b3b74cc705aea3e43741838e712a6244af8b7a45
[cascardo/linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52
53 #include "internal.h"
54
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags)       (0)
57 #endif
58
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72
73 static void unmap_region(struct mm_struct *mm,
74                 struct vm_area_struct *vma, struct vm_area_struct *prev,
75                 unsigned long start, unsigned long end);
76
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type     prot
82  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
83  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
84  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
85  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
86  *
87  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
88  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
89  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
90  *
91  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
92  * MAP_PRIVATE:
93  *                                                              r: (no) no
94  *                                                              w: (no) no
95  *                                                              x: (yes) yes
96  */
97 pgprot_t protection_map[16] = {
98         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 pgprot_t vm_get_page_prot(unsigned long vm_flags)
103 {
104         return __pgprot(pgprot_val(protection_map[vm_flags &
105                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
106                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
107 }
108 EXPORT_SYMBOL(vm_get_page_prot);
109
110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
111 {
112         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
113 }
114
115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
116 void vma_set_page_prot(struct vm_area_struct *vma)
117 {
118         unsigned long vm_flags = vma->vm_flags;
119         pgprot_t vm_page_prot;
120
121         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
122         if (vma_wants_writenotify(vma, vm_page_prot)) {
123                 vm_flags &= ~VM_SHARED;
124                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
125         }
126         /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
127         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
128 }
129
130 /*
131  * Requires inode->i_mapping->i_mmap_rwsem
132  */
133 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
134                 struct file *file, struct address_space *mapping)
135 {
136         if (vma->vm_flags & VM_DENYWRITE)
137                 atomic_inc(&file_inode(file)->i_writecount);
138         if (vma->vm_flags & VM_SHARED)
139                 mapping_unmap_writable(mapping);
140
141         flush_dcache_mmap_lock(mapping);
142         vma_interval_tree_remove(vma, &mapping->i_mmap);
143         flush_dcache_mmap_unlock(mapping);
144 }
145
146 /*
147  * Unlink a file-based vm structure from its interval tree, to hide
148  * vma from rmap and vmtruncate before freeing its page tables.
149  */
150 void unlink_file_vma(struct vm_area_struct *vma)
151 {
152         struct file *file = vma->vm_file;
153
154         if (file) {
155                 struct address_space *mapping = file->f_mapping;
156                 i_mmap_lock_write(mapping);
157                 __remove_shared_vm_struct(vma, file, mapping);
158                 i_mmap_unlock_write(mapping);
159         }
160 }
161
162 /*
163  * Close a vm structure and free it, returning the next.
164  */
165 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
166 {
167         struct vm_area_struct *next = vma->vm_next;
168
169         might_sleep();
170         if (vma->vm_ops && vma->vm_ops->close)
171                 vma->vm_ops->close(vma);
172         if (vma->vm_file)
173                 fput(vma->vm_file);
174         mpol_put(vma_policy(vma));
175         kmem_cache_free(vm_area_cachep, vma);
176         return next;
177 }
178
179 static int do_brk(unsigned long addr, unsigned long len);
180
181 SYSCALL_DEFINE1(brk, unsigned long, brk)
182 {
183         unsigned long retval;
184         unsigned long newbrk, oldbrk;
185         struct mm_struct *mm = current->mm;
186         unsigned long min_brk;
187         bool populate;
188
189         if (down_write_killable(&mm->mmap_sem))
190                 return -EINTR;
191
192 #ifdef CONFIG_COMPAT_BRK
193         /*
194          * CONFIG_COMPAT_BRK can still be overridden by setting
195          * randomize_va_space to 2, which will still cause mm->start_brk
196          * to be arbitrarily shifted
197          */
198         if (current->brk_randomized)
199                 min_brk = mm->start_brk;
200         else
201                 min_brk = mm->end_data;
202 #else
203         min_brk = mm->start_brk;
204 #endif
205         if (brk < min_brk)
206                 goto out;
207
208         /*
209          * Check against rlimit here. If this check is done later after the test
210          * of oldbrk with newbrk then it can escape the test and let the data
211          * segment grow beyond its set limit the in case where the limit is
212          * not page aligned -Ram Gupta
213          */
214         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
215                               mm->end_data, mm->start_data))
216                 goto out;
217
218         newbrk = PAGE_ALIGN(brk);
219         oldbrk = PAGE_ALIGN(mm->brk);
220         if (oldbrk == newbrk)
221                 goto set_brk;
222
223         /* Always allow shrinking brk. */
224         if (brk <= mm->brk) {
225                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
226                         goto set_brk;
227                 goto out;
228         }
229
230         /* Check against existing mmap mappings. */
231         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
232                 goto out;
233
234         /* Ok, looks good - let it rip. */
235         if (do_brk(oldbrk, newbrk-oldbrk) < 0)
236                 goto out;
237
238 set_brk:
239         mm->brk = brk;
240         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
241         up_write(&mm->mmap_sem);
242         if (populate)
243                 mm_populate(oldbrk, newbrk - oldbrk);
244         return brk;
245
246 out:
247         retval = mm->brk;
248         up_write(&mm->mmap_sem);
249         return retval;
250 }
251
252 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
253 {
254         unsigned long max, subtree_gap;
255         max = vma->vm_start;
256         if (vma->vm_prev)
257                 max -= vma->vm_prev->vm_end;
258         if (vma->vm_rb.rb_left) {
259                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
260                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
261                 if (subtree_gap > max)
262                         max = subtree_gap;
263         }
264         if (vma->vm_rb.rb_right) {
265                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
266                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
267                 if (subtree_gap > max)
268                         max = subtree_gap;
269         }
270         return max;
271 }
272
273 #ifdef CONFIG_DEBUG_VM_RB
274 static int browse_rb(struct mm_struct *mm)
275 {
276         struct rb_root *root = &mm->mm_rb;
277         int i = 0, j, bug = 0;
278         struct rb_node *nd, *pn = NULL;
279         unsigned long prev = 0, pend = 0;
280
281         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
282                 struct vm_area_struct *vma;
283                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
284                 if (vma->vm_start < prev) {
285                         pr_emerg("vm_start %lx < prev %lx\n",
286                                   vma->vm_start, prev);
287                         bug = 1;
288                 }
289                 if (vma->vm_start < pend) {
290                         pr_emerg("vm_start %lx < pend %lx\n",
291                                   vma->vm_start, pend);
292                         bug = 1;
293                 }
294                 if (vma->vm_start > vma->vm_end) {
295                         pr_emerg("vm_start %lx > vm_end %lx\n",
296                                   vma->vm_start, vma->vm_end);
297                         bug = 1;
298                 }
299                 spin_lock(&mm->page_table_lock);
300                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
301                         pr_emerg("free gap %lx, correct %lx\n",
302                                vma->rb_subtree_gap,
303                                vma_compute_subtree_gap(vma));
304                         bug = 1;
305                 }
306                 spin_unlock(&mm->page_table_lock);
307                 i++;
308                 pn = nd;
309                 prev = vma->vm_start;
310                 pend = vma->vm_end;
311         }
312         j = 0;
313         for (nd = pn; nd; nd = rb_prev(nd))
314                 j++;
315         if (i != j) {
316                 pr_emerg("backwards %d, forwards %d\n", j, i);
317                 bug = 1;
318         }
319         return bug ? -1 : i;
320 }
321
322 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
323 {
324         struct rb_node *nd;
325
326         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
327                 struct vm_area_struct *vma;
328                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
329                 VM_BUG_ON_VMA(vma != ignore &&
330                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
331                         vma);
332         }
333 }
334
335 static void validate_mm(struct mm_struct *mm)
336 {
337         int bug = 0;
338         int i = 0;
339         unsigned long highest_address = 0;
340         struct vm_area_struct *vma = mm->mmap;
341
342         while (vma) {
343                 struct anon_vma *anon_vma = vma->anon_vma;
344                 struct anon_vma_chain *avc;
345
346                 if (anon_vma) {
347                         anon_vma_lock_read(anon_vma);
348                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
349                                 anon_vma_interval_tree_verify(avc);
350                         anon_vma_unlock_read(anon_vma);
351                 }
352
353                 highest_address = vma->vm_end;
354                 vma = vma->vm_next;
355                 i++;
356         }
357         if (i != mm->map_count) {
358                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
359                 bug = 1;
360         }
361         if (highest_address != mm->highest_vm_end) {
362                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
363                           mm->highest_vm_end, highest_address);
364                 bug = 1;
365         }
366         i = browse_rb(mm);
367         if (i != mm->map_count) {
368                 if (i != -1)
369                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
370                 bug = 1;
371         }
372         VM_BUG_ON_MM(bug, mm);
373 }
374 #else
375 #define validate_mm_rb(root, ignore) do { } while (0)
376 #define validate_mm(mm) do { } while (0)
377 #endif
378
379 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
380                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
381
382 /*
383  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
384  * vma->vm_prev->vm_end values changed, without modifying the vma's position
385  * in the rbtree.
386  */
387 static void vma_gap_update(struct vm_area_struct *vma)
388 {
389         /*
390          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
391          * function that does exacltly what we want.
392          */
393         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
394 }
395
396 static inline void vma_rb_insert(struct vm_area_struct *vma,
397                                  struct rb_root *root)
398 {
399         /* All rb_subtree_gap values must be consistent prior to insertion */
400         validate_mm_rb(root, NULL);
401
402         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
403 }
404
405 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
406 {
407         /*
408          * All rb_subtree_gap values must be consistent prior to erase,
409          * with the possible exception of the vma being erased.
410          */
411         validate_mm_rb(root, vma);
412
413         /*
414          * Note rb_erase_augmented is a fairly large inline function,
415          * so make sure we instantiate it only once with our desired
416          * augmented rbtree callbacks.
417          */
418         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
419 }
420
421 /*
422  * vma has some anon_vma assigned, and is already inserted on that
423  * anon_vma's interval trees.
424  *
425  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
426  * vma must be removed from the anon_vma's interval trees using
427  * anon_vma_interval_tree_pre_update_vma().
428  *
429  * After the update, the vma will be reinserted using
430  * anon_vma_interval_tree_post_update_vma().
431  *
432  * The entire update must be protected by exclusive mmap_sem and by
433  * the root anon_vma's mutex.
434  */
435 static inline void
436 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
437 {
438         struct anon_vma_chain *avc;
439
440         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
441                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
442 }
443
444 static inline void
445 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
446 {
447         struct anon_vma_chain *avc;
448
449         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
450                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
451 }
452
453 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
454                 unsigned long end, struct vm_area_struct **pprev,
455                 struct rb_node ***rb_link, struct rb_node **rb_parent)
456 {
457         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
458
459         __rb_link = &mm->mm_rb.rb_node;
460         rb_prev = __rb_parent = NULL;
461
462         while (*__rb_link) {
463                 struct vm_area_struct *vma_tmp;
464
465                 __rb_parent = *__rb_link;
466                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
467
468                 if (vma_tmp->vm_end > addr) {
469                         /* Fail if an existing vma overlaps the area */
470                         if (vma_tmp->vm_start < end)
471                                 return -ENOMEM;
472                         __rb_link = &__rb_parent->rb_left;
473                 } else {
474                         rb_prev = __rb_parent;
475                         __rb_link = &__rb_parent->rb_right;
476                 }
477         }
478
479         *pprev = NULL;
480         if (rb_prev)
481                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
482         *rb_link = __rb_link;
483         *rb_parent = __rb_parent;
484         return 0;
485 }
486
487 static unsigned long count_vma_pages_range(struct mm_struct *mm,
488                 unsigned long addr, unsigned long end)
489 {
490         unsigned long nr_pages = 0;
491         struct vm_area_struct *vma;
492
493         /* Find first overlaping mapping */
494         vma = find_vma_intersection(mm, addr, end);
495         if (!vma)
496                 return 0;
497
498         nr_pages = (min(end, vma->vm_end) -
499                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
500
501         /* Iterate over the rest of the overlaps */
502         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
503                 unsigned long overlap_len;
504
505                 if (vma->vm_start > end)
506                         break;
507
508                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
509                 nr_pages += overlap_len >> PAGE_SHIFT;
510         }
511
512         return nr_pages;
513 }
514
515 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
516                 struct rb_node **rb_link, struct rb_node *rb_parent)
517 {
518         /* Update tracking information for the gap following the new vma. */
519         if (vma->vm_next)
520                 vma_gap_update(vma->vm_next);
521         else
522                 mm->highest_vm_end = vma->vm_end;
523
524         /*
525          * vma->vm_prev wasn't known when we followed the rbtree to find the
526          * correct insertion point for that vma. As a result, we could not
527          * update the vma vm_rb parents rb_subtree_gap values on the way down.
528          * So, we first insert the vma with a zero rb_subtree_gap value
529          * (to be consistent with what we did on the way down), and then
530          * immediately update the gap to the correct value. Finally we
531          * rebalance the rbtree after all augmented values have been set.
