual machines that are hosted.
141  * Several metrics drive this policy engine including the guest reported
142  * memory commitment.
143  */
144 unsigned long vm_memory_committed(void)
145 {
146         return percpu_counter_read_positive(&vm_committed_as);
147 }
148 EXPORT_SYMBOL_GPL(vm_memory_committed);
149
150 /*
151  * Check that a process has enough memory to allocate a new virtual
152  * mapping. 0 means there is enough memory for the allocation to
153  * succeed and -ENOMEM implies there is not.
154  *
155  * We currently support three overcommit policies, which are set via the
156  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
157  *
158  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
159  * Additional code 2002 Jul 20 by Robert Love.
160  *
161  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
162  *
163  * Note this is a helper function intended to be used by LSMs which
164  * wish to use this logic.
165  */
166 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
167 {
168         long free, allowed, reserve;
169
170         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
171                         -(s64)vm_committed_as_batch * num_online_cpus(),
172                         "memory commitment underflow");
173
174         vm_acct_memory(pages);
175
176         /*
177          * Sometimes we want to use more memory than we have
178          */
179         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
180                 return 0;
181
182         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
183                 free = global_page_state(NR_FREE_PAGES);
184                 free += global_page_state(NR_FILE_PAGES);
185
186                 /*
187                  * shmem pages shouldn't be counted as free in this
188                  * case, they can't be purged, only swapped out, and
189                  * that won't affect the overall amount of available
190                  * memory in the system.
191                  */
192                 free -= global_page_state(NR_SHMEM);
193
194                 free += get_nr_swap_pages();
195
196                 /*
197                  * Any slabs which are created with the
198                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
199                  * which are reclaimable, under pressure.  The dentry
200                  * cache and most inode caches should fall into this
201                  */
202                 free += global_page_state(NR_SLAB_RECLAIMABLE);
203
204                 /*
205                  * Leave reserved pages. The pages are not for anonymous pages.
206                  */
207                 if (free <= totalreserve_pages)
208                         goto error;
209                 else
210                         free -= totalreserve_pages;
211
212                 /*
213                  * Reserve some for root
214                  */
215                 if (!cap_sys_admin)
216                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
217
218                 if (free > pages)
219                         return 0;
220
221                 goto error;
222         }
223
224         allowed = vm_commit_limit();
225         /*
226          * Reserve some for root
227          */
228         if (!cap_sys_admin)
229                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
230
231         /*
232          * Don't let a single process grow so big a user can't recover
233          */
234         if (mm) {
235                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
236                 allowed -= min_t(long, mm->total_vm / 32, reserve);
237         }
238
239         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
240                 return 0;
241 error:
242         vm_unacct_memory(pages);
243
244         return -ENOMEM;
245 }
246
247 /*
248  * Requires inode->i_mapping->i_mmap_rwsem
249  */
250 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
251                 struct file *file, struct address_space *mapping)
252 {
253         if (vma->vm_flags & VM_DENYWRITE)
254                 atomic_inc(&file_inode(file)->i_writecount);
255         if (vma->vm_flags & VM_SHARED)
256                 mapping_unmap_writable(mapping);
257
258         flush_dcache_mmap_lock(mapping);
259         vma_interval_tree_remove(vma, &mapping->i_mmap);
260         flush_dcache_mmap_unlock(mapping);
261 }
262
263 /*
264  * Unlink a file-based vm structure from its interval tree, to hide
265  * vma from rmap and vmtruncate before freeing its page tables.
266  */
267 void unlink_file_vma(struct vm_area_struct *vma)
268 {
269         struct file *file = vma->vm_file;
270
271         if (file) {
272                 struct address_space *mapping = file->f_mapping;
273                 i_mmap_lock_write(mapping);
274                 __remove_shared_vm_struct(vma, file, mapping);
275                 i_mmap_unlock_write(mapping);
276         }
277 }
278
279 /*
280  * Close a vm structure and free it, returning the next.
281  */
282 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
283 {
284         struct vm_area_struct *next = vma->vm_next;
285
286         might_sleep();
287         if (vma->vm_ops && vma->vm_ops->close)
288                 vma->vm_ops->close(vma);
289         if (vma->vm_file)
290                 fput(vma->vm_file);
291         mpol_put(vma_policy(vma));
292         kmem_cache_free(vm_area_cachep, vma);
293         return next;
294 }
295
296 static unsigned long do_brk(unsigned long addr, unsigned long len);
297
298 SYSCALL_DEFINE1(brk, unsigned long, brk)
299 {
300         unsigned long retval;
301         unsigned long newbrk, oldbrk;
302         struct mm_struct *mm = current->mm;
303         unsigned long min_brk;
304         bool populate;
305
306         down_write(&mm->mmap_sem);
307
308 #ifdef CONFIG_COMPAT_BRK
309         /*
310          * CONFIG_COMPAT_BRK can still be overridden by setting
311          * randomize_va_space to 2, which will still cause mm->start_brk
312          * to be arbitrarily shifted
313          */
314         if (current->brk_randomized)
315                 min_brk = mm->start_brk;
316         else
317                 min_brk = mm->end_data;
318 #else
319         min_brk = mm->start_brk;
320 #endif
321         if (brk < min_brk)
322                 goto out;
323
324         /*
325          * Check against rlimit here. If this check is done later after the test
326          * of oldbrk with newbrk then it can escape the test and let the data
327          * segment grow beyond its set limit the in case where the limit is
328          * not page aligned -Ram Gupta
329          */
330         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
331                               mm->end_data, mm->start_data))
332                 goto out;
333
334         newbrk = PAGE_ALIGN(brk);
335         oldbrk = PAGE_ALIGN(mm->brk);
336         if (oldbrk == newbrk)
337                 goto set_brk;
338
339         /* Always allow shrinking brk. */
340         if (brk <= mm->brk) {
341                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
342                         goto set_brk;
343                 goto out;
344         }
345
346         /* Check against existing mmap mappings. */
347         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
348                 goto out;
349
350         /* Ok, looks good - let it rip. */
351         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
352                 goto out;
353
354 set_brk:
355         mm->brk = brk;
356         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
357         up_write(&mm->mmap_sem);
358         if (populate)
359                 mm_populate(oldbrk, newbrk - oldbrk);
360         return brk;
361
362 out:
363         retval = mm->brk;
364         up_write(&mm->mmap_sem);
365         return retval;
366 }
367
368 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
369 {
370         unsigned long max, subtree_gap;
371         max = vma->vm_start;
372         if (vma->vm_prev)
373                 max -= vma->vm_prev->vm_end;
374         if (vma->vm_rb.rb_left) {
375                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
376                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
377                 if (subtree_gap > max)
378                         max = subtree_gap;
379         }
380         if (vma->vm_rb.rb_right) {
381                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
382                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
383                 if (subtree_gap > max)
384                         max = subtree_gap;
385         }
386         return max;
387 }
388
389 #ifdef CONFIG_DEBUG_VM_RB
390 static int browse_rb(struct rb_root *root)
391 {
392         int i = 0, j, bug = 0;
393         struct rb_node *nd, *pn = NULL;
394         unsigned long prev = 0, pend = 0;
395
396         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
397                 struct vm_area_struct *vma;
398                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
399                 if (vma->vm_start < prev) {
400                         pr_emerg("vm_start %lx < prev %lx\n",
401                                   vma->vm_start, prev);
402                         bug = 1;
403                 }
404                 if (vma->vm_start < pend) {
405                         pr_emerg("vm_start %lx < pend %lx\n",
406                                   vma->vm_start, pend);
407                         bug = 1;
408                 }
409                 if (vma->vm_start > vma->vm_end) {
410                         pr_emerg("vm_start %lx > vm_end %lx\n",
411                                   vma->vm_start, vma->vm_end);
412                         bug = 1;
413                 }
414                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
415                         pr_emerg("free gap %lx, correct %lx\n",
416                                vma->rb_subtree_gap,
417                                vma_compute_subtree_gap(vma));
418                         bug = 1;
419                 }
420                 i++;
421                 pn = nd;
422                 prev = vma->vm_start;
423                 pend = vma->vm_end;
424         }
425         j = 0;
426         for (nd = pn; nd; nd = rb_prev(nd))
427                 j++;
428         if (i != j) {
429                 pr_emerg("backwards %d, forwards %d\n", j, i);
430                 bug = 1;
431         }
432         return bug ? -1 : i;
433 }
434
435 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
436 {
437         struct rb_node *nd;
438
439         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
440                 struct vm_area_struct *vma;
441                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
442                 VM_BUG_ON_VMA(vma != ignore &&
443                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
444                         vma);
445         }
446 }
447
448 static void validate_mm(struct mm_struct *mm)
449 {
450         int bug = 0;
451         int i = 0;
452         unsigned long highest_address = 0;
453         struct vm_area_struct *vma = mm->mmap;
454
455         while (vma) {
456                 struct anon_vma_chain *avc;
457
458                 vma_lock_anon_vma(vma);
459                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
460                         anon_vma_interval_tree_verify(avc);
461                 vma_unlock_anon_vma(vma);
462                 highest_address = vma->vm_end;
463                 vma = vma->vm_next;
464                 i++;
465         }
466         if (i != mm->map_count) {
467                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
468                 bug = 1;
469         }
470         if (highest_address != mm->highest_vm_end) {
471                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
472                           mm->highest_vm_end, highest_address);
473                 bug = 1;
474         }
475         i = browse_rb(&mm->mm_rb);
476         if (i != mm->map_count) {
477                 if (i != -1)
478                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
479                 bug = 1;
480         }
481         VM_BUG_ON_MM(bug, mm);
482 }
483 #else
484 #define validate_mm_rb(root, ignore) do { } while (0)
485 #define validate_mm(mm) do { } while (0)
486 #endif
487
488 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
489                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
490
491 /*
492  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
493  * vma->vm_prev->vm_end values changed, without modifying the vma's position
494  * in the rbtree.
495  */
496 static void vma_gap_update(struct vm_area_struct *vma)
497 {
498         /*
499          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
500          * function that does exacltly what we want.
501          */
502         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
503 }
504
505 static inline void vma_rb_insert(struct vm_area_struct *vma,
506                                  struct rb_root *root)
507 {
508         /* All rb_subtree_gap values must be consistent prior to insertion */
509         validate_mm_rb(root, NULL);
510
511         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
512 }
513
514 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
515 {
516         /*
517          * All rb_subtree_gap values must be consistent prior to erase,
518          * with the possible exception of the vma being erased.
519          */
520         validate_mm_rb(root, vma);
521
522         /*
523          * Note rb_erase_augmented is a fairly large inline function,
524          * so make sure we instantiate it only once with our desired
525          * augmented rbtree callbacks.
526          */
527         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
528 }
529
530 /*
531  * vma has some anon_vma assigned, and is already inserted on that
532  * anon_vma's interval trees.
533  *
534  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
535  * vma must be removed from the anon_vma's interval trees using
536  * anon_vma_interval_tree_pre_update_vma().
537  *
538  * After the update, the vma will be reinserted using
539  * anon_vma_interval_tree_post_update_vma().
540  *
541  * The entire update must be protected by exclusive mmap_sem and by
542  * the root anon_vma's mutex.
543  */
544 static inline void
545 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
546 {
547         struct anon_vma_chain *avc;
548
549         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
550                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
551 }
552
553 static inline void
554 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
555 {
556         struct anon_vma_chain *avc;
557
558         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
559                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
560 }
561
562 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
563                 unsigned long end, struct vm_area_struct **pprev,
564                 struct rb_node ***rb_link, struct rb_node **rb_parent)
565 {
566         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
567
568         __rb_link = &mm->mm_rb.rb_node;
569         rb_prev = __rb_parent = NULL;
570
571         while (*__rb_link) {
572                 struct vm_area_struct *vma_tmp;
573
574                 __rb_parent = *__rb_link;
575                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
576
577                 if (vma_tmp->vm_end > addr) {
578                         /* Fail if an existing vma overlaps the area */
579                         if (vma_tmp->vm_start < end)
580                                 return -ENOMEM;
581                         __rb_link = &__rb_parent->rb_left;
582                 } else {
583                         rb_prev = __rb_parent;
584                         __rb_link = &__rb_parent->rb_right;
585                 }
586         }
587
588         *pprev = NULL;
589         if (rb_prev)
590                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
591         *rb_link = __rb_link;
592         *rb_parent = __rb_parent;
593         return 0;
594 }
595
596 static unsigned long count_vma_pages_range(struct mm_struct *mm,
597                 unsigned long addr, unsigned long end)
598 {
599         unsigned long nr_pages = 0;
600         struct vm_area_struct *vma;
601
602         /* Find first overlaping mapping */
603         vma = find_vma_intersection(mm, addr, end);
604         if (!vma)
605                 return 0;
606
607         nr_pages = (min(end, vma->vm_end) -
608                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
609
610         /* Iterate over the rest of the overlaps */
611         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
612                 unsigned long overlap_len;
613
614                 if (vma->vm_start > end)
615                         break;
616
617                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
618                 nr_pages += overlap_len >> PAGE_SHIFT;
619         }
620
621         return nr_pages;
622 }
623
624 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
625                 struct rb_node **rb_link, struct rb_node *rb_parent)
626 {
627         /* Update tracking information for the gap following the new vma. */
628         if (vma->vm_next)
629                 vma_gap_update(vma->vm_next);
630         else
631                 mm->highest_vm_end = vma->vm_end;
632
633         /*
634          * vma->vm_prev wasn't known when we followed the rbtree to find the
635          * correct insertion point for that vma. As a result, we could not
636          * update the vma vm_rb parents rb_subtree_gap values on the way down.
