Merge branch 'for-john' of git://git.kernel.org/pub/scm/linux/kernel/git/iwlwifi...
[cascardo/linux.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/vmacache.h>
19 #include <linux/mman.h>
20 #include <linux/swap.h>
21 #include <linux/file.h>
22 #include <linux/highmem.h>
23 #include <linux/pagemap.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/compiler.h>
29 #include <linux/mount.h>
30 #include <linux/personality.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/audit.h>
34 #include <linux/sched/sysctl.h>
35
36 #include <asm/uaccess.h>
37 #include <asm/tlb.h>
38 #include <asm/tlbflush.h>
39 #include <asm/mmu_context.h>
40 #include "internal.h"
41
42 #if 0
43 #define kenter(FMT, ...) \
44         printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
45 #define kleave(FMT, ...) \
46         printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
47 #define kdebug(FMT, ...) \
48         printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
49 #else
50 #define kenter(FMT, ...) \
51         no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
52 #define kleave(FMT, ...) \
53         no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
54 #define kdebug(FMT, ...) \
55         no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
56 #endif
57
58 void *high_memory;
59 struct page *mem_map;
60 unsigned long max_mapnr;
61 unsigned long highest_memmap_pfn;
62 struct percpu_counter vm_committed_as;
63 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
64 int sysctl_overcommit_ratio = 50; /* default is 50% */
65 unsigned long sysctl_overcommit_kbytes __read_mostly;
66 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
67 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
68 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
69 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
70 int heap_stack_gap = 0;
71
72 atomic_long_t mmap_pages_allocated;
73
74 /*
75  * The global memory commitment made in the system can be a metric
76  * that can be used to drive ballooning decisions when Linux is hosted
77  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
78  * balancing memory across competing virtual machines that are hosted.
79  * Several metrics drive this policy engine including the guest reported
80  * memory commitment.
81  */
82 unsigned long vm_memory_committed(void)
83 {
84         return percpu_counter_read_positive(&vm_committed_as);
85 }
86
87 EXPORT_SYMBOL_GPL(vm_memory_committed);
88
89 EXPORT_SYMBOL(mem_map);
90
91 /* list of mapped, potentially shareable regions */
92 static struct kmem_cache *vm_region_jar;
93 struct rb_root nommu_region_tree = RB_ROOT;
94 DECLARE_RWSEM(nommu_region_sem);
95
96 const struct vm_operations_struct generic_file_vm_ops = {
97 };
98
99 /*
100  * Return the total memory allocated for this pointer, not
101  * just what the caller asked for.
102  *
103  * Doesn't have to be accurate, i.e. may have races.
104  */
105 unsigned int kobjsize(const void *objp)
106 {
107         struct page *page;
108
109         /*
110          * If the object we have should not have ksize performed on it,
111          * return size of 0
112          */
113         if (!objp || !virt_addr_valid(objp))
114                 return 0;
115
116         page = virt_to_head_page(objp);
117
118         /*
119          * If the allocator sets PageSlab, we know the pointer came from
120          * kmalloc().
121          */
122         if (PageSlab(page))
123                 return ksize(objp);
124
125         /*
126          * If it's not a compound page, see if we have a matching VMA
127          * region. This test is intentionally done in reverse order,
128          * so if there's no VMA, we still fall through and hand back
129          * PAGE_SIZE for 0-order pages.
130          */
131         if (!PageCompound(page)) {
132                 struct vm_area_struct *vma;
133
134                 vma = find_vma(current->mm, (unsigned long)objp);
135                 if (vma)
136                         return vma->vm_end - vma->vm_start;
137         }
138
139         /*
140          * The ksize() function is only guaranteed to work for pointers
141          * returned by kmalloc(). So handle arbitrary pointers here.
142          */
143         return PAGE_SIZE << compound_order(page);
144 }
145
146 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
147                       unsigned long start, unsigned long nr_pages,
148                       unsigned int foll_flags, struct page **pages,
149                       struct vm_area_struct **vmas, int *nonblocking)
150 {
151         struct vm_area_struct *vma;
152         unsigned long vm_flags;
153         int i;
154
155         /* calculate required read or write permissions.
156          * If FOLL_FORCE is set, we only require the "MAY" flags.
157          */
158         vm_flags  = (foll_flags & FOLL_WRITE) ?
159                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
160         vm_flags &= (foll_flags & FOLL_FORCE) ?
161                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
162
163         for (i = 0; i < nr_pages; i++) {
164                 vma = find_vma(mm, start);
165                 if (!vma)
166                         goto finish_or_fault;
167
168                 /* protect what we can, including chardevs */
169                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
170                     !(vm_flags & vma->vm_flags))
171                         goto finish_or_fault;
172
173                 if (pages) {
174                         pages[i] = virt_to_page(start);
175                         if (pages[i])
176                                 page_cache_get(pages[i]);
177                 }
178                 if (vmas)
179                         vmas[i] = vma;
180                 start = (start + PAGE_SIZE) & PAGE_MASK;
181         }
182
183         return i;
184
185 finish_or_fault:
186         return i ? : -EFAULT;
187 }
188
189 /*
190  * get a list of pages in an address range belonging to the specified process
191  * and indicate the VMA that covers each page
192  * - this is potentially dodgy as we may end incrementing the page count of a
193  *   slab page or a secondary page from a compound page
194  * - don't permit access to VMAs that don't support it, such as I/O mappings
195  */
196 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
197                     unsigned long start, unsigned long nr_pages,
198                     int write, int force, struct page **pages,
199                     struct vm_area_struct **vmas)
200 {
201         int flags = 0;
202
203         if (write)
204                 flags |= FOLL_WRITE;
205         if (force)
206                 flags |= FOLL_FORCE;
207
208         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
209                                 NULL);
210 }
211 EXPORT_SYMBOL(get_user_pages);
212
213 /**
214  * follow_pfn - look up PFN at a user virtual address
215  * @vma: memory mapping
216  * @address: user virtual address
217  * @pfn: location to store found PFN
218  *
219  * Only IO mappings and raw PFN mappings are allowed.
220  *
221  * Returns zero and the pfn at @pfn on success, -ve otherwise.
222  */
223 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
224         unsigned long *pfn)
225 {
226         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
227                 return -EINVAL;
228
229         *pfn = address >> PAGE_SHIFT;
230         return 0;
231 }
232 EXPORT_SYMBOL(follow_pfn);
233
234 LIST_HEAD(vmap_area_list);
235
236 void vfree(const void *addr)
237 {
238         kfree(addr);
239 }
240 EXPORT_SYMBOL(vfree);
241
242 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
243 {
244         /*
245          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
246          * returns only a logical address.
247          */
248         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
249 }
250 EXPORT_SYMBOL(__vmalloc);
251
252 void *vmalloc_user(unsigned long size)
253 {
254         void *ret;
255
256         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
257                         PAGE_KERNEL);
258         if (ret) {
259                 struct vm_area_struct *vma;
260
261                 down_write(&current->mm->mmap_sem);
262                 vma = find_vma(current->mm, (unsigned long)ret);
263                 if (vma)
264                         vma->vm_flags |= VM_USERMAP;
265                 up_write(&current->mm->mmap_sem);
266         }
267
268         return ret;
269 }
270 EXPORT_SYMBOL(vmalloc_user);
271
272 struct page *vmalloc_to_page(const void *addr)
273 {
274         return virt_to_page(addr);
275 }
276 EXPORT_SYMBOL(vmalloc_to_page);
277
278 unsigned long vmalloc_to_pfn(const void *addr)
279 {
280         return page_to_pfn(virt_to_page(addr));
281 }
282 EXPORT_SYMBOL(vmalloc_to_pfn);
283
284 long vread(char *buf, char *addr, unsigned long count)
285 {
286         /* Don't allow overflow */
287         if ((unsigned long) buf + count < count)
288                 count = -(unsigned long) buf;
289
290         memcpy(buf, addr, count);
291         return count;
292 }
293
294 long vwrite(char *buf, char *addr, unsigned long count)
295 {
296         /* Don't allow overflow */
297         if ((unsigned long) addr + count < count)
298                 count = -(unsigned long) addr;
299
300         memcpy(addr, buf, count);
301         return count;
302 }
303
304 /*
305  *      vmalloc  -  allocate virtually continguos memory
306  *
307  *      @size:          allocation size
308  *
309  *      Allocate enough pages to cover @size from the page level
310  *      allocator and map them into continguos kernel virtual space.