532          */
533         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
534         vma->rb_subtree_gap = 0;
535         vma_gap_update(vma);
536         vma_rb_insert(vma, &mm->mm_rb);
537 }
538
539 static void __vma_link_file(struct vm_area_struct *vma)
540 {
541         struct file *file;
542
543         file = vma->vm_file;
544         if (file) {
545                 struct address_space *mapping = file->f_mapping;
546
547                 if (vma->vm_flags & VM_DENYWRITE)
548                         atomic_dec(&file_inode(file)->i_writecount);
549                 if (vma->vm_flags & VM_SHARED)
550                         atomic_inc(&mapping->i_mmap_writable);
551
552                 flush_dcache_mmap_lock(mapping);
553                 vma_interval_tree_insert(vma, &mapping->i_mmap);
554                 flush_dcache_mmap_unlock(mapping);
555         }
556 }
557
558 static void
559 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
560         struct vm_area_struct *prev, struct rb_node **rb_link,
561         struct rb_node *rb_parent)
562 {
563         __vma_link_list(mm, vma, prev, rb_parent);
564         __vma_link_rb(mm, vma, rb_link, rb_parent);
565 }
566
567 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
568                         struct vm_area_struct *prev, struct rb_node **rb_link,
569                         struct rb_node *rb_parent)
570 {
571         struct address_space *mapping = NULL;
572
573         if (vma->vm_file) {
574                 mapping = vma->vm_file->f_mapping;
575                 i_mmap_lock_write(mapping);
576         }
577
578         __vma_link(mm, vma, prev, rb_link, rb_parent);
579         __vma_link_file(vma);
580
581         if (mapping)
582                 i_mmap_unlock_write(mapping);
583
584         mm->map_count++;
585         validate_mm(mm);
586 }
587
588 /*
589  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
590  * mm's list and rbtree.  It has already been inserted into the interval tree.
591  */
592 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
593 {
594         struct vm_area_struct *prev;
595         struct rb_node **rb_link, *rb_parent;
596
597         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
598                            &prev, &rb_link, &rb_parent))
599                 BUG();
600         __vma_link(mm, vma, prev, rb_link, rb_parent);
601         mm->map_count++;
602 }
603
604 static inline void
605 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
606                 struct vm_area_struct *prev)
607 {
608         struct vm_area_struct *next;
609
610         vma_rb_erase(vma, &mm->mm_rb);
611         prev->vm_next = next = vma->vm_next;
612         if (next)
613                 next->vm_prev = prev;
614
615         /* Kill the cache */
616         vmacache_invalidate(mm);
617 }
618
619 /*
620  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
621  * is already present in an i_mmap tree without adjusting the tree.
622  * The following helper function should be used when such adjustments
623  * are necessary.  The "insert" vma (if any) is to be inserted
624  * before we drop the necessary locks.
625  */
626 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
627         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
628 {
629         struct mm_struct *mm = vma->vm_mm;
630         struct vm_area_struct *next = vma->vm_next;
631         struct address_space *mapping = NULL;
632         struct rb_root *root = NULL;
633         struct anon_vma *anon_vma = NULL;
634         struct file *file = vma->vm_file;
635         bool start_changed = false, end_changed = false;
636         long adjust_next = 0;
637         int remove_next = 0;
638
639         if (next && !insert) {
640                 struct vm_area_struct *exporter = NULL, *importer = NULL;
641
642                 if (end >= next->vm_end) {
643                         /*
644                          * vma expands, overlapping all the next, and
645                          * perhaps the one after too (mprotect case 6).
646                          */
647                         remove_next = 1 + (end > next->vm_end);
648                         end = next->vm_end;
649                         exporter = next;
650                         importer = vma;
651
652                         /*
653                          * If next doesn't have anon_vma, import from vma after
654                          * next, if the vma overlaps with it.
655                          */
656                         if (remove_next == 2 && next && !next->anon_vma)
657                                 exporter = next->vm_next;
658
659                 } else if (end > next->vm_start) {
660                         /*
661                          * vma expands, overlapping part of the next:
662                          * mprotect case 5 shifting the boundary up.
663                          */
664                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
665                         exporter = next;
666                         importer = vma;
667                 } else if (end < vma->vm_end) {
668                         /*
669                          * vma shrinks, and !insert tells it's not
670                          * split_vma inserting another: so it must be
671                          * mprotect case 4 shifting the boundary down.
672                          */
673                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
674                         exporter = vma;
675                         importer = next;
676                 }
677
678                 /*
679                  * Easily overlooked: when mprotect shifts the boundary,
680                  * make sure the expanding vma has anon_vma set if the
681                  * shrinking vma had, to cover any anon pages imported.
682                  */
683                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
684                         int error;
685
686                         importer->anon_vma = exporter->anon_vma;
687                         error = anon_vma_clone(importer, exporter);
688                         if (error)
689                                 return error;
690                 }
691         }
692 again:
693         vma_adjust_trans_huge(vma, start, end, adjust_next);
694
695         if (file) {
696                 mapping = file->f_mapping;
697                 root = &mapping->i_mmap;
698                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
699
700                 if (adjust_next)
701                         uprobe_munmap(next, next->vm_start, next->vm_end);
702
703                 i_mmap_lock_write(mapping);
704                 if (insert) {
705                         /*
706                          * Put into interval tree now, so instantiated pages
707                          * are visible to arm/parisc __flush_dcache_page
708                          * throughout; but we cannot insert into address
709                          * space until vma start or end is updated.
710                          */
711                         __vma_link_file(insert);
712                 }
713         }
714
715         anon_vma = vma->anon_vma;
716         if (!anon_vma && adjust_next)
717                 anon_vma = next->anon_vma;
718         if (anon_vma) {
719                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
720                           anon_vma != next->anon_vma, next);
721                 anon_vma_lock_write(anon_vma);
722                 anon_vma_interval_tree_pre_update_vma(vma);
723                 if (adjust_next)
724                         anon_vma_interval_tree_pre_update_vma(next);
725         }
726
727         if (root) {
728                 flush_dcache_mmap_lock(mapping);
729                 vma_interval_tree_remove(vma, root);
730                 if (adjust_next)
731                         vma_interval_tree_remove(next, root);
732         }
733
734         if (start != vma->vm_start) {
735                 vma->vm_start = start;
736                 start_changed = true;
737         }
738         if (end != vma->vm_end) {
739                 vma->vm_end = end;
740                 end_changed = true;
741         }
742         vma->vm_pgoff = pgoff;
743         if (adjust_next) {
744                 next->vm_start += adjust_next << PAGE_SHIFT;
745                 next->vm_pgoff += adjust_next;
746         }
747
748         if (root) {
749                 if (adjust_next)
750                         vma_interval_tree_insert(next, root);
751                 vma_interval_tree_insert(vma, root);
752                 flush_dcache_mmap_unlock(mapping);
753         }
754
755         if (remove_next) {
756                 /*
757                  * vma_merge has merged next into vma, and needs
758                  * us to remove next before dropping the locks.
759                  */
760                 __vma_unlink(mm, next, vma);
761                 if (file)
762                         __remove_shared_vm_struct(next, file, mapping);
763         } else if (insert) {
764                 /*
765                  * split_vma has split insert from vma, and needs
766                  * us to insert it before dropping the locks
767                  * (it may either follow vma or precede it).
768                  */
769                 __insert_vm_struct(mm, insert);
770         } else {
771                 if (start_changed)
772                         vma_gap_update(vma);
773                 if (end_changed) {
774                         if (!next)
775                                 mm->highest_vm_end = end;
776                         else if (!adjust_next)
777                                 vma_gap_update(next);
778                 }
779         }
780
781         if (anon_vma) {
782                 anon_vma_interval_tree_post_update_vma(vma);
783                 if (adjust_next)
784                         anon_vma_interval_tree_post_update_vma(next);
785                 anon_vma_unlock_write(anon_vma);
786         }
787         if (mapping)
788                 i_mmap_unlock_write(mapping);
789
790         if (root) {
791                 uprobe_mmap(vma);
792
793                 if (adjust_next)
794                         uprobe_mmap(next);
795         }
796
797         if (remove_next) {
798                 if (file) {
799                         uprobe_munmap(next, next->vm_start, next->vm_end);
800                         fput(file);
801                 }
802                 if (next->anon_vma)
803                         anon_vma_merge(vma, next);
804                 mm->map_count--;
805                 mpol_put(vma_policy(next));
806                 kmem_cache_free(vm_area_cachep, next);
807                 /*
808                  * In mprotect's case 6 (see comments on vma_merge),
809                  * we must remove another next too. It would clutter
810                  * up the code too much to do both in one go.
811                  */
812                 next = vma->vm_next;
813                 if (remove_next == 2) {
814                         remove_next = 1;
815                         end = next->vm_end;
816                         goto again;
817                 }
818                 else if (next)
819                         vma_gap_update(next);
820                 else
821                         mm->highest_vm_end = end;
822         }
823         if (insert && file)
824                 uprobe_mmap(insert);
825
826         validate_mm(mm);
827
828         return 0;
829 }
830
831 /*
832  * If the vma has a ->close operation then the driver probably needs to release
833  * per-vma resources, so we don't attempt to merge those.
834  */
835 static inline int is_mergeable_vma(struct vm_area_struct *vma,
836                                 struct file *file, unsigned long vm_flags,
837                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
838 {
839         /*
840          * VM_SOFTDIRTY should not prevent from VMA merging, if we
841          * match the flags but dirty bit -- the caller should mark
842          * merged VMA as dirty. If dirty bit won't be excluded from
843          * comparison, we increase pressue on the memory system forcing
844          * the kernel to generate new VMAs when old one could be
845          * extended instead.
846          */
847         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
848                 return 0;
849         if (vma->vm_file != file)
850                 return 0;
851         if (vma->vm_ops && vma->vm_ops->close)
852                 return 0;
853         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
854                 return 0;
855         return 1;
856 }
857
858 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
859                                         struct anon_vma *anon_vma2,
860                                         struct vm_area_struct *vma)
861 {
862         /*
863          * The list_is_singular() test is to avoid merging VMA cloned from
864          * parents. This can improve scalability caused by anon_vma lock.
865          */
866         if ((!anon_vma1 || !anon_vma2) && (!vma ||
867                 list_is_singular(&vma->anon_vma_chain)))
868                 return 1;
869         return anon_vma1 == anon_vma2;
870 }
871
872 /*
873  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
874  * in front of (at a lower virtual address and file offset than) the vma.
875  *
876  * We cannot merge two vmas if they have differently assigned (non-NULL)
877  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
878  *
879  * We don't check here for the merged mmap wrapping around the end of pagecache
880  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
881  * wrap, nor mmaps which cover the final page at index -1UL.
882  */
883 static int
884 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
885                      struct anon_vma *anon_vma, struct file *file,
886                      pgoff_t vm_pgoff,
887                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
888 {
889         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
890             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
891                 if (vma->vm_pgoff == vm_pgoff)
892                         return 1;
893         }
894         return 0;
895 }
896
897 /*
898  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
899  * beyond (at a higher virtual address and file offset than) the vma.
900  *
901  * We cannot merge two vmas if they have differently assigned (non-NULL)
902  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
903  */
904 static int
905 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
906                     struct anon_vma *anon_vma, struct file *file,
907                     pgoff_t vm_pgoff,
908                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
909 {
910         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
911             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
912                 pgoff_t vm_pglen;
913                 vm_pglen = vma_pages(vma);
914                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
915                         return 1;
916         }
917         return 0;
918 }
919
920 /*
921  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
922  * whether that can be merged with its predecessor or its successor.
923  * Or both (it neatly fills a hole).
924  *
925  * In most cases - when called for mmap, brk or mremap - [addr,end) is
926  * certain not to be mapped by the time vma_merge is called; but when
927  * called for mprotect, it is certain to be already mapped (either at
928  * an offset within prev, or at the start of next), and the flags of
929  * this area are about to be changed to vm_flags - and the no-change
930  * case has already been eliminated.
931  *
932  * The following mprotect cases have to be considered, where AAAA is
933  * the area passed down from mprotect_fixup, never extending beyond one
934  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
935  *
936  *     AAAA             AAAA                AAAA          AAAA
937  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
938  *    cannot merge    might become    might become    might become
939  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
940  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
941  *    mremap move:                                    PPPPNNNNNNNN 8
942  *        AAAA
943  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
944  *    might become    case 1 below    case 2 below    case 3 below
945  *
946  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
947  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
948  */
949 struct vm_area_struct *vma_merge(struct mm_struct *mm,
950                         struct vm_area_struct *prev, unsigned long addr,
951                         unsigned long end, unsigned long vm_flags,
952                         struct anon_vma *anon_vma, struct file *file,
953                         pgoff_t pgoff, struct mempolicy *policy,
954                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
955 {
956         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
957         struct vm_area_struct *area, *next;
958         int err;
959
960         /*
961          * We later require that vma->vm_flags == vm_flags,
962          * so this tests vma->vm_flags & VM_SPECIAL, too.
