mm: use VM_BUG_ON_MM where possible
[cascardo/linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49
50 #include "internal.h"
51
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags)       (0)
54 #endif
55
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len)              (addr)
58 #endif
59
60 static void unmap_region(struct mm_struct *mm,
61                 struct vm_area_struct *vma, struct vm_area_struct *prev,
62                 unsigned long start, unsigned long end);
63
64 /* description of effects of mapping type and prot in current implementation.
65  * this is due to the limited x86 page protection hardware.  The expected
66  * behavior is in parens:
67  *
68  * map_type     prot
69  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
70  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *
74  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
75  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
76  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
77  *
78  */
79 pgprot_t protection_map[16] = {
80         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
82 };
83
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
85 {
86         return __pgprot(pgprot_val(protection_map[vm_flags &
87                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
89 }
90 EXPORT_SYMBOL(vm_get_page_prot);
91
92 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
93 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
94 unsigned long sysctl_overcommit_kbytes __read_mostly;
95 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
96 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
97 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
98 /*
99  * Make sure vm_committed_as in one cacheline and not cacheline shared with
100  * other variables. It can be updated by several CPUs frequently.
101  */
102 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
103
104 /*
105  * The global memory commitment made in the system can be a metric
106  * that can be used to drive ballooning decisions when Linux is hosted
107  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
108  * balancing memory across competing virtual machines that are hosted.
109  * Several metrics drive this policy engine including the guest reported
110  * memory commitment.
111  */
112 unsigned long vm_memory_committed(void)
113 {
114         return percpu_counter_read_positive(&vm_committed_as);
115 }
116 EXPORT_SYMBOL_GPL(vm_memory_committed);
117
118 /*
119  * Check that a process has enough memory to allocate a new virtual
120  * mapping. 0 means there is enough memory for the allocation to
121  * succeed and -ENOMEM implies there is not.
122  *
123  * We currently support three overcommit policies, which are set via the
124  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
125  *
126  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
127  * Additional code 2002 Jul 20 by Robert Love.
128  *
129  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
130  *
131  * Note this is a helper function intended to be used by LSMs which
132  * wish to use this logic.
133  */
134 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
135 {
136         unsigned long free, allowed, reserve;
137
138         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
139                         -(s64)vm_committed_as_batch * num_online_cpus(),
140                         "memory commitment underflow");
141
142         vm_acct_memory(pages);
143
144         /*
145          * Sometimes we want to use more memory than we have
146          */
147         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
148                 return 0;
149
150         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
151                 free = global_page_state(NR_FREE_PAGES);
152                 free += global_page_state(NR_FILE_PAGES);
153
154                 /*
155                  * shmem pages shouldn't be counted as free in this
156                  * case, they can't be purged, only swapped out, and
157                  * that won't affect the overall amount of available
158                  * memory in the system.
159                  */
160                 free -= global_page_state(NR_SHMEM);
161
162                 free += get_nr_swap_pages();
163
164                 /*
165                  * Any slabs which are created with the
166                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
167                  * which are reclaimable, under pressure.  The dentry
168                  * cache and most inode caches should fall into this
169                  */
170                 free += global_page_state(NR_SLAB_RECLAIMABLE);
171
172                 /*
173                  * Leave reserved pages. The pages are not for anonymous pages.
174                  */
175                 if (free <= totalreserve_pages)
176                         goto error;
177                 else
178                         free -= totalreserve_pages;
179
180                 /*
181                  * Reserve some for root
182                  */
183                 if (!cap_sys_admin)
184                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
185
186                 if (free > pages)
187                         return 0;
188
189                 goto error;
190         }
191
192         allowed = vm_commit_limit();
193         /*
194          * Reserve some for root
195          */
196         if (!cap_sys_admin)
197                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
198
199         /*
200          * Don't let a single process grow so big a user can't recover
201          */
202         if (mm) {
203                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
204                 allowed -= min(mm->total_vm / 32, reserve);
205         }
206
207         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
208                 return 0;
209 error:
210         vm_unacct_memory(pages);
211
212         return -ENOMEM;
213 }
214
215 /*
216  * Requires inode->i_mapping->i_mmap_mutex
217  */
218 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
219                 struct file *file, struct address_space *mapping)
220 {
221         if (vma->vm_flags & VM_DENYWRITE)
222                 atomic_inc(&file_inode(file)->i_writecount);
223         if (vma->vm_flags & VM_SHARED)
224                 mapping_unmap_writable(mapping);
225
226         flush_dcache_mmap_lock(mapping);
227         if (unlikely(vma->vm_flags & VM_NONLINEAR))
228                 list_del_init(&vma->shared.nonlinear);
229         else
230                 vma_interval_tree_remove(vma, &mapping->i_mmap);
231         flush_dcache_mmap_unlock(mapping);
232 }
233
234 /*
235  * Unlink a file-based vm structure from its interval tree, to hide
236  * vma from rmap and vmtruncate before freeing its page tables.
237  */
238 void unlink_file_vma(struct vm_area_struct *vma)
239 {
240         struct file *file = vma->vm_file;
241
242         if (file) {
243                 struct address_space *mapping = file->f_mapping;
244                 mutex_lock(&mapping->i_mmap_mutex);
245                 __remove_shared_vm_struct(vma, file, mapping);
246                 mutex_unlock(&mapping->i_mmap_mutex);
247         }
248 }
249
250 /*
251  * Close a vm structure and free it, returning the next.
252  */
253 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
254 {
255         struct vm_area_struct *next = vma->vm_next;
256
257         might_sleep();
258         if (vma->vm_ops && vma->vm_ops->close)
259                 vma->vm_ops->close(vma);
260         if (vma->vm_file)
261                 fput(vma->vm_file);
262         mpol_put(vma_policy(vma));
263         kmem_cache_free(vm_area_cachep, vma);
264         return next;
265 }
266
267 static unsigned long do_brk(unsigned long addr, unsigned long len);
268
269 SYSCALL_DEFINE1(brk, unsigned long, brk)
270 {
271         unsigned long retval;
272         unsigned long newbrk, oldbrk;
273         struct mm_struct *mm = current->mm;
274         unsigned long min_brk;
275         bool populate;
276
277         down_write(&mm->mmap_sem);
278
279 #ifdef CONFIG_COMPAT_BRK
280         /*
281          * CONFIG_COMPAT_BRK can still be overridden by setting
282          * randomize_va_space to 2, which will still cause mm->start_brk
283          * to be arbitrarily shifted
284          */
285         if (current->brk_randomized)
286                 min_brk = mm->start_brk;
287         else
288                 min_brk = mm->end_data;
289 #else
290         min_brk = mm->start_brk;
291 #endif
292         if (brk < min_brk)
293                 goto out;
294
295         /*
296          * Check against rlimit here. If this check is done later after the test
297          * of oldbrk with newbrk then it can escape the test and let the data
298          * segment grow beyond its set limit the in case where the limit is
299          * not page aligned -Ram Gupta
300          */
301         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
302                               mm->end_data, mm->start_data))
303                 goto out;
304
305         newbrk = PAGE_ALIGN(brk);
306         oldbrk = PAGE_ALIGN(mm->brk);
307         if (oldbrk == newbrk)
308                 goto set_brk;
309
310         /* Always allow shrinking brk. */
311         if (brk <= mm->brk) {
312                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
313                         goto set_brk;
314                 goto out;
315         }
316
317         /* Check against existing mmap mappings. */
318         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
319                 goto out;
320
321         /* Ok, looks good - let it rip. */
322         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
323                 goto out;
324
325 set_brk:
326         mm->brk = brk;
327         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
328         up_write(&mm->mmap_sem);
329         if (populate)
330                 mm_populate(oldbrk, newbrk - oldbrk);
331         return brk;
332
333 out:
334         retval = mm->brk;
335         up_write(&mm->mmap_sem);
336         return retval;
337 }
338
339 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
340 {
341         unsigned long max, subtree_gap;
342         max = vma->vm_start;
343         if (vma->vm_prev)
344                 max -= vma->vm_prev->vm_end;
345         if (vma->vm_rb.rb_left) {
346                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
347                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
348                 if (subtree_gap > max)
349                         max = subtree_gap;
350         }
351         if (vma->vm_rb.rb_right) {
352                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
353                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
354                 if (subtree_gap > max)
355                         max = subtree_gap;
356         }
357         return max;
358 }
359
360 #ifdef CONFIG_DEBUG_VM_RB
361 static int browse_rb(struct rb_root *root)
362 {
363         int i = 0, j, bug = 0;
364         struct rb_node *nd, *pn = NULL;
365         unsigned long prev = 0, pend = 0;
366
367         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
368                 struct vm_area_struct *vma;
369                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
370                 if (vma->vm_start < prev) {
371                         pr_emerg("vm_start %lx < prev %lx\n",
372                                   vma->vm_start, prev);
373                         bug = 1;
374                 }
375                 if (vma->vm_start < pend) {
376                         pr_emerg("vm_start %lx < pend %lx\n",
377                                   vma->vm_start, pend);
378                         bug = 1;
379                 }
380                 if (vma->vm_start > vma->vm_end) {
381                         pr_emerg("vm_start %lx > vm_end %lx\n",
382                                   vma->vm_start, vma->vm_end);
383                         bug = 1;
384                 }
385                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
386                         pr_emerg("free gap %lx, correct %lx\n",
387                                vma->rb_subtree_gap,
388                                vma_compute_subtree_gap(vma));
389                         bug = 1;
390                 }
391                 i++;
392                 pn = nd;
393                 prev = vma->vm_start;
394                 pend = vma->vm_end;
395         }
396         j = 0;
397         for (nd = pn; nd; nd = rb_prev(nd))
398                 j++;
399         if (i != j) {
400                 pr_emerg("backwards %d, forwards %d\n", j, i);
401                 bug = 1;
402         }
403         return bug ? -1 : i;
404 }
405
406 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
407 {
408         struct rb_node *nd;
409
410         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
411                 struct vm_area_struct *vma;
412                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
413                 VM_BUG_ON_VMA(vma != ignore &&
414                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
415                         vma);
416         }
417 }
418
419 static void validate_mm(struct mm_struct *mm)
420 {
421         int bug = 0;
422         int i = 0;
423         unsigned long highest_address = 0;
424         struct vm_area_struct *vma = mm->mmap;
425
426         while (vma) {
427                 struct anon_vma_chain *avc;
428
429                 vma_lock_anon_vma(vma);
430                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
431                         anon_vma_interval_tree_verify(avc);
432                 vma_unlock_anon_vma(vma);
433                 highest_address = vma->vm_end;
434                 vma = vma->vm_next;
435                 i++;
436         }
437         if (i != mm->map_count) {
438                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
439                 bug = 1;
440         }
441         if (highest_address != mm->highest_vm_end) {
442                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
443                           mm->highest_vm_end, highest_address);
444                 bug = 1;
445         }
446         i = browse_rb(&mm->mm_rb);
447         if (i != mm->map_count) {
448                 if (i != -1)
449                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
450                 bug = 1;
451         }
452         VM_BUG_ON_MM(bug, mm);
453 }
454 #else
455 #define validate_mm_rb(root, ignore) do { } while (0)
456 #define validate_mm(mm) do { } while (0)
457 #endif
458
459 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
460                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
461
462 /*
463  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
464  * vma->vm_prev->vm_end values changed, without modifying the vma's position
465  * in the rbtree.
466  */
467 static void vma_gap_update(struct vm_area_struct *vma)
468 {
469         /*
470          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
471          * function that does exacltly what we want.
472          */
473         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
474 }
475
476 static inline void vma_rb_insert(struct vm_area_struct *vma,
477                                  struct rb_root *root)
478 {
479         /* All rb_subtree_gap values must be consistent prior to insertion */
480         validate_mm_rb(root, NULL);
481
482         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
483 }
484
485 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
486 {
487         /*
488          * All rb_subtree_gap values must be consistent prior to erase,
489          * with the possible exception of the vma being erased.
490          */
491         validate_mm_rb(root, vma);
492
493         /*
494          * Note rb_erase_augmented is a fairly large inline function,
495          * so make sure we instantiate it only once with our desired
496          * augmented rbtree callbacks.
497          */
498         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
499 }
500
501 /*
502  * vma has some anon_vma assigned, and is already inserted on that
503  * anon_vma's interval trees.
504  *
505  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
506  * vma must be removed from the anon_vma's interval trees using
507  * anon_vma_interval_tree_pre_update_vma().
508  *
509  * After the update, the vma will be reinserted using
510  * anon_vma_interval_tree_post_update_vma().