637          * So, we first insert the vma with a zero rb_subtree_gap value
638          * (to be consistent with what we did on the way down), and then
639          * immediately update the gap to the correct value. Finally we
640          * rebalance the rbtree after all augmented values have been set.
641          */
642         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
643         vma->rb_subtree_gap = 0;
644         vma_gap_update(vma);
645         vma_rb_insert(vma, &mm->mm_rb);
646 }
647
648 static void __vma_link_file(struct vm_area_struct *vma)
649 {
650         struct file *file;
651
652         file = vma->vm_file;
653         if (file) {
654                 struct address_space *mapping = file->f_mapping;
655
656                 if (vma->vm_flags & VM_DENYWRITE)
657                         atomic_dec(&file_inode(file)->i_writecount);
658                 if (vma->vm_flags & VM_SHARED)
659                         atomic_inc(&mapping->i_mmap_writable);
660
661                 flush_dcache_mmap_lock(mapping);
662                 vma_interval_tree_insert(vma, &mapping->i_mmap);
663                 flush_dcache_mmap_unlock(mapping);
664         }
665 }
666
667 static void
668 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
669         struct vm_area_struct *prev, struct rb_node **rb_link,
670         struct rb_node *rb_parent)
671 {
672         __vma_link_list(mm, vma, prev, rb_parent);
673         __vma_link_rb(mm, vma, rb_link, rb_parent);
674 }
675
676 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
677                         struct vm_area_struct *prev, struct rb_node **rb_link,
678                         struct rb_node *rb_parent)
679 {
680         struct address_space *mapping = NULL;
681
682         if (vma->vm_file) {
683                 mapping = vma->vm_file->f_mapping;
684                 i_mmap_lock_write(mapping);
685         }
686
687         __vma_link(mm, vma, prev, rb_link, rb_parent);
688         __vma_link_file(vma);
689
690         if (mapping)
691                 i_mmap_unlock_write(mapping);
692
693         mm->map_count++;
694         validate_mm(mm);
695 }
696
697 /*
698  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
699  * mm's list and rbtree.  It has already been inserted into the interval tree.
700  */
701 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
702 {
703         struct vm_area_struct *prev;
704         struct rb_node **rb_link, *rb_parent;
705
706         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
707                            &prev, &rb_link, &rb_parent))
708                 BUG();
709         __vma_link(mm, vma, prev, rb_link, rb_parent);
710         mm->map_count++;
711 }
712
713 static inline void
714 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
715                 struct vm_area_struct *prev)
716 {
717         struct vm_area_struct *next;
718
719         vma_rb_erase(vma, &mm->mm_rb);
720         prev->vm_next = next = vma->vm_next;
721         if (next)
722                 next->vm_prev = prev;
723
724         /* Kill the cache */
725         vmacache_invalidate(mm);
726 }
727
728 /*
729  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
730  * is already present in an i_mmap tree without adjusting the tree.
731  * The following helper function should be used when such adjustments
732  * are necessary.  The "insert" vma (if any) is to be inserted
733  * before we drop the necessary locks.
734  */
735 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
736         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
737 {
738         struct mm_struct *mm = vma->vm_mm;
739         struct vm_area_struct *next = vma->vm_next;
740         struct vm_area_struct *importer = NULL;
741         struct address_space *mapping = NULL;
742         struct rb_root *root = NULL;
743         struct anon_vma *anon_vma = NULL;
744         struct file *file = vma->vm_file;
745         bool start_changed = false, end_changed = false;
746         long adjust_next = 0;
747         int remove_next = 0;
748
749         if (next && !insert) {
750                 struct vm_area_struct *exporter = NULL;
751
752                 if (end >= next->vm_end) {
753                         /*
754                          * vma expands, overlapping all the next, and
755                          * perhaps the one after too (mprotect case 6).
756                          */
757 again:                  remove_next = 1 + (end > next->vm_end);
758                         end = next->vm_end;
759                         exporter = next;
760                         importer = vma;
761                 } else if (end > next->vm_start) {
762                         /*
763                          * vma expands, overlapping part of the next:
764                          * mprotect case 5 shifting the boundary up.
765                          */
766                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
767                         exporter = next;
768                         importer = vma;
769                 } else if (end < vma->vm_end) {
770                         /*
771                          * vma shrinks, and !insert tells it's not
772                          * split_vma inserting another: so it must be
773                          * mprotect case 4 shifting the boundary down.
774                          */
775                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
776                         exporter = vma;
777                         importer = next;
778                 }
779
780                 /*
781                  * Easily overlooked: when mprotect shifts the boundary,
782                  * make sure the expanding vma has anon_vma set if the
783                  * shrinking vma had, to cover any anon pages imported.
784                  */
785                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
786                         int error;
787
788                         importer->anon_vma = exporter->anon_vma;
789                         error = anon_vma_clone(importer, exporter);
790                         if (error)
791                                 return error;
792                 }
793         }
794
795         if (file) {
796                 mapping = file->f_mapping;
797                 root = &mapping->i_mmap;
798                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
799
800                 if (adjust_next)
801                         uprobe_munmap(next, next->vm_start, next->vm_end);
802
803                 i_mmap_lock_write(mapping);
804                 if (insert) {
805                         /*
806                          * Put into interval tree now, so instantiated pages
807                          * are visible to arm/parisc __flush_dcache_page
808                          * throughout; but we cannot insert into address
809                          * space until vma start or end is updated.
810                          */
811                         __vma_link_file(insert);
812                 }
813         }
814
815         vma_adjust_trans_huge(vma, start, end, adjust_next);
816
817         anon_vma = vma->anon_vma;
818         if (!anon_vma && adjust_next)
819                 anon_vma = next->anon_vma;
820         if (anon_vma) {
821                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
822                           anon_vma != next->anon_vma, next);
823                 anon_vma_lock_write(anon_vma);
824                 anon_vma_interval_tree_pre_update_vma(vma);
825                 if (adjust_next)
826                         anon_vma_interval_tree_pre_update_vma(next);
827         }
828
829         if (root) {
830                 flush_dcache_mmap_lock(mapping);
831                 vma_interval_tree_remove(vma, root);
832                 if (adjust_next)
833                         vma_interval_tree_remove(next, root);
834         }
835
836         if (start != vma->vm_start) {
837                 vma->vm_start = start;
838                 start_changed = true;
839         }
840         if (end != vma->vm_end) {
841                 vma->vm_end = end;
842                 end_changed = true;
843         }
844         vma->vm_pgoff = pgoff;
845         if (adjust_next) {
846                 next->vm_start += adjust_next << PAGE_SHIFT;
847                 next->vm_pgoff += adjust_next;
848         }
849
850         if (root) {
851                 if (adjust_next)
852                         vma_interval_tree_insert(next, root);
853                 vma_interval_tree_insert(vma, root);
854                 flush_dcache_mmap_unlock(mapping);
855         }
856
857         if (remove_next) {
858                 /*
859                  * vma_merge has merged next into vma, and needs
860                  * us to remove next before dropping the locks.
861                  */
862                 __vma_unlink(mm, next, vma);
863                 if (file)
864                         __remove_shared_vm_struct(next, file, mapping);
865         } else if (insert) {
866                 /*
867                  * split_vma has split insert from vma, and needs
868                  * us to insert it before dropping the locks
869                  * (it may either follow vma or precede it).
870                  */
871                 __insert_vm_struct(mm, insert);
872         } else {
873                 if (start_changed)
874                         vma_gap_update(vma);
875                 if (end_changed) {
876                         if (!next)
877                                 mm->highest_vm_end = end;
878                         else if (!adjust_next)
879                                 vma_gap_update(next);
880                 }
881         }
882
883         if (anon_vma) {
884                 anon_vma_interval_tree_post_update_vma(vma);
885                 if (adjust_next)
886                         anon_vma_interval_tree_post_update_vma(next);
887                 anon_vma_unlock_write(anon_vma);
888         }
889         if (mapping)
890                 i_mmap_unlock_write(mapping);
891
892         if (root) {
893                 uprobe_mmap(vma);
894
895                 if (adjust_next)
896                         uprobe_mmap(next);
897         }
898
899         if (remove_next) {
900                 if (file) {
901                         uprobe_munmap(next, next->vm_start, next->vm_end);
902                         fput(file);
903                 }
904                 if (next->anon_vma)
905                         anon_vma_merge(vma, next);
906                 mm->map_count--;
907                 mpol_put(vma_policy(next));
908                 kmem_cache_free(vm_area_cachep, next);
909                 /*
910                  * In mprotect's case 6 (see comments on vma_merge),
911                  * we must remove another next too. It would clutter
912                  * up the code too much to do both in one go.
913                  */
914                 next = vma->vm_next;
915                 if (remove_next == 2)
916                         goto again;
917                 else if (next)
918                         vma_gap_update(next);
919                 else
920                         mm->highest_vm_end = end;
921         }
922         if (insert && file)
923                 uprobe_mmap(insert);
924
925         validate_mm(mm);
926
927         return 0;
928 }
929
930 /*
931  * If the vma has a ->close operation then the driver probably needs to release
932  * per-vma resources, so we don't attempt to merge those.
933  */
934 static inline int is_mergeable_vma(struct vm_area_struct *vma,
935                                 struct file *file, unsigned long vm_flags,
936                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
937 {
938         /*
939          * VM_SOFTDIRTY should not prevent from VMA merging, if we
940          * match the flags but dirty bit -- the caller should mark
941          * merged VMA as dirty. If dirty bit won't be excluded from
942          * comparison, we increase pressue on the memory system forcing
943          * the kernel to generate new VMAs when old one could be
944          * extended instead.
945          */
946         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
947                 return 0;
948         if (vma->vm_file != file)
949                 return 0;
950         if (vma->vm_ops && vma->vm_ops->close)
951                 return 0;
952         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
953                 return 0;
954         return 1;
955 }
956
957 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
958                                         struct anon_vma *anon_vma2,
959                                         struct vm_area_struct *vma)
960 {
961         /*
962          * The list_is_singular() test is to avoid merging VMA cloned from
963          * parents. This can improve scalability caused by anon_vma lock.
964          */
965         if ((!anon_vma1 || !anon_vma2) && (!vma ||
966                 list_is_singular(&vma->anon_vma_chain)))
967                 return 1;
968         return anon_vma1 == anon_vma2;
969 }
970
971 /*
972  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
973  * in front of (at a lower virtual address and file offset than) the vma.
974  *
975  * We cannot merge two vmas if they have differently assigned (non-NULL)
976  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
977  *
978  * We don't check here for the merged mmap wrapping around the end of pagecache
979  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
980  * wrap, nor mmaps which cover the final page at index -1UL.
981  */
982 static int
983 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
984                      struct anon_vma *anon_vma, struct file *file,
985                      pgoff_t vm_pgoff,
986                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
987 {
988         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
989             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
990                 if (vma->vm_pgoff == vm_pgoff)
991                         return 1;
992         }
993         return 0;
994 }
995
996 /*
997  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
998  * beyond (at a higher virtual address and file offset than) the vma.
999  *
1000  * We cannot merge two vmas if they have differently assigned (non-NULL)
1001  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1002  */
1003 static int
1004 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1005                     struct anon_vma *anon_vma, struct file *file,
1006                     pgoff_t vm_pgoff,
1007                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1008 {
1009         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1010             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1011                 pgoff_t vm_pglen;
1012                 vm_pglen = vma_pages(vma);
1013                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1014                         return 1;
1015         }
1016         return 0;
1017 }
1018
1019 /*
1020  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1021  * whether that can be merged with its predecessor or its successor.
1022  * Or both (it neatly fills a hole).
