x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / net / bluetooth / ecc.c
1 /*
2  * Copyright (c) 2013, Kenneth MacKay
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are
7  * met:
8  *  * Redistributions of source code must retain the above copyright
9  *   notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #include <linux/random.h>
28
29 #include "ecc.h"
30
31 /* 256-bit curve */
32 #define ECC_BYTES 32
33
34 #define MAX_TRIES 16
35
36 /* Number of u64's needed */
37 #define NUM_ECC_DIGITS (ECC_BYTES / 8)
38
39 struct ecc_point {
40         u64 x[NUM_ECC_DIGITS];
41         u64 y[NUM_ECC_DIGITS];
42 };
43
44 typedef struct {
45         u64 m_low;
46         u64 m_high;
47 } uint128_t;
48
49 #define CURVE_P_32 {    0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull, \
50                         0x0000000000000000ull, 0xFFFFFFFF00000001ull }
51
52 #define CURVE_G_32 { \
53                 {       0xF4A13945D898C296ull, 0x77037D812DEB33A0ull,   \
54                         0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull }, \
55                 {       0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull,   \
56                         0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull }  \
57 }
58
59 #define CURVE_N_32 {    0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull,   \
60                         0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull }
61
62 static u64 curve_p[NUM_ECC_DIGITS] = CURVE_P_32;
63 static struct ecc_point curve_g = CURVE_G_32;
64 static u64 curve_n[NUM_ECC_DIGITS] = CURVE_N_32;
65
66 static void vli_clear(u64 *vli)
67 {
68         int i;
69
70         for (i = 0; i < NUM_ECC_DIGITS; i++)
71                 vli[i] = 0;
72 }
73
74 /* Returns true if vli == 0, false otherwise. */
75 static bool vli_is_zero(const u64 *vli)
76 {
77         int i;
78
79         for (i = 0; i < NUM_ECC_DIGITS; i++) {
80                 if (vli[i])
81                         return false;
82         }
83
84         return true;
85 }
86
87 /* Returns nonzero if bit bit of vli is set. */
88 static u64 vli_test_bit(const u64 *vli, unsigned int bit)
89 {
90         return (vli[bit / 64] & ((u64) 1 << (bit % 64)));
91 }
92
93 /* Counts the number of 64-bit "digits" in vli. */
94 static unsigned int vli_num_digits(const u64 *vli)
95 {
96         int i;
97
98         /* Search from the end until we find a non-zero digit.
99          * We do it in reverse because we expect that most digits will
100          * be nonzero.
101          */
102         for (i = NUM_ECC_DIGITS - 1; i >= 0 && vli[i] == 0; i--);
103
104         return (i + 1);
105 }
106
107 /* Counts the number of bits required for vli. */
108 static unsigned int vli_num_bits(const u64 *vli)
109 {
110         unsigned int i, num_digits;
111         u64 digit;
112
113         num_digits = vli_num_digits(vli);
114         if (num_digits == 0)
115                 return 0;
116
117         digit = vli[num_digits - 1];
118         for (i = 0; digit; i++)
119                 digit >>= 1;
120
121         return ((num_digits - 1) * 64 + i);
122 }
123
124 /* Sets dest = src. */
125 static void vli_set(u64 *dest, const u64 *src)
126 {
127         int i;
128
129         for (i = 0; i < NUM_ECC_DIGITS; i++)
130                 dest[i] = src[i];
131 }
132
133 /* Returns sign of left - right. */
134 static int vli_cmp(const u64 *left, const u64 *right)
135 {
136     int i;
137
138     for (i = NUM_ECC_DIGITS - 1; i >= 0; i--) {
139             if (left[i] > right[i])
140                     return 1;
141             else if (left[i] < right[i])
142                     return -1;
143     }
144
145     return 0;
146 }
147
148 /* Computes result = in << c, returning carry. Can modify in place
149  * (if result == in). 0 < shift < 64.