511  *
512  * The entire update must be protected by exclusive mmap_sem and by
513  * the root anon_vma's mutex.
514  */
515 static inline void
516 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
517 {
518         struct anon_vma_chain *avc;
519
520         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
521                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
522 }
523
524 static inline void
525 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
526 {
527         struct anon_vma_chain *avc;
528
529         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
530                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
531 }
532
533 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
534                 unsigned long end, struct vm_area_struct **pprev,
535                 struct rb_node ***rb_link, struct rb_node **rb_parent)
536 {
537         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
538
539         __rb_link = &mm->mm_rb.rb_node;
540         rb_prev = __rb_parent = NULL;
541
542         while (*__rb_link) {
543                 struct vm_area_struct *vma_tmp;
544
545                 __rb_parent = *__rb_link;
546                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
547
548                 if (vma_tmp->vm_end > addr) {
549                         /* Fail if an existing vma overlaps the area */
550                         if (vma_tmp->vm_start < end)
551                                 return -ENOMEM;
552                         __rb_link = &__rb_parent->rb_left;
553                 } else {
554                         rb_prev = __rb_parent;
555                         __rb_link = &__rb_parent->rb_right;
556                 }
557         }
558
559         *pprev = NULL;
560         if (rb_prev)
561                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
562         *rb_link = __rb_link;
563         *rb_parent = __rb_parent;
564         return 0;
565 }
566
567 static unsigned long count_vma_pages_range(struct mm_struct *mm,
568                 unsigned long addr, unsigned long end)
569 {
570         unsigned long nr_pages = 0;
571         struct vm_area_struct *vma;
572
573         /* Find first overlaping mapping */
574         vma = find_vma_intersection(mm, addr, end);
575         if (!vma)
576                 return 0;
577
578         nr_pages = (min(end, vma->vm_end) -
579                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
580
581         /* Iterate over the rest of the overlaps */
582         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
583                 unsigned long overlap_len;
584
585                 if (vma->vm_start > end)
586                         break;
587
588                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
589                 nr_pages += overlap_len >> PAGE_SHIFT;
590         }
591
592         return nr_pages;
593 }
594
595 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
596                 struct rb_node **rb_link, struct rb_node *rb_parent)
597 {
598         /* Update tracking information for the gap following the new vma. */
599         if (vma->vm_next)
600                 vma_gap_update(vma->vm_next);
601         else
602                 mm->highest_vm_end = vma->vm_end;
603
604         /*
605          * vma->vm_prev wasn't known when we followed the rbtree to find the
606          * correct insertion point for that vma. As a result, we could not
607          * update the vma vm_rb parents rb_subtree_gap values on the way down.
608          * So, we first insert the vma with a zero rb_subtree_gap value
609          * (to be consistent with what we did on the way down), and then
610          * immediately update the gap to the correct value. Finally we
611          * rebalance the rbtree after all augmented values have been set.
612          */
613         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
614         vma->rb_subtree_gap = 0;
615         vma_gap_update(vma);
616         vma_rb_insert(vma, &mm->mm_rb);
617 }
618
619 static void __vma_link_file(struct vm_area_struct *vma)
620 {
621         struct file *file;
622
623         file = vma->vm_file;
624         if (file) {
625                 struct address_space *mapping = file->f_mapping;
626
627                 if (vma->vm_flags & VM_DENYWRITE)
628                         atomic_dec(&file_inode(file)->i_writecount);
629                 if (vma->vm_flags & VM_SHARED)
630                         atomic_inc(&mapping->i_mmap_writable);
631
632                 flush_dcache_mmap_lock(mapping);
633                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
634                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
635                 else
636                         vma_interval_tree_insert(vma, &mapping->i_mmap);
637                 flush_dcache_mmap_unlock(mapping);
638         }
639 }
640
641 static void
642 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
643         struct vm_area_struct *prev, struct rb_node **rb_link,
644         struct rb_node *rb_parent)
645 {
646         __vma_link_list(mm, vma, prev, rb_parent);
647         __vma_link_rb(mm, vma, rb_link, rb_parent);
648 }
649
650 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
651                         struct vm_area_struct *prev, struct rb_node **rb_link,
652                         struct rb_node *rb_parent)
653 {
654         struct address_space *mapping = NULL;
655
656         if (vma->vm_file) {
657                 mapping = vma->vm_file->f_mapping;
658                 mutex_lock(&mapping->i_mmap_mutex);
659         }
660
661         __vma_link(mm, vma, prev, rb_link, rb_parent);
662         __vma_link_file(vma);
663
664         if (mapping)
665                 mutex_unlock(&mapping->i_mmap_mutex);
666
667         mm->map_count++;
668         validate_mm(mm);
669 }
670
671 /*
672  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
673  * mm's list and rbtree.  It has already been inserted into the interval tree.
674  */
675 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
676 {
677         struct vm_area_struct *prev;
678         struct rb_node **rb_link, *rb_parent;
679
680         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
681                            &prev, &rb_link, &rb_parent))
682                 BUG();
683         __vma_link(mm, vma, prev, rb_link, rb_parent);
684         mm->map_count++;
685 }
686
687 static inline void
688 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
689                 struct vm_area_struct *prev)
690 {
691         struct vm_area_struct *next;
692
693         vma_rb_erase(vma, &mm->mm_rb);
694         prev->vm_next = next = vma->vm_next;
695         if (next)
696                 next->vm_prev = prev;
697
698         /* Kill the cache */
699         vmacache_invalidate(mm);
700 }
701
702 /*
703  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
704  * is already present in an i_mmap tree without adjusting the tree.
705  * The following helper function should be used when such adjustments
706  * are necessary.  The "insert" vma (if any) is to be inserted
707  * before we drop the necessary locks.
708  */
709 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
710         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
711 {
712         struct mm_struct *mm = vma->vm_mm;
713         struct vm_area_struct *next = vma->vm_next;
714         struct vm_area_struct *importer = NULL;
715         struct address_space *mapping = NULL;
716         struct rb_root *root = NULL;
717         struct anon_vma *anon_vma = NULL;
718         struct file *file = vma->vm_file;
719         bool start_changed = false, end_changed = false;
720         long adjust_next = 0;
721         int remove_next = 0;
722
723         if (next && !insert) {
724                 struct vm_area_struct *exporter = NULL;
725
726                 if (end >= next->vm_end) {
727                         /*
728                          * vma expands, overlapping all the next, and
729                          * perhaps the one after too (mprotect case 6).
730                          */
731 again:                  remove_next = 1 + (end > next->vm_end);
732                         end = next->vm_end;
733                         exporter = next;
734                         importer = vma;
735                 } else if (end > next->vm_start) {
736                         /*
737                          * vma expands, overlapping part of the next:
738                          * mprotect case 5 shifting the boundary up.
739                          */
740                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
741                         exporter = next;
742                         importer = vma;
743                 } else if (end < vma->vm_end) {
744                         /*
745                          * vma shrinks, and !insert tells it's not
746                          * split_vma inserting another: so it must be
747                          * mprotect case 4 shifting the boundary down.
748                          */
749                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
750                         exporter = vma;
751                         importer = next;
752                 }
753
754                 /*
755                  * Easily overlooked: when mprotect shifts the boundary,
756                  * make sure the expanding vma has anon_vma set if the
757                  * shrinking vma had, to cover any anon pages imported.
758                  */
759                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
760                         if (anon_vma_clone(importer, exporter))
761                                 return -ENOMEM;
762                         importer->anon_vma = exporter->anon_vma;
763                 }
764         }
765
766         if (file) {
767                 mapping = file->f_mapping;
768                 if (!(vma->vm_flags & VM_NONLINEAR)) {
769                         root = &mapping->i_mmap;
770                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
771
772                         if (adjust_next)
773                                 uprobe_munmap(next, next->vm_start,
774                                                         next->vm_end);
775                 }
776
777                 mutex_lock(&mapping->i_mmap_mutex);
778                 if (insert) {
779                         /*
780                          * Put into interval tree now, so instantiated pages
781                          * are visible to arm/parisc __flush_dcache_page
782                          * throughout; but we cannot insert into address
783                          * space until vma start or end is updated.
784                          */
785                         __vma_link_file(insert);
786                 }
787         }
788
789         vma_adjust_trans_huge(vma, start, end, adjust_next);
790
791         anon_vma = vma->anon_vma;
792         if (!anon_vma && adjust_next)
793                 anon_vma = next->anon_vma;
794         if (anon_vma) {
795                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
796                           anon_vma != next->anon_vma, next);
797                 anon_vma_lock_write(anon_vma);
798                 anon_vma_interval_tree_pre_update_vma(vma);
799                 if (adjust_next)
800                         anon_vma_interval_tree_pre_update_vma(next);
801         }
802
803         if (root) {
804                 flush_dcache_mmap_lock(mapping);
805                 vma_interval_tree_remove(vma, root);
806                 if (adjust_next)
807                         vma_interval_tree_remove(next, root);
808         }
809
810         if (start != vma->vm_start) {
811                 vma->vm_start = start;
812                 start_changed = true;
813         }
814         if (end != vma->vm_end) {
815                 vma->vm_end = end;
816                 end_changed = true;
817         }
818         vma->vm_pgoff = pgoff;
819         if (adjust_next) {
820                 next->vm_start += adjust_next << PAGE_SHIFT;
821                 next->vm_pgoff += adjust_next;
822         }
823
824         if (root) {
825                 if (adjust_next)
826                         vma_interval_tree_insert(next, root);
827                 vma_interval_tree_insert(vma, root);
828                 flush_dcache_mmap_unlock(mapping);
829         }
830
831         if (remove_next) {
832                 /*
833                  * vma_merge has merged next into vma, and needs
834                  * us to remove next before dropping the locks.
835                  */
836                 __vma_unlink(mm, next, vma);
837                 if (file)
838                         __remove_shared_vm_struct(next, file, mapping);
839         } else if (insert) {
840                 /*
841                  * split_vma has split insert from vma, and needs
842                  * us to insert it before dropping the locks
843                  * (it may either follow vma or precede it).
844                  */
845                 __insert_vm_struct(mm, insert);
846         } else {
847                 if (start_changed)
848                         vma_gap_update(vma);
849                 if (end_changed) {
850                         if (!next)
851                                 mm->highest_vm_end = end;
852                         else if (!adjust_next)
853                                 vma_gap_update(next);
854                 }
855         }
856
857         if (anon_vma) {
858                 anon_vma_interval_tree_post_update_vma(vma);
859                 if (adjust_next)
860                         anon_vma_interval_tree_post_update_vma(next);
861                 anon_vma_unlock_write(anon_vma);
862         }
863         if (mapping)
864                 mutex_unlock(&mapping->i_mmap_mutex);
865
866         if (root) {
867                 uprobe_mmap(vma);
868
869                 if (adjust_next)
870                         uprobe_mmap(next);
871         }
872
873         if (remove_next) {
874                 if (file) {
875                         uprobe_munmap(next, next->vm_start, next->vm_end);
876                         fput(file);
877                 }
878                 if (next->anon_vma)
879                         anon_vma_merge(vma, next);
880                 mm->map_count--;
881                 mpol_put(vma_policy(next));
882                 kmem_cache_free(vm_area_cachep, next);
883                 /*
884                  * In mprotect's case 6 (see comments on vma_merge),
885                  * we must remove another next too. It would clutter
886                  * up the code too much to do both in one go.
887                  */
888                 next = vma->vm_next;
889                 if (remove_next == 2)
890                         goto again;
891                 else if (next)
892                         vma_gap_update(next);
893                 else
894                         mm->highest_vm_end = end;
895         }
896         if (insert && file)
897                 uprobe_mmap(insert);
898
899         validate_mm(mm);
900
901         return 0;
902 }
903
904 /*
905  * If the vma has a ->close operation then the driver probably needs to release
906  * per-vma resources, so we don't attempt to merge those.
907  */
908 static inline int is_mergeable_vma(struct vm_area_struct *vma,
909                         struct file *file, unsigned long vm_flags)
910 {
911         /*
912          * VM_SOFTDIRTY should not prevent from VMA merging, if we
913          * match the flags but dirty bit -- the caller should mark
914          * merged VMA as dirty. If dirty bit won't be excluded from
915          * comparison, we increase pressue on the memory system forcing
916          * the kernel to generate new VMAs when old one could be
917          * extended instead.
