thp, vmstats: add counters for huge file pages
[cascardo/linux.git] / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  *  Copyright (C) 2008-2014 Christoph Lameter
11  */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30
31 #include "internal.h"
32
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
37 static void sum_vm_events(unsigned long *ret)
38 {
39         int cpu;
40         int i;
41
42         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44         for_each_online_cpu(cpu) {
45                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48                         ret[i] += this->event[i];
49         }
50 }
51
52 /*
53  * Accumulate the vm event counters across all CPUs.
54  * The result is unavoidably approximate - it can change
55  * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59         get_online_cpus();
60         sum_vm_events(ret);
61         put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64
65 /*
66  * Fold the foreign cpu events into our own.
67  *
68  * This is adding to the events on one processor
69  * but keeps the global counts constant.
70  */
71 void vm_events_fold_cpu(int cpu)
72 {
73         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74         int i;
75
76         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77                 count_vm_events(i, fold_state->event[i]);
78                 fold_state->event[i] = 0;
79         }
80 }
81
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83
84 /*
85  * Manage combined zone based / global counters
86  *
87  * vm_stat contains the global counters
88  */
89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 EXPORT_SYMBOL(vm_stat);
91
92 #ifdef CONFIG_SMP
93
94 int calculate_pressure_threshold(struct zone *zone)
95 {
96         int threshold;
97         int watermark_distance;
98
99         /*
100          * As vmstats are not up to date, there is drift between the estimated
101          * and real values. For high thresholds and a high number of CPUs, it
102          * is possible for the min watermark to be breached while the estimated
103          * value looks fine. The pressure threshold is a reduced value such
104          * that even the maximum amount of drift will not accidentally breach
105          * the min watermark
106          */
107         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
109
110         /*
111          * Maximum threshold is 125
112          */
113         threshold = min(125, threshold);
114
115         return threshold;
116 }
117
118 int calculate_normal_threshold(struct zone *zone)
119 {
120         int threshold;
121         int mem;        /* memory in 128 MB units */
122
123         /*
124          * The threshold scales with the number of processors and the amount
125          * of memory per zone. More memory means that we can defer updates for
126          * longer, more processors could lead to more contention.
127          * fls() is used to have a cheap way of logarithmic scaling.
128          *
129          * Some sample thresholds:
130          *
131          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
132          * ------------------------------------------------------------------
133          * 8            1               1       0.9-1 GB        4
134          * 16           2               2       0.9-1 GB        4
135          * 20           2               2       1-2 GB          5
136          * 24           2               2       2-4 GB          6
137          * 28           2               2       4-8 GB          7
138          * 32           2               2       8-16 GB         8
139          * 4            2               2       <128M           1
140          * 30           4               3       2-4 GB          5
141          * 48           4               3       8-16 GB         8
142          * 32           8               4       1-2 GB          4
143          * 32           8               4       0.9-1GB         4
144          * 10           16              5       <128M           1
145          * 40           16              5       900M            4
146          * 70           64              7       2-4 GB          5
147          * 84           64              7       4-8 GB          6
148          * 108          512             9       4-8 GB          6
149          * 125          1024            10      8-16 GB         8
150          * 125          1024            10      16-32 GB        9
151          */
152
153         mem = zone->managed_pages >> (27 - PAGE_SHIFT);
154
155         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
156
157         /*
158          * Maximum threshold is 125
159          */
160         threshold = min(125, threshold);
161
162         return threshold;
163 }
164
165 /*
166  * Refresh the thresholds for each zone.
167  */
168 void refresh_zone_stat_thresholds(void)
169 {
170         struct zone *zone;
171         int cpu;
172         int threshold;
173
174         for_each_populated_zone(zone) {
175                 unsigned long max_drift, tolerate_drift;
176
177                 threshold = calculate_normal_threshold(zone);
178
179                 for_each_online_cpu(cpu)
180                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181                                                         = threshold;
182
183                 /*
184                  * Only set percpu_drift_mark if there is a danger that
185                  * NR_FREE_PAGES reports the low watermark is ok when in fact
186                  * the min watermark could be breached by an allocation
187                  */
188                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189                 max_drift = num_online_cpus() * threshold;
190                 if (max_drift > tolerate_drift)
191                         zone->percpu_drift_mark = high_wmark_pages(zone) +
192                                         max_drift;
193         }
194 }
195
196 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197                                 int (*calculate_pressure)(struct zone *))
198 {
199         struct zone *zone;
200         int cpu;
201         int threshold;
202         int i;
203
204         for (i = 0; i < pgdat->nr_zones; i++) {
205                 zone = &pgdat->node_zones[i];
206                 if (!zone->percpu_drift_mark)
207                         continue;
208
209                 threshold = (*calculate_pressure)(zone);
210                 for_each_online_cpu(cpu)
211                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212                                                         = threshold;
213         }
214 }
215
216 /*
217  * For use when we know that interrupts are disabled,
218  * or when we know that preemption is disabled and that
219  * particular counter cannot be updated from interrupt context.
220  */
221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222                            long delta)
223 {
224         struct per_cpu_pageset __percpu *pcp = zone->pageset;
225         s8 __percpu *p = pcp->vm_stat_diff + item;
226         long x;
227         long t;
228
229         x = delta + __this_cpu_read(*p);
230
231         t = __this_cpu_read(pcp->stat_threshold);
232
233         if (unlikely(x > t || x < -t)) {
234                 zone_page_state_add(x, zone, item);
235                 x = 0;
236         }
237         __this_cpu_write(*p, x);
238 }
239 EXPORT_SYMBOL(__mod_zone_page_state);
240
241 /*
242  * Optimized increment and decrement functions.
243  *
244  * These are only for a single page and therefore can take a struct page *
245  * argument instead of struct zone *. This allows the inclusion of the code
246  * generated for page_zone(page) into the optimized functions.
247  *
248  * No overflow check is necessary and therefore the differential can be
249  * incremented or decremented in place which may allow the compilers to
250  * generate better code.
251  * The increment or decrement is known and therefore one boundary check can
252  * be omitted.
253  *
254  * NOTE: These functions are very performance sensitive. Change only
255  * with care.
256  *
257  * Some processors have inc/dec instructions that are atomic vs an interrupt.
258  * However, the code must first determine the differential location in a zone
259  * based on the processor number and then inc/dec the counter. There is no
260  * guarantee without disabling preemption that the processor will not change
261  * in between and therefore the atomicity vs. interrupt cannot be exploited
262  * in a useful way here.