150  */
151 static u64 vli_lshift(u64 *result, const u64 *in,
152                            unsigned int shift)
153 {
154         u64 carry = 0;
155         int i;
156
157         for (i = 0; i < NUM_ECC_DIGITS; i++) {
158                 u64 temp = in[i];
159
160                 result[i] = (temp << shift) | carry;
161                 carry = temp >> (64 - shift);
162         }
163
164         return carry;
165 }
166
167 /* Computes vli = vli >> 1. */
168 static void vli_rshift1(u64 *vli)
169 {
170         u64 *end = vli;
171         u64 carry = 0;
172
173         vli += NUM_ECC_DIGITS;
174
175         while (vli-- > end) {
176                 u64 temp = *vli;
177                 *vli = (temp >> 1) | carry;
178                 carry = temp << 63;
179         }
180 }
181
182 /* Computes result = left + right, returning carry. Can modify in place. */
183 static u64 vli_add(u64 *result, const u64 *left,
184                         const u64 *right)
185 {
186         u64 carry = 0;
187         int i;
188
189         for (i = 0; i < NUM_ECC_DIGITS; i++) {
190                 u64 sum;
191
192                 sum = left[i] + right[i] + carry;
193                 if (sum != left[i])
194                         carry = (sum < left[i]);
195
196                 result[i] = sum;
197         }
198
199         return carry;
200 }
201
202 /* Computes result = left - right, returning borrow. Can modify in place. */
203 static u64 vli_sub(u64 *result, const u64 *left, const u64 *right)
204 {
205         u64 borrow = 0;
206         int i;
207
208         for (i = 0; i < NUM_ECC_DIGITS; i++) {
209                 u64 diff;
210
211                 diff = left[i] - right[i] - borrow;
212                 if (diff != left[i])
213                         borrow = (diff > left[i]);
214
215                 result[i] = diff;
216         }
217
218         return borrow;
219 }
220
221 static uint128_t mul_64_64(u64 left, u64 right)
222 {
223         u64 a0 = left & 0xffffffffull;
224         u64 a1 = left >> 32;
225         u64 b0 = right & 0xffffffffull;
226         u64 b1 = right >> 32;
227         u64 m0 = a0 * b0;
228         u64 m1 = a0 * b1;
229         u64 m2 = a1 * b0;
230         u64 m3 = a1 * b1;
231         uint128_t result;
232
233         m2 += (m0 >> 32);
234         m2 += m1;
235
236         /* Overflow */
237         if (m2 < m1)
238                 m3 += 0x100000000ull;
239
240         result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
241         result.m_high = m3 + (m2 >> 32);
242
243         return result;
244 }
245
246 static uint128_t add_128_128(uint128_t a, uint128_t b)
247 {
248         uint128_t result;
249
250         result.m_low = a.m_low + b.m_low;
251         result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
252
253         return result;
254 }
255
256 static void vli_mult(u64 *result, const u64 *left, const u64 *right)
257 {
258         uint128_t r01 = { 0, 0 };
259         u64 r2 = 0;
260         unsigned int i, k;
261
262         /* Compute each digit of result in sequence, maintaining the
263          * carries.