1023  *
1024  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1025  * certain not to be mapped by the time vma_merge is called; but when
1026  * called for mprotect, it is certain to be already mapped (either at
1027  * an offset within prev, or at the start of next), and the flags of
1028  * this area are about to be changed to vm_flags - and the no-change
1029  * case has already been eliminated.
1030  *
1031  * The following mprotect cases have to be considered, where AAAA is
1032  * the area passed down from mprotect_fixup, never extending beyond one
1033  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1034  *
1035  *     AAAA             AAAA                AAAA          AAAA
1036  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1037  *    cannot merge    might become    might become    might become
1038  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1039  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1040  *    mremap move:                                    PPPPNNNNNNNN 8
1041  *        AAAA
1042  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1043  *    might become    case 1 below    case 2 below    case 3 below
1044  *
1045  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1046  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1047  */
1048 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1049                         struct vm_area_struct *prev, unsigned long addr,
1050                         unsigned long end, unsigned long vm_flags,
1051                         struct anon_vma *anon_vma, struct file *file,
1052                         pgoff_t pgoff, struct mempolicy *policy,
1053                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1054 {
1055         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1056         struct vm_area_struct *area, *next;
1057         int err;
1058
1059         /*
1060          * We later require that vma->vm_flags == vm_flags,
1061          * so this tests vma->vm_flags & VM_SPECIAL, too.
1062          */
1063         if (vm_flags & VM_SPECIAL)
1064                 return NULL;
1065
1066         if (prev)
1067                 next = prev->vm_next;
1068         else
1069                 next = mm->mmap;
1070         area = next;
1071         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1072                 next = next->vm_next;
1073
1074         /*
1075          * Can it merge with the predecessor?
1076          */
1077         if (prev && prev->vm_end == addr &&
1078                         mpol_equal(vma_policy(prev), policy) &&
1079                         can_vma_merge_after(prev, vm_flags,
1080                                             anon_vma, file, pgoff,
1081                                             vm_userfaultfd_ctx)) {
1082                 /*
1083                  * OK, it can.  Can we now merge in the successor as well?
1084                  */
1085                 if (next && end == next->vm_start &&
1086                                 mpol_equal(policy, vma_policy(next)) &&
1087                                 can_vma_merge_before(next, vm_flags,
1088                                                      anon_vma, file,
1089                                                      pgoff+pglen,
1090                                                      vm_userfaultfd_ctx) &&
1091                                 is_mergeable_anon_vma(prev->anon_vma,
1092                                                       next->anon_vma, NULL)) {
1093                                                         /* cases 1, 6 */
1094                         err = vma_adjust(prev, prev->vm_start,
1095                                 next->vm_end, prev->vm_pgoff, NULL);
1096                 } else                                  /* cases 2, 5, 7 */
1097                         err = vma_adjust(prev, prev->vm_start,
1098                                 end, prev->vm_pgoff, NULL);
1099                 if (err)
1100                         return NULL;
1101                 khugepaged_enter_vma_merge(prev, vm_flags);
1102                 return prev;
1103         }
1104
1105         /*
1106          * Can this new request be merged in front of next?
1107          */
1108         if (next && end == next->vm_start &&
1109                         mpol_equal(policy, vma_policy(next)) &&
1110                         can_vma_merge_before(next, vm_flags,
1111                                              anon_vma, file, pgoff+pglen,
1112                                              vm_userfaultfd_ctx)) {
1113                 if (prev && addr < prev->vm_end)        /* case 4 */
1114                         err = vma_adjust(prev, prev->vm_start,
1115                                 addr, prev->vm_pgoff, NULL);
1116                 else                                    /* cases 3, 8 */
1117                         err = vma_adjust(area, addr, next->vm_end,
1118                                 next->vm_pgoff - pglen, NULL);
1119                 if (err)
1120                         return NULL;
1121                 khugepaged_enter_vma_merge(area, vm_flags);
1122                 return area;
1123         }
1124
1125         return NULL;
1126 }
1127
1128 /*
1129  * Rough compatbility check to quickly see if it's even worth looking
1130  * at sharing an anon_vma.
1131  *
1132  * They need to have the same vm_file, and the flags can only differ
1133  * in things that mprotect may change.
1134  *
1135  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1136  * we can merge the two vma's. For example, we refuse to merge a vma if
1137  * there is a vm_ops->close() function, because that indicates that the
1138  * driver is doing some kind of reference counting. But that doesn't
1139  * really matter for the anon_vma sharing case.
1140  */
1141 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1142 {
1143         return a->vm_end == b->vm_start &&
1144                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1145                 a->vm_file == b->vm_file &&
1146                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1147                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1148 }
1149
1150 /*
1151  * Do some basic sanity checking to see if we can re-use the anon_vma
1152  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1153  * the same as 'old', the other will be the new one that is trying
1154  * to share the anon_vma.
1155  *
1156  * NOTE! This runs with mm_sem held for reading, so it is possible that
1157  * the anon_vma of 'old' is concurrently in the process of being set up
1158  * by another page fault trying to merge _that_. But that's ok: if it
1159  * is being set up, that automatically means that it will be a singleton
1160  * acceptable for merging, so we can do all of this optimistically. But
1161  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1162  *
1163  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1164  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1165  * is to return an anon_vma that is "complex" due to having gone through
1166  * a fork).
1167  *
1168  * We also make sure that the two vma's are compatible (adjacent,
1169  * and with the same memory policies). That's all stable, even with just
1170  * a read lock on the mm_sem.
1171  */
1172 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1173 {
1174         if (anon_vma_compatible(a, b)) {
1175                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1176
1177                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1178                         return anon_vma;
1179         }
1180         return NULL;
1181 }
1182
1183 /*
1184  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1185  * neighbouring vmas for a suitable anon_vma, before it goes off
1186  * to allocate a new anon_vma.  It checks because a repetitive
1187  * sequence of mprotects and faults may otherwise lead to distinct
1188  * anon_vmas being allocated, preventing vma merge in subsequent
1189  * mprotect.
1190  */
1191 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1192 {
1193         struct anon_vma *anon_vma;
1194         struct vm_area_struct *near;
1195
1196         near = vma->vm_next;
1197         if (!near)
1198                 goto try_prev;
1199
1200         anon_vma = reusable_anon_vma(near, vma, near);
1201         if (anon_vma)
1202                 return anon_vma;
1203 try_prev:
1204         near = vma->vm_prev;
1205         if (!near)
1206                 goto none;
1207
1208         anon_vma = reusable_anon_vma(near, near, vma);
1209         if (anon_vma)
1210                 return anon_vma;
1211 none:
1212         /*
1213          * There's no absolute need to look only at touching neighbours:
1214          * we could search further afield for "compatible" anon_vmas.
1215          * But it would probably just be a waste of time searching,
1216          * or lead to too many vmas hanging off the same anon_vma.
1217          * We're trying to allow mprotect remerging later on,
1218          * not trying to minimize memory used for anon_vmas.
1219          */
1220         return NULL;
1221 }
1222
1223 /*
1224  * If a hint addr is less than mmap_min_addr change hint to be as
1225  * low as possible but still greater than mmap_min_addr
1226  */
1227 static inline unsigned long round_hint_to_min(unsigned long hint)
1228 {
1229         hint &= PAGE_MASK;
1230         if (((void *)hint != NULL) &&
1231             (hint < mmap_min_addr))
1232                 return PAGE_ALIGN(mmap_min_addr);
1233         return hint;
1234 }
1235
1236 static inline int mlock_future_check(struct mm_struct *mm,
1237                                      unsigned long flags,
1238                                      unsigned long len)
1239 {
1240         unsigned long locked, lock_limit;
1241
1242         /*  mlock MCL_FUTURE? */
1243         if (flags & VM_LOCKED) {
1244                 locked = len >> PAGE_SHIFT;
1245                 locked += mm->locked_vm;
1246                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1247                 lock_limit >>= PAGE_SHIFT;
1248                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1249                         return -EAGAIN;
1250         }
1251         return 0;
1252 }
1253
1254 /*
1255  * The caller must hold down_write(&current->mm->mmap_sem).
1256  */
1257 unsigned long do_mmap(struct file *file, unsigned long addr,
1258                         unsigned long len, unsigned long prot,
1259                         unsigned long flags, vm_flags_t vm_flags,
1260                         unsigned long pgoff, unsigned long *populate)
1261 {
1262         struct mm_struct *mm = current->mm;
1263
1264         *populate = 0;
1265
1266         if (!len)
1267                 return -EINVAL;
1268
1269         /*
1270          * Does the application expect PROT_READ to imply PROT_EXEC?
1271          *
1272          * (the exception is when the underlying filesystem is noexec
1273          *  mounted, in which case we dont add PROT_EXEC.)
1274          */
1275         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1276                 if (!(file && path_noexec(&file->f_path)))
1277                         prot |= PROT_EXEC;
1278
1279         if (!(flags & MAP_FIXED))
1280                 addr = round_hint_to_min(addr);
1281
1282         /* Careful about overflows.. */
1283         len = PAGE_ALIGN(len);
1284         if (!len)
1285                 return -ENOMEM;
1286
1287         /* offset overflow? */
1288         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1289                 return -EOVERFLOW;
1290
1291         /* Too many mappings? */
1292         if (mm->map_count > sysctl_max_map_count)
1293                 return -ENOMEM;
1294
1295         /* Obtain the address to map to. we verify (or select) it and ensure
1296          * that it represents a valid section of the address space.
1297          */
1298         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1299         if (offset_in_page(addr))
1300                 return addr;
1301
1302         /* Do simple checking here so the lower-level routines won't have
1303          * to. we assume access permissions have been handled by the open
1304          * of the memory object, so we don't do any here.
1305          */
1306         vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1307                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1308
1309         if (flags & MAP_LOCKED)
1310                 if (!can_do_mlock())
1311                         return -EPERM;
1312
1313         if (mlock_future_check(mm, vm_flags, len))
1314                 return -EAGAIN;
1315
1316         if (file) {
1317                 struct inode *inode = file_inode(file);
1318
1319                 switch (flags & MAP_TYPE) {
1320                 case MAP_SHARED:
1321                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1322                                 return -EACCES;
1323
1324                         /*
1325                          * Make sure we don't allow writing to an append-only
1326                          * file..
1327                          */
1328                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1329                                 return -EACCES;
1330
1331                         /*
1332                          * Make sure there are no mandatory locks on the file.
1333                          */
1334                         if (locks_verify_locked(file))
1335                                 return -EAGAIN;
1336
1337                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1338                         if (!(file->f_mode & FMODE_WRITE))
1339                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1340
1341                         /* fall through */
1342                 case MAP_PRIVATE:
1343                         if (!(file->f_mode & FMODE_READ))
1344                                 return -EACCES;
1345                         if (path_noexec(&file->f_path)) {
1346                                 if (vm_flags & VM_EXEC)
1347                                         return -EPERM;
1348                                 vm_flags &= ~VM_MAYEXEC;
1349                         }
1350
1351                         if (!file->f_op->mmap)
1352                                 return -ENODEV;
1353                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1354                                 return -EINVAL;
1355                         break;
1356
1357                 default:
1358                         return -EINVAL;
1359                 }
1360         } else {
1361                 switch (flags & MAP_TYPE) {
1362                 case MAP_SHARED:
1363                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1364                                 return -EINVAL;
1365                         /*
1366                          * Ignore pgoff.
1367                          */
1368                         pgoff = 0;
1369                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1370                         break;
1371                 case MAP_PRIVATE:
1372                         /*
1373                          * Set pgoff according to addr for anon_vma.
1374                          */
1375                         pgoff = addr >> PAGE_SHIFT;
1376                         break;
1377                 default:
1378                         return -EINVAL;
1379                 }
1380         }
1381
1382         /*
1383          * Set 'VM_NORESERVE' if we should not account for the
1384          * memory use of this mapping.
