mm: memcontrol: rewrite charge API
[cascardo/linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89         pgoff_t start;          /* start of range currently being fallocated */
90         pgoff_t next;           /* the next page offset to be fallocated */
91         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
92         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97         SGP_READ,       /* don't exceed i_size, don't allocate page */
98         SGP_CACHE,      /* don't exceed i_size, may allocate page */
99         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
100         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
101         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107         return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118                                 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123         struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125         return shmem_getpage_gfp(inode, index, pagep, sgp,
126                         mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131         return sb->s_fs_info;
132 }
133
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142         return (flags & VM_NORESERVE) ?
143                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148         if (!(flags & VM_NORESERVE))
149                 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 static inline int shmem_reacct_size(unsigned long flags,
153                 loff_t oldsize, loff_t newsize)
154 {
155         if (!(flags & VM_NORESERVE)) {
156                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
157                         return security_vm_enough_memory_mm(current->mm,
158                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
159                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
160                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
161         }
162         return 0;
163 }
164
165 /*
166  * ... whereas tmpfs objects are accounted incrementally as
167  * pages are allocated, in order to allow huge sparse files.
168  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
169  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
170  */
171 static inline int shmem_acct_block(unsigned long flags)
172 {
173         return (flags & VM_NORESERVE) ?
174                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
175 }
176
177 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
178 {
179         if (flags & VM_NORESERVE)
180                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
181 }
182
183 static const struct super_operations shmem_ops;
184 static const struct address_space_operations shmem_aops;
185 static const struct file_operations shmem_file_operations;
186 static const struct inode_operations shmem_inode_operations;
187 static const struct inode_operations shmem_dir_inode_operations;
188 static const struct inode_operations shmem_special_inode_operations;
189 static const struct vm_operations_struct shmem_vm_ops;
190
191 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
192         .ra_pages       = 0,    /* No readahead */
193         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
194 };
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202         if (sbinfo->max_inodes) {
203                 spin_lock(&sbinfo->stat_lock);
204                 if (!sbinfo->free_inodes) {
205                         spin_unlock(&sbinfo->stat_lock);
206                         return -ENOSPC;
207                 }
208                 sbinfo->free_inodes--;
209                 spin_unlock(&sbinfo->stat_lock);
210         }
211         return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217         if (sbinfo->max_inodes) {
218                 spin_lock(&sbinfo->stat_lock);
219                 sbinfo->free_inodes++;
220                 spin_unlock(&sbinfo->stat_lock);
221         }
222 }
223
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238         struct shmem_inode_info *info = SHMEM_I(inode);
239         long freed;
240
241         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242         if (freed > 0) {
243                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244                 if (sbinfo->max_blocks)
245                         percpu_counter_add(&sbinfo->used_blocks, -freed);
246                 info->alloced -= freed;
247                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248                 shmem_unacct_blocks(info->flags, freed);
249         }
250 }
251
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256                         pgoff_t index, void *expected, void *replacement)
257 {
258         void **pslot;
259         void *item;
260
261         VM_BUG_ON(!expected);
262         VM_BUG_ON(!replacement);
263         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264         if (!pslot)
265                 return -ENOENT;
266         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267         if (item != expected)
268                 return -ENOENT;
269         radix_tree_replace_slot(pslot, replacement);
270         return 0;
271 }
272
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281                                pgoff_t index, swp_entry_t swap)
282 {
283         void *item;
284
285         rcu_read_lock();
286         item = radix_tree_lookup(&mapping->page_tree, index);
287         rcu_read_unlock();
288         return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292  * Like add_to_page_cache_locked, but error if expected item has gone.
293  */
294 static int shmem_add_to_page_cache(struct page *page,
295                                    struct address_space *mapping,
296                                    pgoff_t index, void *expected)
297 {
298         int error;
299
300         VM_BUG_ON_PAGE(!PageLocked(page), page);
301         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302
303         page_cache_get(page);
304         page->mapping = mapping;
305         page->index = index;
306
307         spin_lock_irq(&mapping->tree_lock);
308         if (!expected)
309                 error = radix_tree_insert(&mapping->page_tree, index, page);
310         else
311                 error = shmem_radix_tree_replace(mapping, index, expected,
312                                                                  page);
313         if (!error) {
314                 mapping->nrpages++;
315                 __inc_zone_page_state(page, NR_FILE_PAGES);
316                 __inc_zone_page_state(page, NR_SHMEM);
317                 spin_unlock_irq(&mapping->tree_lock);
318         } else {
319                 page->mapping = NULL;
320                 spin_unlock_irq(&mapping->tree_lock);
321                 page_cache_release(page);
322         }
323         return error;
324 }
325
326 /*
327  * Like delete_from_page_cache, but substitutes swap for page.
328  */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331         struct address_space *mapping = page->mapping;
332         int error;
333
334         spin_lock_irq(&mapping->tree_lock);
335         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336         page->mapping = NULL;
337         mapping->nrpages--;
338         __dec_zone_page_state(page, NR_FILE_PAGES);
339         __dec_zone_page_state(page, NR_SHMEM);
340         spin_unlock_irq(&mapping->tree_lock);
341         page_cache_release(page);
342         BUG_ON(error);
343 }
344
345 /*
346  * Remove swap entry from radix tree, free the swap and its page cache.
347  */
348 static int shmem_free_swap(struct address_space *mapping,
349                            pgoff_t index, void *radswap)
350 {
351         void *old;
352
353         spin_lock_irq(&mapping->tree_lock);
354         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355         spin_unlock_irq(&mapping->tree_lock);
356         if (old != radswap)
357                 return -ENOENT;
358         free_swap_and_cache(radix_to_swp_entry(radswap));
359         return 0;
360 }
361
362 /*
363  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
364  */
365 void shmem_unlock_mapping(struct address_space *mapping)
366 {
367         struct pagevec pvec;
368         pgoff_t indices[PAGEVEC_SIZE];
369         pgoff_t index = 0;
370
371         pagevec_init(&pvec, 0);
372         /*
373          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
374          */
375         while (!mapping_unevictable(mapping)) {
376                 /*
377                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
379                  */
380                 pvec.nr = find_get_entries(mapping, index,
381                                            PAGEVEC_SIZE, pvec.pages, indices);
382                 if (!pvec.nr)
383                         break;
384                 index = indices[pvec.nr - 1] + 1;
385                 pagevec_remove_exceptionals(&pvec);
386                 check_move_unevictable_pages(pvec.pages, pvec.nr);
387                 pagevec_release(&pvec);
388                 cond_resched();
389         }
390 }
391
392 /*
393  * Remove range of pages and swap entries from radix tree, and free them.
394  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
395  */
396 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
397                                                                  bool unfalloc)
398 {
399         struct address_space *mapping = inode->i_mapping;
400         struct shmem_inode_info *info = SHMEM_I(inode);
401         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
402         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
403         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
404         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
405         struct pagevec pvec;
406         pgoff_t indices[PAGEVEC_SIZE];
407         long nr_swaps_freed = 0;
408         pgoff_t index;
409         int i;
410
411         if (lend == -1)
412                 end = -1;       /* unsigned, so actually very big */
413
414         pagevec_init(&pvec, 0);
415         index = start;
416         while (index < end) {
417                 pvec.nr = find_get_entries(mapping, index,
418                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
419                         pvec.pages, indices);
420                 if (!pvec.nr)
421                         break;
422                 mem_cgroup_uncharge_start();
423                 for (i = 0; i < pagevec_count(&pvec); i++) {
424                         struct page *page = pvec.pages[i];
425
426                         index = indices[i];
427                         if (index >= end)
428                                 break;
429
430                         if (radix_tree_exceptional_entry(page)) {
431                                 if (unfalloc)
432                                         continue;
433                                 nr_swaps_freed += !shmem_free_swap(mapping,
434                                                                 index, page);
435                                 continue;
436                         }
437
438                         if (!trylock_page(page))
439                                 continue;
440                         if (!unfalloc || !PageUptodate(page)) {
441                                 if (page->mapping == mapping) {
442                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
443                                         truncate_inode_page(mapping, page);
444                                 }
445                         }
446                         unlock_page(page);
447                 }
448                 pagevec_remove_exceptionals(&pvec);
449                 pagevec_release(&pvec);
450                 mem_cgroup_uncharge_end();
451                 cond_resched();
452                 index++;
453         }
454
455         if (partial_start) {
456                 struct page *page = NULL;
457                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
458                 if (page) {
459                         unsigned int top = PAGE_CACHE_SIZE;
460                         if (start > end) {
461                                 top = partial_end;
462                                 partial_end = 0;
463                         }
464                         zero_user_segment(page, partial_start, top);
465                         set_page_dirty(page);
466                         unlock_page(page);
467                         page_cache_release(page);
468                 }
469         }
470         if (partial_end) {
471                 struct page *page = NULL;
472                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
473                 if (page) {
474                         zero_user_segment(page, 0, partial_end);
475                         set_page_dirty(page);
476                         unlock_page(page);
477                         page_cache_release(page);
478                 }
479         }
480         if (start >= end)
481                 return;
482
483         index = start;
484         while (index < end) {
485                 cond_resched();
486
487                 pvec.nr = find_get_entries(mapping, index,
488                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
489                                 pvec.pages, indices);
490                 if (!pvec.nr) {
491                         /* If all gone or hole-punch or unfalloc, we're done */
492                         if (index == start || end != -1)
493                                 break;
494                         /* But if truncating, restart to make sure all gone */
495                         index = start;
496                         continue;
497                 }
498                 mem_cgroup_uncharge_start();
499                 for (i = 0; i < pagevec_count(&pvec); i++) {
500                         struct page *page = pvec.pages[i];
501
502                         index = indices[i];
503                         if (index >= end)
504                                 break;
505
506                         if (radix_tree_exceptional_entry(page)) {
507                                 if (unfalloc)
508                                         continue;
509                                 if (shmem_free_swap(mapping, index, page)) {
510                                         /* Swap was replaced by page: retry */
511                                         index--;
512                                         break;
513                                 }
514                                 nr_swaps_freed++;
515                                 continue;
516                         }
517
518                         lock_page(page);
519                         if (!unfalloc || !PageUptodate(page)) {
520                                 if (page->mapping == mapping) {
521                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
522                                         truncate_inode_page(mapping, page);
523                                 } else {
524                                         /* Page was replaced by swap: retry */
525                                         unlock_page(page);
526                                         index--;
527                                         break;
528                                 }
529                         }
530                         unlock_page(page);
531                 }
532                 pagevec_remove_exceptionals(&pvec);
533                 pagevec_release(&pvec);
534                 mem_cgroup_uncharge_end();
535                 index++;
536         }
537
538         spin_lock(&info->lock);
539         info->swapped -= nr_swaps_freed;
540         shmem_recalc_inode(inode);
541         spin_unlock(&info->lock);
542 }
543
544 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
545 {
546         shmem_undo_range(inode, lstart, lend, false);
547         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
548 }
549 EXPORT_SYMBOL_GPL(shmem_truncate_range);
550
551 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
552 {
553         struct inode *inode = dentry->d_inode;
554         int error;
555
556         error = inode_change_ok(inode, attr);
557         if (error)
558                 return error;
559
560         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
561                 loff_t oldsize = inode->i_size;
562                 loff_t newsize = attr->ia_size;
563
564                 if (newsize != oldsize) {
565                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
566                                         oldsize, newsize);
567                         if (error)
568                                 return error;
569                         i_size_write(inode, newsize);
570                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
571                 }
572                 if (newsize < oldsize) {
573                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
574                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
575                         shmem_truncate_range(inode, newsize, (loff_t)-1);
576                         /* unmap again to remove racily COWed private pages */
577                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
578                 }
579         }
580
581         setattr_copy(inode, attr);
582         if (attr->ia_valid & ATTR_MODE)
583                 error = posix_acl_chmod(inode, inode->i_mode);
584         return error;
585 }
586
587 static void shmem_evict_inode(struct inode *inode)
588 {
589         struct shmem_inode_info *info = SHMEM_I(inode);
590
591         if (inode->i_mapping->a_ops == &shmem_aops) {
592                 shmem_unacct_size(info->flags, inode->i_size);
593                 inode->i_size = 0;
594                 shmem_truncate_range(inode, 0, (loff_t)-1);
595                 if (!list_empty(&info->swaplist)) {
596                         mutex_lock(&shmem_swaplist_mutex);
597                         list_del_init(&info->swaplist);
598                         mutex_unlock(&shmem_swaplist_mutex);
599                 }
600         } else
601                 kfree(info->symlink);
602
603         simple_xattrs_free(&info->xattrs);
604         WARN_ON(inode->i_blocks);
605         shmem_free_inode(inode->i_sb);
606         clear_inode(inode);
607 }
608
609 /*
610  * If swap found in inode, free it and move page from swapcache to filecache.
