mm: replace get_user_pages_unlocked() write/force parameters with gup_flags
[cascardo/linux.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37
38 #include <asm/uaccess.h>
39 #include <asm/tlb.h>
40 #include <asm/tlbflush.h>
41 #include <asm/mmu_context.h>
42 #include "internal.h"
43
44 void *high_memory;
45 EXPORT_SYMBOL(high_memory);
46 struct page *mem_map;
47 unsigned long max_mapnr;
48 EXPORT_SYMBOL(max_mapnr);
49 unsigned long highest_memmap_pfn;
50 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
51 int heap_stack_gap = 0;
52
53 atomic_long_t mmap_pages_allocated;
54
55 EXPORT_SYMBOL(mem_map);
56
57 /* list of mapped, potentially shareable regions */
58 static struct kmem_cache *vm_region_jar;
59 struct rb_root nommu_region_tree = RB_ROOT;
60 DECLARE_RWSEM(nommu_region_sem);
61
62 const struct vm_operations_struct generic_file_vm_ops = {
63 };
64
65 /*
66  * Return the total memory allocated for this pointer, not
67  * just what the caller asked for.
68  *
69  * Doesn't have to be accurate, i.e. may have races.
70  */
71 unsigned int kobjsize(const void *objp)
72 {
73         struct page *page;
74
75         /*
76          * If the object we have should not have ksize performed on it,
77          * return size of 0
78          */
79         if (!objp || !virt_addr_valid(objp))
80                 return 0;
81
82         page = virt_to_head_page(objp);
83
84         /*
85          * If the allocator sets PageSlab, we know the pointer came from
86          * kmalloc().
87          */
88         if (PageSlab(page))
89                 return ksize(objp);
90
91         /*
92          * If it's not a compound page, see if we have a matching VMA
93          * region. This test is intentionally done in reverse order,
94          * so if there's no VMA, we still fall through and hand back
95          * PAGE_SIZE for 0-order pages.
96          */
97         if (!PageCompound(page)) {
98                 struct vm_area_struct *vma;
99
100                 vma = find_vma(current->mm, (unsigned long)objp);
101                 if (vma)
102                         return vma->vm_end - vma->vm_start;
103         }
104
105         /*
106          * The ksize() function is only guaranteed to work for pointers
107          * returned by kmalloc(). So handle arbitrary pointers here.
108          */
109         return PAGE_SIZE << compound_order(page);
110 }
111
112 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
113                       unsigned long start, unsigned long nr_pages,
114                       unsigned int foll_flags, struct page **pages,
115                       struct vm_area_struct **vmas, int *nonblocking)
116 {
117         struct vm_area_struct *vma;
118         unsigned long vm_flags;
119         int i;
120
121         /* calculate required read or write permissions.
122          * If FOLL_FORCE is set, we only require the "MAY" flags.
123          */
124         vm_flags  = (foll_flags & FOLL_WRITE) ?
125                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
126         vm_flags &= (foll_flags & FOLL_FORCE) ?
127                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
128
129         for (i = 0; i < nr_pages; i++) {
130                 vma = find_vma(mm, start);
131                 if (!vma)
132                         goto finish_or_fault;
133
134                 /* protect what we can, including chardevs */
135                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
136                     !(vm_flags & vma->vm_flags))
137                         goto finish_or_fault;
138
139                 if (pages) {
140                         pages[i] = virt_to_page(start);
141                         if (pages[i])
142                                 get_page(pages[i]);
143                 }
144                 if (vmas)
145                         vmas[i] = vma;
146                 start = (start + PAGE_SIZE) & PAGE_MASK;
147         }
148
149         return i;
150
151 finish_or_fault:
152         return i ? : -EFAULT;
153 }
154
155 /*
156  * get a list of pages in an address range belonging to the specified process
157  * and indicate the VMA that covers each page
158  * - this is potentially dodgy as we may end incrementing the page count of a
159  *   slab page or a secondary page from a compound page
160  * - don't permit access to VMAs that don't support it, such as I/O mappings
161  */
162 long get_user_pages(unsigned long start, unsigned long nr_pages,
163                     int write, int force, struct page **pages,
164                     struct vm_area_struct **vmas)
165 {
166         int flags = 0;
167
168         if (write)
169                 flags |= FOLL_WRITE;
170         if (force)
171                 flags |= FOLL_FORCE;
172
173         return __get_user_pages(current, current->mm, start, nr_pages, flags,
174                                 pages, vmas, NULL);
175 }
176 EXPORT_SYMBOL(get_user_pages);
177
178 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
179                             int write, int force, struct page **pages,
180                             int *locked)
181 {
182         return get_user_pages(start, nr_pages, write, force, pages, NULL);
183 }
184 EXPORT_SYMBOL(get_user_pages_locked);
185
186 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
187                                unsigned long start, unsigned long nr_pages,
188                                struct page **pages, unsigned int gup_flags)
189 {
190         long ret;
191         down_read(&mm->mmap_sem);
192         ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
193                                 NULL, NULL);
194         up_read(&mm->mmap_sem);
195         return ret;
196 }
197 EXPORT_SYMBOL(__get_user_pages_unlocked);
198
199 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
200                              struct page **pages, unsigned int gup_flags)
201 {
202         return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
203                                          pages, gup_flags);
204 }
205 EXPORT_SYMBOL(get_user_pages_unlocked);
206
207 /**
208  * follow_pfn - look up PFN at a user virtual address
209  * @vma: memory mapping
210  * @address: user virtual address
211  * @pfn: location to store found PFN
212  *
213  * Only IO mappings and raw PFN mappings are allowed.
214  *
215  * Returns zero and the pfn at @pfn on success, -ve otherwise.
216  */
217 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
218         unsigned long *pfn)
219 {
220         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
221                 return -EINVAL;
222
223         *pfn = address >> PAGE_SHIFT;
224         return 0;
225 }
226 EXPORT_SYMBOL(follow_pfn);
227
228 LIST_HEAD(vmap_area_list);
229
230 void vfree(const void *addr)
231 {
232         kfree(addr);
233 }
234 EXPORT_SYMBOL(vfree);
235
236 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
237 {
238         /*
239          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
240          * returns only a logical address.
241          */
242         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
243 }
244 EXPORT_SYMBOL(__vmalloc);
245
246 void *vmalloc_user(unsigned long size)
247 {
248         void *ret;
249
250         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
251                         PAGE_KERNEL);
252         if (ret) {
253                 struct vm_area_struct *vma;
254
255                 down_write(&current->mm->mmap_sem);
256                 vma = find_vma(current->mm, (unsigned long)ret);
257                 if (vma)
258                         vma->vm_flags |= VM_USERMAP;
259                 up_write(&current->mm->mmap_sem);
260         }
261
262         return ret;
263 }
264 EXPORT_SYMBOL(vmalloc_user);
265
266 struct page *vmalloc_to_page(const void *addr)
267 {
268         return virt_to_page(addr);
269 }
270 EXPORT_SYMBOL(vmalloc_to_page);
271
272 unsigned long vmalloc_to_pfn(const void *addr)
273 {
274         return page_to_pfn(virt_to_page(addr));
275 }
276 EXPORT_SYMBOL(vmalloc_to_pfn);
277
278 long vread(char *buf, char *addr, unsigned long count)
279 {
280         /* Don't allow overflow */
281         if ((unsigned long) buf + count < count)
282                 count = -(unsigned long) buf;
283
284         memcpy(buf, addr, count);
285         return count;
286 }
287
288 long vwrite(char *buf, char *addr, unsigned long count)
289 {
290         /* Don't allow overflow */
291         if ((unsigned long) addr + count < count)
292                 count = -(unsigned long) addr;
293
294         memcpy(addr, buf, count);
295         return count;
296 }
297
298 /*
299  *      vmalloc  -  allocate virtually contiguous memory
300  *
301  *      @size:          allocation size
302  *
303  *      Allocate enough pages to cover @size from the page level
304  *      allocator and map them into contiguous kernel virtual space.
