mm: memcontrol: rewrite charge API
[cascardo/linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                                  unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
59
60 /*
61  * all active swap_info_structs
62  * protected with swap_lock, and ordered by priority.
63  */
64 PLIST_HEAD(swap_active_head);
65
66 /*
67  * all available (active, not full) swap_info_structs
68  * protected with swap_avail_lock, ordered by priority.
69  * This is used by get_swap_page() instead of swap_active_head
70  * because swap_active_head includes all swap_info_structs,
71  * but get_swap_page() doesn't need to look at full ones.
72  * This uses its own lock instead of swap_lock because when a
73  * swap_info_struct changes between not-full/full, it needs to
74  * add/remove itself to/from this list, but the swap_info_struct->lock
75  * is held and the locking order requires swap_lock to be taken
76  * before any swap_info_struct->lock.
77  */
78 static PLIST_HEAD(swap_avail_head);
79 static DEFINE_SPINLOCK(swap_avail_lock);
80
81 struct swap_info_struct *swap_info[MAX_SWAPFILES];
82
83 static DEFINE_MUTEX(swapon_mutex);
84
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event = ATOMIC_INIT(0);
88
89 static inline unsigned char swap_count(unsigned char ent)
90 {
91         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
92 }
93
94 /* returns 1 if swap entry is freed */
95 static int
96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97 {
98         swp_entry_t entry = swp_entry(si->type, offset);
99         struct page *page;
100         int ret = 0;
101
102         page = find_get_page(swap_address_space(entry), entry.val);
103         if (!page)
104                 return 0;
105         /*
106          * This function is called from scan_swap_map() and it's called
107          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108          * We have to use trylock for avoiding deadlock. This is a special
109          * case and you should use try_to_free_swap() with explicit lock_page()
110          * in usual operations.
111          */
112         if (trylock_page(page)) {
113                 ret = try_to_free_swap(page);
114                 unlock_page(page);
115         }
116         page_cache_release(page);
117         return ret;
118 }
119
120 /*
121  * swapon tell device that all the old swap contents can be discarded,
122  * to allow the swap device to optimize its wear-levelling.
123  */
124 static int discard_swap(struct swap_info_struct *si)
125 {
126         struct swap_extent *se;
127         sector_t start_block;
128         sector_t nr_blocks;
129         int err = 0;
130
131         /* Do not discard the swap header page! */
132         se = &si->first_swap_extent;
133         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135         if (nr_blocks) {
136                 err = blkdev_issue_discard(si->bdev, start_block,
137                                 nr_blocks, GFP_KERNEL, 0);
138                 if (err)
139                         return err;
140                 cond_resched();
141         }
142
143         list_for_each_entry(se, &si->first_swap_extent.list, list) {
144                 start_block = se->start_block << (PAGE_SHIFT - 9);
145                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
146
147                 err = blkdev_issue_discard(si->bdev, start_block,
148                                 nr_blocks, GFP_KERNEL, 0);
149                 if (err)
150                         break;
151
152                 cond_resched();
153         }
154         return err;             /* That will often be -EOPNOTSUPP */
155 }
156
157 /*
158  * swap allocation tell device that a cluster of swap can now be discarded,
159  * to allow the swap device to optimize its wear-levelling.
160  */
161 static void discard_swap_cluster(struct swap_info_struct *si,
162                                  pgoff_t start_page, pgoff_t nr_pages)
163 {
164         struct swap_extent *se = si->curr_swap_extent;
165         int found_extent = 0;
166
167         while (nr_pages) {
168                 struct list_head *lh;
169
170                 if (se->start_page <= start_page &&
171                     start_page < se->start_page + se->nr_pages) {
172                         pgoff_t offset = start_page - se->start_page;
173                         sector_t start_block = se->start_block + offset;
174                         sector_t nr_blocks = se->nr_pages - offset;
175
176                         if (nr_blocks > nr_pages)
177                                 nr_blocks = nr_pages;
178                         start_page += nr_blocks;
179                         nr_pages -= nr_blocks;
180
181                         if (!found_extent++)
182                                 si->curr_swap_extent = se;
183
184                         start_block <<= PAGE_SHIFT - 9;
185                         nr_blocks <<= PAGE_SHIFT - 9;
186                         if (blkdev_issue_discard(si->bdev, start_block,
187                                     nr_blocks, GFP_NOIO, 0))
188                                 break;
189                 }
190
191                 lh = se->list.next;
192                 se = list_entry(lh, struct swap_extent, list);
193         }
194 }
195
196 #define SWAPFILE_CLUSTER        256
197 #define LATENCY_LIMIT           256
198
199 static inline void cluster_set_flag(struct swap_cluster_info *info,
200         unsigned int flag)
201 {
202         info->flags = flag;
203 }
204
205 static inline unsigned int cluster_count(struct swap_cluster_info *info)
206 {
207         return info->data;
208 }
209
210 static inline void cluster_set_count(struct swap_cluster_info *info,
211                                      unsigned int c)
212 {
213         info->data = c;
214 }
215
216 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
217                                          unsigned int c, unsigned int f)
218 {
219         info->flags = f;
220         info->data = c;
221 }
222
223 static inline unsigned int cluster_next(struct swap_cluster_info *info)
224 {
225         return info->data;
226 }
227
228 static inline void cluster_set_next(struct swap_cluster_info *info,
229                                     unsigned int n)
230 {
231         info->data = n;
232 }
233
234 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
235                                          unsigned int n, unsigned int f)
236 {
237         info->flags = f;
238         info->data = n;
239 }
240
241 static inline bool cluster_is_free(struct swap_cluster_info *info)
242 {
243         return info->flags & CLUSTER_FLAG_FREE;
244 }
245
246 static inline bool cluster_is_null(struct swap_cluster_info *info)
247 {
248         return info->flags & CLUSTER_FLAG_NEXT_NULL;
249 }
250
251 static inline void cluster_set_null(struct swap_cluster_info *info)
252 {
253         info->flags = CLUSTER_FLAG_NEXT_NULL;
254         info->data = 0;
255 }
256
257 /* Add a cluster to discard list and schedule it to do discard */
258 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
259                 unsigned int idx)
260 {
261         /*
262          * If scan_swap_map() can't find a free cluster, it will check
263          * si->swap_map directly. To make sure the discarding cluster isn't
264          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
265          * will be cleared after discard
266          */
267         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
268                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
269
270         if (cluster_is_null(&si->discard_cluster_head)) {
271                 cluster_set_next_flag(&si->discard_cluster_head,
272                                                 idx, 0);
273                 cluster_set_next_flag(&si->discard_cluster_tail,
274                                                 idx, 0);
275         } else {
276                 unsigned int tail = cluster_next(&si->discard_cluster_tail);
277                 cluster_set_next(&si->cluster_info[tail], idx);
278                 cluster_set_next_flag(&si->discard_cluster_tail,
279                                                 idx, 0);
280         }
281
282         schedule_work(&si->discard_work);
283 }
284
285 /*
286  * Doing discard actually. After a cluster discard is finished, the cluster
287  * will be added to free cluster list. caller should hold si->lock.
288 */
289 static void swap_do_scheduled_discard(struct swap_info_struct *si)
290 {
291         struct swap_cluster_info *info;
292         unsigned int idx;
293
294         info = si->cluster_info;
295
296         while (!cluster_is_null(&si->discard_cluster_head)) {
297                 idx = cluster_next(&si->discard_cluster_head);
298
299                 cluster_set_next_flag(&si->discard_cluster_head,
300                                                 cluster_next(&info[idx]), 0);
301                 if (cluster_next(&si->discard_cluster_tail) == idx) {
302                         cluster_set_null(&si->discard_cluster_head);
303                         cluster_set_null(&si->discard_cluster_tail);
304                 }
305                 spin_unlock(&si->lock);
306
307                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
308                                 SWAPFILE_CLUSTER);
309
310                 spin_lock(&si->lock);
311                 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
312                 if (cluster_is_null(&si->free_cluster_head)) {
313                         cluster_set_next_flag(&si->free_cluster_head,
314                                                 idx, 0);
315                         cluster_set_next_flag(&si->free_cluster_tail,
316                                                 idx, 0);
317                 } else {
318                         unsigned int tail;
319
320                         tail = cluster_next(&si->free_cluster_tail);
321                         cluster_set_next(&info[tail], idx);
322                         cluster_set_next_flag(&si->free_cluster_tail,
323                                                 idx, 0);
324                 }
325                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
326                                 0, SWAPFILE_CLUSTER);
327         }
328 }
329
330 static void swap_discard_work(struct work_struct *work)
331 {
332         struct swap_info_struct *si;
333
334         si = container_of(work, struct swap_info_struct, discard_work);
335
336         spin_lock(&si->lock);
337         swap_do_scheduled_discard(si);
338         spin_unlock(&si->lock);
339 }
340
341 /*
342  * The cluster corresponding to page_nr will be used. The cluster will be
343  * removed from free cluster list and its usage counter will be increased.
344  */
345 static void inc_cluster_info_page(struct swap_info_struct *p,
346         struct swap_cluster_info *cluster_info, unsigned long page_nr)
347 {
348         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
349
350         if (!cluster_info)
351                 return;
352         if (cluster_is_free(&cluster_info[idx])) {
353                 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
354                 cluster_set_next_flag(&p->free_cluster_head,
355                         cluster_next(&cluster_info[idx]), 0);
356                 if (cluster_next(&p->free_cluster_tail) == idx) {
357                         cluster_set_null(&p->free_cluster_tail);
358                         cluster_set_null(&p->free_cluster_head);
359                 }
360                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
361         }
362
363         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
364         cluster_set_count(&cluster_info[idx],
365                 cluster_count(&cluster_info[idx]) + 1);
366 }
367
368 /*
369  * The cluster corresponding to page_nr decreases one usage. If the usage
370  * counter becomes 0, which means no page in the cluster is in using, we can
371  * optionally discard the cluster and add it to free cluster list.
372  */
373 static void dec_cluster_info_page(struct swap_info_struct *p,
374         struct swap_cluster_info *cluster_info, unsigned long page_nr)
375 {
376         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
377
378         if (!cluster_info)
379                 return;
380
381         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
382         cluster_set_count(&cluster_info[idx],
383                 cluster_count(&cluster_info[idx]) - 1);
384
385         if (cluster_count(&cluster_info[idx]) == 0) {
386                 /*
387                  * If the swap is discardable, prepare discard the cluster
388                  * instead of free it immediately. The cluster will be freed
389                  * after discard.
390                  */
391                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
392                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
393                         swap_cluster_schedule_discard(p, idx);
394                         return;
395                 }
396
397                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
398                 if (cluster_is_null(&p->free_cluster_head)) {
399                         cluster_set_next_flag(&p->free_cluster_head, idx, 0);
400                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
401                 } else {
402                         unsigned int tail = cluster_next(&p->free_cluster_tail);
403                         cluster_set_next(&cluster_info[tail], idx);
404                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
405                 }
406         }
407 }
408
409 /*
410  * It's possible scan_swap_map() uses a free cluster in the middle of free
411  * cluster list. Avoiding such abuse to avoid list corruption.
412  */
413 static bool
414 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
415         unsigned long offset)
416 {
417         struct percpu_cluster *percpu_cluster;
418         bool conflict;
419
420         offset /= SWAPFILE_CLUSTER;
421         conflict = !cluster_is_null(&si->free_cluster_head) &&
422                 offset != cluster_next(&si->free_cluster_head) &&
423                 cluster_is_free(&si->cluster_info[offset]);
424
425         if (!conflict)
426                 return false;
427
428         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
429         cluster_set_null(&percpu_cluster->index);
430         return true;
431 }
432
433 /*
434  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
435  * might involve allocating a new cluster for current CPU too.