263  */
264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
265 {
266         struct per_cpu_pageset __percpu *pcp = zone->pageset;
267         s8 __percpu *p = pcp->vm_stat_diff + item;
268         s8 v, t;
269
270         v = __this_cpu_inc_return(*p);
271         t = __this_cpu_read(pcp->stat_threshold);
272         if (unlikely(v > t)) {
273                 s8 overstep = t >> 1;
274
275                 zone_page_state_add(v + overstep, zone, item);
276                 __this_cpu_write(*p, -overstep);
277         }
278 }
279
280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
281 {
282         __inc_zone_state(page_zone(page), item);
283 }
284 EXPORT_SYMBOL(__inc_zone_page_state);
285
286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
287 {
288         struct per_cpu_pageset __percpu *pcp = zone->pageset;
289         s8 __percpu *p = pcp->vm_stat_diff + item;
290         s8 v, t;
291
292         v = __this_cpu_dec_return(*p);
293         t = __this_cpu_read(pcp->stat_threshold);
294         if (unlikely(v < - t)) {
295                 s8 overstep = t >> 1;
296
297                 zone_page_state_add(v - overstep, zone, item);
298                 __this_cpu_write(*p, overstep);
299         }
300 }
301
302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
303 {
304         __dec_zone_state(page_zone(page), item);
305 }
306 EXPORT_SYMBOL(__dec_zone_page_state);
307
308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
309 /*
310  * If we have cmpxchg_local support then we do not need to incur the overhead
311  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
312  *
313  * mod_state() modifies the zone counter state through atomic per cpu
314  * operations.
315  *
316  * Overstep mode specifies how overstep should handled:
317  *     0       No overstepping
318  *     1       Overstepping half of threshold
319  *     -1      Overstepping minus half of threshold
320 */
321 static inline void mod_state(struct zone *zone, enum zone_stat_item item,
322                              long delta, int overstep_mode)
323 {
324         struct per_cpu_pageset __percpu *pcp = zone->pageset;
325         s8 __percpu *p = pcp->vm_stat_diff + item;
326         long o, n, t, z;
327
328         do {
329                 z = 0;  /* overflow to zone counters */
330
331                 /*
332                  * The fetching of the stat_threshold is racy. We may apply
333                  * a counter threshold to the wrong the cpu if we get
334                  * rescheduled while executing here. However, the next
335                  * counter update will apply the threshold again and
336                  * therefore bring the counter under the threshold again.
337                  *
338                  * Most of the time the thresholds are the same anyways
339                  * for all cpus in a zone.
340                  */
341                 t = this_cpu_read(pcp->stat_threshold);
342
343                 o = this_cpu_read(*p);
344                 n = delta + o;
345
346                 if (n > t || n < -t) {
347                         int os = overstep_mode * (t >> 1) ;
348
349                         /* Overflow must be added to zone counters */
350                         z = n + os;
351                         n = -os;
352                 }
353         } while (this_cpu_cmpxchg(*p, o, n) != o);
354
355         if (z)
356                 zone_page_state_add(z, zone, item);
357 }
358
359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
360                          long delta)
361 {
362         mod_state(zone, item, delta, 0);
363 }
364 EXPORT_SYMBOL(mod_zone_page_state);
365
366 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
367 {
368         mod_state(zone, item, 1, 1);
369 }
370
371 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
372 {
373         mod_state(page_zone(page), item, 1, 1);
374 }
375 EXPORT_SYMBOL(inc_zone_page_state);
376
377 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
378 {
379         mod_state(page_zone(page), item, -1, -1);
380 }
381 EXPORT_SYMBOL(dec_zone_page_state);
382 #else
383 /*
384  * Use interrupt disable to serialize counter updates
385  */
386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
387                          long delta)
388 {
389         unsigned long flags;
390
391         local_irq_save(flags);
392         __mod_zone_page_state(zone, item, delta);
393         local_irq_restore(flags);
394 }
395 EXPORT_SYMBOL(mod_zone_page_state);
396
397 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
398 {
399         unsigned long flags;
400
401         local_irq_save(flags);
402         __inc_zone_state(zone, item);
403         local_irq_restore(flags);
404 }
405
406 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408         unsigned long flags;
409         struct zone *zone;
410
411         zone = page_zone(page);
412         local_irq_save(flags);
413         __inc_zone_state(zone, item);
414         local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL(inc_zone_page_state);
417
418 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
419 {
420         unsigned long flags;
421
422         local_irq_save(flags);
423         __dec_zone_page_state(page, item);
424         local_irq_restore(flags);
425 }
426 EXPORT_SYMBOL(dec_zone_page_state);
427 #endif
428
429
430 /*
431  * Fold a differential into the global counters.
432  * Returns the number of counters updated.
433  */
434 static int fold_diff(int *diff)
435 {
436         int i;
437         int changes = 0;
438
439         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
440                 if (diff[i]) {
441                         atomic_long_add(diff[i], &vm_stat[i]);
442                         changes++;
443         }
444         return changes;
445 }
446
447 /*
448  * Update the zone counters for the current cpu.
449  *
450  * Note that refresh_cpu_vm_stats strives to only access
451  * node local memory. The per cpu pagesets on remote zones are placed
452  * in the memory local to the processor using that pageset. So the
453  * loop over all zones will access a series of cachelines local to
454  * the processor.
455  *
456  * The call to zone_page_state_add updates the cachelines with the
457  * statistics in the remote zone struct as well as the global cachelines
458  * with the global counters. These could cause remote node cache line
459  * bouncing and will have to be only done when necessary.
460  *
461  * The function returns the number of global counters updated.
462  */
463 static int refresh_cpu_vm_stats(bool do_pagesets)
464 {
465         struct zone *zone;
466         int i;
467         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
468         int changes = 0;
469
470         for_each_populated_zone(zone) {
471                 struct per_cpu_pageset __percpu *p = zone->pageset;
472
473                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
474                         int v;
475
476                         v = this_cpu_xchg(p->vm_stat_diff[i], 0);
477                         if (v) {
478
479                                 atomic_long_add(v, &zone->vm_stat[i]);
480                                 global_diff[i] += v;
481 #ifdef CONFIG_NUMA
482                                 /* 3 seconds idle till flush */
483                                 __this_cpu_write(p->expire, 3);
484 #endif
485                         }
486                 }
487 #ifdef CONFIG_NUMA
488                 if (do_pagesets) {
489                         cond_resched();
490                         /*
491                          * Deal with draining the remote pageset of this
492                          * processor
493                          *
494                          * Check if there are pages remaining in this pageset
495                          * if not then there is nothing to expire.