1385          */
1386         if (flags & MAP_NORESERVE) {
1387                 /* We honor MAP_NORESERVE if allowed to overcommit */
1388                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1389                         vm_flags |= VM_NORESERVE;
1390
1391                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1392                 if (file && is_file_hugepages(file))
1393                         vm_flags |= VM_NORESERVE;
1394         }
1395
1396         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1397         if (!IS_ERR_VALUE(addr) &&
1398             ((vm_flags & VM_LOCKED) ||
1399              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1400                 *populate = len;
1401         return addr;
1402 }
1403
1404 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1405                 unsigned long, prot, unsigned long, flags,
1406                 unsigned long, fd, unsigned long, pgoff)
1407 {
1408         struct file *file = NULL;
1409         unsigned long retval;
1410
1411         if (!(flags & MAP_ANONYMOUS)) {
1412                 audit_mmap_fd(fd, flags);
1413                 file = fget(fd);
1414                 if (!file)
1415                         return -EBADF;
1416                 if (is_file_hugepages(file))
1417                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1418                 retval = -EINVAL;
1419                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1420                         goto out_fput;
1421         } else if (flags & MAP_HUGETLB) {
1422                 struct user_struct *user = NULL;
1423                 struct hstate *hs;
1424
1425                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1426                 if (!hs)
1427                         return -EINVAL;
1428
1429                 len = ALIGN(len, huge_page_size(hs));
1430                 /*
1431                  * VM_NORESERVE is used because the reservations will be
1432                  * taken when vm_ops->mmap() is called
1433                  * A dummy user value is used because we are not locking
1434                  * memory so no accounting is necessary
1435                  */
1436                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1437                                 VM_NORESERVE,
1438                                 &user, HUGETLB_ANONHUGE_INODE,
1439                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1440                 if (IS_ERR(file))
1441                         return PTR_ERR(file);
1442         }
1443
1444         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1445
1446         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1447 out_fput:
1448         if (file)
1449                 fput(file);
1450         return retval;
1451 }
1452
1453 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1454 struct mmap_arg_struct {
1455         unsigned long addr;
1456         unsigned long len;
1457         unsigned long prot;
1458         unsigned long flags;
1459         unsigned long fd;
1460         unsigned long offset;
1461 };
1462
1463 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1464 {
1465         struct mmap_arg_struct a;
1466
1467         if (copy_from_user(&a, arg, sizeof(a)))
1468                 return -EFAULT;
1469         if (offset_in_page(a.offset))
1470                 return -EINVAL;
1471
1472         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1473                               a.offset >> PAGE_SHIFT);
1474 }
1475 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1476
1477 /*
1478  * Some shared mappigns will want the pages marked read-only
1479  * to track write events. If so, we'll downgrade vm_page_prot
1480  * to the private version (using protection_map[] without the
1481  * VM_SHARED bit).
1482  */
1483 int vma_wants_writenotify(struct vm_area_struct *vma)
1484 {
1485         vm_flags_t vm_flags = vma->vm_flags;
1486         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1487
1488         /* If it was private or non-writable, the write bit is already clear */
1489         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1490                 return 0;
1491
1492         /* The backer wishes to know when pages are first written to? */
1493         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1494                 return 1;
1495
1496         /* The open routine did something to the protections that pgprot_modify
1497          * won't preserve? */
1498         if (pgprot_val(vma->vm_page_prot) !=
1499             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1500                 return 0;
1501
1502         /* Do we need to track softdirty? */
1503         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1504                 return 1;
1505
1506         /* Specialty mapping? */
1507         if (vm_flags & VM_PFNMAP)
1508                 return 0;
1509
1510         /* Can the mapping track the dirty pages? */
1511         return vma->vm_file && vma->vm_file->f_mapping &&
1512                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1513 }
1514
1515 /*
1516  * We account for memory if it's a private writeable mapping,
1517  * not hugepages and VM_NORESERVE wasn't set.
1518  */
1519 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1520 {
1521         /*
1522          * hugetlb has its own accounting separate from the core VM
1523          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1524          */
1525         if (file && is_file_hugepages(file))
1526                 return 0;
1527
1528         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1529 }
1530
1531 unsigned long mmap_region(struct file *file, unsigned long addr,
1532                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1533 {
1534         struct mm_struct *mm = current->mm;
1535         struct vm_area_struct *vma, *prev;
1536         int error;
1537         struct rb_node **rb_link, *rb_parent;
1538         unsigned long charged = 0;
1539
1540         /* Check against address space limit. */
1541         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1542                 unsigned long nr_pages;
1543
1544                 /*
1545                  * MAP_FIXED may remove pages of mappings that intersects with
1546                  * requested mapping. Account for the pages it would unmap.
1547                  */
1548                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1549
1550                 if (!may_expand_vm(mm, vm_flags,
1551                                         (len >> PAGE_SHIFT) - nr_pages))
1552                         return -ENOMEM;
1553         }
1554
1555         /* Clear old maps */
1556         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1557                               &rb_parent)) {
1558                 if (do_munmap(mm, addr, len))
1559                         return -ENOMEM;
1560         }
1561
1562         /*
1563          * Private writable mapping: check memory availability
1564          */
1565         if (accountable_mapping(file, vm_flags)) {
1566                 charged = len >> PAGE_SHIFT;
1567                 if (security_vm_enough_memory_mm(mm, charged))
1568                         return -ENOMEM;
1569                 vm_flags |= VM_ACCOUNT;
1570         }
1571
1572         /*
1573          * Can we just expand an old mapping?
1574          */
1575         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1576                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1577         if (vma)
1578                 goto out;
1579
1580         /*
1581          * Determine the object being mapped and call the appropriate
1582          * specific mapper. the address has already been validated, but
1583          * not unmapped, but the maps are removed from the list.
1584          */
1585         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1586         if (!vma) {
1587                 error = -ENOMEM;
1588                 goto unacct_error;
1589         }
1590
1591         vma->vm_mm = mm;
1592         vma->vm_start = addr;
1593         vma->vm_end = addr + len;
1594         vma->vm_flags = vm_flags;
1595         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1596         vma->vm_pgoff = pgoff;
1597         INIT_LIST_HEAD(&vma->anon_vma_chain);
1598
1599         if (file) {
1600                 if (vm_flags & VM_DENYWRITE) {
1601                         error = deny_write_access(file);
1602                         if (error)
1603                                 goto free_vma;
1604                 }
1605                 if (vm_flags & VM_SHARED) {
1606                         error = mapping_map_writable(file->f_mapping);
1607                         if (error)
1608                                 goto allow_write_and_free_vma;
1609                 }
1610
1611                 /* ->mmap() can change vma->vm_file, but must guarantee that
1612                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1613                  * and map writably if VM_SHARED is set. This usually means the
1614                  * new file must not have been exposed to user-space, yet.
1615                  */
1616                 vma->vm_file = get_file(file);
1617                 error = file->f_op->mmap(file, vma);
1618                 if (error)
1619                         goto unmap_and_free_vma;
1620
1621                 /* Can addr have changed??
1622                  *
1623                  * Answer: Yes, several device drivers can do it in their
1624                  *         f_op->mmap method. -DaveM
1625                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1626                  *      be updated for vma_link()
1627                  */
1628                 WARN_ON_ONCE(addr != vma->vm_start);
1629
1630                 addr = vma->vm_start;
1631                 vm_flags = vma->vm_flags;
1632         } else if (vm_flags & VM_SHARED) {
1633                 error = shmem_zero_setup(vma);
1634                 if (error)
1635                         goto free_vma;
1636         }
1637
1638         vma_link(mm, vma, prev, rb_link, rb_parent);
1639         /* Once vma denies write, undo our temporary denial count */
1640         if (file) {
1641                 if (vm_flags & VM_SHARED)
1642                         mapping_unmap_writable(file->f_mapping);
1643                 if (vm_flags & VM_DENYWRITE)
1644                         allow_write_access(file);
1645         }
1646         file = vma->vm_file;
1647 out:
1648         perf_event_mmap(vma);
1649
1650         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1651         if (vm_flags & VM_LOCKED) {
1652                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1653                                         vma == get_gate_vma(current->mm)))
1654                         mm->locked_vm += (len >> PAGE_SHIFT);
1655                 else
1656                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1657         }
1658
1659         if (file)
1660                 uprobe_mmap(vma);
1661
1662         /*
1663          * New (or expanded) vma always get soft dirty status.
1664          * Otherwise user-space soft-dirty page tracker won't
1665          * be able to distinguish situation when vma area unmapped,
1666          * then new mapped in-place (which must be aimed as
1667          * a completely new data area).
1668          */
1669         vma->vm_flags |= VM_SOFTDIRTY;
1670
1671         vma_set_page_prot(vma);
1672
1673         return addr;
1674
1675 unmap_and_free_vma:
1676         vma->vm_file = NULL;
1677         fput(file);
1678
1679         /* Undo any partial mapping done by a device driver. */
1680         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1681         charged = 0;
1682         if (vm_flags & VM_SHARED)
1683                 mapping_unmap_writable(file->f_mapping);
1684 allow_write_and_free_vma:
1685         if (vm_flags & VM_DENYWRITE)
1686                 allow_write_access(file);
1687 free_vma:
1688         kmem_cache_free(vm_area_cachep, vma);
1689 unacct_error:
1690         if (charged)
1691                 vm_unacct_memory(charged);
1692         return error;
1693 }
1694
1695 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1696 {
1697         /*
1698          * We implement the search by looking for an rbtree node that
1699          * immediately follows a suitable gap. That is,
1700          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1701          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1702          * - gap_end - gap_start >= length
1703          */
1704
1705         struct mm_struct *mm = current->mm;
1706         struct vm_area_struct *vma;
1707         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1708
1709         /* Adjust search length to account for worst case alignment overhead */
1710         length = info->length + info->align_mask;
1711         if (length < info->length)
1712                 return -ENOMEM;
1713
1714         /* Adjust search limits by the desired length */
1715         if (info->high_limit < length)
1716                 return -ENOMEM;
1717         high_limit = info->high_limit - length;
1718
1719         if (info->low_limit > high_limit)
1720                 return -ENOMEM;
1721         low_limit = info->low_limit + length;
1722
1723         /* Check if rbtree root looks promising */
1724         if (RB_EMPTY_ROOT(&mm->mm_rb))
1725                 goto check_highest;
1726         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1727         if (vma->rb_subtree_gap < length)
1728                 goto check_highest;
1729
1730         while (true) {
1731                 /* Visit left subtree if it looks promising */
1732                 gap_end = vma->vm_start;
1733                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1734                         struct vm_area_struct *left =
1735                                 rb_entry(vma->vm_rb.rb_left,
1736                                          struct vm_area_struct, vm_rb);
1737                         if (left->rb_subtree_gap >= length) {
1738                                 vma = left;
1739                                 continue;
1740                         }
1741                 }
1742
1743                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1744 check_current:
1745                 /* Check if current node has a suitable gap */
1746                 if (gap_start > high_limit)
1747                         return -ENOMEM;
1748                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1749                         goto found;
1750
1751                 /* Visit right subtree if it looks promising */
1752                 if (vma->vm_rb.rb_right) {
1753                         struct vm_area_struct *right =
1754                                 rb_entry(vma->vm_rb.rb_right,
1755                                          struct vm_area_struct, vm_rb);
1756                         if (right->rb_subtree_gap >= length) {
1757                                 vma = right;
1758                                 continue;
1759                         }
1760                 }
1761
1762                 /* Go back up the rbtree to find next candidate node */
1763                 while (true) {
1764                         struct rb_node *prev = &vma->vm_rb;
1765                         if (!rb_parent(prev))
1766                                 goto check_highest;
1767                         vma = rb_entry(rb_parent(prev),
1768                                        struct vm_area_struct, vm_rb);
1769                         if (prev == vma->vm_rb.rb_left) {
1770                                 gap_start = vma->vm_prev->vm_end;
1771                                 gap_end = vma->vm_start;
1772                                 goto check_current;
1773                         }
1774                 }
1775         }
1776
1777 check_highest:
1778         /* Check highest gap, which does not precede any rbtree node */
1779         gap_start = mm->highest_vm_end;
1780         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1781         if (gap_start > high_limit)
1782                 return -ENOMEM;
1783
1784 found:
1785         /* We found a suitable gap. Clip it with the original low_limit. */
1786         if (gap_start < info->low_limit)
1787                 gap_start = info->low_limit;
1788
1789         /* Adjust gap address to the desired alignment */
1790         gap_start += (info->align_offset - gap_start) & info->align_mask;
1791
1792         VM_BUG_ON(gap_start + info->length > info->high_limit);
1793         VM_BUG_ON(gap_start + info->length > gap_end);
1794         return gap_start;
1795 }
1796
1797 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1798 {
1799         struct mm_struct *mm = current->mm;
1800         struct vm_area_struct *vma;
1801         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1802
1803         /* Adjust search length to account for worst case alignment overhead */
1804         length = info->length + info->align_mask;
1805         if (length < info->length)
1806                 return -ENOMEM;
1807
1808         /*
1809          * Adjust search limits by the desired length.
1810          * See implementation comment at top of unmapped_area().
