Merge tag 'renesas-cleanup-for-v3.19' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / mm / page_cgroup.c
1 #include <linux/mm.h>
2 #include <linux/mmzone.h>
3 #include <linux/bootmem.h>
4 #include <linux/bit_spinlock.h>
5 #include <linux/page_cgroup.h>
6 #include <linux/hash.h>
7 #include <linux/slab.h>
8 #include <linux/memory.h>
9 #include <linux/vmalloc.h>
10 #include <linux/cgroup.h>
11 #include <linux/swapops.h>
12 #include <linux/kmemleak.h>
13
14 static unsigned long total_usage;
15
16 #if !defined(CONFIG_SPARSEMEM)
17
18
19 void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
20 {
21         pgdat->node_page_cgroup = NULL;
22 }
23
24 struct page_cgroup *lookup_page_cgroup(struct page *page)
25 {
26         unsigned long pfn = page_to_pfn(page);
27         unsigned long offset;
28         struct page_cgroup *base;
29
30         base = NODE_DATA(page_to_nid(page))->node_page_cgroup;
31 #ifdef CONFIG_DEBUG_VM
32         /*
33          * The sanity checks the page allocator does upon freeing a
34          * page can reach here before the page_cgroup arrays are
35          * allocated when feeding a range of pages to the allocator
36          * for the first time during bootup or memory hotplug.
37          */
38         if (unlikely(!base))
39                 return NULL;
40 #endif
41         offset = pfn - NODE_DATA(page_to_nid(page))->node_start_pfn;
42         return base + offset;
43 }
44
45 static int __init alloc_node_page_cgroup(int nid)
46 {
47         struct page_cgroup *base;
48         unsigned long table_size;
49         unsigned long nr_pages;
50
51         nr_pages = NODE_DATA(nid)->node_spanned_pages;
52         if (!nr_pages)
53                 return 0;
54
55         table_size = sizeof(struct page_cgroup) * nr_pages;
56
57         base = memblock_virt_alloc_try_nid_nopanic(
58                         table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
59                         BOOTMEM_ALLOC_ACCESSIBLE, nid);
60         if (!base)
61                 return -ENOMEM;
62         NODE_DATA(nid)->node_page_cgroup = base;
63         total_usage += table_size;
64         return 0;
65 }
66
67 void __init page_cgroup_init_flatmem(void)
68 {
69
70         int nid, fail;
71
72         if (mem_cgroup_disabled())
73                 return;
74
75         for_each_online_node(nid)  {
76                 fail = alloc_node_page_cgroup(nid);
77                 if (fail)
78                         goto fail;
79         }
80         printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
81         printk(KERN_INFO "please try 'cgroup_disable=memory' option if you"
82         " don't want memory cgroups\n");
83         return;
84 fail:
85         printk(KERN_CRIT "allocation of page_cgroup failed.\n");
86         printk(KERN_CRIT "please try 'cgroup_disable=memory' boot option\n");
87         panic("Out of memory");
88 }
89
90 #else /* CONFIG_FLAT_NODE_MEM_MAP */
91
92 struct page_cgroup *lookup_page_cgroup(struct page *page)
93 {
94         unsigned long pfn = page_to_pfn(page);
95         struct mem_section *section = __pfn_to_section(pfn);
96 #ifdef CONFIG_DEBUG_VM
97         /*
98          * The sanity checks the page allocator does upon freeing a
99          * page can reach here before the page_cgroup arrays are
100          * allocated when feeding a range of pages to the allocator
101          * for the first time during bootup or memory hotplug.
102          */
103         if (!section->page_cgroup)
104                 return NULL;
105 #endif
106         return section->page_cgroup + pfn;
107 }
108
109 static void *__meminit alloc_page_cgroup(size_t size, int nid)
110 {
111         gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
112         void *addr = NULL;
113
114         addr = alloc_pages_exact_nid(nid, size, flags);
115         if (addr) {
116                 kmemleak_alloc(addr, size, 1, flags);
117                 return addr;
118         }
119
120         if (node_state(nid, N_HIGH_MEMORY))
121                 addr = vzalloc_node(size, nid);
122         else
123                 addr = vzalloc(size);
124
125         return addr;
126 }
127
128 static int __meminit init_section_page_cgroup(unsigned long pfn, int nid)
129 {
130         struct mem_section *section;
131         struct page_cgroup *base;
132         unsigned long table_size;
133
134         section = __pfn_to_section(pfn);
135
136         if (section->page_cgroup)
137                 return 0;
138
139         table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION;
140         base = alloc_page_cgroup(table_size, nid);
141
142         /*
143          * The value stored in section->page_cgroup is (base - pfn)
144          * and it does not point to the memory block allocated above,
145          * causing kmemleak false positives.