311  *
312  *      For tight control over page level allocator and protection flags
313  *      use __vmalloc() instead.
314  */
315 void *vmalloc(unsigned long size)
316 {
317        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
318 }
319 EXPORT_SYMBOL(vmalloc);
320
321 /*
322  *      vzalloc - allocate virtually continguos memory with zero fill
323  *
324  *      @size:          allocation size
325  *
326  *      Allocate enough pages to cover @size from the page level
327  *      allocator and map them into continguos kernel virtual space.
328  *      The memory allocated is set to zero.
329  *
330  *      For tight control over page level allocator and protection flags
331  *      use __vmalloc() instead.
332  */
333 void *vzalloc(unsigned long size)
334 {
335         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
336                         PAGE_KERNEL);
337 }
338 EXPORT_SYMBOL(vzalloc);
339
340 /**
341  * vmalloc_node - allocate memory on a specific node
342  * @size:       allocation size
343  * @node:       numa node
344  *
345  * Allocate enough pages to cover @size from the page level
346  * allocator and map them into contiguous kernel virtual space.
347  *
348  * For tight control over page level allocator and protection flags
349  * use __vmalloc() instead.
350  */
351 void *vmalloc_node(unsigned long size, int node)
352 {
353         return vmalloc(size);
354 }
355 EXPORT_SYMBOL(vmalloc_node);
356
357 /**
358  * vzalloc_node - allocate memory on a specific node with zero fill
359  * @size:       allocation size
360  * @node:       numa node
361  *
362  * Allocate enough pages to cover @size from the page level
363  * allocator and map them into contiguous kernel virtual space.
364  * The memory allocated is set to zero.
365  *
366  * For tight control over page level allocator and protection flags
367  * use __vmalloc() instead.
368  */
369 void *vzalloc_node(unsigned long size, int node)
370 {
371         return vzalloc(size);
372 }
373 EXPORT_SYMBOL(vzalloc_node);
374
375 #ifndef PAGE_KERNEL_EXEC
376 # define PAGE_KERNEL_EXEC PAGE_KERNEL
377 #endif
378
379 /**
380  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
381  *      @size:          allocation size
382  *
383  *      Kernel-internal function to allocate enough pages to cover @size
384  *      the page level allocator and map them into contiguous and
385  *      executable kernel virtual space.
386  *
387  *      For tight control over page level allocator and protection flags
388  *      use __vmalloc() instead.
389  */
390
391 void *vmalloc_exec(unsigned long size)
392 {
393         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
394 }
395
396 /**
397  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
398  *      @size:          allocation size
399  *
400  *      Allocate enough 32bit PA addressable pages to cover @size from the
401  *      page level allocator and map them into continguos kernel virtual space.
402  */
403 void *vmalloc_32(unsigned long size)
404 {
405         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
406 }
407 EXPORT_SYMBOL(vmalloc_32);
408
409 /**
410  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
411  *      @size:          allocation size
412  *
413  * The resulting memory area is 32bit addressable and zeroed so it can be
414  * mapped to userspace without leaking data.
415  *
416  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
417  * remap_vmalloc_range() are permissible.
418  */
419 void *vmalloc_32_user(unsigned long size)
420 {
421         /*
422          * We'll have to sort out the ZONE_DMA bits for 64-bit,
423          * but for now this can simply use vmalloc_user() directly.
424          */
425         return vmalloc_user(size);
426 }
427 EXPORT_SYMBOL(vmalloc_32_user);
428
429 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
430 {
431         BUG();
432         return NULL;
433 }
434 EXPORT_SYMBOL(vmap);
435
436 void vunmap(const void *addr)
437 {
438         BUG();
439 }
440 EXPORT_SYMBOL(vunmap);
441
442 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
443 {
444         BUG();
445         return NULL;
446 }
447 EXPORT_SYMBOL(vm_map_ram);
448
449 void vm_unmap_ram(const void *mem, unsigned int count)
450 {
451         BUG();
452 }
453 EXPORT_SYMBOL(vm_unmap_ram);
454
455 void vm_unmap_aliases(void)
456 {
457 }
458 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
459
460 /*
461  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
462  * have one.
463  */
464 void __weak vmalloc_sync_all(void)
465 {
466 }
467
468 /**
469  *      alloc_vm_area - allocate a range of kernel address space
470  *      @size:          size of the area
471  *
472  *      Returns:        NULL on failure, vm_struct on success
473  *
474  *      This function reserves a range of kernel address space, and
475  *      allocates pagetables to map that range.  No actual mappings
476  *      are created.  If the kernel address space is not shared
477  *      between processes, it syncs the pagetable across all
478  *      processes.
479  */
480 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
481 {
482         BUG();
483         return NULL;
484 }
485 EXPORT_SYMBOL_GPL(alloc_vm_area);
486
487 void free_vm_area(struct vm_struct *area)
488 {
489         BUG();
490 }
491 EXPORT_SYMBOL_GPL(free_vm_area);
492
493 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
494                    struct page *page)
495 {
496         return -EINVAL;
497 }
498 EXPORT_SYMBOL(vm_insert_page);
499
500 /*
501  *  sys_brk() for the most part doesn't need the global kernel
502  *  lock, except when an application is doing something nasty
503  *  like trying to un-brk an area that has already been mapped
504  *  to a regular file.  in this case, the unmapping will need
505  *  to invoke file system routines that need the global lock.
506  */
507 SYSCALL_DEFINE1(brk, unsigned long, brk)
508 {
509         struct mm_struct *mm = current->mm;
510
511         if (brk < mm->start_brk || brk > mm->context.end_brk)
512                 return mm->brk;
513
514         if (mm->brk == brk)
515                 return mm->brk;
516
517         /*
518          * Always allow shrinking brk
519          */
520         if (brk <= mm->brk) {
521                 mm->brk = brk;
522                 return brk;
523         }
524
525         /*
526          * Ok, looks good - let it rip.