963          */
964         if (vm_flags & VM_SPECIAL)
965                 return NULL;
966
967         if (prev)
968                 next = prev->vm_next;
969         else
970                 next = mm->mmap;
971         area = next;
972         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
973                 next = next->vm_next;
974
975         /*
976          * Can it merge with the predecessor?
977          */
978         if (prev && prev->vm_end == addr &&
979                         mpol_equal(vma_policy(prev), policy) &&
980                         can_vma_merge_after(prev, vm_flags,
981                                             anon_vma, file, pgoff,
982                                             vm_userfaultfd_ctx)) {
983                 /*
984                  * OK, it can.  Can we now merge in the successor as well?
985                  */
986                 if (next && end == next->vm_start &&
987                                 mpol_equal(policy, vma_policy(next)) &&
988                                 can_vma_merge_before(next, vm_flags,
989                                                      anon_vma, file,
990                                                      pgoff+pglen,
991                                                      vm_userfaultfd_ctx) &&
992                                 is_mergeable_anon_vma(prev->anon_vma,
993                                                       next->anon_vma, NULL)) {
994                                                         /* cases 1, 6 */
995                         err = vma_adjust(prev, prev->vm_start,
996                                 next->vm_end, prev->vm_pgoff, NULL);
997                 } else                                  /* cases 2, 5, 7 */
998                         err = vma_adjust(prev, prev->vm_start,
999                                 end, prev->vm_pgoff, NULL);
1000                 if (err)
1001                         return NULL;
1002                 khugepaged_enter_vma_merge(prev, vm_flags);
1003                 return prev;
1004         }
1005
1006         /*
1007          * Can this new request be merged in front of next?
1008          */
1009         if (next && end == next->vm_start &&
1010                         mpol_equal(policy, vma_policy(next)) &&
1011                         can_vma_merge_before(next, vm_flags,
1012                                              anon_vma, file, pgoff+pglen,
1013                                              vm_userfaultfd_ctx)) {
1014                 if (prev && addr < prev->vm_end)        /* case 4 */
1015                         err = vma_adjust(prev, prev->vm_start,
1016                                 addr, prev->vm_pgoff, NULL);
1017                 else                                    /* cases 3, 8 */
1018                         err = vma_adjust(area, addr, next->vm_end,
1019                                 next->vm_pgoff - pglen, NULL);
1020                 if (err)
1021                         return NULL;
1022                 khugepaged_enter_vma_merge(area, vm_flags);
1023                 return area;
1024         }
1025
1026         return NULL;
1027 }
1028
1029 /*
1030  * Rough compatbility check to quickly see if it's even worth looking
1031  * at sharing an anon_vma.
1032  *
1033  * They need to have the same vm_file, and the flags can only differ
1034  * in things that mprotect may change.
1035  *
1036  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1037  * we can merge the two vma's. For example, we refuse to merge a vma if
1038  * there is a vm_ops->close() function, because that indicates that the
1039  * driver is doing some kind of reference counting. But that doesn't
1040  * really matter for the anon_vma sharing case.
1041  */
1042 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1043 {
1044         return a->vm_end == b->vm_start &&
1045                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1046                 a->vm_file == b->vm_file &&
1047                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1048                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1049 }
1050
1051 /*
1052  * Do some basic sanity checking to see if we can re-use the anon_vma
1053  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1054  * the same as 'old', the other will be the new one that is trying
1055  * to share the anon_vma.
1056  *
1057  * NOTE! This runs with mm_sem held for reading, so it is possible that
1058  * the anon_vma of 'old' is concurrently in the process of being set up
1059  * by another page fault trying to merge _that_. But that's ok: if it
1060  * is being set up, that automatically means that it will be a singleton
1061  * acceptable for merging, so we can do all of this optimistically. But
1062  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1063  *
1064  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1065  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1066  * is to return an anon_vma that is "complex" due to having gone through
1067  * a fork).
1068  *
1069  * We also make sure that the two vma's are compatible (adjacent,
1070  * and with the same memory policies). That's all stable, even with just
1071  * a read lock on the mm_sem.
1072  */
1073 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1074 {
1075         if (anon_vma_compatible(a, b)) {
1076                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1077
1078                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1079                         return anon_vma;
1080         }
1081         return NULL;
1082 }
1083
1084 /*
1085  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1086  * neighbouring vmas for a suitable anon_vma, before it goes off
1087  * to allocate a new anon_vma.  It checks because a repetitive
1088  * sequence of mprotects and faults may otherwise lead to distinct
1089  * anon_vmas being allocated, preventing vma merge in subsequent
1090  * mprotect.
1091  */
1092 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1093 {
1094         struct anon_vma *anon_vma;
1095         struct vm_area_struct *near;
1096
1097         near = vma->vm_next;
1098         if (!near)
1099                 goto try_prev;
1100
1101         anon_vma = reusable_anon_vma(near, vma, near);
1102         if (anon_vma)
1103                 return anon_vma;
1104 try_prev:
1105         near = vma->vm_prev;
1106         if (!near)
1107                 goto none;
1108
1109         anon_vma = reusable_anon_vma(near, near, vma);
1110         if (anon_vma)
1111                 return anon_vma;
1112 none:
1113         /*
1114          * There's no absolute need to look only at touching neighbours:
1115          * we could search further afield for "compatible" anon_vmas.
1116          * But it would probably just be a waste of time searching,
1117          * or lead to too many vmas hanging off the same anon_vma.
1118          * We're trying to allow mprotect remerging later on,
1119          * not trying to minimize memory used for anon_vmas.
1120          */
1121         return NULL;
1122 }
1123
1124 /*
1125  * If a hint addr is less than mmap_min_addr change hint to be as
1126  * low as possible but still greater than mmap_min_addr
1127  */
1128 static inline unsigned long round_hint_to_min(unsigned long hint)
1129 {
1130         hint &= PAGE_MASK;
1131         if (((void *)hint != NULL) &&
1132             (hint < mmap_min_addr))
1133                 return PAGE_ALIGN(mmap_min_addr);
1134         return hint;
1135 }
1136
1137 static inline int mlock_future_check(struct mm_struct *mm,
1138                                      unsigned long flags,
1139                                      unsigned long len)
1140 {
1141         unsigned long locked, lock_limit;
1142
1143         /*  mlock MCL_FUTURE? */
1144         if (flags & VM_LOCKED) {
1145                 locked = len >> PAGE_SHIFT;
1146                 locked += mm->locked_vm;
1147                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1148                 lock_limit >>= PAGE_SHIFT;
1149                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1150                         return -EAGAIN;
1151         }
1152         return 0;
1153 }
1154
1155 /*
1156  * The caller must hold down_write(&current->mm->mmap_sem).
1157  */
1158 unsigned long do_mmap(struct file *file, unsigned long addr,
1159                         unsigned long len, unsigned long prot,
1160                         unsigned long flags, vm_flags_t vm_flags,
1161                         unsigned long pgoff, unsigned long *populate)
1162 {
1163         struct mm_struct *mm = current->mm;
1164         int pkey = 0;
1165
1166         *populate = 0;
1167
1168         if (!len)
1169                 return -EINVAL;
1170
1171         /*
1172          * Does the application expect PROT_READ to imply PROT_EXEC?
1173          *
1174          * (the exception is when the underlying filesystem is noexec
1175          *  mounted, in which case we dont add PROT_EXEC.)
1176          */
1177         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1178                 if (!(file && path_noexec(&file->f_path)))
1179                         prot |= PROT_EXEC;
1180
1181         if (!(flags & MAP_FIXED))
1182                 addr = round_hint_to_min(addr);
1183
1184         /* Careful about overflows.. */
1185         len = PAGE_ALIGN(len);
1186         if (!len)
1187                 return -ENOMEM;
1188
1189         /* offset overflow? */
1190         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1191                 return -EOVERFLOW;
1192
1193         /* Too many mappings? */
1194         if (mm->map_count > sysctl_max_map_count)
1195                 return -ENOMEM;
1196
1197         /* Obtain the address to map to. we verify (or select) it and ensure
1198          * that it represents a valid section of the address space.
1199          */
1200         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1201         if (offset_in_page(addr))
1202                 return addr;
1203
1204         if (prot == PROT_EXEC) {
1205                 pkey = execute_only_pkey(mm);
1206                 if (pkey < 0)
1207                         pkey = 0;
1208         }
1209
1210         /* Do simple checking here so the lower-level routines won't have
1211          * to. we assume access permissions have been handled by the open
1212          * of the memory object, so we don't do any here.
1213          */
1214         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1215                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1216
1217         if (flags & MAP_LOCKED)
1218                 if (!can_do_mlock())
1219                         return -EPERM;
1220
1221         if (mlock_future_check(mm, vm_flags, len))
1222                 return -EAGAIN;
1223
1224         if (file) {
1225                 struct inode *inode = file_inode(file);
1226
1227                 switch (flags & MAP_TYPE) {
1228                 case MAP_SHARED:
1229                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1230                                 return -EACCES;
1231
1232                         /*
1233                          * Make sure we don't allow writing to an append-only
1234                          * file..
1235                          */
1236                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1237                                 return -EACCES;
1238
1239                         /*
1240                          * Make sure there are no mandatory locks on the file.
1241                          */
1242                         if (locks_verify_locked(file))
1243                                 return -EAGAIN;
1244
1245                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1246                         if (!(file->f_mode & FMODE_WRITE))
1247                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1248
1249                         /* fall through */
1250                 case MAP_PRIVATE:
1251                         if (!(file->f_mode & FMODE_READ))
1252                                 return -EACCES;
1253                         if (path_noexec(&file->f_path)) {
1254                                 if (vm_flags & VM_EXEC)
1255                                         return -EPERM;
1256                                 vm_flags &= ~VM_MAYEXEC;
1257                         }
1258
1259                         if (!file->f_op->mmap)
1260                                 return -ENODEV;
1261                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1262                                 return -EINVAL;
1263                         break;
1264
1265                 default:
1266                         return -EINVAL;
1267                 }
1268         } else {
1269                 switch (flags & MAP_TYPE) {
1270                 case MAP_SHARED:
1271                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1272                                 return -EINVAL;
1273                         /*
1274                          * Ignore pgoff.
1275                          */
1276                         pgoff = 0;
1277                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1278                         break;
1279                 case MAP_PRIVATE:
1280                         /*
1281                          * Set pgoff according to addr for anon_vma.
1282                          */
1283                         pgoff = addr >> PAGE_SHIFT;
1284                         break;
1285                 default:
1286                         return -EINVAL;
1287                 }
1288         }
1289
1290         /*
1291          * Set 'VM_NORESERVE' if we should not account for the
1292          * memory use of this mapping.
1293          */
1294         if (flags & MAP_NORESERVE) {
1295                 /* We honor MAP_NORESERVE if allowed to overcommit */
1296                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1297                         vm_flags |= VM_NORESERVE;
1298
1299                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1300                 if (file && is_file_hugepages(file))
1301                         vm_flags |= VM_NORESERVE;
1302         }
1303
1304         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1305         if (!IS_ERR_VALUE(addr) &&
1306             ((vm_flags & VM_LOCKED) ||
1307              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1308                 *populate = len;
1309         return addr;
1310 }
1311
1312 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1313                 unsigned long, prot, unsigned long, flags,
1314                 unsigned long, fd, unsigned long, pgoff)
1315 {
1316         struct file *file = NULL;
1317         unsigned long retval;
1318
1319         if (!(flags & MAP_ANONYMOUS)) {
1320                 audit_mmap_fd(fd, flags);
1321                 file = fget(fd);
1322                 if (!file)
1323                         return -EBADF;
1324                 if (is_file_hugepages(file))
1325                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1326                 retval = -EINVAL;
1327                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1328                         goto out_fput;
1329         } else if (flags & MAP_HUGETLB) {
1330                 struct user_struct *user = NULL;
1331                 struct hstate *hs;
1332
1333                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1334                 if (!hs)
1335                         return -EINVAL;
1336
1337                 len = ALIGN(len, huge_page_size(hs));
1338                 /*
1339                  * VM_NORESERVE is used because the reservations will be
1340                  * taken when vm_ops->mmap() is called
1341                  * A dummy user value is used because we are not locking
1342                  * memory so no accounting is necessary
1343                  */
1344                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1345                                 VM_NORESERVE,
1346                                 &user, HUGETLB_ANONHUGE_INODE,
1347                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1348                 if (IS_ERR(file))
1349                         return PTR_ERR(file);
1350         }
1351
1352         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1353
1354         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1355 out_fput:
1356         if (file)
1357                 fput(file);
1358         return retval;
1359 }
1360
1361 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1362 struct mmap_arg_struct {
1363         unsigned long addr;
1364         unsigned long len;
1365         unsigned long prot;
1366         unsigned long flags;
1367         unsigned long fd;
1368         unsigned long offset;
1369 };
1370
1371 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1372 {
1373         struct mmap_arg_struct a;
1374
1375         if (copy_from_user(&a, arg, sizeof(a)))
1376                 return -EFAULT;
1377         if (offset_in_page(a.offset))
1378                 return -EINVAL;
1379
1380         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1381                               a.offset >> PAGE_SHIFT);
1382 }
1383 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1384
1385 /*
1386  * Some shared mappigns will want the pages marked read-only
1387  * to track write events. If so, we'll downgrade vm_page_prot
1388  * to the private version (using protection_map[] without the
1389  * VM_SHARED bit).