146          */
147         kmemleak_not_leak(base);
148
149         if (!base) {
150                 printk(KERN_ERR "page cgroup allocation failure\n");
151                 return -ENOMEM;
152         }
153
154         /*
155          * The passed "pfn" may not be aligned to SECTION.  For the calculation
156          * we need to apply a mask.
157          */
158         pfn &= PAGE_SECTION_MASK;
159         section->page_cgroup = base - pfn;
160         total_usage += table_size;
161         return 0;
162 }
163 #ifdef CONFIG_MEMORY_HOTPLUG
164 static void free_page_cgroup(void *addr)
165 {
166         if (is_vmalloc_addr(addr)) {
167                 vfree(addr);
168         } else {
169                 struct page *page = virt_to_page(addr);
170                 size_t table_size =
171                         sizeof(struct page_cgroup) * PAGES_PER_SECTION;
172
173                 BUG_ON(PageReserved(page));
174                 kmemleak_free(addr);
175                 free_pages_exact(addr, table_size);
176         }
177 }
178
179 static void __free_page_cgroup(unsigned long pfn)
180 {
181         struct mem_section *ms;
182         struct page_cgroup *base;
183
184         ms = __pfn_to_section(pfn);
185         if (!ms || !ms->page_cgroup)
186                 return;
187         base = ms->page_cgroup + pfn;
188         free_page_cgroup(base);
189         ms->page_cgroup = NULL;
190 }
191
192 static int __meminit online_page_cgroup(unsigned long start_pfn,
193                                 unsigned long nr_pages,
194                                 int nid)
195 {
196         unsigned long start, end, pfn;
197         int fail = 0;
198
199         start = SECTION_ALIGN_DOWN(start_pfn);
200         end = SECTION_ALIGN_UP(start_pfn + nr_pages);
201
202         if (nid == -1) {
203                 /*
204                  * In this case, "nid" already exists and contains valid memory.
205                  * "start_pfn" passed to us is a pfn which is an arg for
206                  * online__pages(), and start_pfn should exist.
207                  */
208                 nid = pfn_to_nid(start_pfn);
209                 VM_BUG_ON(!node_state(nid, N_ONLINE));
210         }
211
212         for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
213                 if (!pfn_present(pfn))
214                         continue;
215                 fail = init_section_page_cgroup(pfn, nid);
216         }
217         if (!fail)
218                 return 0;
219
220         /* rollback */
221         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
222                 __free_page_cgroup(pfn);
223
224         return -ENOMEM;
225 }
226
227 static int __meminit offline_page_cgroup(unsigned long start_pfn,
228                                 unsigned long nr_pages, int nid)
229 {
230         unsigned long start, end, pfn;
231
232         start = SECTION_ALIGN_DOWN(start_pfn);
233         end = SECTION_ALIGN_UP(start_pfn + nr_pages);
234
235         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
236                 __free_page_cgroup(pfn);
237         return 0;
238
239 }
240
241 static int __meminit page_cgroup_callback(struct notifier_block *self,
242                                unsigned long action, void *arg)
243 {
244         struct memory_notify *mn = arg;
245         int ret = 0;
246         switch (action) {
247         case MEM_GOING_ONLINE:
248                 ret = online_page_cgroup(mn->start_pfn,
249                                    mn->nr_pages, mn->status_change_nid);
250                 break;
251         case MEM_OFFLINE:
252                 offline_page_cgroup(mn->start_pfn,
253                                 mn->nr_pages, mn->status_change_nid);
254                 break;
255         case MEM_CANCEL_ONLINE:
256                 offline_page_cgroup(mn->start_pfn,
257                                 mn->nr_pages, mn->status_change_nid);
258                 break;
259         case MEM_GOING_OFFLINE:
260                 break;
261         case MEM_ONLINE:
262         case MEM_CANCEL_OFFLINE:
263                 break;
264         }
265
266         return notifier_from_errno(ret);
267 }
268
269 #endif
270
271 void __init page_cgroup_init(void)
272 {
273         unsigned long pfn;
274         int nid;
275
276         if (mem_cgroup_disabled())
277                 return;
278
279         for_each_node_state(nid, N_MEMORY) {
280                 unsigned long start_pfn, end_pfn;
281
282                 start_pfn = node_start_pfn(nid);
283                 end_pfn = node_end_pfn(nid);
284                 /*
285                  * start_pfn and end_pfn may not be aligned to SECTION and the
286                  * page->flags of out of node pages are not initialized.  So we
287                  * scan [start_pfn, the biggest section's pfn < end_pfn) here.
