x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / net / bluetooth / hci_core.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
34
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
39
40 #include "hci_request.h"
41 #include "hci_debugfs.h"
42 #include "smp.h"
43 #include "leds.h"
44
45 static void hci_rx_work(struct work_struct *work);
46 static void hci_cmd_work(struct work_struct *work);
47 static void hci_tx_work(struct work_struct *work);
48
49 /* HCI device list */
50 LIST_HEAD(hci_dev_list);
51 DEFINE_RWLOCK(hci_dev_list_lock);
52
53 /* HCI callback list */
54 LIST_HEAD(hci_cb_list);
55 DEFINE_MUTEX(hci_cb_list_lock);
56
57 /* HCI ID Numbering */
58 static DEFINE_IDA(hci_index_ida);
59
60 /* ---- HCI debugfs entries ---- */
61
62 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
63                              size_t count, loff_t *ppos)
64 {
65         struct hci_dev *hdev = file->private_data;
66         char buf[3];
67
68         buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
69         buf[1] = '\n';
70         buf[2] = '\0';
71         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
72 }
73
74 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
75                               size_t count, loff_t *ppos)
76 {
77         struct hci_dev *hdev = file->private_data;
78         struct sk_buff *skb;
79         char buf[32];
80         size_t buf_size = min(count, (sizeof(buf)-1));
81         bool enable;
82
83         if (!test_bit(HCI_UP, &hdev->flags))
84                 return -ENETDOWN;
85
86         if (copy_from_user(buf, user_buf, buf_size))
87                 return -EFAULT;
88
89         buf[buf_size] = '\0';
90         if (strtobool(buf, &enable))
91                 return -EINVAL;
92
93         if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94                 return -EALREADY;
95
96         hci_req_sync_lock(hdev);
97         if (enable)
98                 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99                                      HCI_CMD_TIMEOUT);
100         else
101                 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102                                      HCI_CMD_TIMEOUT);
103         hci_req_sync_unlock(hdev);
104
105         if (IS_ERR(skb))
106                 return PTR_ERR(skb);
107
108         kfree_skb(skb);
109
110         hci_dev_change_flag(hdev, HCI_DUT_MODE);
111
112         return count;
113 }
114
115 static const struct file_operations dut_mode_fops = {
116         .open           = simple_open,
117         .read           = dut_mode_read,
118         .write          = dut_mode_write,
119         .llseek         = default_llseek,
120 };
121
122 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123                                 size_t count, loff_t *ppos)
124 {
125         struct hci_dev *hdev = file->private_data;
126         char buf[3];
127
128         buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129         buf[1] = '\n';
130         buf[2] = '\0';
131         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
132 }
133
134 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135                                  size_t count, loff_t *ppos)
136 {
137         struct hci_dev *hdev = file->private_data;
138         char buf[32];
139         size_t buf_size = min(count, (sizeof(buf)-1));
140         bool enable;
141         int err;
142
143         if (copy_from_user(buf, user_buf, buf_size))
144                 return -EFAULT;
145
146         buf[buf_size] = '\0';
147         if (strtobool(buf, &enable))
148                 return -EINVAL;
149
150         /* When the diagnostic flags are not persistent and the transport
151          * is not active, then there is no need for the vendor callback.
152          *
153          * Instead just store the desired value. If needed the setting
154          * will be programmed when the controller gets powered on.