1390  */
1391 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1392 {
1393         vm_flags_t vm_flags = vma->vm_flags;
1394         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1395
1396         /* If it was private or non-writable, the write bit is already clear */
1397         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1398                 return 0;
1399
1400         /* The backer wishes to know when pages are first written to? */
1401         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1402                 return 1;
1403
1404         /* The open routine did something to the protections that pgprot_modify
1405          * won't preserve? */
1406         if (pgprot_val(vm_page_prot) !=
1407             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1408                 return 0;
1409
1410         /* Do we need to track softdirty? */
1411         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1412                 return 1;
1413
1414         /* Specialty mapping? */
1415         if (vm_flags & VM_PFNMAP)
1416                 return 0;
1417
1418         /* Can the mapping track the dirty pages? */
1419         return vma->vm_file && vma->vm_file->f_mapping &&
1420                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1421 }
1422
1423 /*
1424  * We account for memory if it's a private writeable mapping,
1425  * not hugepages and VM_NORESERVE wasn't set.
1426  */
1427 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1428 {
1429         /*
1430          * hugetlb has its own accounting separate from the core VM
1431          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1432          */
1433         if (file && is_file_hugepages(file))
1434                 return 0;
1435
1436         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1437 }
1438
1439 unsigned long mmap_region(struct file *file, unsigned long addr,
1440                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1441 {
1442         struct mm_struct *mm = current->mm;
1443         struct vm_area_struct *vma, *prev;
1444         int error;
1445         struct rb_node **rb_link, *rb_parent;
1446         unsigned long charged = 0;
1447
1448         /* Check against address space limit. */
1449         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1450                 unsigned long nr_pages;
1451
1452                 /*
1453                  * MAP_FIXED may remove pages of mappings that intersects with
1454                  * requested mapping. Account for the pages it would unmap.
1455                  */
1456                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1457
1458                 if (!may_expand_vm(mm, vm_flags,
1459                                         (len >> PAGE_SHIFT) - nr_pages))
1460                         return -ENOMEM;
1461         }
1462
1463         /* Clear old maps */
1464         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1465                               &rb_parent)) {
1466                 if (do_munmap(mm, addr, len))
1467                         return -ENOMEM;
1468         }
1469
1470         /*
1471          * Private writable mapping: check memory availability
1472          */
1473         if (accountable_mapping(file, vm_flags)) {
1474                 charged = len >> PAGE_SHIFT;
1475                 if (security_vm_enough_memory_mm(mm, charged))
1476                         return -ENOMEM;
1477                 vm_flags |= VM_ACCOUNT;
1478         }
1479
1480         /*
1481          * Can we just expand an old mapping?
1482          */
1483         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1484                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1485         if (vma)
1486                 goto out;
1487
1488         /*
1489          * Determine the object being mapped and call the appropriate
1490          * specific mapper. the address has already been validated, but
1491          * not unmapped, but the maps are removed from the list.
1492          */
1493         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1494         if (!vma) {
1495                 error = -ENOMEM;
1496                 goto unacct_error;
1497         }
1498
1499         vma->vm_mm = mm;
1500         vma->vm_start = addr;
1501         vma->vm_end = addr + len;
1502         vma->vm_flags = vm_flags;
1503         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1504         vma->vm_pgoff = pgoff;
1505         INIT_LIST_HEAD(&vma->anon_vma_chain);
1506
1507         if (file) {
1508                 if (vm_flags & VM_DENYWRITE) {
1509                         error = deny_write_access(file);
1510                         if (error)
1511                                 goto free_vma;
1512                 }
1513                 if (vm_flags & VM_SHARED) {
1514                         error = mapping_map_writable(file->f_mapping);
1515                         if (error)
1516                                 goto allow_write_and_free_vma;
1517                 }
1518
1519                 /* ->mmap() can change vma->vm_file, but must guarantee that
1520                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1521                  * and map writably if VM_SHARED is set. This usually means the
1522                  * new file must not have been exposed to user-space, yet.
1523                  */
1524                 vma->vm_file = get_file(file);
1525                 error = file->f_op->mmap(file, vma);
1526                 if (error)
1527                         goto unmap_and_free_vma;
1528
1529                 /* Can addr have changed??
1530                  *
1531                  * Answer: Yes, several device drivers can do it in their
1532                  *         f_op->mmap method. -DaveM
1533                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1534                  *      be updated for vma_link()
1535                  */
1536                 WARN_ON_ONCE(addr != vma->vm_start);
1537
1538                 addr = vma->vm_start;
1539                 vm_flags = vma->vm_flags;
1540         } else if (vm_flags & VM_SHARED) {
1541                 error = shmem_zero_setup(vma);
1542                 if (error)
1543                         goto free_vma;
1544         }
1545
1546         vma_link(mm, vma, prev, rb_link, rb_parent);
1547         /* Once vma denies write, undo our temporary denial count */
1548         if (file) {
1549                 if (vm_flags & VM_SHARED)
1550                         mapping_unmap_writable(file->f_mapping);
1551                 if (vm_flags & VM_DENYWRITE)
1552                         allow_write_access(file);
1553         }
1554         file = vma->vm_file;
1555 out:
1556         perf_event_mmap(vma);
1557
1558         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1559         if (vm_flags & VM_LOCKED) {
1560                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1561                                         vma == get_gate_vma(current->mm)))
1562                         mm->locked_vm += (len >> PAGE_SHIFT);
1563                 else
1564                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1565         }
1566
1567         if (file)
1568                 uprobe_mmap(vma);
1569
1570         /*
1571          * New (or expanded) vma always get soft dirty status.
1572          * Otherwise user-space soft-dirty page tracker won't
1573          * be able to distinguish situation when vma area unmapped,
1574          * then new mapped in-place (which must be aimed as
1575          * a completely new data area).
1576          */
1577         vma->vm_flags |= VM_SOFTDIRTY;
1578
1579         vma_set_page_prot(vma);
1580
1581         return addr;
1582
1583 unmap_and_free_vma:
1584         vma->vm_file = NULL;
1585         fput(file);
1586
1587         /* Undo any partial mapping done by a device driver. */
1588         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1589         charged = 0;
1590         if (vm_flags & VM_SHARED)
1591                 mapping_unmap_writable(file->f_mapping);
1592 allow_write_and_free_vma:
1593         if (vm_flags & VM_DENYWRITE)
1594                 allow_write_access(file);
1595 free_vma:
1596         kmem_cache_free(vm_area_cachep, vma);
1597 unacct_error:
1598         if (charged)
1599                 vm_unacct_memory(charged);
1600         return error;
1601 }
1602
1603 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1604 {
1605         /*
1606          * We implement the search by looking for an rbtree node that
1607          * immediately follows a suitable gap. That is,
1608          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1609          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1610          * - gap_end - gap_start >= length
1611          */
1612
1613         struct mm_struct *mm = current->mm;
1614         struct vm_area_struct *vma;
1615         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1616
1617         /* Adjust search length to account for worst case alignment overhead */
1618         length = info->length + info->align_mask;
1619         if (length < info->length)
1620                 return -ENOMEM;
1621
1622         /* Adjust search limits by the desired length */
1623         if (info->high_limit < length)
1624                 return -ENOMEM;
1625         high_limit = info->high_limit - length;
1626
1627         if (info->low_limit > high_limit)
1628                 return -ENOMEM;
1629         low_limit = info->low_limit + length;
1630
1631         /* Check if rbtree root looks promising */
1632         if (RB_EMPTY_ROOT(&mm->mm_rb))
1633                 goto check_highest;
1634         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1635         if (vma->rb_subtree_gap < length)
1636                 goto check_highest;
1637
1638         while (true) {
1639                 /* Visit left subtree if it looks promising */
1640                 gap_end = vma->vm_start;
1641                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1642                         struct vm_area_struct *left =
1643                                 rb_entry(vma->vm_rb.rb_left,
1644                                          struct vm_area_struct, vm_rb);
1645                         if (left->rb_subtree_gap >= length) {
1646                                 vma = left;
1647                                 continue;
1648                         }
1649                 }
1650
1651                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1652 check_current:
1653                 /* Check if current node has a suitable gap */
1654                 if (gap_start > high_limit)
1655                         return -ENOMEM;
1656                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1657                         goto found;
1658
1659                 /* Visit right subtree if it looks promising */
1660                 if (vma->vm_rb.rb_right) {
1661                         struct vm_area_struct *right =
1662                                 rb_entry(vma->vm_rb.rb_right,
1663                                          struct vm_area_struct, vm_rb);
1664                         if (right->rb_subtree_gap >= length) {
1665                                 vma = right;
1666                                 continue;
1667                         }
1668                 }
1669
1670                 /* Go back up the rbtree to find next candidate node */
1671                 while (true) {
1672                         struct rb_node *prev = &vma->vm_rb;
1673                         if (!rb_parent(prev))
1674                                 goto check_highest;
1675                         vma = rb_entry(rb_parent(prev),
1676                                        struct vm_area_struct, vm_rb);
1677                         if (prev == vma->vm_rb.rb_left) {
1678                                 gap_start = vma->vm_prev->vm_end;
1679                                 gap_end = vma->vm_start;
1680                                 goto check_current;
1681                         }
1682                 }
1683         }
1684
1685 check_highest:
1686         /* Check highest gap, which does not precede any rbtree node */
1687         gap_start = mm->highest_vm_end;
1688         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1689         if (gap_start > high_limit)
1690                 return -ENOMEM;
1691
1692 found:
1693         /* We found a suitable gap. Clip it with the original low_limit. */
1694         if (gap_start < info->low_limit)
1695                 gap_start = info->low_limit;
1696
1697         /* Adjust gap address to the desired alignment */
1698         gap_start += (info->align_offset - gap_start) & info->align_mask;
1699
1700         VM_BUG_ON(gap_start + info->length > info->high_limit);
1701         VM_BUG_ON(gap_start + info->length > gap_end);
1702         return gap_start;
1703 }
1704
1705 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1706 {
1707         struct mm_struct *mm = current->mm;
1708         struct vm_area_struct *vma;
1709         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1710
1711         /* Adjust search length to account for worst case alignment overhead */
1712         length = info->length + info->align_mask;
1713         if (length < info->length)
1714                 return -ENOMEM;
1715
1716         /*
1717          * Adjust search limits by the desired length.
1718          * See implementation comment at top of unmapped_area().
1719          */
1720         gap_end = info->high_limit;
1721         if (gap_end < length)
1722                 return -ENOMEM;
1723         high_limit = gap_end - length;
1724
1725         if (info->low_limit > high_limit)
1726                 return -ENOMEM;
1727         low_limit = info->low_limit + length;
1728
1729         /* Check highest gap, which does not precede any rbtree node */
1730         gap_start = mm->highest_vm_end;
1731         if (gap_start <= high_limit)
1732                 goto found_highest;
1733
1734         /* Check if rbtree root looks promising */
1735         if (RB_EMPTY_ROOT(&mm->mm_rb))
1736                 return -ENOMEM;
1737         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1738         if (vma->rb_subtree_gap < length)
1739                 return -ENOMEM;
1740
1741         while (true) {
1742                 /* Visit right subtree if it looks promising */
1743                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1744                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1745                         struct vm_area_struct *right =
1746                                 rb_entry(vma->vm_rb.rb_right,
1747                                          struct vm_area_struct, vm_rb);
1748                         if (right->rb_subtree_gap >= length) {
1749                                 vma = right;
1750                                 continue;
1751                         }
1752                 }
1753
1754 check_current:
1755                 /* Check if current node has a suitable gap */
1756                 gap_end = vma->vm_start;
1757                 if (gap_end < low_limit)
1758                         return -ENOMEM;
1759                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1760                         goto found;
1761
1762                 /* Visit left subtree if it looks promising */
1763                 if (vma->vm_rb.rb_left) {
1764                         struct vm_area_struct *left =
1765                                 rb_entry(vma->vm_rb.rb_left,
1766                                          struct vm_area_struct, vm_rb);
1767                         if (left->rb_subtree_gap >= length) {
1768                                 vma = left;
1769                                 continue;
1770                         }
1771                 }
1772
1773                 /* Go back up the rbtree to find next candidate node */
1774                 while (true) {
1775                         struct rb_node *prev = &vma->vm_rb;
1776                         if (!rb_parent(prev))
1777                                 return -ENOMEM;
1778                         vma = rb_entry(rb_parent(prev),
1779                                        struct vm_area_struct, vm_rb);
1780                         if (prev == vma->vm_rb.rb_right) {
1781                                 gap_start = vma->vm_prev ?