611  */
612 static int shmem_unuse_inode(struct shmem_inode_info *info,
613                              swp_entry_t swap, struct page **pagep)
614 {
615         struct address_space *mapping = info->vfs_inode.i_mapping;
616         void *radswap;
617         pgoff_t index;
618         gfp_t gfp;
619         int error = 0;
620
621         radswap = swp_to_radix_entry(swap);
622         index = radix_tree_locate_item(&mapping->page_tree, radswap);
623         if (index == -1)
624                 return -EAGAIN; /* tell shmem_unuse we found nothing */
625
626         /*
627          * Move _head_ to start search for next from here.
628          * But be careful: shmem_evict_inode checks list_empty without taking
629          * mutex, and there's an instant in list_move_tail when info->swaplist
630          * would appear empty, if it were the only one on shmem_swaplist.
631          */
632         if (shmem_swaplist.next != &info->swaplist)
633                 list_move_tail(&shmem_swaplist, &info->swaplist);
634
635         gfp = mapping_gfp_mask(mapping);
636         if (shmem_should_replace_page(*pagep, gfp)) {
637                 mutex_unlock(&shmem_swaplist_mutex);
638                 error = shmem_replace_page(pagep, gfp, info, index);
639                 mutex_lock(&shmem_swaplist_mutex);
640                 /*
641                  * We needed to drop mutex to make that restrictive page
642                  * allocation, but the inode might have been freed while we
643                  * dropped it: although a racing shmem_evict_inode() cannot
644                  * complete without emptying the radix_tree, our page lock
645                  * on this swapcache page is not enough to prevent that -
646                  * free_swap_and_cache() of our swap entry will only
647                  * trylock_page(), removing swap from radix_tree whatever.
648                  *
649                  * We must not proceed to shmem_add_to_page_cache() if the
650                  * inode has been freed, but of course we cannot rely on
651                  * inode or mapping or info to check that.  However, we can
652                  * safely check if our swap entry is still in use (and here
653                  * it can't have got reused for another page): if it's still
654                  * in use, then the inode cannot have been freed yet, and we
655                  * can safely proceed (if it's no longer in use, that tells
656                  * nothing about the inode, but we don't need to unuse swap).
657                  */
658                 if (!page_swapcount(*pagep))
659                         error = -ENOENT;
660         }
661
662         /*
663          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
664          * but also to hold up shmem_evict_inode(): so inode cannot be freed
665          * beneath us (pagelock doesn't help until the page is in pagecache).
666          */
667         if (!error)
668                 error = shmem_add_to_page_cache(*pagep, mapping, index,
669                                                 radswap);
670         if (error != -ENOMEM) {
671                 /*
672                  * Truncation and eviction use free_swap_and_cache(), which
673                  * only does trylock page: if we raced, best clean up here.
674                  */
675                 delete_from_swap_cache(*pagep);
676                 set_page_dirty(*pagep);
677                 if (!error) {
678                         spin_lock(&info->lock);
679                         info->swapped--;
680                         spin_unlock(&info->lock);
681                         swap_free(swap);
682                 }
683         }
684         return error;
685 }
686
687 /*
688  * Search through swapped inodes to find and replace swap by page.
689  */
690 int shmem_unuse(swp_entry_t swap, struct page *page)
691 {
692         struct list_head *this, *next;
693         struct shmem_inode_info *info;
694         struct mem_cgroup *memcg;
695         int error = 0;
696
697         /*
698          * There's a faint possibility that swap page was replaced before
699          * caller locked it: caller will come back later with the right page.
700          */
701         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
702                 goto out;
703
704         /*
705          * Charge page using GFP_KERNEL while we can wait, before taking
706          * the shmem_swaplist_mutex which might hold up shmem_writepage().
707          * Charged back to the user (not to caller) when swap account is used.
708          */
709         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
710         if (error)
711                 goto out;
712         /* No radix_tree_preload: swap entry keeps a place for page in tree */
713         error = -EAGAIN;
714
715         mutex_lock(&shmem_swaplist_mutex);
716         list_for_each_safe(this, next, &shmem_swaplist) {
717                 info = list_entry(this, struct shmem_inode_info, swaplist);
718                 if (info->swapped)
719                         error = shmem_unuse_inode(info, swap, &page);
720                 else
721                         list_del_init(&info->swaplist);
722                 cond_resched();
723                 if (error != -EAGAIN)
724                         break;
725                 /* found nothing in this: move on to search the next */
726         }
727         mutex_unlock(&shmem_swaplist_mutex);
728
729         if (error) {
730                 if (error != -ENOMEM)
731                         error = 0;
732                 mem_cgroup_cancel_charge(page, memcg);
733         } else
734                 mem_cgroup_commit_charge(page, memcg, true);
735 out:
736         unlock_page(page);
737         page_cache_release(page);
738         return error;
739 }
740
741 /*
742  * Move the page from the page cache to the swap cache.
743  */
744 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
745 {
746         struct shmem_inode_info *info;
747         struct address_space *mapping;
748         struct inode *inode;
749         swp_entry_t swap;
750         pgoff_t index;
751
752         BUG_ON(!PageLocked(page));
753         mapping = page->mapping;
754         index = page->index;
755         inode = mapping->host;
756         info = SHMEM_I(inode);
757         if (info->flags & VM_LOCKED)
758                 goto redirty;
759         if (!total_swap_pages)
760                 goto redirty;
761
762         /*
763          * shmem_backing_dev_info's capabilities prevent regular writeback or
764          * sync from ever calling shmem_writepage; but a stacking filesystem
765          * might use ->writepage of its underlying filesystem, in which case
766          * tmpfs should write out to swap only in response to memory pressure,
767          * and not for the writeback threads or sync.
768          */
769         if (!wbc->for_reclaim) {
770                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
771                 goto redirty;
772         }
773
774         /*
775          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
776          * value into swapfile.c, the only way we can correctly account for a
777          * fallocated page arriving here is now to initialize it and write it.
778          *
779          * That's okay for a page already fallocated earlier, but if we have
780          * not yet completed the fallocation, then (a) we want to keep track
781          * of this page in case we have to undo it, and (b) it may not be a
782          * good idea to continue anyway, once we're pushing into swap.  So
783          * reactivate the page, and let shmem_fallocate() quit when too many.
784          */
785         if (!PageUptodate(page)) {
786                 if (inode->i_private) {
787                         struct shmem_falloc *shmem_falloc;
788                         spin_lock(&inode->i_lock);
789                         shmem_falloc = inode->i_private;
790                         if (shmem_falloc &&
791                             !shmem_falloc->waitq &&
792                             index >= shmem_falloc->start &&
793                             index < shmem_falloc->next)
794                                 shmem_falloc->nr_unswapped++;
795                         else
796                                 shmem_falloc = NULL;
797                         spin_unlock(&inode->i_lock);
798                         if (shmem_falloc)
799                                 goto redirty;
800                 }
801                 clear_highpage(page);
802                 flush_dcache_page(page);
803                 SetPageUptodate(page);
804         }
805
806         swap = get_swap_page();
807         if (!swap.val)
808                 goto redirty;
809
810         /*
811          * Add inode to shmem_unuse()'s list of swapped-out inodes,
812          * if it's not already there.  Do it now before the page is
813          * moved to swap cache, when its pagelock no longer protects
814          * the inode from eviction.  But don't unlock the mutex until
815          * we've incremented swapped, because shmem_unuse_inode() will
816          * prune a !swapped inode from the swaplist under this mutex.
817          */
818         mutex_lock(&shmem_swaplist_mutex);
819         if (list_empty(&info->swaplist))
820                 list_add_tail(&info->swaplist, &shmem_swaplist);
821
822         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
823                 swap_shmem_alloc(swap);
824                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
825
826                 spin_lock(&info->lock);
827                 info->swapped++;
828                 shmem_recalc_inode(inode);
829                 spin_unlock(&info->lock);
830
831                 mutex_unlock(&shmem_swaplist_mutex);
832                 BUG_ON(page_mapped(page));
833                 swap_writepage(page, wbc);
834                 return 0;
835         }
836
837         mutex_unlock(&shmem_swaplist_mutex);
838         swapcache_free(swap, NULL);
839 redirty:
840         set_page_dirty(page);
841         if (wbc->for_reclaim)
842                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
843         unlock_page(page);
844         return 0;
845 }
846
847 #ifdef CONFIG_NUMA
848 #ifdef CONFIG_TMPFS
849 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
850 {
851         char buffer[64];
852
853         if (!mpol || mpol->mode == MPOL_DEFAULT)
854                 return;         /* show nothing */
855
856         mpol_to_str(buffer, sizeof(buffer), mpol);
857
858         seq_printf(seq, ",mpol=%s", buffer);
859 }
860
861 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
862 {
863         struct mempolicy *mpol = NULL;
864         if (sbinfo->mpol) {
865                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
866                 mpol = sbinfo->mpol;
867                 mpol_get(mpol);
868                 spin_unlock(&sbinfo->stat_lock);
869         }
870         return mpol;
871 }
872 #endif /* CONFIG_TMPFS */
873
874 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
875                         struct shmem_inode_info *info, pgoff_t index)
876 {
877         struct vm_area_struct pvma;
878         struct page *page;
879
880         /* Create a pseudo vma that just contains the policy */
881         pvma.vm_start = 0;
882         /* Bias interleave by inode number to distribute better across nodes */
883         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
884         pvma.vm_ops = NULL;
885         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
886
887         page = swapin_readahead(swap, gfp, &pvma, 0);
888
889         /* Drop reference taken by mpol_shared_policy_lookup() */
890         mpol_cond_put(pvma.vm_policy);
891
892         return page;
893 }
894
895 static struct page *shmem_alloc_page(gfp_t gfp,
896                         struct shmem_inode_info *info, pgoff_t index)
897 {
898         struct vm_area_struct pvma;
899         struct page *page;
900
901         /* Create a pseudo vma that just contains the policy */
902         pvma.vm_start = 0;
903         /* Bias interleave by inode number to distribute better across nodes */
904         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
905         pvma.vm_ops = NULL;
906         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
907
908         page = alloc_page_vma(gfp, &pvma, 0);
909
910         /* Drop reference taken by mpol_shared_policy_lookup() */
911         mpol_cond_put(pvma.vm_policy);
912
913         return page;
914 }
915 #else /* !CONFIG_NUMA */
916 #ifdef CONFIG_TMPFS
917 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
918 {
919 }
920 #endif /* CONFIG_TMPFS */
921
922 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
923                         struct shmem_inode_info *info, pgoff_t index)
924 {
925         return swapin_readahead(swap, gfp, NULL, 0);
926 }
927
928 static inline struct page *shmem_alloc_page(gfp_t gfp,
929                         struct shmem_inode_info *info, pgoff_t index)
930 {
931         return alloc_page(gfp);
932 }
933 #endif /* CONFIG_NUMA */
934
935 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
936 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
937 {
938         return NULL;
939 }
940 #endif
941
942 /*
943  * When a page is moved from swapcache to shmem filecache (either by the
944  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
945  * shmem_unuse_inode()), it may have been read in earlier from swap, in
946  * ignorance of the mapping it belongs to.  If that mapping has special
947  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
948  * we may need to copy to a suitable page before moving to filecache.