288                  */
289                 for (pfn = start_pfn;
290                      pfn < end_pfn;
291                      pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
292
293                         if (!pfn_valid(pfn))
294                                 continue;
295                         /*
296                          * Nodes's pfns can be overlapping.
297                          * We know some arch can have a nodes layout such as
298                          * -------------pfn-------------->
299                          * N0 | N1 | N2 | N0 | N1 | N2|....
300                          */
301                         if (pfn_to_nid(pfn) != nid)
302                                 continue;
303                         if (init_section_page_cgroup(pfn, nid))
304                                 goto oom;
305                 }
306         }
307         hotplug_memory_notifier(page_cgroup_callback, 0);
308         printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
309         printk(KERN_INFO "please try 'cgroup_disable=memory' option if you "
310                          "don't want memory cgroups\n");
311         return;
312 oom:
313         printk(KERN_CRIT "try 'cgroup_disable=memory' boot option\n");
314         panic("Out of memory");
315 }
316
317 void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
318 {
319         return;
320 }
321
322 #endif
323
324
325 #ifdef CONFIG_MEMCG_SWAP
326
327 static DEFINE_MUTEX(swap_cgroup_mutex);
328 struct swap_cgroup_ctrl {
329         struct page **map;
330         unsigned long length;
331         spinlock_t      lock;
332 };
333
334 static struct swap_cgroup_ctrl swap_cgroup_ctrl[MAX_SWAPFILES];
335
336 struct swap_cgroup {
337         unsigned short          id;
338 };
339 #define SC_PER_PAGE     (PAGE_SIZE/sizeof(struct swap_cgroup))
340
341 /*
342  * SwapCgroup implements "lookup" and "exchange" operations.
343  * In typical usage, this swap_cgroup is accessed via memcg's charge/uncharge
344  * against SwapCache. At swap_free(), this is accessed directly from swap.
345  *
346  * This means,
347  *  - we have no race in "exchange" when we're accessed via SwapCache because
348  *    SwapCache(and its swp_entry) is under lock.
349  *  - When called via swap_free(), there is no user of this entry and no race.
350  * Then, we don't need lock around "exchange".
351  *
352  * TODO: we can push these buffers out to HIGHMEM.
353  */
354
355 /*
356  * allocate buffer for swap_cgroup.
357  */
358 static int swap_cgroup_prepare(int type)
359 {
360         struct page *page;
361         struct swap_cgroup_ctrl *ctrl;
362         unsigned long idx, max;
363
364         ctrl = &swap_cgroup_ctrl[type];
365
366         for (idx = 0; idx < ctrl->length; idx++) {
367                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
368                 if (!page)
369                         goto not_enough_page;
370                 ctrl->map[idx] = page;
371         }
372         return 0;
373 not_enough_page:
374         max = idx;
375         for (idx = 0; idx < max; idx++)
376                 __free_page(ctrl->map[idx]);
377
378         return -ENOMEM;
379 }
380
381 static struct swap_cgroup *lookup_swap_cgroup(swp_entry_t ent,
382                                         struct swap_cgroup_ctrl **ctrlp)
383 {
384         pgoff_t offset = swp_offset(ent);
385         struct swap_cgroup_ctrl *ctrl;
386         struct page *mappage;
387         struct swap_cgroup *sc;
388
389         ctrl = &swap_cgroup_ctrl[swp_type(ent)];
390         if (ctrlp)
391                 *ctrlp = ctrl;
392
393         mappage = ctrl->map[offset / SC_PER_PAGE];
394         sc = page_address(mappage);
395         return sc + offset % SC_PER_PAGE;
396 }
397
398 /**
399  * swap_cgroup_cmpxchg - cmpxchg mem_cgroup's id for this swp_entry.