496                          */
497                         if (!__this_cpu_read(p->expire) ||
498                                !__this_cpu_read(p->pcp.count))
499                                 continue;
500
501                         /*
502                          * We never drain zones local to this processor.
503                          */
504                         if (zone_to_nid(zone) == numa_node_id()) {
505                                 __this_cpu_write(p->expire, 0);
506                                 continue;
507                         }
508
509                         if (__this_cpu_dec_return(p->expire))
510                                 continue;
511
512                         if (__this_cpu_read(p->pcp.count)) {
513                                 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
514                                 changes++;
515                         }
516                 }
517 #endif
518         }
519         changes += fold_diff(global_diff);
520         return changes;
521 }
522
523 /*
524  * Fold the data for an offline cpu into the global array.
525  * There cannot be any access by the offline cpu and therefore
526  * synchronization is simplified.
527  */
528 void cpu_vm_stats_fold(int cpu)
529 {
530         struct zone *zone;
531         int i;
532         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
533
534         for_each_populated_zone(zone) {
535                 struct per_cpu_pageset *p;
536
537                 p = per_cpu_ptr(zone->pageset, cpu);
538
539                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
540                         if (p->vm_stat_diff[i]) {
541                                 int v;
542
543                                 v = p->vm_stat_diff[i];
544                                 p->vm_stat_diff[i] = 0;
545                                 atomic_long_add(v, &zone->vm_stat[i]);
546                                 global_diff[i] += v;
547                         }
548         }
549
550         fold_diff(global_diff);
551 }
552
553 /*
554  * this is only called if !populated_zone(zone), which implies no other users of
555  * pset->vm_stat_diff[] exsist.
556  */
557 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
558 {
559         int i;
560
561         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
562                 if (pset->vm_stat_diff[i]) {
563                         int v = pset->vm_stat_diff[i];
564                         pset->vm_stat_diff[i] = 0;
565                         atomic_long_add(v, &zone->vm_stat[i]);
566                         atomic_long_add(v, &vm_stat[i]);
567                 }
568 }
569 #endif
570
571 #ifdef CONFIG_NUMA
572 /*
573  * Determine the per node value of a stat item.
574  */
575 unsigned long node_page_state(int node, enum zone_stat_item item)
576 {
577         struct zone *zones = NODE_DATA(node)->node_zones;
578         int i;
579         unsigned long count = 0;
580
581         for (i = 0; i < MAX_NR_ZONES; i++)
582                 count += zone_page_state(zones + i, item);
583
584         return count;
585 }
586
587 #endif
588
589 #ifdef CONFIG_COMPACTION
590
591 struct contig_page_info {
592         unsigned long free_pages;
593         unsigned long free_blocks_total;
594         unsigned long free_blocks_suitable;
595 };
596
597 /*
598  * Calculate the number of free pages in a zone, how many contiguous
599  * pages are free and how many are large enough to satisfy an allocation of
600  * the target size. Note that this function makes no attempt to estimate
601  * how many suitable free blocks there *might* be if MOVABLE pages were
602  * migrated. Calculating that is possible, but expensive and can be
603  * figured out from userspace
604  */
605 static void fill_contig_page_info(struct zone *zone,
606                                 unsigned int suitable_order,
607                                 struct contig_page_info *info)
608 {
609         unsigned int order;
610
611         info->free_pages = 0;
612         info->free_blocks_total = 0;
613         info->free_blocks_suitable = 0;
614
615         for (order = 0; order < MAX_ORDER; order++) {
616                 unsigned long blocks;
617
618                 /* Count number of free blocks */
619                 blocks = zone->free_area[order].nr_free;
620                 info->free_blocks_total += blocks;
621
622                 /* Count free base pages */
623                 info->free_pages += blocks << order;
624
625                 /* Count the suitable free blocks */
626                 if (order >= suitable_order)
627                         info->free_blocks_suitable += blocks <<
628                                                 (order - suitable_order);
629         }
630 }
631
632 /*
633  * A fragmentation index only makes sense if an allocation of a requested
634  * size would fail. If that is true, the fragmentation index indicates
635  * whether external fragmentation or a lack of memory was the problem.
636  * The value can be used to determine if page reclaim or compaction
637  * should be used
638  */
639 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
640 {
641         unsigned long requested = 1UL << order;
642
643         if (!info->free_blocks_total)
644                 return 0;
645
646         /* Fragmentation index only makes sense when a request would fail */
647         if (info->free_blocks_suitable)
648                 return -1000;
649
650         /*
651          * Index is between 0 and 1 so return within 3 decimal places
652          *
653          * 0 => allocation would fail due to lack of memory
654          * 1 => allocation would fail due to fragmentation
655          */
656         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
657 }
658
659 /* Same as __fragmentation index but allocs contig_page_info on stack */
660 int fragmentation_index(struct zone *zone, unsigned int order)
661 {
662         struct contig_page_info info;
663
664         fill_contig_page_info(zone, order, &info);
665         return __fragmentation_index(order, &info);
666 }
667 #endif
668
669 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
670 #ifdef CONFIG_ZONE_DMA
671 #define TEXT_FOR_DMA(xx) xx "_dma",
672 #else
673 #define TEXT_FOR_DMA(xx)
674 #endif
675
676 #ifdef CONFIG_ZONE_DMA32
677 #define TEXT_FOR_DMA32(xx) xx "_dma32",
678 #else
679 #define TEXT_FOR_DMA32(xx)
680 #endif
681
682 #ifdef CONFIG_HIGHMEM
683 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
684 #else
685 #define TEXT_FOR_HIGHMEM(xx)
686 #endif
687
688 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