527          */
528         flush_icache_range(mm->brk, brk);
529         return mm->brk = brk;
530 }
531
532 /*
533  * initialise the VMA and region record slabs
534  */
535 void __init mmap_init(void)
536 {
537         int ret;
538
539         ret = percpu_counter_init(&vm_committed_as, 0);
540         VM_BUG_ON(ret);
541         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
542 }
543
544 /*
545  * validate the region tree
546  * - the caller must hold the region lock
547  */
548 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
549 static noinline void validate_nommu_regions(void)
550 {
551         struct vm_region *region, *last;
552         struct rb_node *p, *lastp;
553
554         lastp = rb_first(&nommu_region_tree);
555         if (!lastp)
556                 return;
557
558         last = rb_entry(lastp, struct vm_region, vm_rb);
559         BUG_ON(unlikely(last->vm_end <= last->vm_start));
560         BUG_ON(unlikely(last->vm_top < last->vm_end));
561
562         while ((p = rb_next(lastp))) {
563                 region = rb_entry(p, struct vm_region, vm_rb);
564                 last = rb_entry(lastp, struct vm_region, vm_rb);
565
566                 BUG_ON(unlikely(region->vm_end <= region->vm_start));
567                 BUG_ON(unlikely(region->vm_top < region->vm_end));
568                 BUG_ON(unlikely(region->vm_start < last->vm_top));
569
570                 lastp = p;
571         }
572 }
573 #else
574 static void validate_nommu_regions(void)
575 {
576 }
577 #endif
578
579 /*
580  * add a region into the global tree
581  */
582 static void add_nommu_region(struct vm_region *region)
583 {
584         struct vm_region *pregion;
585         struct rb_node **p, *parent;
586
587         validate_nommu_regions();
588
589         parent = NULL;
590         p = &nommu_region_tree.rb_node;
591         while (*p) {
592                 parent = *p;
593                 pregion = rb_entry(parent, struct vm_region, vm_rb);
594                 if (region->vm_start < pregion->vm_start)
595                         p = &(*p)->rb_left;
596                 else if (region->vm_start > pregion->vm_start)
597                         p = &(*p)->rb_right;
598                 else if (pregion == region)
599                         return;
600                 else
601                         BUG();
602         }
603
604         rb_link_node(&region->vm_rb, parent, p);
605         rb_insert_color(&region->vm_rb, &nommu_region_tree);
606
607         validate_nommu_regions();
608 }
609
610 /*
611  * delete a region from the global tree
612  */
613 static void delete_nommu_region(struct vm_region *region)
614 {
615         BUG_ON(!nommu_region_tree.rb_node);
616
617         validate_nommu_regions();
618         rb_erase(&region->vm_rb, &nommu_region_tree);
619         validate_nommu_regions();
620 }
621
622 /*
623  * free a contiguous series of pages
624  */
625 static void free_page_series(unsigned long from, unsigned long to)
626 {
627         for (; from < to; from += PAGE_SIZE) {
628                 struct page *page = virt_to_page(from);
629
630                 kdebug("- free %lx", from);
631                 atomic_long_dec(&mmap_pages_allocated);
632                 if (page_count(page) != 1)
633                         kdebug("free page %p: refcount not one: %d",
634                                page, page_count(page));
635                 put_page(page);
636         }
637 }
638
639 /*
640  * release a reference to a region
641  * - the caller must hold the region semaphore for writing, which this releases
642  * - the region may not have been added to the tree yet, in which case vm_top
643  *   will equal vm_start
644  */
645 static void __put_nommu_region(struct vm_region *region)
646         __releases(nommu_region_sem)
647 {
648         kenter("%p{%d}", region, region->vm_usage);
649
650         BUG_ON(!nommu_region_tree.rb_node);
651
652         if (--region->vm_usage == 0) {
653                 if (region->vm_top > region->vm_start)
654                         delete_nommu_region(region);
655                 up_write(&nommu_region_sem);
656
657                 if (region->vm_file)
658                         fput(region->vm_file);
659
660                 /* IO memory and memory shared directly out of the pagecache
661                  * from ramfs/tmpfs mustn't be released here */
662                 if (region->vm_flags & VM_MAPPED_COPY) {
663                         kdebug("free series");
664                         free_page_series(region->vm_start, region->vm_top);
665                 }
666                 kmem_cache_free(vm_region_jar, region);
667         } else {
668                 up_write(&nommu_region_sem);
669         }
670 }
671
672 /*
673  * release a reference to a region
674  */
675 static void put_nommu_region(struct vm_region *region)
676 {
677         down_write(&nommu_region_sem);
678         __put_nommu_region(region);
679 }
680
681 /*
682  * update protection on a vma
683  */
684 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
685 {
686 #ifdef CONFIG_MPU
687         struct mm_struct *mm = vma->vm_mm;
688         long start = vma->vm_start & PAGE_MASK;
689         while (start < vma->vm_end) {
690                 protect_page(mm, start, flags);
691                 start += PAGE_SIZE;
692         }
693         update_protections(mm);
694 #endif
695 }
696
697 /*
698  * add a VMA into a process's mm_struct in the appropriate place in the list
699  * and tree and add to the address space's page tree also if not an anonymous
700  * page
701  * - should be called with mm->mmap_sem held writelocked
702  */
703 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
704 {
705         struct vm_area_struct *pvma, *prev;
706         struct address_space *mapping;
707         struct rb_node **p, *parent, *rb_prev;
708
709         kenter(",%p", vma);
710
711         BUG_ON(!vma->vm_region);
712
713         mm->map_count++;
714         vma->vm_mm = mm;
715
716         protect_vma(vma, vma->vm_flags);
717
718         /* add the VMA to the mapping */
719         if (vma->vm_file) {
720                 mapping = vma->vm_file->f_mapping;
721
722                 mutex_lock(&mapping->i_mmap_mutex);
723                 flush_dcache_mmap_lock(mapping);
724                 vma_interval_tree_insert(vma, &mapping->i_mmap);
725                 flush_dcache_mmap_unlock(mapping);
726                 mutex_unlock(&mapping->i_mmap_mutex);
727         }
728
729         /* add the VMA to the tree */
730         parent = rb_prev = NULL;
731         p = &mm->mm_rb.rb_node;
732         while (*p) {
733                 parent = *p;
734                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
735
736                 /* sort by: start addr, end addr, VMA struct addr in that order
737                  * (the latter is necessary as we may get identical VMAs) */
738                 if (vma->vm_start < pvma->vm_start)
739                         p = &(*p)->rb_left;
740                 else if (vma->vm_start > pvma->vm_start) {
741                         rb_prev = parent;
742                         p = &(*p)->rb_right;
743                 } else if (vma->vm_end < pvma->vm_end)
744                         p = &(*p)->rb_left;
745                 else if (vma->vm_end > pvma->vm_end) {
746                         rb_prev = parent;
747                         p = &(*p)->rb_right;
748                 } else if (vma < pvma)
749                         p = &(*p)->rb_left;
750                 else if (vma > pvma) {
751                         rb_prev = parent;
752                         p = &(*p)->rb_right;
753                 } else
754                         BUG();
755         }
756
757         rb_link_node(&vma->vm_rb, parent, p);
758         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
759
760         /* add VMA to the VMA list also */
761         prev = NULL;
762         if (rb_prev)
763                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
764
765         __vma_link_list(mm, vma, prev, parent);
766 }
767
768 /*
769  * delete a VMA from its owning mm_struct and address space
770  */
771 static void delete_vma_from_mm(struct vm_area_struct *vma)
772 {
773         int i;
774         struct address_space *mapping;
775         struct mm_struct *mm = vma->vm_mm;
776         struct task_struct *curr = current;
777
778         kenter("%p", vma);
779
780         protect_vma(vma, 0);
781
782         mm->map_count--;
783         for (i = 0; i < VMACACHE_SIZE; i++) {
784                 /* if the vma is cached, invalidate the entire cache */
785                 if (curr->vmacache[i] == vma) {
786                         vmacache_invalidate(curr->mm);
787                         break;
788                 }
789         }
790
791         /* remove the VMA from the mapping */
792         if (vma->vm_file) {
793                 mapping = vma->vm_file->f_mapping;
794
795                 mutex_lock(&mapping->i_mmap_mutex);
796                 flush_dcache_mmap_lock(mapping);
797                 vma_interval_tree_remove(vma, &mapping->i_mmap);
798                 flush_dcache_mmap_unlock(mapping);
799                 mutex_unlock(&mapping->i_mmap_mutex);
800         }
801
802         /* remove from the MM's tree and list */
803         rb_erase(&vma->vm_rb, &mm->mm_rb);
804
805         if (vma->vm_prev)
806                 vma->vm_prev->vm_next = vma->vm_next;
807         else
808                 mm->mmap = vma->vm_next;
809
810         if (vma->vm_next)
811                 vma->vm_next->vm_prev = vma->vm_prev;
812 }
813
814 /*
815  * destroy a VMA record
816  */
817 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
818 {
819         kenter("%p", vma);
820         if (vma->vm_ops && vma->vm_ops->close)
821                 vma->vm_ops->close(vma);
822         if (vma->vm_file)
823                 fput(vma->vm_file);
824         put_nommu_region(vma->vm_region);
825         kmem_cache_free(vm_area_cachep, vma);
826 }
827
828 /*
829  * look up the first VMA in which addr resides, NULL if none
830  * - should be called with mm->mmap_sem at least held readlocked
831  */
832 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
833 {