400  * @ent: swap entry to be cmpxchged
401  * @old: old id
402  * @new: new id
403  *
404  * Returns old id at success, 0 at failure.
405  * (There is no mem_cgroup using 0 as its id)
406  */
407 unsigned short swap_cgroup_cmpxchg(swp_entry_t ent,
408                                         unsigned short old, unsigned short new)
409 {
410         struct swap_cgroup_ctrl *ctrl;
411         struct swap_cgroup *sc;
412         unsigned long flags;
413         unsigned short retval;
414
415         sc = lookup_swap_cgroup(ent, &ctrl);
416
417         spin_lock_irqsave(&ctrl->lock, flags);
418         retval = sc->id;
419         if (retval == old)
420                 sc->id = new;
421         else
422                 retval = 0;
423         spin_unlock_irqrestore(&ctrl->lock, flags);
424         return retval;
425 }
426
427 /**
428  * swap_cgroup_record - record mem_cgroup for this swp_entry.
429  * @ent: swap entry to be recorded into
430  * @id: mem_cgroup to be recorded
431  *
432  * Returns old value at success, 0 at failure.
433  * (Of course, old value can be 0.)
434  */
435 unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id)
436 {
437         struct swap_cgroup_ctrl *ctrl;
438         struct swap_cgroup *sc;
439         unsigned short old;
440         unsigned long flags;
441
442         sc = lookup_swap_cgroup(ent, &ctrl);
443
444         spin_lock_irqsave(&ctrl->lock, flags);
445         old = sc->id;
446         sc->id = id;
447         spin_unlock_irqrestore(&ctrl->lock, flags);
448
449         return old;
450 }
451
452 /**
453  * lookup_swap_cgroup_id - lookup mem_cgroup id tied to swap entry
454  * @ent: swap entry to be looked up.
455  *
456  * Returns ID of mem_cgroup at success. 0 at failure. (0 is invalid ID)
457  */
458 unsigned short lookup_swap_cgroup_id(swp_entry_t ent)
459 {
460         return lookup_swap_cgroup(ent, NULL)->id;
461 }
462
463 int swap_cgroup_swapon(int type, unsigned long max_pages)
464 {
465         void *array;
466         unsigned long array_size;
467         unsigned long length;
468         struct swap_cgroup_ctrl *ctrl;
469
470         if (!do_swap_account)
471                 return 0;
472
473         length = DIV_ROUND_UP(max_pages, SC_PER_PAGE);
474         array_size = length * sizeof(void *);
475
476         array = vzalloc(array_size);
477         if (!array)
478                 goto nomem;
479
480         ctrl = &swap_cgroup_ctrl[type];
481         mutex_lock(&swap_cgroup_mutex);
482         ctrl->length = length;
483         ctrl->map = array;
484         spin_lock_init(&ctrl->lock);
485         if (swap_cgroup_prepare(type)) {
486                 /* memory shortage */
487                 ctrl->map = NULL;
488                 ctrl->length = 0;
489                 mutex_unlock(&swap_cgroup_mutex);
490                 vfree(array);
491                 goto nomem;
492         }
493         mutex_unlock(&swap_cgroup_mutex);
494
495         return 0;
496 nomem:
497         printk(KERN_INFO "couldn't allocate enough memory for swap_cgroup.\n");
498         printk(KERN_INFO
499                 "swap_cgroup can be disabled by swapaccount=0 boot option\n");
500         return -ENOMEM;
501 }
502
503 void swap_cgroup_swapoff(int type)
504 {
505         struct page **map;
506         unsigned long i, length;
507         struct swap_cgroup_ctrl *ctrl;
508
509         if (!do_swap_account)
510                 return;
511
512         mutex_lock(&swap_cgroup_mutex);
513         ctrl = &swap_cgroup_ctrl[type];
514         map = ctrl->map;
515         length = ctrl->length;
516         ctrl->map = NULL;
517         ctrl->length = 0;
518         mutex_unlock(&swap_cgroup_mutex);
519
520         if (map) {
521                 for (i = 0; i < length; i++) {
522                         struct page *page = map[i];
523                         if (page)
524                                 __free_page(page);
525                 }
526                 vfree(map);
527         }
528 }
529
530 #endif