689                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
690
691 const char * const vmstat_text[] = {
692         /* enum zone_stat_item countes */
693         "nr_free_pages",
694         "nr_alloc_batch",
695         "nr_inactive_anon",
696         "nr_active_anon",
697         "nr_inactive_file",
698         "nr_active_file",
699         "nr_unevictable",
700         "nr_mlock",
701         "nr_anon_pages",
702         "nr_mapped",
703         "nr_file_pages",
704         "nr_dirty",
705         "nr_writeback",
706         "nr_slab_reclaimable",
707         "nr_slab_unreclaimable",
708         "nr_page_table_pages",
709         "nr_kernel_stack",
710         "nr_unstable",
711         "nr_bounce",
712         "nr_vmscan_write",
713         "nr_vmscan_immediate_reclaim",
714         "nr_writeback_temp",
715         "nr_isolated_anon",
716         "nr_isolated_file",
717         "nr_shmem",
718         "nr_dirtied",
719         "nr_written",
720         "nr_pages_scanned",
721 #if IS_ENABLED(CONFIG_ZSMALLOC)
722         "nr_zspages",
723 #endif
724 #ifdef CONFIG_NUMA
725         "numa_hit",
726         "numa_miss",
727         "numa_foreign",
728         "numa_interleave",
729         "numa_local",
730         "numa_other",
731 #endif
732         "workingset_refault",
733         "workingset_activate",
734         "workingset_nodereclaim",
735         "nr_anon_transparent_hugepages",
736         "nr_free_cma",
737
738         /* enum writeback_stat_item counters */
739         "nr_dirty_threshold",
740         "nr_dirty_background_threshold",
741
742 #ifdef CONFIG_VM_EVENT_COUNTERS
743         /* enum vm_event_item counters */
744         "pgpgin",
745         "pgpgout",
746         "pswpin",
747         "pswpout",
748
749         TEXTS_FOR_ZONES("pgalloc")
750
751         "pgfree",
752         "pgactivate",
753         "pgdeactivate",
754
755         "pgfault",
756         "pgmajfault",
757         "pglazyfreed",
758
759         TEXTS_FOR_ZONES("pgrefill")
760         TEXTS_FOR_ZONES("pgsteal_kswapd")
761         TEXTS_FOR_ZONES("pgsteal_direct")
762         TEXTS_FOR_ZONES("pgscan_kswapd")
763         TEXTS_FOR_ZONES("pgscan_direct")
764         "pgscan_direct_throttle",
765
766 #ifdef CONFIG_NUMA
767         "zone_reclaim_failed",
768 #endif
769         "pginodesteal",
770         "slabs_scanned",
771         "kswapd_inodesteal",
772         "kswapd_low_wmark_hit_quickly",
773         "kswapd_high_wmark_hit_quickly",
774         "pageoutrun",
775         "allocstall",
776
777         "pgrotated",
778
779         "drop_pagecache",
780         "drop_slab",
781
782 #ifdef CONFIG_NUMA_BALANCING
783         "numa_pte_updates",
784         "numa_huge_pte_updates",
785         "numa_hint_faults",
786         "numa_hint_faults_local",
787         "numa_pages_migrated",
788 #endif
789 #ifdef CONFIG_MIGRATION
790         "pgmigrate_success",
791         "pgmigrate_fail",
792 #endif
793 #ifdef CONFIG_COMPACTION
794         "compact_migrate_scanned",
795         "compact_free_scanned",
796         "compact_isolated",
797         "compact_stall",
798         "compact_fail",
799         "compact_success",
800         "compact_daemon_wake",
801 #endif
802
803 #ifdef CONFIG_HUGETLB_PAGE
804         "htlb_buddy_alloc_success",
805         "htlb_buddy_alloc_fail",
806 #endif
807         "unevictable_pgs_culled",
808         "unevictable_pgs_scanned",
809         "unevictable_pgs_rescued",
810         "unevictable_pgs_mlocked",
811         "unevictable_pgs_munlocked",
812         "unevictable_pgs_cleared",
813         "unevictable_pgs_stranded",
814
815 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
816         "thp_fault_alloc",
817         "thp_fault_fallback",
818         "thp_collapse_alloc",
819         "thp_collapse_alloc_failed",
820         "thp_file_alloc",
821         "thp_file_mapped",
822         "thp_split_page",
823         "thp_split_page_failed",
824         "thp_deferred_split_page",
825         "thp_split_pmd",
826         "thp_zero_page_alloc",
827         "thp_zero_page_alloc_failed",
828 #endif
829 #ifdef CONFIG_MEMORY_BALLOON
830         "balloon_inflate",
831         "balloon_deflate",
832 #ifdef CONFIG_BALLOON_COMPACTION
833         "balloon_migrate",
834 #endif
835 #endif /* CONFIG_MEMORY_BALLOON */
836 #ifdef CONFIG_DEBUG_TLBFLUSH
837 #ifdef CONFIG_SMP
838         "nr_tlb_remote_flush",
839         "nr_tlb_remote_flush_received",
840 #endif /* CONFIG_SMP */
841         "nr_tlb_local_flush_all",
842         "nr_tlb_local_flush_one",
843 #endif /* CONFIG_DEBUG_TLBFLUSH */
844
845 #ifdef CONFIG_DEBUG_VM_VMACACHE
846         "vmacache_find_calls",
847         "vmacache_find_hits",
848         "vmacache_full_flushes",
849 #endif
850 #endif /* CONFIG_VM_EVENTS_COUNTERS */
851 };
852 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
853
854
855 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
856      defined(CONFIG_PROC_FS)
857 static void *frag_start(struct seq_file *m, loff_t *pos)
858 {
859         pg_data_t *pgdat;
860         loff_t node = *pos;
861
862         for (pgdat = first_online_pgdat();
863              pgdat && node;
864              pgdat = next_online_pgdat(pgdat))
865                 --node;
866
867         return pgdat;
868 }
869
870 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
871 {
872         pg_data_t *pgdat = (pg_data_t *)arg;
873
874         (*pos)++;
875         return next_online_pgdat(pgdat);
876 }
877
878 static void frag_stop(struct seq_file *m, void *arg)
879 {
880 }
881
882 /* Walk all the zones in a node and print using a callback */
883 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
884                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
885 {
886         struct zone *zone;
887         struct zone *node_zones = pgdat->node_zones;
888         unsigned long flags;
889
890         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
891                 if (!populated_zone(zone))
892                         continue;
893
894                 spin_lock_irqsave(&zone->lock, flags);
895                 print(m, pgdat, zone);
896                 spin_unlock_irqrestore(&zone->lock, flags);
897         }
898 }
899 #endif
900
901 #ifdef CONFIG_PROC_FS
902 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
903                                                 struct zone *zone)
904 {
905         int order;
906
907         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
908         for (order = 0; order < MAX_ORDER; ++order)
909                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
910         seq_putc(m, '\n');
911 }
912
913 /*
914  * This walks the free areas for each zone.