264          */
265         for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) {
266                 unsigned int min;
267
268                 if (k < NUM_ECC_DIGITS)
269                         min = 0;
270                 else
271                         min = (k + 1) - NUM_ECC_DIGITS;
272
273                 for (i = min; i <= k && i < NUM_ECC_DIGITS; i++) {
274                         uint128_t product;
275
276                         product = mul_64_64(left[i], right[k - i]);
277
278                         r01 = add_128_128(r01, product);
279                         r2 += (r01.m_high < product.m_high);
280                 }
281
282                 result[k] = r01.m_low;
283                 r01.m_low = r01.m_high;
284                 r01.m_high = r2;
285                 r2 = 0;
286         }
287
288         result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low;
289 }
290
291 static void vli_square(u64 *result, const u64 *left)
292 {
293         uint128_t r01 = { 0, 0 };
294         u64 r2 = 0;
295         int i, k;
296
297         for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) {
298                 unsigned int min;
299
300                 if (k < NUM_ECC_DIGITS)
301                         min = 0;
302                 else
303                         min = (k + 1) - NUM_ECC_DIGITS;
304
305                 for (i = min; i <= k && i <= k - i; i++) {
306                         uint128_t product;
307
308                         product = mul_64_64(left[i], left[k - i]);
309
310                         if (i < k - i) {
311                                 r2 += product.m_high >> 63;
312                                 product.m_high = (product.m_high << 1) |
313                                                  (product.m_low >> 63);
314                                 product.m_low <<= 1;
315                         }
316
317                         r01 = add_128_128(r01, product);
318                         r2 += (r01.m_high < product.m_high);
319                 }
320
321                 result[k] = r01.m_low;
322                 r01.m_low = r01.m_high;
323                 r01.m_high = r2;
324                 r2 = 0;
325         }
326
327         result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low;
328 }
329
330 /* Computes result = (left + right) % mod.
331  * Assumes that left < mod and right < mod, result != mod.
332  */
333 static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
334                         const u64 *mod)
335 {
336         u64 carry;
337
338         carry = vli_add(result, left, right);
339
340         /* result > mod (result = mod + remainder), so subtract mod to
341          * get remainder.
342          */
343         if (carry || vli_cmp(result, mod) >= 0)
344                 vli_sub(result, result, mod);
345 }
346
347 /* Computes result = (left - right) % mod.
348  * Assumes that left < mod and right < mod, result != mod.
349  */
350 static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
351                         const u64 *mod)
352 {
353         u64 borrow = vli_sub(result, left, right);
354
355         /* In this case, p_result == -diff == (max int) - diff.
356          * Since -x % d == d - x, we can get the correct result from
357          * result + mod (with overflow).
358          */
359         if (borrow)
360                 vli_add(result, result, mod);
361 }
362
363 /* Computes result = product % curve_p
364    from http://www.nsa.gov/ia/_files/nist-routines.pdf */
365 static void vli_mmod_fast(u64 *result, const u64 *product)
366 {
367         u64 tmp[NUM_ECC_DIGITS];
368         int carry;
369
370         /* t */
371         vli_set(result, product);
372
373         /* s1 */
374         tmp[0] = 0;
375         tmp[1] = product[5] & 0xffffffff00000000ull;
376         tmp[2] = product[6];
377         tmp[3] = product[7];
378         carry = vli_lshift(tmp, tmp, 1);
379         carry += vli_add(result, result, tmp);
380
381         /* s2 */
382         tmp[1] = product[6] << 32;
383         tmp[2] = (product[6] >> 32) | (product[7] << 32);
384         tmp[3] = product[7] >> 32;