155          */
156         if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
157             !test_bit(HCI_RUNNING, &hdev->flags))
158                 goto done;
159
160         hci_req_sync_lock(hdev);
161         err = hdev->set_diag(hdev, enable);
162         hci_req_sync_unlock(hdev);
163
164         if (err < 0)
165                 return err;
166
167 done:
168         if (enable)
169                 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
170         else
171                 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
172
173         return count;
174 }
175
176 static const struct file_operations vendor_diag_fops = {
177         .open           = simple_open,
178         .read           = vendor_diag_read,
179         .write          = vendor_diag_write,
180         .llseek         = default_llseek,
181 };
182
183 static void hci_debugfs_create_basic(struct hci_dev *hdev)
184 {
185         debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
186                             &dut_mode_fops);
187
188         if (hdev->set_diag)
189                 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
190                                     &vendor_diag_fops);
191 }
192
193 static int hci_reset_req(struct hci_request *req, unsigned long opt)
194 {
195         BT_DBG("%s %ld", req->hdev->name, opt);
196
197         /* Reset device */
198         set_bit(HCI_RESET, &req->hdev->flags);
199         hci_req_add(req, HCI_OP_RESET, 0, NULL);
200         return 0;
201 }
202
203 static void bredr_init(struct hci_request *req)
204 {
205         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
206
207         /* Read Local Supported Features */
208         hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
209
210         /* Read Local Version */
211         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
212
213         /* Read BD Address */
214         hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
215 }
216
217 static void amp_init1(struct hci_request *req)
218 {
219         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
220
221         /* Read Local Version */
222         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
223
224         /* Read Local Supported Commands */
225         hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
226
227         /* Read Local AMP Info */
228         hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
229
230         /* Read Data Blk size */
231         hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
232
233         /* Read Flow Control Mode */
234         hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
235
236         /* Read Location Data */
237         hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
238 }
239
240 static int amp_init2(struct hci_request *req)
241 {
242         /* Read Local Supported Features. Not all AMP controllers
243          * support this so it's placed conditionally in the second
244          * stage init.
245          */
246         if (req->hdev->commands[14] & 0x20)
247                 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
248
249         return 0;
250 }
251
252 static int hci_init1_req(struct hci_request *req, unsigned long opt)
253 {
254         struct hci_dev *hdev = req->hdev;
255
256         BT_DBG("%s %ld", hdev->name, opt);
257
258         /* Reset */
259         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
260                 hci_reset_req(req, 0);
261
262         switch (hdev->dev_type) {
263         case HCI_PRIMARY:
264                 bredr_init(req);
265                 break;
266         case HCI_AMP:
267                 amp_init1(req);
268                 break;
269         default:
270                 BT_ERR("Unknown device type %d", hdev->dev_type);
271                 break;
272         }
273
274         return 0;
275 }
276
277 static void bredr_setup(struct hci_request *req)
278 {
279         __le16 param;
280         __u8 flt_type;
281
282         /* Read Buffer Size (ACL mtu, max pkt, etc.) */
283         hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
284
285         /* Read Class of Device */
286         hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
287
288         /* Read Local Name */
289         hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
290
291         /* Read Voice Setting */
292         hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
293
294         /* Read Number of Supported IAC */
295         hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
296
297         /* Read Current IAC LAP */
298         hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
299
300         /* Clear Event Filters */
301         flt_type = HCI_FLT_CLEAR_ALL;
302         hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
303
304         /* Connection accept timeout ~20 secs */
305         param = cpu_to_le16(0x7d00);
306         hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
307 }
308
309 static void le_setup(struct hci_request *req)
310 {
311         struct hci_dev *hdev = req->hdev;
312
313         /* Read LE Buffer Size */
314         hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
315
316         /* Read LE Local Supported Features */
317         hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
318
319         /* Read LE Supported States */
320         hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
321
322         /* LE-only controllers have LE implicitly enabled */
323         if (!lmp_bredr_capable(hdev))
324                 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
325 }
326
327 static void hci_setup_event_mask(struct hci_request *req)
328 {
329         struct hci_dev *hdev = req->hdev;
330
331         /* The second byte is 0xff instead of 0x9f (two reserved bits
332          * disabled) since a Broadcom 1.2 dongle doesn't respond to the
333          * command otherwise.
334          */
335         u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
336
337         /* CSR 1.1 dongles does not accept any bitfield so don't try to set
338          * any event mask for pre 1.2 devices.