305  *
306  *      For tight control over page level allocator and protection flags
307  *      use __vmalloc() instead.
308  */
309 void *vmalloc(unsigned long size)
310 {
311        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
312 }
313 EXPORT_SYMBOL(vmalloc);
314
315 /*
316  *      vzalloc - allocate virtually contiguous memory with zero fill
317  *
318  *      @size:          allocation size
319  *
320  *      Allocate enough pages to cover @size from the page level
321  *      allocator and map them into contiguous kernel virtual space.
322  *      The memory allocated is set to zero.
323  *
324  *      For tight control over page level allocator and protection flags
325  *      use __vmalloc() instead.
326  */
327 void *vzalloc(unsigned long size)
328 {
329         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
330                         PAGE_KERNEL);
331 }
332 EXPORT_SYMBOL(vzalloc);
333
334 /**
335  * vmalloc_node - allocate memory on a specific node
336  * @size:       allocation size
337  * @node:       numa node
338  *
339  * Allocate enough pages to cover @size from the page level
340  * allocator and map them into contiguous kernel virtual space.
341  *
342  * For tight control over page level allocator and protection flags
343  * use __vmalloc() instead.
344  */
345 void *vmalloc_node(unsigned long size, int node)
346 {
347         return vmalloc(size);
348 }
349 EXPORT_SYMBOL(vmalloc_node);
350
351 /**
352  * vzalloc_node - allocate memory on a specific node with zero fill
353  * @size:       allocation size
354  * @node:       numa node
355  *
356  * Allocate enough pages to cover @size from the page level
357  * allocator and map them into contiguous kernel virtual space.
358  * The memory allocated is set to zero.
359  *
360  * For tight control over page level allocator and protection flags
361  * use __vmalloc() instead.
362  */
363 void *vzalloc_node(unsigned long size, int node)
364 {
365         return vzalloc(size);
366 }
367 EXPORT_SYMBOL(vzalloc_node);
368
369 #ifndef PAGE_KERNEL_EXEC
370 # define PAGE_KERNEL_EXEC PAGE_KERNEL
371 #endif
372
373 /**
374  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
375  *      @size:          allocation size
376  *
377  *      Kernel-internal function to allocate enough pages to cover @size
378  *      the page level allocator and map them into contiguous and
379  *      executable kernel virtual space.
380  *
381  *      For tight control over page level allocator and protection flags
382  *      use __vmalloc() instead.
383  */
384
385 void *vmalloc_exec(unsigned long size)
386 {
387         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
388 }
389
390 /**
391  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
392  *      @size:          allocation size
393  *
394  *      Allocate enough 32bit PA addressable pages to cover @size from the
395  *      page level allocator and map them into contiguous kernel virtual space.
396  */
397 void *vmalloc_32(unsigned long size)
398 {
399         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
400 }
401 EXPORT_SYMBOL(vmalloc_32);
402
403 /**
404  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
405  *      @size:          allocation size
406  *
407  * The resulting memory area is 32bit addressable and zeroed so it can be
408  * mapped to userspace without leaking data.
409  *
410  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
411  * remap_vmalloc_range() are permissible.
412  */
413 void *vmalloc_32_user(unsigned long size)
414 {
415         /*
416          * We'll have to sort out the ZONE_DMA bits for 64-bit,
417          * but for now this can simply use vmalloc_user() directly.
418          */
419         return vmalloc_user(size);
420 }
421 EXPORT_SYMBOL(vmalloc_32_user);
422
423 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
424 {
425         BUG();
426         return NULL;
427 }
428 EXPORT_SYMBOL(vmap);
429
430 void vunmap(const void *addr)
431 {
432         BUG();
433 }
434 EXPORT_SYMBOL(vunmap);
435
436 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
437 {
438         BUG();
439         return NULL;
440 }
441 EXPORT_SYMBOL(vm_map_ram);
442
443 void vm_unmap_ram(const void *mem, unsigned int count)
444 {
445         BUG();
446 }
447 EXPORT_SYMBOL(vm_unmap_ram);
448
449 void vm_unmap_aliases(void)
450 {
451 }
452 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
453
454 /*
455  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
456  * have one.
457  */
458 void __weak vmalloc_sync_all(void)
459 {
460 }
461
462 /**
463  *      alloc_vm_area - allocate a range of kernel address space
464  *      @size:          size of the area
465  *
466  *      Returns:        NULL on failure, vm_struct on success
467  *
468  *      This function reserves a range of kernel address space, and
469  *      allocates pagetables to map that range.  No actual mappings
470  *      are created.  If the kernel address space is not shared
471  *      between processes, it syncs the pagetable across all
472  *      processes.
473  */
474 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
475 {
476         BUG();
477         return NULL;
478 }
479 EXPORT_SYMBOL_GPL(alloc_vm_area);
480
481 void free_vm_area(struct vm_struct *area)
482 {
483         BUG();
484 }
485 EXPORT_SYMBOL_GPL(free_vm_area);
486
487 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
488                    struct page *page)
489 {
490         return -EINVAL;
491 }
492 EXPORT_SYMBOL(vm_insert_page);
493
494 /*
495  *  sys_brk() for the most part doesn't need the global kernel
496  *  lock, except when an application is doing something nasty
497  *  like trying to un-brk an area that has already been mapped
498  *  to a regular file.  in this case, the unmapping will need
499  *  to invoke file system routines that need the global lock.
500  */
501 SYSCALL_DEFINE1(brk, unsigned long, brk)
502 {
503         struct mm_struct *mm = current->mm;
504
505         if (brk < mm->start_brk || brk > mm->context.end_brk)
506                 return mm->brk;
507
508         if (mm->brk == brk)
509                 return mm->brk;
510
511         /*
512          * Always allow shrinking brk
513          */
514         if (brk <= mm->brk) {
515                 mm->brk = brk;
516                 return brk;
517         }
518
519         /*
520          * Ok, looks good - let it rip.