949  *
950  * In a future release, this may well be extended to respect cpuset and
951  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
952  * but for now it is a simple matter of zone.
953  */
954 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
955 {
956         return page_zonenum(page) > gfp_zone(gfp);
957 }
958
959 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
960                                 struct shmem_inode_info *info, pgoff_t index)
961 {
962         struct page *oldpage, *newpage;
963         struct address_space *swap_mapping;
964         pgoff_t swap_index;
965         int error;
966
967         oldpage = *pagep;
968         swap_index = page_private(oldpage);
969         swap_mapping = page_mapping(oldpage);
970
971         /*
972          * We have arrived here because our zones are constrained, so don't
973          * limit chance of success by further cpuset and node constraints.
974          */
975         gfp &= ~GFP_CONSTRAINT_MASK;
976         newpage = shmem_alloc_page(gfp, info, index);
977         if (!newpage)
978                 return -ENOMEM;
979
980         page_cache_get(newpage);
981         copy_highpage(newpage, oldpage);
982         flush_dcache_page(newpage);
983
984         __set_page_locked(newpage);
985         SetPageUptodate(newpage);
986         SetPageSwapBacked(newpage);
987         set_page_private(newpage, swap_index);
988         SetPageSwapCache(newpage);
989
990         /*
991          * Our caller will very soon move newpage out of swapcache, but it's
992          * a nice clean interface for us to replace oldpage by newpage there.
993          */
994         spin_lock_irq(&swap_mapping->tree_lock);
995         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
996                                                                    newpage);
997         if (!error) {
998                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
999                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1000         }
1001         spin_unlock_irq(&swap_mapping->tree_lock);
1002
1003         if (unlikely(error)) {
1004                 /*
1005                  * Is this possible?  I think not, now that our callers check
1006                  * both PageSwapCache and page_private after getting page lock;
1007                  * but be defensive.  Reverse old to newpage for clear and free.
1008                  */
1009                 oldpage = newpage;
1010         } else {
1011                 mem_cgroup_replace_page_cache(oldpage, newpage);
1012                 lru_cache_add_anon(newpage);
1013                 *pagep = newpage;
1014         }
1015
1016         ClearPageSwapCache(oldpage);
1017         set_page_private(oldpage, 0);
1018
1019         unlock_page(oldpage);
1020         page_cache_release(oldpage);
1021         page_cache_release(oldpage);
1022         return error;
1023 }
1024
1025 /*
1026  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1027  *
1028  * If we allocate a new one we do not mark it dirty. That's up to the
1029  * vm. If we swap it in we mark it dirty since we also free the swap
1030  * entry since a page cannot live in both the swap and page cache
1031  */
1032 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1033         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1034 {
1035         struct address_space *mapping = inode->i_mapping;
1036         struct shmem_inode_info *info;
1037         struct shmem_sb_info *sbinfo;
1038         struct mem_cgroup *memcg;
1039         struct page *page;
1040         swp_entry_t swap;
1041         int error;
1042         int once = 0;
1043         int alloced = 0;
1044
1045         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1046                 return -EFBIG;
1047 repeat:
1048         swap.val = 0;
1049         page = find_lock_entry(mapping, index);
1050         if (radix_tree_exceptional_entry(page)) {
1051                 swap = radix_to_swp_entry(page);
1052                 page = NULL;
1053         }
1054
1055         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1056             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1057                 error = -EINVAL;
1058                 goto failed;
1059         }
1060
1061         if (page && sgp == SGP_WRITE)
1062                 mark_page_accessed(page);
1063
1064         /* fallocated page? */
1065         if (page && !PageUptodate(page)) {
1066                 if (sgp != SGP_READ)
1067                         goto clear;
1068                 unlock_page(page);
1069                 page_cache_release(page);
1070                 page = NULL;
1071         }
1072         if (page || (sgp == SGP_READ && !swap.val)) {
1073                 *pagep = page;
1074                 return 0;
1075         }
1076
1077         /*
1078          * Fast cache lookup did not find it:
1079          * bring it back from swap or allocate.
1080          */
1081         info = SHMEM_I(inode);
1082         sbinfo = SHMEM_SB(inode->i_sb);
1083
1084         if (swap.val) {
1085                 /* Look it up and read it in.. */
1086                 page = lookup_swap_cache(swap);
1087                 if (!page) {
1088                         /* here we actually do the io */
1089                         if (fault_type)
1090                                 *fault_type |= VM_FAULT_MAJOR;
1091                         page = shmem_swapin(swap, gfp, info, index);
1092                         if (!page) {
1093                                 error = -ENOMEM;
1094                                 goto failed;
1095                         }
1096                 }
1097
1098                 /* We have to do this with page locked to prevent races */
1099                 lock_page(page);
1100                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1101                     !shmem_confirm_swap(mapping, index, swap)) {
1102                         error = -EEXIST;        /* try again */
1103                         goto unlock;
1104                 }
1105                 if (!PageUptodate(page)) {
1106                         error = -EIO;
1107                         goto failed;
1108                 }
1109                 wait_on_page_writeback(page);
1110
1111                 if (shmem_should_replace_page(page, gfp)) {
1112                         error = shmem_replace_page(&page, gfp, info, index);
1113                         if (error)
1114                                 goto failed;
1115                 }
1116
1117                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1118                 if (!error) {
1119                         error = shmem_add_to_page_cache(page, mapping, index,
1120                                                 swp_to_radix_entry(swap));
1121                         /*
1122                          * We already confirmed swap under page lock, and make
1123                          * no memory allocation here, so usually no possibility
1124                          * of error; but free_swap_and_cache() only trylocks a
1125                          * page, so it is just possible that the entry has been
1126                          * truncated or holepunched since swap was confirmed.
1127                          * shmem_undo_range() will have done some of the
1128                          * unaccounting, now delete_from_swap_cache() will do
1129                          * the rest (including mem_cgroup_uncharge_swapcache).
1130                          * Reset swap.val? No, leave it so "failed" goes back to
1131                          * "repeat": reading a hole and writing should succeed.
1132                          */
1133                         if (error) {
1134                                 mem_cgroup_cancel_charge(page, memcg);
1135                                 delete_from_swap_cache(page);
1136                         }
1137                 }
1138                 if (error)
1139                         goto failed;
1140
1141                 mem_cgroup_commit_charge(page, memcg, true);
1142
1143                 spin_lock(&info->lock);
1144                 info->swapped--;
1145                 shmem_recalc_inode(inode);
1146                 spin_unlock(&info->lock);
1147
1148                 if (sgp == SGP_WRITE)
1149                         mark_page_accessed(page);
1150
1151                 delete_from_swap_cache(page);
1152                 set_page_dirty(page);
1153                 swap_free(swap);
1154
1155         } else {
1156                 if (shmem_acct_block(info->flags)) {
1157                         error = -ENOSPC;
1158                         goto failed;
1159                 }
1160                 if (sbinfo->max_blocks) {
1161                         if (percpu_counter_compare(&sbinfo->used_blocks,
1162                                                 sbinfo->max_blocks) >= 0) {
1163                                 error = -ENOSPC;
1164                                 goto unacct;
1165                         }
1166                         percpu_counter_inc(&sbinfo->used_blocks);
1167                 }
1168
1169                 page = shmem_alloc_page(gfp, info, index);
1170                 if (!page) {
1171                         error = -ENOMEM;
1172                         goto decused;
1173                 }
1174
1175                 __SetPageSwapBacked(page);
1176                 __set_page_locked(page);
1177                 if (sgp == SGP_WRITE)
1178                         __SetPageReferenced(page);
1179
1180                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1181                 if (error)
1182                         goto decused;
1183                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1184                 if (!error) {
1185                         error = shmem_add_to_page_cache(page, mapping, index,
1186                                                         NULL);
1187                         radix_tree_preload_end();
1188                 }
1189                 if (error) {
1190                         mem_cgroup_cancel_charge(page, memcg);
1191                         goto decused;
1192                 }
1193                 mem_cgroup_commit_charge(page, memcg, false);
1194                 lru_cache_add_anon(page);
1195
1196                 spin_lock(&info->lock);
1197                 info->alloced++;
1198                 inode->i_blocks += BLOCKS_PER_PAGE;
1199                 shmem_recalc_inode(inode);
1200                 spin_unlock(&info->lock);
1201                 alloced = true;
1202
1203                 /*
1204                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1205                  */
1206                 if (sgp == SGP_FALLOC)
1207                         sgp = SGP_WRITE;
1208 clear:
1209                 /*
1210                  * Let SGP_WRITE caller clear ends if write does not fill page;
1211                  * but SGP_FALLOC on a page fallocated earlier must initialize
1212                  * it now, lest undo on failure cancel our earlier guarantee.
1213                  */
1214                 if (sgp != SGP_WRITE) {
1215                         clear_highpage(page);
1216                         flush_dcache_page(page);
1217                         SetPageUptodate(page);
1218                 }
1219                 if (sgp == SGP_DIRTY)
1220                         set_page_dirty(page);
1221         }
1222
1223         /* Perhaps the file has been truncated since we checked */
1224         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1225             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1226                 error = -EINVAL;
1227                 if (alloced)
1228                         goto trunc;
1229                 else
1230                         goto failed;
1231         }
1232         *pagep = page;
1233         return 0;
1234
1235         /*
1236          * Error recovery.
1237          */
1238 trunc:
1239         info = SHMEM_I(inode);
1240         ClearPageDirty(page);
1241         delete_from_page_cache(page);
1242         spin_lock(&info->lock);
1243         info->alloced--;
1244         inode->i_blocks -= BLOCKS_PER_PAGE;
1245         spin_unlock(&info->lock);
1246 decused:
1247         sbinfo = SHMEM_SB(inode->i_sb);
1248         if (sbinfo->max_blocks)
1249                 percpu_counter_add(&sbinfo->used_blocks, -1);
1250 unacct:
1251         shmem_unacct_blocks(info->flags, 1);
1252 failed:
1253         if (swap.val && error != -EINVAL &&
1254             !shmem_confirm_swap(mapping, index, swap))
1255                 error = -EEXIST;
1256 unlock:
1257         if (page) {
1258                 unlock_page(page);
1259                 page_cache_release(page);
1260         }
1261         if (error == -ENOSPC && !once++) {
1262                 info = SHMEM_I(inode);
1263                 spin_lock(&info->lock);
1264                 shmem_recalc_inode(inode);
1265                 spin_unlock(&info->lock);
1266                 goto repeat;
1267         }
1268         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1269                 goto repeat;
1270         return error;
1271 }
1272
1273 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1274 {
1275         struct inode *inode = file_inode(vma->vm_file);
1276         int error;
1277         int ret = VM_FAULT_LOCKED;
1278
1279         /*
1280          * Trinity finds that probing a hole which tmpfs is punching can
1281          * prevent the hole-punch from ever completing: which in turn
1282          * locks writers out with its hold on i_mutex.  So refrain from
1283          * faulting pages into the hole while it's being punched.  Although
1284          * shmem_undo_range() does remove the additions, it may be unable to
1285          * keep up, as each new page needs its own unmap_mapping_range() call,
1286          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1287          *
1288          * It does not matter if we sometimes reach this check just before the
1289          * hole-punch begins, so that one fault then races with the punch:
1290          * we just need to make racing faults a rare case.