339          */
340         if (hdev->hci_ver < BLUETOOTH_VER_1_2)
341                 return;
342
343         if (lmp_bredr_capable(hdev)) {
344                 events[4] |= 0x01; /* Flow Specification Complete */
345         } else {
346                 /* Use a different default for LE-only devices */
347                 memset(events, 0, sizeof(events));
348                 events[1] |= 0x20; /* Command Complete */
349                 events[1] |= 0x40; /* Command Status */
350                 events[1] |= 0x80; /* Hardware Error */
351
352                 /* If the controller supports the Disconnect command, enable
353                  * the corresponding event. In addition enable packet flow
354                  * control related events.
355                  */
356                 if (hdev->commands[0] & 0x20) {
357                         events[0] |= 0x10; /* Disconnection Complete */
358                         events[2] |= 0x04; /* Number of Completed Packets */
359                         events[3] |= 0x02; /* Data Buffer Overflow */
360                 }
361
362                 /* If the controller supports the Read Remote Version
363                  * Information command, enable the corresponding event.
364                  */
365                 if (hdev->commands[2] & 0x80)
366                         events[1] |= 0x08; /* Read Remote Version Information
367                                             * Complete
368                                             */
369
370                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
371                         events[0] |= 0x80; /* Encryption Change */
372                         events[5] |= 0x80; /* Encryption Key Refresh Complete */
373                 }
374         }
375
376         if (lmp_inq_rssi_capable(hdev) ||
377             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
378                 events[4] |= 0x02; /* Inquiry Result with RSSI */
379
380         if (lmp_ext_feat_capable(hdev))
381                 events[4] |= 0x04; /* Read Remote Extended Features Complete */
382
383         if (lmp_esco_capable(hdev)) {
384                 events[5] |= 0x08; /* Synchronous Connection Complete */
385                 events[5] |= 0x10; /* Synchronous Connection Changed */
386         }
387
388         if (lmp_sniffsubr_capable(hdev))
389                 events[5] |= 0x20; /* Sniff Subrating */
390
391         if (lmp_pause_enc_capable(hdev))
392                 events[5] |= 0x80; /* Encryption Key Refresh Complete */
393
394         if (lmp_ext_inq_capable(hdev))
395                 events[5] |= 0x40; /* Extended Inquiry Result */
396
397         if (lmp_no_flush_capable(hdev))
398                 events[7] |= 0x01; /* Enhanced Flush Complete */
399
400         if (lmp_lsto_capable(hdev))
401                 events[6] |= 0x80; /* Link Supervision Timeout Changed */
402
403         if (lmp_ssp_capable(hdev)) {
404                 events[6] |= 0x01;      /* IO Capability Request */
405                 events[6] |= 0x02;      /* IO Capability Response */
406                 events[6] |= 0x04;      /* User Confirmation Request */
407                 events[6] |= 0x08;      /* User Passkey Request */
408                 events[6] |= 0x10;      /* Remote OOB Data Request */
409                 events[6] |= 0x20;      /* Simple Pairing Complete */
410                 events[7] |= 0x04;      /* User Passkey Notification */
411                 events[7] |= 0x08;      /* Keypress Notification */
412                 events[7] |= 0x10;      /* Remote Host Supported
413                                          * Features Notification
414                                          */
415         }
416
417         if (lmp_le_capable(hdev))
418                 events[7] |= 0x20;      /* LE Meta-Event */
419
420         hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
421 }
422
423 static int hci_init2_req(struct hci_request *req, unsigned long opt)
424 {
425         struct hci_dev *hdev = req->hdev;
426
427         if (hdev->dev_type == HCI_AMP)
428                 return amp_init2(req);
429
430         if (lmp_bredr_capable(hdev))
431                 bredr_setup(req);
432         else
433                 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
434
435         if (lmp_le_capable(hdev))
436                 le_setup(req);
437
438         /* All Bluetooth 1.2 and later controllers should support the
439          * HCI command for reading the local supported commands.
440          *
441          * Unfortunately some controllers indicate Bluetooth 1.2 support,
442          * but do not have support for this command. If that is the case,
443          * the driver can quirk the behavior and skip reading the local
444          * supported commands.