521          */
522         flush_icache_range(mm->brk, brk);
523         return mm->brk = brk;
524 }
525
526 /*
527  * initialise the VMA and region record slabs
528  */
529 void __init mmap_init(void)
530 {
531         int ret;
532
533         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
534         VM_BUG_ON(ret);
535         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
536 }
537
538 /*
539  * validate the region tree
540  * - the caller must hold the region lock
541  */
542 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
543 static noinline void validate_nommu_regions(void)
544 {
545         struct vm_region *region, *last;
546         struct rb_node *p, *lastp;
547
548         lastp = rb_first(&nommu_region_tree);
549         if (!lastp)
550                 return;
551
552         last = rb_entry(lastp, struct vm_region, vm_rb);
553         BUG_ON(last->vm_end <= last->vm_start);
554         BUG_ON(last->vm_top < last->vm_end);
555
556         while ((p = rb_next(lastp))) {
557                 region = rb_entry(p, struct vm_region, vm_rb);
558                 last = rb_entry(lastp, struct vm_region, vm_rb);
559
560                 BUG_ON(region->vm_end <= region->vm_start);
561                 BUG_ON(region->vm_top < region->vm_end);
562                 BUG_ON(region->vm_start < last->vm_top);
563
564                 lastp = p;
565         }
566 }
567 #else
568 static void validate_nommu_regions(void)
569 {
570 }
571 #endif
572
573 /*
574  * add a region into the global tree
575  */
576 static void add_nommu_region(struct vm_region *region)
577 {
578         struct vm_region *pregion;
579         struct rb_node **p, *parent;
580
581         validate_nommu_regions();
582
583         parent = NULL;
584         p = &nommu_region_tree.rb_node;
585         while (*p) {
586                 parent = *p;
587                 pregion = rb_entry(parent, struct vm_region, vm_rb);
588                 if (region->vm_start < pregion->vm_start)
589                         p = &(*p)->rb_left;
590                 else if (region->vm_start > pregion->vm_start)
591                         p = &(*p)->rb_right;
592                 else if (pregion == region)
593                         return;
594                 else
595                         BUG();
596         }
597
598         rb_link_node(&region->vm_rb, parent, p);
599         rb_insert_color(&region->vm_rb, &nommu_region_tree);
600
601         validate_nommu_regions();
602 }
603
604 /*
605  * delete a region from the global tree
606  */
607 static void delete_nommu_region(struct vm_region *region)
608 {
609         BUG_ON(!nommu_region_tree.rb_node);
610
611         validate_nommu_regions();
612         rb_erase(&region->vm_rb, &nommu_region_tree);
613         validate_nommu_regions();
614 }
615
616 /*
617  * free a contiguous series of pages
618  */
619 static void free_page_series(unsigned long from, unsigned long to)
620 {
621         for (; from < to; from += PAGE_SIZE) {
622                 struct page *page = virt_to_page(from);
623
624                 atomic_long_dec(&mmap_pages_allocated);
625                 put_page(page);
626         }
627 }
628
629 /*
630  * release a reference to a region
631  * - the caller must hold the region semaphore for writing, which this releases
632  * - the region may not have been added to the tree yet, in which case vm_top
633  *   will equal vm_start
634  */
635 static void __put_nommu_region(struct vm_region *region)
636         __releases(nommu_region_sem)
637 {
638         BUG_ON(!nommu_region_tree.rb_node);
639
640         if (--region->vm_usage == 0) {
641                 if (region->vm_top > region->vm_start)
642                         delete_nommu_region(region);
643                 up_write(&nommu_region_sem);
644
645                 if (region->vm_file)
646                         fput(region->vm_file);
647
648                 /* IO memory and memory shared directly out of the pagecache
649                  * from ramfs/tmpfs mustn't be released here */
650                 if (region->vm_flags & VM_MAPPED_COPY)
651                         free_page_series(region->vm_start, region->vm_top);
652                 kmem_cache_free(vm_region_jar, region);
653         } else {
654                 up_write(&nommu_region_sem);
655         }
656 }
657
658 /*
659  * release a reference to a region
660  */
661 static void put_nommu_region(struct vm_region *region)
662 {
663         down_write(&nommu_region_sem);
664         __put_nommu_region(region);
665 }
666
667 /*
668  * update protection on a vma
669  */
670 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
671 {
672 #ifdef CONFIG_MPU
673         struct mm_struct *mm = vma->vm_mm;
674         long start = vma->vm_start & PAGE_MASK;
675         while (start < vma->vm_end) {
676                 protect_page(mm, start, flags);
677                 start += PAGE_SIZE;
678         }
679         update_protections(mm);
680 #endif
681 }
682
683 /*
684  * add a VMA into a process's mm_struct in the appropriate place in the list
685  * and tree and add to the address space's page tree also if not an anonymous
686  * page
687  * - should be called with mm->mmap_sem held writelocked
688  */
689 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
690 {
691         struct vm_area_struct *pvma, *prev;
692         struct address_space *mapping;
693         struct rb_node **p, *parent, *rb_prev;
694
695         BUG_ON(!vma->vm_region);
696
697         mm->map_count++;
698         vma->vm_mm = mm;
699
700         protect_vma(vma, vma->vm_flags);
701
702         /* add the VMA to the mapping */
703         if (vma->vm_file) {
704                 mapping = vma->vm_file->f_mapping;
705
706                 i_mmap_lock_write(mapping);
707                 flush_dcache_mmap_lock(mapping);
708                 vma_interval_tree_insert(vma, &mapping->i_mmap);
709                 flush_dcache_mmap_unlock(mapping);
710                 i_mmap_unlock_write(mapping);
711         }
712
713         /* add the VMA to the tree */
714         parent = rb_prev = NULL;
715         p = &mm->mm_rb.rb_node;
716         while (*p) {
717                 parent = *p;
718                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
719
720                 /* sort by: start addr, end addr, VMA struct addr in that order
721                  * (the latter is necessary as we may get identical VMAs) */
722                 if (vma->vm_start < pvma->vm_start)
723                         p = &(*p)->rb_left;
724                 else if (vma->vm_start > pvma->vm_start) {
725                         rb_prev = parent;
726                         p = &(*p)->rb_right;
727                 } else if (vma->vm_end < pvma->vm_end)
728                         p = &(*p)->rb_left;
729                 else if (vma->vm_end > pvma->vm_end) {
730                         rb_prev = parent;
731                         p = &(*p)->rb_right;
732                 } else if (vma < pvma)
733                         p = &(*p)->rb_left;
734                 else if (vma > pvma) {
735                         rb_prev = parent;
736                         p = &(*p)->rb_right;
737                 } else
738                         BUG();
739         }
740
741         rb_link_node(&vma->vm_rb, parent, p);
742         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
743
744         /* add VMA to the VMA list also */
745         prev = NULL;
746         if (rb_prev)
747                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
748
749         __vma_link_list(mm, vma, prev, parent);
750 }
751
752 /*
753  * delete a VMA from its owning mm_struct and address space
754  */
755 static void delete_vma_from_mm(struct vm_area_struct *vma)
756 {
757         int i;
758         struct address_space *mapping;
759         struct mm_struct *mm = vma->vm_mm;
760         struct task_struct *curr = current;
761
762         protect_vma(vma, 0);
763
764         mm->map_count--;
765         for (i = 0; i < VMACACHE_SIZE; i++) {
766                 /* if the vma is cached, invalidate the entire cache */
767                 if (curr->vmacache[i] == vma) {
768                         vmacache_invalidate(mm);
769                         break;
770                 }
771         }
772
773         /* remove the VMA from the mapping */
774         if (vma->vm_file) {
775                 mapping = vma->vm_file->f_mapping;
776
777                 i_mmap_lock_write(mapping);
778                 flush_dcache_mmap_lock(mapping);
779                 vma_interval_tree_remove(vma, &mapping->i_mmap);
780                 flush_dcache_mmap_unlock(mapping);
781                 i_mmap_unlock_write(mapping);
782         }
783
784         /* remove from the MM's tree and list */
785         rb_erase(&vma->vm_rb, &mm->mm_rb);
786
787         if (vma->vm_prev)
788                 vma->vm_prev->vm_next = vma->vm_next;
789         else
790                 mm->mmap = vma->vm_next;
791
792         if (vma->vm_next)
793                 vma->vm_next->vm_prev = vma->vm_prev;
794 }
795
796 /*
797  * destroy a VMA record
798  */