1291          *
1292          * The implementation below would be much simpler if we just used a
1293          * standard mutex or completion: but we cannot take i_mutex in fault,
1294          * and bloating every shmem inode for this unlikely case would be sad.
1295          */
1296         if (unlikely(inode->i_private)) {
1297                 struct shmem_falloc *shmem_falloc;
1298
1299                 spin_lock(&inode->i_lock);
1300                 shmem_falloc = inode->i_private;
1301                 if (shmem_falloc &&
1302                     shmem_falloc->waitq &&
1303                     vmf->pgoff >= shmem_falloc->start &&
1304                     vmf->pgoff < shmem_falloc->next) {
1305                         wait_queue_head_t *shmem_falloc_waitq;
1306                         DEFINE_WAIT(shmem_fault_wait);
1307
1308                         ret = VM_FAULT_NOPAGE;
1309                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1310                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1311                                 /* It's polite to up mmap_sem if we can */
1312                                 up_read(&vma->vm_mm->mmap_sem);
1313                                 ret = VM_FAULT_RETRY;
1314                         }
1315
1316                         shmem_falloc_waitq = shmem_falloc->waitq;
1317                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1318                                         TASK_UNINTERRUPTIBLE);
1319                         spin_unlock(&inode->i_lock);
1320                         schedule();
1321
1322                         /*
1323                          * shmem_falloc_waitq points into the shmem_fallocate()
1324                          * stack of the hole-punching task: shmem_falloc_waitq
1325                          * is usually invalid by the time we reach here, but
1326                          * finish_wait() does not dereference it in that case;
1327                          * though i_lock needed lest racing with wake_up_all().
1328                          */
1329                         spin_lock(&inode->i_lock);
1330                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1331                         spin_unlock(&inode->i_lock);
1332                         return ret;
1333                 }
1334                 spin_unlock(&inode->i_lock);
1335         }
1336
1337         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1338         if (error)
1339                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1340
1341         if (ret & VM_FAULT_MAJOR) {
1342                 count_vm_event(PGMAJFAULT);
1343                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1344         }
1345         return ret;
1346 }
1347
1348 #ifdef CONFIG_NUMA
1349 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1350 {
1351         struct inode *inode = file_inode(vma->vm_file);
1352         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1353 }
1354
1355 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1356                                           unsigned long addr)
1357 {
1358         struct inode *inode = file_inode(vma->vm_file);
1359         pgoff_t index;
1360
1361         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1362         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1363 }
1364 #endif
1365
1366 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1367 {
1368         struct inode *inode = file_inode(file);
1369         struct shmem_inode_info *info = SHMEM_I(inode);
1370         int retval = -ENOMEM;
1371
1372         spin_lock(&info->lock);
1373         if (lock && !(info->flags & VM_LOCKED)) {
1374                 if (!user_shm_lock(inode->i_size, user))
1375                         goto out_nomem;
1376                 info->flags |= VM_LOCKED;
1377                 mapping_set_unevictable(file->f_mapping);
1378         }
1379         if (!lock && (info->flags & VM_LOCKED) && user) {
1380                 user_shm_unlock(inode->i_size, user);
1381                 info->flags &= ~VM_LOCKED;
1382                 mapping_clear_unevictable(file->f_mapping);
1383         }
1384         retval = 0;
1385
1386 out_nomem:
1387         spin_unlock(&info->lock);
1388         return retval;
1389 }
1390
1391 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1392 {
1393         file_accessed(file);
1394         vma->vm_ops = &shmem_vm_ops;
1395         return 0;
1396 }
1397
1398 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1399                                      umode_t mode, dev_t dev, unsigned long flags)
1400 {
1401         struct inode *inode;
1402         struct shmem_inode_info *info;
1403         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1404
1405         if (shmem_reserve_inode(sb))
1406                 return NULL;
1407
1408         inode = new_inode(sb);
1409         if (inode) {
1410                 inode->i_ino = get_next_ino();
1411                 inode_init_owner(inode, dir, mode);
1412                 inode->i_blocks = 0;
1413                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1414                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1415                 inode->i_generation = get_seconds();
1416                 info = SHMEM_I(inode);
1417                 memset(info, 0, (char *)inode - (char *)info);
1418                 spin_lock_init(&info->lock);
1419                 info->flags = flags & VM_NORESERVE;
1420                 INIT_LIST_HEAD(&info->swaplist);
1421                 simple_xattrs_init(&info->xattrs);
1422                 cache_no_acl(inode);
1423
1424                 switch (mode & S_IFMT) {
1425                 default:
1426                         inode->i_op = &shmem_special_inode_operations;
1427                         init_special_inode(inode, mode, dev);
1428                         break;
1429                 case S_IFREG:
1430                         inode->i_mapping->a_ops = &shmem_aops;
1431                         inode->i_op = &shmem_inode_operations;
1432                         inode->i_fop = &shmem_file_operations;
1433                         mpol_shared_policy_init(&info->policy,
1434                                                  shmem_get_sbmpol(sbinfo));
1435                         break;
1436                 case S_IFDIR:
1437                         inc_nlink(inode);
1438                         /* Some things misbehave if size == 0 on a directory */
1439                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1440                         inode->i_op = &shmem_dir_inode_operations;
1441                         inode->i_fop = &simple_dir_operations;
1442                         break;
1443                 case S_IFLNK:
1444                         /*
1445                          * Must not load anything in the rbtree,
1446                          * mpol_free_shared_policy will not be called.
1447                          */
1448                         mpol_shared_policy_init(&info->policy, NULL);
1449                         break;
1450                 }
1451         } else
1452                 shmem_free_inode(sb);
1453         return inode;
1454 }
1455
1456 bool shmem_mapping(struct address_space *mapping)
1457 {
1458         return mapping->backing_dev_info == &shmem_backing_dev_info;
1459 }
1460
1461 #ifdef CONFIG_TMPFS
1462 static const struct inode_operations shmem_symlink_inode_operations;
1463 static const struct inode_operations shmem_short_symlink_operations;
1464
1465 #ifdef CONFIG_TMPFS_XATTR
1466 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1467 #else
1468 #define shmem_initxattrs NULL
1469 #endif
1470
1471 static int
1472 shmem_write_begin(struct file *file, struct address_space *mapping,
1473                         loff_t pos, unsigned len, unsigned flags,
1474                         struct page **pagep, void **fsdata)
1475 {
1476         struct inode *inode = mapping->host;
1477         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1478         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1479 }
1480
1481 static int
1482 shmem_write_end(struct file *file, struct address_space *mapping,
1483                         loff_t pos, unsigned len, unsigned copied,
1484                         struct page *page, void *fsdata)
1485 {
1486         struct inode *inode = mapping->host;
1487
1488         if (pos + copied > inode->i_size)
1489                 i_size_write(inode, pos + copied);
1490
1491         if (!PageUptodate(page)) {
1492                 if (copied < PAGE_CACHE_SIZE) {
1493                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1494                         zero_user_segments(page, 0, from,
1495                                         from + copied, PAGE_CACHE_SIZE);
1496                 }
1497                 SetPageUptodate(page);
1498         }
1499         set_page_dirty(page);
1500         unlock_page(page);
1501         page_cache_release(page);
1502
1503         return copied;
1504 }
1505
1506 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1507 {
1508         struct file *file = iocb->ki_filp;
1509         struct inode *inode = file_inode(file);
1510         struct address_space *mapping = inode->i_mapping;
1511         pgoff_t index;
1512         unsigned long offset;
1513         enum sgp_type sgp = SGP_READ;
1514         int error = 0;
1515         ssize_t retval = 0;
1516         loff_t *ppos = &iocb->ki_pos;
1517
1518         /*
1519          * Might this read be for a stacking filesystem?  Then when reading
1520          * holes of a sparse file, we actually need to allocate those pages,
1521          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1522          */
1523         if (segment_eq(get_fs(), KERNEL_DS))
1524                 sgp = SGP_DIRTY;
1525
1526         index = *ppos >> PAGE_CACHE_SHIFT;
1527         offset = *ppos & ~PAGE_CACHE_MASK;
1528
1529         for (;;) {
1530                 struct page *page = NULL;
1531                 pgoff_t end_index;
1532                 unsigned long nr, ret;
1533                 loff_t i_size = i_size_read(inode);
1534
1535                 end_index = i_size >> PAGE_CACHE_SHIFT;
1536                 if (index > end_index)
1537                         break;
1538                 if (index == end_index) {
1539                         nr = i_size & ~PAGE_CACHE_MASK;
1540                         if (nr <= offset)
1541                                 break;
1542                 }
1543
1544                 error = shmem_getpage(inode, index, &page, sgp, NULL);
1545                 if (error) {
1546                         if (error == -EINVAL)
1547                                 error = 0;
1548                         break;
1549                 }
1550                 if (page)
1551                         unlock_page(page);
1552
1553                 /*
1554                  * We must evaluate after, since reads (unlike writes)
1555                  * are called without i_mutex protection against truncate
1556                  */
1557                 nr = PAGE_CACHE_SIZE;
1558                 i_size = i_size_read(inode);
1559                 end_index = i_size >> PAGE_CACHE_SHIFT;
1560                 if (index == end_index) {
1561                         nr = i_size & ~PAGE_CACHE_MASK;
1562                         if (nr <= offset) {
1563                                 if (page)
1564                                         page_cache_release(page);
1565                                 break;
1566                         }
1567                 }
1568                 nr -= offset;
1569
1570                 if (page) {
1571                         /*
1572                          * If users can be writing to this page using arbitrary
1573                          * virtual addresses, take care about potential aliasing
1574                          * before reading the page on the kernel side.
1575                          */
1576                         if (mapping_writably_mapped(mapping))
1577                                 flush_dcache_page(page);
1578                         /*
1579                          * Mark the page accessed if we read the beginning.
1580                          */
1581                         if (!offset)
1582                                 mark_page_accessed(page);
1583                 } else {
1584                         page = ZERO_PAGE(0);
1585                         page_cache_get(page);
1586                 }
1587
1588                 /*
1589                  * Ok, we have the page, and it's up-to-date, so
1590                  * now we can copy it to user space...