1782                                         vma->vm_prev->vm_end : 0;
1783                                 goto check_current;
1784                         }
1785                 }
1786         }
1787
1788 found:
1789         /* We found a suitable gap. Clip it with the original high_limit. */
1790         if (gap_end > info->high_limit)
1791                 gap_end = info->high_limit;
1792
1793 found_highest:
1794         /* Compute highest gap address at the desired alignment */
1795         gap_end -= info->length;
1796         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1797
1798         VM_BUG_ON(gap_end < info->low_limit);
1799         VM_BUG_ON(gap_end < gap_start);
1800         return gap_end;
1801 }
1802
1803 /* Get an address range which is currently unmapped.
1804  * For shmat() with addr=0.
1805  *
1806  * Ugly calling convention alert:
1807  * Return value with the low bits set means error value,
1808  * ie
1809  *      if (ret & ~PAGE_MASK)
1810  *              error = ret;
1811  *
1812  * This function "knows" that -ENOMEM has the bits set.
1813  */
1814 #ifndef HAVE_ARCH_UNMAPPED_AREA
1815 unsigned long
1816 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1817                 unsigned long len, unsigned long pgoff, unsigned long flags)
1818 {
1819         struct mm_struct *mm = current->mm;
1820         struct vm_area_struct *vma;
1821         struct vm_unmapped_area_info info;
1822
1823         if (len > TASK_SIZE - mmap_min_addr)
1824                 return -ENOMEM;
1825
1826         if (flags & MAP_FIXED)
1827                 return addr;
1828
1829         if (addr) {
1830                 addr = PAGE_ALIGN(addr);
1831                 vma = find_vma(mm, addr);
1832                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1833                     (!vma || addr + len <= vma->vm_start))
1834                         return addr;
1835         }
1836
1837         info.flags = 0;
1838         info.length = len;
1839         info.low_limit = mm->mmap_base;
1840         info.high_limit = TASK_SIZE;
1841         info.align_mask = 0;
1842         return vm_unmapped_area(&info);
1843 }
1844 #endif
1845
1846 /*
1847  * This mmap-allocator allocates new areas top-down from below the
1848  * stack's low limit (the base):
1849  */
1850 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1851 unsigned long
1852 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1853                           const unsigned long len, const unsigned long pgoff,
1854                           const unsigned long flags)
1855 {
1856         struct vm_area_struct *vma;
1857         struct mm_struct *mm = current->mm;
1858         unsigned long addr = addr0;
1859         struct vm_unmapped_area_info info;
1860
1861         /* requested length too big for entire address space */
1862         if (len > TASK_SIZE - mmap_min_addr)
1863                 return -ENOMEM;
1864
1865         if (flags & MAP_FIXED)
1866                 return addr;
1867
1868         /* requesting a specific address */
1869         if (addr) {
1870                 addr = PAGE_ALIGN(addr);
1871                 vma = find_vma(mm, addr);
1872                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1873                                 (!vma || addr + len <= vma->vm_start))
1874                         return addr;
1875         }
1876
1877         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1878         info.length = len;
1879         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1880         info.high_limit = mm->mmap_base;
1881         info.align_mask = 0;
1882         addr = vm_unmapped_area(&info);
1883
1884         /*
1885          * A failed mmap() very likely causes application failure,
1886          * so fall back to the bottom-up function here. This scenario
1887          * can happen with large stack limits and large mmap()
1888          * allocations.
1889          */
1890         if (offset_in_page(addr)) {
1891                 VM_BUG_ON(addr != -ENOMEM);
1892                 info.flags = 0;
1893                 info.low_limit = TASK_UNMAPPED_BASE;
1894                 info.high_limit = TASK_SIZE;
1895                 addr = vm_unmapped_area(&info);
1896         }
1897
1898         return addr;
1899 }
1900 #endif
1901
1902 unsigned long
1903 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1904                 unsigned long pgoff, unsigned long flags)
1905 {
1906         unsigned long (*get_area)(struct file *, unsigned long,
1907                                   unsigned long, unsigned long, unsigned long);
1908
1909         unsigned long error = arch_mmap_check(addr, len, flags);
1910         if (error)
1911                 return error;
1912
1913         /* Careful about overflows.. */
1914         if (len > TASK_SIZE)
1915                 return -ENOMEM;
1916
1917         get_area = current->mm->get_unmapped_area;
1918         if (file) {
1919                 if (file->f_op->get_unmapped_area)
1920                         get_area = file->f_op->get_unmapped_area;
1921         } else if (flags & MAP_SHARED) {
1922                 /*
1923                  * mmap_region() will call shmem_zero_setup() to create a file,
1924                  * so use shmem's get_unmapped_area in case it can be huge.
1925                  * do_mmap_pgoff() will clear pgoff, so match alignment.
1926                  */
1927                 pgoff = 0;
1928                 get_area = shmem_get_unmapped_area;
1929         }
1930
1931         addr = get_area(file, addr, len, pgoff, flags);
1932         if (IS_ERR_VALUE(addr))
1933                 return addr;
1934
1935         if (addr > TASK_SIZE - len)
1936                 return -ENOMEM;
1937         if (offset_in_page(addr))
1938                 return -EINVAL;
1939
1940         error = security_mmap_addr(addr);
1941         return error ? error : addr;
1942 }
1943
1944 EXPORT_SYMBOL(get_unmapped_area);
1945
1946 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1947 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1948 {
1949         struct rb_node *rb_node;
1950         struct vm_area_struct *vma;
1951
1952         /* Check the cache first. */
1953         vma = vmacache_find(mm, addr);
1954         if (likely(vma))
1955                 return vma;
1956
1957         rb_node = mm->mm_rb.rb_node;
1958
1959         while (rb_node) {
1960                 struct vm_area_struct *tmp;
1961
1962                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1963
1964                 if (tmp->vm_end > addr) {
1965                         vma = tmp;
1966                         if (tmp->vm_start <= addr)
1967                                 break;
1968                         rb_node = rb_node->rb_left;
1969                 } else
1970                         rb_node = rb_node->rb_right;
1971         }
1972
1973         if (vma)
1974                 vmacache_update(addr, vma);
1975         return vma;
1976 }
1977
1978 EXPORT_SYMBOL(find_vma);
1979
1980 /*
1981  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1982  */
1983 struct vm_area_struct *
1984 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1985                         struct vm_area_struct **pprev)
1986 {
1987         struct vm_area_struct *vma;
1988
1989         vma = find_vma(mm, addr);
1990         if (vma) {
1991                 *pprev = vma->vm_prev;
1992         } else {
1993                 struct rb_node *rb_node = mm->mm_rb.rb_node;
1994                 *pprev = NULL;
1995                 while (rb_node) {
1996                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1997                         rb_node = rb_node->rb_right;
1998                 }
1999         }
2000         return vma;
2001 }
2002
2003 /*
2004  * Verify that the stack growth is acceptable and
2005  * update accounting. This is shared with both the
2006  * grow-up and grow-down cases.
2007  */
2008 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2009 {
2010         struct mm_struct *mm = vma->vm_mm;
2011         struct rlimit *rlim = current->signal->rlim;
2012         unsigned long new_start, actual_size;
2013
2014         /* address space limit tests */
2015         if (!may_expand_vm(mm, vma->vm_flags, grow))
2016                 return -ENOMEM;
2017
2018         /* Stack limit test */
2019         actual_size = size;
2020         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2021                 actual_size -= PAGE_SIZE;
2022         if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2023                 return -ENOMEM;
2024
2025         /* mlock limit tests */
2026         if (vma->vm_flags & VM_LOCKED) {
2027                 unsigned long locked;
2028                 unsigned long limit;
2029                 locked = mm->locked_vm + grow;
2030                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2031                 limit >>= PAGE_SHIFT;
2032                 if (locked > limit && !capable(CAP_IPC_LOCK))
2033                         return -ENOMEM;
2034         }
2035
2036         /* Check to ensure the stack will not grow into a hugetlb-only region */
2037         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2038                         vma->vm_end - size;
2039         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2040                 return -EFAULT;
2041
2042         /*
2043          * Overcommit..  This must be the final test, as it will
2044          * update security statistics.
2045          */
2046         if (security_vm_enough_memory_mm(mm, grow))
2047                 return -ENOMEM;
2048
2049         return 0;
2050 }
2051
2052 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2053 /*
2054  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2055  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2056  */
2057 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2058 {
2059         struct mm_struct *mm = vma->vm_mm;
2060         int error = 0;
2061
2062         if (!(vma->vm_flags & VM_GROWSUP))
2063                 return -EFAULT;
2064
2065         /* Guard against wrapping around to address 0. */
2066         if (address < PAGE_ALIGN(address+4))
2067                 address = PAGE_ALIGN(address+4);
2068         else
2069                 return -ENOMEM;
2070
2071         /* We must make sure the anon_vma is allocated. */
2072         if (unlikely(anon_vma_prepare(vma)))
2073                 return -ENOMEM;
2074
2075         /*
2076          * vma->vm_start/vm_end cannot change under us because the caller
2077          * is required to hold the mmap_sem in read mode.  We need the
2078          * anon_vma lock to serialize against concurrent expand_stacks.
2079          */
2080         anon_vma_lock_write(vma->anon_vma);
2081
2082         /* Somebody else might have raced and expanded it already */
2083         if (address > vma->vm_end) {
2084                 unsigned long size, grow;
2085
2086                 size = address - vma->vm_start;
2087                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2088
2089                 error = -ENOMEM;
2090                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2091                         error = acct_stack_growth(vma, size, grow);
2092                         if (!error) {
2093                                 /*
2094                                  * vma_gap_update() doesn't support concurrent
2095                                  * updates, but we only hold a shared mmap_sem
2096                                  * lock here, so we need to protect against
2097                                  * concurrent vma expansions.
2098                                  * anon_vma_lock_write() doesn't help here, as
2099                                  * we don't guarantee that all growable vmas
2100                                  * in a mm share the same root anon vma.
2101                                  * So, we reuse mm->page_table_lock to guard
2102                                  * against concurrent vma expansions.
2103                                  */
2104                                 spin_lock(&mm->page_table_lock);
2105                                 if (vma->vm_flags & VM_LOCKED)
2106                                         mm->locked_vm += grow;
2107                                 vm_stat_account(mm, vma->vm_flags, grow);
2108                                 anon_vma_interval_tree_pre_update_vma(vma);
2109                                 vma->vm_end = address;
2110                                 anon_vma_interval_tree_post_update_vma(vma);
2111                                 if (vma->vm_next)
2112                                         vma_gap_update(vma->vm_next);
2113                                 else
2114                                         mm->highest_vm_end = address;
2115                                 spin_unlock(&mm->page_table_lock);
2116
2117                                 perf_event_mmap(vma);
2118                         }
2119                 }
2120         }
2121         anon_vma_unlock_write(vma->anon_vma);
2122         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2123         validate_mm(mm);
2124         return error;
2125 }
2126 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2127
2128 /*
2129  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2130  */
2131 int expand_downwards(struct vm_area_struct *vma,
2132                                    unsigned long address)
2133 {
2134         struct mm_struct *mm = vma->vm_mm;
2135         int error;
2136
2137         address &= PAGE_MASK;
2138         error = security_mmap_addr(address);
2139         if (error)
2140                 return error;
2141
2142         /* We must make sure the anon_vma is allocated. */
2143         if (unlikely(anon_vma_prepare(vma)))
2144                 return -ENOMEM;
2145
2146         /*
2147          * vma->vm_start/vm_end cannot change under us because the caller
2148          * is required to hold the mmap_sem in read mode.  We need the
2149          * anon_vma lock to serialize against concurrent expand_stacks.
2150          */
2151         anon_vma_lock_write(vma->anon_vma);
2152
2153         /* Somebody else might have raced and expanded it already */
2154         if (address < vma->vm_start) {
2155                 unsigned long size, grow;
2156
2157                 size = vma->vm_end - address;
2158                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2159
2160                 error = -ENOMEM;
2161                 if (grow <= vma->vm_pgoff) {
2162                         error = acct_stack_growth(vma, size, grow);
2163                         if (!error) {
2164                                 /*
2165                                  * vma_gap_update() doesn't support concurrent
2166                                  * updates, but we only hold a shared mmap_sem
2167                                  * lock here, so we need to protect against
2168                                  * concurrent vma expansions.
2169                                  * anon_vma_lock_write() doesn't help here, as
2170                                  * we don't guarantee that all growable vmas
2171                                  * in a mm share the same root anon vma.