436  */
437 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
438         unsigned long *offset, unsigned long *scan_base)
439 {
440         struct percpu_cluster *cluster;
441         bool found_free;
442         unsigned long tmp;
443
444 new_cluster:
445         cluster = this_cpu_ptr(si->percpu_cluster);
446         if (cluster_is_null(&cluster->index)) {
447                 if (!cluster_is_null(&si->free_cluster_head)) {
448                         cluster->index = si->free_cluster_head;
449                         cluster->next = cluster_next(&cluster->index) *
450                                         SWAPFILE_CLUSTER;
451                 } else if (!cluster_is_null(&si->discard_cluster_head)) {
452                         /*
453                          * we don't have free cluster but have some clusters in
454                          * discarding, do discard now and reclaim them
455                          */
456                         swap_do_scheduled_discard(si);
457                         *scan_base = *offset = si->cluster_next;
458                         goto new_cluster;
459                 } else
460                         return;
461         }
462
463         found_free = false;
464
465         /*
466          * Other CPUs can use our cluster if they can't find a free cluster,
467          * check if there is still free entry in the cluster
468          */
469         tmp = cluster->next;
470         while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
471                SWAPFILE_CLUSTER) {
472                 if (!si->swap_map[tmp]) {
473                         found_free = true;
474                         break;
475                 }
476                 tmp++;
477         }
478         if (!found_free) {
479                 cluster_set_null(&cluster->index);
480                 goto new_cluster;
481         }
482         cluster->next = tmp + 1;
483         *offset = tmp;
484         *scan_base = tmp;
485 }
486
487 static unsigned long scan_swap_map(struct swap_info_struct *si,
488                                    unsigned char usage)
489 {
490         unsigned long offset;
491         unsigned long scan_base;
492         unsigned long last_in_cluster = 0;
493         int latency_ration = LATENCY_LIMIT;
494
495         /*
496          * We try to cluster swap pages by allocating them sequentially
497          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
498          * way, however, we resort to first-free allocation, starting
499          * a new cluster.  This prevents us from scattering swap pages
500          * all over the entire swap partition, so that we reduce
501          * overall disk seek times between swap pages.  -- sct
502          * But we do now try to find an empty cluster.  -Andrea
503          * And we let swap pages go all over an SSD partition.  Hugh
504          */
505
506         si->flags += SWP_SCANNING;
507         scan_base = offset = si->cluster_next;
508
509         /* SSD algorithm */
510         if (si->cluster_info) {
511                 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
512                 goto checks;
513         }
514
515         if (unlikely(!si->cluster_nr--)) {
516                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
517                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
518                         goto checks;
519                 }
520
521                 spin_unlock(&si->lock);
522
523                 /*
524                  * If seek is expensive, start searching for new cluster from
525                  * start of partition, to minimize the span of allocated swap.
526                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
527                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
528                  */
529                 scan_base = offset = si->lowest_bit;
530                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
531
532                 /* Locate the first empty (unaligned) cluster */
533                 for (; last_in_cluster <= si->highest_bit; offset++) {
534                         if (si->swap_map[offset])
535                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
536                         else if (offset == last_in_cluster) {
537                                 spin_lock(&si->lock);
538                                 offset -= SWAPFILE_CLUSTER - 1;
539                                 si->cluster_next = offset;
540                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
541                                 goto checks;
542                         }
543                         if (unlikely(--latency_ration < 0)) {
544                                 cond_resched();
545                                 latency_ration = LATENCY_LIMIT;
546                         }
547                 }
548
549                 offset = scan_base;
550                 spin_lock(&si->lock);
551                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
552         }
553
554 checks:
555         if (si->cluster_info) {
556                 while (scan_swap_map_ssd_cluster_conflict(si, offset))
557                         scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
558         }
559         if (!(si->flags & SWP_WRITEOK))
560                 goto no_page;
561         if (!si->highest_bit)
562                 goto no_page;
563         if (offset > si->highest_bit)
564                 scan_base = offset = si->lowest_bit;
565
566         /* reuse swap entry of cache-only swap if not busy. */
567         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
568                 int swap_was_freed;
569                 spin_unlock(&si->lock);
570                 swap_was_freed = __try_to_reclaim_swap(si, offset);
571                 spin_lock(&si->lock);
572                 /* entry was freed successfully, try to use this again */
573                 if (swap_was_freed)
574                         goto checks;
575                 goto scan; /* check next one */
576         }
577
578         if (si->swap_map[offset])
579                 goto scan;
580
581         if (offset == si->lowest_bit)
582                 si->lowest_bit++;
583         if (offset == si->highest_bit)
584                 si->highest_bit--;
585         si->inuse_pages++;
586         if (si->inuse_pages == si->pages) {
587                 si->lowest_bit = si->max;
588                 si->highest_bit = 0;
589                 spin_lock(&swap_avail_lock);
590                 plist_del(&si->avail_list, &swap_avail_head);
591                 spin_unlock(&swap_avail_lock);
592         }
593         si->swap_map[offset] = usage;
594         inc_cluster_info_page(si, si->cluster_info, offset);
595         si->cluster_next = offset + 1;
596         si->flags -= SWP_SCANNING;
597
598         return offset;
599
600 scan:
601         spin_unlock(&si->lock);
602         while (++offset <= si->highest_bit) {
603                 if (!si->swap_map[offset]) {
604                         spin_lock(&si->lock);
605                         goto checks;
606                 }
607                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
608                         spin_lock(&si->lock);
609                         goto checks;
610                 }
611                 if (unlikely(--latency_ration < 0)) {
612                         cond_resched();
613                         latency_ration = LATENCY_LIMIT;
614                 }
615         }
616         offset = si->lowest_bit;
617         while (offset < scan_base) {
618                 if (!si->swap_map[offset]) {
619                         spin_lock(&si->lock);
620                         goto checks;
621                 }
622                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
623                         spin_lock(&si->lock);
624                         goto checks;
625                 }
626                 if (unlikely(--latency_ration < 0)) {
627                         cond_resched();
628                         latency_ration = LATENCY_LIMIT;
629                 }
630                 offset++;
631         }
632         spin_lock(&si->lock);
633
634 no_page:
635         si->flags -= SWP_SCANNING;
636         return 0;
637 }
638
639 swp_entry_t get_swap_page(void)
640 {
641         struct swap_info_struct *si, *next;
642         pgoff_t offset;
643
644         if (atomic_long_read(&nr_swap_pages) <= 0)
645                 goto noswap;
646         atomic_long_dec(&nr_swap_pages);
647
648         spin_lock(&swap_avail_lock);
649
650 start_over:
651         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
652                 /* requeue si to after same-priority siblings */
653                 plist_requeue(&si->avail_list, &swap_avail_head);
654                 spin_unlock(&swap_avail_lock);
655                 spin_lock(&si->lock);
656                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
657                         spin_lock(&swap_avail_lock);
658                         if (plist_node_empty(&si->avail_list)) {
659                                 spin_unlock(&si->lock);
660                                 goto nextsi;
661                         }
662                         WARN(!si->highest_bit,
663                              "swap_info %d in list but !highest_bit\n",
664                              si->type);
665                         WARN(!(si->flags & SWP_WRITEOK),
666                              "swap_info %d in list but !SWP_WRITEOK\n",
667                              si->type);
668                         plist_del(&si->avail_list, &swap_avail_head);
669                         spin_unlock(&si->lock);
670                         goto nextsi;
671                 }
672
673                 /* This is called for allocating swap entry for cache */
674                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
675                 spin_unlock(&si->lock);
676                 if (offset)
677                         return swp_entry(si->type, offset);
678                 pr_debug("scan_swap_map of si %d failed to find offset\n",
679                        si->type);
680                 spin_lock(&swap_avail_lock);
681 nextsi:
682                 /*
683                  * if we got here, it's likely that si was almost full before,
684                  * and since scan_swap_map() can drop the si->lock, multiple
685                  * callers probably all tried to get a page from the same si
686                  * and it filled up before we could get one; or, the si filled
687                  * up between us dropping swap_avail_lock and taking si->lock.
688                  * Since we dropped the swap_avail_lock, the swap_avail_head
689                  * list may have been modified; so if next is still in the
690                  * swap_avail_head list then try it, otherwise start over.
691                  */
692                 if (plist_node_empty(&next->avail_list))
693                         goto start_over;
694         }
695
696         spin_unlock(&swap_avail_lock);
697
698         atomic_long_inc(&nr_swap_pages);
699 noswap:
700         return (swp_entry_t) {0};
701 }
702
703 /* The only caller of this function is now suspend routine */
704 swp_entry_t get_swap_page_of_type(int type)
705 {
706         struct swap_info_struct *si;
707         pgoff_t offset;
708
709         si = swap_info[type];
710         spin_lock(&si->lock);
711         if (si && (si->flags & SWP_WRITEOK)) {
712                 atomic_long_dec(&nr_swap_pages);
713                 /* This is called for allocating swap entry, not cache */
714                 offset = scan_swap_map(si, 1);
715                 if (offset) {
716                         spin_unlock(&si->lock);
717                         return swp_entry(type, offset);
718                 }
719                 atomic_long_inc(&nr_swap_pages);
720         }
721         spin_unlock(&si->lock);
722         return (swp_entry_t) {0};
723 }
724
725 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
726 {
727         struct swap_info_struct *p;
728         unsigned long offset, type;
729
730         if (!entry.val)
731                 goto out;
732         type = swp_type(entry);
733         if (type >= nr_swapfiles)
734                 goto bad_nofile;
735         p = swap_info[type];
736         if (!(p->flags & SWP_USED))
737                 goto bad_device;
738         offset = swp_offset(entry);
739         if (offset >= p->max)
740                 goto bad_offset;
741         if (!p->swap_map[offset])
742                 goto bad_free;
743         spin_lock(&p->lock);
744         return p;
745
746 bad_free:
747         pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
748         goto out;
749 bad_offset:
750         pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
751         goto out;
752 bad_device:
753         pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
754         goto out;
755 bad_nofile:
756         pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
757 out:
758         return NULL;
759 }
760
761 static unsigned char swap_entry_free(struct swap_info_struct *p,
762                                      swp_entry_t entry, unsigned char usage)
763 {
764         unsigned long offset = swp_offset(entry);
765         unsigned char count;
766         unsigned char has_cache;
767
768         count = p->swap_map[offset];
769         has_cache = count & SWAP_HAS_CACHE;
770         count &= ~SWAP_HAS_CACHE;
771
772         if (usage == SWAP_HAS_CACHE) {
773                 VM_BUG_ON(!has_cache);
774                 has_cache = 0;
775         } else if (count == SWAP_MAP_SHMEM) {
776                 /*
777                  * Or we could insist on shmem.c using a special
778                  * swap_shmem_free() and free_shmem_swap_and_cache()...