918          */
919         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
920                 return 0;
921         if (vma->vm_file != file)
922                 return 0;
923         if (vma->vm_ops && vma->vm_ops->close)
924                 return 0;
925         return 1;
926 }
927
928 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
929                                         struct anon_vma *anon_vma2,
930                                         struct vm_area_struct *vma)
931 {
932         /*
933          * The list_is_singular() test is to avoid merging VMA cloned from
934          * parents. This can improve scalability caused by anon_vma lock.
935          */
936         if ((!anon_vma1 || !anon_vma2) && (!vma ||
937                 list_is_singular(&vma->anon_vma_chain)))
938                 return 1;
939         return anon_vma1 == anon_vma2;
940 }
941
942 /*
943  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
944  * in front of (at a lower virtual address and file offset than) the vma.
945  *
946  * We cannot merge two vmas if they have differently assigned (non-NULL)
947  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
948  *
949  * We don't check here for the merged mmap wrapping around the end of pagecache
950  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
951  * wrap, nor mmaps which cover the final page at index -1UL.
952  */
953 static int
954 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
955         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
956 {
957         if (is_mergeable_vma(vma, file, vm_flags) &&
958             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
959                 if (vma->vm_pgoff == vm_pgoff)
960                         return 1;
961         }
962         return 0;
963 }
964
965 /*
966  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
967  * beyond (at a higher virtual address and file offset than) the vma.
968  *
969  * We cannot merge two vmas if they have differently assigned (non-NULL)
970  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
971  */
972 static int
973 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
974         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
975 {
976         if (is_mergeable_vma(vma, file, vm_flags) &&
977             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
978                 pgoff_t vm_pglen;
979                 vm_pglen = vma_pages(vma);
980                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
981                         return 1;
982         }
983         return 0;
984 }
985
986 /*
987  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
988  * whether that can be merged with its predecessor or its successor.
989  * Or both (it neatly fills a hole).
990  *
991  * In most cases - when called for mmap, brk or mremap - [addr,end) is
992  * certain not to be mapped by the time vma_merge is called; but when
993  * called for mprotect, it is certain to be already mapped (either at
994  * an offset within prev, or at the start of next), and the flags of
995  * this area are about to be changed to vm_flags - and the no-change
996  * case has already been eliminated.
997  *
998  * The following mprotect cases have to be considered, where AAAA is
999  * the area passed down from mprotect_fixup, never extending beyond one
1000  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1001  *
1002  *     AAAA             AAAA                AAAA          AAAA
1003  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1004  *    cannot merge    might become    might become    might become
1005  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1006  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1007  *    mremap move:                                    PPPPNNNNNNNN 8
1008  *        AAAA
1009  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1010  *    might become    case 1 below    case 2 below    case 3 below
1011  *
1012  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1013  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1014  */
1015 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1016                         struct vm_area_struct *prev, unsigned long addr,
1017                         unsigned long end, unsigned long vm_flags,
1018                         struct anon_vma *anon_vma, struct file *file,
1019                         pgoff_t pgoff, struct mempolicy *policy)
1020 {
1021         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1022         struct vm_area_struct *area, *next;
1023         int err;
1024
1025         /*
1026          * We later require that vma->vm_flags == vm_flags,
1027          * so this tests vma->vm_flags & VM_SPECIAL, too.
1028          */
1029         if (vm_flags & VM_SPECIAL)
1030                 return NULL;
1031
1032         if (prev)
1033                 next = prev->vm_next;
1034         else
1035                 next = mm->mmap;
1036         area = next;
1037         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1038                 next = next->vm_next;
1039
1040         /*
1041          * Can it merge with the predecessor?
1042          */
1043         if (prev && prev->vm_end == addr &&
1044                         mpol_equal(vma_policy(prev), policy) &&
1045                         can_vma_merge_after(prev, vm_flags,
1046                                                 anon_vma, file, pgoff)) {
1047                 /*
1048                  * OK, it can.  Can we now merge in the successor as well?
1049                  */
1050                 if (next && end == next->vm_start &&
1051                                 mpol_equal(policy, vma_policy(next)) &&
1052                                 can_vma_merge_before(next, vm_flags,
1053                                         anon_vma, file, pgoff+pglen) &&
1054                                 is_mergeable_anon_vma(prev->anon_vma,
1055                                                       next->anon_vma, NULL)) {
1056                                                         /* cases 1, 6 */
1057                         err = vma_adjust(prev, prev->vm_start,
1058                                 next->vm_end, prev->vm_pgoff, NULL);
1059                 } else                                  /* cases 2, 5, 7 */
1060                         err = vma_adjust(prev, prev->vm_start,
1061                                 end, prev->vm_pgoff, NULL);
1062                 if (err)
1063                         return NULL;
1064                 khugepaged_enter_vma_merge(prev);
1065                 return prev;
1066         }
1067
1068         /*
1069          * Can this new request be merged in front of next?
1070          */
1071         if (next && end == next->vm_start &&
1072                         mpol_equal(policy, vma_policy(next)) &&
1073                         can_vma_merge_before(next, vm_flags,
1074                                         anon_vma, file, pgoff+pglen)) {
1075                 if (prev && addr < prev->vm_end)        /* case 4 */
1076                         err = vma_adjust(prev, prev->vm_start,
1077                                 addr, prev->vm_pgoff, NULL);
1078                 else                                    /* cases 3, 8 */
1079                         err = vma_adjust(area, addr, next->vm_end,
1080                                 next->vm_pgoff - pglen, NULL);
1081                 if (err)
1082                         return NULL;
1083                 khugepaged_enter_vma_merge(area);
1084                 return area;
1085         }
1086
1087         return NULL;
1088 }
1089
1090 /*
1091  * Rough compatbility check to quickly see if it's even worth looking
1092  * at sharing an anon_vma.
1093  *
1094  * They need to have the same vm_file, and the flags can only differ
1095  * in things that mprotect may change.
1096  *
1097  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1098  * we can merge the two vma's. For example, we refuse to merge a vma if
1099  * there is a vm_ops->close() function, because that indicates that the
1100  * driver is doing some kind of reference counting. But that doesn't
1101  * really matter for the anon_vma sharing case.
1102  */
1103 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1104 {
1105         return a->vm_end == b->vm_start &&
1106                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1107                 a->vm_file == b->vm_file &&
1108                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1109                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1110 }
1111
1112 /*
1113  * Do some basic sanity checking to see if we can re-use the anon_vma
1114  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1115  * the same as 'old', the other will be the new one that is trying
1116  * to share the anon_vma.
1117  *
1118  * NOTE! This runs with mm_sem held for reading, so it is possible that
1119  * the anon_vma of 'old' is concurrently in the process of being set up
1120  * by another page fault trying to merge _that_. But that's ok: if it
1121  * is being set up, that automatically means that it will be a singleton
1122  * acceptable for merging, so we can do all of this optimistically. But
1123  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1124  *
1125  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1126  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1127  * is to return an anon_vma that is "complex" due to having gone through
1128  * a fork).
1129  *
1130  * We also make sure that the two vma's are compatible (adjacent,
1131  * and with the same memory policies). That's all stable, even with just
1132  * a read lock on the mm_sem.
1133  */
1134 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1135 {
1136         if (anon_vma_compatible(a, b)) {
1137                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1138
1139                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1140                         return anon_vma;
1141         }
1142         return NULL;
1143 }
1144
1145 /*
1146  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1147  * neighbouring vmas for a suitable anon_vma, before it goes off
1148  * to allocate a new anon_vma.  It checks because a repetitive
1149  * sequence of mprotects and faults may otherwise lead to distinct
1150  * anon_vmas being allocated, preventing vma merge in subsequent
1151  * mprotect.
1152  */
1153 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1154 {
1155         struct anon_vma *anon_vma;
1156         struct vm_area_struct *near;
1157
1158         near = vma->vm_next;
1159         if (!near)
1160                 goto try_prev;
1161
1162         anon_vma = reusable_anon_vma(near, vma, near);
1163         if (anon_vma)
1164                 return anon_vma;
1165 try_prev:
1166         near = vma->vm_prev;
1167         if (!near)
1168                 goto none;
1169
1170         anon_vma = reusable_anon_vma(near, near, vma);
1171         if (anon_vma)
1172                 return anon_vma;
1173 none:
1174         /*
1175          * There's no absolute need to look only at touching neighbours:
1176          * we could search further afield for "compatible" anon_vmas.
1177          * But it would probably just be a waste of time searching,
1178          * or lead to too many vmas hanging off the same anon_vma.
1179          * We're trying to allow mprotect remerging later on,
1180          * not trying to minimize memory used for anon_vmas.
1181          */
1182         return NULL;
1183 }
1184
1185 #ifdef CONFIG_PROC_FS
1186 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1187                                                 struct file *file, long pages)
1188 {
1189         const unsigned long stack_flags
1190                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1191
1192         mm->total_vm += pages;
1193
1194         if (file) {
1195                 mm->shared_vm += pages;
1196                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1197                         mm->exec_vm += pages;
1198         } else if (flags & stack_flags)
1199                 mm->stack_vm += pages;
1200 }
1201 #endif /* CONFIG_PROC_FS */
1202
1203 /*
1204  * If a hint addr is less than mmap_min_addr change hint to be as
1205  * low as possible but still greater than mmap_min_addr
1206  */
1207 static inline unsigned long round_hint_to_min(unsigned long hint)
1208 {
1209         hint &= PAGE_MASK;
1210         if (((void *)hint != NULL) &&
1211             (hint < mmap_min_addr))
1212                 return PAGE_ALIGN(mmap_min_addr);
1213         return hint;
1214 }
1215
1216 static inline int mlock_future_check(struct mm_struct *mm,
1217                                      unsigned long flags,
1218                                      unsigned long len)
1219 {
1220         unsigned long locked, lock_limit;
1221
1222         /*  mlock MCL_FUTURE? */
1223         if (flags & VM_LOCKED) {
1224                 locked = len >> PAGE_SHIFT;
1225                 locked += mm->locked_vm;
1226                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1227                 lock_limit >>= PAGE_SHIFT;
1228                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1229                         return -EAGAIN;
1230         }
1231         return 0;
1232 }
1233
1234 /*
1235  * The caller must hold down_write(&current->mm->mmap_sem).
1236  */
1237
1238 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1239                         unsigned long len, unsigned long prot,
1240                         unsigned long flags, unsigned long pgoff,
1241                         unsigned long *populate)
1242 {
1243         struct mm_struct *mm = current->mm;
1244         vm_flags_t vm_flags;
1245
1246         *populate = 0;
1247
1248         /*
1249          * Does the application expect PROT_READ to imply PROT_EXEC?
1250          *
1251          * (the exception is when the underlying filesystem is noexec
1252          *  mounted, in which case we dont add PROT_EXEC.)
1253          */
1254         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1255                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1256                         prot |= PROT_EXEC;
1257
1258         if (!len)
1259                 return -EINVAL;
1260
1261         if (!(flags & MAP_FIXED))
1262                 addr = round_hint_to_min(addr);
1263
1264         /* Careful about overflows.. */
1265         len = PAGE_ALIGN(len);
1266         if (!len)
1267                 return -ENOMEM;
1268
1269         /* offset overflow? */
1270         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1271                 return -EOVERFLOW;
1272
1273         /* Too many mappings? */
1274         if (mm->map_count > sysctl_max_map_count)
1275                 return -ENOMEM;
1276
1277         /* Obtain the address to map to. we verify (or select) it and ensure
1278          * that it represents a valid section of the address space.
1279          */
1280         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1281         if (addr & ~PAGE_MASK)
1282                 return addr;
1283
1284         /* Do simple checking here so the lower-level routines won't have
1285          * to. we assume access permissions have been handled by the open
1286          * of the memory object, so we don't do any here.
1287          */
1288         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1289                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1290
1291         if (flags & MAP_LOCKED)
1292                 if (!can_do_mlock())
1293                         return -EPERM;
1294
1295         if (mlock_future_check(mm, vm_flags, len))
1296                 return -EAGAIN;
1297
1298         if (file) {
1299                 struct inode *inode = file_inode(file);
1300
1301                 switch (flags & MAP_TYPE) {
1302                 case MAP_SHARED:
1303                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1304                                 return -EACCES;
1305
1306                         /*
1307                          * Make sure we don't allow writing to an append-only
1308                          * file..
1309                          */
1310                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1311                                 return -EACCES;
1312
1313                         /*
1314                          * Make sure there are no mandatory locks on the file.