2172                                  * So, we reuse mm->page_table_lock to guard
2173                                  * against concurrent vma expansions.
2174                                  */
2175                                 spin_lock(&mm->page_table_lock);
2176                                 if (vma->vm_flags & VM_LOCKED)
2177                                         mm->locked_vm += grow;
2178                                 vm_stat_account(mm, vma->vm_flags, grow);
2179                                 anon_vma_interval_tree_pre_update_vma(vma);
2180                                 vma->vm_start = address;
2181                                 vma->vm_pgoff -= grow;
2182                                 anon_vma_interval_tree_post_update_vma(vma);
2183                                 vma_gap_update(vma);
2184                                 spin_unlock(&mm->page_table_lock);
2185
2186                                 perf_event_mmap(vma);
2187                         }
2188                 }
2189         }
2190         anon_vma_unlock_write(vma->anon_vma);
2191         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2192         validate_mm(mm);
2193         return error;
2194 }
2195
2196 /*
2197  * Note how expand_stack() refuses to expand the stack all the way to
2198  * abut the next virtual mapping, *unless* that mapping itself is also
2199  * a stack mapping. We want to leave room for a guard page, after all
2200  * (the guard page itself is not added here, that is done by the
2201  * actual page faulting logic)
2202  *
2203  * This matches the behavior of the guard page logic (see mm/memory.c:
2204  * check_stack_guard_page()), which only allows the guard page to be
2205  * removed under these circumstances.
2206  */
2207 #ifdef CONFIG_STACK_GROWSUP
2208 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2209 {
2210         struct vm_area_struct *next;
2211
2212         address &= PAGE_MASK;
2213         next = vma->vm_next;
2214         if (next && next->vm_start == address + PAGE_SIZE) {
2215                 if (!(next->vm_flags & VM_GROWSUP))
2216                         return -ENOMEM;
2217         }
2218         return expand_upwards(vma, address);
2219 }
2220
2221 struct vm_area_struct *
2222 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2223 {
2224         struct vm_area_struct *vma, *prev;
2225
2226         addr &= PAGE_MASK;
2227         vma = find_vma_prev(mm, addr, &prev);
2228         if (vma && (vma->vm_start <= addr))
2229                 return vma;
2230         if (!prev || expand_stack(prev, addr))
2231                 return NULL;
2232         if (prev->vm_flags & VM_LOCKED)
2233                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2234         return prev;
2235 }
2236 #else
2237 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2238 {
2239         struct vm_area_struct *prev;
2240
2241         address &= PAGE_MASK;
2242         prev = vma->vm_prev;
2243         if (prev && prev->vm_end == address) {
2244                 if (!(prev->vm_flags & VM_GROWSDOWN))
2245                         return -ENOMEM;
2246         }
2247         return expand_downwards(vma, address);
2248 }
2249
2250 struct vm_area_struct *
2251 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2252 {
2253         struct vm_area_struct *vma;
2254         unsigned long start;
2255
2256         addr &= PAGE_MASK;
2257         vma = find_vma(mm, addr);
2258         if (!vma)
2259                 return NULL;
2260         if (vma->vm_start <= addr)
2261                 return vma;
2262         if (!(vma->vm_flags & VM_GROWSDOWN))
2263                 return NULL;
2264         start = vma->vm_start;
2265         if (expand_stack(vma, addr))
2266                 return NULL;
2267         if (vma->vm_flags & VM_LOCKED)
2268                 populate_vma_page_range(vma, addr, start, NULL);
2269         return vma;
2270 }
2271 #endif
2272
2273 EXPORT_SYMBOL_GPL(find_extend_vma);
2274
2275 /*
2276  * Ok - we have the memory areas we should free on the vma list,
2277  * so release them, and do the vma updates.
2278  *
2279  * Called with the mm semaphore held.
2280  */
2281 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2282 {
2283         unsigned long nr_accounted = 0;
2284
2285         /* Update high watermark before we lower total_vm */
2286         update_hiwater_vm(mm);
2287         do {
2288                 long nrpages = vma_pages(vma);
2289
2290                 if (vma->vm_flags & VM_ACCOUNT)
2291                         nr_accounted += nrpages;
2292                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2293                 vma = remove_vma(vma);
2294         } while (vma);
2295         vm_unacct_memory(nr_accounted);
2296         validate_mm(mm);
2297 }
2298
2299 /*
2300  * Get rid of page table information in the indicated region.
2301  *
2302  * Called with the mm semaphore held.
2303  */
2304 static void unmap_region(struct mm_struct *mm,
2305                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2306                 unsigned long start, unsigned long end)
2307 {
2308         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2309         struct mmu_gather tlb;
2310
2311         lru_add_drain();
2312         tlb_gather_mmu(&tlb, mm, start, end);
2313         update_hiwater_rss(mm);
2314         unmap_vmas(&tlb, vma, start, end);
2315         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2316                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2317         tlb_finish_mmu(&tlb, start, end);
2318 }
2319
2320 /*
2321  * Create a list of vma's touched by the unmap, removing them from the mm's
2322  * vma list as we go..
2323  */
2324 static void
2325 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2326         struct vm_area_struct *prev, unsigned long end)
2327 {
2328         struct vm_area_struct **insertion_point;
2329         struct vm_area_struct *tail_vma = NULL;
2330
2331         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2332         vma->vm_prev = NULL;
2333         do {
2334                 vma_rb_erase(vma, &mm->mm_rb);
2335                 mm->map_count--;
2336                 tail_vma = vma;
2337                 vma = vma->vm_next;
2338         } while (vma && vma->vm_start < end);
2339         *insertion_point = vma;
2340         if (vma) {
2341                 vma->vm_prev = prev;
2342                 vma_gap_update(vma);
2343         } else
2344                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2345         tail_vma->vm_next = NULL;
2346
2347         /* Kill the cache */
2348         vmacache_invalidate(mm);
2349 }
2350
2351 /*
2352  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2353  * munmap path where it doesn't make sense to fail.
2354  */
2355 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2356               unsigned long addr, int new_below)
2357 {
2358         struct vm_area_struct *new;
2359         int err;
2360
2361         if (is_vm_hugetlb_page(vma) && (addr &
2362                                         ~(huge_page_mask(hstate_vma(vma)))))
2363                 return -EINVAL;
2364
2365         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2366         if (!new)
2367                 return -ENOMEM;
2368
2369         /* most fields are the same, copy all, and then fixup */
2370         *new = *vma;
2371
2372         INIT_LIST_HEAD(&new->anon_vma_chain);
2373
2374         if (new_below)
2375                 new->vm_end = addr;
2376         else {
2377                 new->vm_start = addr;
2378                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2379         }
2380
2381         err = vma_dup_policy(vma, new);
2382         if (err)
2383                 goto out_free_vma;
2384
2385         err = anon_vma_clone(new, vma);
2386         if (err)
2387                 goto out_free_mpol;
2388
2389         if (new->vm_file)
2390                 get_file(new->vm_file);
2391
2392         if (new->vm_ops && new->vm_ops->open)
2393                 new->vm_ops->open(new);
2394
2395         if (new_below)
2396                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2397                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2398         else
2399                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2400
2401         /* Success. */
2402         if (!err)
2403                 return 0;
2404
2405         /* Clean everything up if vma_adjust failed. */
2406         if (new->vm_ops && new->vm_ops->close)
2407                 new->vm_ops->close(new);
2408         if (new->vm_file)
2409                 fput(new->vm_file);
2410         unlink_anon_vmas(new);
2411  out_free_mpol:
2412         mpol_put(vma_policy(new));
2413  out_free_vma:
2414         kmem_cache_free(vm_area_cachep, new);
2415         return err;
2416 }
2417
2418 /*
2419  * Split a vma into two pieces at address 'addr', a new vma is allocated
2420  * either for the first part or the tail.
2421  */
2422 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2423               unsigned long addr, int new_below)
2424 {
2425         if (mm->map_count >= sysctl_max_map_count)
2426                 return -ENOMEM;
2427
2428         return __split_vma(mm, vma, addr, new_below);
2429 }
2430
2431 /* Munmap is split into 2 main parts -- this part which finds
2432  * what needs doing, and the areas themselves, which do the
2433  * work.  This now handles partial unmappings.
2434  * Jeremy Fitzhardinge <jeremy@goop.org>
2435  */
2436 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2437 {
2438         unsigned long end;
2439         struct vm_area_struct *vma, *prev, *last;
2440
2441         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2442                 return -EINVAL;
2443
2444         len = PAGE_ALIGN(len);
2445         if (len == 0)
2446                 return -EINVAL;
2447
2448         /* Find the first overlapping VMA */
2449         vma = find_vma(mm, start);
2450         if (!vma)
2451                 return 0;
2452         prev = vma->vm_prev;
2453         /* we have  start < vma->vm_end  */
2454
2455         /* if it doesn't overlap, we have nothing.. */
2456         end = start + len;
2457         if (vma->vm_start >= end)
2458                 return 0;
2459
2460         /*
2461          * If we need to split any vma, do it now to save pain later.
2462          *
2463          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2464          * unmapped vm_area_struct will remain in use: so lower split_vma
2465          * places tmp vma above, and higher split_vma places tmp vma below.
2466          */
2467         if (start > vma->vm_start) {
2468                 int error;
2469
2470                 /*
2471                  * Make sure that map_count on return from munmap() will
2472                  * not exceed its limit; but let map_count go just above
2473                  * its limit temporarily, to help free resources as expected.
2474                  */
2475                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2476                         return -ENOMEM;
2477
2478                 error = __split_vma(mm, vma, start, 0);
2479                 if (error)
2480                         return error;
2481                 prev = vma;
2482         }
2483
2484         /* Does it split the last one? */
2485         last = find_vma(mm, end);
2486         if (last && end > last->vm_start) {
2487                 int error = __split_vma(mm, last, end, 1);
2488                 if (error)
2489                         return error;
2490         }
2491         vma = prev ? prev->vm_next : mm->mmap;
2492
2493         /*
2494          * unlock any mlock()ed ranges before detaching vmas
2495          */
2496         if (mm->locked_vm) {
2497                 struct vm_area_struct *tmp = vma;
2498                 while (tmp && tmp->vm_start < end) {
2499                         if (tmp->vm_flags & VM_LOCKED) {
2500                                 mm->locked_vm -= vma_pages(tmp);
2501                                 munlock_vma_pages_all(tmp);
2502                         }
2503                         tmp = tmp->vm_next;
2504                 }
2505         }
2506
2507         /*
2508          * Remove the vma's, and unmap the actual pages
2509          */
2510         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2511         unmap_region(mm, vma, prev, start, end);
2512
2513         arch_unmap(mm, vma, start, end);
2514
2515         /* Fix up all other VM information */
2516         remove_vma_list(mm, vma);
2517
2518         return 0;
2519 }
2520
2521 int vm_munmap(unsigned long start, size_t len)
2522 {
2523         int ret;
2524         struct mm_struct *mm = current->mm;
2525
2526         if (down_write_killable(&mm->mmap_sem))
2527                 return -EINTR;
2528
2529         ret = do_munmap(mm, start, len);
2530         up_write(&mm->mmap_sem);
2531         return ret;
2532 }
2533 EXPORT_SYMBOL(vm_munmap);
2534
2535 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2536 {
2537         int ret;
2538         struct mm_struct *mm = current->mm;
2539
2540         profile_munmap(addr);
2541         if (down_write_killable(&mm->mmap_sem))
2542                 return -EINTR;
2543         ret = do_munmap(mm, addr, len);
2544         up_write(&mm->mmap_sem);
2545         return ret;
2546 }
2547
2548
2549 /*
2550  * Emulation of deprecated remap_file_pages() syscall.
2551  */
2552 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2553                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2554 {
2555
2556         struct mm_struct *mm = current->mm;
2557         struct vm_area_struct *vma;
2558         unsigned long populate = 0;
2559         unsigned long ret = -EINVAL;
2560         struct file *file;
2561
2562         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2563                      current->comm, current->pid);
2564
2565         if (prot)
2566                 return ret;
2567         start = start & PAGE_MASK;
2568         size = size & PAGE_MASK;
2569
2570         if (start + size <= start)
2571                 return ret;
2572
2573         /* Does pgoff wrap? */
2574         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2575                 return ret;
2576
2577         if (down_write_killable(&mm->mmap_sem))
2578                 return -EINTR;
2579
2580         vma = find_vma(mm, start);
2581
2582         if (!vma || !(vma->vm_flags & VM_SHARED))
2583                 goto out;
2584
2585         if (start < vma->vm_start)
2586                 goto out;
2587
2588         if (start + size > vma->vm_end) {
2589                 struct vm_area_struct *next;
2590
2591                 for (next = vma->vm_next; next; next = next->vm_next) {
2592                         /* hole between vmas ? */
2593                         if (next->vm_start != next->vm_prev->vm_end)
2594                                 goto out;
2595
2596                         if (next->vm_file != vma->vm_file)
2597                                 goto out;
2598
2599                         if (next->vm_flags != vma->vm_flags)
2600                                 goto out;
2601
2602                         if (start + size <= next->vm_end)
2603                                 break;
2604                 }
2605
2606                 if (!next)
2607                         goto out;
2608         }
2609
2610         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2611         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2612         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2613
2614         flags &= MAP_NONBLOCK;
2615         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2616         if (vma->vm_flags & VM_LOCKED) {
2617                 struct vm_area_struct *tmp;
2618                 flags |= MAP_LOCKED;
2619
2620                 /* drop PG_Mlocked flag for over-mapped range */
2621                 for (tmp = vma; tmp->vm_start >= start + size;
2622                                 tmp = tmp->vm_next) {
2623                         /*
2624                          * Split pmd and munlock page on the border
2625                          * of the range.