385         carry += vli_lshift(tmp, tmp, 1);
386         carry += vli_add(result, result, tmp);
387
388         /* s3 */
389         tmp[0] = product[4];
390         tmp[1] = product[5] & 0xffffffff;
391         tmp[2] = 0;
392         tmp[3] = product[7];
393         carry += vli_add(result, result, tmp);
394
395         /* s4 */
396         tmp[0] = (product[4] >> 32) | (product[5] << 32);
397         tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
398         tmp[2] = product[7];
399         tmp[3] = (product[6] >> 32) | (product[4] << 32);
400         carry += vli_add(result, result, tmp);
401
402         /* d1 */
403         tmp[0] = (product[5] >> 32) | (product[6] << 32);
404         tmp[1] = (product[6] >> 32);
405         tmp[2] = 0;
406         tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
407         carry -= vli_sub(result, result, tmp);
408
409         /* d2 */
410         tmp[0] = product[6];
411         tmp[1] = product[7];
412         tmp[2] = 0;
413         tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
414         carry -= vli_sub(result, result, tmp);
415
416         /* d3 */
417         tmp[0] = (product[6] >> 32) | (product[7] << 32);
418         tmp[1] = (product[7] >> 32) | (product[4] << 32);
419         tmp[2] = (product[4] >> 32) | (product[5] << 32);
420         tmp[3] = (product[6] << 32);
421         carry -= vli_sub(result, result, tmp);
422
423         /* d4 */
424         tmp[0] = product[7];
425         tmp[1] = product[4] & 0xffffffff00000000ull;
426         tmp[2] = product[5];
427         tmp[3] = product[6] & 0xffffffff00000000ull;
428         carry -= vli_sub(result, result, tmp);
429
430         if (carry < 0) {
431                 do {
432                         carry += vli_add(result, result, curve_p);
433                 } while (carry < 0);
434         } else {
435                 while (carry || vli_cmp(curve_p, result) != 1)
436                         carry -= vli_sub(result, result, curve_p);
437         }
438 }
439
440 /* Computes result = (left * right) % curve_p. */
441 static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right)
442 {
443         u64 product[2 * NUM_ECC_DIGITS];
444
445         vli_mult(product, left, right);
446         vli_mmod_fast(result, product);
447 }
448
449 /* Computes result = left^2 % curve_p. */
450 static void vli_mod_square_fast(u64 *result, const u64 *left)
451 {
452         u64 product[2 * NUM_ECC_DIGITS];
453
454         vli_square(product, left);
455         vli_mmod_fast(result, product);
456 }
457
458 #define EVEN(vli) (!(vli[0] & 1))
459 /* Computes result = (1 / p_input) % mod. All VLIs are the same size.
460  * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
461  * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
462  */
463 static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod)
464 {
465         u64 a[NUM_ECC_DIGITS], b[NUM_ECC_DIGITS];
466         u64 u[NUM_ECC_DIGITS], v[NUM_ECC_DIGITS];
467         u64 carry;
468         int cmp_result;
469
470         if (vli_is_zero(input)) {
471                 vli_clear(result);
472                 return;
473         }
474
475         vli_set(a, input);
476         vli_set(b, mod);
477         vli_clear(u);
478         u[0] = 1;
479         vli_clear(v);
480
481         while ((cmp_result = vli_cmp(a, b)) != 0) {
482                 carry = 0;
483
484                 if (EVEN(a)) {
485                         vli_rshift1(a);
486
487                         if (!EVEN(u))
488                                 carry = vli_add(u, u, mod);
489
490                         vli_rshift1(u);
491                         if (carry)
492                                 u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
493                 } else if (EVEN(b)) {
494                         vli_rshift1(b);
495
496                         if (!EVEN(v))
497                                 carry = vli_add(v, v, mod);
498
499                         vli_rshift1(v);
500                         if (carry)
501                                 v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