1591                  */
1592                 ret = copy_page_to_iter(page, offset, nr, to);
1593                 retval += ret;
1594                 offset += ret;
1595                 index += offset >> PAGE_CACHE_SHIFT;
1596                 offset &= ~PAGE_CACHE_MASK;
1597
1598                 page_cache_release(page);
1599                 if (!iov_iter_count(to))
1600                         break;
1601                 if (ret < nr) {
1602                         error = -EFAULT;
1603                         break;
1604                 }
1605                 cond_resched();
1606         }
1607
1608         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1609         file_accessed(file);
1610         return retval ? retval : error;
1611 }
1612
1613 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1614                                 struct pipe_inode_info *pipe, size_t len,
1615                                 unsigned int flags)
1616 {
1617         struct address_space *mapping = in->f_mapping;
1618         struct inode *inode = mapping->host;
1619         unsigned int loff, nr_pages, req_pages;
1620         struct page *pages[PIPE_DEF_BUFFERS];
1621         struct partial_page partial[PIPE_DEF_BUFFERS];
1622         struct page *page;
1623         pgoff_t index, end_index;
1624         loff_t isize, left;
1625         int error, page_nr;
1626         struct splice_pipe_desc spd = {
1627                 .pages = pages,
1628                 .partial = partial,
1629                 .nr_pages_max = PIPE_DEF_BUFFERS,
1630                 .flags = flags,
1631                 .ops = &page_cache_pipe_buf_ops,
1632                 .spd_release = spd_release_page,
1633         };
1634
1635         isize = i_size_read(inode);
1636         if (unlikely(*ppos >= isize))
1637                 return 0;
1638
1639         left = isize - *ppos;
1640         if (unlikely(left < len))
1641                 len = left;
1642
1643         if (splice_grow_spd(pipe, &spd))
1644                 return -ENOMEM;
1645
1646         index = *ppos >> PAGE_CACHE_SHIFT;
1647         loff = *ppos & ~PAGE_CACHE_MASK;
1648         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1649         nr_pages = min(req_pages, spd.nr_pages_max);
1650
1651         spd.nr_pages = find_get_pages_contig(mapping, index,
1652                                                 nr_pages, spd.pages);
1653         index += spd.nr_pages;
1654         error = 0;
1655
1656         while (spd.nr_pages < nr_pages) {
1657                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1658                 if (error)
1659                         break;
1660                 unlock_page(page);
1661                 spd.pages[spd.nr_pages++] = page;
1662                 index++;
1663         }
1664
1665         index = *ppos >> PAGE_CACHE_SHIFT;
1666         nr_pages = spd.nr_pages;
1667         spd.nr_pages = 0;
1668
1669         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1670                 unsigned int this_len;
1671
1672                 if (!len)
1673                         break;
1674
1675                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1676                 page = spd.pages[page_nr];
1677
1678                 if (!PageUptodate(page) || page->mapping != mapping) {
1679                         error = shmem_getpage(inode, index, &page,
1680                                                         SGP_CACHE, NULL);
1681                         if (error)
1682                                 break;
1683                         unlock_page(page);
1684                         page_cache_release(spd.pages[page_nr]);
1685                         spd.pages[page_nr] = page;
1686                 }
1687
1688                 isize = i_size_read(inode);
1689                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1690                 if (unlikely(!isize || index > end_index))
1691                         break;
1692
1693                 if (end_index == index) {
1694                         unsigned int plen;
1695
1696                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1697                         if (plen <= loff)
1698                                 break;
1699
1700                         this_len = min(this_len, plen - loff);
1701                         len = this_len;
1702                 }
1703
1704                 spd.partial[page_nr].offset = loff;
1705                 spd.partial[page_nr].len = this_len;
1706                 len -= this_len;
1707                 loff = 0;
1708                 spd.nr_pages++;
1709                 index++;
1710         }
1711
1712         while (page_nr < nr_pages)
1713                 page_cache_release(spd.pages[page_nr++]);
1714
1715         if (spd.nr_pages)
1716                 error = splice_to_pipe(pipe, &spd);
1717
1718         splice_shrink_spd(&spd);
1719
1720         if (error > 0) {
1721                 *ppos += error;
1722                 file_accessed(in);
1723         }
1724         return error;
1725 }
1726
1727 /*
1728  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1729  */
1730 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1731                                     pgoff_t index, pgoff_t end, int whence)
1732 {
1733         struct page *page;
1734         struct pagevec pvec;
1735         pgoff_t indices[PAGEVEC_SIZE];
1736         bool done = false;
1737         int i;
1738
1739         pagevec_init(&pvec, 0);
1740         pvec.nr = 1;            /* start small: we may be there already */
1741         while (!done) {
1742                 pvec.nr = find_get_entries(mapping, index,
1743                                         pvec.nr, pvec.pages, indices);
1744                 if (!pvec.nr) {
1745                         if (whence == SEEK_DATA)
1746                                 index = end;
1747                         break;
1748                 }
1749                 for (i = 0; i < pvec.nr; i++, index++) {
1750                         if (index < indices[i]) {
1751                                 if (whence == SEEK_HOLE) {
1752                                         done = true;
1753                                         break;
1754                                 }
1755                                 index = indices[i];
1756                         }
1757                         page = pvec.pages[i];
1758                         if (page && !radix_tree_exceptional_entry(page)) {
1759                                 if (!PageUptodate(page))
1760                                         page = NULL;
1761                         }
1762                         if (index >= end ||
1763                             (page && whence == SEEK_DATA) ||
1764                             (!page && whence == SEEK_HOLE)) {
1765                                 done = true;
1766                                 break;
1767                         }
1768                 }
1769                 pagevec_remove_exceptionals(&pvec);
1770                 pagevec_release(&pvec);
1771                 pvec.nr = PAGEVEC_SIZE;
1772                 cond_resched();
1773         }
1774         return index;
1775 }
1776
1777 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1778 {
1779         struct address_space *mapping = file->f_mapping;
1780         struct inode *inode = mapping->host;
1781         pgoff_t start, end;
1782         loff_t new_offset;
1783
1784         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1785                 return generic_file_llseek_size(file, offset, whence,
1786                                         MAX_LFS_FILESIZE, i_size_read(inode));
1787         mutex_lock(&inode->i_mutex);
1788         /* We're holding i_mutex so we can access i_size directly */
1789
1790         if (offset < 0)
1791                 offset = -EINVAL;
1792         else if (offset >= inode->i_size)
1793                 offset = -ENXIO;
1794         else {
1795                 start = offset >> PAGE_CACHE_SHIFT;
1796                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1797                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1798                 new_offset <<= PAGE_CACHE_SHIFT;
1799                 if (new_offset > offset) {
1800                         if (new_offset < inode->i_size)
1801                                 offset = new_offset;
1802                         else if (whence == SEEK_DATA)
1803                                 offset = -ENXIO;
1804                         else
1805                                 offset = inode->i_size;
1806                 }
1807         }
1808
1809         if (offset >= 0)
1810                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1811         mutex_unlock(&inode->i_mutex);
1812         return offset;
1813 }
1814
1815 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1816                                                          loff_t len)
1817 {
1818         struct inode *inode = file_inode(file);
1819         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1820         struct shmem_falloc shmem_falloc;
1821         pgoff_t start, index, end;
1822         int error;
1823
1824         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1825                 return -EOPNOTSUPP;
1826
1827         mutex_lock(&inode->i_mutex);
1828
1829         if (mode & FALLOC_FL_PUNCH_HOLE) {
1830                 struct address_space *mapping = file->f_mapping;
1831                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1832                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1833                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1834
1835                 shmem_falloc.waitq = &shmem_falloc_waitq;
1836                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1837                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1838                 spin_lock(&inode->i_lock);
1839                 inode->i_private = &shmem_falloc;
1840                 spin_unlock(&inode->i_lock);
1841
1842                 if ((u64)unmap_end > (u64)unmap_start)
1843                         unmap_mapping_range(mapping, unmap_start,
1844                                             1 + unmap_end - unmap_start, 0);
1845                 shmem_truncate_range(inode, offset, offset + len - 1);
1846                 /* No need to unmap again: hole-punching leaves COWed pages */
1847
1848                 spin_lock(&inode->i_lock);
1849                 inode->i_private = NULL;
1850                 wake_up_all(&shmem_falloc_waitq);
1851                 spin_unlock(&inode->i_lock);
1852                 error = 0;
1853                 goto out;
1854         }
1855
1856         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1857         error = inode_newsize_ok(inode, offset + len);
1858         if (error)
1859                 goto out;
1860
1861         start = offset >> PAGE_CACHE_SHIFT;
1862         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1863         /* Try to avoid a swapstorm if len is impossible to satisfy */
1864         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1865                 error = -ENOSPC;
1866                 goto out;
1867         }
1868
1869         shmem_falloc.waitq = NULL;
1870         shmem_falloc.start = start;
1871         shmem_falloc.next  = start;
1872         shmem_falloc.nr_falloced = 0;
1873         shmem_falloc.nr_unswapped = 0;
1874         spin_lock(&inode->i_lock);
1875         inode->i_private = &shmem_falloc;
1876         spin_unlock(&inode->i_lock);
1877
1878         for (index = start; index < end; index++) {
1879                 struct page *page;
1880
1881                 /*
1882                  * Good, the fallocate(2) manpage permits EINTR: we may have
1883                  * been interrupted because we are using up too much memory.
1884                  */
1885                 if (signal_pending(current))
1886                         error = -EINTR;
1887                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1888                         error = -ENOMEM;
1889                 else
1890                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1891                                                                         NULL);
1892                 if (error) {
1893                         /* Remove the !PageUptodate pages we added */
1894                         shmem_undo_range(inode,
1895                                 (loff_t)start << PAGE_CACHE_SHIFT,
1896                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1897                         goto undone;
1898                 }
1899
1900                 /*
1901                  * Inform shmem_writepage() how far we have reached.
1902                  * No need for lock or barrier: we have the page lock.
1903                  */
1904                 shmem_falloc.next++;
1905                 if (!PageUptodate(page))
1906                         shmem_falloc.nr_falloced++;
1907
1908                 /*
1909                  * If !PageUptodate, leave it that way so that freeable pages
1910                  * can be recognized if we need to rollback on error later.
1911                  * But set_page_dirty so that memory pressure will swap rather
1912                  * than free the pages we are allocating (and SGP_CACHE pages
1913                  * might still be clean: we now need to mark those dirty too).
1914                  */
1915                 set_page_dirty(page);
1916                 unlock_page(page);
1917                 page_cache_release(page);
1918                 cond_resched();
1919         }
1920
1921         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1922                 i_size_write(inode, offset + len);
1923         inode->i_ctime = CURRENT_TIME;
1924 undone:
1925         spin_lock(&inode->i_lock);
1926         inode->i_private = NULL;
1927         spin_unlock(&inode->i_lock);
1928 out:
1929         mutex_unlock(&inode->i_mutex);
1930         return error;
1931 }
1932
1933 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1934 {
1935         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1936
1937         buf->f_type = TMPFS_MAGIC;
1938         buf->f_bsize = PAGE_CACHE_SIZE;
1939         buf->f_namelen = NAME_MAX;
1940         if (sbinfo->max_blocks) {
1941                 buf->f_blocks = sbinfo->max_blocks;
1942                 buf->f_bavail =
1943                 buf->f_bfree  = sbinfo->max_blocks -
1944                                 percpu_counter_sum(&sbinfo->used_blocks);
1945         }
1946         if (sbinfo->max_inodes) {
1947                 buf->f_files = sbinfo->max_inodes;
1948                 buf->f_ffree = sbinfo->free_inodes;
1949         }
1950         /* else leave those fields 0 like simple_statfs */
1951         return 0;
1952 }
1953
1954 /*
1955  * File creation. Allocate an inode, and we're done..