1811          */
1812         gap_end = info->high_limit;
1813         if (gap_end < length)
1814                 return -ENOMEM;
1815         high_limit = gap_end - length;
1816
1817         if (info->low_limit > high_limit)
1818                 return -ENOMEM;
1819         low_limit = info->low_limit + length;
1820
1821         /* Check highest gap, which does not precede any rbtree node */
1822         gap_start = mm->highest_vm_end;
1823         if (gap_start <= high_limit)
1824                 goto found_highest;
1825
1826         /* Check if rbtree root looks promising */
1827         if (RB_EMPTY_ROOT(&mm->mm_rb))
1828                 return -ENOMEM;
1829         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1830         if (vma->rb_subtree_gap < length)
1831                 return -ENOMEM;
1832
1833         while (true) {
1834                 /* Visit right subtree if it looks promising */
1835                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1836                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1837                         struct vm_area_struct *right =
1838                                 rb_entry(vma->vm_rb.rb_right,
1839                                          struct vm_area_struct, vm_rb);
1840                         if (right->rb_subtree_gap >= length) {
1841                                 vma = right;
1842                                 continue;
1843                         }
1844                 }
1845
1846 check_current:
1847                 /* Check if current node has a suitable gap */
1848                 gap_end = vma->vm_start;
1849                 if (gap_end < low_limit)
1850                         return -ENOMEM;
1851                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1852                         goto found;
1853
1854                 /* Visit left subtree if it looks promising */
1855                 if (vma->vm_rb.rb_left) {
1856                         struct vm_area_struct *left =
1857                                 rb_entry(vma->vm_rb.rb_left,
1858                                          struct vm_area_struct, vm_rb);
1859                         if (left->rb_subtree_gap >= length) {
1860                                 vma = left;
1861                                 continue;
1862                         }
1863                 }
1864
1865                 /* Go back up the rbtree to find next candidate node */
1866                 while (true) {
1867                         struct rb_node *prev = &vma->vm_rb;
1868                         if (!rb_parent(prev))
1869                                 return -ENOMEM;
1870                         vma = rb_entry(rb_parent(prev),
1871                                        struct vm_area_struct, vm_rb);
1872                         if (prev == vma->vm_rb.rb_right) {
1873                                 gap_start = vma->vm_prev ?
1874                                         vma->vm_prev->vm_end : 0;
1875                                 goto check_current;
1876                         }
1877                 }
1878         }
1879
1880 found:
1881         /* We found a suitable gap. Clip it with the original high_limit. */
1882         if (gap_end > info->high_limit)
1883                 gap_end = info->high_limit;
1884
1885 found_highest:
1886         /* Compute highest gap address at the desired alignment */
1887         gap_end -= info->length;
1888         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1889
1890         VM_BUG_ON(gap_end < info->low_limit);
1891         VM_BUG_ON(gap_end < gap_start);
1892         return gap_end;
1893 }
1894
1895 /* Get an address range which is currently unmapped.
1896  * For shmat() with addr=0.
1897  *
1898  * Ugly calling convention alert:
1899  * Return value with the low bits set means error value,
1900  * ie
1901  *      if (ret & ~PAGE_MASK)
1902  *              error = ret;
1903  *
1904  * This function "knows" that -ENOMEM has the bits set.
1905  */
1906 #ifndef HAVE_ARCH_UNMAPPED_AREA
1907 unsigned long
1908 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1909                 unsigned long len, unsigned long pgoff, unsigned long flags)
1910 {
1911         struct mm_struct *mm = current->mm;
1912         struct vm_area_struct *vma;
1913         struct vm_unmapped_area_info info;
1914
1915         if (len > TASK_SIZE - mmap_min_addr)
1916                 return -ENOMEM;
1917
1918         if (flags & MAP_FIXED)
1919                 return addr;
1920
1921         if (addr) {
1922                 addr = PAGE_ALIGN(addr);
1923                 vma = find_vma(mm, addr);
1924                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1925                     (!vma || addr + len <= vma->vm_start))
1926                         return addr;
1927         }
1928
1929         info.flags = 0;
1930         info.length = len;
1931         info.low_limit = mm->mmap_base;
1932         info.high_limit = TASK_SIZE;
1933         info.align_mask = 0;
1934         return vm_unmapped_area(&info);
1935 }
1936 #endif
1937
1938 /*
1939  * This mmap-allocator allocates new areas top-down from below the
1940  * stack's low limit (the base):
1941  */
1942 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1943 unsigned long
1944 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1945                           const unsigned long len, const unsigned long pgoff,
1946                           const unsigned long flags)
1947 {
1948         struct vm_area_struct *vma;
1949         struct mm_struct *mm = current->mm;
1950         unsigned long addr = addr0;
1951         struct vm_unmapped_area_info info;
1952
1953         /* requested length too big for entire address space */
1954         if (len > TASK_SIZE - mmap_min_addr)
1955                 return -ENOMEM;
1956
1957         if (flags & MAP_FIXED)
1958                 return addr;
1959
1960         /* requesting a specific address */
1961         if (addr) {
1962                 addr = PAGE_ALIGN(addr);
1963                 vma = find_vma(mm, addr);
1964                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1965                                 (!vma || addr + len <= vma->vm_start))
1966                         return addr;
1967         }
1968
1969         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1970         info.length = len;
1971         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1972         info.high_limit = mm->mmap_base;
1973         info.align_mask = 0;
1974         addr = vm_unmapped_area(&info);
1975
1976         /*
1977          * A failed mmap() very likely causes application failure,
1978          * so fall back to the bottom-up function here. This scenario
1979          * can happen with large stack limits and large mmap()
1980          * allocations.
1981          */
1982         if (offset_in_page(addr)) {
1983                 VM_BUG_ON(addr != -ENOMEM);
1984                 info.flags = 0;
1985                 info.low_limit = TASK_UNMAPPED_BASE;
1986                 info.high_limit = TASK_SIZE;
1987                 addr = vm_unmapped_area(&info);
1988         }
1989
1990         return addr;
1991 }
1992 #endif
1993
1994 unsigned long
1995 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1996                 unsigned long pgoff, unsigned long flags)
1997 {
1998         unsigned long (*get_area)(struct file *, unsigned long,
1999                                   unsigned long, unsigned long, unsigned long);
2000
2001         unsigned long error = arch_mmap_check(addr, len, flags);
2002         if (error)
2003                 return error;
2004
2005         /* Careful about overflows.. */
2006         if (len > TASK_SIZE)
2007                 return -ENOMEM;
2008
2009         get_area = current->mm->get_unmapped_area;
2010         if (file && file->f_op->get_unmapped_area)
2011                 get_area = file->f_op->get_unmapped_area;
2012         addr = get_area(file, addr, len, pgoff, flags);
2013         if (IS_ERR_VALUE(addr))
2014                 return addr;
2015
2016         if (addr > TASK_SIZE - len)
2017                 return -ENOMEM;
2018         if (offset_in_page(addr))
2019                 return -EINVAL;
2020
2021         addr = arch_rebalance_pgtables(addr, len);
2022         error = security_mmap_addr(addr);
2023         return error ? error : addr;
2024 }
2025
2026 EXPORT_SYMBOL(get_unmapped_area);
2027
2028 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2029 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2030 {
2031         struct rb_node *rb_node;
2032         struct vm_area_struct *vma;
2033
2034         /* Check the cache first. */
2035         vma = vmacache_find(mm, addr);
2036         if (likely(vma))
2037                 return vma;
2038
2039         rb_node = mm->mm_rb.rb_node;
2040
2041         while (rb_node) {
2042                 struct vm_area_struct *tmp;
2043
2044                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2045
2046                 if (tmp->vm_end > addr) {
2047                         vma = tmp;
2048                         if (tmp->vm_start <= addr)
2049                                 break;
2050                         rb_node = rb_node->rb_left;
2051                 } else
2052                         rb_node = rb_node->rb_right;
2053         }
2054
2055         if (vma)
2056                 vmacache_update(addr, vma);
2057         return vma;
2058 }
2059
2060 EXPORT_SYMBOL(find_vma);
2061
2062 /*
2063  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2064  */
2065 struct vm_area_struct *
2066 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2067                         struct vm_area_struct **pprev)
2068 {
2069         struct vm_area_struct *vma;
2070
2071         vma = find_vma(mm, addr);
2072         if (vma) {
2073                 *pprev = vma->vm_prev;
2074         } else {
2075                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2076                 *pprev = NULL;
2077                 while (rb_node) {
2078                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2079                         rb_node = rb_node->rb_right;
2080                 }
2081         }
2082         return vma;
2083 }
2084
2085 /*
2086  * Verify that the stack growth is acceptable and
2087  * update accounting. This is shared with both the
2088  * grow-up and grow-down cases.
2089  */
2090 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2091 {
2092         struct mm_struct *mm = vma->vm_mm;
2093         struct rlimit *rlim = current->signal->rlim;
2094         unsigned long new_start, actual_size;
2095
2096         /* address space limit tests */
2097         if (!may_expand_vm(mm, vma->vm_flags, grow))
2098                 return -ENOMEM;
2099
2100         /* Stack limit test */
2101         actual_size = size;
2102         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2103                 actual_size -= PAGE_SIZE;
2104         if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2105                 return -ENOMEM;
2106
2107         /* mlock limit tests */
2108         if (vma->vm_flags & VM_LOCKED) {
2109                 unsigned long locked;
2110                 unsigned long limit;
2111                 locked = mm->locked_vm + grow;
2112                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2113                 limit >>= PAGE_SHIFT;
2114                 if (locked > limit && !capable(CAP_IPC_LOCK))
2115                         return -ENOMEM;
2116         }
2117
2118         /* Check to ensure the stack will not grow into a hugetlb-only region */
2119         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2120                         vma->vm_end - size;
2121         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2122                 return -EFAULT;
2123
2124         /*
2125          * Overcommit..  This must be the final test, as it will
2126          * update security statistics.
2127          */
2128         if (security_vm_enough_memory_mm(mm, grow))
2129                 return -ENOMEM;
2130
2131         return 0;
2132 }
2133
2134 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2135 /*
2136  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2137  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2138  */
2139 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2140 {
2141         struct mm_struct *mm = vma->vm_mm;
2142         int error;
2143
2144         if (!(vma->vm_flags & VM_GROWSUP))
2145                 return -EFAULT;
2146
2147         /*
2148          * We must make sure the anon_vma is allocated
2149          * so that the anon_vma locking is not a noop.
2150          */
2151         if (unlikely(anon_vma_prepare(vma)))
2152                 return -ENOMEM;
2153         vma_lock_anon_vma(vma);
2154
2155         /*
2156          * vma->vm_start/vm_end cannot change under us because the caller
2157          * is required to hold the mmap_sem in read mode.  We need the
2158          * anon_vma lock to serialize against concurrent expand_stacks.
2159          * Also guard against wrapping around to address 0.
2160          */
2161         if (address < PAGE_ALIGN(address+4))
2162                 address = PAGE_ALIGN(address+4);
2163         else {
2164                 vma_unlock_anon_vma(vma);
2165                 return -ENOMEM;
2166         }
2167         error = 0;
2168
2169         /* Somebody else might have raced and expanded it already */
2170         if (address > vma->vm_end) {
2171                 unsigned long size, grow;
2172
2173                 size = address - vma->vm_start;
2174                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2175
2176                 error = -ENOMEM;
2177                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2178                         error = acct_stack_growth(vma, size, grow);
2179                         if (!error) {
2180                                 /*
2181                                  * vma_gap_update() doesn't support concurrent
2182                                  * updates, but we only hold a shared mmap_sem
2183                                  * lock here, so we need to protect against
2184                                  * concurrent vma expansions.
2185                                  * vma_lock_anon_vma() doesn't help here, as
2186                                  * we don't guarantee that all growable vmas
2187                                  * in a mm share the same root anon vma.
2188                                  * So, we reuse mm->page_table_lock to guard
2189                                  * against concurrent vma expansions.
2190                                  */
2191                                 spin_lock(&mm->page_table_lock);
2192                                 if (vma->vm_flags & VM_LOCKED)
2193                                         mm->locked_vm += grow;
2194                                 vm_stat_account(mm, vma->vm_flags, grow);
2195                                 anon_vma_interval_tree_pre_update_vma(vma);
2196                                 vma->vm_end = address;
2197                                 anon_vma_interval_tree_post_update_vma(vma);
2198                                 if (vma->vm_next)
2199                                         vma_gap_update(vma->vm_next);
2200                                 else
2201                                         mm->highest_vm_end = address;
2202                                 spin_unlock(&mm->page_table_lock);
2203
2204                                 perf_event_mmap(vma);
2205                         }
2206                 }
2207         }
2208         vma_unlock_anon_vma(vma);
2209         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2210         validate_mm(mm);
2211         return error;
2212 }
2213 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2214
2215 /*
2216  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2217  */
2218 int expand_downwards(struct vm_area_struct *vma,
2219                                    unsigned long address)
2220 {
2221         struct mm_struct *mm = vma->vm_mm;
2222         int error;
2223
2224         /*
2225          * We must make sure the anon_vma is allocated
2226          * so that the anon_vma locking is not a noop.