502                 } else if (cmp_result > 0) {
503                         vli_sub(a, a, b);
504                         vli_rshift1(a);
505
506                         if (vli_cmp(u, v) < 0)
507                                 vli_add(u, u, mod);
508
509                         vli_sub(u, u, v);
510                         if (!EVEN(u))
511                                 carry = vli_add(u, u, mod);
512
513                         vli_rshift1(u);
514                         if (carry)
515                                 u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
516                 } else {
517                         vli_sub(b, b, a);
518                         vli_rshift1(b);
519
520                         if (vli_cmp(v, u) < 0)
521                                 vli_add(v, v, mod);
522
523                         vli_sub(v, v, u);
524                         if (!EVEN(v))
525                                 carry = vli_add(v, v, mod);
526
527                         vli_rshift1(v);
528                         if (carry)
529                                 v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
530                 }
531         }
532
533         vli_set(result, u);
534 }
535
536 /* ------ Point operations ------ */
537
538 /* Returns true if p_point is the point at infinity, false otherwise. */
539 static bool ecc_point_is_zero(const struct ecc_point *point)
540 {
541         return (vli_is_zero(point->x) && vli_is_zero(point->y));
542 }
543
544 /* Point multiplication algorithm using Montgomery's ladder with co-Z
545  * coordinates. From http://eprint.iacr.org/2011/338.pdf
546  */
547
548 /* Double in place */
549 static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1)
550 {
551         /* t1 = x, t2 = y, t3 = z */
552         u64 t4[NUM_ECC_DIGITS];
553         u64 t5[NUM_ECC_DIGITS];
554
555         if (vli_is_zero(z1))
556                 return;
557
558         vli_mod_square_fast(t4, y1);   /* t4 = y1^2 */
559         vli_mod_mult_fast(t5, x1, t4); /* t5 = x1*y1^2 = A */
560         vli_mod_square_fast(t4, t4);   /* t4 = y1^4 */
561         vli_mod_mult_fast(y1, y1, z1); /* t2 = y1*z1 = z3 */
562         vli_mod_square_fast(z1, z1);   /* t3 = z1^2 */
563
564         vli_mod_add(x1, x1, z1, curve_p); /* t1 = x1 + z1^2 */
565         vli_mod_add(z1, z1, z1, curve_p); /* t3 = 2*z1^2 */
566         vli_mod_sub(z1, x1, z1, curve_p); /* t3 = x1 - z1^2 */
567         vli_mod_mult_fast(x1, x1, z1);    /* t1 = x1^2 - z1^4 */
568
569         vli_mod_add(z1, x1, x1, curve_p); /* t3 = 2*(x1^2 - z1^4) */
570         vli_mod_add(x1, x1, z1, curve_p); /* t1 = 3*(x1^2 - z1^4) */
571         if (vli_test_bit(x1, 0)) {
572                 u64 carry = vli_add(x1, x1, curve_p);
573                 vli_rshift1(x1);
574                 x1[NUM_ECC_DIGITS - 1] |= carry << 63;
575         } else {
576                 vli_rshift1(x1);
577         }
578         /* t1 = 3/2*(x1^2 - z1^4) = B */
579
580         vli_mod_square_fast(z1, x1);      /* t3 = B^2 */
581         vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - A */
582         vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - 2A = x3 */
583         vli_mod_sub(t5, t5, z1, curve_p); /* t5 = A - x3 */
584         vli_mod_mult_fast(x1, x1, t5);    /* t1 = B * (A - x3) */
585         vli_mod_sub(t4, x1, t4, curve_p); /* t4 = B * (A - x3) - y1^4 = y3 */
586
587         vli_set(x1, z1);
588         vli_set(z1, y1);
589         vli_set(y1, t4);
590 }
591
592 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
593 static void apply_z(u64 *x1, u64 *y1, u64 *z)
594 {
595         u64 t1[NUM_ECC_DIGITS];
596
597         vli_mod_square_fast(t1, z);    /* z^2 */
598         vli_mod_mult_fast(x1, x1, t1); /* x1 * z^2 */
599         vli_mod_mult_fast(t1, t1, z);  /* z^3 */
600         vli_mod_mult_fast(y1, y1, t1); /* y1 * z^3 */
601 }
602
603 /* P = (x1, y1) => 2P, (x2, y2) => P' */
604 static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
605                                 u64 *p_initial_z)
606 {
607         u64 z[NUM_ECC_DIGITS];
608
609         vli_set(x2, x1);