779                  */
780                 count = 0;
781         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
782                 if (count == COUNT_CONTINUED) {
783                         if (swap_count_continued(p, offset, count))
784                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
785                         else
786                                 count = SWAP_MAP_MAX;
787                 } else
788                         count--;
789         }
790
791         if (!count)
792                 mem_cgroup_uncharge_swap(entry);
793
794         usage = count | has_cache;
795         p->swap_map[offset] = usage;
796
797         /* free if no reference */
798         if (!usage) {
799                 dec_cluster_info_page(p, p->cluster_info, offset);
800                 if (offset < p->lowest_bit)
801                         p->lowest_bit = offset;
802                 if (offset > p->highest_bit) {
803                         bool was_full = !p->highest_bit;
804                         p->highest_bit = offset;
805                         if (was_full && (p->flags & SWP_WRITEOK)) {
806                                 spin_lock(&swap_avail_lock);
807                                 WARN_ON(!plist_node_empty(&p->avail_list));
808                                 if (plist_node_empty(&p->avail_list))
809                                         plist_add(&p->avail_list,
810                                                   &swap_avail_head);
811                                 spin_unlock(&swap_avail_lock);
812                         }
813                 }
814                 atomic_long_inc(&nr_swap_pages);
815                 p->inuse_pages--;
816                 frontswap_invalidate_page(p->type, offset);
817                 if (p->flags & SWP_BLKDEV) {
818                         struct gendisk *disk = p->bdev->bd_disk;
819                         if (disk->fops->swap_slot_free_notify)
820                                 disk->fops->swap_slot_free_notify(p->bdev,
821                                                                   offset);
822                 }
823         }
824
825         return usage;
826 }
827
828 /*
829  * Caller has made sure that the swap device corresponding to entry
830  * is still around or has not been recycled.
831  */
832 void swap_free(swp_entry_t entry)
833 {
834         struct swap_info_struct *p;
835
836         p = swap_info_get(entry);
837         if (p) {
838                 swap_entry_free(p, entry, 1);
839                 spin_unlock(&p->lock);
840         }
841 }
842
843 /*
844  * Called after dropping swapcache to decrease refcnt to swap entries.
845  */
846 void swapcache_free(swp_entry_t entry, struct page *page)
847 {
848         struct swap_info_struct *p;
849         unsigned char count;
850
851         p = swap_info_get(entry);
852         if (p) {
853                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
854                 if (page)
855                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
856                 spin_unlock(&p->lock);
857         }
858 }
859
860 /*
861  * How many references to page are currently swapped out?
862  * This does not give an exact answer when swap count is continued,
863  * but does include the high COUNT_CONTINUED flag to allow for that.
864  */
865 int page_swapcount(struct page *page)
866 {
867         int count = 0;
868         struct swap_info_struct *p;
869         swp_entry_t entry;
870
871         entry.val = page_private(page);
872         p = swap_info_get(entry);
873         if (p) {
874                 count = swap_count(p->swap_map[swp_offset(entry)]);
875                 spin_unlock(&p->lock);
876         }
877         return count;
878 }
879
880 /*
881  * We can write to an anon page without COW if there are no other references
882  * to it.  And as a side-effect, free up its swap: because the old content
883  * on disk will never be read, and seeking back there to write new content
884  * later would only waste time away from clustering.
885  */
886 int reuse_swap_page(struct page *page)
887 {
888         int count;
889
890         VM_BUG_ON_PAGE(!PageLocked(page), page);
891         if (unlikely(PageKsm(page)))
892                 return 0;
893         count = page_mapcount(page);
894         if (count <= 1 && PageSwapCache(page)) {
895                 count += page_swapcount(page);
896                 if (count == 1 && !PageWriteback(page)) {
897                         delete_from_swap_cache(page);
898                         SetPageDirty(page);
899                 }
900         }
901         return count <= 1;
902 }
903
904 /*
905  * If swap is getting full, or if there are no more mappings of this page,
906  * then try_to_free_swap is called to free its swap space.
907  */
908 int try_to_free_swap(struct page *page)
909 {
910         VM_BUG_ON_PAGE(!PageLocked(page), page);
911
912         if (!PageSwapCache(page))
913                 return 0;
914         if (PageWriteback(page))
915                 return 0;
916         if (page_swapcount(page))
917                 return 0;
918
919         /*
920          * Once hibernation has begun to create its image of memory,
921          * there's a danger that one of the calls to try_to_free_swap()
922          * - most probably a call from __try_to_reclaim_swap() while
923          * hibernation is allocating its own swap pages for the image,
924          * but conceivably even a call from memory reclaim - will free
925          * the swap from a page which has already been recorded in the
926          * image as a clean swapcache page, and then reuse its swap for
927          * another page of the image.  On waking from hibernation, the
928          * original page might be freed under memory pressure, then
929          * later read back in from swap, now with the wrong data.
930          *
931          * Hibernation suspends storage while it is writing the image
932          * to disk so check that here.
933          */
934         if (pm_suspended_storage())
935                 return 0;
936
937         delete_from_swap_cache(page);
938         SetPageDirty(page);
939         return 1;
940 }
941
942 /*
943  * Free the swap entry like above, but also try to
944  * free the page cache entry if it is the last user.
945  */
946 int free_swap_and_cache(swp_entry_t entry)
947 {
948         struct swap_info_struct *p;
949         struct page *page = NULL;
950
951         if (non_swap_entry(entry))
952                 return 1;
953
954         p = swap_info_get(entry);
955         if (p) {
956                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
957                         page = find_get_page(swap_address_space(entry),
958                                                 entry.val);
959                         if (page && !trylock_page(page)) {
960                                 page_cache_release(page);
961                                 page = NULL;
962                         }
963                 }
964                 spin_unlock(&p->lock);
965         }
966         if (page) {
967                 /*
968                  * Not mapped elsewhere, or swap space full? Free it!
969                  * Also recheck PageSwapCache now page is locked (above).
970                  */
971                 if (PageSwapCache(page) && !PageWriteback(page) &&
972                                 (!page_mapped(page) || vm_swap_full())) {
973                         delete_from_swap_cache(page);
974                         SetPageDirty(page);
975                 }
976                 unlock_page(page);
977                 page_cache_release(page);
978         }
979         return p != NULL;
980 }
981
982 #ifdef CONFIG_HIBERNATION
983 /*
984  * Find the swap type that corresponds to given device (if any).
985  *
986  * @offset - number of the PAGE_SIZE-sized block of the device, starting
987  * from 0, in which the swap header is expected to be located.
988  *
989  * This is needed for the suspend to disk (aka swsusp).
990  */
991 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
992 {
993         struct block_device *bdev = NULL;
994         int type;
995
996         if (device)
997                 bdev = bdget(device);
998
999         spin_lock(&swap_lock);
1000         for (type = 0; type < nr_swapfiles; type++) {
1001                 struct swap_info_struct *sis = swap_info[type];
1002
1003                 if (!(sis->flags & SWP_WRITEOK))
1004                         continue;
1005
1006                 if (!bdev) {
1007                         if (bdev_p)
1008                                 *bdev_p = bdgrab(sis->bdev);
1009
1010                         spin_unlock(&swap_lock);
1011                         return type;
1012                 }
1013                 if (bdev == sis->bdev) {
1014                         struct swap_extent *se = &sis->first_swap_extent;
1015
1016                         if (se->start_block == offset) {
1017                                 if (bdev_p)
1018                                         *bdev_p = bdgrab(sis->bdev);
1019
1020                                 spin_unlock(&swap_lock);
1021                                 bdput(bdev);
1022                                 return type;
1023                         }
1024                 }
1025         }
1026         spin_unlock(&swap_lock);
1027         if (bdev)
1028                 bdput(bdev);
1029
1030         return -ENODEV;
1031 }
1032
1033 /*
1034  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1035  * corresponding to given index in swap_info (swap type).
1036  */
1037 sector_t swapdev_block(int type, pgoff_t offset)
1038 {
1039         struct block_device *bdev;
1040
1041         if ((unsigned int)type >= nr_swapfiles)
1042                 return 0;
1043         if (!(swap_info[type]->flags & SWP_WRITEOK))
1044                 return 0;
1045         return map_swap_entry(swp_entry(type, offset), &bdev);
1046 }
1047
1048 /*
1049  * Return either the total number of swap pages of given type, or the number
1050  * of free pages of that type (depending on @free)
1051  *
1052  * This is needed for software suspend
1053  */
1054 unsigned int count_swap_pages(int type, int free)
1055 {
1056         unsigned int n = 0;
1057
1058         spin_lock(&swap_lock);
1059         if ((unsigned int)type < nr_swapfiles) {
1060                 struct swap_info_struct *sis = swap_info[type];
1061
1062                 spin_lock(&sis->lock);
1063                 if (sis->flags & SWP_WRITEOK) {
1064                         n = sis->pages;
1065                         if (free)
1066                                 n -= sis->inuse_pages;
1067                 }
1068                 spin_unlock(&sis->lock);
1069         }
1070         spin_unlock(&swap_lock);
1071         return n;
1072 }
1073 #endif /* CONFIG_HIBERNATION */
1074
1075 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1076 {
1077 #ifdef CONFIG_MEM_SOFT_DIRTY
1078         /*
1079          * When pte keeps soft dirty bit the pte generated
1080          * from swap entry does not has it, still it's same
1081          * pte from logical point of view.
1082          */
1083         pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1084         return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1085 #else
1086         return pte_same(pte, swp_pte);
1087 #endif
1088 }
1089
1090 /*
1091  * No need to decide whether this PTE shares the swap entry with others,
1092  * just let do_wp_page work it out if a write is requested later - to
1093  * force COW, vm_page_prot omits write permission from any private vma.
1094  */
1095 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1096                 unsigned long addr, swp_entry_t entry, struct page *page)
1097 {
1098         struct page *swapcache;
1099         struct mem_cgroup *memcg;
1100         spinlock_t *ptl;
1101         pte_t *pte;
1102         int ret = 1;
1103
1104         swapcache = page;
1105         page = ksm_might_need_to_copy(page, vma, addr);
1106         if (unlikely(!page))
1107                 return -ENOMEM;
1108
1109         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg)) {
1110                 ret = -ENOMEM;
1111                 goto out_nolock;
1112         }
1113
1114         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1115         if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1116                 mem_cgroup_cancel_charge(page, memcg);
1117                 ret = 0;
1118                 goto out;
1119         }
1120
1121         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1122         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1123         get_page(page);
1124         set_pte_at(vma->vm_mm, addr, pte,
1125                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1126         if (page == swapcache) {
1127                 page_add_anon_rmap(page, vma, addr);
1128                 mem_cgroup_commit_charge(page, memcg, true);
1129         } else { /* ksm created a completely new copy */
1130                 page_add_new_anon_rmap(page, vma, addr);
1131                 mem_cgroup_commit_charge(page, memcg, false);
1132                 lru_cache_add_active_or_unevictable(page, vma);
1133         }
1134         swap_free(entry);
1135         /*
1136          * Move the page to the active list so it is not
1137          * immediately swapped out again after swapon.
1138          */
1139         activate_page(page);
1140 out:
1141         pte_unmap_unlock(pte, ptl);
1142 out_nolock:
1143         if (page != swapcache) {
1144                 unlock_page(page);
1145                 put_page(page);
1146         }
1147         return ret;
1148 }
1149
1150 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1151                                 unsigned long addr, unsigned long end,
1152                                 swp_entry_t entry, struct page *page)
1153 {
1154         pte_t swp_pte = swp_entry_to_pte(entry);
1155         pte_t *pte;
1156         int ret = 0;
1157
1158         /*
1159          * We don't actually need pte lock while scanning for swp_pte: since
1160          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1161          * page table while we're scanning; though it could get zapped, and on
1162          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1163          * of unmatched parts which look like swp_pte, so unuse_pte must
1164          * recheck under pte lock.  Scanning without pte lock lets it be
1165          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1166          */
1167         pte = pte_offset_map(pmd, addr);
1168         do {
1169                 /*
1170                  * swapoff spends a _lot_ of time in this loop!