834         struct vm_area_struct *vma;
835
836         /* check the cache first */
837         vma = vmacache_find(mm, addr);
838         if (likely(vma))
839                 return vma;
840
841         /* trawl the list (there may be multiple mappings in which addr
842          * resides) */
843         for (vma = mm->mmap; vma; vma = vma->vm_next) {
844                 if (vma->vm_start > addr)
845                         return NULL;
846                 if (vma->vm_end > addr) {
847                         vmacache_update(addr, vma);
848                         return vma;
849                 }
850         }
851
852         return NULL;
853 }
854 EXPORT_SYMBOL(find_vma);
855
856 /*
857  * find a VMA
858  * - we don't extend stack VMAs under NOMMU conditions
859  */
860 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
861 {
862         return find_vma(mm, addr);
863 }
864
865 /*
866  * expand a stack to a given address
867  * - not supported under NOMMU conditions
868  */
869 int expand_stack(struct vm_area_struct *vma, unsigned long address)
870 {
871         return -ENOMEM;
872 }
873
874 /*
875  * look up the first VMA exactly that exactly matches addr
876  * - should be called with mm->mmap_sem at least held readlocked
877  */
878 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
879                                              unsigned long addr,
880                                              unsigned long len)
881 {
882         struct vm_area_struct *vma;
883         unsigned long end = addr + len;
884
885         /* check the cache first */
886         vma = vmacache_find_exact(mm, addr, end);
887         if (vma)
888                 return vma;
889
890         /* trawl the list (there may be multiple mappings in which addr
891          * resides) */
892         for (vma = mm->mmap; vma; vma = vma->vm_next) {
893                 if (vma->vm_start < addr)
894                         continue;
895                 if (vma->vm_start > addr)
896                         return NULL;
897                 if (vma->vm_end == end) {
898                         vmacache_update(addr, vma);
899                         return vma;
900                 }
901         }
902
903         return NULL;
904 }
905
906 /*
907  * determine whether a mapping should be permitted and, if so, what sort of
908  * mapping we're capable of supporting
909  */
910 static int validate_mmap_request(struct file *file,
911                                  unsigned long addr,
912                                  unsigned long len,
913                                  unsigned long prot,
914                                  unsigned long flags,
915                                  unsigned long pgoff,
916                                  unsigned long *_capabilities)
917 {
918         unsigned long capabilities, rlen;
919         int ret;
920
921         /* do the simple checks first */
922         if (flags & MAP_FIXED) {
923                 printk(KERN_DEBUG
924                        "%d: Can't do fixed-address/overlay mmap of RAM\n",
925                        current->pid);
926                 return -EINVAL;
927         }
928
929         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
930             (flags & MAP_TYPE) != MAP_SHARED)
931                 return -EINVAL;
932
933         if (!len)
934                 return -EINVAL;
935
936         /* Careful about overflows.. */
937         rlen = PAGE_ALIGN(len);
938         if (!rlen || rlen > TASK_SIZE)
939                 return -ENOMEM;
940
941         /* offset overflow? */
942         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
943                 return -EOVERFLOW;
944
945         if (file) {
946                 /* validate file mapping requests */
947                 struct address_space *mapping;
948
949                 /* files must support mmap */
950                 if (!file->f_op->mmap)
951                         return -ENODEV;
952
953                 /* work out if what we've got could possibly be shared
954                  * - we support chardevs that provide their own "memory"
955                  * - we support files/blockdevs that are memory backed
956                  */
957                 mapping = file->f_mapping;
958                 if (!mapping)
959                         mapping = file_inode(file)->i_mapping;
960
961                 capabilities = 0;
962                 if (mapping && mapping->backing_dev_info)
963                         capabilities = mapping->backing_dev_info->capabilities;
964
965                 if (!capabilities) {
966                         /* no explicit capabilities set, so assume some
967                          * defaults */
968                         switch (file_inode(file)->i_mode & S_IFMT) {
969                         case S_IFREG:
970                         case S_IFBLK:
971                                 capabilities = BDI_CAP_MAP_COPY;
972                                 break;
973
974                         case S_IFCHR:
975                                 capabilities =
976                                         BDI_CAP_MAP_DIRECT |
977                                         BDI_CAP_READ_MAP |
978                                         BDI_CAP_WRITE_MAP;
979                                 break;
980
981                         default:
982                                 return -EINVAL;
983                         }
984                 }
985
986                 /* eliminate any capabilities that we can't support on this
987                  * device */
988                 if (!file->f_op->get_unmapped_area)
989                         capabilities &= ~BDI_CAP_MAP_DIRECT;
990                 if (!file->f_op->read)
991                         capabilities &= ~BDI_CAP_MAP_COPY;
992
993                 /* The file shall have been opened with read permission. */
994                 if (!(file->f_mode & FMODE_READ))
995                         return -EACCES;
996
997                 if (flags & MAP_SHARED) {
998                         /* do checks for writing, appending and locking */
999                         if ((prot & PROT_WRITE) &&
1000                             !(file->f_mode & FMODE_WRITE))
1001                                 return -EACCES;
1002
1003                         if (IS_APPEND(file_inode(file)) &&
1004                             (file->f_mode & FMODE_WRITE))
1005                                 return -EACCES;
1006
1007                         if (locks_verify_locked(file))
1008                                 return -EAGAIN;
1009
1010                         if (!(capabilities & BDI_CAP_MAP_DIRECT))
1011                                 return -ENODEV;
1012
1013                         /* we mustn't privatise shared mappings */
1014                         capabilities &= ~BDI_CAP_MAP_COPY;
1015                 } else {
1016                         /* we're going to read the file into private memory we
1017                          * allocate */
1018                         if (!(capabilities & BDI_CAP_MAP_COPY))
1019                                 return -ENODEV;
1020
1021                         /* we don't permit a private writable mapping to be
1022                          * shared with the backing device */
1023                         if (prot & PROT_WRITE)
1024                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1025                 }
1026
1027                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1028                         if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1029                             ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1030                             ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1031                             ) {
1032                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1033                                 if (flags & MAP_SHARED) {
1034                                         printk(KERN_WARNING
1035                                                "MAP_SHARED not completely supported on !MMU\n");
1036                                         return -EINVAL;
1037                                 }
1038                         }
1039                 }
1040
1041                 /* handle executable mappings and implied executable
1042                  * mappings */
1043                 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1044                         if (prot & PROT_EXEC)
1045                                 return -EPERM;
1046                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1047                         /* handle implication of PROT_EXEC by PROT_READ */
1048                         if (current->personality & READ_IMPLIES_EXEC) {
1049                                 if (capabilities & BDI_CAP_EXEC_MAP)
1050                                         prot |= PROT_EXEC;
1051                         }
1052                 } else if ((prot & PROT_READ) &&
1053                          (prot & PROT_EXEC) &&
1054                          !(capabilities & BDI_CAP_EXEC_MAP)
1055                          ) {
1056                         /* backing file is not executable, try to copy */
1057                         capabilities &= ~BDI_CAP_MAP_DIRECT;
1058                 }
1059         } else {
1060                 /* anonymous mappings are always memory backed and can be
1061                  * privately mapped
1062                  */
1063                 capabilities = BDI_CAP_MAP_COPY;
1064
1065                 /* handle PROT_EXEC implication by PROT_READ */
1066                 if ((prot & PROT_READ) &&
1067                     (current->personality & READ_IMPLIES_EXEC))
1068                         prot |= PROT_EXEC;
1069         }
1070
1071         /* allow the security API to have its say */
1072         ret = security_mmap_addr(addr);
1073         if (ret < 0)
1074                 return ret;
1075
1076         /* looks okay */
1077         *_capabilities = capabilities;
1078         return 0;
1079 }
1080
1081 /*
1082  * we've determined that we can make the mapping, now translate what we
1083  * now know into VMA flags
1084  */
1085 static unsigned long determine_vm_flags(struct file *file,