610         vli_set(y2, y1);
611
612         vli_clear(z);
613         z[0] = 1;
614
615         if (p_initial_z)
616                 vli_set(z, p_initial_z);
617
618         apply_z(x1, y1, z);
619
620         ecc_point_double_jacobian(x1, y1, z);
621
622         apply_z(x2, y2, z);
623 }
624
625 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
626  * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
627  * or P => P', Q => P + Q
628  */
629 static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2)
630 {
631         /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
632         u64 t5[NUM_ECC_DIGITS];
633
634         vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */
635         vli_mod_square_fast(t5, t5);      /* t5 = (x2 - x1)^2 = A */
636         vli_mod_mult_fast(x1, x1, t5);    /* t1 = x1*A = B */
637         vli_mod_mult_fast(x2, x2, t5);    /* t3 = x2*A = C */
638         vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */
639         vli_mod_square_fast(t5, y2);      /* t5 = (y2 - y1)^2 = D */
640
641         vli_mod_sub(t5, t5, x1, curve_p); /* t5 = D - B */
642         vli_mod_sub(t5, t5, x2, curve_p); /* t5 = D - B - C = x3 */
643         vli_mod_sub(x2, x2, x1, curve_p); /* t3 = C - B */
644         vli_mod_mult_fast(y1, y1, x2);    /* t2 = y1*(C - B) */
645         vli_mod_sub(x2, x1, t5, curve_p); /* t3 = B - x3 */
646         vli_mod_mult_fast(y2, y2, x2);    /* t4 = (y2 - y1)*(B - x3) */
647         vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */
648
649         vli_set(x2, t5);
650 }
651
652 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
653  * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
654  * or P => P - Q, Q => P + Q
655  */
656 static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2)
657 {
658         /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
659         u64 t5[NUM_ECC_DIGITS];
660         u64 t6[NUM_ECC_DIGITS];
661         u64 t7[NUM_ECC_DIGITS];
662
663         vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */
664         vli_mod_square_fast(t5, t5);      /* t5 = (x2 - x1)^2 = A */
665         vli_mod_mult_fast(x1, x1, t5);    /* t1 = x1*A = B */
666         vli_mod_mult_fast(x2, x2, t5);    /* t3 = x2*A = C */
667         vli_mod_add(t5, y2, y1, curve_p); /* t4 = y2 + y1 */
668         vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */
669
670         vli_mod_sub(t6, x2, x1, curve_p); /* t6 = C - B */
671         vli_mod_mult_fast(y1, y1, t6);    /* t2 = y1 * (C - B) */
672         vli_mod_add(t6, x1, x2, curve_p); /* t6 = B + C */
673         vli_mod_square_fast(x2, y2);      /* t3 = (y2 - y1)^2 */
674         vli_mod_sub(x2, x2, t6, curve_p); /* t3 = x3 */
675
676         vli_mod_sub(t7, x1, x2, curve_p); /* t7 = B - x3 */
677         vli_mod_mult_fast(y2, y2, t7);    /* t4 = (y2 - y1)*(B - x3) */
678         vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */
679
680         vli_mod_square_fast(t7, t5);      /* t7 = (y2 + y1)^2 = F */
681         vli_mod_sub(t7, t7, t6, curve_p); /* t7 = x3' */
682         vli_mod_sub(t6, t7, x1, curve_p); /* t6 = x3' - B */
683         vli_mod_mult_fast(t6, t6, t5);    /* t6 = (y2 + y1)*(x3' - B) */
684         vli_mod_sub(y1, t6, y1, curve_p); /* t2 = y3' */
685
686         vli_set(x1, t7);
687 }
688
689 static void ecc_point_mult(struct ecc_point *result,
690                            const struct ecc_point *point, u64 *scalar,
691                            u64 *initial_z, int num_bits)
692 {
693         /* R0 and R1 */
694         u64 rx[2][NUM_ECC_DIGITS];
695         u64 ry[2][NUM_ECC_DIGITS];
696         u64 z[NUM_ECC_DIGITS];
697         int i, nb;
698
699         vli_set(rx[1], point->x);
700         vli_set(ry[1], point->y);
701
702         xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z);
703
704         for (i = num_bits - 2; i > 0; i--) {
705                 nb = !vli_test_bit(scalar, i);
706                 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]);
707                 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]);
708         }
709