1315                          */
1316                         if (locks_verify_locked(file))
1317                                 return -EAGAIN;
1318
1319                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1320                         if (!(file->f_mode & FMODE_WRITE))
1321                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1322
1323                         /* fall through */
1324                 case MAP_PRIVATE:
1325                         if (!(file->f_mode & FMODE_READ))
1326                                 return -EACCES;
1327                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1328                                 if (vm_flags & VM_EXEC)
1329                                         return -EPERM;
1330                                 vm_flags &= ~VM_MAYEXEC;
1331                         }
1332
1333                         if (!file->f_op->mmap)
1334                                 return -ENODEV;
1335                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1336                                 return -EINVAL;
1337                         break;
1338
1339                 default:
1340                         return -EINVAL;
1341                 }
1342         } else {
1343                 switch (flags & MAP_TYPE) {
1344                 case MAP_SHARED:
1345                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1346                                 return -EINVAL;
1347                         /*
1348                          * Ignore pgoff.
1349                          */
1350                         pgoff = 0;
1351                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1352                         break;
1353                 case MAP_PRIVATE:
1354                         /*
1355                          * Set pgoff according to addr for anon_vma.
1356                          */
1357                         pgoff = addr >> PAGE_SHIFT;
1358                         break;
1359                 default:
1360                         return -EINVAL;
1361                 }
1362         }
1363
1364         /*
1365          * Set 'VM_NORESERVE' if we should not account for the
1366          * memory use of this mapping.
1367          */
1368         if (flags & MAP_NORESERVE) {
1369                 /* We honor MAP_NORESERVE if allowed to overcommit */
1370                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1371                         vm_flags |= VM_NORESERVE;
1372
1373                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1374                 if (file && is_file_hugepages(file))
1375                         vm_flags |= VM_NORESERVE;
1376         }
1377
1378         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1379         if (!IS_ERR_VALUE(addr) &&
1380             ((vm_flags & VM_LOCKED) ||
1381              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1382                 *populate = len;
1383         return addr;
1384 }
1385
1386 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1387                 unsigned long, prot, unsigned long, flags,
1388                 unsigned long, fd, unsigned long, pgoff)
1389 {
1390         struct file *file = NULL;
1391         unsigned long retval = -EBADF;
1392
1393         if (!(flags & MAP_ANONYMOUS)) {
1394                 audit_mmap_fd(fd, flags);
1395                 file = fget(fd);
1396                 if (!file)
1397                         goto out;
1398                 if (is_file_hugepages(file))
1399                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1400                 retval = -EINVAL;
1401                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1402                         goto out_fput;
1403         } else if (flags & MAP_HUGETLB) {
1404                 struct user_struct *user = NULL;
1405                 struct hstate *hs;
1406
1407                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1408                 if (!hs)
1409                         return -EINVAL;
1410
1411                 len = ALIGN(len, huge_page_size(hs));
1412                 /*
1413                  * VM_NORESERVE is used because the reservations will be
1414                  * taken when vm_ops->mmap() is called
1415                  * A dummy user value is used because we are not locking
1416                  * memory so no accounting is necessary
1417                  */
1418                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1419                                 VM_NORESERVE,
1420                                 &user, HUGETLB_ANONHUGE_INODE,
1421                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1422                 if (IS_ERR(file))
1423                         return PTR_ERR(file);
1424         }
1425
1426         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1427
1428         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1429 out_fput:
1430         if (file)
1431                 fput(file);
1432 out:
1433         return retval;
1434 }
1435
1436 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1437 struct mmap_arg_struct {
1438         unsigned long addr;
1439         unsigned long len;
1440         unsigned long prot;
1441         unsigned long flags;
1442         unsigned long fd;
1443         unsigned long offset;
1444 };
1445
1446 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1447 {
1448         struct mmap_arg_struct a;
1449
1450         if (copy_from_user(&a, arg, sizeof(a)))
1451                 return -EFAULT;
1452         if (a.offset & ~PAGE_MASK)
1453                 return -EINVAL;
1454
1455         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1456                               a.offset >> PAGE_SHIFT);
1457 }
1458 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1459
1460 /*
1461  * Some shared mappigns will want the pages marked read-only
1462  * to track write events. If so, we'll downgrade vm_page_prot
1463  * to the private version (using protection_map[] without the
1464  * VM_SHARED bit).
1465  */
1466 int vma_wants_writenotify(struct vm_area_struct *vma)
1467 {
1468         vm_flags_t vm_flags = vma->vm_flags;
1469
1470         /* If it was private or non-writable, the write bit is already clear */
1471         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1472                 return 0;
1473
1474         /* The backer wishes to know when pages are first written to? */
1475         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1476                 return 1;
1477
1478         /* The open routine did something to the protections already? */
1479         if (pgprot_val(vma->vm_page_prot) !=
1480             pgprot_val(vm_get_page_prot(vm_flags)))
1481                 return 0;
1482
1483         /* Specialty mapping? */
1484         if (vm_flags & VM_PFNMAP)
1485                 return 0;
1486
1487         /* Can the mapping track the dirty pages? */
1488         return vma->vm_file && vma->vm_file->f_mapping &&
1489                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1490 }
1491
1492 /*
1493  * We account for memory if it's a private writeable mapping,
1494  * not hugepages and VM_NORESERVE wasn't set.
1495  */
1496 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1497 {
1498         /*
1499          * hugetlb has its own accounting separate from the core VM
1500          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1501          */
1502         if (file && is_file_hugepages(file))
1503                 return 0;
1504
1505         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1506 }
1507
1508 unsigned long mmap_region(struct file *file, unsigned long addr,
1509                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1510 {
1511         struct mm_struct *mm = current->mm;
1512         struct vm_area_struct *vma, *prev;
1513         int error;
1514         struct rb_node **rb_link, *rb_parent;
1515         unsigned long charged = 0;
1516
1517         /* Check against address space limit. */
1518         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1519                 unsigned long nr_pages;
1520
1521                 /*
1522                  * MAP_FIXED may remove pages of mappings that intersects with
1523                  * requested mapping. Account for the pages it would unmap.
1524                  */
1525                 if (!(vm_flags & MAP_FIXED))
1526                         return -ENOMEM;
1527
1528                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1529
1530                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1531                         return -ENOMEM;
1532         }
1533
1534         /* Clear old maps */
1535         error = -ENOMEM;
1536 munmap_back:
1537         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1538                 if (do_munmap(mm, addr, len))
1539                         return -ENOMEM;
1540                 goto munmap_back;
1541         }
1542
1543         /*
1544          * Private writable mapping: check memory availability
1545          */
1546         if (accountable_mapping(file, vm_flags)) {
1547                 charged = len >> PAGE_SHIFT;
1548                 if (security_vm_enough_memory_mm(mm, charged))
1549                         return -ENOMEM;
1550                 vm_flags |= VM_ACCOUNT;
1551         }
1552
1553         /*
1554          * Can we just expand an old mapping?
1555          */
1556         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1557         if (vma)
1558                 goto out;
1559
1560         /*
1561          * Determine the object being mapped and call the appropriate
1562          * specific mapper. the address has already been validated, but
1563          * not unmapped, but the maps are removed from the list.
1564          */
1565         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1566         if (!vma) {
1567                 error = -ENOMEM;
1568                 goto unacct_error;
1569         }
1570
1571         vma->vm_mm = mm;
1572         vma->vm_start = addr;
1573         vma->vm_end = addr + len;
1574         vma->vm_flags = vm_flags;
1575         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1576         vma->vm_pgoff = pgoff;
1577         INIT_LIST_HEAD(&vma->anon_vma_chain);
1578
1579         if (file) {
1580                 if (vm_flags & VM_DENYWRITE) {
1581                         error = deny_write_access(file);
1582                         if (error)
1583                                 goto free_vma;
1584                 }
1585                 if (vm_flags & VM_SHARED) {
1586                         error = mapping_map_writable(file->f_mapping);
1587                         if (error)
1588                                 goto allow_write_and_free_vma;
1589                 }
1590
1591                 /* ->mmap() can change vma->vm_file, but must guarantee that
1592                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1593                  * and map writably if VM_SHARED is set. This usually means the
1594                  * new file must not have been exposed to user-space, yet.
1595                  */
1596                 vma->vm_file = get_file(file);
1597                 error = file->f_op->mmap(file, vma);
1598                 if (error)
1599                         goto unmap_and_free_vma;
1600
1601                 /* Can addr have changed??
1602                  *
1603                  * Answer: Yes, several device drivers can do it in their
1604                  *         f_op->mmap method. -DaveM
1605                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1606                  *      be updated for vma_link()
1607                  */
1608                 WARN_ON_ONCE(addr != vma->vm_start);
1609
1610                 addr = vma->vm_start;
1611                 vm_flags = vma->vm_flags;
1612         } else if (vm_flags & VM_SHARED) {
1613                 error = shmem_zero_setup(vma);
1614                 if (error)
1615                         goto free_vma;
1616         }
1617
1618         if (vma_wants_writenotify(vma)) {
1619                 pgprot_t pprot = vma->vm_page_prot;
1620
1621                 /* Can vma->vm_page_prot have changed??
1622                  *
1623                  * Answer: Yes, drivers may have changed it in their
1624                  *         f_op->mmap method.
1625                  *
1626                  * Ensures that vmas marked as uncached stay that way.
1627                  */
1628                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1629                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1630                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1631         }
1632
1633         vma_link(mm, vma, prev, rb_link, rb_parent);
1634         /* Once vma denies write, undo our temporary denial count */
1635         if (file) {
1636                 if (vm_flags & VM_SHARED)
1637                         mapping_unmap_writable(file->f_mapping);
1638                 if (vm_flags & VM_DENYWRITE)
1639                         allow_write_access(file);
1640         }
1641         file = vma->vm_file;
1642 out:
1643         perf_event_mmap(vma);
1644
1645         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1646         if (vm_flags & VM_LOCKED) {
1647                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1648                                         vma == get_gate_vma(current->mm)))
1649                         mm->locked_vm += (len >> PAGE_SHIFT);
1650                 else
1651                         vma->vm_flags &= ~VM_LOCKED;
1652         }
1653
1654         if (file)
1655                 uprobe_mmap(vma);
1656
1657         /*
1658          * New (or expanded) vma always get soft dirty status.
1659          * Otherwise user-space soft-dirty page tracker won't
1660          * be able to distinguish situation when vma area unmapped,
1661          * then new mapped in-place (which must be aimed as
1662          * a completely new data area).
1663          */
1664         vma->vm_flags |= VM_SOFTDIRTY;
1665
1666         return addr;
1667
1668 unmap_and_free_vma:
1669         vma->vm_file = NULL;
1670         fput(file);
1671
1672         /* Undo any partial mapping done by a device driver. */
1673         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1674         charged = 0;
1675         if (vm_flags & VM_SHARED)
1676                 mapping_unmap_writable(file->f_mapping);
1677 allow_write_and_free_vma:
1678         if (vm_flags & VM_DENYWRITE)
1679                 allow_write_access(file);
1680 free_vma:
1681         kmem_cache_free(vm_area_cachep, vma);
1682 unacct_error:
1683         if (charged)
1684                 vm_unacct_memory(charged);
1685         return error;
1686 }
1687
1688 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1689 {
1690         /*
1691          * We implement the search by looking for an rbtree node that
1692          * immediately follows a suitable gap. That is,
1693          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1694          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1695          * - gap_end - gap_start >= length
1696          */
1697
1698         struct mm_struct *mm = current->mm;
1699         struct vm_area_struct *vma;
1700         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1701
1702         /* Adjust search length to account for worst case alignment overhead */
1703         length = info->length + info->align_mask;
1704         if (length < info->length)
1705                 return -ENOMEM;
1706
1707         /* Adjust search limits by the desired length */
1708         if (info->high_limit < length)
1709                 return -ENOMEM;
1710         high_limit = info->high_limit - length;
1711
1712         if (info->low_limit > high_limit)
1713                 return -ENOMEM;
1714         low_limit = info->low_limit + length;
1715
1716         /* Check if rbtree root looks promising */
1717         if (RB_EMPTY_ROOT(&mm->mm_rb))
1718                 goto check_highest;
1719         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1720         if (vma->rb_subtree_gap < length)
1721                 goto check_highest;
1722
1723         while (true) {
1724                 /* Visit left subtree if it looks promising */
1725                 gap_end = vma->vm_start;
1726                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1727                         struct vm_area_struct *left =
1728                                 rb_entry(vma->vm_rb.rb_left,
1729                                          struct vm_area_struct, vm_rb);
1730                         if (left->rb_subtree_gap >= length) {
1731                                 vma = left;
1732                                 continue;
1733                         }
1734                 }
1735
1736                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1737 check_current:
1738                 /* Check if current node has a suitable gap */
1739                 if (gap_start > high_limit)
1740                         return -ENOMEM;
1741                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1742                         goto found;
1743
1744                 /* Visit right subtree if it looks promising */
1745                 if (vma->vm_rb.rb_right) {
1746                         struct vm_area_struct *right =
1747                                 rb_entry(vma->vm_rb.rb_right,
1748                                          struct vm_area_struct, vm_rb);
1749                         if (right->rb_subtree_gap >= length) {
1750                                 vma = right;
1751                                 continue;
1752                         }
1753                 }
1754
1755                 /* Go back up the rbtree to find next candidate node */
1756                 while (true) {
1757                         struct rb_node *prev = &vma->vm_rb;
1758                         if (!rb_parent(prev))
1759                                 goto check_highest;
1760                         vma = rb_entry(rb_parent(prev),
1761                                        struct vm_area_struct, vm_rb);
1762                         if (prev == vma->vm_rb.rb_left) {
1763                                 gap_start = vma->vm_prev->vm_end;
1764                                 gap_end = vma->vm_start;
1765                                 goto check_current;
1766                         }
1767                 }
1768         }
1769
1770 check_highest:
1771         /* Check highest gap, which does not precede any rbtree node */
1772         gap_start = mm->highest_vm_end;
1773         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1774         if (gap_start > high_limit)
1775                 return -ENOMEM;
1776
1777 found:
1778         /* We found a suitable gap. Clip it with the original low_limit. */
1779         if (gap_start < info->low_limit)
1780                 gap_start = info->low_limit;
1781
1782         /* Adjust gap address to the desired alignment */
1783         gap_start += (info->align_offset - gap_start) & info->align_mask;
1784
1785         VM_BUG_ON(gap_start + info->length > info->high_limit);
1786         VM_BUG_ON(gap_start + info->length > gap_end);
1787         return gap_start;
1788 }
1789
1790 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1791 {
1792         struct mm_struct *mm = current->mm;
1793         struct vm_area_struct *vma;
1794         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1795
1796         /* Adjust search length to account for worst case alignment overhead */
1797         length = info->length + info->align_mask;
1798         if (length < info->length)
1799                 return -ENOMEM;
1800
1801         /*
1802          * Adjust search limits by the desired length.