1086                                         unsigned long prot,
1087                                         unsigned long flags,
1088                                         unsigned long capabilities)
1089 {
1090         unsigned long vm_flags;
1091
1092         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1093         /* vm_flags |= mm->def_flags; */
1094
1095         if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1096                 /* attempt to share read-only copies of mapped file chunks */
1097                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1098                 if (file && !(prot & PROT_WRITE))
1099                         vm_flags |= VM_MAYSHARE;
1100         } else {
1101                 /* overlay a shareable mapping on the backing device or inode
1102                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1103                  * romfs/cramfs */
1104                 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1105                 if (flags & MAP_SHARED)
1106                         vm_flags |= VM_SHARED;
1107         }
1108
1109         /* refuse to let anyone share private mappings with this process if
1110          * it's being traced - otherwise breakpoints set in it may interfere
1111          * with another untraced process
1112          */
1113         if ((flags & MAP_PRIVATE) && current->ptrace)
1114                 vm_flags &= ~VM_MAYSHARE;
1115
1116         return vm_flags;
1117 }
1118
1119 /*
1120  * set up a shared mapping on a file (the driver or filesystem provides and
1121  * pins the storage)
1122  */
1123 static int do_mmap_shared_file(struct vm_area_struct *vma)
1124 {
1125         int ret;
1126
1127         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1128         if (ret == 0) {
1129                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1130                 return 0;
1131         }
1132         if (ret != -ENOSYS)
1133                 return ret;
1134
1135         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1136          * opposed to tried but failed) so we can only give a suitable error as
1137          * it's not possible to make a private copy if MAP_SHARED was given */
1138         return -ENODEV;
1139 }
1140
1141 /*
1142  * set up a private mapping or an anonymous shared mapping
1143  */
1144 static int do_mmap_private(struct vm_area_struct *vma,
1145                            struct vm_region *region,
1146                            unsigned long len,
1147                            unsigned long capabilities)
1148 {
1149         struct page *pages;
1150         unsigned long total, point, n;
1151         void *base;
1152         int ret, order;
1153
1154         /* invoke the file's mapping function so that it can keep track of
1155          * shared mappings on devices or memory
1156          * - VM_MAYSHARE will be set if it may attempt to share
1157          */
1158         if (capabilities & BDI_CAP_MAP_DIRECT) {
1159                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1160                 if (ret == 0) {
1161                         /* shouldn't return success if we're not sharing */
1162                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1163                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1164                         return 0;
1165                 }
1166                 if (ret != -ENOSYS)
1167                         return ret;
1168
1169                 /* getting an ENOSYS error indicates that direct mmap isn't
1170                  * possible (as opposed to tried but failed) so we'll try to
1171                  * make a private copy of the data and map that instead */
1172         }
1173
1174
1175         /* allocate some memory to hold the mapping
1176          * - note that this may not return a page-aligned address if the object
1177          *   we're allocating is smaller than a page
1178          */
1179         order = get_order(len);
1180         kdebug("alloc order %d for %lx", order, len);
1181
1182         pages = alloc_pages(GFP_KERNEL, order);
1183         if (!pages)
1184                 goto enomem;
1185
1186         total = 1 << order;
1187         atomic_long_add(total, &mmap_pages_allocated);
1188
1189         point = len >> PAGE_SHIFT;
1190
1191         /* we allocated a power-of-2 sized page set, so we may want to trim off
1192          * the excess */
1193         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1194                 while (total > point) {
1195                         order = ilog2(total - point);
1196                         n = 1 << order;
1197                         kdebug("shave %lu/%lu @%lu", n, total - point, total);
1198                         atomic_long_sub(n, &mmap_pages_allocated);
1199                         total -= n;
1200                         set_page_refcounted(pages + total);
1201                         __free_pages(pages + total, order);
1202                 }
1203         }
1204
1205         for (point = 1; point < total; point++)
1206                 set_page_refcounted(&pages[point]);
1207
1208         base = page_address(pages);
1209         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1210         region->vm_start = (unsigned long) base;
1211         region->vm_end   = region->vm_start + len;
1212         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1213
1214         vma->vm_start = region->vm_start;
1215         vma->vm_end   = region->vm_start + len;
1216
1217         if (vma->vm_file) {
1218                 /* read the contents of a file into the copy */
1219                 mm_segment_t old_fs;
1220                 loff_t fpos;
1221
1222                 fpos = vma->vm_pgoff;
1223                 fpos <<= PAGE_SHIFT;
1224
1225                 old_fs = get_fs();
1226                 set_fs(KERNEL_DS);
1227                 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1228                 set_fs(old_fs);
1229
1230                 if (ret < 0)
1231                         goto error_free;
1232
1233                 /* clear the last little bit */
1234                 if (ret < len)
1235                         memset(base + ret, 0, len - ret);
1236
1237         }
1238
1239         return 0;
1240
1241 error_free:
1242         free_page_series(region->vm_start, region->vm_top);
1243         region->vm_start = vma->vm_start = 0;
1244         region->vm_end   = vma->vm_end = 0;
1245         region->vm_top   = 0;
1246         return ret;
1247
1248 enomem:
1249         printk("Allocation of length %lu from process %d (%s) failed\n",
1250                len, current->pid, current->comm);
1251         show_free_areas(0);
1252         return -ENOMEM;
1253 }
1254
1255 /*
1256  * handle mapping creation for uClinux
1257  */
1258 unsigned long do_mmap_pgoff(struct file *file,
1259                             unsigned long addr,
1260                             unsigned long len,
1261                             unsigned long prot,
1262                             unsigned long flags,
1263                             unsigned long pgoff,
1264                             unsigned long *populate)
1265 {
1266         struct vm_area_struct *vma;
1267         struct vm_region *region;
1268         struct rb_node *rb;
1269         unsigned long capabilities, vm_flags, result;
1270         int ret;
1271
1272         kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1273
1274         *populate = 0;
1275
1276         /* decide whether we should attempt the mapping, and if so what sort of
1277          * mapping */
1278         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1279                                     &capabilities);
1280         if (ret < 0) {
1281                 kleave(" = %d [val]", ret);
1282                 return ret;
1283         }
1284
1285         /* we ignore the address hint */
1286         addr = 0;
1287         len = PAGE_ALIGN(len);
1288
1289         /* we've determined that we can make the mapping, now translate what we
1290          * now know into VMA flags */
1291         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1292
1293         /* we're going to need to record the mapping */
1294         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1295         if (!region)
1296                 goto error_getting_region;
1297
1298         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1299         if (!vma)
1300                 goto error_getting_vma;
1301
1302         region->vm_usage = 1;
1303         region->vm_flags = vm_flags;
1304         region->vm_pgoff = pgoff;
1305
1306         INIT_LIST_HEAD(&vma->anon_vma_chain);
1307         vma->vm_flags = vm_flags;
1308         vma->vm_pgoff = pgoff;
1309
1310         if (file) {
1311                 region->vm_file = get_file(file);
1312                 vma->vm_file = get_file(file);
1313         }
1314
1315         down_write(&nommu_region_sem);
1316
1317         /* if we want to share, we need to check for regions created by other
1318          * mmap() calls that overlap with our proposed mapping
1319          * - we can only share with a superset match on most regular files
1320          * - shared mappings on character devices and memory backed files are
1321          *   permitted to overlap inexactly as far as we are concerned for in
1322          *   these cases, sharing is handled in the driver or filesystem rather
1323          *   than here
1324          */
1325         if (vm_flags & VM_MAYSHARE) {
1326                 struct vm_region *pregion;
1327                 unsigned long pglen, rpglen, pgend, rpgend, start;
1328
1329                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1330                 pgend = pgoff + pglen;
1331
1332                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1333                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1334
1335                         if (!(pregion->vm_flags & VM_MAYSHARE))
1336                                 continue;
1337
1338                         /* search for overlapping mappings on the same file */
1339                         if (file_inode(pregion->vm_file) !=
1340                             file_inode(file))