915  */
916 static int frag_show(struct seq_file *m, void *arg)
917 {
918         pg_data_t *pgdat = (pg_data_t *)arg;
919         walk_zones_in_node(m, pgdat, frag_show_print);
920         return 0;
921 }
922
923 static void pagetypeinfo_showfree_print(struct seq_file *m,
924                                         pg_data_t *pgdat, struct zone *zone)
925 {
926         int order, mtype;
927
928         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
929                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
930                                         pgdat->node_id,
931                                         zone->name,
932                                         migratetype_names[mtype]);
933                 for (order = 0; order < MAX_ORDER; ++order) {
934                         unsigned long freecount = 0;
935                         struct free_area *area;
936                         struct list_head *curr;
937
938                         area = &(zone->free_area[order]);
939
940                         list_for_each(curr, &area->free_list[mtype])
941                                 freecount++;
942                         seq_printf(m, "%6lu ", freecount);
943                 }
944                 seq_putc(m, '\n');
945         }
946 }
947
948 /* Print out the free pages at each order for each migatetype */
949 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
950 {
951         int order;
952         pg_data_t *pgdat = (pg_data_t *)arg;
953
954         /* Print header */
955         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
956         for (order = 0; order < MAX_ORDER; ++order)
957                 seq_printf(m, "%6d ", order);
958         seq_putc(m, '\n');
959
960         walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
961
962         return 0;
963 }
964
965 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
966                                         pg_data_t *pgdat, struct zone *zone)
967 {
968         int mtype;
969         unsigned long pfn;
970         unsigned long start_pfn = zone->zone_start_pfn;
971         unsigned long end_pfn = zone_end_pfn(zone);
972         unsigned long count[MIGRATE_TYPES] = { 0, };
973
974         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
975                 struct page *page;
976
977                 if (!pfn_valid(pfn))
978                         continue;
979
980                 page = pfn_to_page(pfn);
981
982                 /* Watch for unexpected holes punched in the memmap */
983                 if (!memmap_valid_within(pfn, page, zone))
984                         continue;
985
986                 if (page_zone(page) != zone)
987                         continue;
988
989                 mtype = get_pageblock_migratetype(page);
990
991                 if (mtype < MIGRATE_TYPES)
992                         count[mtype]++;
993         }
994
995         /* Print counts */
996         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
997         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
998                 seq_printf(m, "%12lu ", count[mtype]);
999         seq_putc(m, '\n');
1000 }
1001
1002 /* Print out the free pages at each order for each migratetype */
1003 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1004 {
1005         int mtype;
1006         pg_data_t *pgdat = (pg_data_t *)arg;
1007
1008         seq_printf(m, "\n%-23s", "Number of blocks type ");
1009         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1010                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1011         seq_putc(m, '\n');
1012         walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1013
1014         return 0;
1015 }
1016
1017 #ifdef CONFIG_PAGE_OWNER
1018 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1019                                                         pg_data_t *pgdat,
1020                                                         struct zone *zone)
1021 {
1022         struct page *page;
1023         struct page_ext *page_ext;
1024         unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1025         unsigned long end_pfn = pfn + zone->spanned_pages;
1026         unsigned long count[MIGRATE_TYPES] = { 0, };
1027         int pageblock_mt, page_mt;
1028         int i;
1029
1030         /* Scan block by block. First and last block may be incomplete */
1031         pfn = zone->zone_start_pfn;
1032
1033         /*
1034          * Walk the zone in pageblock_nr_pages steps. If a page block spans
1035          * a zone boundary, it will be double counted between zones. This does
1036          * not matter as the mixed block count will still be correct
1037          */
1038         for (; pfn < end_pfn; ) {
1039                 if (!pfn_valid(pfn)) {
1040                         pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1041                         continue;
1042                 }
1043
1044                 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1045                 block_end_pfn = min(block_end_pfn, end_pfn);
1046
1047                 page = pfn_to_page(pfn);
1048                 pageblock_mt = get_pageblock_migratetype(page);
1049
1050                 for (; pfn < block_end_pfn; pfn++) {
1051                         if (!pfn_valid_within(pfn))
1052                                 continue;
1053
1054                         page = pfn_to_page(pfn);
1055
1056                         if (page_zone(page) != zone)
1057                                 continue;
1058
1059                         if (PageBuddy(page)) {
1060                                 pfn += (1UL << page_order(page)) - 1;
1061                                 continue;
1062                         }
1063
1064                         if (PageReserved(page))
1065                                 continue;
1066
1067                         page_ext = lookup_page_ext(page);
1068                         if (unlikely(!page_ext))
1069                                 continue;
1070
1071                         if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1072                                 continue;
1073
1074                         page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1075                         if (pageblock_mt != page_mt) {
1076                                 if (is_migrate_cma(pageblock_mt))
1077                                         count[MIGRATE_MOVABLE]++;
1078                                 else
1079                                         count[pageblock_mt]++;
1080
1081                                 pfn = block_end_pfn;
1082                                 break;
1083                         }
1084                         pfn += (1UL << page_ext->order) - 1;
1085                 }
1086         }
1087
1088         /* Print counts */
1089         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1090         for (i = 0; i < MIGRATE_TYPES; i++)
1091                 seq_printf(m, "%12lu ", count[i]);
1092         seq_putc(m, '\n');
1093 }
1094 #endif /* CONFIG_PAGE_OWNER */
1095
1096 /*
1097  * Print out the number of pageblocks for each migratetype that contain pages
1098  * of other types. This gives an indication of how well fallbacks are being
1099  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1100  * to determine what is going on
1101  */
1102 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1103 {
1104 #ifdef CONFIG_PAGE_OWNER
1105         int mtype;
1106
1107         if (!static_branch_unlikely(&page_owner_inited))
1108                 return;
1109
1110         drain_all_pages(NULL);
1111
1112         seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1113         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1114                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1115         seq_putc(m, '\n');
1116
1117         walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1118 #endif /* CONFIG_PAGE_OWNER */
1119 }
1120
1121 /*
1122  * This prints out statistics in relation to grouping pages by mobility.
1123  * It is expensive to collect so do not constantly read the file.