2227          */
2228         if (unlikely(anon_vma_prepare(vma)))
2229                 return -ENOMEM;
2230
2231         address &= PAGE_MASK;
2232         error = security_mmap_addr(address);
2233         if (error)
2234                 return error;
2235
2236         vma_lock_anon_vma(vma);
2237
2238         /*
2239          * vma->vm_start/vm_end cannot change under us because the caller
2240          * is required to hold the mmap_sem in read mode.  We need the
2241          * anon_vma lock to serialize against concurrent expand_stacks.
2242          */
2243
2244         /* Somebody else might have raced and expanded it already */
2245         if (address < vma->vm_start) {
2246                 unsigned long size, grow;
2247
2248                 size = vma->vm_end - address;
2249                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2250
2251                 error = -ENOMEM;
2252                 if (grow <= vma->vm_pgoff) {
2253                         error = acct_stack_growth(vma, size, grow);
2254                         if (!error) {
2255                                 /*
2256                                  * vma_gap_update() doesn't support concurrent
2257                                  * updates, but we only hold a shared mmap_sem
2258                                  * lock here, so we need to protect against
2259                                  * concurrent vma expansions.
2260                                  * vma_lock_anon_vma() doesn't help here, as
2261                                  * we don't guarantee that all growable vmas
2262                                  * in a mm share the same root anon vma.
2263                                  * So, we reuse mm->page_table_lock to guard
2264                                  * against concurrent vma expansions.
2265                                  */
2266                                 spin_lock(&mm->page_table_lock);
2267                                 if (vma->vm_flags & VM_LOCKED)
2268                                         mm->locked_vm += grow;
2269                                 vm_stat_account(mm, vma->vm_flags, grow);
2270                                 anon_vma_interval_tree_pre_update_vma(vma);
2271                                 vma->vm_start = address;
2272                                 vma->vm_pgoff -= grow;
2273                                 anon_vma_interval_tree_post_update_vma(vma);
2274                                 vma_gap_update(vma);
2275                                 spin_unlock(&mm->page_table_lock);
2276
2277                                 perf_event_mmap(vma);
2278                         }
2279                 }
2280         }
2281         vma_unlock_anon_vma(vma);
2282         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2283         validate_mm(mm);
2284         return error;
2285 }
2286
2287 /*
2288  * Note how expand_stack() refuses to expand the stack all the way to
2289  * abut the next virtual mapping, *unless* that mapping itself is also
2290  * a stack mapping. We want to leave room for a guard page, after all
2291  * (the guard page itself is not added here, that is done by the
2292  * actual page faulting logic)
2293  *
2294  * This matches the behavior of the guard page logic (see mm/memory.c:
2295  * check_stack_guard_page()), which only allows the guard page to be
2296  * removed under these circumstances.
2297  */
2298 #ifdef CONFIG_STACK_GROWSUP
2299 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2300 {
2301         struct vm_area_struct *next;
2302
2303         address &= PAGE_MASK;
2304         next = vma->vm_next;
2305         if (next && next->vm_start == address + PAGE_SIZE) {
2306                 if (!(next->vm_flags & VM_GROWSUP))
2307                         return -ENOMEM;
2308         }
2309         return expand_upwards(vma, address);
2310 }
2311
2312 struct vm_area_struct *
2313 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2314 {
2315         struct vm_area_struct *vma, *prev;
2316
2317         addr &= PAGE_MASK;
2318         vma = find_vma_prev(mm, addr, &prev);
2319         if (vma && (vma->vm_start <= addr))
2320                 return vma;
2321         if (!prev || expand_stack(prev, addr))
2322                 return NULL;
2323         if (prev->vm_flags & VM_LOCKED)
2324                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2325         return prev;
2326 }
2327 #else
2328 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2329 {
2330         struct vm_area_struct *prev;
2331
2332         address &= PAGE_MASK;
2333         prev = vma->vm_prev;
2334         if (prev && prev->vm_end == address) {
2335                 if (!(prev->vm_flags & VM_GROWSDOWN))
2336                         return -ENOMEM;
2337         }
2338         return expand_downwards(vma, address);
2339 }
2340
2341 struct vm_area_struct *
2342 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2343 {
2344         struct vm_area_struct *vma;
2345         unsigned long start;
2346
2347         addr &= PAGE_MASK;
2348         vma = find_vma(mm, addr);
2349         if (!vma)
2350                 return NULL;
2351         if (vma->vm_start <= addr)
2352                 return vma;
2353         if (!(vma->vm_flags & VM_GROWSDOWN))
2354                 return NULL;
2355         start = vma->vm_start;
2356         if (expand_stack(vma, addr))
2357                 return NULL;
2358         if (vma->vm_flags & VM_LOCKED)
2359                 populate_vma_page_range(vma, addr, start, NULL);
2360         return vma;
2361 }
2362 #endif
2363
2364 EXPORT_SYMBOL_GPL(find_extend_vma);
2365
2366 /*
2367  * Ok - we have the memory areas we should free on the vma list,
2368  * so release them, and do the vma updates.
2369  *
2370  * Called with the mm semaphore held.
2371  */
2372 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2373 {
2374         unsigned long nr_accounted = 0;
2375
2376         /* Update high watermark before we lower total_vm */
2377         update_hiwater_vm(mm);
2378         do {
2379                 long nrpages = vma_pages(vma);
2380
2381                 if (vma->vm_flags & VM_ACCOUNT)
2382                         nr_accounted += nrpages;
2383                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2384                 vma = remove_vma(vma);
2385         } while (vma);
2386         vm_unacct_memory(nr_accounted);
2387         validate_mm(mm);
2388 }
2389
2390 /*
2391  * Get rid of page table information in the indicated region.
2392  *
2393  * Called with the mm semaphore held.
2394  */
2395 static void unmap_region(struct mm_struct *mm,
2396                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2397                 unsigned long start, unsigned long end)
2398 {
2399         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2400         struct mmu_gather tlb;
2401
2402         lru_add_drain();
2403         tlb_gather_mmu(&tlb, mm, start, end);
2404         update_hiwater_rss(mm);
2405         unmap_vmas(&tlb, vma, start, end);
2406         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2407                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2408         tlb_finish_mmu(&tlb, start, end);
2409 }
2410
2411 /*
2412  * Create a list of vma's touched by the unmap, removing them from the mm's
2413  * vma list as we go..
2414  */
2415 static void
2416 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2417         struct vm_area_struct *prev, unsigned long end)
2418 {
2419         struct vm_area_struct **insertion_point;
2420         struct vm_area_struct *tail_vma = NULL;
2421
2422         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2423         vma->vm_prev = NULL;
2424         do {
2425                 vma_rb_erase(vma, &mm->mm_rb);
2426                 mm->map_count--;
2427                 tail_vma = vma;
2428                 vma = vma->vm_next;
2429         } while (vma && vma->vm_start < end);
2430         *insertion_point = vma;
2431         if (vma) {
2432                 vma->vm_prev = prev;
2433                 vma_gap_update(vma);
2434         } else
2435                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2436         tail_vma->vm_next = NULL;
2437
2438         /* Kill the cache */
2439         vmacache_invalidate(mm);
2440 }
2441
2442 /*
2443  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2444  * munmap path where it doesn't make sense to fail.
2445  */
2446 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2447               unsigned long addr, int new_below)
2448 {
2449         struct vm_area_struct *new;
2450         int err;
2451
2452         if (is_vm_hugetlb_page(vma) && (addr &
2453                                         ~(huge_page_mask(hstate_vma(vma)))))
2454                 return -EINVAL;
2455
2456         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2457         if (!new)
2458                 return -ENOMEM;
2459
2460         /* most fields are the same, copy all, and then fixup */
2461         *new = *vma;
2462
2463         INIT_LIST_HEAD(&new->anon_vma_chain);
2464
2465         if (new_below)
2466                 new->vm_end = addr;
2467         else {
2468                 new->vm_start = addr;
2469                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2470         }
2471
2472         err = vma_dup_policy(vma, new);
2473         if (err)
2474                 goto out_free_vma;
2475
2476         err = anon_vma_clone(new, vma);
2477         if (err)
2478                 goto out_free_mpol;
2479
2480         if (new->vm_file)
2481                 get_file(new->vm_file);
2482
2483         if (new->vm_ops && new->vm_ops->open)
2484                 new->vm_ops->open(new);
2485
2486         if (new_below)
2487                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2488                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2489         else
2490                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2491
2492         /* Success. */
2493         if (!err)
2494                 return 0;
2495
2496         /* Clean everything up if vma_adjust failed. */
2497         if (new->vm_ops && new->vm_ops->close)
2498                 new->vm_ops->close(new);
2499         if (new->vm_file)
2500                 fput(new->vm_file);
2501         unlink_anon_vmas(new);
2502  out_free_mpol:
2503         mpol_put(vma_policy(new));
2504  out_free_vma:
2505         kmem_cache_free(vm_area_cachep, new);
2506         return err;
2507 }
2508
2509 /*
2510  * Split a vma into two pieces at address 'addr', a new vma is allocated
2511  * either for the first part or the tail.
2512  */
2513 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2514               unsigned long addr, int new_below)
2515 {
2516         if (mm->map_count >= sysctl_max_map_count)
2517                 return -ENOMEM;
2518
2519         return __split_vma(mm, vma, addr, new_below);
2520 }
2521
2522 /* Munmap is split into 2 main parts -- this part which finds
2523  * what needs doing, and the areas themselves, which do the
2524  * work.  This now handles partial unmappings.
2525  * Jeremy Fitzhardinge <jeremy@goop.org>
2526  */
2527 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2528 {
2529         unsigned long end;
2530         struct vm_area_struct *vma, *prev, *last;
2531
2532         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2533                 return -EINVAL;
2534
2535         len = PAGE_ALIGN(len);
2536         if (len == 0)
2537                 return -EINVAL;
2538
2539         /* Find the first overlapping VMA */
2540         vma = find_vma(mm, start);
2541         if (!vma)
2542                 return 0;
2543         prev = vma->vm_prev;
2544         /* we have  start < vma->vm_end  */
2545
2546         /* if it doesn't overlap, we have nothing.. */
2547         end = start + len;
2548         if (vma->vm_start >= end)
2549                 return 0;
2550
2551         /*
2552          * If we need to split any vma, do it now to save pain later.
2553          *
2554          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2555          * unmapped vm_area_struct will remain in use: so lower split_vma
2556          * places tmp vma above, and higher split_vma places tmp vma below.
2557          */
2558         if (start > vma->vm_start) {
2559                 int error;
2560
2561                 /*
2562                  * Make sure that map_count on return from munmap() will
2563                  * not exceed its limit; but let map_count go just above
2564                  * its limit temporarily, to help free resources as expected.
2565                  */
2566                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2567                         return -ENOMEM;
2568
2569                 error = __split_vma(mm, vma, start, 0);
2570                 if (error)
2571                         return error;
2572                 prev = vma;
2573         }
2574
2575         /* Does it split the last one? */
2576         last = find_vma(mm, end);
2577         if (last && end > last->vm_start) {
2578                 int error = __split_vma(mm, last, end, 1);
2579                 if (error)
2580                         return error;
2581         }
2582         vma = prev ? prev->vm_next : mm->mmap;
2583
2584         /*
2585          * unlock any mlock()ed ranges before detaching vmas
2586          */
2587         if (mm->locked_vm) {
2588                 struct vm_area_struct *tmp = vma;
2589                 while (tmp && tmp->vm_start < end) {
2590                         if (tmp->vm_flags & VM_LOCKED) {
2591                                 mm->locked_vm -= vma_pages(tmp);
2592                                 munlock_vma_pages_all(tmp);
2593                         }
2594                         tmp = tmp->vm_next;
2595                 }
2596         }
2597
2598         /*
2599          * Remove the vma's, and unmap the actual pages
2600          */
2601         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2602         unmap_region(mm, vma, prev, start, end);
2603
2604         arch_unmap(mm, vma, start, end);
2605
2606         /* Fix up all other VM information */
2607         remove_vma_list(mm, vma);
2608
2609         return 0;
2610 }
2611
2612 int vm_munmap(unsigned long start, size_t len)
2613 {
2614         int ret;
2615         struct mm_struct *mm = current->mm;
2616
2617         down_write(&mm->mmap_sem);
2618         ret = do_munmap(mm, start, len);
2619         up_write(&mm->mmap_sem);
2620         return ret;
2621 }
2622 EXPORT_SYMBOL(vm_munmap);
2623
2624 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2625 {
2626         profile_munmap(addr);
2627         return vm_munmap(addr, len);
2628 }
2629
2630
2631 /*
2632  * Emulation of deprecated remap_file_pages() syscall.