1171                  * Test inline before going to call unuse_pte.
1172                  */
1173                 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1174                         pte_unmap(pte);
1175                         ret = unuse_pte(vma, pmd, addr, entry, page);
1176                         if (ret)
1177                                 goto out;
1178                         pte = pte_offset_map(pmd, addr);
1179                 }
1180         } while (pte++, addr += PAGE_SIZE, addr != end);
1181         pte_unmap(pte - 1);
1182 out:
1183         return ret;
1184 }
1185
1186 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1187                                 unsigned long addr, unsigned long end,
1188                                 swp_entry_t entry, struct page *page)
1189 {
1190         pmd_t *pmd;
1191         unsigned long next;
1192         int ret;
1193
1194         pmd = pmd_offset(pud, addr);
1195         do {
1196                 next = pmd_addr_end(addr, end);
1197                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1198                         continue;
1199                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1200                 if (ret)
1201                         return ret;
1202         } while (pmd++, addr = next, addr != end);
1203         return 0;
1204 }
1205
1206 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1207                                 unsigned long addr, unsigned long end,
1208                                 swp_entry_t entry, struct page *page)
1209 {
1210         pud_t *pud;
1211         unsigned long next;
1212         int ret;
1213
1214         pud = pud_offset(pgd, addr);
1215         do {
1216                 next = pud_addr_end(addr, end);
1217                 if (pud_none_or_clear_bad(pud))
1218                         continue;
1219                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1220                 if (ret)
1221                         return ret;
1222         } while (pud++, addr = next, addr != end);
1223         return 0;
1224 }
1225
1226 static int unuse_vma(struct vm_area_struct *vma,
1227                                 swp_entry_t entry, struct page *page)
1228 {
1229         pgd_t *pgd;
1230         unsigned long addr, end, next;
1231         int ret;
1232
1233         if (page_anon_vma(page)) {
1234                 addr = page_address_in_vma(page, vma);
1235                 if (addr == -EFAULT)
1236                         return 0;
1237                 else
1238                         end = addr + PAGE_SIZE;
1239         } else {
1240                 addr = vma->vm_start;
1241                 end = vma->vm_end;
1242         }
1243
1244         pgd = pgd_offset(vma->vm_mm, addr);
1245         do {
1246                 next = pgd_addr_end(addr, end);
1247                 if (pgd_none_or_clear_bad(pgd))
1248                         continue;
1249                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1250                 if (ret)
1251                         return ret;
1252         } while (pgd++, addr = next, addr != end);
1253         return 0;
1254 }
1255
1256 static int unuse_mm(struct mm_struct *mm,
1257                                 swp_entry_t entry, struct page *page)
1258 {
1259         struct vm_area_struct *vma;
1260         int ret = 0;
1261
1262         if (!down_read_trylock(&mm->mmap_sem)) {
1263                 /*
1264                  * Activate page so shrink_inactive_list is unlikely to unmap
1265                  * its ptes while lock is dropped, so swapoff can make progress.
1266                  */
1267                 activate_page(page);
1268                 unlock_page(page);
1269                 down_read(&mm->mmap_sem);
1270                 lock_page(page);
1271         }
1272         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1273                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1274                         break;
1275         }
1276         up_read(&mm->mmap_sem);
1277         return (ret < 0)? ret: 0;
1278 }
1279
1280 /*
1281  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1282  * from current position to next entry still in use.
1283  * Recycle to start on reaching the end, returning 0 when empty.
1284  */
1285 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1286                                         unsigned int prev, bool frontswap)
1287 {
1288         unsigned int max = si->max;
1289         unsigned int i = prev;
1290         unsigned char count;
1291
1292         /*
1293          * No need for swap_lock here: we're just looking
1294          * for whether an entry is in use, not modifying it; false
1295          * hits are okay, and sys_swapoff() has already prevented new
1296          * allocations from this area (while holding swap_lock).
1297          */
1298         for (;;) {
1299                 if (++i >= max) {
1300                         if (!prev) {
1301                                 i = 0;
1302                                 break;
1303                         }
1304                         /*
1305                          * No entries in use at top of swap_map,
1306                          * loop back to start and recheck there.
1307                          */
1308                         max = prev + 1;
1309                         prev = 0;
1310                         i = 1;
1311                 }
1312                 if (frontswap) {
1313                         if (frontswap_test(si, i))
1314                                 break;
1315                         else
1316                                 continue;
1317                 }
1318                 count = ACCESS_ONCE(si->swap_map[i]);
1319                 if (count && swap_count(count) != SWAP_MAP_BAD)
1320                         break;
1321         }
1322         return i;
1323 }
1324
1325 /*
1326  * We completely avoid races by reading each swap page in advance,
1327  * and then search for the process using it.  All the necessary
1328  * page table adjustments can then be made atomically.
1329  *
1330  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1331  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1332  */
1333 int try_to_unuse(unsigned int type, bool frontswap,
1334                  unsigned long pages_to_unuse)
1335 {
1336         struct swap_info_struct *si = swap_info[type];
1337         struct mm_struct *start_mm;
1338         volatile unsigned char *swap_map; /* swap_map is accessed without
1339                                            * locking. Mark it as volatile
1340                                            * to prevent compiler doing
1341                                            * something odd.
1342                                            */
1343         unsigned char swcount;
1344         struct page *page;
1345         swp_entry_t entry;
1346         unsigned int i = 0;
1347         int retval = 0;
1348
1349         /*
1350          * When searching mms for an entry, a good strategy is to
1351          * start at the first mm we freed the previous entry from
1352          * (though actually we don't notice whether we or coincidence
1353          * freed the entry).  Initialize this start_mm with a hold.
1354          *
1355          * A simpler strategy would be to start at the last mm we
1356          * freed the previous entry from; but that would take less
1357          * advantage of mmlist ordering, which clusters forked mms
1358          * together, child after parent.  If we race with dup_mmap(), we
1359          * prefer to resolve parent before child, lest we miss entries
1360          * duplicated after we scanned child: using last mm would invert
1361          * that.
1362          */
1363         start_mm = &init_mm;
1364         atomic_inc(&init_mm.mm_users);
1365
1366         /*
1367          * Keep on scanning until all entries have gone.  Usually,
1368          * one pass through swap_map is enough, but not necessarily:
1369          * there are races when an instance of an entry might be missed.
1370          */
1371         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1372                 if (signal_pending(current)) {
1373                         retval = -EINTR;
1374                         break;
1375                 }
1376
1377                 /*
1378                  * Get a page for the entry, using the existing swap
1379                  * cache page if there is one.  Otherwise, get a clean
1380                  * page and read the swap into it.
1381                  */
1382                 swap_map = &si->swap_map[i];
1383                 entry = swp_entry(type, i);
1384                 page = read_swap_cache_async(entry,
1385                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1386                 if (!page) {
1387                         /*
1388                          * Either swap_duplicate() failed because entry
1389                          * has been freed independently, and will not be
1390                          * reused since sys_swapoff() already disabled
1391                          * allocation from here, or alloc_page() failed.
1392                          */
1393                         swcount = *swap_map;
1394                         /*
1395                          * We don't hold lock here, so the swap entry could be
1396                          * SWAP_MAP_BAD (when the cluster is discarding).
1397                          * Instead of fail out, We can just skip the swap
1398                          * entry because swapoff will wait for discarding
1399                          * finish anyway.
1400                          */
1401                         if (!swcount || swcount == SWAP_MAP_BAD)
1402                                 continue;
1403                         retval = -ENOMEM;
1404                         break;
1405                 }
1406
1407                 /*
1408                  * Don't hold on to start_mm if it looks like exiting.
1409                  */
1410                 if (atomic_read(&start_mm->mm_users) == 1) {
1411                         mmput(start_mm);
1412                         start_mm = &init_mm;
1413                         atomic_inc(&init_mm.mm_users);
1414                 }
1415
1416                 /*
1417                  * Wait for and lock page.  When do_swap_page races with
1418                  * try_to_unuse, do_swap_page can handle the fault much
1419                  * faster than try_to_unuse can locate the entry.  This
1420                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1421                  * defer to do_swap_page in such a case - in some tests,
1422                  * do_swap_page and try_to_unuse repeatedly compete.
1423                  */
1424                 wait_on_page_locked(page);
1425                 wait_on_page_writeback(page);
1426                 lock_page(page);
1427                 wait_on_page_writeback(page);
1428
1429                 /*
1430                  * Remove all references to entry.
1431                  */
1432                 swcount = *swap_map;
1433                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1434                         retval = shmem_unuse(entry, page);
1435                         /* page has already been unlocked and released */
1436                         if (retval < 0)
1437                                 break;
1438                         continue;
1439                 }
1440                 if (swap_count(swcount) && start_mm != &init_mm)
1441                         retval = unuse_mm(start_mm, entry, page);
1442
1443                 if (swap_count(*swap_map)) {
1444                         int set_start_mm = (*swap_map >= swcount);
1445                         struct list_head *p = &start_mm->mmlist;
1446                         struct mm_struct *new_start_mm = start_mm;
1447                         struct mm_struct *prev_mm = start_mm;
1448                         struct mm_struct *mm;
1449
1450                         atomic_inc(&new_start_mm->mm_users);
1451                         atomic_inc(&prev_mm->mm_users);
1452                         spin_lock(&mmlist_lock);
1453                         while (swap_count(*swap_map) && !retval &&
1454                                         (p = p->next) != &start_mm->mmlist) {
1455                                 mm = list_entry(p, struct mm_struct, mmlist);
1456                                 if (!atomic_inc_not_zero(&mm->mm_users))
1457                                         continue;
1458                                 spin_unlock(&mmlist_lock);
1459                                 mmput(prev_mm);
1460                                 prev_mm = mm;
1461
1462                                 cond_resched();
1463
1464                                 swcount = *swap_map;
1465                                 if (!swap_count(swcount)) /* any usage ? */
1466                                         ;
1467                                 else if (mm == &init_mm)
1468                                         set_start_mm = 1;
1469                                 else
1470                                         retval = unuse_mm(mm, entry, page);
1471
1472                                 if (set_start_mm && *swap_map < swcount) {
1473                                         mmput(new_start_mm);
1474                                         atomic_inc(&mm->mm_users);
1475                                         new_start_mm = mm;
1476                                         set_start_mm = 0;
1477                                 }
1478                                 spin_lock(&mmlist_lock);
1479                         }
1480                         spin_unlock(&mmlist_lock);
1481                         mmput(prev_mm);
1482                         mmput(start_mm);
1483                         start_mm = new_start_mm;
1484                 }
1485                 if (retval) {
1486                         unlock_page(page);
1487                         page_cache_release(page);
1488                         break;
1489                 }
1490
1491                 /*
1492                  * If a reference remains (rare), we would like to leave
1493                  * the page in the swap cache; but try_to_unmap could
1494                  * then re-duplicate the entry once we drop page lock,
1495                  * so we might loop indefinitely; also, that page could
1496                  * not be swapped out to other storage meanwhile.  So:
1497                  * delete from cache even if there's another reference,
1498                  * after ensuring that the data has been saved to disk -
1499                  * since if the reference remains (rarer), it will be
1500                  * read from disk into another page.  Splitting into two
1501                  * pages would be incorrect if swap supported "shared
1502                  * private" pages, but they are handled by tmpfs files.
1503                  *
1504                  * Given how unuse_vma() targets one particular offset
1505                  * in an anon_vma, once the anon_vma has been determined,
1506                  * this splitting happens to be just what is needed to
1507                  * handle where KSM pages have been swapped out: re-reading
1508                  * is unnecessarily slow, but we can fix that later on.