1124  */
1125 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1126 {
1127         pg_data_t *pgdat = (pg_data_t *)arg;
1128
1129         /* check memoryless node */
1130         if (!node_state(pgdat->node_id, N_MEMORY))
1131                 return 0;
1132
1133         seq_printf(m, "Page block order: %d\n", pageblock_order);
1134         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1135         seq_putc(m, '\n');
1136         pagetypeinfo_showfree(m, pgdat);
1137         pagetypeinfo_showblockcount(m, pgdat);
1138         pagetypeinfo_showmixedcount(m, pgdat);
1139
1140         return 0;
1141 }
1142
1143 static const struct seq_operations fragmentation_op = {
1144         .start  = frag_start,
1145         .next   = frag_next,
1146         .stop   = frag_stop,
1147         .show   = frag_show,
1148 };
1149
1150 static int fragmentation_open(struct inode *inode, struct file *file)
1151 {
1152         return seq_open(file, &fragmentation_op);
1153 }
1154
1155 static const struct file_operations fragmentation_file_operations = {
1156         .open           = fragmentation_open,
1157         .read           = seq_read,
1158         .llseek         = seq_lseek,
1159         .release        = seq_release,
1160 };
1161
1162 static const struct seq_operations pagetypeinfo_op = {
1163         .start  = frag_start,
1164         .next   = frag_next,
1165         .stop   = frag_stop,
1166         .show   = pagetypeinfo_show,
1167 };
1168
1169 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1170 {
1171         return seq_open(file, &pagetypeinfo_op);
1172 }
1173
1174 static const struct file_operations pagetypeinfo_file_ops = {
1175         .open           = pagetypeinfo_open,
1176         .read           = seq_read,
1177         .llseek         = seq_lseek,
1178         .release        = seq_release,
1179 };
1180
1181 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1182                                                         struct zone *zone)
1183 {
1184         int i;
1185         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1186         seq_printf(m,
1187                    "\n  pages free     %lu"
1188                    "\n        min      %lu"
1189                    "\n        low      %lu"
1190                    "\n        high     %lu"
1191                    "\n        scanned  %lu"
1192                    "\n        spanned  %lu"
1193                    "\n        present  %lu"
1194                    "\n        managed  %lu",
1195                    zone_page_state(zone, NR_FREE_PAGES),
1196                    min_wmark_pages(zone),
1197                    low_wmark_pages(zone),
1198                    high_wmark_pages(zone),
1199                    zone_page_state(zone, NR_PAGES_SCANNED),
1200                    zone->spanned_pages,
1201                    zone->present_pages,
1202                    zone->managed_pages);
1203
1204         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1205                 seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1206                                 zone_page_state(zone, i));
1207
1208         seq_printf(m,
1209                    "\n        protection: (%ld",
1210                    zone->lowmem_reserve[0]);
1211         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1212                 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1213         seq_printf(m,
1214                    ")"
1215                    "\n  pagesets");
1216         for_each_online_cpu(i) {
1217                 struct per_cpu_pageset *pageset;
1218
1219                 pageset = per_cpu_ptr(zone->pageset, i);
1220                 seq_printf(m,
1221                            "\n    cpu: %i"
1222                            "\n              count: %i"
1223                            "\n              high:  %i"
1224                            "\n              batch: %i",
1225                            i,
1226                            pageset->pcp.count,
1227                            pageset->pcp.high,
1228                            pageset->pcp.batch);
1229 #ifdef CONFIG_SMP
1230                 seq_printf(m, "\n  vm stats threshold: %d",
1231                                 pageset->stat_threshold);
1232 #endif
1233         }
1234         seq_printf(m,
1235                    "\n  all_unreclaimable: %u"
1236                    "\n  start_pfn:         %lu"
1237                    "\n  inactive_ratio:    %u",
1238                    !zone_reclaimable(zone),
1239                    zone->zone_start_pfn,
1240                    zone->inactive_ratio);
1241         seq_putc(m, '\n');
1242 }
1243
1244 /*
1245  * Output information about zones in @pgdat.
1246  */
1247 static int zoneinfo_show(struct seq_file *m, void *arg)
1248 {
1249         pg_data_t *pgdat = (pg_data_t *)arg;
1250         walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1251         return 0;
1252 }
1253
1254 static const struct seq_operations zoneinfo_op = {
1255         .start  = frag_start, /* iterate over all zones. The same as in
1256                                * fragmentation. */
1257         .next   = frag_next,
1258         .stop   = frag_stop,
1259         .show   = zoneinfo_show,
1260 };
1261
1262 static int zoneinfo_open(struct inode *inode, struct file *file)
1263 {
1264         return seq_open(file, &zoneinfo_op);
1265 }
1266
1267 static const struct file_operations proc_zoneinfo_file_operations = {
1268         .open           = zoneinfo_open,
1269         .read           = seq_read,
1270         .llseek         = seq_lseek,
1271         .release        = seq_release,
1272 };
1273
1274 enum writeback_stat_item {
1275         NR_DIRTY_THRESHOLD,
1276         NR_DIRTY_BG_THRESHOLD,
1277         NR_VM_WRITEBACK_STAT_ITEMS,
1278 };
1279
1280 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1281 {
1282         unsigned long *v;
1283         int i, stat_items_size;
1284
1285         if (*pos >= ARRAY_SIZE(vmstat_text))
1286                 return NULL;
1287         stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1288                           NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1289
1290 #ifdef CONFIG_VM_EVENT_COUNTERS
1291         stat_items_size += sizeof(struct vm_event_state);
1292 #endif
1293
1294         v = kmalloc(stat_items_size, GFP_KERNEL);
1295         m->private = v;
1296         if (!v)
1297                 return ERR_PTR(-ENOMEM);
1298         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1299                 v[i] = global_page_state(i);
1300         v += NR_VM_ZONE_STAT_ITEMS;
1301
1302         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1303                             v + NR_DIRTY_THRESHOLD);
1304         v += NR_VM_WRITEBACK_STAT_ITEMS;
1305
1306 #ifdef CONFIG_VM_EVENT_COUNTERS
1307         all_vm_events(v);
1308         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1309         v[PGPGOUT] /= 2;
1310 #endif
1311         return (unsigned long *)m->private + *pos;
1312 }
1313
1314 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1315 {
1316         (*pos)++;
1317         if (*pos >= ARRAY_SIZE(vmstat_text))
1318                 return NULL;
1319         return (unsigned long *)m->private + *pos;
1320 }
1321
1322 static int vmstat_show(struct seq_file *m, void *arg)
1323 {
1324         unsigned long *l = arg;
1325         unsigned long off = l - (unsigned long *)m->private;
1326
1327         seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1328         return 0;
1329 }
1330
1331 static void vmstat_stop(struct seq_file *m, void *arg)
1332 {
1333         kfree(m->private);
1334         m->private = NULL;
1335 }
1336
1337 static const struct seq_operations vmstat_op = {
1338         .start  = vmstat_start,
1339         .next   = vmstat_next,
1340         .stop   = vmstat_stop,
1341         .show   = vmstat_show,
1342 };
1343
1344 static int vmstat_open(struct inode *inode, struct file *file)
1345 {
1346         return seq_open(file, &vmstat_op);
1347 }
1348
1349 static const struct file_operations proc_vmstat_file_operations = {
1350         .open           = vmstat_open,
1351         .read           = seq_read,
1352         .llseek         = seq_lseek,
1353         .release        = seq_release,
1354 };
1355 #endif /* CONFIG_PROC_FS */
1356
1357 #ifdef CONFIG_SMP
1358 static struct workqueue_struct *vmstat_wq;
1359 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1360 int sysctl_stat_interval __read_mostly = HZ;
1361
1362 #ifdef CONFIG_PROC_FS
1363 static void refresh_vm_stats(struct work_struct *work)
1364 {
1365         refresh_cpu_vm_stats(true);
1366 }
1367
1368 int vmstat_refresh(struct ctl_table *table, int write,
1369                    void __user *buffer, size_t *lenp, loff_t *ppos)
1370 {
1371         long val;
1372         int err;
1373         int i;
1374
1375         /*
1376          * The regular update, every sysctl_stat_interval, may come later
1377          * than expected: leaving a significant amount in per_cpu buckets.