1341                                 continue;
1342
1343                         if (pregion->vm_pgoff >= pgend)
1344                                 continue;
1345
1346                         rpglen = pregion->vm_end - pregion->vm_start;
1347                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1348                         rpgend = pregion->vm_pgoff + rpglen;
1349                         if (pgoff >= rpgend)
1350                                 continue;
1351
1352                         /* handle inexactly overlapping matches between
1353                          * mappings */
1354                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1355                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1356                                 /* new mapping is not a subset of the region */
1357                                 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1358                                         goto sharing_violation;
1359                                 continue;
1360                         }
1361
1362                         /* we've found a region we can share */
1363                         pregion->vm_usage++;
1364                         vma->vm_region = pregion;
1365                         start = pregion->vm_start;
1366                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1367                         vma->vm_start = start;
1368                         vma->vm_end = start + len;
1369
1370                         if (pregion->vm_flags & VM_MAPPED_COPY) {
1371                                 kdebug("share copy");
1372                                 vma->vm_flags |= VM_MAPPED_COPY;
1373                         } else {
1374                                 kdebug("share mmap");
1375                                 ret = do_mmap_shared_file(vma);
1376                                 if (ret < 0) {
1377                                         vma->vm_region = NULL;
1378                                         vma->vm_start = 0;
1379                                         vma->vm_end = 0;
1380                                         pregion->vm_usage--;
1381                                         pregion = NULL;
1382                                         goto error_just_free;
1383                                 }
1384                         }
1385                         fput(region->vm_file);
1386                         kmem_cache_free(vm_region_jar, region);
1387                         region = pregion;
1388                         result = start;
1389                         goto share;
1390                 }
1391
1392                 /* obtain the address at which to make a shared mapping
1393                  * - this is the hook for quasi-memory character devices to
1394                  *   tell us the location of a shared mapping
1395                  */
1396                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1397                         addr = file->f_op->get_unmapped_area(file, addr, len,
1398                                                              pgoff, flags);
1399                         if (IS_ERR_VALUE(addr)) {
1400                                 ret = addr;
1401                                 if (ret != -ENOSYS)
1402                                         goto error_just_free;
1403
1404                                 /* the driver refused to tell us where to site
1405                                  * the mapping so we'll have to attempt to copy
1406                                  * it */
1407                                 ret = -ENODEV;
1408                                 if (!(capabilities & BDI_CAP_MAP_COPY))
1409                                         goto error_just_free;
1410
1411                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1412                         } else {
1413                                 vma->vm_start = region->vm_start = addr;
1414                                 vma->vm_end = region->vm_end = addr + len;
1415                         }
1416                 }
1417         }
1418
1419         vma->vm_region = region;
1420
1421         /* set up the mapping
1422          * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1423          */
1424         if (file && vma->vm_flags & VM_SHARED)
1425                 ret = do_mmap_shared_file(vma);
1426         else
1427                 ret = do_mmap_private(vma, region, len, capabilities);
1428         if (ret < 0)
1429                 goto error_just_free;
1430         add_nommu_region(region);
1431
1432         /* clear anonymous mappings that don't ask for uninitialized data */
1433         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1434                 memset((void *)region->vm_start, 0,
1435                        region->vm_end - region->vm_start);
1436
1437         /* okay... we have a mapping; now we have to register it */
1438         result = vma->vm_start;
1439
1440         current->mm->total_vm += len >> PAGE_SHIFT;
1441
1442 share:
1443         add_vma_to_mm(current->mm, vma);
1444
1445         /* we flush the region from the icache only when the first executable
1446          * mapping of it is made  */
1447         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1448                 flush_icache_range(region->vm_start, region->vm_end);
1449                 region->vm_icache_flushed = true;
1450         }
1451
1452         up_write(&nommu_region_sem);
1453
1454         kleave(" = %lx", result);
1455         return result;
1456
1457 error_just_free:
1458         up_write(&nommu_region_sem);
1459 error:
1460         if (region->vm_file)
1461                 fput(region->vm_file);
1462         kmem_cache_free(vm_region_jar, region);
1463         if (vma->vm_file)
1464                 fput(vma->vm_file);
1465         kmem_cache_free(vm_area_cachep, vma);
1466         kleave(" = %d", ret);
1467         return ret;
1468
1469 sharing_violation:
1470         up_write(&nommu_region_sem);
1471         printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1472         ret = -EINVAL;
1473         goto error;
1474
1475 error_getting_vma:
1476         kmem_cache_free(vm_region_jar, region);
1477         printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1478                " from process %d failed\n",
1479                len, current->pid);
1480         show_free_areas(0);
1481         return -ENOMEM;
1482
1483 error_getting_region:
1484         printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1485                " from process %d failed\n",
1486                len, current->pid);
1487         show_free_areas(0);
1488         return -ENOMEM;
1489 }
1490
1491 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1492                 unsigned long, prot, unsigned long, flags,
1493                 unsigned long, fd, unsigned long, pgoff)
1494 {
1495         struct file *file = NULL;
1496         unsigned long retval = -EBADF;
1497
1498         audit_mmap_fd(fd, flags);
1499         if (!(flags & MAP_ANONYMOUS)) {
1500                 file = fget(fd);
1501                 if (!file)
1502                         goto out;
1503         }
1504
1505         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1506
1507         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1508
1509         if (file)
1510                 fput(file);
1511 out:
1512         return retval;
1513 }
1514
1515 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1516 struct mmap_arg_struct {
1517         unsigned long addr;
1518         unsigned long len;
1519         unsigned long prot;
1520         unsigned long flags;
1521         unsigned long fd;
1522         unsigned long offset;
1523 };
1524
1525 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1526 {
1527         struct mmap_arg_struct a;
1528
1529         if (copy_from_user(&a, arg, sizeof(a)))
1530                 return -EFAULT;
1531         if (a.offset & ~PAGE_MASK)
1532                 return -EINVAL;
1533
1534         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1535                               a.offset >> PAGE_SHIFT);
1536 }
1537 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1538
1539 /*
1540  * split a vma into two pieces at address 'addr', a new vma is allocated either
1541  * for the first part or the tail.
1542  */
1543 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1544               unsigned long addr, int new_below)
1545 {
1546         struct vm_area_struct *new;
1547         struct vm_region *region;
1548         unsigned long npages;
1549
1550         kenter("");
1551
1552         /* we're only permitted to split anonymous regions (these should have
1553          * only a single usage on the region) */
1554         if (vma->vm_file)
1555                 return -ENOMEM;
1556
1557         if (mm->map_count >= sysctl_max_map_count)
1558                 return -ENOMEM;
1559
1560         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1561         if (!region)
1562                 return -ENOMEM;
1563
1564         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1565         if (!new) {
1566                 kmem_cache_free(vm_region_jar, region);
1567                 return -ENOMEM;
1568         }
1569
1570         /* most fields are the same, copy all, and then fixup */
1571         *new = *vma;
1572         *region = *vma->vm_region;
1573         new->vm_region = region;
1574
1575         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1576
1577         if (new_below) {
1578                 region->vm_top = region->vm_end = new->vm_end = addr;
1579         } else {
1580                 region->vm_start = new->vm_start = addr;
1581                 region->vm_pgoff = new->vm_pgoff += npages;
1582         }
1583
1584         if (new->vm_ops && new->vm_ops->open)
1585                 new->vm_ops->open(new);
1586
1587         delete_vma_from_mm(vma);
1588         down_write(&nommu_region_sem);
1589         delete_nommu_region(vma->vm_region);
1590         if (new_below) {
1591                 vma->vm_region->vm_start = vma->vm_start = addr;
1592                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1593         } else {