710         nb = !vli_test_bit(scalar, 0);
711         xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]);
712
713         /* Find final 1/Z value. */
714         vli_mod_sub(z, rx[1], rx[0], curve_p); /* X1 - X0 */
715         vli_mod_mult_fast(z, z, ry[1 - nb]); /* Yb * (X1 - X0) */
716         vli_mod_mult_fast(z, z, point->x);   /* xP * Yb * (X1 - X0) */
717         vli_mod_inv(z, z, curve_p);          /* 1 / (xP * Yb * (X1 - X0)) */
718         vli_mod_mult_fast(z, z, point->y);   /* yP / (xP * Yb * (X1 - X0)) */
719         vli_mod_mult_fast(z, z, rx[1 - nb]); /* Xb * yP / (xP * Yb * (X1 - X0)) */
720         /* End 1/Z calculation */
721
722         xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]);
723
724         apply_z(rx[0], ry[0], z);
725
726         vli_set(result->x, rx[0]);
727         vli_set(result->y, ry[0]);
728 }
729
730 static void ecc_bytes2native(const u8 bytes[ECC_BYTES],
731                              u64 native[NUM_ECC_DIGITS])
732 {
733         int i;
734
735         for (i = 0; i < NUM_ECC_DIGITS; i++) {
736                 const u8 *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i);
737
738                 native[NUM_ECC_DIGITS - 1 - i] =
739                                 ((u64) digit[0] << 0) |
740                                 ((u64) digit[1] << 8) |
741                                 ((u64) digit[2] << 16) |
742                                 ((u64) digit[3] << 24) |
743                                 ((u64) digit[4] << 32) |
744                                 ((u64) digit[5] << 40) |
745                                 ((u64) digit[6] << 48) |
746                                 ((u64) digit[7] << 56);
747         }
748 }
749
750 static void ecc_native2bytes(const u64 native[NUM_ECC_DIGITS],
751                              u8 bytes[ECC_BYTES])
752 {
753         int i;
754
755         for (i = 0; i < NUM_ECC_DIGITS; i++) {
756                 u8 *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i);
757
758                 digit[0] = native[NUM_ECC_DIGITS - 1 - i] >> 0;
759                 digit[1] = native[NUM_ECC_DIGITS - 1 - i] >> 8;
760                 digit[2] = native[NUM_ECC_DIGITS - 1 - i] >> 16;
761                 digit[3] = native[NUM_ECC_DIGITS - 1 - i] >> 24;
762                 digit[4] = native[NUM_ECC_DIGITS - 1 - i] >> 32;
763                 digit[5] = native[NUM_ECC_DIGITS - 1 - i] >> 40;
764                 digit[6] = native[NUM_ECC_DIGITS - 1 - i] >> 48;
765                 digit[7] = native[NUM_ECC_DIGITS - 1 - i] >> 56;
766         }
767 }
768
769 bool ecc_make_key(u8 public_key[64], u8 private_key[32])
770 {
771         struct ecc_point pk;
772         u64 priv[NUM_ECC_DIGITS];
773         unsigned int tries = 0;
774
775         do {
776                 if (tries++ >= MAX_TRIES)
777                         return false;
778
779                 get_random_bytes(priv, ECC_BYTES);
780
781                 if (vli_is_zero(priv))
782                         continue;
783
784                 /* Make sure the private key is in the range [1, n-1]. */
785                 if (vli_cmp(curve_n, priv) != 1)
786                         continue;
787
788                 ecc_point_mult(&pk, &curve_g, priv, NULL, vli_num_bits(priv));
789         } while (ecc_point_is_zero(&pk));
790
791         ecc_native2bytes(priv, private_key);
792         ecc_native2bytes(pk.x, public_key);
793         ecc_native2bytes(pk.y, &public_key[32]);
794
795         return true;
796 }
797
798 bool ecdh_shared_secret(const u8 public_key[64], const u8 private_key[32],
799                         u8 secret[32])
800 {
801         u64 priv[NUM_ECC_DIGITS];
802         u64 rand[NUM_ECC_DIGITS];
803         struct ecc_point product, pk;
804
805         get_random_bytes(rand, ECC_BYTES);
806
807         ecc_bytes2native(public_key, pk.x);
808         ecc_bytes2native(&public_key[32], pk.y);
809         ecc_bytes2native(private_key, priv);
810
811         ecc_point_mult(&product, &pk, priv, rand, vli_num_bits(priv));
812
813         ecc_native2bytes(product.x, secret);
814
815         return !ecc_point_is_zero(&product);
816 }