799 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
800 {
801         if (vma->vm_ops && vma->vm_ops->close)
802                 vma->vm_ops->close(vma);
803         if (vma->vm_file)
804                 fput(vma->vm_file);
805         put_nommu_region(vma->vm_region);
806         kmem_cache_free(vm_area_cachep, vma);
807 }
808
809 /*
810  * look up the first VMA in which addr resides, NULL if none
811  * - should be called with mm->mmap_sem at least held readlocked
812  */
813 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
814 {
815         struct vm_area_struct *vma;
816
817         /* check the cache first */
818         vma = vmacache_find(mm, addr);
819         if (likely(vma))
820                 return vma;
821
822         /* trawl the list (there may be multiple mappings in which addr
823          * resides) */
824         for (vma = mm->mmap; vma; vma = vma->vm_next) {
825                 if (vma->vm_start > addr)
826                         return NULL;
827                 if (vma->vm_end > addr) {
828                         vmacache_update(addr, vma);
829                         return vma;
830                 }
831         }
832
833         return NULL;
834 }
835 EXPORT_SYMBOL(find_vma);
836
837 /*
838  * find a VMA
839  * - we don't extend stack VMAs under NOMMU conditions
840  */
841 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
842 {
843         return find_vma(mm, addr);
844 }
845
846 /*
847  * expand a stack to a given address
848  * - not supported under NOMMU conditions
849  */
850 int expand_stack(struct vm_area_struct *vma, unsigned long address)
851 {
852         return -ENOMEM;
853 }
854
855 /*
856  * look up the first VMA exactly that exactly matches addr
857  * - should be called with mm->mmap_sem at least held readlocked
858  */
859 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
860                                              unsigned long addr,
861                                              unsigned long len)
862 {
863         struct vm_area_struct *vma;
864         unsigned long end = addr + len;
865
866         /* check the cache first */
867         vma = vmacache_find_exact(mm, addr, end);
868         if (vma)
869                 return vma;
870
871         /* trawl the list (there may be multiple mappings in which addr
872          * resides) */
873         for (vma = mm->mmap; vma; vma = vma->vm_next) {
874                 if (vma->vm_start < addr)
875                         continue;
876                 if (vma->vm_start > addr)
877                         return NULL;
878                 if (vma->vm_end == end) {
879                         vmacache_update(addr, vma);
880                         return vma;
881                 }
882         }
883
884         return NULL;
885 }
886
887 /*
888  * determine whether a mapping should be permitted and, if so, what sort of
889  * mapping we're capable of supporting
890  */
891 static int validate_mmap_request(struct file *file,
892                                  unsigned long addr,
893                                  unsigned long len,
894                                  unsigned long prot,
895                                  unsigned long flags,
896                                  unsigned long pgoff,
897                                  unsigned long *_capabilities)
898 {
899         unsigned long capabilities, rlen;
900         int ret;
901
902         /* do the simple checks first */
903         if (flags & MAP_FIXED)
904                 return -EINVAL;
905
906         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
907             (flags & MAP_TYPE) != MAP_SHARED)
908                 return -EINVAL;
909
910         if (!len)
911                 return -EINVAL;
912
913         /* Careful about overflows.. */
914         rlen = PAGE_ALIGN(len);
915         if (!rlen || rlen > TASK_SIZE)
916                 return -ENOMEM;
917
918         /* offset overflow? */
919         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
920                 return -EOVERFLOW;
921
922         if (file) {
923                 /* files must support mmap */
924                 if (!file->f_op->mmap)
925                         return -ENODEV;
926
927                 /* work out if what we've got could possibly be shared
928                  * - we support chardevs that provide their own "memory"
929                  * - we support files/blockdevs that are memory backed
930                  */
931                 if (file->f_op->mmap_capabilities) {
932                         capabilities = file->f_op->mmap_capabilities(file);
933                 } else {
934                         /* no explicit capabilities set, so assume some
935                          * defaults */
936                         switch (file_inode(file)->i_mode & S_IFMT) {
937                         case S_IFREG:
938                         case S_IFBLK:
939                                 capabilities = NOMMU_MAP_COPY;
940                                 break;
941
942                         case S_IFCHR:
943                                 capabilities =
944                                         NOMMU_MAP_DIRECT |
945                                         NOMMU_MAP_READ |
946                                         NOMMU_MAP_WRITE;
947                                 break;
948
949                         default:
950                                 return -EINVAL;
951                         }
952                 }
953
954                 /* eliminate any capabilities that we can't support on this
955                  * device */
956                 if (!file->f_op->get_unmapped_area)
957                         capabilities &= ~NOMMU_MAP_DIRECT;
958                 if (!(file->f_mode & FMODE_CAN_READ))
959                         capabilities &= ~NOMMU_MAP_COPY;
960
961                 /* The file shall have been opened with read permission. */
962                 if (!(file->f_mode & FMODE_READ))
963                         return -EACCES;
964
965                 if (flags & MAP_SHARED) {
966                         /* do checks for writing, appending and locking */
967                         if ((prot & PROT_WRITE) &&
968                             !(file->f_mode & FMODE_WRITE))
969                                 return -EACCES;
970
971                         if (IS_APPEND(file_inode(file)) &&
972                             (file->f_mode & FMODE_WRITE))
973                                 return -EACCES;
974
975                         if (locks_verify_locked(file))
976                                 return -EAGAIN;
977
978                         if (!(capabilities & NOMMU_MAP_DIRECT))
979                                 return -ENODEV;
980
981                         /* we mustn't privatise shared mappings */
982                         capabilities &= ~NOMMU_MAP_COPY;
983                 } else {
984                         /* we're going to read the file into private memory we
985                          * allocate */
986                         if (!(capabilities & NOMMU_MAP_COPY))
987                                 return -ENODEV;
988
989                         /* we don't permit a private writable mapping to be
990                          * shared with the backing device */
991                         if (prot & PROT_WRITE)
992                                 capabilities &= ~NOMMU_MAP_DIRECT;
993                 }
994
995                 if (capabilities & NOMMU_MAP_DIRECT) {
996                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
997                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
998                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
999                             ) {
1000                                 capabilities &= ~NOMMU_MAP_DIRECT;
1001                                 if (flags & MAP_SHARED) {
1002                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
1003                                         return -EINVAL;
1004                                 }
1005                         }
1006                 }
1007
1008                 /* handle executable mappings and implied executable
1009                  * mappings */
1010                 if (path_noexec(&file->f_path)) {
1011                         if (prot & PROT_EXEC)
1012                                 return -EPERM;
1013                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1014                         /* handle implication of PROT_EXEC by PROT_READ */
1015                         if (current->personality & READ_IMPLIES_EXEC) {
1016                                 if (capabilities & NOMMU_MAP_EXEC)
1017                                         prot |= PROT_EXEC;
1018                         }
1019                 } else if ((prot & PROT_READ) &&
1020                          (prot & PROT_EXEC) &&
1021                          !(capabilities & NOMMU_MAP_EXEC)
1022                          ) {
1023                         /* backing file is not executable, try to copy */
1024                         capabilities &= ~NOMMU_MAP_DIRECT;
1025                 }