2633  */
2634 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2635                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2636 {
2637
2638         struct mm_struct *mm = current->mm;
2639         struct vm_area_struct *vma;
2640         unsigned long populate = 0;
2641         unsigned long ret = -EINVAL;
2642         struct file *file;
2643
2644         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2645                         "See Documentation/vm/remap_file_pages.txt.\n",
2646                         current->comm, current->pid);
2647
2648         if (prot)
2649                 return ret;
2650         start = start & PAGE_MASK;
2651         size = size & PAGE_MASK;
2652
2653         if (start + size <= start)
2654                 return ret;
2655
2656         /* Does pgoff wrap? */
2657         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2658                 return ret;
2659
2660         down_write(&mm->mmap_sem);
2661         vma = find_vma(mm, start);
2662
2663         if (!vma || !(vma->vm_flags & VM_SHARED))
2664                 goto out;
2665
2666         if (start < vma->vm_start || start + size > vma->vm_end)
2667                 goto out;
2668
2669         if (pgoff == linear_page_index(vma, start)) {
2670                 ret = 0;
2671                 goto out;
2672         }
2673
2674         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2675         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2676         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2677
2678         flags &= MAP_NONBLOCK;
2679         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2680         if (vma->vm_flags & VM_LOCKED) {
2681                 flags |= MAP_LOCKED;
2682                 /* drop PG_Mlocked flag for over-mapped range */
2683                 munlock_vma_pages_range(vma, start, start + size);
2684         }
2685
2686         file = get_file(vma->vm_file);
2687         ret = do_mmap_pgoff(vma->vm_file, start, size,
2688                         prot, flags, pgoff, &populate);
2689         fput(file);
2690 out:
2691         up_write(&mm->mmap_sem);
2692         if (populate)
2693                 mm_populate(ret, populate);
2694         if (!IS_ERR_VALUE(ret))
2695                 ret = 0;
2696         return ret;
2697 }
2698
2699 static inline void verify_mm_writelocked(struct mm_struct *mm)
2700 {
2701 #ifdef CONFIG_DEBUG_VM
2702         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2703                 WARN_ON(1);
2704                 up_read(&mm->mmap_sem);
2705         }
2706 #endif
2707 }
2708
2709 /*
2710  *  this is really a simplified "do_mmap".  it only handles
2711  *  anonymous maps.  eventually we may be able to do some
2712  *  brk-specific accounting here.
2713  */
2714 static unsigned long do_brk(unsigned long addr, unsigned long len)
2715 {
2716         struct mm_struct *mm = current->mm;
2717         struct vm_area_struct *vma, *prev;
2718         unsigned long flags;
2719         struct rb_node **rb_link, *rb_parent;
2720         pgoff_t pgoff = addr >> PAGE_SHIFT;
2721         int error;
2722
2723         len = PAGE_ALIGN(len);
2724         if (!len)
2725                 return addr;
2726
2727         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2728
2729         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2730         if (offset_in_page(error))
2731                 return error;
2732
2733         error = mlock_future_check(mm, mm->def_flags, len);
2734         if (error)
2735                 return error;
2736
2737         /*
2738          * mm->mmap_sem is required to protect against another thread
2739          * changing the mappings in case we sleep.
2740          */
2741         verify_mm_writelocked(mm);
2742
2743         /*
2744          * Clear old maps.  this also does some error checking for us
2745          */
2746         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2747                               &rb_parent)) {
2748                 if (do_munmap(mm, addr, len))
2749                         return -ENOMEM;
2750         }
2751
2752         /* Check against address space limits *after* clearing old maps... */
2753         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2754                 return -ENOMEM;
2755
2756         if (mm->map_count > sysctl_max_map_count)
2757                 return -ENOMEM;
2758
2759         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2760                 return -ENOMEM;
2761
2762         /* Can we just expand an old private anonymous mapping? */
2763         vma = vma_merge(mm, prev, addr, addr + len, flags,
2764                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2765         if (vma)
2766                 goto out;
2767
2768         /*
2769          * create a vma struct for an anonymous mapping
2770          */
2771         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2772         if (!vma) {
2773                 vm_unacct_memory(len >> PAGE_SHIFT);
2774                 return -ENOMEM;
2775         }
2776
2777         INIT_LIST_HEAD(&vma->anon_vma_chain);
2778         vma->vm_mm = mm;
2779         vma->vm_start = addr;
2780         vma->vm_end = addr + len;
2781         vma->vm_pgoff = pgoff;
2782         vma->vm_flags = flags;
2783         vma->vm_page_prot = vm_get_page_prot(flags);
2784         vma_link(mm, vma, prev, rb_link, rb_parent);
2785 out:
2786         perf_event_mmap(vma);
2787         mm->total_vm += len >> PAGE_SHIFT;
2788         mm->data_vm += len >> PAGE_SHIFT;
2789         if (flags & VM_LOCKED)
2790                 mm->locked_vm += (len >> PAGE_SHIFT);
2791         vma->vm_flags |= VM_SOFTDIRTY;
2792         return addr;
2793 }
2794
2795 unsigned long vm_brk(unsigned long addr, unsigned long len)
2796 {
2797         struct mm_struct *mm = current->mm;
2798         unsigned long ret;
2799         bool populate;
2800
2801         down_write(&mm->mmap_sem);
2802         ret = do_brk(addr, len);
2803         populate = ((mm->def_flags & VM_LOCKED) != 0);
2804         up_write(&mm->mmap_sem);
2805         if (populate)
2806                 mm_populate(addr, len);
2807         return ret;
2808 }
2809 EXPORT_SYMBOL(vm_brk);
2810
2811 /* Release all mmaps. */
2812 void exit_mmap(struct mm_struct *mm)
2813 {
2814         struct mmu_gather tlb;
2815         struct vm_area_struct *vma;
2816         unsigned long nr_accounted = 0;
2817
2818         /* mm's last user has gone, and its about to be pulled down */
2819         mmu_notifier_release(mm);
2820
2821         if (mm->locked_vm) {
2822                 vma = mm->mmap;
2823                 while (vma) {
2824                         if (vma->vm_flags & VM_LOCKED)
2825                                 munlock_vma_pages_all(vma);
2826                         vma = vma->vm_next;
2827                 }
2828         }
2829
2830         arch_exit_mmap(mm);
2831
2832         vma = mm->mmap;
2833         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2834                 return;
2835
2836         lru_add_drain();
2837         flush_cache_mm(mm);
2838         tlb_gather_mmu(&tlb, mm, 0, -1);
2839         /* update_hiwater_rss(mm) here? but nobody should be looking */
2840         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2841         unmap_vmas(&tlb, vma, 0, -1);
2842
2843         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2844         tlb_finish_mmu(&tlb, 0, -1);
2845
2846         /*
2847          * Walk the list again, actually closing and freeing it,
2848          * with preemption enabled, without holding any MM locks.
2849          */
2850         while (vma) {
2851                 if (vma->vm_flags & VM_ACCOUNT)
2852                         nr_accounted += vma_pages(vma);
2853                 vma = remove_vma(vma);
2854         }
2855         vm_unacct_memory(nr_accounted);
2856 }
2857
2858 /* Insert vm structure into process list sorted by address
2859  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2860  * then i_mmap_rwsem is taken here.
2861  */
2862 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2863 {
2864         struct vm_area_struct *prev;
2865         struct rb_node **rb_link, *rb_parent;
2866
2867         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2868                            &prev, &rb_link, &rb_parent))
2869                 return -ENOMEM;
2870         if ((vma->vm_flags & VM_ACCOUNT) &&
2871              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2872                 return -ENOMEM;
2873
2874         /*
2875          * The vm_pgoff of a purely anonymous vma should be irrelevant
2876          * until its first write fault, when page's anon_vma and index
2877          * are set.  But now set the vm_pgoff it will almost certainly
2878          * end up with (unless mremap moves it elsewhere before that
2879          * first wfault), so /proc/pid/maps tells a consistent story.
2880          *
2881          * By setting it to reflect the virtual start address of the
2882          * vma, merges and splits can happen in a seamless way, just
2883          * using the existing file pgoff checks and manipulations.
2884          * Similarly in do_mmap_pgoff and in do_brk.
2885          */
2886         if (vma_is_anonymous(vma)) {
2887                 BUG_ON(vma->anon_vma);
2888                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2889         }
2890
2891         vma_link(mm, vma, prev, rb_link, rb_parent);
2892         return 0;
2893 }
2894
2895 /*
2896  * Copy the vma structure to a new location in the same mm,
2897  * prior to moving page table entries, to effect an mremap move.
2898  */
2899 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2900         unsigned long addr, unsigned long len, pgoff_t pgoff,
2901         bool *need_rmap_locks)
2902 {
2903         struct vm_area_struct *vma = *vmap;
2904         unsigned long vma_start = vma->vm_start;
2905         struct mm_struct *mm = vma->vm_mm;
2906         struct vm_area_struct *new_vma, *prev;
2907         struct rb_node **rb_link, *rb_parent;
2908         bool faulted_in_anon_vma = true;
2909
2910         /*
2911          * If anonymous vma has not yet been faulted, update new pgoff
2912          * to match new location, to increase its chance of merging.
2913          */
2914         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2915                 pgoff = addr >> PAGE_SHIFT;
2916                 faulted_in_anon_vma = false;
2917         }
2918
2919         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2920                 return NULL;    /* should never get here */
2921         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2922                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2923                             vma->vm_userfaultfd_ctx);
2924         if (new_vma) {
2925                 /*
2926                  * Source vma may have been merged into new_vma
2927                  */
2928                 if (unlikely(vma_start >= new_vma->vm_start &&
2929                              vma_start < new_vma->vm_end)) {
2930                         /*
2931                          * The only way we can get a vma_merge with
2932                          * self during an mremap is if the vma hasn't
2933                          * been faulted in yet and we were allowed to
2934                          * reset the dst vma->vm_pgoff to the
2935                          * destination address of the mremap to allow
2936                          * the merge to happen. mremap must change the
2937                          * vm_pgoff linearity between src and dst vmas
2938                          * (in turn preventing a vma_merge) to be
2939                          * safe. It is only safe to keep the vm_pgoff
2940                          * linear if there are no pages mapped yet.
2941                          */
2942                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2943                         *vmap = vma = new_vma;
2944                 }
2945                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2946         } else {
2947                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2948                 if (!new_vma)
2949                         goto out;
2950                 *new_vma = *vma;
2951                 new_vma->vm_start = addr;
2952                 new_vma->vm_end = addr + len;
2953                 new_vma->vm_pgoff = pgoff;
2954                 if (vma_dup_policy(vma, new_vma))
2955                         goto out_free_vma;
2956                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2957                 if (anon_vma_clone(new_vma, vma))
2958                         goto out_free_mempol;
2959                 if (new_vma->vm_file)
2960                         get_file(new_vma->vm_file);
2961                 if (new_vma->vm_ops && new_vma->vm_ops->open)
2962                         new_vma->vm_ops->open(new_vma);
2963                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2964                 *need_rmap_locks = false;
2965         }
2966         return new_vma;
2967
2968 out_free_mempol:
2969         mpol_put(vma_policy(new_vma));
2970 out_free_vma:
2971         kmem_cache_free(vm_area_cachep, new_vma);
2972 out:
2973         return NULL;
2974 }
2975
2976 /*
2977  * Return true if the calling process may expand its vm space by the passed
2978  * number of pages
2979  */
2980 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2981 {
2982         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2983                 return false;
2984
2985         if ((flags & (VM_WRITE | VM_SHARED | (VM_STACK_FLAGS &
2986                                 (VM_GROWSUP | VM_GROWSDOWN)))) == VM_WRITE)
2987                 return mm->data_vm + npages <= rlimit(RLIMIT_DATA);
2988
2989         return true;
2990 }
2991
2992 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2993 {
2994         mm->total_vm += npages;
2995
2996         if ((flags & (VM_EXEC | VM_WRITE)) == VM_EXEC)
2997                 mm->exec_vm += npages;
2998         else if (flags & (VM_STACK_FLAGS & (VM_GROWSUP | VM_GROWSDOWN)))
2999                 mm->stack_vm += npages;
3000         else if ((flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
3001                 mm->data_vm += npages;
3002 }
3003
3004 static int special_mapping_fault(struct vm_area_struct *vma,
3005                                  struct vm_fault *vmf);
3006
3007 /*
3008  * Having a close hook prevents vma merging regardless of flags.