1378          * This is particularly misleading when checking a quantity of HUGE
1379          * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1380          * which can equally be echo'ed to or cat'ted from (by root),
1381          * can be used to update the stats just before reading them.
1382          *
1383          * Oh, and since global_page_state() etc. are so careful to hide
1384          * transiently negative values, report an error here if any of
1385          * the stats is negative, so we know to go looking for imbalance.
1386          */
1387         err = schedule_on_each_cpu(refresh_vm_stats);
1388         if (err)
1389                 return err;
1390         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1391                 val = atomic_long_read(&vm_stat[i]);
1392                 if (val < 0) {
1393                         switch (i) {
1394                         case NR_ALLOC_BATCH:
1395                         case NR_PAGES_SCANNED:
1396                                 /*
1397                                  * These are often seen to go negative in
1398                                  * recent kernels, but not to go permanently
1399                                  * negative.  Whilst it would be nicer not to
1400                                  * have exceptions, rooting them out would be
1401                                  * another task, of rather low priority.
1402                                  */
1403                                 break;
1404                         default:
1405                                 pr_warn("%s: %s %ld\n",
1406                                         __func__, vmstat_text[i], val);
1407                                 err = -EINVAL;
1408                                 break;
1409                         }
1410                 }
1411         }
1412         if (err)
1413                 return err;
1414         if (write)
1415                 *ppos += *lenp;
1416         else
1417                 *lenp = 0;
1418         return 0;
1419 }
1420 #endif /* CONFIG_PROC_FS */
1421
1422 static void vmstat_update(struct work_struct *w)
1423 {
1424         if (refresh_cpu_vm_stats(true)) {
1425                 /*
1426                  * Counters were updated so we expect more updates
1427                  * to occur in the future. Keep on running the
1428                  * update worker thread.
1429                  */
1430                 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1431                                 this_cpu_ptr(&vmstat_work),
1432                                 round_jiffies_relative(sysctl_stat_interval));
1433         }
1434 }
1435
1436 /*
1437  * Switch off vmstat processing and then fold all the remaining differentials
1438  * until the diffs stay at zero. The function is used by NOHZ and can only be
1439  * invoked when tick processing is not active.
1440  */
1441 /*
1442  * Check if the diffs for a certain cpu indicate that
1443  * an update is needed.
1444  */
1445 static bool need_update(int cpu)
1446 {
1447         struct zone *zone;
1448
1449         for_each_populated_zone(zone) {
1450                 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1451
1452                 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1453                 /*
1454                  * The fast way of checking if there are any vmstat diffs.
1455                  * This works because the diffs are byte sized items.
1456                  */
1457                 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1458                         return true;
1459
1460         }
1461         return false;
1462 }
1463
1464 /*
1465  * Switch off vmstat processing and then fold all the remaining differentials
1466  * until the diffs stay at zero. The function is used by NOHZ and can only be
1467  * invoked when tick processing is not active.
1468  */
1469 void quiet_vmstat(void)
1470 {
1471         if (system_state != SYSTEM_RUNNING)
1472                 return;
1473
1474         if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1475                 return;
1476
1477         if (!need_update(smp_processor_id()))
1478                 return;
1479
1480         /*
1481          * Just refresh counters and do not care about the pending delayed
1482          * vmstat_update. It doesn't fire that often to matter and canceling
1483          * it would be too expensive from this path.
1484          * vmstat_shepherd will take care about that for us.
1485          */
1486         refresh_cpu_vm_stats(false);
1487 }
1488
1489 /*
1490  * Shepherd worker thread that checks the
1491  * differentials of processors that have their worker
1492  * threads for vm statistics updates disabled because of
1493  * inactivity.
1494  */
1495 static void vmstat_shepherd(struct work_struct *w);
1496
1497 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1498
1499 static void vmstat_shepherd(struct work_struct *w)
1500 {
1501         int cpu;
1502
1503         get_online_cpus();
1504         /* Check processors whose vmstat worker threads have been disabled */
1505         for_each_online_cpu(cpu) {
1506                 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1507
1508                 if (!delayed_work_pending(dw) && need_update(cpu))
1509                         queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1510         }
1511         put_online_cpus();
1512
1513         schedule_delayed_work(&shepherd,
1514                 round_jiffies_relative(sysctl_stat_interval));
1515 }
1516
1517 static void __init start_shepherd_timer(void)
1518 {
1519         int cpu;
1520
1521         for_each_possible_cpu(cpu)
1522                 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1523                         vmstat_update);
1524
1525         vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1526         schedule_delayed_work(&shepherd,
1527                 round_jiffies_relative(sysctl_stat_interval));
1528 }
1529
1530 static void vmstat_cpu_dead(int node)
1531 {
1532         int cpu;
1533
1534         get_online_cpus();
1535         for_each_online_cpu(cpu)
1536                 if (cpu_to_node(cpu) == node)
1537                         goto end;
1538
1539         node_clear_state(node, N_CPU);
1540 end:
1541         put_online_cpus();
1542 }
1543
1544 /*
1545  * Use the cpu notifier to insure that the thresholds are recalculated
1546  * when necessary.