1026         } else {
1027                 /* anonymous mappings are always memory backed and can be
1028                  * privately mapped
1029                  */
1030                 capabilities = NOMMU_MAP_COPY;
1031
1032                 /* handle PROT_EXEC implication by PROT_READ */
1033                 if ((prot & PROT_READ) &&
1034                     (current->personality & READ_IMPLIES_EXEC))
1035                         prot |= PROT_EXEC;
1036         }
1037
1038         /* allow the security API to have its say */
1039         ret = security_mmap_addr(addr);
1040         if (ret < 0)
1041                 return ret;
1042
1043         /* looks okay */
1044         *_capabilities = capabilities;
1045         return 0;
1046 }
1047
1048 /*
1049  * we've determined that we can make the mapping, now translate what we
1050  * now know into VMA flags
1051  */
1052 static unsigned long determine_vm_flags(struct file *file,
1053                                         unsigned long prot,
1054                                         unsigned long flags,
1055                                         unsigned long capabilities)
1056 {
1057         unsigned long vm_flags;
1058
1059         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1060         /* vm_flags |= mm->def_flags; */
1061
1062         if (!(capabilities & NOMMU_MAP_DIRECT)) {
1063                 /* attempt to share read-only copies of mapped file chunks */
1064                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1065                 if (file && !(prot & PROT_WRITE))
1066                         vm_flags |= VM_MAYSHARE;
1067         } else {
1068                 /* overlay a shareable mapping on the backing device or inode
1069                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1070                  * romfs/cramfs */
1071                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1072                 if (flags & MAP_SHARED)
1073                         vm_flags |= VM_SHARED;
1074         }
1075
1076         /* refuse to let anyone share private mappings with this process if
1077          * it's being traced - otherwise breakpoints set in it may interfere
1078          * with another untraced process
1079          */
1080         if ((flags & MAP_PRIVATE) && current->ptrace)
1081                 vm_flags &= ~VM_MAYSHARE;
1082
1083         return vm_flags;
1084 }
1085
1086 /*
1087  * set up a shared mapping on a file (the driver or filesystem provides and
1088  * pins the storage)
1089  */
1090 static int do_mmap_shared_file(struct vm_area_struct *vma)
1091 {
1092         int ret;
1093
1094         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1095         if (ret == 0) {
1096                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1097                 return 0;
1098         }
1099         if (ret != -ENOSYS)
1100                 return ret;
1101
1102         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1103          * opposed to tried but failed) so we can only give a suitable error as
1104          * it's not possible to make a private copy if MAP_SHARED was given */
1105         return -ENODEV;
1106 }
1107
1108 /*
1109  * set up a private mapping or an anonymous shared mapping
1110  */
1111 static int do_mmap_private(struct vm_area_struct *vma,
1112                            struct vm_region *region,
1113                            unsigned long len,
1114                            unsigned long capabilities)
1115 {
1116         unsigned long total, point;
1117         void *base;
1118         int ret, order;
1119
1120         /* invoke the file's mapping function so that it can keep track of
1121          * shared mappings on devices or memory
1122          * - VM_MAYSHARE will be set if it may attempt to share
1123          */
1124         if (capabilities & NOMMU_MAP_DIRECT) {
1125                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1126                 if (ret == 0) {
1127                         /* shouldn't return success if we're not sharing */
1128                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1129                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1130                         return 0;
1131                 }
1132                 if (ret != -ENOSYS)
1133                         return ret;
1134
1135                 /* getting an ENOSYS error indicates that direct mmap isn't
1136                  * possible (as opposed to tried but failed) so we'll try to
1137                  * make a private copy of the data and map that instead */
1138         }
1139
1140
1141         /* allocate some memory to hold the mapping
1142          * - note that this may not return a page-aligned address if the object
1143          *   we're allocating is smaller than a page
1144          */
1145         order = get_order(len);
1146         total = 1 << order;
1147         point = len >> PAGE_SHIFT;
1148
1149         /* we don't want to allocate a power-of-2 sized page set */
1150         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1151                 total = point;
1152
1153         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1154         if (!base)
1155                 goto enomem;
1156
1157         atomic_long_add(total, &mmap_pages_allocated);
1158
1159         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1160         region->vm_start = (unsigned long) base;
1161         region->vm_end   = region->vm_start + len;
1162         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1163
1164         vma->vm_start = region->vm_start;
1165         vma->vm_end   = region->vm_start + len;
1166
1167         if (vma->vm_file) {
1168                 /* read the contents of a file into the copy */
1169                 mm_segment_t old_fs;
1170                 loff_t fpos;
1171
1172                 fpos = vma->vm_pgoff;
1173                 fpos <<= PAGE_SHIFT;
1174
1175                 old_fs = get_fs();
1176                 set_fs(KERNEL_DS);
1177                 ret = __vfs_read(vma->vm_file, base, len, &fpos);
1178                 set_fs(old_fs);
1179
1180                 if (ret < 0)
1181                         goto error_free;
1182
1183                 /* clear the last little bit */
1184                 if (ret < len)
1185                         memset(base + ret, 0, len - ret);
1186
1187         }
1188
1189         return 0;
1190
1191 error_free:
1192         free_page_series(region->vm_start, region->vm_top);
1193         region->vm_start = vma->vm_start = 0;
1194         region->vm_end   = vma->vm_end = 0;
1195         region->vm_top   = 0;
1196         return ret;
1197
1198 enomem:
1199         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1200                len, current->pid, current->comm);
1201         show_free_areas(0);
1202         return -ENOMEM;
1203 }
1204
1205 /*
1206  * handle mapping creation for uClinux
1207  */
1208 unsigned long do_mmap(struct file *file,
1209                         unsigned long addr,
1210                         unsigned long len,
1211                         unsigned long prot,
1212                         unsigned long flags,
1213                         vm_flags_t vm_flags,
1214                         unsigned long pgoff,
1215                         unsigned long *populate)
1216 {
1217         struct vm_area_struct *vma;
1218         struct vm_region *region;
1219         struct rb_node *rb;
1220         unsigned long capabilities, result;
1221         int ret;
1222
1223         *populate = 0;
1224
1225         /* decide whether we should attempt the mapping, and if so what sort of
1226          * mapping */
1227         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1228                                     &capabilities);
1229         if (ret < 0)
1230                 return ret;
1231
1232         /* we ignore the address hint */
1233         addr = 0;
1234         len = PAGE_ALIGN(len);
1235
1236         /* we've determined that we can make the mapping, now translate what we
1237          * now know into VMA flags */
1238         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1239
1240         /* we're going to need to record the mapping */
1241         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1242         if (!region)
1243                 goto error_getting_region;
1244
1245         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1246         if (!vma)
1247                 goto error_getting_vma;
1248
1249         region->vm_usage = 1;
1250         region->vm_flags = vm_flags;
1251         region->vm_pgoff = pgoff;
1252
1253         INIT_LIST_HEAD(&vma->anon_vma_chain);
1254         vma->vm_flags = vm_flags;
1255         vma->vm_pgoff = pgoff;
1256
1257         if (file) {
1258                 region->vm_file = get_file(file);
1259                 vma->vm_file = get_file(file);
1260         }
1261
1262         down_write(&nommu_region_sem);
1263
1264         /* if we want to share, we need to check for regions created by other
1265          * mmap() calls that overlap with our proposed mapping