1956  */
1957 static int
1958 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1959 {
1960         struct inode *inode;
1961         int error = -ENOSPC;
1962
1963         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1964         if (inode) {
1965                 error = simple_acl_create(dir, inode);
1966                 if (error)
1967                         goto out_iput;
1968                 error = security_inode_init_security(inode, dir,
1969                                                      &dentry->d_name,
1970                                                      shmem_initxattrs, NULL);
1971                 if (error && error != -EOPNOTSUPP)
1972                         goto out_iput;
1973
1974                 error = 0;
1975                 dir->i_size += BOGO_DIRENT_SIZE;
1976                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1977                 d_instantiate(dentry, inode);
1978                 dget(dentry); /* Extra count - pin the dentry in core */
1979         }
1980         return error;
1981 out_iput:
1982         iput(inode);
1983         return error;
1984 }
1985
1986 static int
1987 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1988 {
1989         struct inode *inode;
1990         int error = -ENOSPC;
1991
1992         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1993         if (inode) {
1994                 error = security_inode_init_security(inode, dir,
1995                                                      NULL,
1996                                                      shmem_initxattrs, NULL);
1997                 if (error && error != -EOPNOTSUPP)
1998                         goto out_iput;
1999                 error = simple_acl_create(dir, inode);
2000                 if (error)
2001                         goto out_iput;
2002                 d_tmpfile(dentry, inode);
2003         }
2004         return error;
2005 out_iput:
2006         iput(inode);
2007         return error;
2008 }
2009
2010 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2011 {
2012         int error;
2013
2014         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2015                 return error;
2016         inc_nlink(dir);
2017         return 0;
2018 }
2019
2020 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2021                 bool excl)
2022 {
2023         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2024 }
2025
2026 /*
2027  * Link a file..
2028  */
2029 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2030 {
2031         struct inode *inode = old_dentry->d_inode;
2032         int ret;
2033
2034         /*
2035          * No ordinary (disk based) filesystem counts links as inodes;
2036          * but each new link needs a new dentry, pinning lowmem, and
2037          * tmpfs dentries cannot be pruned until they are unlinked.
2038          */
2039         ret = shmem_reserve_inode(inode->i_sb);
2040         if (ret)
2041                 goto out;
2042
2043         dir->i_size += BOGO_DIRENT_SIZE;
2044         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2045         inc_nlink(inode);
2046         ihold(inode);   /* New dentry reference */
2047         dget(dentry);           /* Extra pinning count for the created dentry */
2048         d_instantiate(dentry, inode);
2049 out:
2050         return ret;
2051 }
2052
2053 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2054 {
2055         struct inode *inode = dentry->d_inode;
2056
2057         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2058                 shmem_free_inode(inode->i_sb);
2059
2060         dir->i_size -= BOGO_DIRENT_SIZE;
2061         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2062         drop_nlink(inode);
2063         dput(dentry);   /* Undo the count from "create" - this does all the work */
2064         return 0;
2065 }
2066
2067 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2068 {
2069         if (!simple_empty(dentry))
2070                 return -ENOTEMPTY;
2071
2072         drop_nlink(dentry->d_inode);
2073         drop_nlink(dir);
2074         return shmem_unlink(dir, dentry);
2075 }
2076
2077 /*
2078  * The VFS layer already does all the dentry stuff for rename,
2079  * we just have to decrement the usage count for the target if
2080  * it exists so that the VFS layer correctly free's it when it
2081  * gets overwritten.
2082  */
2083 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2084 {
2085         struct inode *inode = old_dentry->d_inode;
2086         int they_are_dirs = S_ISDIR(inode->i_mode);
2087
2088         if (!simple_empty(new_dentry))
2089                 return -ENOTEMPTY;
2090
2091         if (new_dentry->d_inode) {
2092                 (void) shmem_unlink(new_dir, new_dentry);
2093                 if (they_are_dirs)
2094                         drop_nlink(old_dir);
2095         } else if (they_are_dirs) {
2096                 drop_nlink(old_dir);
2097                 inc_nlink(new_dir);
2098         }
2099
2100         old_dir->i_size -= BOGO_DIRENT_SIZE;
2101         new_dir->i_size += BOGO_DIRENT_SIZE;
2102         old_dir->i_ctime = old_dir->i_mtime =
2103         new_dir->i_ctime = new_dir->i_mtime =
2104         inode->i_ctime = CURRENT_TIME;
2105         return 0;
2106 }
2107
2108 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2109 {
2110         int error;
2111         int len;
2112         struct inode *inode;
2113         struct page *page;
2114         char *kaddr;
2115         struct shmem_inode_info *info;
2116
2117         len = strlen(symname) + 1;
2118         if (len > PAGE_CACHE_SIZE)
2119                 return -ENAMETOOLONG;
2120
2121         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2122         if (!inode)
2123                 return -ENOSPC;
2124
2125         error = security_inode_init_security(inode, dir, &dentry->d_name,
2126                                              shmem_initxattrs, NULL);
2127         if (error) {
2128                 if (error != -EOPNOTSUPP) {
2129                         iput(inode);
2130                         return error;
2131                 }
2132                 error = 0;
2133         }
2134
2135         info = SHMEM_I(inode);
2136         inode->i_size = len-1;
2137         if (len <= SHORT_SYMLINK_LEN) {
2138                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2139                 if (!info->symlink) {
2140                         iput(inode);
2141                         return -ENOMEM;
2142                 }
2143                 inode->i_op = &shmem_short_symlink_operations;
2144         } else {
2145                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2146                 if (error) {
2147                         iput(inode);
2148                         return error;
2149                 }
2150                 inode->i_mapping->a_ops = &shmem_aops;
2151                 inode->i_op = &shmem_symlink_inode_operations;
2152                 kaddr = kmap_atomic(page);
2153                 memcpy(kaddr, symname, len);
2154                 kunmap_atomic(kaddr);
2155                 SetPageUptodate(page);
2156                 set_page_dirty(page);
2157                 unlock_page(page);
2158                 page_cache_release(page);
2159         }
2160         dir->i_size += BOGO_DIRENT_SIZE;
2161         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2162         d_instantiate(dentry, inode);
2163         dget(dentry);
2164         return 0;
2165 }
2166
2167 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2168 {
2169         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2170         return NULL;
2171 }
2172
2173 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2174 {
2175         struct page *page = NULL;
2176         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2177         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2178         if (page)
2179                 unlock_page(page);
2180         return page;
2181 }
2182
2183 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2184 {
2185         if (!IS_ERR(nd_get_link(nd))) {
2186                 struct page *page = cookie;
2187                 kunmap(page);
2188                 mark_page_accessed(page);
2189                 page_cache_release(page);
2190         }
2191 }
2192
2193 #ifdef CONFIG_TMPFS_XATTR
2194 /*
2195  * Superblocks without xattr inode operations may get some security.* xattr
2196  * support from the LSM "for free". As soon as we have any other xattrs
2197  * like ACLs, we also need to implement the security.* handlers at
2198  * filesystem level, though.
2199  */
2200
2201 /*
2202  * Callback for security_inode_init_security() for acquiring xattrs.
2203  */
2204 static int shmem_initxattrs(struct inode *inode,
2205                             const struct xattr *xattr_array,
2206                             void *fs_info)
2207 {
2208         struct shmem_inode_info *info = SHMEM_I(inode);
2209         const struct xattr *xattr;
2210         struct simple_xattr *new_xattr;
2211         size_t len;
2212
2213         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2214                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2215                 if (!new_xattr)
2216                         return -ENOMEM;
2217
2218                 len = strlen(xattr->name) + 1;
2219                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2220                                           GFP_KERNEL);
2221                 if (!new_xattr->name) {
2222                         kfree(new_xattr);
2223                         return -ENOMEM;
2224                 }
2225
2226                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2227                        XATTR_SECURITY_PREFIX_LEN);
2228                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2229                        xattr->name, len);
2230
2231                 simple_xattr_list_add(&info->xattrs, new_xattr);
2232         }
2233
2234         return 0;
2235 }
2236
2237 static const struct xattr_handler *shmem_xattr_handlers[] = {
2238 #ifdef CONFIG_TMPFS_POSIX_ACL
2239         &posix_acl_access_xattr_handler,
2240         &posix_acl_default_xattr_handler,
2241 #endif
2242         NULL
2243 };
2244
2245 static int shmem_xattr_validate(const char *name)
2246 {
2247         struct { const char *prefix; size_t len; } arr[] = {
2248                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2249                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2250         };
2251         int i;
2252
2253         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2254                 size_t preflen = arr[i].len;
2255                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2256                         if (!name[preflen])
2257                                 return -EINVAL;
2258                         return 0;
2259                 }
2260         }
2261         return -EOPNOTSUPP;
2262 }
2263
2264 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2265                               void *buffer, size_t size)
2266 {
2267         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2268         int err;
2269
2270         /*
2271          * If this is a request for a synthetic attribute in the system.*
2272          * namespace use the generic infrastructure to resolve a handler
2273          * for it via sb->s_xattr.
2274          */
2275         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2276                 return generic_getxattr(dentry, name, buffer, size);
2277
2278         err = shmem_xattr_validate(name);
2279         if (err)
2280                 return err;
2281
2282         return simple_xattr_get(&info->xattrs, name, buffer, size);
2283 }
2284
2285 static int shmem_setxattr(struct dentry *dentry, const char *name,
2286                           const void *value, size_t size, int flags)
2287 {
2288         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2289         int err;
2290
2291         /*
2292          * If this is a request for a synthetic attribute in the system.*
2293          * namespace use the generic infrastructure to resolve a handler
2294          * for it via sb->s_xattr.
2295          */
2296         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2297                 return generic_setxattr(dentry, name, value, size, flags);
2298
2299         err = shmem_xattr_validate(name);
2300         if (err)
2301                 return err;
2302
2303         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2304 }
2305
2306 static int shmem_removexattr(struct dentry *dentry, const char *name)
2307 {
2308         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2309         int err;
2310
2311         /*
2312          * If this is a request for a synthetic attribute in the system.*
2313          * namespace use the generic infrastructure to resolve a handler
2314          * for it via sb->s_xattr.