2626                          */
2627                         vma_adjust_trans_huge(tmp, start, start + size, 0);
2628
2629                         munlock_vma_pages_range(tmp,
2630                                         max(tmp->vm_start, start),
2631                                         min(tmp->vm_end, start + size));
2632                 }
2633         }
2634
2635         file = get_file(vma->vm_file);
2636         ret = do_mmap_pgoff(vma->vm_file, start, size,
2637                         prot, flags, pgoff, &populate);
2638         fput(file);
2639 out:
2640         up_write(&mm->mmap_sem);
2641         if (populate)
2642                 mm_populate(ret, populate);
2643         if (!IS_ERR_VALUE(ret))
2644                 ret = 0;
2645         return ret;
2646 }
2647
2648 static inline void verify_mm_writelocked(struct mm_struct *mm)
2649 {
2650 #ifdef CONFIG_DEBUG_VM
2651         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2652                 WARN_ON(1);
2653                 up_read(&mm->mmap_sem);
2654         }
2655 #endif
2656 }
2657
2658 /*
2659  *  this is really a simplified "do_mmap".  it only handles
2660  *  anonymous maps.  eventually we may be able to do some
2661  *  brk-specific accounting here.
2662  */
2663 static int do_brk(unsigned long addr, unsigned long request)
2664 {
2665         struct mm_struct *mm = current->mm;
2666         struct vm_area_struct *vma, *prev;
2667         unsigned long flags, len;
2668         struct rb_node **rb_link, *rb_parent;
2669         pgoff_t pgoff = addr >> PAGE_SHIFT;
2670         int error;
2671
2672         len = PAGE_ALIGN(request);
2673         if (len < request)
2674                 return -ENOMEM;
2675         if (!len)
2676                 return 0;
2677
2678         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2679
2680         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2681         if (offset_in_page(error))
2682                 return error;
2683
2684         error = mlock_future_check(mm, mm->def_flags, len);
2685         if (error)
2686                 return error;
2687
2688         /*
2689          * mm->mmap_sem is required to protect against another thread
2690          * changing the mappings in case we sleep.
2691          */
2692         verify_mm_writelocked(mm);
2693
2694         /*
2695          * Clear old maps.  this also does some error checking for us
2696          */
2697         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2698                               &rb_parent)) {
2699                 if (do_munmap(mm, addr, len))
2700                         return -ENOMEM;
2701         }
2702
2703         /* Check against address space limits *after* clearing old maps... */
2704         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2705                 return -ENOMEM;
2706
2707         if (mm->map_count > sysctl_max_map_count)
2708                 return -ENOMEM;
2709
2710         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2711                 return -ENOMEM;
2712
2713         /* Can we just expand an old private anonymous mapping? */
2714         vma = vma_merge(mm, prev, addr, addr + len, flags,
2715                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2716         if (vma)
2717                 goto out;
2718
2719         /*
2720          * create a vma struct for an anonymous mapping
2721          */
2722         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2723         if (!vma) {
2724                 vm_unacct_memory(len >> PAGE_SHIFT);
2725                 return -ENOMEM;
2726         }
2727
2728         INIT_LIST_HEAD(&vma->anon_vma_chain);
2729         vma->vm_mm = mm;
2730         vma->vm_start = addr;
2731         vma->vm_end = addr + len;
2732         vma->vm_pgoff = pgoff;
2733         vma->vm_flags = flags;
2734         vma->vm_page_prot = vm_get_page_prot(flags);
2735         vma_link(mm, vma, prev, rb_link, rb_parent);
2736 out:
2737         perf_event_mmap(vma);
2738         mm->total_vm += len >> PAGE_SHIFT;
2739         mm->data_vm += len >> PAGE_SHIFT;
2740         if (flags & VM_LOCKED)
2741                 mm->locked_vm += (len >> PAGE_SHIFT);
2742         vma->vm_flags |= VM_SOFTDIRTY;
2743         return 0;
2744 }
2745
2746 int vm_brk(unsigned long addr, unsigned long len)
2747 {
2748         struct mm_struct *mm = current->mm;
2749         int ret;
2750         bool populate;
2751
2752         if (down_write_killable(&mm->mmap_sem))
2753                 return -EINTR;
2754
2755         ret = do_brk(addr, len);
2756         populate = ((mm->def_flags & VM_LOCKED) != 0);
2757         up_write(&mm->mmap_sem);
2758         if (populate && !ret)
2759                 mm_populate(addr, len);
2760         return ret;
2761 }
2762 EXPORT_SYMBOL(vm_brk);
2763
2764 /* Release all mmaps. */
2765 void exit_mmap(struct mm_struct *mm)
2766 {
2767         struct mmu_gather tlb;
2768         struct vm_area_struct *vma;
2769         unsigned long nr_accounted = 0;
2770
2771         /* mm's last user has gone, and its about to be pulled down */
2772         mmu_notifier_release(mm);
2773
2774         if (mm->locked_vm) {
2775                 vma = mm->mmap;
2776                 while (vma) {
2777                         if (vma->vm_flags & VM_LOCKED)
2778                                 munlock_vma_pages_all(vma);
2779                         vma = vma->vm_next;
2780                 }
2781         }
2782
2783         arch_exit_mmap(mm);
2784
2785         vma = mm->mmap;
2786         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2787                 return;
2788
2789         lru_add_drain();
2790         flush_cache_mm(mm);
2791         tlb_gather_mmu(&tlb, mm, 0, -1);
2792         /* update_hiwater_rss(mm) here? but nobody should be looking */
2793         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2794         unmap_vmas(&tlb, vma, 0, -1);
2795
2796         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2797         tlb_finish_mmu(&tlb, 0, -1);
2798
2799         /*
2800          * Walk the list again, actually closing and freeing it,
2801          * with preemption enabled, without holding any MM locks.
2802          */
2803         while (vma) {
2804                 if (vma->vm_flags & VM_ACCOUNT)
2805                         nr_accounted += vma_pages(vma);
2806                 vma = remove_vma(vma);
2807         }
2808         vm_unacct_memory(nr_accounted);
2809 }
2810
2811 /* Insert vm structure into process list sorted by address
2812  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2813  * then i_mmap_rwsem is taken here.
2814  */
2815 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2816 {
2817         struct vm_area_struct *prev;
2818         struct rb_node **rb_link, *rb_parent;
2819
2820         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2821                            &prev, &rb_link, &rb_parent))
2822                 return -ENOMEM;
2823         if ((vma->vm_flags & VM_ACCOUNT) &&
2824              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2825                 return -ENOMEM;
2826
2827         /*
2828          * The vm_pgoff of a purely anonymous vma should be irrelevant
2829          * until its first write fault, when page's anon_vma and index
2830          * are set.  But now set the vm_pgoff it will almost certainly
2831          * end up with (unless mremap moves it elsewhere before that
2832          * first wfault), so /proc/pid/maps tells a consistent story.
2833          *
2834          * By setting it to reflect the virtual start address of the
2835          * vma, merges and splits can happen in a seamless way, just
2836          * using the existing file pgoff checks and manipulations.
2837          * Similarly in do_mmap_pgoff and in do_brk.
2838          */
2839         if (vma_is_anonymous(vma)) {
2840                 BUG_ON(vma->anon_vma);
2841                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2842         }
2843
2844         vma_link(mm, vma, prev, rb_link, rb_parent);
2845         return 0;
2846 }
2847
2848 /*
2849  * Copy the vma structure to a new location in the same mm,
2850  * prior to moving page table entries, to effect an mremap move.
2851  */
2852 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2853         unsigned long addr, unsigned long len, pgoff_t pgoff,
2854         bool *need_rmap_locks)
2855 {
2856         struct vm_area_struct *vma = *vmap;
2857         unsigned long vma_start = vma->vm_start;
2858         struct mm_struct *mm = vma->vm_mm;
2859         struct vm_area_struct *new_vma, *prev;
2860         struct rb_node **rb_link, *rb_parent;
2861         bool faulted_in_anon_vma = true;
2862
2863         /*
2864          * If anonymous vma has not yet been faulted, update new pgoff
2865          * to match new location, to increase its chance of merging.
2866          */
2867         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2868                 pgoff = addr >> PAGE_SHIFT;
2869                 faulted_in_anon_vma = false;
2870         }
2871
2872         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2873                 return NULL;    /* should never get here */
2874         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2875                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2876                             vma->vm_userfaultfd_ctx);
2877         if (new_vma) {
2878                 /*
2879                  * Source vma may have been merged into new_vma
2880                  */
2881                 if (unlikely(vma_start >= new_vma->vm_start &&
2882                              vma_start < new_vma->vm_end)) {
2883                         /*
2884                          * The only way we can get a vma_merge with
2885                          * self during an mremap is if the vma hasn't
2886                          * been faulted in yet and we were allowed to
2887                          * reset the dst vma->vm_pgoff to the
2888                          * destination address of the mremap to allow
2889                          * the merge to happen. mremap must change the
2890                          * vm_pgoff linearity between src and dst vmas
2891                          * (in turn preventing a vma_merge) to be
2892                          * safe. It is only safe to keep the vm_pgoff
2893                          * linear if there are no pages mapped yet.
2894                          */
2895                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2896                         *vmap = vma = new_vma;
2897                 }
2898                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2899         } else {
2900                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2901                 if (!new_vma)
2902                         goto out;
2903                 *new_vma = *vma;
2904                 new_vma->vm_start = addr;
2905                 new_vma->vm_end = addr + len;
2906                 new_vma->vm_pgoff = pgoff;
2907                 if (vma_dup_policy(vma, new_vma))
2908                         goto out_free_vma;
2909                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2910                 if (anon_vma_clone(new_vma, vma))
2911                         goto out_free_mempol;
2912                 if (new_vma->vm_file)
2913                         get_file(new_vma->vm_file);
2914                 if (new_vma->vm_ops && new_vma->vm_ops->open)
2915                         new_vma->vm_ops->open(new_vma);
2916                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2917                 *need_rmap_locks = false;
2918         }
2919         return new_vma;
2920
2921 out_free_mempol:
2922         mpol_put(vma_policy(new_vma));
2923 out_free_vma:
2924         kmem_cache_free(vm_area_cachep, new_vma);
2925 out:
2926         return NULL;
2927 }
2928
2929 /*
2930  * Return true if the calling process may expand its vm space by the passed
2931  * number of pages
2932  */
2933 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2934 {
2935         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2936                 return false;
2937
2938         if (is_data_mapping(flags) &&
2939             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2940                 /* Workaround for Valgrind */
2941                 if (rlimit(RLIMIT_DATA) == 0 &&
2942                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
2943                         return true;
2944                 if (!ignore_rlimit_data) {
2945                         pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
2946                                      current->comm, current->pid,
2947                                      (mm->data_vm + npages) << PAGE_SHIFT,
2948                                      rlimit(RLIMIT_DATA));
2949                         return false;
2950                 }
2951         }
2952
2953         return true;
2954 }
2955
2956 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2957 {
2958         mm->total_vm += npages;
2959
2960         if (is_exec_mapping(flags))
2961                 mm->exec_vm += npages;
2962         else if (is_stack_mapping(flags))
2963                 mm->stack_vm += npages;
2964         else if (is_data_mapping(flags))
2965                 mm->data_vm += npages;
2966 }
2967
2968 static int special_mapping_fault(struct vm_area_struct *vma,
2969                                  struct vm_fault *vmf);
2970
2971 /*
2972  * Having a close hook prevents vma merging regardless of flags.