1266          * - we can only share with a superset match on most regular files
1267          * - shared mappings on character devices and memory backed files are
1268          *   permitted to overlap inexactly as far as we are concerned for in
1269          *   these cases, sharing is handled in the driver or filesystem rather
1270          *   than here
1271          */
1272         if (vm_flags & VM_MAYSHARE) {
1273                 struct vm_region *pregion;
1274                 unsigned long pglen, rpglen, pgend, rpgend, start;
1275
1276                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1277                 pgend = pgoff + pglen;
1278
1279                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1280                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1281
1282                         if (!(pregion->vm_flags & VM_MAYSHARE))
1283                                 continue;
1284
1285                         /* search for overlapping mappings on the same file */
1286                         if (file_inode(pregion->vm_file) !=
1287                             file_inode(file))
1288                                 continue;
1289
1290                         if (pregion->vm_pgoff >= pgend)
1291                                 continue;
1292
1293                         rpglen = pregion->vm_end - pregion->vm_start;
1294                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1295                         rpgend = pregion->vm_pgoff + rpglen;
1296                         if (pgoff >= rpgend)
1297                                 continue;
1298
1299                         /* handle inexactly overlapping matches between
1300                          * mappings */
1301                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1302                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1303                                 /* new mapping is not a subset of the region */
1304                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1305                                         goto sharing_violation;
1306                                 continue;
1307                         }
1308
1309                         /* we've found a region we can share */
1310                         pregion->vm_usage++;
1311                         vma->vm_region = pregion;
1312                         start = pregion->vm_start;
1313                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1314                         vma->vm_start = start;
1315                         vma->vm_end = start + len;
1316
1317                         if (pregion->vm_flags & VM_MAPPED_COPY)
1318                                 vma->vm_flags |= VM_MAPPED_COPY;
1319                         else {
1320                                 ret = do_mmap_shared_file(vma);
1321                                 if (ret < 0) {
1322                                         vma->vm_region = NULL;
1323                                         vma->vm_start = 0;
1324                                         vma->vm_end = 0;
1325                                         pregion->vm_usage--;
1326                                         pregion = NULL;
1327                                         goto error_just_free;
1328                                 }
1329                         }
1330                         fput(region->vm_file);
1331                         kmem_cache_free(vm_region_jar, region);
1332                         region = pregion;
1333                         result = start;
1334                         goto share;
1335                 }
1336
1337                 /* obtain the address at which to make a shared mapping
1338                  * - this is the hook for quasi-memory character devices to
1339                  *   tell us the location of a shared mapping
1340                  */
1341                 if (capabilities & NOMMU_MAP_DIRECT) {
1342                         addr = file->f_op->get_unmapped_area(file, addr, len,
1343                                                              pgoff, flags);
1344                         if (IS_ERR_VALUE(addr)) {
1345                                 ret = addr;
1346                                 if (ret != -ENOSYS)
1347                                         goto error_just_free;
1348
1349                                 /* the driver refused to tell us where to site
1350                                  * the mapping so we'll have to attempt to copy
1351                                  * it */
1352                                 ret = -ENODEV;
1353                                 if (!(capabilities & NOMMU_MAP_COPY))
1354                                         goto error_just_free;
1355
1356                                 capabilities &= ~NOMMU_MAP_DIRECT;
1357                         } else {
1358                                 vma->vm_start = region->vm_start = addr;
1359                                 vma->vm_end = region->vm_end = addr + len;
1360                         }
1361                 }
1362         }
1363
1364         vma->vm_region = region;
1365
1366         /* set up the mapping
1367          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1368          */
1369         if (file && vma->vm_flags & VM_SHARED)
1370                 ret = do_mmap_shared_file(vma);
1371         else
1372                 ret = do_mmap_private(vma, region, len, capabilities);
1373         if (ret < 0)
1374                 goto error_just_free;
1375         add_nommu_region(region);
1376
1377         /* clear anonymous mappings that don't ask for uninitialized data */
1378         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1379                 memset((void *)region->vm_start, 0,
1380                        region->vm_end - region->vm_start);
1381
1382         /* okay... we have a mapping; now we have to register it */
1383         result = vma->vm_start;
1384
1385         current->mm->total_vm += len >> PAGE_SHIFT;
1386
1387 share:
1388         add_vma_to_mm(current->mm, vma);
1389
1390         /* we flush the region from the icache only when the first executable
1391          * mapping of it is made  */
1392         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1393                 flush_icache_range(region->vm_start, region->vm_end);
1394                 region->vm_icache_flushed = true;
1395         }
1396
1397         up_write(&nommu_region_sem);
1398
1399         return result;
1400
1401 error_just_free:
1402         up_write(&nommu_region_sem);
1403 error:
1404         if (region->vm_file)
1405                 fput(region->vm_file);
1406         kmem_cache_free(vm_region_jar, region);
1407         if (vma->vm_file)
1408                 fput(vma->vm_file);
1409         kmem_cache_free(vm_area_cachep, vma);
1410         return ret;
1411
1412 sharing_violation:
1413         up_write(&nommu_region_sem);
1414         pr_warn("Attempt to share mismatched mappings\n");
1415         ret = -EINVAL;
1416         goto error;
1417
1418 error_getting_vma:
1419         kmem_cache_free(vm_region_jar, region);
1420         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1421                         len, current->pid);
1422         show_free_areas(0);
1423         return -ENOMEM;
1424
1425 error_getting_region:
1426         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1427                         len, current->pid);
1428         show_free_areas(0);
1429         return -ENOMEM;
1430 }
1431
1432 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1433                 unsigned long, prot, unsigned long, flags,
1434                 unsigned long, fd, unsigned long, pgoff)
1435 {
1436         struct file *file = NULL;
1437         unsigned long retval = -EBADF;
1438
1439         audit_mmap_fd(fd, flags);
1440         if (!(flags & MAP_ANONYMOUS)) {
1441                 file = fget(fd);
1442                 if (!file)
1443                         goto out;
1444         }
1445
1446         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1447
1448         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1449
1450         if (file)
1451                 fput(file);
1452 out:
1453         return retval;
1454 }
1455
1456 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1457 struct mmap_arg_struct {
1458         unsigned long addr;
1459         unsigned long len;
1460         unsigned long prot;
1461         unsigned long flags;
1462         unsigned long fd;
1463         unsigned long offset;
1464 };
1465
1466 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1467 {
1468         struct mmap_arg_struct a;
1469
1470         if (copy_from_user(&a, arg, sizeof(a)))
1471                 return -EFAULT;
1472         if (offset_in_page(a.offset))
1473                 return -EINVAL;
1474
1475         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1476                               a.offset >> PAGE_SHIFT);
1477 }
1478 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1479
1480 /*
1481  * split a vma into two pieces at address 'addr', a new vma is allocated either
1482  * for the first part or the tail.