1803          * See implementation comment at top of unmapped_area().
1804          */
1805         gap_end = info->high_limit;
1806         if (gap_end < length)
1807                 return -ENOMEM;
1808         high_limit = gap_end - length;
1809
1810         if (info->low_limit > high_limit)
1811                 return -ENOMEM;
1812         low_limit = info->low_limit + length;
1813
1814         /* Check highest gap, which does not precede any rbtree node */
1815         gap_start = mm->highest_vm_end;
1816         if (gap_start <= high_limit)
1817                 goto found_highest;
1818
1819         /* Check if rbtree root looks promising */
1820         if (RB_EMPTY_ROOT(&mm->mm_rb))
1821                 return -ENOMEM;
1822         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1823         if (vma->rb_subtree_gap < length)
1824                 return -ENOMEM;
1825
1826         while (true) {
1827                 /* Visit right subtree if it looks promising */
1828                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1829                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1830                         struct vm_area_struct *right =
1831                                 rb_entry(vma->vm_rb.rb_right,
1832                                          struct vm_area_struct, vm_rb);
1833                         if (right->rb_subtree_gap >= length) {
1834                                 vma = right;
1835                                 continue;
1836                         }
1837                 }
1838
1839 check_current:
1840                 /* Check if current node has a suitable gap */
1841                 gap_end = vma->vm_start;
1842                 if (gap_end < low_limit)
1843                         return -ENOMEM;
1844                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1845                         goto found;
1846
1847                 /* Visit left subtree if it looks promising */
1848                 if (vma->vm_rb.rb_left) {
1849                         struct vm_area_struct *left =
1850                                 rb_entry(vma->vm_rb.rb_left,
1851                                          struct vm_area_struct, vm_rb);
1852                         if (left->rb_subtree_gap >= length) {
1853                                 vma = left;
1854                                 continue;
1855                         }
1856                 }
1857
1858                 /* Go back up the rbtree to find next candidate node */
1859                 while (true) {
1860                         struct rb_node *prev = &vma->vm_rb;
1861                         if (!rb_parent(prev))
1862                                 return -ENOMEM;
1863                         vma = rb_entry(rb_parent(prev),
1864                                        struct vm_area_struct, vm_rb);
1865                         if (prev == vma->vm_rb.rb_right) {
1866                                 gap_start = vma->vm_prev ?
1867                                         vma->vm_prev->vm_end : 0;
1868                                 goto check_current;
1869                         }
1870                 }
1871         }
1872
1873 found:
1874         /* We found a suitable gap. Clip it with the original high_limit. */
1875         if (gap_end > info->high_limit)
1876                 gap_end = info->high_limit;
1877
1878 found_highest:
1879         /* Compute highest gap address at the desired alignment */
1880         gap_end -= info->length;
1881         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1882
1883         VM_BUG_ON(gap_end < info->low_limit);
1884         VM_BUG_ON(gap_end < gap_start);
1885         return gap_end;
1886 }
1887
1888 /* Get an address range which is currently unmapped.
1889  * For shmat() with addr=0.
1890  *
1891  * Ugly calling convention alert:
1892  * Return value with the low bits set means error value,
1893  * ie
1894  *      if (ret & ~PAGE_MASK)
1895  *              error = ret;
1896  *
1897  * This function "knows" that -ENOMEM has the bits set.
1898  */
1899 #ifndef HAVE_ARCH_UNMAPPED_AREA
1900 unsigned long
1901 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1902                 unsigned long len, unsigned long pgoff, unsigned long flags)
1903 {
1904         struct mm_struct *mm = current->mm;
1905         struct vm_area_struct *vma;
1906         struct vm_unmapped_area_info info;
1907
1908         if (len > TASK_SIZE - mmap_min_addr)
1909                 return -ENOMEM;
1910
1911         if (flags & MAP_FIXED)
1912                 return addr;
1913
1914         if (addr) {
1915                 addr = PAGE_ALIGN(addr);
1916                 vma = find_vma(mm, addr);
1917                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1918                     (!vma || addr + len <= vma->vm_start))
1919                         return addr;
1920         }
1921
1922         info.flags = 0;
1923         info.length = len;
1924         info.low_limit = mm->mmap_base;
1925         info.high_limit = TASK_SIZE;
1926         info.align_mask = 0;
1927         return vm_unmapped_area(&info);
1928 }
1929 #endif
1930
1931 /*
1932  * This mmap-allocator allocates new areas top-down from below the
1933  * stack's low limit (the base):
1934  */
1935 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1936 unsigned long
1937 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1938                           const unsigned long len, const unsigned long pgoff,
1939                           const unsigned long flags)
1940 {
1941         struct vm_area_struct *vma;
1942         struct mm_struct *mm = current->mm;
1943         unsigned long addr = addr0;
1944         struct vm_unmapped_area_info info;
1945
1946         /* requested length too big for entire address space */
1947         if (len > TASK_SIZE - mmap_min_addr)
1948                 return -ENOMEM;
1949
1950         if (flags & MAP_FIXED)
1951                 return addr;
1952
1953         /* requesting a specific address */
1954         if (addr) {
1955                 addr = PAGE_ALIGN(addr);
1956                 vma = find_vma(mm, addr);
1957                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1958                                 (!vma || addr + len <= vma->vm_start))
1959                         return addr;
1960         }
1961
1962         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1963         info.length = len;
1964         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1965         info.high_limit = mm->mmap_base;
1966         info.align_mask = 0;
1967         addr = vm_unmapped_area(&info);
1968
1969         /*
1970          * A failed mmap() very likely causes application failure,
1971          * so fall back to the bottom-up function here. This scenario
1972          * can happen with large stack limits and large mmap()
1973          * allocations.
1974          */
1975         if (addr & ~PAGE_MASK) {
1976                 VM_BUG_ON(addr != -ENOMEM);
1977                 info.flags = 0;
1978                 info.low_limit = TASK_UNMAPPED_BASE;
1979                 info.high_limit = TASK_SIZE;
1980                 addr = vm_unmapped_area(&info);
1981         }
1982
1983         return addr;
1984 }
1985 #endif
1986
1987 unsigned long
1988 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1989                 unsigned long pgoff, unsigned long flags)
1990 {
1991         unsigned long (*get_area)(struct file *, unsigned long,
1992                                   unsigned long, unsigned long, unsigned long);
1993
1994         unsigned long error = arch_mmap_check(addr, len, flags);
1995         if (error)
1996                 return error;
1997
1998         /* Careful about overflows.. */
1999         if (len > TASK_SIZE)
2000                 return -ENOMEM;
2001
2002         get_area = current->mm->get_unmapped_area;
2003         if (file && file->f_op->get_unmapped_area)
2004                 get_area = file->f_op->get_unmapped_area;
2005         addr = get_area(file, addr, len, pgoff, flags);
2006         if (IS_ERR_VALUE(addr))
2007                 return addr;
2008
2009         if (addr > TASK_SIZE - len)
2010                 return -ENOMEM;
2011         if (addr & ~PAGE_MASK)
2012                 return -EINVAL;
2013
2014         addr = arch_rebalance_pgtables(addr, len);
2015         error = security_mmap_addr(addr);
2016         return error ? error : addr;
2017 }
2018
2019 EXPORT_SYMBOL(get_unmapped_area);
2020
2021 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2022 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2023 {
2024         struct rb_node *rb_node;
2025         struct vm_area_struct *vma;
2026
2027         /* Check the cache first. */
2028         vma = vmacache_find(mm, addr);
2029         if (likely(vma))
2030                 return vma;
2031
2032         rb_node = mm->mm_rb.rb_node;
2033         vma = NULL;
2034
2035         while (rb_node) {
2036                 struct vm_area_struct *tmp;
2037
2038                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2039
2040                 if (tmp->vm_end > addr) {
2041                         vma = tmp;
2042                         if (tmp->vm_start <= addr)
2043                                 break;
2044                         rb_node = rb_node->rb_left;
2045                 } else
2046                         rb_node = rb_node->rb_right;
2047         }
2048
2049         if (vma)
2050                 vmacache_update(addr, vma);
2051         return vma;
2052 }
2053
2054 EXPORT_SYMBOL(find_vma);
2055
2056 /*
2057  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2058  */
2059 struct vm_area_struct *
2060 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2061                         struct vm_area_struct **pprev)
2062 {
2063         struct vm_area_struct *vma;
2064
2065         vma = find_vma(mm, addr);
2066         if (vma) {
2067                 *pprev = vma->vm_prev;
2068         } else {
2069                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2070                 *pprev = NULL;
2071                 while (rb_node) {
2072                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2073                         rb_node = rb_node->rb_right;
2074                 }
2075         }
2076         return vma;
2077 }
2078
2079 /*
2080  * Verify that the stack growth is acceptable and
2081  * update accounting. This is shared with both the
2082  * grow-up and grow-down cases.
2083  */
2084 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2085 {
2086         struct mm_struct *mm = vma->vm_mm;
2087         struct rlimit *rlim = current->signal->rlim;
2088         unsigned long new_start;
2089
2090         /* address space limit tests */
2091         if (!may_expand_vm(mm, grow))
2092                 return -ENOMEM;
2093
2094         /* Stack limit test */
2095         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2096                 return -ENOMEM;
2097
2098         /* mlock limit tests */
2099         if (vma->vm_flags & VM_LOCKED) {
2100                 unsigned long locked;
2101                 unsigned long limit;
2102                 locked = mm->locked_vm + grow;
2103                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2104                 limit >>= PAGE_SHIFT;
2105                 if (locked > limit && !capable(CAP_IPC_LOCK))
2106                         return -ENOMEM;
2107         }
2108
2109         /* Check to ensure the stack will not grow into a hugetlb-only region */
2110         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2111                         vma->vm_end - size;
2112         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2113                 return -EFAULT;
2114
2115         /*
2116          * Overcommit..  This must be the final test, as it will
2117          * update security statistics.
2118          */
2119         if (security_vm_enough_memory_mm(mm, grow))
2120                 return -ENOMEM;
2121
2122         /* Ok, everything looks good - let it rip */
2123         if (vma->vm_flags & VM_LOCKED)
2124                 mm->locked_vm += grow;
2125         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2126         return 0;
2127 }
2128
2129 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2130 /*
2131  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2132  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2133  */
2134 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2135 {
2136         int error;
2137
2138         if (!(vma->vm_flags & VM_GROWSUP))
2139                 return -EFAULT;
2140
2141         /*
2142          * We must make sure the anon_vma is allocated
2143          * so that the anon_vma locking is not a noop.