2315          */
2316         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2317                 return generic_removexattr(dentry, name);
2318
2319         err = shmem_xattr_validate(name);
2320         if (err)
2321                 return err;
2322
2323         return simple_xattr_remove(&info->xattrs, name);
2324 }
2325
2326 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2327 {
2328         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2329         return simple_xattr_list(&info->xattrs, buffer, size);
2330 }
2331 #endif /* CONFIG_TMPFS_XATTR */
2332
2333 static const struct inode_operations shmem_short_symlink_operations = {
2334         .readlink       = generic_readlink,
2335         .follow_link    = shmem_follow_short_symlink,
2336 #ifdef CONFIG_TMPFS_XATTR
2337         .setxattr       = shmem_setxattr,
2338         .getxattr       = shmem_getxattr,
2339         .listxattr      = shmem_listxattr,
2340         .removexattr    = shmem_removexattr,
2341 #endif
2342 };
2343
2344 static const struct inode_operations shmem_symlink_inode_operations = {
2345         .readlink       = generic_readlink,
2346         .follow_link    = shmem_follow_link,
2347         .put_link       = shmem_put_link,
2348 #ifdef CONFIG_TMPFS_XATTR
2349         .setxattr       = shmem_setxattr,
2350         .getxattr       = shmem_getxattr,
2351         .listxattr      = shmem_listxattr,
2352         .removexattr    = shmem_removexattr,
2353 #endif
2354 };
2355
2356 static struct dentry *shmem_get_parent(struct dentry *child)
2357 {
2358         return ERR_PTR(-ESTALE);
2359 }
2360
2361 static int shmem_match(struct inode *ino, void *vfh)
2362 {
2363         __u32 *fh = vfh;
2364         __u64 inum = fh[2];
2365         inum = (inum << 32) | fh[1];
2366         return ino->i_ino == inum && fh[0] == ino->i_generation;
2367 }
2368
2369 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2370                 struct fid *fid, int fh_len, int fh_type)
2371 {
2372         struct inode *inode;
2373         struct dentry *dentry = NULL;
2374         u64 inum;
2375
2376         if (fh_len < 3)
2377                 return NULL;
2378
2379         inum = fid->raw[2];
2380         inum = (inum << 32) | fid->raw[1];
2381
2382         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2383                         shmem_match, fid->raw);
2384         if (inode) {
2385                 dentry = d_find_alias(inode);
2386                 iput(inode);
2387         }
2388
2389         return dentry;
2390 }
2391
2392 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2393                                 struct inode *parent)
2394 {
2395         if (*len < 3) {
2396                 *len = 3;
2397                 return FILEID_INVALID;
2398         }
2399
2400         if (inode_unhashed(inode)) {
2401                 /* Unfortunately insert_inode_hash is not idempotent,
2402                  * so as we hash inodes here rather than at creation
2403                  * time, we need a lock to ensure we only try
2404                  * to do it once
2405                  */
2406                 static DEFINE_SPINLOCK(lock);
2407                 spin_lock(&lock);
2408                 if (inode_unhashed(inode))
2409                         __insert_inode_hash(inode,
2410                                             inode->i_ino + inode->i_generation);
2411                 spin_unlock(&lock);
2412         }
2413
2414         fh[0] = inode->i_generation;
2415         fh[1] = inode->i_ino;
2416         fh[2] = ((__u64)inode->i_ino) >> 32;
2417
2418         *len = 3;
2419         return 1;
2420 }
2421
2422 static const struct export_operations shmem_export_ops = {
2423         .get_parent     = shmem_get_parent,
2424         .encode_fh      = shmem_encode_fh,
2425         .fh_to_dentry   = shmem_fh_to_dentry,
2426 };
2427
2428 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2429                                bool remount)
2430 {
2431         char *this_char, *value, *rest;
2432         struct mempolicy *mpol = NULL;
2433         uid_t uid;
2434         gid_t gid;
2435
2436         while (options != NULL) {
2437                 this_char = options;
2438                 for (;;) {
2439                         /*
2440                          * NUL-terminate this option: unfortunately,
2441                          * mount options form a comma-separated list,
2442                          * but mpol's nodelist may also contain commas.
2443                          */
2444                         options = strchr(options, ',');
2445                         if (options == NULL)
2446                                 break;
2447                         options++;
2448                         if (!isdigit(*options)) {
2449                                 options[-1] = '\0';
2450                                 break;
2451                         }
2452                 }
2453                 if (!*this_char)
2454                         continue;
2455                 if ((value = strchr(this_char,'=')) != NULL) {
2456                         *value++ = 0;
2457                 } else {
2458                         printk(KERN_ERR
2459                             "tmpfs: No value for mount option '%s'\n",
2460                             this_char);
2461                         goto error;
2462                 }
2463
2464                 if (!strcmp(this_char,"size")) {
2465                         unsigned long long size;
2466                         size = memparse(value,&rest);
2467                         if (*rest == '%') {
2468                                 size <<= PAGE_SHIFT;
2469                                 size *= totalram_pages;
2470                                 do_div(size, 100);
2471                                 rest++;
2472                         }
2473                         if (*rest)
2474                                 goto bad_val;
2475                         sbinfo->max_blocks =
2476                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2477                 } else if (!strcmp(this_char,"nr_blocks")) {
2478                         sbinfo->max_blocks = memparse(value, &rest);
2479                         if (*rest)
2480                                 goto bad_val;
2481                 } else if (!strcmp(this_char,"nr_inodes")) {
2482                         sbinfo->max_inodes = memparse(value, &rest);
2483                         if (*rest)
2484                                 goto bad_val;
2485                 } else if (!strcmp(this_char,"mode")) {
2486                         if (remount)
2487                                 continue;
2488                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2489                         if (*rest)
2490                                 goto bad_val;
2491                 } else if (!strcmp(this_char,"uid")) {
2492                         if (remount)
2493                                 continue;
2494                         uid = simple_strtoul(value, &rest, 0);
2495                         if (*rest)
2496                                 goto bad_val;
2497                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2498                         if (!uid_valid(sbinfo->uid))
2499                                 goto bad_val;
2500                 } else if (!strcmp(this_char,"gid")) {
2501                         if (remount)
2502                                 continue;
2503                         gid = simple_strtoul(value, &rest, 0);
2504                         if (*rest)
2505                                 goto bad_val;
2506                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2507                         if (!gid_valid(sbinfo->gid))
2508                                 goto bad_val;
2509                 } else if (!strcmp(this_char,"mpol")) {
2510                         mpol_put(mpol);
2511                         mpol = NULL;
2512                         if (mpol_parse_str(value, &mpol))
2513                                 goto bad_val;
2514                 } else {
2515                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2516                                this_char);
2517                         goto error;
2518                 }
2519         }
2520         sbinfo->mpol = mpol;
2521         return 0;
2522
2523 bad_val:
2524         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2525                value, this_char);
2526 error:
2527         mpol_put(mpol);
2528         return 1;
2529
2530 }
2531
2532 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2533 {
2534         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2535         struct shmem_sb_info config = *sbinfo;
2536         unsigned long inodes;
2537         int error = -EINVAL;
2538
2539         config.mpol = NULL;
2540         if (shmem_parse_options(data, &config, true))
2541                 return error;
2542
2543         spin_lock(&sbinfo->stat_lock);
2544         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2545         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2546                 goto out;
2547         if (config.max_inodes < inodes)
2548                 goto out;
2549         /*
2550          * Those tests disallow limited->unlimited while any are in use;
2551          * but we must separately disallow unlimited->limited, because
2552          * in that case we have no record of how much is already in use.
2553          */
2554         if (config.max_blocks && !sbinfo->max_blocks)
2555                 goto out;
2556         if (config.max_inodes && !sbinfo->max_inodes)
2557                 goto out;
2558
2559         error = 0;
2560         sbinfo->max_blocks  = config.max_blocks;
2561         sbinfo->max_inodes  = config.max_inodes;
2562         sbinfo->free_inodes = config.max_inodes - inodes;
2563
2564         /*
2565          * Preserve previous mempolicy unless mpol remount option was specified.
2566          */
2567         if (config.mpol) {
2568                 mpol_put(sbinfo->mpol);
2569                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2570         }
2571 out:
2572         spin_unlock(&sbinfo->stat_lock);
2573         return error;
2574 }
2575
2576 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2577 {
2578         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2579
2580         if (sbinfo->max_blocks != shmem_default_max_blocks())
2581                 seq_printf(seq, ",size=%luk",
2582                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2583         if (sbinfo->max_inodes != shmem_default_max_inodes())
2584                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2585         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2586                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2587         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2588                 seq_printf(seq, ",uid=%u",
2589                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2590         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2591                 seq_printf(seq, ",gid=%u",
2592                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2593         shmem_show_mpol(seq, sbinfo->mpol);
2594         return 0;
2595 }
2596 #endif /* CONFIG_TMPFS */
2597
2598 static void shmem_put_super(struct super_block *sb)
2599 {
2600         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2601
2602         percpu_counter_destroy(&sbinfo->used_blocks);
2603         mpol_put(sbinfo->mpol);
2604         kfree(sbinfo);
2605         sb->s_fs_info = NULL;
2606 }
2607
2608 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2609 {
2610         struct inode *inode;
2611         struct shmem_sb_info *sbinfo;
2612         int err = -ENOMEM;
2613
2614         /* Round up to L1_CACHE_BYTES to resist false sharing */
2615         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2616                                 L1_CACHE_BYTES), GFP_KERNEL);
2617         if (!sbinfo)
2618                 return -ENOMEM;
2619
2620         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2621         sbinfo->uid = current_fsuid();
2622         sbinfo->gid = current_fsgid();
2623         sb->s_fs_info = sbinfo;
2624
2625 #ifdef CONFIG_TMPFS
2626         /*
2627          * Per default we only allow half of the physical ram per
2628          * tmpfs instance, limiting inodes to one per page of lowmem;
2629          * but the internal instance is left unlimited.