445          */
446         if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
447             !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
448                 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
449
450         if (lmp_ssp_capable(hdev)) {
451                 /* When SSP is available, then the host features page
452                  * should also be available as well. However some
453                  * controllers list the max_page as 0 as long as SSP
454                  * has not been enabled. To achieve proper debugging
455                  * output, force the minimum max_page to 1 at least.
456                  */
457                 hdev->max_page = 0x01;
458
459                 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
460                         u8 mode = 0x01;
461
462                         hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
463                                     sizeof(mode), &mode);
464                 } else {
465                         struct hci_cp_write_eir cp;
466
467                         memset(hdev->eir, 0, sizeof(hdev->eir));
468                         memset(&cp, 0, sizeof(cp));
469
470                         hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
471                 }
472         }
473
474         if (lmp_inq_rssi_capable(hdev) ||
475             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
476                 u8 mode;
477
478                 /* If Extended Inquiry Result events are supported, then
479                  * they are clearly preferred over Inquiry Result with RSSI
480                  * events.
481                  */
482                 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
483
484                 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
485         }
486
487         if (lmp_inq_tx_pwr_capable(hdev))
488                 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
489
490         if (lmp_ext_feat_capable(hdev)) {
491                 struct hci_cp_read_local_ext_features cp;
492
493                 cp.page = 0x01;
494                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
495                             sizeof(cp), &cp);
496         }
497
498         if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
499                 u8 enable = 1;
500                 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
501                             &enable);
502         }
503
504         return 0;
505 }
506
507 static void hci_setup_link_policy(struct hci_request *req)
508 {
509         struct hci_dev *hdev = req->hdev;
510         struct hci_cp_write_def_link_policy cp;
511         u16 link_policy = 0;
512
513         if (lmp_rswitch_capable(hdev))
514                 link_policy |= HCI_LP_RSWITCH;
515         if (lmp_hold_capable(hdev))
516                 link_policy |= HCI_LP_HOLD;
517         if (lmp_sniff_capable(hdev))
518                 link_policy |= HCI_LP_SNIFF;
519         if (lmp_park_capable(hdev))
520                 link_policy |= HCI_LP_PARK;
521
522         cp.policy = cpu_to_le16(link_policy);
523         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
524 }
525
526 static void hci_set_le_support(struct hci_request *req)
527 {
528         struct hci_dev *hdev = req->hdev;
529         struct hci_cp_write_le_host_supported cp;
530
531         /* LE-only devices do not support explicit enablement */
532         if (!lmp_bredr_capable(hdev))
533                 return;
534
535         memset(&cp, 0, sizeof(cp));
536
537         if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
538                 cp.le = 0x01;
539                 cp.simul = 0x00;
540         }
541
542         if (cp.le != lmp_host_le_capable(hdev))
543                 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
544                             &cp);
545 }
546
547 static void hci_set_event_mask_page_2(struct hci_request *req)
548 {
549         struct hci_dev *hdev = req->hdev;
550         u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
551
552         /* If Connectionless Slave Broadcast master role is supported
553          * enable all necessary events for it.
554          */
555         if (lmp_csb_master_capable(hdev)) {
556                 events[1] |= 0x40;      /* Triggered Clock Capture */
557                 events[1] |= 0x80;      /* Synchronization Train Complete */
558                 events[2] |= 0x10;      /* Slave Page Response Timeout */
559                 events[2] |= 0x20;      /* CSB Channel Map Change */
560         }
561
562         /* If Connectionless Slave Broadcast slave role is supported
563          * enable all necessary events for it.