2144          */
2145         if (unlikely(anon_vma_prepare(vma)))
2146                 return -ENOMEM;
2147         vma_lock_anon_vma(vma);
2148
2149         /*
2150          * vma->vm_start/vm_end cannot change under us because the caller
2151          * is required to hold the mmap_sem in read mode.  We need the
2152          * anon_vma lock to serialize against concurrent expand_stacks.
2153          * Also guard against wrapping around to address 0.
2154          */
2155         if (address < PAGE_ALIGN(address+4))
2156                 address = PAGE_ALIGN(address+4);
2157         else {
2158                 vma_unlock_anon_vma(vma);
2159                 return -ENOMEM;
2160         }
2161         error = 0;
2162
2163         /* Somebody else might have raced and expanded it already */
2164         if (address > vma->vm_end) {
2165                 unsigned long size, grow;
2166
2167                 size = address - vma->vm_start;
2168                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2169
2170                 error = -ENOMEM;
2171                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2172                         error = acct_stack_growth(vma, size, grow);
2173                         if (!error) {
2174                                 /*
2175                                  * vma_gap_update() doesn't support concurrent
2176                                  * updates, but we only hold a shared mmap_sem
2177                                  * lock here, so we need to protect against
2178                                  * concurrent vma expansions.
2179                                  * vma_lock_anon_vma() doesn't help here, as
2180                                  * we don't guarantee that all growable vmas
2181                                  * in a mm share the same root anon vma.
2182                                  * So, we reuse mm->page_table_lock to guard
2183                                  * against concurrent vma expansions.
2184                                  */
2185                                 spin_lock(&vma->vm_mm->page_table_lock);
2186                                 anon_vma_interval_tree_pre_update_vma(vma);
2187                                 vma->vm_end = address;
2188                                 anon_vma_interval_tree_post_update_vma(vma);
2189                                 if (vma->vm_next)
2190                                         vma_gap_update(vma->vm_next);
2191                                 else
2192                                         vma->vm_mm->highest_vm_end = address;
2193                                 spin_unlock(&vma->vm_mm->page_table_lock);
2194
2195                                 perf_event_mmap(vma);
2196                         }
2197                 }
2198         }
2199         vma_unlock_anon_vma(vma);
2200         khugepaged_enter_vma_merge(vma);
2201         validate_mm(vma->vm_mm);
2202         return error;
2203 }
2204 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2205
2206 /*
2207  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2208  */
2209 int expand_downwards(struct vm_area_struct *vma,
2210                                    unsigned long address)
2211 {
2212         int error;
2213
2214         /*
2215          * We must make sure the anon_vma is allocated
2216          * so that the anon_vma locking is not a noop.
2217          */
2218         if (unlikely(anon_vma_prepare(vma)))
2219                 return -ENOMEM;
2220
2221         address &= PAGE_MASK;
2222         error = security_mmap_addr(address);
2223         if (error)
2224                 return error;
2225
2226         vma_lock_anon_vma(vma);
2227
2228         /*
2229          * vma->vm_start/vm_end cannot change under us because the caller
2230          * is required to hold the mmap_sem in read mode.  We need the
2231          * anon_vma lock to serialize against concurrent expand_stacks.
2232          */
2233
2234         /* Somebody else might have raced and expanded it already */
2235         if (address < vma->vm_start) {
2236                 unsigned long size, grow;
2237
2238                 size = vma->vm_end - address;
2239                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2240
2241                 error = -ENOMEM;
2242                 if (grow <= vma->vm_pgoff) {
2243                         error = acct_stack_growth(vma, size, grow);
2244                         if (!error) {
2245                                 /*
2246                                  * vma_gap_update() doesn't support concurrent
2247                                  * updates, but we only hold a shared mmap_sem
2248                                  * lock here, so we need to protect against
2249                                  * concurrent vma expansions.
2250                                  * vma_lock_anon_vma() doesn't help here, as
2251                                  * we don't guarantee that all growable vmas
2252                                  * in a mm share the same root anon vma.
2253                                  * So, we reuse mm->page_table_lock to guard
2254                                  * against concurrent vma expansions.
2255                                  */
2256                                 spin_lock(&vma->vm_mm->page_table_lock);
2257                                 anon_vma_interval_tree_pre_update_vma(vma);
2258                                 vma->vm_start = address;
2259                                 vma->vm_pgoff -= grow;
2260                                 anon_vma_interval_tree_post_update_vma(vma);
2261                                 vma_gap_update(vma);
2262                                 spin_unlock(&vma->vm_mm->page_table_lock);
2263
2264                                 perf_event_mmap(vma);
2265                         }
2266                 }
2267         }
2268         vma_unlock_anon_vma(vma);
2269         khugepaged_enter_vma_merge(vma);
2270         validate_mm(vma->vm_mm);
2271         return error;
2272 }
2273
2274 /*
2275  * Note how expand_stack() refuses to expand the stack all the way to
2276  * abut the next virtual mapping, *unless* that mapping itself is also
2277  * a stack mapping. We want to leave room for a guard page, after all
2278  * (the guard page itself is not added here, that is done by the
2279  * actual page faulting logic)
2280  *
2281  * This matches the behavior of the guard page logic (see mm/memory.c:
2282  * check_stack_guard_page()), which only allows the guard page to be
2283  * removed under these circumstances.
2284  */
2285 #ifdef CONFIG_STACK_GROWSUP
2286 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2287 {
2288         struct vm_area_struct *next;
2289
2290         address &= PAGE_MASK;
2291         next = vma->vm_next;
2292         if (next && next->vm_start == address + PAGE_SIZE) {
2293                 if (!(next->vm_flags & VM_GROWSUP))
2294                         return -ENOMEM;
2295         }
2296         return expand_upwards(vma, address);
2297 }
2298
2299 struct vm_area_struct *
2300 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2301 {
2302         struct vm_area_struct *vma, *prev;
2303
2304         addr &= PAGE_MASK;
2305         vma = find_vma_prev(mm, addr, &prev);
2306         if (vma && (vma->vm_start <= addr))
2307                 return vma;
2308         if (!prev || expand_stack(prev, addr))
2309                 return NULL;
2310         if (prev->vm_flags & VM_LOCKED)
2311                 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2312         return prev;
2313 }
2314 #else
2315 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2316 {
2317         struct vm_area_struct *prev;
2318
2319         address &= PAGE_MASK;
2320         prev = vma->vm_prev;
2321         if (prev && prev->vm_end == address) {
2322                 if (!(prev->vm_flags & VM_GROWSDOWN))
2323                         return -ENOMEM;
2324         }
2325         return expand_downwards(vma, address);
2326 }
2327
2328 struct vm_area_struct *
2329 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2330 {
2331         struct vm_area_struct *vma;
2332         unsigned long start;
2333
2334         addr &= PAGE_MASK;
2335         vma = find_vma(mm, addr);
2336         if (!vma)
2337                 return NULL;
2338         if (vma->vm_start <= addr)
2339                 return vma;
2340         if (!(vma->vm_flags & VM_GROWSDOWN))
2341                 return NULL;
2342         start = vma->vm_start;
2343         if (expand_stack(vma, addr))
2344                 return NULL;
2345         if (vma->vm_flags & VM_LOCKED)
2346                 __mlock_vma_pages_range(vma, addr, start, NULL);
2347         return vma;
2348 }
2349 #endif
2350
2351 /*
2352  * Ok - we have the memory areas we should free on the vma list,
2353  * so release them, and do the vma updates.
2354  *
2355  * Called with the mm semaphore held.
2356  */
2357 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2358 {
2359         unsigned long nr_accounted = 0;
2360
2361         /* Update high watermark before we lower total_vm */
2362         update_hiwater_vm(mm);
2363         do {
2364                 long nrpages = vma_pages(vma);
2365
2366                 if (vma->vm_flags & VM_ACCOUNT)
2367                         nr_accounted += nrpages;
2368                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2369                 vma = remove_vma(vma);
2370         } while (vma);
2371         vm_unacct_memory(nr_accounted);
2372         validate_mm(mm);
2373 }
2374
2375 /*
2376  * Get rid of page table information in the indicated region.
2377  *
2378  * Called with the mm semaphore held.
2379  */
2380 static void unmap_region(struct mm_struct *mm,
2381                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2382                 unsigned long start, unsigned long end)
2383 {
2384         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2385         struct mmu_gather tlb;
2386
2387         lru_add_drain();
2388         tlb_gather_mmu(&tlb, mm, start, end);
2389         update_hiwater_rss(mm);
2390         unmap_vmas(&tlb, vma, start, end);
2391         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2392                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2393         tlb_finish_mmu(&tlb, start, end);
2394 }
2395
2396 /*
2397  * Create a list of vma's touched by the unmap, removing them from the mm's
2398  * vma list as we go..
2399  */
2400 static void
2401 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2402         struct vm_area_struct *prev, unsigned long end)
2403 {
2404         struct vm_area_struct **insertion_point;
2405         struct vm_area_struct *tail_vma = NULL;
2406
2407         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2408         vma->vm_prev = NULL;
2409         do {
2410                 vma_rb_erase(vma, &mm->mm_rb);
2411                 mm->map_count--;
2412                 tail_vma = vma;
2413                 vma = vma->vm_next;
2414         } while (vma && vma->vm_start < end);
2415         *insertion_point = vma;
2416         if (vma) {
2417                 vma->vm_prev = prev;
2418                 vma_gap_update(vma);
2419         } else
2420                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2421         tail_vma->vm_next = NULL;
2422
2423         /* Kill the cache */
2424         vmacache_invalidate(mm);
2425 }
2426
2427 /*
2428  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2429  * munmap path where it doesn't make sense to fail.
2430  */
2431 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2432               unsigned long addr, int new_below)
2433 {
2434         struct vm_area_struct *new;
2435         int err = -ENOMEM;
2436
2437         if (is_vm_hugetlb_page(vma) && (addr &
2438                                         ~(huge_page_mask(hstate_vma(vma)))))
2439                 return -EINVAL;
2440
2441         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2442         if (!new)
2443                 goto out_err;
2444
2445         /* most fields are the same, copy all, and then fixup */
2446         *new = *vma;
2447
2448         INIT_LIST_HEAD(&new->anon_vma_chain);
2449
2450         if (new_below)
2451                 new->vm_end = addr;
2452         else {
2453                 new->vm_start = addr;
2454                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2455         }
2456
2457         err = vma_dup_policy(vma, new);
2458         if (err)
2459                 goto out_free_vma;
2460
2461         if (anon_vma_clone(new, vma))
2462                 goto out_free_mpol;
2463
2464         if (new->vm_file)
2465                 get_file(new->vm_file);
2466
2467         if (new->vm_ops && new->vm_ops->open)
2468                 new->vm_ops->open(new);
2469
2470         if (new_below)
2471                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2472                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2473         else
2474                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2475
2476         /* Success. */
2477         if (!err)
2478                 return 0;
2479
2480         /* Clean everything up if vma_adjust failed. */
2481         if (new->vm_ops && new->vm_ops->close)
2482                 new->vm_ops->close(new);
2483         if (new->vm_file)
2484                 fput(new->vm_file);
2485         unlink_anon_vmas(new);
2486  out_free_mpol:
2487         mpol_put(vma_policy(new));
2488  out_free_vma:
2489         kmem_cache_free(vm_area_cachep, new);
2490  out_err:
2491         return err;
2492 }
2493
2494 /*
2495  * Split a vma into two pieces at address 'addr', a new vma is allocated
2496  * either for the first part or the tail.
2497  */
2498 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2499               unsigned long addr, int new_below)
2500 {
2501         if (mm->map_count >= sysctl_max_map_count)
2502                 return -ENOMEM;
2503
2504         return __split_vma(mm, vma, addr, new_below);
2505 }
2506
2507 /* Munmap is split into 2 main parts -- this part which finds
2508  * what needs doing, and the areas themselves, which do the
2509  * work.  This now handles partial unmappings.
2510  * Jeremy Fitzhardinge <jeremy@goop.org>
2511  */
2512 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2513 {
2514         unsigned long end;
2515         struct vm_area_struct *vma, *prev, *last;
2516
2517         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2518                 return -EINVAL;
2519
2520         len = PAGE_ALIGN(len);
2521         if (len == 0)
2522                 return -EINVAL;
2523
2524         /* Find the first overlapping VMA */
2525         vma = find_vma(mm, start);
2526         if (!vma)
2527                 return 0;
2528         prev = vma->vm_prev;
2529         /* we have  start < vma->vm_end  */
2530
2531         /* if it doesn't overlap, we have nothing.. */
2532         end = start + len;
2533         if (vma->vm_start >= end)
2534                 return 0;
2535
2536         /*
2537          * If we need to split any vma, do it now to save pain later.