1547  */
1548 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1549                 unsigned long action,
1550                 void *hcpu)
1551 {
1552         long cpu = (long)hcpu;
1553
1554         switch (action) {
1555         case CPU_ONLINE:
1556         case CPU_ONLINE_FROZEN:
1557                 refresh_zone_stat_thresholds();
1558                 node_set_state(cpu_to_node(cpu), N_CPU);
1559                 break;
1560         case CPU_DOWN_PREPARE:
1561         case CPU_DOWN_PREPARE_FROZEN:
1562                 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1563                 break;
1564         case CPU_DOWN_FAILED:
1565         case CPU_DOWN_FAILED_FROZEN:
1566                 break;
1567         case CPU_DEAD:
1568         case CPU_DEAD_FROZEN:
1569                 refresh_zone_stat_thresholds();
1570                 vmstat_cpu_dead(cpu_to_node(cpu));
1571                 break;
1572         default:
1573                 break;
1574         }
1575         return NOTIFY_OK;
1576 }
1577
1578 static struct notifier_block vmstat_notifier =
1579         { &vmstat_cpuup_callback, NULL, 0 };
1580 #endif
1581
1582 static int __init setup_vmstat(void)
1583 {
1584 #ifdef CONFIG_SMP
1585         cpu_notifier_register_begin();
1586         __register_cpu_notifier(&vmstat_notifier);
1587
1588         start_shepherd_timer();
1589         cpu_notifier_register_done();
1590 #endif
1591 #ifdef CONFIG_PROC_FS
1592         proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1593         proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1594         proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1595         proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1596 #endif
1597         return 0;
1598 }
1599 module_init(setup_vmstat)
1600
1601 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1602
1603 /*
1604  * Return an index indicating how much of the available free memory is
1605  * unusable for an allocation of the requested size.
1606  */
1607 static int unusable_free_index(unsigned int order,
1608                                 struct contig_page_info *info)
1609 {
1610         /* No free memory is interpreted as all free memory is unusable */
1611         if (info->free_pages == 0)
1612                 return 1000;
1613
1614         /*
1615          * Index should be a value between 0 and 1. Return a value to 3
1616          * decimal places.
1617          *
1618          * 0 => no fragmentation
1619          * 1 => high fragmentation
1620          */
1621         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1622
1623 }
1624
1625 static void unusable_show_print(struct seq_file *m,
1626                                         pg_data_t *pgdat, struct zone *zone)
1627 {
1628         unsigned int order;
1629         int index;
1630         struct contig_page_info info;
1631
1632         seq_printf(m, "Node %d, zone %8s ",
1633                                 pgdat->node_id,
1634                                 zone->name);
1635         for (order = 0; order < MAX_ORDER; ++order) {
1636                 fill_contig_page_info(zone, order, &info);
1637                 index = unusable_free_index(order, &info);
1638                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1639         }
1640
1641         seq_putc(m, '\n');
1642 }
1643
1644 /*
1645  * Display unusable free space index
1646  *
1647  * The unusable free space index measures how much of the available free
1648  * memory cannot be used to satisfy an allocation of a given size and is a
1649  * value between 0 and 1. The higher the value, the more of free memory is
1650  * unusable and by implication, the worse the external fragmentation is. This
1651  * can be expressed as a percentage by multiplying by 100.
1652  */
1653 static int unusable_show(struct seq_file *m, void *arg)
1654 {
1655         pg_data_t *pgdat = (pg_data_t *)arg;
1656
1657         /* check memoryless node */
1658         if (!node_state(pgdat->node_id, N_MEMORY))
1659                 return 0;
1660
1661         walk_zones_in_node(m, pgdat, unusable_show_print);
1662
1663         return 0;
1664 }
1665
1666 static const struct seq_operations unusable_op = {
1667         .start  = frag_start,
1668         .next   = frag_next,
1669         .stop   = frag_stop,
1670         .show   = unusable_show,
1671 };
1672
1673 static int unusable_open(struct inode *inode, struct file *file)
1674 {
1675         return seq_open(file, &unusable_op);
1676 }
1677
1678 static const struct file_operations unusable_file_ops = {
1679         .open           = unusable_open,
1680         .read           = seq_read,
1681         .llseek         = seq_lseek,
1682         .release        = seq_release,
1683 };
1684
1685 static void extfrag_show_print(struct seq_file *m,
1686                                         pg_data_t *pgdat, struct zone *zone)
1687 {
1688         unsigned int order;
1689         int index;
1690
1691         /* Alloc on stack as interrupts are disabled for zone walk */
1692         struct contig_page_info info;
1693
1694         seq_printf(m, "Node %d, zone %8s ",
1695                                 pgdat->node_id,
1696                                 zone->name);
1697         for (order = 0; order < MAX_ORDER; ++order) {
1698                 fill_contig_page_info(zone, order, &info);
1699                 index = __fragmentation_index(order, &info);
1700                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1701         }
1702
1703         seq_putc(m, '\n');
1704 }
1705
1706 /*
1707  * Display fragmentation index for orders that allocations would fail for
1708  */
1709 static int extfrag_show(struct seq_file *m, void *arg)
1710 {
1711         pg_data_t *pgdat = (pg_data_t *)arg;
1712
1713         walk_zones_in_node(m, pgdat, extfrag_show_print);
1714
1715         return 0;
1716 }
1717
1718 static const struct seq_operations extfrag_op = {
1719         .start  = frag_start,
1720         .next   = frag_next,
1721         .stop   = frag_stop,
1722         .show   = extfrag_show,
1723 };
1724
1725 static int extfrag_open(struct inode *inode, struct file *file)
1726 {
1727         return seq_open(file, &extfrag_op);
1728 }
1729
1730 static const struct file_operations extfrag_file_ops = {
1731         .open           = extfrag_open,
1732         .read           = seq_read,
1733         .llseek         = seq_lseek,
1734         .release        = seq_release,
1735 };
1736
1737 static int __init extfrag_debug_init(void)
1738 {
1739         struct dentry *extfrag_debug_root;
1740
1741         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1742         if (!extfrag_debug_root)
1743                 return -ENOMEM;
1744
1745         if (!debugfs_create_file("unusable_index", 0444,
1746                         extfrag_debug_root, NULL, &unusable_file_ops))
1747                 goto fail;
1748
1749         if (!debugfs_create_file("extfrag_index", 0444,
1750                         extfrag_debug_root, NULL, &extfrag_file_ops))
1751                 goto fail;
1752
1753         return 0;
1754 fail:
1755         debugfs_remove_recursive(extfrag_debug_root);
1756         return -ENOMEM;
1757 }
1758
1759 module_init(extfrag_debug_init);
1760 #endif