1483  */
1484 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1485               unsigned long addr, int new_below)
1486 {
1487         struct vm_area_struct *new;
1488         struct vm_region *region;
1489         unsigned long npages;
1490
1491         /* we're only permitted to split anonymous regions (these should have
1492          * only a single usage on the region) */
1493         if (vma->vm_file)
1494                 return -ENOMEM;
1495
1496         if (mm->map_count >= sysctl_max_map_count)
1497                 return -ENOMEM;
1498
1499         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1500         if (!region)
1501                 return -ENOMEM;
1502
1503         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1504         if (!new) {
1505                 kmem_cache_free(vm_region_jar, region);
1506                 return -ENOMEM;
1507         }
1508
1509         /* most fields are the same, copy all, and then fixup */
1510         *new = *vma;
1511         *region = *vma->vm_region;
1512         new->vm_region = region;
1513
1514         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1515
1516         if (new_below) {
1517                 region->vm_top = region->vm_end = new->vm_end = addr;
1518         } else {
1519                 region->vm_start = new->vm_start = addr;
1520                 region->vm_pgoff = new->vm_pgoff += npages;
1521         }
1522
1523         if (new->vm_ops && new->vm_ops->open)
1524                 new->vm_ops->open(new);
1525
1526         delete_vma_from_mm(vma);
1527         down_write(&nommu_region_sem);
1528         delete_nommu_region(vma->vm_region);
1529         if (new_below) {
1530                 vma->vm_region->vm_start = vma->vm_start = addr;
1531                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1532         } else {
1533                 vma->vm_region->vm_end = vma->vm_end = addr;
1534                 vma->vm_region->vm_top = addr;
1535         }
1536         add_nommu_region(vma->vm_region);
1537         add_nommu_region(new->vm_region);
1538         up_write(&nommu_region_sem);
1539         add_vma_to_mm(mm, vma);
1540         add_vma_to_mm(mm, new);
1541         return 0;
1542 }
1543
1544 /*
1545  * shrink a VMA by removing the specified chunk from either the beginning or
1546  * the end
1547  */
1548 static int shrink_vma(struct mm_struct *mm,
1549                       struct vm_area_struct *vma,
1550                       unsigned long from, unsigned long to)
1551 {
1552         struct vm_region *region;
1553
1554         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1555          * and list */
1556         delete_vma_from_mm(vma);
1557         if (from > vma->vm_start)
1558                 vma->vm_end = from;
1559         else
1560                 vma->vm_start = to;
1561         add_vma_to_mm(mm, vma);
1562
1563         /* cut the backing region down to size */
1564         region = vma->vm_region;
1565         BUG_ON(region->vm_usage != 1);
1566
1567         down_write(&nommu_region_sem);
1568         delete_nommu_region(region);
1569         if (from > region->vm_start) {
1570                 to = region->vm_top;
1571                 region->vm_top = region->vm_end = from;
1572         } else {
1573                 region->vm_start = to;
1574         }
1575         add_nommu_region(region);
1576         up_write(&nommu_region_sem);
1577
1578         free_page_series(from, to);
1579         return 0;
1580 }
1581
1582 /*
1583  * release a mapping
1584  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1585  *   VMA, though it need not cover the whole VMA
1586  */
1587 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1588 {
1589         struct vm_area_struct *vma;
1590         unsigned long end;
1591         int ret;
1592
1593         len = PAGE_ALIGN(len);
1594         if (len == 0)
1595                 return -EINVAL;
1596
1597         end = start + len;
1598
1599         /* find the first potentially overlapping VMA */
1600         vma = find_vma(mm, start);
1601         if (!vma) {
1602                 static int limit;
1603                 if (limit < 5) {
1604                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1605                                         current->pid, current->comm,
1606                                         start, start + len - 1);
1607                         limit++;
1608                 }
1609                 return -EINVAL;
1610         }
1611
1612         /* we're allowed to split an anonymous VMA but not a file-backed one */
1613         if (vma->vm_file) {
1614                 do {
1615                         if (start > vma->vm_start)
1616                                 return -EINVAL;
1617                         if (end == vma->vm_end)
1618                                 goto erase_whole_vma;
1619                         vma = vma->vm_next;
1620                 } while (vma);
1621                 return -EINVAL;
1622         } else {
1623                 /* the chunk must be a subset of the VMA found */
1624                 if (start == vma->vm_start && end == vma->vm_end)
1625                         goto erase_whole_vma;
1626                 if (start < vma->vm_start || end > vma->vm_end)
1627                         return -EINVAL;
1628                 if (offset_in_page(start))
1629                         return -EINVAL;
1630                 if (end != vma->vm_end && offset_in_page(end))
1631                         return -EINVAL;
1632                 if (start != vma->vm_start && end != vma->vm_end) {
1633                         ret = split_vma(mm, vma, start, 1);
1634                         if (ret < 0)
1635                                 return ret;
1636                 }
1637                 return shrink_vma(mm, vma, start, end);
1638         }
1639
1640 erase_whole_vma:
1641         delete_vma_from_mm(vma);
1642         delete_vma(mm, vma);
1643         return 0;
1644 }
1645 EXPORT_SYMBOL(do_munmap);
1646
1647 int vm_munmap(unsigned long addr, size_t len)
1648 {
1649         struct mm_struct *mm = current->mm;
1650         int ret;
1651
1652         down_write(&mm->mmap_sem);
1653         ret = do_munmap(mm, addr, len);
1654         up_write(&mm->mmap_sem);
1655         return ret;
1656 }
1657 EXPORT_SYMBOL(vm_munmap);
1658
1659 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1660 {
1661         return vm_munmap(addr, len);
1662 }
1663
1664 /*
1665  * release all the mappings made in a process's VM space
1666  */
1667 void exit_mmap(struct mm_struct *mm)
1668 {
1669         struct vm_area_struct *vma;
1670
1671         if (!mm)
1672                 return;
1673
1674         mm->total_vm = 0;
1675
1676         while ((vma = mm->mmap)) {
1677                 mm->mmap = vma->vm_next;
1678                 delete_vma_from_mm(vma);
1679                 delete_vma(mm, vma);
1680                 cond_resched();
1681         }
1682 }
1683
1684 int vm_brk(unsigned long addr, unsigned long len)
1685 {
1686         return -ENOMEM;
1687 }
1688
1689 /*
1690  * expand (or shrink) an existing mapping, potentially moving it at the same
1691  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1692  *
1693  * under NOMMU conditions, we only permit changing a mapping's size, and only
1694  * as long as it stays within the region allocated by do_mmap_private() and the
1695  * block is not shareable
1696  *
1697  * MREMAP_FIXED is not supported under NOMMU conditions
1698  */
1699 static unsigned long do_mremap(unsigned long addr,
1700                         unsigned long old_len, unsigned long new_len,
1701                         unsigned long flags, unsigned long new_addr)
1702 {
1703         struct vm_area_struct *vma;
1704
1705         /* insanity checks first */
1706         old_len = PAGE_ALIGN(old_len);
1707         new_len = PAGE_ALIGN(new_len);
1708         if (old_len == 0 || new_len == 0)
1709                 return (unsigned long) -EINVAL;
1710
1711         if (offset_in_page(addr))
1712                 return -EINVAL;
1713
1714         if (flags & MREMAP_FIXED && new_addr != addr)
1715                 return (unsigned long) -EINVAL;
1716
1717         vma = find_vma_exact(current->mm, addr, old_len);
1718         if (!vma)
1719                 return (unsigned long) -EINVAL;
1720
1721         if (vma->vm_end != vma->vm_start + old_len)
1722                 return (unsigned long) -EFAULT;
1723
1724         if (vma->vm_flags & VM_MAYSHARE)
1725                 return (unsigned long) -EPERM;
1726
1727         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1728                 return (unsigned long) -ENOMEM;
1729
1730         /* all checks complete - do it */
1731         vma->vm_end = vma->vm_start + new_len;
1732         return vma->vm_start;
1733 }
1734
1735 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1736                 unsigned long, new_len, unsigned long, flags,