2630          */
2631         if (!(sb->s_flags & MS_KERNMOUNT)) {
2632                 sbinfo->max_blocks = shmem_default_max_blocks();
2633                 sbinfo->max_inodes = shmem_default_max_inodes();
2634                 if (shmem_parse_options(data, sbinfo, false)) {
2635                         err = -EINVAL;
2636                         goto failed;
2637                 }
2638         } else {
2639                 sb->s_flags |= MS_NOUSER;
2640         }
2641         sb->s_export_op = &shmem_export_ops;
2642         sb->s_flags |= MS_NOSEC;
2643 #else
2644         sb->s_flags |= MS_NOUSER;
2645 #endif
2646
2647         spin_lock_init(&sbinfo->stat_lock);
2648         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2649                 goto failed;
2650         sbinfo->free_inodes = sbinfo->max_inodes;
2651
2652         sb->s_maxbytes = MAX_LFS_FILESIZE;
2653         sb->s_blocksize = PAGE_CACHE_SIZE;
2654         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2655         sb->s_magic = TMPFS_MAGIC;
2656         sb->s_op = &shmem_ops;
2657         sb->s_time_gran = 1;
2658 #ifdef CONFIG_TMPFS_XATTR
2659         sb->s_xattr = shmem_xattr_handlers;
2660 #endif
2661 #ifdef CONFIG_TMPFS_POSIX_ACL
2662         sb->s_flags |= MS_POSIXACL;
2663 #endif
2664
2665         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2666         if (!inode)
2667                 goto failed;
2668         inode->i_uid = sbinfo->uid;
2669         inode->i_gid = sbinfo->gid;
2670         sb->s_root = d_make_root(inode);
2671         if (!sb->s_root)
2672                 goto failed;
2673         return 0;
2674
2675 failed:
2676         shmem_put_super(sb);
2677         return err;
2678 }
2679
2680 static struct kmem_cache *shmem_inode_cachep;
2681
2682 static struct inode *shmem_alloc_inode(struct super_block *sb)
2683 {
2684         struct shmem_inode_info *info;
2685         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2686         if (!info)
2687                 return NULL;
2688         return &info->vfs_inode;
2689 }
2690
2691 static void shmem_destroy_callback(struct rcu_head *head)
2692 {
2693         struct inode *inode = container_of(head, struct inode, i_rcu);
2694         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2695 }
2696
2697 static void shmem_destroy_inode(struct inode *inode)
2698 {
2699         if (S_ISREG(inode->i_mode))
2700                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2701         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2702 }
2703
2704 static void shmem_init_inode(void *foo)
2705 {
2706         struct shmem_inode_info *info = foo;
2707         inode_init_once(&info->vfs_inode);
2708 }
2709
2710 static int shmem_init_inodecache(void)
2711 {
2712         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2713                                 sizeof(struct shmem_inode_info),
2714                                 0, SLAB_PANIC, shmem_init_inode);
2715         return 0;
2716 }
2717
2718 static void shmem_destroy_inodecache(void)
2719 {
2720         kmem_cache_destroy(shmem_inode_cachep);
2721 }
2722
2723 static const struct address_space_operations shmem_aops = {
2724         .writepage      = shmem_writepage,
2725         .set_page_dirty = __set_page_dirty_no_writeback,
2726 #ifdef CONFIG_TMPFS
2727         .write_begin    = shmem_write_begin,
2728         .write_end      = shmem_write_end,
2729 #endif
2730         .migratepage    = migrate_page,
2731         .error_remove_page = generic_error_remove_page,
2732 };
2733
2734 static const struct file_operations shmem_file_operations = {
2735         .mmap           = shmem_mmap,
2736 #ifdef CONFIG_TMPFS
2737         .llseek         = shmem_file_llseek,
2738         .read           = new_sync_read,
2739         .write          = new_sync_write,
2740         .read_iter      = shmem_file_read_iter,
2741         .write_iter     = generic_file_write_iter,
2742         .fsync          = noop_fsync,
2743         .splice_read    = shmem_file_splice_read,
2744         .splice_write   = iter_file_splice_write,
2745         .fallocate      = shmem_fallocate,
2746 #endif
2747 };
2748
2749 static const struct inode_operations shmem_inode_operations = {
2750         .setattr        = shmem_setattr,
2751 #ifdef CONFIG_TMPFS_XATTR
2752         .setxattr       = shmem_setxattr,
2753         .getxattr       = shmem_getxattr,
2754         .listxattr      = shmem_listxattr,
2755         .removexattr    = shmem_removexattr,
2756         .set_acl        = simple_set_acl,
2757 #endif
2758 };
2759
2760 static const struct inode_operations shmem_dir_inode_operations = {
2761 #ifdef CONFIG_TMPFS
2762         .create         = shmem_create,
2763         .lookup         = simple_lookup,
2764         .link           = shmem_link,
2765         .unlink         = shmem_unlink,
2766         .symlink        = shmem_symlink,
2767         .mkdir          = shmem_mkdir,
2768         .rmdir          = shmem_rmdir,
2769         .mknod          = shmem_mknod,
2770         .rename         = shmem_rename,
2771         .tmpfile        = shmem_tmpfile,
2772 #endif
2773 #ifdef CONFIG_TMPFS_XATTR
2774         .setxattr       = shmem_setxattr,
2775         .getxattr       = shmem_getxattr,
2776         .listxattr      = shmem_listxattr,
2777         .removexattr    = shmem_removexattr,
2778 #endif
2779 #ifdef CONFIG_TMPFS_POSIX_ACL
2780         .setattr        = shmem_setattr,
2781         .set_acl        = simple_set_acl,
2782 #endif
2783 };
2784
2785 static const struct inode_operations shmem_special_inode_operations = {
2786 #ifdef CONFIG_TMPFS_XATTR
2787         .setxattr       = shmem_setxattr,
2788         .getxattr       = shmem_getxattr,
2789         .listxattr      = shmem_listxattr,
2790         .removexattr    = shmem_removexattr,
2791 #endif
2792 #ifdef CONFIG_TMPFS_POSIX_ACL
2793         .setattr        = shmem_setattr,
2794         .set_acl        = simple_set_acl,
2795 #endif
2796 };
2797
2798 static const struct super_operations shmem_ops = {
2799         .alloc_inode    = shmem_alloc_inode,
2800         .destroy_inode  = shmem_destroy_inode,
2801 #ifdef CONFIG_TMPFS
2802         .statfs         = shmem_statfs,
2803         .remount_fs     = shmem_remount_fs,
2804         .show_options   = shmem_show_options,
2805 #endif
2806         .evict_inode    = shmem_evict_inode,
2807         .drop_inode     = generic_delete_inode,
2808         .put_super      = shmem_put_super,
2809 };
2810
2811 static const struct vm_operations_struct shmem_vm_ops = {
2812         .fault          = shmem_fault,
2813         .map_pages      = filemap_map_pages,
2814 #ifdef CONFIG_NUMA
2815         .set_policy     = shmem_set_policy,
2816         .get_policy     = shmem_get_policy,
2817 #endif
2818         .remap_pages    = generic_file_remap_pages,
2819 };
2820
2821 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2822         int flags, const char *dev_name, void *data)
2823 {
2824         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2825 }
2826
2827 static struct file_system_type shmem_fs_type = {
2828         .owner          = THIS_MODULE,
2829         .name           = "tmpfs",
2830         .mount          = shmem_mount,
2831         .kill_sb        = kill_litter_super,
2832         .fs_flags       = FS_USERNS_MOUNT,
2833 };
2834
2835 int __init shmem_init(void)
2836 {
2837         int error;
2838
2839         /* If rootfs called this, don't re-init */
2840         if (shmem_inode_cachep)
2841                 return 0;
2842
2843         error = bdi_init(&shmem_backing_dev_info);
2844         if (error)
2845                 goto out4;
2846
2847         error = shmem_init_inodecache();
2848         if (error)
2849                 goto out3;
2850
2851         error = register_filesystem(&shmem_fs_type);
2852         if (error) {
2853                 printk(KERN_ERR "Could not register tmpfs\n");
2854                 goto out2;
2855         }
2856
2857         shm_mnt = kern_mount(&shmem_fs_type);
2858         if (IS_ERR(shm_mnt)) {
2859                 error = PTR_ERR(shm_mnt);
2860                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2861                 goto out1;
2862         }
2863         return 0;
2864
2865 out1:
2866         unregister_filesystem(&shmem_fs_type);
2867 out2:
2868         shmem_destroy_inodecache();
2869 out3:
2870         bdi_destroy(&shmem_backing_dev_info);
2871 out4:
2872         shm_mnt = ERR_PTR(error);
2873         return error;
2874 }
2875
2876 #else /* !CONFIG_SHMEM */
2877
2878 /*
2879  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2880  *
2881  * This is intended for small system where the benefits of the full
2882  * shmem code (swap-backed and resource-limited) are outweighed by
2883  * their complexity. On systems without swap this code should be
2884  * effectively equivalent, but much lighter weight.
2885  */
2886
2887 static struct file_system_type shmem_fs_type = {
2888         .name           = "tmpfs",
2889         .mount          = ramfs_mount,
2890         .kill_sb        = kill_litter_super,
2891         .fs_flags       = FS_USERNS_MOUNT,
2892 };
2893
2894 int __init shmem_init(void)
2895 {
2896         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2897
2898         shm_mnt = kern_mount(&shmem_fs_type);
2899         BUG_ON(IS_ERR(shm_mnt));
2900
2901         return 0;
2902 }
2903
2904 int shmem_unuse(swp_entry_t swap, struct page *page)
2905 {
2906         return 0;
2907 }
2908
2909 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2910 {
2911         return 0;
2912 }
2913
2914 void shmem_unlock_mapping(struct address_space *mapping)
2915 {
2916 }
2917
2918 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2919 {
2920         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2921 }
2922 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2923
2924 #define shmem_vm_ops                            generic_file_vm_ops
2925 #define shmem_file_operations                   ramfs_file_operations
2926 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2927 #define shmem_acct_size(flags, size)            0
2928 #define shmem_unacct_size(flags, size)          do {} while (0)
2929
2930 #endif /* CONFIG_SHMEM */
2931
2932 /* common code */
2933
2934 static struct dentry_operations anon_ops = {
2935         .d_dname = simple_dname
2936 };
2937
2938 static struct file *__shmem_file_setup(const char *name, loff_t size,
2939                                        unsigned long flags, unsigned int i_flags)
2940 {
2941         struct file *res;
2942         struct inode *inode;
2943         struct path path;
2944         struct super_block *sb;
2945         struct qstr this;
2946
2947         if (IS_ERR(shm_mnt))
2948                 return ERR_CAST(shm_mnt);
2949
2950         if (size < 0 || size > MAX_LFS_FILESIZE)
2951                 return ERR_PTR(-EINVAL);
2952
2953         if (shmem_acct_size(flags, size))
2954                 return ERR_PTR(-ENOMEM);
2955
2956         res = ERR_PTR(-ENOMEM);
2957         this.name = name;
2958         this.len = strlen(name);
2959         this.hash = 0; /* will go */
2960         sb = shm_mnt->mnt_sb;
2961         path.mnt = mntget(shm_mnt);
2962         path.dentry = d_alloc_pseudo(sb, &this);
2963         if (!path.dentry)
2964                 goto put_memory;
2965         d_set_d_op(path.dentry, &anon_ops);
2966
2967         res = ERR_PTR(-ENOSPC);
2968         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2969         if (!inode)
2970                 goto put_memory;
2971
2972         inode->i_flags |= i_flags;
2973         d_instantiate(path.dentry, inode);
2974         inode->i_size = size;
2975         clear_nlink(inode);     /* It is unlinked */
2976         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2977         if (IS_ERR(res))
2978                 goto put_path;
2979
2980         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2981                   &shmem_file_operations);
2982         if (IS_ERR(res))
2983                 goto put_path;
2984
2985         return res;
2986
2987 put_memory:
2988         shmem_unacct_size(flags, size);
2989 put_path:
2990         path_put(&path);
2991         return res;
2992 }
2993
2994 /**
2995  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2996  *      kernel internal.  There will be NO LSM permission checks against the
2997  *      underlying inode.  So users of this interface must do LSM checks at a
2998  *      higher layer.  The one user is the big_key implementation.  LSM checks
2999  *      are provided at the key level rather than the inode level.
3000  * @name: name for dentry (to be seen in /proc/<pid>/maps
3001  * @size: size to be set for the file
3002  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3003  */
3004 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3005 {
3006         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3007 }
3008
3009 /**
3010  * shmem_file_setup - get an unlinked file living in tmpfs
3011  * @name: name for dentry (to be seen in /proc/<pid>/maps
3012  * @size: size to be set for the file
3013  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3014  */
3015 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3016 {
3017         return __shmem_file_setup(name, size, flags, 0);
3018 }
3019 EXPORT_SYMBOL_GPL(shmem_file_setup);
3020
3021 /**
3022  * shmem_zero_setup - setup a shared anonymous mapping
3023  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3024  */
3025 int shmem_zero_setup(struct vm_area_struct *vma)
3026 {
3027         struct file *file;
3028         loff_t size = vma->vm_end - vma->vm_start;
3029
3030         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3031         if (IS_ERR(file))
3032                 return PTR_ERR(file);
3033
3034         if (vma->vm_file)
3035                 fput(vma->vm_file);
3036         vma->vm_file = file;
3037         vma->vm_ops = &shmem_vm_ops;
3038         return 0;
3039 }
3040
3041 /**
3042  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3043  * @mapping:    the page's address_space
3044  * @index:      the page index
3045  * @gfp:        the page allocator flags to use if allocating
3046  *
3047  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3048  * with any new page allocations done using the specified allocation flags.
3049  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3050  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3051  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3052  *
3053  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3054  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3055  */
3056 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3057                                          pgoff_t index, gfp_t gfp)
3058 {
3059 #ifdef CONFIG_SHMEM
3060         struct inode *inode = mapping->host;
3061         struct page *page;
3062         int error;
3063
3064         BUG_ON(mapping->a_ops != &shmem_aops);
3065         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3066         if (error)
3067                 page = ERR_PTR(error);
3068         else
3069                 unlock_page(page);
3070         return page;
3071 #else
3072         /*
3073          * The tiny !SHMEM case uses ramfs without swap
3074          */
3075         return read_cache_page_gfp(mapping, index, gfp);
3076 #endif
3077 }
3078 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);