1509                  */
1510                 if (swap_count(*swap_map) &&
1511                      PageDirty(page) && PageSwapCache(page)) {
1512                         struct writeback_control wbc = {
1513                                 .sync_mode = WB_SYNC_NONE,
1514                         };
1515
1516                         swap_writepage(page, &wbc);
1517                         lock_page(page);
1518                         wait_on_page_writeback(page);
1519                 }
1520
1521                 /*
1522                  * It is conceivable that a racing task removed this page from
1523                  * swap cache just before we acquired the page lock at the top,
1524                  * or while we dropped it in unuse_mm().  The page might even
1525                  * be back in swap cache on another swap area: that we must not
1526                  * delete, since it may not have been written out to swap yet.
1527                  */
1528                 if (PageSwapCache(page) &&
1529                     likely(page_private(page) == entry.val))
1530                         delete_from_swap_cache(page);
1531
1532                 /*
1533                  * So we could skip searching mms once swap count went
1534                  * to 1, we did not mark any present ptes as dirty: must
1535                  * mark page dirty so shrink_page_list will preserve it.
1536                  */
1537                 SetPageDirty(page);
1538                 unlock_page(page);
1539                 page_cache_release(page);
1540
1541                 /*
1542                  * Make sure that we aren't completely killing
1543                  * interactive performance.
1544                  */
1545                 cond_resched();
1546                 if (frontswap && pages_to_unuse > 0) {
1547                         if (!--pages_to_unuse)
1548                                 break;
1549                 }
1550         }
1551
1552         mmput(start_mm);
1553         return retval;
1554 }
1555
1556 /*
1557  * After a successful try_to_unuse, if no swap is now in use, we know
1558  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1559  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1560  * added to the mmlist just after page_duplicate - before would be racy.
1561  */
1562 static void drain_mmlist(void)
1563 {
1564         struct list_head *p, *next;
1565         unsigned int type;
1566
1567         for (type = 0; type < nr_swapfiles; type++)
1568                 if (swap_info[type]->inuse_pages)
1569                         return;
1570         spin_lock(&mmlist_lock);
1571         list_for_each_safe(p, next, &init_mm.mmlist)
1572                 list_del_init(p);
1573         spin_unlock(&mmlist_lock);
1574 }
1575
1576 /*
1577  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1578  * corresponds to page offset for the specified swap entry.
1579  * Note that the type of this function is sector_t, but it returns page offset
1580  * into the bdev, not sector offset.
1581  */
1582 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1583 {
1584         struct swap_info_struct *sis;
1585         struct swap_extent *start_se;
1586         struct swap_extent *se;
1587         pgoff_t offset;
1588
1589         sis = swap_info[swp_type(entry)];
1590         *bdev = sis->bdev;
1591
1592         offset = swp_offset(entry);
1593         start_se = sis->curr_swap_extent;
1594         se = start_se;
1595
1596         for ( ; ; ) {
1597                 struct list_head *lh;
1598
1599                 if (se->start_page <= offset &&
1600                                 offset < (se->start_page + se->nr_pages)) {
1601                         return se->start_block + (offset - se->start_page);
1602                 }
1603                 lh = se->list.next;
1604                 se = list_entry(lh, struct swap_extent, list);
1605                 sis->curr_swap_extent = se;
1606                 BUG_ON(se == start_se);         /* It *must* be present */
1607         }
1608 }
1609
1610 /*
1611  * Returns the page offset into bdev for the specified page's swap entry.
1612  */
1613 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1614 {
1615         swp_entry_t entry;
1616         entry.val = page_private(page);
1617         return map_swap_entry(entry, bdev);
1618 }
1619
1620 /*
1621  * Free all of a swapdev's extent information
1622  */
1623 static void destroy_swap_extents(struct swap_info_struct *sis)
1624 {
1625         while (!list_empty(&sis->first_swap_extent.list)) {
1626                 struct swap_extent *se;
1627
1628                 se = list_entry(sis->first_swap_extent.list.next,
1629                                 struct swap_extent, list);
1630                 list_del(&se->list);
1631                 kfree(se);
1632         }
1633
1634         if (sis->flags & SWP_FILE) {
1635                 struct file *swap_file = sis->swap_file;
1636                 struct address_space *mapping = swap_file->f_mapping;
1637
1638                 sis->flags &= ~SWP_FILE;
1639                 mapping->a_ops->swap_deactivate(swap_file);
1640         }
1641 }
1642
1643 /*
1644  * Add a block range (and the corresponding page range) into this swapdev's
1645  * extent list.  The extent list is kept sorted in page order.
1646  *
1647  * This function rather assumes that it is called in ascending page order.
1648  */
1649 int
1650 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1651                 unsigned long nr_pages, sector_t start_block)
1652 {
1653         struct swap_extent *se;
1654         struct swap_extent *new_se;
1655         struct list_head *lh;
1656
1657         if (start_page == 0) {
1658                 se = &sis->first_swap_extent;
1659                 sis->curr_swap_extent = se;
1660                 se->start_page = 0;
1661                 se->nr_pages = nr_pages;
1662                 se->start_block = start_block;
1663                 return 1;
1664         } else {
1665                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1666                 se = list_entry(lh, struct swap_extent, list);
1667                 BUG_ON(se->start_page + se->nr_pages != start_page);
1668                 if (se->start_block + se->nr_pages == start_block) {
1669                         /* Merge it */
1670                         se->nr_pages += nr_pages;
1671                         return 0;
1672                 }
1673         }
1674
1675         /*
1676          * No merge.  Insert a new extent, preserving ordering.
1677          */
1678         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1679         if (new_se == NULL)
1680                 return -ENOMEM;
1681         new_se->start_page = start_page;
1682         new_se->nr_pages = nr_pages;
1683         new_se->start_block = start_block;
1684
1685         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1686         return 1;
1687 }
1688
1689 /*
1690  * A `swap extent' is a simple thing which maps a contiguous range of pages
1691  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1692  * is built at swapon time and is then used at swap_writepage/swap_readpage
1693  * time for locating where on disk a page belongs.
1694  *
1695  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1696  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1697  * swap files identically.
1698  *
1699  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1700  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1701  * swapfiles are handled *identically* after swapon time.
1702  *
1703  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1704  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1705  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1706  * requirements, they are simply tossed out - we will never use those blocks
1707  * for swapping.
1708  *
1709  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1710  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1711  * which will scribble on the fs.
1712  *
1713  * The amount of disk space which a single swap extent represents varies.
1714  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1715  * extents in the list.  To avoid much list walking, we cache the previous
1716  * search location in `curr_swap_extent', and start new searches from there.
1717  * This is extremely effective.  The average number of iterations in
1718  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1719  */
1720 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1721 {
1722         struct file *swap_file = sis->swap_file;
1723         struct address_space *mapping = swap_file->f_mapping;
1724         struct inode *inode = mapping->host;
1725         int ret;
1726
1727         if (S_ISBLK(inode->i_mode)) {
1728                 ret = add_swap_extent(sis, 0, sis->max, 0);
1729                 *span = sis->pages;
1730                 return ret;
1731         }
1732
1733         if (mapping->a_ops->swap_activate) {
1734                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1735                 if (!ret) {
1736                         sis->flags |= SWP_FILE;
1737                         ret = add_swap_extent(sis, 0, sis->max, 0);
1738                         *span = sis->pages;
1739                 }
1740                 return ret;
1741         }
1742
1743         return generic_swapfile_activate(sis, swap_file, span);
1744 }
1745
1746 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1747                                 unsigned char *swap_map,
1748                                 struct swap_cluster_info *cluster_info)
1749 {
1750         if (prio >= 0)
1751                 p->prio = prio;
1752         else
1753                 p->prio = --least_priority;
1754         /*
1755          * the plist prio is negated because plist ordering is
1756          * low-to-high, while swap ordering is high-to-low
1757          */
1758         p->list.prio = -p->prio;
1759         p->avail_list.prio = -p->prio;
1760         p->swap_map = swap_map;
1761         p->cluster_info = cluster_info;
1762         p->flags |= SWP_WRITEOK;
1763         atomic_long_add(p->pages, &nr_swap_pages);
1764         total_swap_pages += p->pages;
1765
1766         assert_spin_locked(&swap_lock);
1767         /*
1768          * both lists are plists, and thus priority ordered.
1769          * swap_active_head needs to be priority ordered for swapoff(),
1770          * which on removal of any swap_info_struct with an auto-assigned
1771          * (i.e. negative) priority increments the auto-assigned priority
1772          * of any lower-priority swap_info_structs.
1773          * swap_avail_head needs to be priority ordered for get_swap_page(),
1774          * which allocates swap pages from the highest available priority
1775          * swap_info_struct.