1737                 unsigned long, new_addr)
1738 {
1739         unsigned long ret;
1740
1741         down_write(&current->mm->mmap_sem);
1742         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1743         up_write(&current->mm->mmap_sem);
1744         return ret;
1745 }
1746
1747 struct page *follow_page_mask(struct vm_area_struct *vma,
1748                               unsigned long address, unsigned int flags,
1749                               unsigned int *page_mask)
1750 {
1751         *page_mask = 0;
1752         return NULL;
1753 }
1754
1755 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1756                 unsigned long pfn, unsigned long size, pgprot_t prot)
1757 {
1758         if (addr != (pfn << PAGE_SHIFT))
1759                 return -EINVAL;
1760
1761         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1762         return 0;
1763 }
1764 EXPORT_SYMBOL(remap_pfn_range);
1765
1766 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1767 {
1768         unsigned long pfn = start >> PAGE_SHIFT;
1769         unsigned long vm_len = vma->vm_end - vma->vm_start;
1770
1771         pfn += vma->vm_pgoff;
1772         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1773 }
1774 EXPORT_SYMBOL(vm_iomap_memory);
1775
1776 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1777                         unsigned long pgoff)
1778 {
1779         unsigned int size = vma->vm_end - vma->vm_start;
1780
1781         if (!(vma->vm_flags & VM_USERMAP))
1782                 return -EINVAL;
1783
1784         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1785         vma->vm_end = vma->vm_start + size;
1786
1787         return 0;
1788 }
1789 EXPORT_SYMBOL(remap_vmalloc_range);
1790
1791 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1792         unsigned long len, unsigned long pgoff, unsigned long flags)
1793 {
1794         return -ENOMEM;
1795 }
1796
1797 void unmap_mapping_range(struct address_space *mapping,
1798                          loff_t const holebegin, loff_t const holelen,
1799                          int even_cows)
1800 {
1801 }
1802 EXPORT_SYMBOL(unmap_mapping_range);
1803
1804 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1805 {
1806         BUG();
1807         return 0;
1808 }
1809 EXPORT_SYMBOL(filemap_fault);
1810
1811 void filemap_map_pages(struct fault_env *fe,
1812                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1813 {
1814         BUG();
1815 }
1816 EXPORT_SYMBOL(filemap_map_pages);
1817
1818 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1819                 unsigned long addr, void *buf, int len, int write)
1820 {
1821         struct vm_area_struct *vma;
1822
1823         down_read(&mm->mmap_sem);
1824
1825         /* the access must start within one of the target process's mappings */
1826         vma = find_vma(mm, addr);
1827         if (vma) {
1828                 /* don't overrun this mapping */
1829                 if (addr + len >= vma->vm_end)
1830                         len = vma->vm_end - addr;
1831
1832                 /* only read or write mappings where it is permitted */
1833                 if (write && vma->vm_flags & VM_MAYWRITE)
1834                         copy_to_user_page(vma, NULL, addr,
1835                                          (void *) addr, buf, len);
1836                 else if (!write && vma->vm_flags & VM_MAYREAD)
1837                         copy_from_user_page(vma, NULL, addr,
1838                                             buf, (void *) addr, len);
1839                 else
1840                         len = 0;
1841         } else {
1842                 len = 0;
1843         }
1844
1845         up_read(&mm->mmap_sem);
1846
1847         return len;
1848 }
1849
1850 /**
1851  * @access_remote_vm - access another process' address space
1852  * @mm:         the mm_struct of the target address space
1853  * @addr:       start address to access
1854  * @buf:        source or destination buffer
1855  * @len:        number of bytes to transfer
1856  * @write:      whether the access is a write
1857  *
1858  * The caller must hold a reference on @mm.
1859  */
1860 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1861                 void *buf, int len, int write)
1862 {
1863         return __access_remote_vm(NULL, mm, addr, buf, len, write);
1864 }
1865
1866 /*
1867  * Access another process' address space.
1868  * - source/target buffer must be kernel space
1869  */
1870 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1871 {
1872         struct mm_struct *mm;
1873
1874         if (addr + len < addr)
1875                 return 0;
1876
1877         mm = get_task_mm(tsk);
1878         if (!mm)
1879                 return 0;
1880
1881         len = __access_remote_vm(tsk, mm, addr, buf, len, write);
1882
1883         mmput(mm);
1884         return len;
1885 }
1886
1887 /**
1888  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1889  * @inode: The inode to check
1890  * @size: The current filesize of the inode
1891  * @newsize: The proposed filesize of the inode
1892  *
1893  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1894  * make sure that that any outstanding VMAs aren't broken and then shrink the
1895  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1896  * automatically grant mappings that are too large.
1897  */
1898 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1899                                 size_t newsize)
1900 {
1901         struct vm_area_struct *vma;
1902         struct vm_region *region;
1903         pgoff_t low, high;
1904         size_t r_size, r_top;
1905
1906         low = newsize >> PAGE_SHIFT;
1907         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1908
1909         down_write(&nommu_region_sem);
1910         i_mmap_lock_read(inode->i_mapping);
1911
1912         /* search for VMAs that fall within the dead zone */
1913         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1914                 /* found one - only interested if it's shared out of the page
1915                  * cache */
1916                 if (vma->vm_flags & VM_SHARED) {
1917                         i_mmap_unlock_read(inode->i_mapping);
1918                         up_write(&nommu_region_sem);
1919                         return -ETXTBSY; /* not quite true, but near enough */
1920                 }
1921         }
1922
1923         /* reduce any regions that overlap the dead zone - if in existence,
1924          * these will be pointed to by VMAs that don't overlap the dead zone
1925          *
1926          * we don't check for any regions that start beyond the EOF as there
1927          * shouldn't be any
1928          */
1929         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1930                 if (!(vma->vm_flags & VM_SHARED))
1931                         continue;
1932
1933                 region = vma->vm_region;
1934                 r_size = region->vm_top - region->vm_start;
1935                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1936
1937                 if (r_top > newsize) {
1938                         region->vm_top -= r_top - newsize;
1939                         if (region->vm_end > region->vm_top)
1940                                 region->vm_end = region->vm_top;
1941                 }
1942         }
1943
1944         i_mmap_unlock_read(inode->i_mapping);
1945         up_write(&nommu_region_sem);
1946         return 0;
1947 }
1948
1949 /*
1950  * Initialise sysctl_user_reserve_kbytes.
1951  *
1952  * This is intended to prevent a user from starting a single memory hogging
1953  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1954  * mode.
1955  *
1956  * The default value is min(3% of free memory, 128MB)
1957  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1958  */
1959 static int __meminit init_user_reserve(void)
1960 {
1961         unsigned long free_kbytes;
1962
1963         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1964
1965         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1966         return 0;
1967 }
1968 subsys_initcall(init_user_reserve);
1969
1970 /*
1971  * Initialise sysctl_admin_reserve_kbytes.
1972  *
1973  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1974  * to log in and kill a memory hogging process.
1975  *
1976  * Systems with more than 256MB will reserve 8MB, enough to recover
1977  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1978  * only reserve 3% of free pages by default.
1979  */
1980 static int __meminit init_admin_reserve(void)
1981 {
1982         unsigned long free_kbytes;
1983
1984         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1985
1986         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1987         return 0;
1988 }
1989 subsys_initcall(init_admin_reserve);