2538          *
2539          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2540          * unmapped vm_area_struct will remain in use: so lower split_vma
2541          * places tmp vma above, and higher split_vma places tmp vma below.
2542          */
2543         if (start > vma->vm_start) {
2544                 int error;
2545
2546                 /*
2547                  * Make sure that map_count on return from munmap() will
2548                  * not exceed its limit; but let map_count go just above
2549                  * its limit temporarily, to help free resources as expected.
2550                  */
2551                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2552                         return -ENOMEM;
2553
2554                 error = __split_vma(mm, vma, start, 0);
2555                 if (error)
2556                         return error;
2557                 prev = vma;
2558         }
2559
2560         /* Does it split the last one? */
2561         last = find_vma(mm, end);
2562         if (last && end > last->vm_start) {
2563                 int error = __split_vma(mm, last, end, 1);
2564                 if (error)
2565                         return error;
2566         }
2567         vma = prev ? prev->vm_next : mm->mmap;
2568
2569         /*
2570          * unlock any mlock()ed ranges before detaching vmas
2571          */
2572         if (mm->locked_vm) {
2573                 struct vm_area_struct *tmp = vma;
2574                 while (tmp && tmp->vm_start < end) {
2575                         if (tmp->vm_flags & VM_LOCKED) {
2576                                 mm->locked_vm -= vma_pages(tmp);
2577                                 munlock_vma_pages_all(tmp);
2578                         }
2579                         tmp = tmp->vm_next;
2580                 }
2581         }
2582
2583         /*
2584          * Remove the vma's, and unmap the actual pages
2585          */
2586         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2587         unmap_region(mm, vma, prev, start, end);
2588
2589         /* Fix up all other VM information */
2590         remove_vma_list(mm, vma);
2591
2592         return 0;
2593 }
2594
2595 int vm_munmap(unsigned long start, size_t len)
2596 {
2597         int ret;
2598         struct mm_struct *mm = current->mm;
2599
2600         down_write(&mm->mmap_sem);
2601         ret = do_munmap(mm, start, len);
2602         up_write(&mm->mmap_sem);
2603         return ret;
2604 }
2605 EXPORT_SYMBOL(vm_munmap);
2606
2607 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2608 {
2609         profile_munmap(addr);
2610         return vm_munmap(addr, len);
2611 }
2612
2613 static inline void verify_mm_writelocked(struct mm_struct *mm)
2614 {
2615 #ifdef CONFIG_DEBUG_VM
2616         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2617                 WARN_ON(1);
2618                 up_read(&mm->mmap_sem);
2619         }
2620 #endif
2621 }
2622
2623 /*
2624  *  this is really a simplified "do_mmap".  it only handles
2625  *  anonymous maps.  eventually we may be able to do some
2626  *  brk-specific accounting here.
2627  */
2628 static unsigned long do_brk(unsigned long addr, unsigned long len)
2629 {
2630         struct mm_struct *mm = current->mm;
2631         struct vm_area_struct *vma, *prev;
2632         unsigned long flags;
2633         struct rb_node **rb_link, *rb_parent;
2634         pgoff_t pgoff = addr >> PAGE_SHIFT;
2635         int error;
2636
2637         len = PAGE_ALIGN(len);
2638         if (!len)
2639                 return addr;
2640
2641         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2642
2643         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2644         if (error & ~PAGE_MASK)
2645                 return error;
2646
2647         error = mlock_future_check(mm, mm->def_flags, len);
2648         if (error)
2649                 return error;
2650
2651         /*
2652          * mm->mmap_sem is required to protect against another thread
2653          * changing the mappings in case we sleep.
2654          */
2655         verify_mm_writelocked(mm);
2656
2657         /*
2658          * Clear old maps.  this also does some error checking for us
2659          */
2660  munmap_back:
2661         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2662                 if (do_munmap(mm, addr, len))
2663                         return -ENOMEM;
2664                 goto munmap_back;
2665         }
2666
2667         /* Check against address space limits *after* clearing old maps... */
2668         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2669                 return -ENOMEM;
2670
2671         if (mm->map_count > sysctl_max_map_count)
2672                 return -ENOMEM;
2673
2674         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2675                 return -ENOMEM;
2676
2677         /* Can we just expand an old private anonymous mapping? */
2678         vma = vma_merge(mm, prev, addr, addr + len, flags,
2679                                         NULL, NULL, pgoff, NULL);
2680         if (vma)
2681                 goto out;
2682
2683         /*
2684          * create a vma struct for an anonymous mapping
2685          */
2686         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2687         if (!vma) {
2688                 vm_unacct_memory(len >> PAGE_SHIFT);
2689                 return -ENOMEM;
2690         }
2691
2692         INIT_LIST_HEAD(&vma->anon_vma_chain);
2693         vma->vm_mm = mm;
2694         vma->vm_start = addr;
2695         vma->vm_end = addr + len;
2696         vma->vm_pgoff = pgoff;
2697         vma->vm_flags = flags;
2698         vma->vm_page_prot = vm_get_page_prot(flags);
2699         vma_link(mm, vma, prev, rb_link, rb_parent);
2700 out:
2701         perf_event_mmap(vma);
2702         mm->total_vm += len >> PAGE_SHIFT;
2703         if (flags & VM_LOCKED)
2704                 mm->locked_vm += (len >> PAGE_SHIFT);
2705         vma->vm_flags |= VM_SOFTDIRTY;
2706         return addr;
2707 }
2708
2709 unsigned long vm_brk(unsigned long addr, unsigned long len)
2710 {
2711         struct mm_struct *mm = current->mm;
2712         unsigned long ret;
2713         bool populate;
2714
2715         down_write(&mm->mmap_sem);
2716         ret = do_brk(addr, len);
2717         populate = ((mm->def_flags & VM_LOCKED) != 0);
2718         up_write(&mm->mmap_sem);
2719         if (populate)
2720                 mm_populate(addr, len);
2721         return ret;
2722 }
2723 EXPORT_SYMBOL(vm_brk);
2724
2725 /* Release all mmaps. */
2726 void exit_mmap(struct mm_struct *mm)
2727 {
2728         struct mmu_gather tlb;
2729         struct vm_area_struct *vma;
2730         unsigned long nr_accounted = 0;
2731
2732         /* mm's last user has gone, and its about to be pulled down */
2733         mmu_notifier_release(mm);
2734
2735         if (mm->locked_vm) {
2736                 vma = mm->mmap;
2737                 while (vma) {
2738                         if (vma->vm_flags & VM_LOCKED)
2739                                 munlock_vma_pages_all(vma);
2740                         vma = vma->vm_next;
2741                 }
2742         }
2743
2744         arch_exit_mmap(mm);
2745
2746         vma = mm->mmap;
2747         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2748                 return;
2749
2750         lru_add_drain();
2751         flush_cache_mm(mm);
2752         tlb_gather_mmu(&tlb, mm, 0, -1);
2753         /* update_hiwater_rss(mm) here? but nobody should be looking */
2754         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2755         unmap_vmas(&tlb, vma, 0, -1);
2756
2757         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2758         tlb_finish_mmu(&tlb, 0, -1);
2759
2760         /*
2761          * Walk the list again, actually closing and freeing it,
2762          * with preemption enabled, without holding any MM locks.
2763          */
2764         while (vma) {
2765                 if (vma->vm_flags & VM_ACCOUNT)
2766                         nr_accounted += vma_pages(vma);
2767                 vma = remove_vma(vma);
2768         }
2769         vm_unacct_memory(nr_accounted);
2770
2771         WARN_ON(atomic_long_read(&mm->nr_ptes) >
2772                         (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2773 }
2774
2775 /* Insert vm structure into process list sorted by address
2776  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2777  * then i_mmap_mutex is taken here.
2778  */
2779 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2780 {
2781         struct vm_area_struct *prev;
2782         struct rb_node **rb_link, *rb_parent;
2783
2784         /*
2785          * The vm_pgoff of a purely anonymous vma should be irrelevant
2786          * until its first write fault, when page's anon_vma and index
2787          * are set.  But now set the vm_pgoff it will almost certainly
2788          * end up with (unless mremap moves it elsewhere before that
2789          * first wfault), so /proc/pid/maps tells a consistent story.
2790          *
2791          * By setting it to reflect the virtual start address of the
2792          * vma, merges and splits can happen in a seamless way, just
2793          * using the existing file pgoff checks and manipulations.
2794          * Similarly in do_mmap_pgoff and in do_brk.
2795          */
2796         if (!vma->vm_file) {
2797                 BUG_ON(vma->anon_vma);
2798                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2799         }
2800         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2801                            &prev, &rb_link, &rb_parent))
2802                 return -ENOMEM;
2803         if ((vma->vm_flags & VM_ACCOUNT) &&
2804              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2805                 return -ENOMEM;
2806
2807         vma_link(mm, vma, prev, rb_link, rb_parent);
2808         return 0;
2809 }
2810
2811 /*
2812  * Copy the vma structure to a new location in the same mm,
2813  * prior to moving page table entries, to effect an mremap move.
2814  */
2815 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2816         unsigned long addr, unsigned long len, pgoff_t pgoff,
2817         bool *need_rmap_locks)
2818 {
2819         struct vm_area_struct *vma = *vmap;
2820         unsigned long vma_start = vma->vm_start;
2821         struct mm_struct *mm = vma->vm_mm;
2822         struct vm_area_struct *new_vma, *prev;
2823         struct rb_node **rb_link, *rb_parent;
2824         bool faulted_in_anon_vma = true;
2825
2826         /*
2827          * If anonymous vma has not yet been faulted, update new pgoff
2828          * to match new location, to increase its chance of merging.
2829          */
2830         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2831                 pgoff = addr >> PAGE_SHIFT;
2832                 faulted_in_anon_vma = false;
2833         }
2834
2835         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2836                 return NULL;    /* should never get here */
2837         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2838                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2839         if (new_vma) {
2840                 /*
2841                  * Source vma may have been merged into new_vma
2842                  */
2843                 if (unlikely(vma_start >= new_vma->vm_start &&
2844                              vma_start < new_vma->vm_end)) {
2845                         /*
2846                          * The only way we can get a vma_merge with
2847                          * self during an mremap is if the vma hasn't
2848                          * been faulted in yet and we were allowed to
2849                          * reset the dst vma->vm_pgoff to the
2850                          * destination address of the mremap to allow
2851                          * the merge to happen. mremap must change the
2852                          * vm_pgoff linearity between src and dst vmas
2853                          * (in turn preventing a vma_merge) to be
2854                          * safe. It is only safe to keep the vm_pgoff
2855                          * linear if there are no pages mapped yet.
2856                          */
2857                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2858                         *vmap = vma = new_vma;
2859                 }
2860                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2861         } else {
2862                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2863                 if (new_vma) {
2864                         *new_vma = *vma;
2865                         new_vma->vm_start = addr;
2866                         new_vma->vm_end = addr + len;
2867                         new_vma->vm_pgoff = pgoff;
2868                         if (vma_dup_policy(vma, new_vma))
2869                                 goto out_free_vma;
2870                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2871                         if (anon_vma_clone(new_vma, vma))
2872                                 goto out_free_mempol;
2873                         if (new_vma->vm_file)
2874                                 get_file(new_vma->vm_file);
2875                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2876                                 new_vma->vm_ops->open(new_vma);
2877                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2878                         *need_rmap_locks = false;
2879                 }
2880         }
2881         return new_vma;
2882
2883  out_free_mempol:
2884         mpol_put(vma_policy(new_vma));
2885  out_free_vma:
2886         kmem_cache_free(vm_area_cachep, new_vma);
2887         return NULL;
2888 }
2889
2890 /*
2891  * Return true if the calling process may expand its vm space by the passed
2892  * number of pages
2893  */
2894 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2895 {
2896         unsigned long cur = mm->total_vm;       /* pages */
2897         unsigned long lim;
2898
2899         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2900
2901         if (cur + npages > lim)
2902                 return 0;
2903         return 1;
2904 }
2905
2906 static int special_mapping_fault(struct vm_area_struct *vma,
2907                                  struct vm_fault *vmf);
2908
2909 /*
2910  * Having a close hook prevents vma merging regardless of flags.