1594                 vma->vm_region->vm_end = vma->vm_end = addr;
1595                 vma->vm_region->vm_top = addr;
1596         }
1597         add_nommu_region(vma->vm_region);
1598         add_nommu_region(new->vm_region);
1599         up_write(&nommu_region_sem);
1600         add_vma_to_mm(mm, vma);
1601         add_vma_to_mm(mm, new);
1602         return 0;
1603 }
1604
1605 /*
1606  * shrink a VMA by removing the specified chunk from either the beginning or
1607  * the end
1608  */
1609 static int shrink_vma(struct mm_struct *mm,
1610                       struct vm_area_struct *vma,
1611                       unsigned long from, unsigned long to)
1612 {
1613         struct vm_region *region;
1614
1615         kenter("");
1616
1617         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1618          * and list */
1619         delete_vma_from_mm(vma);
1620         if (from > vma->vm_start)
1621                 vma->vm_end = from;
1622         else
1623                 vma->vm_start = to;
1624         add_vma_to_mm(mm, vma);
1625
1626         /* cut the backing region down to size */
1627         region = vma->vm_region;
1628         BUG_ON(region->vm_usage != 1);
1629
1630         down_write(&nommu_region_sem);
1631         delete_nommu_region(region);
1632         if (from > region->vm_start) {
1633                 to = region->vm_top;
1634                 region->vm_top = region->vm_end = from;
1635         } else {
1636                 region->vm_start = to;
1637         }
1638         add_nommu_region(region);
1639         up_write(&nommu_region_sem);
1640
1641         free_page_series(from, to);
1642         return 0;
1643 }
1644
1645 /*
1646  * release a mapping
1647  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1648  *   VMA, though it need not cover the whole VMA
1649  */
1650 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1651 {
1652         struct vm_area_struct *vma;
1653         unsigned long end;
1654         int ret;
1655
1656         kenter(",%lx,%zx", start, len);
1657
1658         len = PAGE_ALIGN(len);
1659         if (len == 0)
1660                 return -EINVAL;
1661
1662         end = start + len;
1663
1664         /* find the first potentially overlapping VMA */
1665         vma = find_vma(mm, start);
1666         if (!vma) {
1667                 static int limit;
1668                 if (limit < 5) {
1669                         printk(KERN_WARNING
1670                                "munmap of memory not mmapped by process %d"
1671                                " (%s): 0x%lx-0x%lx\n",
1672                                current->pid, current->comm,
1673                                start, start + len - 1);
1674                         limit++;
1675                 }
1676                 return -EINVAL;
1677         }
1678
1679         /* we're allowed to split an anonymous VMA but not a file-backed one */
1680         if (vma->vm_file) {
1681                 do {
1682                         if (start > vma->vm_start) {
1683                                 kleave(" = -EINVAL [miss]");
1684                                 return -EINVAL;
1685                         }
1686                         if (end == vma->vm_end)
1687                                 goto erase_whole_vma;
1688                         vma = vma->vm_next;
1689                 } while (vma);
1690                 kleave(" = -EINVAL [split file]");
1691                 return -EINVAL;
1692         } else {
1693                 /* the chunk must be a subset of the VMA found */
1694                 if (start == vma->vm_start && end == vma->vm_end)
1695                         goto erase_whole_vma;
1696                 if (start < vma->vm_start || end > vma->vm_end) {
1697                         kleave(" = -EINVAL [superset]");
1698                         return -EINVAL;
1699                 }
1700                 if (start & ~PAGE_MASK) {
1701                         kleave(" = -EINVAL [unaligned start]");
1702                         return -EINVAL;
1703                 }
1704                 if (end != vma->vm_end && end & ~PAGE_MASK) {
1705                         kleave(" = -EINVAL [unaligned split]");
1706                         return -EINVAL;
1707                 }
1708                 if (start != vma->vm_start && end != vma->vm_end) {
1709                         ret = split_vma(mm, vma, start, 1);
1710                         if (ret < 0) {
1711                                 kleave(" = %d [split]", ret);
1712                                 return ret;
1713                         }
1714                 }
1715                 return shrink_vma(mm, vma, start, end);
1716         }
1717
1718 erase_whole_vma:
1719         delete_vma_from_mm(vma);
1720         delete_vma(mm, vma);
1721         kleave(" = 0");
1722         return 0;
1723 }
1724 EXPORT_SYMBOL(do_munmap);
1725
1726 int vm_munmap(unsigned long addr, size_t len)
1727 {
1728         struct mm_struct *mm = current->mm;
1729         int ret;
1730
1731         down_write(&mm->mmap_sem);
1732         ret = do_munmap(mm, addr, len);
1733         up_write(&mm->mmap_sem);
1734         return ret;
1735 }
1736 EXPORT_SYMBOL(vm_munmap);
1737
1738 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1739 {
1740         return vm_munmap(addr, len);
1741 }
1742
1743 /*
1744  * release all the mappings made in a process's VM space
1745  */
1746 void exit_mmap(struct mm_struct *mm)
1747 {
1748         struct vm_area_struct *vma;
1749
1750         if (!mm)
1751                 return;
1752
1753         kenter("");
1754
1755         mm->total_vm = 0;
1756
1757         while ((vma = mm->mmap)) {
1758                 mm->mmap = vma->vm_next;
1759                 delete_vma_from_mm(vma);
1760                 delete_vma(mm, vma);
1761                 cond_resched();
1762         }
1763
1764         kleave("");
1765 }
1766
1767 unsigned long vm_brk(unsigned long addr, unsigned long len)
1768 {
1769         return -ENOMEM;
1770 }
1771
1772 /*
1773  * expand (or shrink) an existing mapping, potentially moving it at the same
1774  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1775  *
1776  * under NOMMU conditions, we only permit changing a mapping's size, and only
1777  * as long as it stays within the region allocated by do_mmap_private() and the
1778  * block is not shareable
1779  *
1780  * MREMAP_FIXED is not supported under NOMMU conditions
1781  */
1782 static unsigned long do_mremap(unsigned long addr,
1783                         unsigned long old_len, unsigned long new_len,
1784                         unsigned long flags, unsigned long new_addr)
1785 {
1786         struct vm_area_struct *vma;
1787
1788         /* insanity checks first */
1789         old_len = PAGE_ALIGN(old_len);
1790         new_len = PAGE_ALIGN(new_len);
1791         if (old_len == 0 || new_len == 0)
1792                 return (unsigned long) -EINVAL;
1793
1794         if (addr & ~PAGE_MASK)
1795                 return -EINVAL;
1796
1797         if (flags & MREMAP_FIXED && new_addr != addr)
1798                 return (unsigned long) -EINVAL;
1799
1800         vma = find_vma_exact(current->mm, addr, old_len);
1801         if (!vma)
1802                 return (unsigned long) -EINVAL;
1803
1804         if (vma->vm_end != vma->vm_start + old_len)
1805                 return (unsigned long) -EFAULT;
1806
1807         if (vma->vm_flags & VM_MAYSHARE)
1808                 return (unsigned long) -EPERM;
1809
1810         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1811                 return (unsigned long) -ENOMEM;
1812
1813         /* all checks complete - do it */
1814         vma->vm_end = vma->vm_start + new_len;
1815         return vma->vm_start;
1816 }
1817
1818 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1819                 unsigned long, new_len, unsigned long, flags,
1820                 unsigned long, new_addr)
1821 {
1822         unsigned long ret;
1823
1824         down_write(&current->mm->mmap_sem);
1825         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1826         up_write(&current->mm->mmap_sem);
1827         return ret;
1828 }
1829
1830 struct page *follow_page_mask(struct vm_area_struct *vma,
1831                               unsigned long address, unsigned int flags,
1832                               unsigned int *page_mask)
1833 {
1834         *page_mask = 0;
1835         return NULL;
1836 }
1837
1838 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1839                 unsigned long pfn, unsigned long size, pgprot_t prot)
1840 {
1841         if (addr != (pfn << PAGE_SHIFT))
1842                 return -EINVAL;
1843
1844         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1845         return 0;
1846 }
1847 EXPORT_SYMBOL(remap_pfn_range);
1848
1849 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1850 {
1851         unsigned long pfn = start >> PAGE_SHIFT;
1852         unsigned long vm_len = vma->vm_end - vma->vm_start;
1853
1854         pfn += vma->vm_pgoff;
1855         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1856 }
1857 EXPORT_SYMBOL(vm_iomap_memory);
1858
1859 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1860                         unsigned long pgoff)
1861 {
1862         unsigned int size = vma->vm_end - vma->vm_start;
1863
1864         if (!(vma->vm_flags & VM_USERMAP))
1865                 return -EINVAL;
1866
1867         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1868         vma->vm_end = vma->vm_start + size;
1869
1870         return 0;
1871 }
1872 EXPORT_SYMBOL(remap_vmalloc_range);
1873
1874 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1875         unsigned long len, unsigned long pgoff, unsigned long flags)
1876 {
1877         return -ENOMEM;
1878 }
1879
1880 void unmap_mapping_range(struct address_space *mapping,
1881                          loff_t const holebegin, loff_t const holelen,
1882                          int even_cows)
1883 {
1884 }
1885 EXPORT_SYMBOL(unmap_mapping_range);
1886
1887 /*
1888  * Check that a process has enough memory to allocate a new virtual
1889  * mapping. 0 means there is enough memory for the allocation to
1890  * succeed and -ENOMEM implies there is not.