1776          */
1777         plist_add(&p->list, &swap_active_head);
1778         spin_lock(&swap_avail_lock);
1779         plist_add(&p->avail_list, &swap_avail_head);
1780         spin_unlock(&swap_avail_lock);
1781 }
1782
1783 static void enable_swap_info(struct swap_info_struct *p, int prio,
1784                                 unsigned char *swap_map,
1785                                 struct swap_cluster_info *cluster_info,
1786                                 unsigned long *frontswap_map)
1787 {
1788         frontswap_init(p->type, frontswap_map);
1789         spin_lock(&swap_lock);
1790         spin_lock(&p->lock);
1791          _enable_swap_info(p, prio, swap_map, cluster_info);
1792         spin_unlock(&p->lock);
1793         spin_unlock(&swap_lock);
1794 }
1795
1796 static void reinsert_swap_info(struct swap_info_struct *p)
1797 {
1798         spin_lock(&swap_lock);
1799         spin_lock(&p->lock);
1800         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1801         spin_unlock(&p->lock);
1802         spin_unlock(&swap_lock);
1803 }
1804
1805 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1806 {
1807         struct swap_info_struct *p = NULL;
1808         unsigned char *swap_map;
1809         struct swap_cluster_info *cluster_info;
1810         unsigned long *frontswap_map;
1811         struct file *swap_file, *victim;
1812         struct address_space *mapping;
1813         struct inode *inode;
1814         struct filename *pathname;
1815         int err, found = 0;
1816         unsigned int old_block_size;
1817
1818         if (!capable(CAP_SYS_ADMIN))
1819                 return -EPERM;
1820
1821         BUG_ON(!current->mm);
1822
1823         pathname = getname(specialfile);
1824         if (IS_ERR(pathname))
1825                 return PTR_ERR(pathname);
1826
1827         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1828         err = PTR_ERR(victim);
1829         if (IS_ERR(victim))
1830                 goto out;
1831
1832         mapping = victim->f_mapping;
1833         spin_lock(&swap_lock);
1834         plist_for_each_entry(p, &swap_active_head, list) {
1835                 if (p->flags & SWP_WRITEOK) {
1836                         if (p->swap_file->f_mapping == mapping) {
1837                                 found = 1;
1838                                 break;
1839                         }
1840                 }
1841         }
1842         if (!found) {
1843                 err = -EINVAL;
1844                 spin_unlock(&swap_lock);
1845                 goto out_dput;
1846         }
1847         if (!security_vm_enough_memory_mm(current->mm, p->pages))
1848                 vm_unacct_memory(p->pages);
1849         else {
1850                 err = -ENOMEM;
1851                 spin_unlock(&swap_lock);
1852                 goto out_dput;
1853         }
1854         spin_lock(&swap_avail_lock);
1855         plist_del(&p->avail_list, &swap_avail_head);
1856         spin_unlock(&swap_avail_lock);
1857         spin_lock(&p->lock);
1858         if (p->prio < 0) {
1859                 struct swap_info_struct *si = p;
1860
1861                 plist_for_each_entry_continue(si, &swap_active_head, list) {
1862                         si->prio++;
1863                         si->list.prio--;
1864                         si->avail_list.prio--;
1865                 }
1866                 least_priority++;
1867         }
1868         plist_del(&p->list, &swap_active_head);
1869         atomic_long_sub(p->pages, &nr_swap_pages);
1870         total_swap_pages -= p->pages;
1871         p->flags &= ~SWP_WRITEOK;
1872         spin_unlock(&p->lock);
1873         spin_unlock(&swap_lock);
1874
1875         set_current_oom_origin();
1876         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1877         clear_current_oom_origin();
1878
1879         if (err) {
1880                 /* re-insert swap space back into swap_list */
1881                 reinsert_swap_info(p);
1882                 goto out_dput;
1883         }
1884
1885         flush_work(&p->discard_work);
1886
1887         destroy_swap_extents(p);
1888         if (p->flags & SWP_CONTINUED)
1889                 free_swap_count_continuations(p);
1890
1891         mutex_lock(&swapon_mutex);
1892         spin_lock(&swap_lock);
1893         spin_lock(&p->lock);
1894         drain_mmlist();
1895
1896         /* wait for anyone still in scan_swap_map */
1897         p->highest_bit = 0;             /* cuts scans short */
1898         while (p->flags >= SWP_SCANNING) {
1899                 spin_unlock(&p->lock);
1900                 spin_unlock(&swap_lock);
1901                 schedule_timeout_uninterruptible(1);
1902                 spin_lock(&swap_lock);
1903                 spin_lock(&p->lock);
1904         }
1905
1906         swap_file = p->swap_file;
1907         old_block_size = p->old_block_size;
1908         p->swap_file = NULL;
1909         p->max = 0;
1910         swap_map = p->swap_map;
1911         p->swap_map = NULL;
1912         cluster_info = p->cluster_info;
1913         p->cluster_info = NULL;
1914         frontswap_map = frontswap_map_get(p);
1915         spin_unlock(&p->lock);
1916         spin_unlock(&swap_lock);
1917         frontswap_invalidate_area(p->type);
1918         frontswap_map_set(p, NULL);
1919         mutex_unlock(&swapon_mutex);
1920         free_percpu(p->percpu_cluster);
1921         p->percpu_cluster = NULL;
1922         vfree(swap_map);
1923         vfree(cluster_info);
1924         vfree(frontswap_map);
1925         /* Destroy swap account information */
1926         swap_cgroup_swapoff(p->type);
1927
1928         inode = mapping->host;
1929         if (S_ISBLK(inode->i_mode)) {
1930                 struct block_device *bdev = I_BDEV(inode);
1931                 set_blocksize(bdev, old_block_size);
1932                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1933         } else {
1934                 mutex_lock(&inode->i_mutex);
1935                 inode->i_flags &= ~S_SWAPFILE;
1936                 mutex_unlock(&inode->i_mutex);
1937         }
1938         filp_close(swap_file, NULL);
1939
1940         /*
1941          * Clear the SWP_USED flag after all resources are freed so that swapon
1942          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1943          * not hold p->lock after we cleared its SWP_WRITEOK.
1944          */
1945         spin_lock(&swap_lock);
1946         p->flags = 0;
1947         spin_unlock(&swap_lock);
1948
1949         err = 0;
1950         atomic_inc(&proc_poll_event);
1951         wake_up_interruptible(&proc_poll_wait);
1952
1953 out_dput:
1954         filp_close(victim, NULL);
1955 out:
1956         putname(pathname);
1957         return err;
1958 }
1959
1960 #ifdef CONFIG_PROC_FS
1961 static unsigned swaps_poll(struct file *file, poll_table *wait)
1962 {
1963         struct seq_file *seq = file->private_data;
1964
1965         poll_wait(file, &proc_poll_wait, wait);
1966
1967         if (seq->poll_event != atomic_read(&proc_poll_event)) {
1968                 seq->poll_event = atomic_read(&proc_poll_event);
1969                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1970         }
1971
1972         return POLLIN | POLLRDNORM;
1973 }
1974
1975 /* iterator */
1976 static void *swap_start(struct seq_file *swap, loff_t *pos)
1977 {
1978         struct swap_info_struct *si;
1979         int type;
1980         loff_t l = *pos;
1981
1982         mutex_lock(&swapon_mutex);
1983
1984         if (!l)
1985                 return SEQ_START_TOKEN;
1986
1987         for (type = 0; type < nr_swapfiles; type++) {
1988                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1989                 si = swap_info[type];
1990                 if (!(si->flags & SWP_USED) || !si->swap_map)
1991                         continue;
1992                 if (!--l)
1993                         return si;
1994         }
1995
1996         return NULL;
1997 }
1998
1999 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2000 {
2001         struct swap_info_struct *si = v;
2002         int type;
2003
2004         if (v == SEQ_START_TOKEN)
2005                 type = 0;
2006         else
2007                 type = si->type + 1;
2008
2009         for (; type < nr_swapfiles; type++) {
2010                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2011                 si = swap_info[type];
2012                 if (!(si->flags & SWP_USED) || !si->swap_map)
2013                         continue;
2014                 ++*pos;
2015                 return si;
2016         }
2017
2018         return NULL;
2019 }
2020
2021 static void swap_stop(struct seq_file *swap, void *v)
2022 {
2023         mutex_unlock(&swapon_mutex);
2024 }
2025
2026 static int swap_show(struct seq_file *swap, void *v)
2027 {
2028         struct swap_info_struct *si = v;
2029         struct file *file;
2030         int len;
2031
2032         if (si == SEQ_START_TOKEN) {
2033                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2034                 return 0;
2035         }
2036
2037         file = si->swap_file;
2038         len = seq_path(swap, &file->f_path, " \t\n\\");
2039         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2040                         len < 40 ? 40 - len : 1, " ",
2041                         S_ISBLK(file_inode(file)->i_mode) ?
2042                                 "partition" : "file\t",
2043                         si->pages << (PAGE_SHIFT - 10),
2044                         si->inuse_pages << (PAGE_SHIFT - 10),
2045                         si->prio);
2046         return 0;
2047 }
2048
2049 static const struct seq_operations swaps_op = {
2050         .start =        swap_start,
2051         .next =         swap_next,
2052         .stop =         swap_stop,
2053         .show =         swap_show
2054 };
2055
2056 static int swaps_open(struct inode *inode, struct file *file)
2057 {
2058         struct seq_file *seq;
2059         int ret;
2060
2061         ret = seq_open(file, &swaps_op);
2062         if (ret)
2063                 return ret;
2064
2065         seq = file->private_data;
2066         seq->poll_event = atomic_read(&proc_poll_event);
2067         return 0;
2068 }
2069
2070 static const struct file_operations proc_swaps_operations = {
2071         .open           = swaps_open,
2072         .read           = seq_read,
2073         .llseek         = seq_lseek,
2074         .release        = seq_release,
2075         .poll           = swaps_poll,
2076 };
2077
2078 static int __init procswaps_init(void)
2079 {
2080         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2081         return 0;
2082 }
2083 __initcall(procswaps_init);
2084 #endif /* CONFIG_PROC_FS */
2085
2086 #ifdef MAX_SWAPFILES_CHECK
2087 static int __init max_swapfiles_check(void)
2088 {
2089         MAX_SWAPFILES_CHECK();
2090         return 0;
2091 }
2092 late_initcall(max_swapfiles_check);
2093 #endif
2094
2095 static struct swap_info_struct *alloc_swap_info(void)
2096 {
2097         struct swap_info_struct *p;
2098         unsigned int type;
2099
2100         p = kzalloc(sizeof(*p), GFP_KERNEL);
2101         if (!p)
2102                 return ERR_PTR(-ENOMEM);
2103
2104         spin_lock(&swap_lock);
2105         for (type = 0; type < nr_swapfiles; type++) {
2106                 if (!(swap_info[type]->flags & SWP_USED))
2107                         break;
2108         }
2109         if (type >= MAX_SWAPFILES) {
2110                 spin_unlock(&swap_lock);
2111                 kfree(p);
2112                 return ERR_PTR(-EPERM);
2113         }
2114         if (type >= nr_swapfiles) {
2115                 p->type = type;
2116                 swap_info[type] = p;
2117                 /*
2118                  * Write swap_info[type] before nr_swapfiles, in case a
2119                  * racing procfs swap_start() or swap_next() is reading them.
2120                  * (We never shrink nr_swapfiles, we never free this entry.)
2121                  */
2122                 smp_wmb();
2123                 nr_swapfiles++;
2124         } else {
2125                 kfree(p);
2126                 p = swap_info[type];
2127                 /*
2128                  * Do not memset this entry: a racing procfs swap_next()
2129                  * would be relying on p->type to remain valid.
2130                  */
2131         }
2132         INIT_LIST_HEAD(&p->first_swap_extent.list);
2133         plist_node_init(&p->list, 0);
2134         plist_node_init(&p->avail_list, 0);
2135         p->flags = SWP_USED;
2136         spin_unlock(&swap_lock);
2137         spin_lock_init(&p->lock);
2138
2139         return p;
2140 }
2141
2142 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2143 {
2144         int error;
2145
2146         if (S_ISBLK(inode->i_mode)) {
2147                 p->bdev = bdgrab(I_BDEV(inode));
2148                 error = blkdev_get(p->bdev,
2149                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2150                                    sys_swapon);
2151                 if (error < 0) {
2152                         p->bdev = NULL;
2153                         return -EINVAL;
2154                 }
2155                 p->old_block_size = block_size(p->bdev);
2156                 error = set_blocksize(p->bdev, PAGE_SIZE);
2157                 if (error < 0)
2158                         return error;
2159                 p->flags |= SWP_BLKDEV;
2160         } else if (S_ISREG(inode->i_mode)) {
2161                 p->bdev = inode->i_sb->s_bdev;
2162                 mutex_lock(&inode->i_mutex);
2163                 if (IS_SWAPFILE(inode))
2164                         return -EBUSY;
2165         } else
2166                 return -EINVAL;
2167
2168         return 0;
2169 }
2170
2171 static unsigned long read_swap_header(struct swap_info_struct *p,
2172                                         union swap_header *swap_header,
2173                                         struct inode *inode)
2174 {
2175         int i;
2176         unsigned long maxpages;
2177         unsigned long swapfilepages;
2178         unsigned long last_page;
2179
2180         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2181                 pr_err("Unable to find swap-space signature\n");
2182                 return 0;
2183         }
2184
2185         /* swap partition endianess hack... */
2186         if (swab32(swap_header->info.version) == 1) {
2187                 swab32s(&swap_header->info.version);
2188                 swab32s(&swap_header->info.last_page);
2189                 swab32s(&swap_header->info.nr_badpages);
2190                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2191                         swab32s(&swap_header->info.badpages[i]);
2192         }
2193         /* Check the swap header's sub-version */
2194         if (swap_header->info.version != 1) {
2195                 pr_warn("Unable to handle swap header version %d\n",
2196                         swap_header->info.version);
2197                 return 0;
2198         }
2199
2200         p->lowest_bit  = 1;
2201         p->cluster_next = 1;
2202         p->cluster_nr = 0;
2203
2204         /*
2205          * Find out how many pages are allowed for a single swap
2206          * device. There are two limiting factors: 1) the number
2207          * of bits for the swap offset in the swp_entry_t type, and
2208          * 2) the number of bits in the swap pte as defined by the
2209          * different architectures. In order to find the
2210          * largest possible bit mask, a swap entry with swap type 0
2211          * and swap offset ~0UL is created, encoded to a swap pte,
2212          * decoded to a swp_entry_t again, and finally the swap
2213          * offset is extracted. This will mask all the bits from
2214          * the initial ~0UL mask that can't be encoded in either
2215          * the swp_entry_t or the architecture definition of a
2216          * swap pte.