2973  */
2974 static void special_mapping_close(struct vm_area_struct *vma)
2975 {
2976 }
2977
2978 static const char *special_mapping_name(struct vm_area_struct *vma)
2979 {
2980         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2981 }
2982
2983 static int special_mapping_mremap(struct vm_area_struct *new_vma)
2984 {
2985         struct vm_special_mapping *sm = new_vma->vm_private_data;
2986
2987         if (sm->mremap)
2988                 return sm->mremap(sm, new_vma);
2989         return 0;
2990 }
2991
2992 static const struct vm_operations_struct special_mapping_vmops = {
2993         .close = special_mapping_close,
2994         .fault = special_mapping_fault,
2995         .mremap = special_mapping_mremap,
2996         .name = special_mapping_name,
2997 };
2998
2999 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3000         .close = special_mapping_close,
3001         .fault = special_mapping_fault,
3002 };
3003
3004 static int special_mapping_fault(struct vm_area_struct *vma,
3005                                 struct vm_fault *vmf)
3006 {
3007         pgoff_t pgoff;
3008         struct page **pages;
3009
3010         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3011                 pages = vma->vm_private_data;
3012         } else {
3013                 struct vm_special_mapping *sm = vma->vm_private_data;
3014
3015                 if (sm->fault)
3016                         return sm->fault(sm, vma, vmf);
3017
3018                 pages = sm->pages;
3019         }
3020
3021         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3022                 pgoff--;
3023
3024         if (*pages) {
3025                 struct page *page = *pages;
3026                 get_page(page);
3027                 vmf->page = page;
3028                 return 0;
3029         }
3030
3031         return VM_FAULT_SIGBUS;
3032 }
3033
3034 static struct vm_area_struct *__install_special_mapping(
3035         struct mm_struct *mm,
3036         unsigned long addr, unsigned long len,
3037         unsigned long vm_flags, void *priv,
3038         const struct vm_operations_struct *ops)
3039 {
3040         int ret;
3041         struct vm_area_struct *vma;
3042
3043         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3044         if (unlikely(vma == NULL))
3045                 return ERR_PTR(-ENOMEM);
3046
3047         INIT_LIST_HEAD(&vma->anon_vma_chain);
3048         vma->vm_mm = mm;
3049         vma->vm_start = addr;
3050         vma->vm_end = addr + len;
3051
3052         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3053         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3054
3055         vma->vm_ops = ops;
3056         vma->vm_private_data = priv;
3057
3058         ret = insert_vm_struct(mm, vma);
3059         if (ret)
3060                 goto out;
3061
3062         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3063
3064         perf_event_mmap(vma);
3065
3066         return vma;
3067
3068 out:
3069         kmem_cache_free(vm_area_cachep, vma);
3070         return ERR_PTR(ret);
3071 }
3072
3073 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3074         const struct vm_special_mapping *sm)
3075 {
3076         return vma->vm_private_data == sm &&
3077                 (vma->vm_ops == &special_mapping_vmops ||
3078                  vma->vm_ops == &legacy_special_mapping_vmops);
3079 }
3080
3081 /*
3082  * Called with mm->mmap_sem held for writing.
3083  * Insert a new vma covering the given region, with the given flags.
3084  * Its pages are supplied by the given array of struct page *.
3085  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3086  * The region past the last page supplied will always produce SIGBUS.
3087  * The array pointer and the pages it points to are assumed to stay alive
3088  * for as long as this mapping might exist.
3089  */
3090 struct vm_area_struct *_install_special_mapping(
3091         struct mm_struct *mm,
3092         unsigned long addr, unsigned long len,
3093         unsigned long vm_flags, const struct vm_special_mapping *spec)
3094 {
3095         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3096                                         &special_mapping_vmops);
3097 }
3098
3099 int install_special_mapping(struct mm_struct *mm,
3100                             unsigned long addr, unsigned long len,
3101                             unsigned long vm_flags, struct page **pages)
3102 {
3103         struct vm_area_struct *vma = __install_special_mapping(
3104                 mm, addr, len, vm_flags, (void *)pages,
3105                 &legacy_special_mapping_vmops);
3106
3107         return PTR_ERR_OR_ZERO(vma);
3108 }
3109
3110 static DEFINE_MUTEX(mm_all_locks_mutex);
3111
3112 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3113 {
3114         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3115                 /*
3116                  * The LSB of head.next can't change from under us
3117                  * because we hold the mm_all_locks_mutex.
3118                  */
3119                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3120                 /*
3121                  * We can safely modify head.next after taking the
3122                  * anon_vma->root->rwsem. If some other vma in this mm shares
3123                  * the same anon_vma we won't take it again.
3124                  *
3125                  * No need of atomic instructions here, head.next
3126                  * can't change from under us thanks to the
3127                  * anon_vma->root->rwsem.
3128                  */
3129                 if (__test_and_set_bit(0, (unsigned long *)
3130                                        &anon_vma->root->rb_root.rb_node))
3131                         BUG();
3132         }
3133 }
3134
3135 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3136 {
3137         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3138                 /*
3139                  * AS_MM_ALL_LOCKS can't change from under us because
3140                  * we hold the mm_all_locks_mutex.
3141                  *
3142                  * Operations on ->flags have to be atomic because
3143                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3144                  * mm_all_locks_mutex, there may be other cpus
3145                  * changing other bitflags in parallel to us.
3146                  */
3147                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3148                         BUG();
3149                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3150         }
3151 }
3152
3153 /*
3154  * This operation locks against the VM for all pte/vma/mm related
3155  * operations that could ever happen on a certain mm. This includes
3156  * vmtruncate, try_to_unmap, and all page faults.
3157  *
3158  * The caller must take the mmap_sem in write mode before calling
3159  * mm_take_all_locks(). The caller isn't allowed to release the
3160  * mmap_sem until mm_drop_all_locks() returns.
3161  *
3162  * mmap_sem in write mode is required in order to block all operations
3163  * that could modify pagetables and free pages without need of
3164  * altering the vma layout. It's also needed in write mode to avoid new
3165  * anon_vmas to be associated with existing vmas.
3166  *
3167  * A single task can't take more than one mm_take_all_locks() in a row
3168  * or it would deadlock.
3169  *
3170  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3171  * mapping->flags avoid to take the same lock twice, if more than one
3172  * vma in this mm is backed by the same anon_vma or address_space.
3173  *
3174  * We take locks in following order, accordingly to comment at beginning
3175  * of mm/rmap.c:
3176  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3177  *     hugetlb mapping);
3178  *   - all i_mmap_rwsem locks;
3179  *   - all anon_vma->rwseml
3180  *
3181  * We can take all locks within these types randomly because the VM code
3182  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3183  * mm_all_locks_mutex.
3184  *
3185  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3186  * that may have to take thousand of locks.
3187  *
3188  * mm_take_all_locks() can fail if it's interrupted by signals.
3189  */
3190 int mm_take_all_locks(struct mm_struct *mm)
3191 {
3192         struct vm_area_struct *vma;
3193         struct anon_vma_chain *avc;
3194
3195         BUG_ON(down_read_trylock(&mm->mmap_sem));
3196
3197         mutex_lock(&mm_all_locks_mutex);
3198
3199         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3200                 if (signal_pending(current))
3201                         goto out_unlock;
3202                 if (vma->vm_file && vma->vm_file->f_mapping &&
3203                                 is_vm_hugetlb_page(vma))
3204                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3205         }
3206
3207         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3208                 if (signal_pending(current))
3209                         goto out_unlock;
3210                 if (vma->vm_file && vma->vm_file->f_mapping &&
3211                                 !is_vm_hugetlb_page(vma))
3212                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3213         }
3214
3215         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3216                 if (signal_pending(current))
3217                         goto out_unlock;
3218                 if (vma->anon_vma)
3219                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3220                                 vm_lock_anon_vma(mm, avc->anon_vma);
3221         }
3222
3223         return 0;
3224
3225 out_unlock:
3226         mm_drop_all_locks(mm);
3227         return -EINTR;
3228 }
3229
3230 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3231 {
3232         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3233                 /*
3234                  * The LSB of head.next can't change to 0 from under
3235                  * us because we hold the mm_all_locks_mutex.
3236                  *
3237                  * We must however clear the bitflag before unlocking
3238                  * the vma so the users using the anon_vma->rb_root will
3239                  * never see our bitflag.
3240                  *
3241                  * No need of atomic instructions here, head.next
3242                  * can't change from under us until we release the
3243                  * anon_vma->root->rwsem.
3244                  */
3245                 if (!__test_and_clear_bit(0, (unsigned long *)
3246                                           &anon_vma->root->rb_root.rb_node))
3247                         BUG();
3248                 anon_vma_unlock_write(anon_vma);
3249         }
3250 }
3251
3252 static void vm_unlock_mapping(struct address_space *mapping)
3253 {
3254         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3255                 /*
3256                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3257                  * because we hold the mm_all_locks_mutex.
3258                  */
3259                 i_mmap_unlock_write(mapping);
3260                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3261                                         &mapping->flags))
3262                         BUG();
3263         }
3264 }
3265
3266 /*
3267  * The mmap_sem cannot be released by the caller until
3268  * mm_drop_all_locks() returns.
3269  */
3270 void mm_drop_all_locks(struct mm_struct *mm)
3271 {
3272         struct vm_area_struct *vma;
3273         struct anon_vma_chain *avc;
3274
3275         BUG_ON(down_read_trylock(&mm->mmap_sem));
3276         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3277
3278         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3279                 if (vma->anon_vma)
3280                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3281                                 vm_unlock_anon_vma(avc->anon_vma);
3282                 if (vma->vm_file && vma->vm_file->f_mapping)
3283                         vm_unlock_mapping(vma->vm_file->f_mapping);
3284         }
3285
3286         mutex_unlock(&mm_all_locks_mutex);
3287 }
3288
3289 /*
3290  * initialise the VMA slab
3291  */
3292 void __init mmap_init(void)
3293 {
3294         int ret;
3295
3296         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3297         VM_BUG_ON(ret);
3298 }
3299
3300 /*
3301  * Initialise sysctl_user_reserve_kbytes.
3302  *
3303  * This is intended to prevent a user from starting a single memory hogging
3304  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3305  * mode.
3306  *
3307  * The default value is min(3% of free memory, 128MB)
3308  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3309  */
3310 static int init_user_reserve(void)
3311 {
3312         unsigned long free_kbytes;
3313
3314         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3315
3316         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3317         return 0;
3318 }
3319 subsys_initcall(init_user_reserve);
3320
3321 /*
3322  * Initialise sysctl_admin_reserve_kbytes.
3323  *
3324  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3325  * to log in and kill a memory hogging process.
3326  *
3327  * Systems with more than 256MB will reserve 8MB, enough to recover
3328  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3329  * only reserve 3% of free pages by default.
3330  */
3331 static int init_admin_reserve(void)
3332 {
3333         unsigned long free_kbytes;
3334
3335         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3336
3337         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3338         return 0;
3339 }
3340 subsys_initcall(init_admin_reserve);
3341
3342 /*
3343  * Reinititalise user and admin reserves if memory is added or removed.
3344  *
3345  * The default user reserve max is 128MB, and the default max for the
3346  * admin reserve is 8MB. These are usually, but not always, enough to
3347  * enable recovery from a memory hogging process using login/sshd, a shell,
3348  * and tools like top. It may make sense to increase or even disable the
3349  * reserve depending on the existence of swap or variations in the recovery
3350  * tools. So, the admin may have changed them.
3351  *
3352  * If memory is added and the reserves have been eliminated or increased above
3353  * the default max, then we'll trust the admin.
3354  *
3355  * If memory is removed and there isn't enough free memory, then we
3356  * need to reset the reserves.
3357  *
3358  * Otherwise keep the reserve set by the admin.
3359  */
3360 static int reserve_mem_notifier(struct notifier_block *nb,
3361                              unsigned long action, void *data)
3362 {
3363         unsigned long tmp, free_kbytes;
3364
3365         switch (action) {
3366         case MEM_ONLINE:
3367                 /* Default max is 128MB. Leave alone if modified by operator. */
3368                 tmp = sysctl_user_reserve_kbytes;
3369                 if (0 < tmp && tmp < (1UL << 17))
3370                         init_user_reserve();
3371
3372                 /* Default max is 8MB.  Leave alone if modified by operator. */
3373                 tmp = sysctl_admin_reserve_kbytes;
3374                 if (0 < tmp && tmp < (1UL << 13))
3375                         init_admin_reserve();
3376
3377                 break;
3378         case MEM_OFFLINE:
3379                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3380
3381                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3382                         init_user_reserve();
3383                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3384                                 sysctl_user_reserve_kbytes);
3385                 }
3386
3387                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3388                         init_admin_reserve();
3389                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3390                                 sysctl_admin_reserve_kbytes);
3391                 }
3392                 break;
3393         default:
3394                 break;
3395         }
3396         return NOTIFY_OK;
3397 }
3398
3399 static struct notifier_block reserve_mem_nb = {
3400         .notifier_call = reserve_mem_notifier,
3401 };
3402
3403 static int __meminit init_reserve_notifier(void)
3404 {
3405         if (register_hotmemory_notifier(&reserve_mem_nb))
3406                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3407
3408         return 0;
3409 }
3410 subsys_initcall(init_reserve_notifier);