1891  *
1892  * We currently support three overcommit policies, which are set via the
1893  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1894  *
1895  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1896  * Additional code 2002 Jul 20 by Robert Love.
1897  *
1898  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1899  *
1900  * Note this is a helper function intended to be used by LSMs which
1901  * wish to use this logic.
1902  */
1903 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1904 {
1905         unsigned long free, allowed, reserve;
1906
1907         vm_acct_memory(pages);
1908
1909         /*
1910          * Sometimes we want to use more memory than we have
1911          */
1912         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1913                 return 0;
1914
1915         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1916                 free = global_page_state(NR_FREE_PAGES);
1917                 free += global_page_state(NR_FILE_PAGES);
1918
1919                 /*
1920                  * shmem pages shouldn't be counted as free in this
1921                  * case, they can't be purged, only swapped out, and
1922                  * that won't affect the overall amount of available
1923                  * memory in the system.
1924                  */
1925                 free -= global_page_state(NR_SHMEM);
1926
1927                 free += get_nr_swap_pages();
1928
1929                 /*
1930                  * Any slabs which are created with the
1931                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1932                  * which are reclaimable, under pressure.  The dentry
1933                  * cache and most inode caches should fall into this
1934                  */
1935                 free += global_page_state(NR_SLAB_RECLAIMABLE);
1936
1937                 /*
1938                  * Leave reserved pages. The pages are not for anonymous pages.
1939                  */
1940                 if (free <= totalreserve_pages)
1941                         goto error;
1942                 else
1943                         free -= totalreserve_pages;
1944
1945                 /*
1946                  * Reserve some for root
1947                  */
1948                 if (!cap_sys_admin)
1949                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1950
1951                 if (free > pages)
1952                         return 0;
1953
1954                 goto error;
1955         }
1956
1957         allowed = vm_commit_limit();
1958         /*
1959          * Reserve some 3% for root
1960          */
1961         if (!cap_sys_admin)
1962                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1963
1964         /*
1965          * Don't let a single process grow so big a user can't recover
1966          */
1967         if (mm) {
1968                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1969                 allowed -= min(mm->total_vm / 32, reserve);
1970         }
1971
1972         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1973                 return 0;
1974
1975 error:
1976         vm_unacct_memory(pages);
1977
1978         return -ENOMEM;
1979 }
1980
1981 int in_gate_area_no_mm(unsigned long addr)
1982 {
1983         return 0;
1984 }
1985
1986 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1987 {
1988         BUG();
1989         return 0;
1990 }
1991 EXPORT_SYMBOL(filemap_fault);
1992
1993 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1994 {
1995         BUG();
1996 }
1997 EXPORT_SYMBOL(filemap_map_pages);
1998
1999 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
2000                              unsigned long size, pgoff_t pgoff)
2001 {
2002         BUG();
2003         return 0;
2004 }
2005 EXPORT_SYMBOL(generic_file_remap_pages);
2006
2007 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2008                 unsigned long addr, void *buf, int len, int write)
2009 {
2010         struct vm_area_struct *vma;
2011
2012         down_read(&mm->mmap_sem);
2013
2014         /* the access must start within one of the target process's mappings */
2015         vma = find_vma(mm, addr);
2016         if (vma) {
2017                 /* don't overrun this mapping */
2018                 if (addr + len >= vma->vm_end)
2019                         len = vma->vm_end - addr;
2020
2021                 /* only read or write mappings where it is permitted */
2022                 if (write && vma->vm_flags & VM_MAYWRITE)
2023                         copy_to_user_page(vma, NULL, addr,
2024                                          (void *) addr, buf, len);
2025                 else if (!write && vma->vm_flags & VM_MAYREAD)
2026                         copy_from_user_page(vma, NULL, addr,
2027                                             buf, (void *) addr, len);
2028                 else
2029                         len = 0;
2030         } else {
2031                 len = 0;
2032         }
2033
2034         up_read(&mm->mmap_sem);
2035
2036         return len;
2037 }
2038
2039 /**
2040  * @access_remote_vm - access another process' address space
2041  * @mm:         the mm_struct of the target address space
2042  * @addr:       start address to access
2043  * @buf:        source or destination buffer
2044  * @len:        number of bytes to transfer
2045  * @write:      whether the access is a write
2046  *
2047  * The caller must hold a reference on @mm.
2048  */
2049 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2050                 void *buf, int len, int write)
2051 {
2052         return __access_remote_vm(NULL, mm, addr, buf, len, write);
2053 }
2054
2055 /*
2056  * Access another process' address space.
2057  * - source/target buffer must be kernel space
2058  */
2059 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2060 {
2061         struct mm_struct *mm;
2062
2063         if (addr + len < addr)
2064                 return 0;
2065
2066         mm = get_task_mm(tsk);
2067         if (!mm)
2068                 return 0;
2069
2070         len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2071
2072         mmput(mm);
2073         return len;
2074 }
2075
2076 /**
2077  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2078  * @inode: The inode to check
2079  * @size: The current filesize of the inode
2080  * @newsize: The proposed filesize of the inode
2081  *
2082  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2083  * make sure that that any outstanding VMAs aren't broken and then shrink the
2084  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2085  * automatically grant mappings that are too large.
2086  */
2087 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2088                                 size_t newsize)
2089 {
2090         struct vm_area_struct *vma;
2091         struct vm_region *region;
2092         pgoff_t low, high;
2093         size_t r_size, r_top;
2094
2095         low = newsize >> PAGE_SHIFT;
2096         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2097
2098         down_write(&nommu_region_sem);
2099         mutex_lock(&inode->i_mapping->i_mmap_mutex);
2100
2101         /* search for VMAs that fall within the dead zone */
2102         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2103                 /* found one - only interested if it's shared out of the page
2104                  * cache */
2105                 if (vma->vm_flags & VM_SHARED) {
2106                         mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2107                         up_write(&nommu_region_sem);
2108                         return -ETXTBSY; /* not quite true, but near enough */
2109                 }
2110         }
2111
2112         /* reduce any regions that overlap the dead zone - if in existence,
2113          * these will be pointed to by VMAs that don't overlap the dead zone
2114          *
2115          * we don't check for any regions that start beyond the EOF as there
2116          * shouldn't be any
2117          */
2118         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2119                                   0, ULONG_MAX) {
2120                 if (!(vma->vm_flags & VM_SHARED))
2121                         continue;
2122
2123                 region = vma->vm_region;
2124                 r_size = region->vm_top - region->vm_start;
2125                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2126
2127                 if (r_top > newsize) {
2128                         region->vm_top -= r_top - newsize;
2129                         if (region->vm_end > region->vm_top)
2130                                 region->vm_end = region->vm_top;
2131                 }
2132         }
2133
2134         mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2135         up_write(&nommu_region_sem);
2136         return 0;
2137 }
2138
2139 /*
2140  * Initialise sysctl_user_reserve_kbytes.
2141  *
2142  * This is intended to prevent a user from starting a single memory hogging
2143  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2144  * mode.
2145  *
2146  * The default value is min(3% of free memory, 128MB)
2147  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2148  */
2149 static int __meminit init_user_reserve(void)
2150 {
2151         unsigned long free_kbytes;
2152
2153         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2154
2155         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2156         return 0;
2157 }
2158 module_init(init_user_reserve)
2159
2160 /*
2161  * Initialise sysctl_admin_reserve_kbytes.
2162  *
2163  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2164  * to log in and kill a memory hogging process.
2165  *
2166  * Systems with more than 256MB will reserve 8MB, enough to recover
2167  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2168  * only reserve 3% of free pages by default.
2169  */
2170 static int __meminit init_admin_reserve(void)
2171 {
2172         unsigned long free_kbytes;
2173
2174         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2175
2176         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2177         return 0;
2178 }
2179 module_init(init_admin_reserve)