2911  */
2912 static void special_mapping_close(struct vm_area_struct *vma)
2913 {
2914 }
2915
2916 static const char *special_mapping_name(struct vm_area_struct *vma)
2917 {
2918         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2919 }
2920
2921 static const struct vm_operations_struct special_mapping_vmops = {
2922         .close = special_mapping_close,
2923         .fault = special_mapping_fault,
2924         .name = special_mapping_name,
2925 };
2926
2927 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2928         .close = special_mapping_close,
2929         .fault = special_mapping_fault,
2930 };
2931
2932 static int special_mapping_fault(struct vm_area_struct *vma,
2933                                 struct vm_fault *vmf)
2934 {
2935         pgoff_t pgoff;
2936         struct page **pages;
2937
2938         /*
2939          * special mappings have no vm_file, and in that case, the mm
2940          * uses vm_pgoff internally. So we have to subtract it from here.
2941          * We are allowed to do this because we are the mm; do not copy
2942          * this code into drivers!
2943          */
2944         pgoff = vmf->pgoff - vma->vm_pgoff;
2945
2946         if (vma->vm_ops == &legacy_special_mapping_vmops)
2947                 pages = vma->vm_private_data;
2948         else
2949                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
2950                         pages;
2951
2952         for (; pgoff && *pages; ++pages)
2953                 pgoff--;
2954
2955         if (*pages) {
2956                 struct page *page = *pages;
2957                 get_page(page);
2958                 vmf->page = page;
2959                 return 0;
2960         }
2961
2962         return VM_FAULT_SIGBUS;
2963 }
2964
2965 static struct vm_area_struct *__install_special_mapping(
2966         struct mm_struct *mm,
2967         unsigned long addr, unsigned long len,
2968         unsigned long vm_flags, const struct vm_operations_struct *ops,
2969         void *priv)
2970 {
2971         int ret;
2972         struct vm_area_struct *vma;
2973
2974         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2975         if (unlikely(vma == NULL))
2976                 return ERR_PTR(-ENOMEM);
2977
2978         INIT_LIST_HEAD(&vma->anon_vma_chain);
2979         vma->vm_mm = mm;
2980         vma->vm_start = addr;
2981         vma->vm_end = addr + len;
2982
2983         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2984         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2985
2986         vma->vm_ops = ops;
2987         vma->vm_private_data = priv;
2988
2989         ret = insert_vm_struct(mm, vma);
2990         if (ret)
2991                 goto out;
2992
2993         mm->total_vm += len >> PAGE_SHIFT;
2994
2995         perf_event_mmap(vma);
2996
2997         return vma;
2998
2999 out:
3000         kmem_cache_free(vm_area_cachep, vma);
3001         return ERR_PTR(ret);
3002 }
3003
3004 /*
3005  * Called with mm->mmap_sem held for writing.
3006  * Insert a new vma covering the given region, with the given flags.
3007  * Its pages are supplied by the given array of struct page *.
3008  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3009  * The region past the last page supplied will always produce SIGBUS.
3010  * The array pointer and the pages it points to are assumed to stay alive
3011  * for as long as this mapping might exist.
3012  */
3013 struct vm_area_struct *_install_special_mapping(
3014         struct mm_struct *mm,
3015         unsigned long addr, unsigned long len,
3016         unsigned long vm_flags, const struct vm_special_mapping *spec)
3017 {
3018         return __install_special_mapping(mm, addr, len, vm_flags,
3019                                          &special_mapping_vmops, (void *)spec);
3020 }
3021
3022 int install_special_mapping(struct mm_struct *mm,
3023                             unsigned long addr, unsigned long len,
3024                             unsigned long vm_flags, struct page **pages)
3025 {
3026         struct vm_area_struct *vma = __install_special_mapping(
3027                 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3028                 (void *)pages);
3029
3030         return PTR_ERR_OR_ZERO(vma);
3031 }
3032
3033 static DEFINE_MUTEX(mm_all_locks_mutex);
3034
3035 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3036 {
3037         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3038                 /*
3039                  * The LSB of head.next can't change from under us
3040                  * because we hold the mm_all_locks_mutex.
3041                  */
3042                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3043                 /*
3044                  * We can safely modify head.next after taking the
3045                  * anon_vma->root->rwsem. If some other vma in this mm shares
3046                  * the same anon_vma we won't take it again.
3047                  *
3048                  * No need of atomic instructions here, head.next
3049                  * can't change from under us thanks to the
3050                  * anon_vma->root->rwsem.
3051                  */
3052                 if (__test_and_set_bit(0, (unsigned long *)
3053                                        &anon_vma->root->rb_root.rb_node))
3054                         BUG();
3055         }
3056 }
3057
3058 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3059 {
3060         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3061                 /*
3062                  * AS_MM_ALL_LOCKS can't change from under us because
3063                  * we hold the mm_all_locks_mutex.
3064                  *
3065                  * Operations on ->flags have to be atomic because
3066                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3067                  * mm_all_locks_mutex, there may be other cpus
3068                  * changing other bitflags in parallel to us.
3069                  */
3070                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3071                         BUG();
3072                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3073         }
3074 }
3075
3076 /*
3077  * This operation locks against the VM for all pte/vma/mm related
3078  * operations that could ever happen on a certain mm. This includes
3079  * vmtruncate, try_to_unmap, and all page faults.
3080  *
3081  * The caller must take the mmap_sem in write mode before calling
3082  * mm_take_all_locks(). The caller isn't allowed to release the
3083  * mmap_sem until mm_drop_all_locks() returns.
3084  *
3085  * mmap_sem in write mode is required in order to block all operations
3086  * that could modify pagetables and free pages without need of
3087  * altering the vma layout (for example populate_range() with
3088  * nonlinear vmas). It's also needed in write mode to avoid new
3089  * anon_vmas to be associated with existing vmas.
3090  *
3091  * A single task can't take more than one mm_take_all_locks() in a row
3092  * or it would deadlock.
3093  *
3094  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3095  * mapping->flags avoid to take the same lock twice, if more than one
3096  * vma in this mm is backed by the same anon_vma or address_space.
3097  *
3098  * We can take all the locks in random order because the VM code
3099  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3100  * takes more than one of them in a row. Secondly we're protected
3101  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3102  *
3103  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3104  * that may have to take thousand of locks.
3105  *
3106  * mm_take_all_locks() can fail if it's interrupted by signals.
3107  */
3108 int mm_take_all_locks(struct mm_struct *mm)
3109 {
3110         struct vm_area_struct *vma;
3111         struct anon_vma_chain *avc;
3112
3113         BUG_ON(down_read_trylock(&mm->mmap_sem));
3114
3115         mutex_lock(&mm_all_locks_mutex);
3116
3117         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3118                 if (signal_pending(current))
3119                         goto out_unlock;
3120                 if (vma->vm_file && vma->vm_file->f_mapping)
3121                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3122         }
3123
3124         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3125                 if (signal_pending(current))
3126                         goto out_unlock;
3127                 if (vma->anon_vma)
3128                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3129                                 vm_lock_anon_vma(mm, avc->anon_vma);
3130         }
3131
3132         return 0;
3133
3134 out_unlock:
3135         mm_drop_all_locks(mm);
3136         return -EINTR;
3137 }
3138
3139 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3140 {
3141         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3142                 /*
3143                  * The LSB of head.next can't change to 0 from under
3144                  * us because we hold the mm_all_locks_mutex.
3145                  *
3146                  * We must however clear the bitflag before unlocking
3147                  * the vma so the users using the anon_vma->rb_root will
3148                  * never see our bitflag.
3149                  *
3150                  * No need of atomic instructions here, head.next
3151                  * can't change from under us until we release the
3152                  * anon_vma->root->rwsem.
3153                  */
3154                 if (!__test_and_clear_bit(0, (unsigned long *)
3155                                           &anon_vma->root->rb_root.rb_node))
3156                         BUG();
3157                 anon_vma_unlock_write(anon_vma);
3158         }
3159 }
3160
3161 static void vm_unlock_mapping(struct address_space *mapping)
3162 {
3163         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3164                 /*
3165                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3166                  * because we hold the mm_all_locks_mutex.
3167                  */
3168                 mutex_unlock(&mapping->i_mmap_mutex);
3169                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3170                                         &mapping->flags))
3171                         BUG();
3172         }
3173 }
3174
3175 /*
3176  * The mmap_sem cannot be released by the caller until
3177  * mm_drop_all_locks() returns.
3178  */
3179 void mm_drop_all_locks(struct mm_struct *mm)
3180 {
3181         struct vm_area_struct *vma;
3182         struct anon_vma_chain *avc;
3183
3184         BUG_ON(down_read_trylock(&mm->mmap_sem));
3185         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3186
3187         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3188                 if (vma->anon_vma)
3189                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3190                                 vm_unlock_anon_vma(avc->anon_vma);
3191                 if (vma->vm_file && vma->vm_file->f_mapping)
3192                         vm_unlock_mapping(vma->vm_file->f_mapping);
3193         }
3194
3195         mutex_unlock(&mm_all_locks_mutex);
3196 }
3197
3198 /*
3199  * initialise the VMA slab
3200  */
3201 void __init mmap_init(void)
3202 {
3203         int ret;
3204
3205         ret = percpu_counter_init(&vm_committed_as, 0);
3206         VM_BUG_ON(ret);
3207 }
3208
3209 /*
3210  * Initialise sysctl_user_reserve_kbytes.
3211  *
3212  * This is intended to prevent a user from starting a single memory hogging
3213  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3214  * mode.
3215  *
3216  * The default value is min(3% of free memory, 128MB)
3217  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3218  */
3219 static int init_user_reserve(void)
3220 {
3221         unsigned long free_kbytes;
3222
3223         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3224
3225         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3226         return 0;
3227 }
3228 subsys_initcall(init_user_reserve);
3229
3230 /*
3231  * Initialise sysctl_admin_reserve_kbytes.
3232  *
3233  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3234  * to log in and kill a memory hogging process.
3235  *
3236  * Systems with more than 256MB will reserve 8MB, enough to recover
3237  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3238  * only reserve 3% of free pages by default.
3239  */
3240 static int init_admin_reserve(void)
3241 {
3242         unsigned long free_kbytes;
3243
3244         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3245
3246         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3247         return 0;
3248 }
3249 subsys_initcall(init_admin_reserve);
3250
3251 /*
3252  * Reinititalise user and admin reserves if memory is added or removed.
3253  *
3254  * The default user reserve max is 128MB, and the default max for the
3255  * admin reserve is 8MB. These are usually, but not always, enough to
3256  * enable recovery from a memory hogging process using login/sshd, a shell,
3257  * and tools like top. It may make sense to increase or even disable the
3258  * reserve depending on the existence of swap or variations in the recovery
3259  * tools. So, the admin may have changed them.
3260  *
3261  * If memory is added and the reserves have been eliminated or increased above
3262  * the default max, then we'll trust the admin.
3263  *
3264  * If memory is removed and there isn't enough free memory, then we
3265  * need to reset the reserves.
3266  *
3267  * Otherwise keep the reserve set by the admin.
3268  */
3269 static int reserve_mem_notifier(struct notifier_block *nb,
3270                              unsigned long action, void *data)
3271 {
3272         unsigned long tmp, free_kbytes;
3273
3274         switch (action) {
3275         case MEM_ONLINE:
3276                 /* Default max is 128MB. Leave alone if modified by operator. */
3277                 tmp = sysctl_user_reserve_kbytes;
3278                 if (0 < tmp && tmp < (1UL << 17))
3279                         init_user_reserve();
3280
3281                 /* Default max is 8MB.  Leave alone if modified by operator. */
3282                 tmp = sysctl_admin_reserve_kbytes;
3283                 if (0 < tmp && tmp < (1UL << 13))
3284                         init_admin_reserve();
3285
3286                 break;
3287         case MEM_OFFLINE:
3288                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3289
3290                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3291                         init_user_reserve();
3292                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3293                                 sysctl_user_reserve_kbytes);
3294                 }
3295
3296                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3297                         init_admin_reserve();
3298                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3299                                 sysctl_admin_reserve_kbytes);
3300                 }
3301                 break;
3302         default:
3303                 break;
3304         }
3305         return NOTIFY_OK;
3306 }
3307
3308 static struct notifier_block reserve_mem_nb = {
3309         .notifier_call = reserve_mem_notifier,
3310 };
3311
3312 static int __meminit init_reserve_notifier(void)
3313 {
3314         if (register_hotmemory_notifier(&reserve_mem_nb))
3315                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3316
3317         return 0;
3318 }
3319 subsys_initcall(init_reserve_notifier);