2217          */
2218         maxpages = swp_offset(pte_to_swp_entry(
2219                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2220         last_page = swap_header->info.last_page;
2221         if (last_page > maxpages) {
2222                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2223                         maxpages << (PAGE_SHIFT - 10),
2224                         last_page << (PAGE_SHIFT - 10));
2225         }
2226         if (maxpages > last_page) {
2227                 maxpages = last_page + 1;
2228                 /* p->max is an unsigned int: don't overflow it */
2229                 if ((unsigned int)maxpages == 0)
2230                         maxpages = UINT_MAX;
2231         }
2232         p->highest_bit = maxpages - 1;
2233
2234         if (!maxpages)
2235                 return 0;
2236         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2237         if (swapfilepages && maxpages > swapfilepages) {
2238                 pr_warn("Swap area shorter than signature indicates\n");
2239                 return 0;
2240         }
2241         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2242                 return 0;
2243         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2244                 return 0;
2245
2246         return maxpages;
2247 }
2248
2249 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2250                                         union swap_header *swap_header,
2251                                         unsigned char *swap_map,
2252                                         struct swap_cluster_info *cluster_info,
2253                                         unsigned long maxpages,
2254                                         sector_t *span)
2255 {
2256         int i;
2257         unsigned int nr_good_pages;
2258         int nr_extents;
2259         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2260         unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2261
2262         nr_good_pages = maxpages - 1;   /* omit header page */
2263
2264         cluster_set_null(&p->free_cluster_head);
2265         cluster_set_null(&p->free_cluster_tail);
2266         cluster_set_null(&p->discard_cluster_head);
2267         cluster_set_null(&p->discard_cluster_tail);
2268
2269         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2270                 unsigned int page_nr = swap_header->info.badpages[i];
2271                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2272                         return -EINVAL;
2273                 if (page_nr < maxpages) {
2274                         swap_map[page_nr] = SWAP_MAP_BAD;
2275                         nr_good_pages--;
2276                         /*
2277                          * Haven't marked the cluster free yet, no list
2278                          * operation involved
2279                          */
2280                         inc_cluster_info_page(p, cluster_info, page_nr);
2281                 }
2282         }
2283
2284         /* Haven't marked the cluster free yet, no list operation involved */
2285         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2286                 inc_cluster_info_page(p, cluster_info, i);
2287
2288         if (nr_good_pages) {
2289                 swap_map[0] = SWAP_MAP_BAD;
2290                 /*
2291                  * Not mark the cluster free yet, no list
2292                  * operation involved
2293                  */
2294                 inc_cluster_info_page(p, cluster_info, 0);
2295                 p->max = maxpages;
2296                 p->pages = nr_good_pages;
2297                 nr_extents = setup_swap_extents(p, span);
2298                 if (nr_extents < 0)
2299                         return nr_extents;
2300                 nr_good_pages = p->pages;
2301         }
2302         if (!nr_good_pages) {
2303                 pr_warn("Empty swap-file\n");
2304                 return -EINVAL;
2305         }
2306
2307         if (!cluster_info)
2308                 return nr_extents;
2309
2310         for (i = 0; i < nr_clusters; i++) {
2311                 if (!cluster_count(&cluster_info[idx])) {
2312                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2313                         if (cluster_is_null(&p->free_cluster_head)) {
2314                                 cluster_set_next_flag(&p->free_cluster_head,
2315                                                                 idx, 0);
2316                                 cluster_set_next_flag(&p->free_cluster_tail,
2317                                                                 idx, 0);
2318                         } else {
2319                                 unsigned int tail;
2320
2321                                 tail = cluster_next(&p->free_cluster_tail);
2322                                 cluster_set_next(&cluster_info[tail], idx);
2323                                 cluster_set_next_flag(&p->free_cluster_tail,
2324                                                                 idx, 0);
2325                         }
2326                 }
2327                 idx++;
2328                 if (idx == nr_clusters)
2329                         idx = 0;
2330         }
2331         return nr_extents;
2332 }
2333
2334 /*
2335  * Helper to sys_swapon determining if a given swap
2336  * backing device queue supports DISCARD operations.
2337  */
2338 static bool swap_discardable(struct swap_info_struct *si)
2339 {
2340         struct request_queue *q = bdev_get_queue(si->bdev);
2341
2342         if (!q || !blk_queue_discard(q))
2343                 return false;
2344
2345         return true;
2346 }
2347
2348 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2349 {
2350         struct swap_info_struct *p;
2351         struct filename *name;
2352         struct file *swap_file = NULL;
2353         struct address_space *mapping;
2354         int i;
2355         int prio;
2356         int error;
2357         union swap_header *swap_header;
2358         int nr_extents;
2359         sector_t span;
2360         unsigned long maxpages;
2361         unsigned char *swap_map = NULL;
2362         struct swap_cluster_info *cluster_info = NULL;
2363         unsigned long *frontswap_map = NULL;
2364         struct page *page = NULL;
2365         struct inode *inode = NULL;
2366
2367         if (swap_flags & ~SWAP_FLAGS_VALID)
2368                 return -EINVAL;
2369
2370         if (!capable(CAP_SYS_ADMIN))
2371                 return -EPERM;
2372
2373         p = alloc_swap_info();
2374         if (IS_ERR(p))
2375                 return PTR_ERR(p);
2376
2377         INIT_WORK(&p->discard_work, swap_discard_work);
2378
2379         name = getname(specialfile);
2380         if (IS_ERR(name)) {
2381                 error = PTR_ERR(name);
2382                 name = NULL;
2383                 goto bad_swap;
2384         }
2385         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2386         if (IS_ERR(swap_file)) {
2387                 error = PTR_ERR(swap_file);
2388                 swap_file = NULL;
2389                 goto bad_swap;
2390         }
2391
2392         p->swap_file = swap_file;
2393         mapping = swap_file->f_mapping;
2394
2395         for (i = 0; i < nr_swapfiles; i++) {
2396                 struct swap_info_struct *q = swap_info[i];
2397
2398                 if (q == p || !q->swap_file)
2399                         continue;
2400                 if (mapping == q->swap_file->f_mapping) {
2401                         error = -EBUSY;
2402                         goto bad_swap;
2403                 }
2404         }
2405
2406         inode = mapping->host;
2407         /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2408         error = claim_swapfile(p, inode);
2409         if (unlikely(error))
2410                 goto bad_swap;
2411
2412         /*
2413          * Read the swap header.
2414          */
2415         if (!mapping->a_ops->readpage) {
2416                 error = -EINVAL;
2417                 goto bad_swap;
2418         }
2419         page = read_mapping_page(mapping, 0, swap_file);
2420         if (IS_ERR(page)) {
2421                 error = PTR_ERR(page);
2422                 goto bad_swap;
2423         }
2424         swap_header = kmap(page);
2425
2426         maxpages = read_swap_header(p, swap_header, inode);
2427         if (unlikely(!maxpages)) {
2428                 error = -EINVAL;
2429                 goto bad_swap;
2430         }
2431
2432         /* OK, set up the swap map and apply the bad block list */
2433         swap_map = vzalloc(maxpages);
2434         if (!swap_map) {
2435                 error = -ENOMEM;
2436                 goto bad_swap;
2437         }
2438         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2439                 p->flags |= SWP_SOLIDSTATE;
2440                 /*
2441                  * select a random position to start with to help wear leveling
2442                  * SSD
2443                  */
2444                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2445
2446                 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2447                         SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2448                 if (!cluster_info) {
2449                         error = -ENOMEM;
2450                         goto bad_swap;
2451                 }
2452                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2453                 if (!p->percpu_cluster) {
2454                         error = -ENOMEM;
2455                         goto bad_swap;
2456                 }
2457                 for_each_possible_cpu(i) {
2458                         struct percpu_cluster *cluster;
2459                         cluster = per_cpu_ptr(p->percpu_cluster, i);
2460                         cluster_set_null(&cluster->index);
2461                 }
2462         }
2463
2464         error = swap_cgroup_swapon(p->type, maxpages);
2465         if (error)
2466                 goto bad_swap;
2467
2468         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2469                 cluster_info, maxpages, &span);
2470         if (unlikely(nr_extents < 0)) {
2471                 error = nr_extents;
2472                 goto bad_swap;
2473         }
2474         /* frontswap enabled? set up bit-per-page map for frontswap */
2475         if (frontswap_enabled)
2476                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2477
2478         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2479                 /*
2480                  * When discard is enabled for swap with no particular
2481                  * policy flagged, we set all swap discard flags here in
2482                  * order to sustain backward compatibility with older
2483                  * swapon(8) releases.
2484                  */
2485                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2486                              SWP_PAGE_DISCARD);
2487
2488                 /*
2489                  * By flagging sys_swapon, a sysadmin can tell us to
2490                  * either do single-time area discards only, or to just
2491                  * perform discards for released swap page-clusters.
2492                  * Now it's time to adjust the p->flags accordingly.
2493                  */
2494                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2495                         p->flags &= ~SWP_PAGE_DISCARD;
2496                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2497                         p->flags &= ~SWP_AREA_DISCARD;
2498
2499                 /* issue a swapon-time discard if it's still required */
2500                 if (p->flags & SWP_AREA_DISCARD) {
2501                         int err = discard_swap(p);
2502                         if (unlikely(err))
2503                                 pr_err("swapon: discard_swap(%p): %d\n",
2504                                         p, err);
2505                 }
2506         }
2507
2508         mutex_lock(&swapon_mutex);
2509         prio = -1;
2510         if (swap_flags & SWAP_FLAG_PREFER)
2511                 prio =
2512                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2513         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2514
2515         pr_info("Adding %uk swap on %s.  "
2516                         "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2517                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2518                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2519                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2520                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2521                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2522                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2523                 (frontswap_map) ? "FS" : "");
2524
2525         mutex_unlock(&swapon_mutex);
2526         atomic_inc(&proc_poll_event);
2527         wake_up_interruptible(&proc_poll_wait);
2528
2529         if (S_ISREG(inode->i_mode))
2530                 inode->i_flags |= S_SWAPFILE;
2531         error = 0;
2532         goto out;
2533 bad_swap:
2534         free_percpu(p->percpu_cluster);
2535         p->percpu_cluster = NULL;
2536         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2537                 set_blocksize(p->bdev, p->old_block_size);
2538                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2539         }
2540         destroy_swap_extents(p);
2541         swap_cgroup_swapoff(p->type);
2542         spin_lock(&swap_lock);
2543         p->swap_file = NULL;
2544         p->flags = 0;
2545         spin_unlock(&swap_lock);
2546         vfree(swap_map);
2547         vfree(cluster_info);
2548         if (swap_file) {
2549                 if (inode && S_ISREG(inode->i_mode)) {
2550                         mutex_unlock(&inode->i_mutex);
2551                         inode = NULL;
2552                 }
2553                 filp_close(swap_file, NULL);
2554         }
2555 out:
2556         if (page && !IS_ERR(page)) {
2557                 kunmap(page);
2558                 page_cache_release(page);
2559         }
2560         if (name)
2561                 putname(name);
2562         if (inode && S_ISREG(inode->i_mode))
2563                 mutex_unlock(&inode->i_mutex);
2564         return error;
2565 }
2566
2567 void si_swapinfo(struct sysinfo *val)
2568 {
2569         unsigned int type;
2570         unsigned long nr_to_be_unused = 0;
2571
2572         spin_lock(&swap_lock);
2573         for (type = 0; type < nr_swapfiles; type++) {
2574                 struct swap_info_struct *si = swap_info[type];
2575
2576                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2577                         nr_to_be_unused += si->inuse_pages;
2578         }
2579         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2580         val->totalswap = total_swap_pages + nr_to_be_unused;
2581         spin_unlock(&swap_lock);
2582 }
2583
2584 /*
2585  * Verify that a swap entry is valid and increment its swap map count.