3009  */
3010 static void special_mapping_close(struct vm_area_struct *vma)
3011 {
3012 }
3013
3014 static const char *special_mapping_name(struct vm_area_struct *vma)
3015 {
3016         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3017 }
3018
3019 static const struct vm_operations_struct special_mapping_vmops = {
3020         .close = special_mapping_close,
3021         .fault = special_mapping_fault,
3022         .name = special_mapping_name,
3023 };
3024
3025 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3026         .close = special_mapping_close,
3027         .fault = special_mapping_fault,
3028 };
3029
3030 static int special_mapping_fault(struct vm_area_struct *vma,
3031                                 struct vm_fault *vmf)
3032 {
3033         pgoff_t pgoff;
3034         struct page **pages;
3035
3036         if (vma->vm_ops == &legacy_special_mapping_vmops)
3037                 pages = vma->vm_private_data;
3038         else
3039                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3040                         pages;
3041
3042         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3043                 pgoff--;
3044
3045         if (*pages) {
3046                 struct page *page = *pages;
3047                 get_page(page);
3048                 vmf->page = page;
3049                 return 0;
3050         }
3051
3052         return VM_FAULT_SIGBUS;
3053 }
3054
3055 static struct vm_area_struct *__install_special_mapping(
3056         struct mm_struct *mm,
3057         unsigned long addr, unsigned long len,
3058         unsigned long vm_flags, void *priv,
3059         const struct vm_operations_struct *ops)
3060 {
3061         int ret;
3062         struct vm_area_struct *vma;
3063
3064         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3065         if (unlikely(vma == NULL))
3066                 return ERR_PTR(-ENOMEM);
3067
3068         INIT_LIST_HEAD(&vma->anon_vma_chain);
3069         vma->vm_mm = mm;
3070         vma->vm_start = addr;
3071         vma->vm_end = addr + len;
3072
3073         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3074         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3075
3076         vma->vm_ops = ops;
3077         vma->vm_private_data = priv;
3078
3079         ret = insert_vm_struct(mm, vma);
3080         if (ret)
3081                 goto out;
3082
3083         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3084
3085         perf_event_mmap(vma);
3086
3087         return vma;
3088
3089 out:
3090         kmem_cache_free(vm_area_cachep, vma);
3091         return ERR_PTR(ret);
3092 }
3093
3094 /*
3095  * Called with mm->mmap_sem held for writing.
3096  * Insert a new vma covering the given region, with the given flags.
3097  * Its pages are supplied by the given array of struct page *.
3098  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3099  * The region past the last page supplied will always produce SIGBUS.
3100  * The array pointer and the pages it points to are assumed to stay alive
3101  * for as long as this mapping might exist.
3102  */
3103 struct vm_area_struct *_install_special_mapping(
3104         struct mm_struct *mm,
3105         unsigned long addr, unsigned long len,
3106         unsigned long vm_flags, const struct vm_special_mapping *spec)
3107 {
3108         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3109                                         &special_mapping_vmops);
3110 }
3111
3112 int install_special_mapping(struct mm_struct *mm,
3113                             unsigned long addr, unsigned long len,
3114                             unsigned long vm_flags, struct page **pages)
3115 {
3116         struct vm_area_struct *vma = __install_special_mapping(
3117                 mm, addr, len, vm_flags, (void *)pages,
3118                 &legacy_special_mapping_vmops);
3119
3120         return PTR_ERR_OR_ZERO(vma);
3121 }
3122
3123 static DEFINE_MUTEX(mm_all_locks_mutex);
3124
3125 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3126 {
3127         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3128                 /*
3129                  * The LSB of head.next can't change from under us
3130                  * because we hold the mm_all_locks_mutex.
3131                  */
3132                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3133                 /*
3134                  * We can safely modify head.next after taking the
3135                  * anon_vma->root->rwsem. If some other vma in this mm shares
3136                  * the same anon_vma we won't take it again.
3137                  *
3138                  * No need of atomic instructions here, head.next
3139                  * can't change from under us thanks to the
3140                  * anon_vma->root->rwsem.
3141                  */
3142                 if (__test_and_set_bit(0, (unsigned long *)
3143                                        &anon_vma->root->rb_root.rb_node))
3144                         BUG();
3145         }
3146 }
3147
3148 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3149 {
3150         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3151                 /*
3152                  * AS_MM_ALL_LOCKS can't change from under us because
3153                  * we hold the mm_all_locks_mutex.
3154                  *
3155                  * Operations on ->flags have to be atomic because
3156                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3157                  * mm_all_locks_mutex, there may be other cpus
3158                  * changing other bitflags in parallel to us.
3159                  */
3160                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3161                         BUG();
3162                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3163         }
3164 }
3165
3166 /*
3167  * This operation locks against the VM for all pte/vma/mm related
3168  * operations that could ever happen on a certain mm. This includes
3169  * vmtruncate, try_to_unmap, and all page faults.
3170  *
3171  * The caller must take the mmap_sem in write mode before calling
3172  * mm_take_all_locks(). The caller isn't allowed to release the
3173  * mmap_sem until mm_drop_all_locks() returns.
3174  *
3175  * mmap_sem in write mode is required in order to block all operations
3176  * that could modify pagetables and free pages without need of
3177  * altering the vma layout. It's also needed in write mode to avoid new
3178  * anon_vmas to be associated with existing vmas.
3179  *
3180  * A single task can't take more than one mm_take_all_locks() in a row
3181  * or it would deadlock.
3182  *
3183  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3184  * mapping->flags avoid to take the same lock twice, if more than one
3185  * vma in this mm is backed by the same anon_vma or address_space.
3186  *
3187  * We take locks in following order, accordingly to comment at beginning
3188  * of mm/rmap.c:
3189  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3190  *     hugetlb mapping);
3191  *   - all i_mmap_rwsem locks;
3192  *   - all anon_vma->rwseml
3193  *
3194  * We can take all locks within these types randomly because the VM code
3195  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3196  * mm_all_locks_mutex.
3197  *
3198  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3199  * that may have to take thousand of locks.
3200  *
3201  * mm_take_all_locks() can fail if it's interrupted by signals.
3202  */
3203 int mm_take_all_locks(struct mm_struct *mm)
3204 {
3205         struct vm_area_struct *vma;
3206         struct anon_vma_chain *avc;
3207
3208         BUG_ON(down_read_trylock(&mm->mmap_sem));
3209
3210         mutex_lock(&mm_all_locks_mutex);
3211
3212         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3213                 if (signal_pending(current))
3214                         goto out_unlock;
3215                 if (vma->vm_file && vma->vm_file->f_mapping &&
3216                                 is_vm_hugetlb_page(vma))
3217                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3218         }
3219
3220         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3221                 if (signal_pending(current))
3222                         goto out_unlock;
3223                 if (vma->vm_file && vma->vm_file->f_mapping &&
3224                                 !is_vm_hugetlb_page(vma))
3225                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3226         }
3227
3228         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3229                 if (signal_pending(current))
3230                         goto out_unlock;
3231                 if (vma->anon_vma)
3232                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3233                                 vm_lock_anon_vma(mm, avc->anon_vma);
3234         }
3235
3236         return 0;
3237
3238 out_unlock:
3239         mm_drop_all_locks(mm);
3240         return -EINTR;
3241 }
3242
3243 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3244 {
3245         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3246                 /*
3247                  * The LSB of head.next can't change to 0 from under
3248                  * us because we hold the mm_all_locks_mutex.
3249                  *
3250                  * We must however clear the bitflag before unlocking
3251                  * the vma so the users using the anon_vma->rb_root will
3252                  * never see our bitflag.
3253                  *
3254                  * No need of atomic instructions here, head.next
3255                  * can't change from under us until we release the
3256                  * anon_vma->root->rwsem.
3257                  */
3258                 if (!__test_and_clear_bit(0, (unsigned long *)
3259                                           &anon_vma->root->rb_root.rb_node))
3260                         BUG();
3261                 anon_vma_unlock_write(anon_vma);
3262         }
3263 }
3264
3265 static void vm_unlock_mapping(struct address_space *mapping)
3266 {
3267         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3268                 /*
3269                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3270                  * because we hold the mm_all_locks_mutex.
3271                  */
3272                 i_mmap_unlock_write(mapping);
3273                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3274                                         &mapping->flags))
3275                         BUG();
3276         }
3277 }
3278
3279 /*
3280  * The mmap_sem cannot be released by the caller until
3281  * mm_drop_all_locks() returns.
3282  */
3283 void mm_drop_all_locks(struct mm_struct *mm)
3284 {
3285         struct vm_area_struct *vma;
3286         struct anon_vma_chain *avc;
3287
3288         BUG_ON(down_read_trylock(&mm->mmap_sem));
3289         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3290
3291         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3292                 if (vma->anon_vma)
3293                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3294                                 vm_unlock_anon_vma(avc->anon_vma);
3295                 if (vma->vm_file && vma->vm_file->f_mapping)
3296                         vm_unlock_mapping(vma->vm_file->f_mapping);
3297         }
3298
3299         mutex_unlock(&mm_all_locks_mutex);
3300 }
3301
3302 /*
3303  * initialise the VMA slab
3304  */
3305 void __init mmap_init(void)
3306 {
3307         int ret;
3308
3309         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3310         VM_BUG_ON(ret);
3311 }
3312
3313 /*
3314  * Initialise sysctl_user_reserve_kbytes.
3315  *
3316  * This is intended to prevent a user from starting a single memory hogging
3317  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3318  * mode.
3319  *
3320  * The default value is min(3% of free memory, 128MB)
3321  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3322  */
3323 static int init_user_reserve(void)
3324 {
3325         unsigned long free_kbytes;
3326
3327         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3328
3329         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3330         return 0;
3331 }
3332 subsys_initcall(init_user_reserve);
3333
3334 /*
3335  * Initialise sysctl_admin_reserve_kbytes.
3336  *
3337  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3338  * to log in and kill a memory hogging process.
3339  *
3340  * Systems with more than 256MB will reserve 8MB, enough to recover
3341  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3342  * only reserve 3% of free pages by default.
3343  */
3344 static int init_admin_reserve(void)
3345 {
3346         unsigned long free_kbytes;
3347
3348         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3349
3350         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3351         return 0;
3352 }
3353 subsys_initcall(init_admin_reserve);
3354
3355 /*
3356  * Reinititalise user and admin reserves if memory is added or removed.
3357  *
3358  * The default user reserve max is 128MB, and the default max for the
3359  * admin reserve is 8MB. These are usually, but not always, enough to
3360  * enable recovery from a memory hogging process using login/sshd, a shell,
3361  * and tools like top. It may make sense to increase or even disable the
3362  * reserve depending on the existence of swap or variations in the recovery
3363  * tools. So, the admin may have changed them.
3364  *
3365  * If memory is added and the reserves have been eliminated or increased above
3366  * the default max, then we'll trust the admin.
3367  *
3368  * If memory is removed and there isn't enough free memory, then we
3369  * need to reset the reserves.
3370  *
3371  * Otherwise keep the reserve set by the admin.
3372  */
3373 static int reserve_mem_notifier(struct notifier_block *nb,
3374                              unsigned long action, void *data)
3375 {
3376         unsigned long tmp, free_kbytes;
3377
3378         switch (action) {
3379         case MEM_ONLINE:
3380                 /* Default max is 128MB. Leave alone if modified by operator. */
3381                 tmp = sysctl_user_reserve_kbytes;
3382                 if (0 < tmp && tmp < (1UL << 17))
3383                         init_user_reserve();
3384
3385                 /* Default max is 8MB.  Leave alone if modified by operator. */
3386                 tmp = sysctl_admin_reserve_kbytes;
3387                 if (0 < tmp && tmp < (1UL << 13))
3388                         init_admin_reserve();
3389
3390                 break;
3391         case MEM_OFFLINE:
3392                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3393
3394                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3395                         init_user_reserve();
3396                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3397                                 sysctl_user_reserve_kbytes);
3398                 }
3399
3400                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3401                         init_admin_reserve();
3402                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3403                                 sysctl_admin_reserve_kbytes);
3404                 }
3405                 break;
3406         default:
3407                 break;
3408         }
3409         return NOTIFY_OK;
3410 }
3411
3412 static struct notifier_block reserve_mem_nb = {
3413         .notifier_call = reserve_mem_notifier,
3414 };
3415
3416 static int __meminit init_reserve_notifier(void)
3417 {
3418         if (register_hotmemory_notifier(&reserve_mem_nb))
3419                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3420
3421         return 0;
3422 }
3423 subsys_initcall(init_reserve_notifier);