2586  *
2587  * Returns error code in following case.
2588  * - success -> 0
2589  * - swp_entry is invalid -> EINVAL
2590  * - swp_entry is migration entry -> EINVAL
2591  * - swap-cache reference is requested but there is already one. -> EEXIST
2592  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2593  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2594  */
2595 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2596 {
2597         struct swap_info_struct *p;
2598         unsigned long offset, type;
2599         unsigned char count;
2600         unsigned char has_cache;
2601         int err = -EINVAL;
2602
2603         if (non_swap_entry(entry))
2604                 goto out;
2605
2606         type = swp_type(entry);
2607         if (type >= nr_swapfiles)
2608                 goto bad_file;
2609         p = swap_info[type];
2610         offset = swp_offset(entry);
2611
2612         spin_lock(&p->lock);
2613         if (unlikely(offset >= p->max))
2614                 goto unlock_out;
2615
2616         count = p->swap_map[offset];
2617
2618         /*
2619          * swapin_readahead() doesn't check if a swap entry is valid, so the
2620          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2621          */
2622         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2623                 err = -ENOENT;
2624                 goto unlock_out;
2625         }
2626
2627         has_cache = count & SWAP_HAS_CACHE;
2628         count &= ~SWAP_HAS_CACHE;
2629         err = 0;
2630
2631         if (usage == SWAP_HAS_CACHE) {
2632
2633                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2634                 if (!has_cache && count)
2635                         has_cache = SWAP_HAS_CACHE;
2636                 else if (has_cache)             /* someone else added cache */
2637                         err = -EEXIST;
2638                 else                            /* no users remaining */
2639                         err = -ENOENT;
2640
2641         } else if (count || has_cache) {
2642
2643                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2644                         count += usage;
2645                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2646                         err = -EINVAL;
2647                 else if (swap_count_continued(p, offset, count))
2648                         count = COUNT_CONTINUED;
2649                 else
2650                         err = -ENOMEM;
2651         } else
2652                 err = -ENOENT;                  /* unused swap entry */
2653
2654         p->swap_map[offset] = count | has_cache;
2655
2656 unlock_out:
2657         spin_unlock(&p->lock);
2658 out:
2659         return err;
2660
2661 bad_file:
2662         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2663         goto out;
2664 }
2665
2666 /*
2667  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2668  * (in which case its reference count is never incremented).
2669  */
2670 void swap_shmem_alloc(swp_entry_t entry)
2671 {
2672         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2673 }
2674
2675 /*
2676  * Increase reference count of swap entry by 1.
2677  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2678  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2679  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2680  * might occur if a page table entry has got corrupted.
2681  */
2682 int swap_duplicate(swp_entry_t entry)
2683 {
2684         int err = 0;
2685
2686         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2687                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2688         return err;
2689 }
2690
2691 /*
2692  * @entry: swap entry for which we allocate swap cache.
2693  *
2694  * Called when allocating swap cache for existing swap entry,
2695  * This can return error codes. Returns 0 at success.
2696  * -EBUSY means there is a swap cache.
2697  * Note: return code is different from swap_duplicate().
2698  */
2699 int swapcache_prepare(swp_entry_t entry)
2700 {
2701         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2702 }
2703
2704 struct swap_info_struct *page_swap_info(struct page *page)
2705 {
2706         swp_entry_t swap = { .val = page_private(page) };
2707         BUG_ON(!PageSwapCache(page));
2708         return swap_info[swp_type(swap)];
2709 }
2710
2711 /*
2712  * out-of-line __page_file_ methods to avoid include hell.
2713  */
2714 struct address_space *__page_file_mapping(struct page *page)
2715 {
2716         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2717         return page_swap_info(page)->swap_file->f_mapping;
2718 }
2719 EXPORT_SYMBOL_GPL(__page_file_mapping);
2720
2721 pgoff_t __page_file_index(struct page *page)
2722 {
2723         swp_entry_t swap = { .val = page_private(page) };
2724         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2725         return swp_offset(swap);
2726 }
2727 EXPORT_SYMBOL_GPL(__page_file_index);
2728
2729 /*
2730  * add_swap_count_continuation - called when a swap count is duplicated
2731  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2732  * page of the original vmalloc'ed swap_map, to hold the continuation count
2733  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2734  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2735  *
2736  * These continuation pages are seldom referenced: the common paths all work
2737  * on the original swap_map, only referring to a continuation page when the
2738  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2739  *
2740  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2741  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2742  * can be called after dropping locks.
2743  */
2744 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2745 {
2746         struct swap_info_struct *si;
2747         struct page *head;
2748         struct page *page;
2749         struct page *list_page;
2750         pgoff_t offset;
2751         unsigned char count;
2752
2753         /*
2754          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2755          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2756          */
2757         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2758
2759         si = swap_info_get(entry);
2760         if (!si) {
2761                 /*
2762                  * An acceptable race has occurred since the failing
2763                  * __swap_duplicate(): the swap entry has been freed,
2764                  * perhaps even the whole swap_map cleared for swapoff.
2765                  */
2766                 goto outer;
2767         }
2768
2769         offset = swp_offset(entry);
2770         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2771
2772         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2773                 /*
2774                  * The higher the swap count, the more likely it is that tasks
2775                  * will race to add swap count continuation: we need to avoid
2776                  * over-provisioning.
2777                  */
2778                 goto out;
2779         }
2780
2781         if (!page) {
2782                 spin_unlock(&si->lock);
2783                 return -ENOMEM;
2784         }
2785
2786         /*
2787          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2788          * no architecture is using highmem pages for kernel page tables: so it
2789          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2790          */
2791         head = vmalloc_to_page(si->swap_map + offset);
2792         offset &= ~PAGE_MASK;
2793
2794         /*
2795          * Page allocation does not initialize the page's lru field,
2796          * but it does always reset its private field.
2797          */
2798         if (!page_private(head)) {
2799                 BUG_ON(count & COUNT_CONTINUED);
2800                 INIT_LIST_HEAD(&head->lru);
2801                 set_page_private(head, SWP_CONTINUED);
2802                 si->flags |= SWP_CONTINUED;
2803         }
2804
2805         list_for_each_entry(list_page, &head->lru, lru) {
2806                 unsigned char *map;
2807
2808                 /*
2809                  * If the previous map said no continuation, but we've found
2810                  * a continuation page, free our allocation and use this one.
2811                  */
2812                 if (!(count & COUNT_CONTINUED))
2813                         goto out;
2814
2815                 map = kmap_atomic(list_page) + offset;
2816                 count = *map;
2817                 kunmap_atomic(map);
2818
2819                 /*
2820                  * If this continuation count now has some space in it,
2821                  * free our allocation and use this one.
2822                  */
2823                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2824                         goto out;
2825         }
2826
2827         list_add_tail(&page->lru, &head->lru);
2828         page = NULL;                    /* now it's attached, don't free it */
2829 out:
2830         spin_unlock(&si->lock);
2831 outer:
2832         if (page)
2833                 __free_page(page);
2834         return 0;
2835 }
2836
2837 /*
2838  * swap_count_continued - when the original swap_map count is incremented
2839  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2840  * into, carry if so, or else fail until a new continuation page is allocated;
2841  * when the original swap_map count is decremented from 0 with continuation,
2842  * borrow from the continuation and report whether it still holds more.
2843  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2844  */
2845 static bool swap_count_continued(struct swap_info_struct *si,
2846                                  pgoff_t offset, unsigned char count)
2847 {
2848         struct page *head;
2849         struct page *page;
2850         unsigned char *map;
2851
2852         head = vmalloc_to_page(si->swap_map + offset);
2853         if (page_private(head) != SWP_CONTINUED) {
2854                 BUG_ON(count & COUNT_CONTINUED);
2855                 return false;           /* need to add count continuation */
2856         }
2857
2858         offset &= ~PAGE_MASK;
2859         page = list_entry(head->lru.next, struct page, lru);
2860         map = kmap_atomic(page) + offset;
2861
2862         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2863                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2864
2865         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2866                 /*
2867                  * Think of how you add 1 to 999
2868                  */
2869                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2870                         kunmap_atomic(map);
2871                         page = list_entry(page->lru.next, struct page, lru);
2872                         BUG_ON(page == head);
2873                         map = kmap_atomic(page) + offset;
2874                 }
2875                 if (*map == SWAP_CONT_MAX) {
2876                         kunmap_atomic(map);
2877                         page = list_entry(page->lru.next, struct page, lru);
2878                         if (page == head)
2879                                 return false;   /* add count continuation */
2880                         map = kmap_atomic(page) + offset;
2881 init_map:               *map = 0;               /* we didn't zero the page */
2882                 }
2883                 *map += 1;
2884                 kunmap_atomic(map);
2885                 page = list_entry(page->lru.prev, struct page, lru);
2886                 while (page != head) {
2887                         map = kmap_atomic(page) + offset;
2888                         *map = COUNT_CONTINUED;
2889                         kunmap_atomic(map);
2890                         page = list_entry(page->lru.prev, struct page, lru);
2891                 }
2892                 return true;                    /* incremented */
2893
2894         } else {                                /* decrementing */
2895                 /*
2896                  * Think of how you subtract 1 from 1000
2897                  */
2898                 BUG_ON(count != COUNT_CONTINUED);
2899                 while (*map == COUNT_CONTINUED) {
2900                         kunmap_atomic(map);
2901                         page = list_entry(page->lru.next, struct page, lru);
2902                         BUG_ON(page == head);
2903                         map = kmap_atomic(page) + offset;
2904                 }
2905                 BUG_ON(*map == 0);
2906                 *map -= 1;
2907                 if (*map == 0)
2908                         count = 0;
2909                 kunmap_atomic(map);
2910                 page = list_entry(page->lru.prev, struct page, lru);
2911                 while (page != head) {
2912                         map = kmap_atomic(page) + offset;
2913                         *map = SWAP_CONT_MAX | count;
2914                         count = COUNT_CONTINUED;
2915                         kunmap_atomic(map);
2916                         page = list_entry(page->lru.prev, struct page, lru);
2917                 }
2918                 return count == COUNT_CONTINUED;
2919         }
2920 }
2921
2922 /*
2923  * free_swap_count_continuations - swapoff free all the continuation pages
2924  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2925  */
2926 static void free_swap_count_continuations(struct swap_info_struct *si)
2927 {
2928         pgoff_t offset;
2929
2930         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2931                 struct page *head;
2932                 head = vmalloc_to_page(si->swap_map + offset);
2933                 if (page_private(head)) {
2934                         struct list_head *this, *next;
2935                         list_for_each_safe(this, next, &head->lru) {
2936                                 struct page *page;
2937                                 page = list_entry(this, struct page, lru);
2938                                 list_del(this);
2939                                 __free_page(page);
2940                         }
2941                 }
2942         }
2943 }