564          */
565         if (lmp_csb_slave_capable(hdev)) {
566                 events[2] |= 0x01;      /* Synchronization Train Received */
567                 events[2] |= 0x02;      /* CSB Receive */
568                 events[2] |= 0x04;      /* CSB Timeout */
569                 events[2] |= 0x08;      /* Truncated Page Complete */
570         }
571
572         /* Enable Authenticated Payload Timeout Expired event if supported */
573         if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
574                 events[2] |= 0x80;
575
576         hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
577 }
578
579 static int hci_init3_req(struct hci_request *req, unsigned long opt)
580 {
581         struct hci_dev *hdev = req->hdev;
582         u8 p;
583
584         hci_setup_event_mask(req);
585
586         if (hdev->commands[6] & 0x20 &&
587             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
588                 struct hci_cp_read_stored_link_key cp;
589
590                 bacpy(&cp.bdaddr, BDADDR_ANY);
591                 cp.read_all = 0x01;
592                 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
593         }
594
595         if (hdev->commands[5] & 0x10)
596                 hci_setup_link_policy(req);
597
598         if (hdev->commands[8] & 0x01)
599                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
600
601         /* Some older Broadcom based Bluetooth 1.2 controllers do not
602          * support the Read Page Scan Type command. Check support for
603          * this command in the bit mask of supported commands.
604          */
605         if (hdev->commands[13] & 0x01)
606                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
607
608         if (lmp_le_capable(hdev)) {
609                 u8 events[8];
610
611                 memset(events, 0, sizeof(events));
612
613                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
614                         events[0] |= 0x10;      /* LE Long Term Key Request */
615
616                 /* If controller supports the Connection Parameters Request
617                  * Link Layer Procedure, enable the corresponding event.
618                  */
619                 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
620                         events[0] |= 0x20;      /* LE Remote Connection
621                                                  * Parameter Request
622                                                  */
623
624                 /* If the controller supports the Data Length Extension
625                  * feature, enable the corresponding event.
626                  */
627                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
628                         events[0] |= 0x40;      /* LE Data Length Change */
629
630                 /* If the controller supports Extended Scanner Filter
631                  * Policies, enable the correspondig event.
632                  */
633                 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
634                         events[1] |= 0x04;      /* LE Direct Advertising
635                                                  * Report
636                                                  */
637
638                 /* If the controller supports the LE Set Scan Enable command,
639                  * enable the corresponding advertising report event.
640                  */
641                 if (hdev->commands[26] & 0x08)
642                         events[0] |= 0x02;      /* LE Advertising Report */
643
644                 /* If the controller supports the LE Create Connection
645                  * command, enable the corresponding event.
646                  */
647                 if (hdev->commands[26] & 0x10)
648                         events[0] |= 0x01;      /* LE Connection Complete */
649
650                 /* If the controller supports the LE Connection Update
651                  * command, enable the corresponding event.
652                  */
653                 if (hdev->commands[27] & 0x04)
654                         events[0] |= 0x04;      /* LE Connection Update
655                                                  * Complete
656                                                  */
657
658                 /* If the controller supports the LE Read Remote Used Features
659                  * command, enable the corresponding event.
660                  */
661                 if (hdev->commands[27] & 0x20)
662                         events[0] |= 0x08;      /* LE Read Remote Used
663                                                  * Features Complete
664                                                  */
665
666                 /* If the controller supports the LE Read Local P-256
667                  * Public Key command, enable the corresponding event.
668                  */
669                 if (hdev->commands[34] & 0x02)
670                         events[0] |= 0x80;      /* LE Read Local P-256
671                                                  * Public Key Complete
672                                                  */
673
674                 /* If the controller supports the LE Generate DHKey
675                  * command, enable the corresponding event.
676                  */
677                 if (hdev->commands[34] & 0x04)
678                         events[1] |= 0x01;      /* LE Generate DHKey Complete */
679
680                 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
681                             events);
682
683                 if (hdev->commands[25] & 0x40) {
684                         /* Read LE Advertising Channel TX Power */
685                         hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
686                 }
687
688                 if (hdev->commands[26] & 0x40) {
689                         /* Read LE White List Size */
690                         hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
691                                     0, NULL);
692                 }
693
694                 if (hdev->commands[26] & 0x80) {
695                         /* Clear LE White List */
696                         hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
697                 }
698
699                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
700                         /* Read LE Maximum Data Length */
701                         hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
702
703                         /* Read LE Suggested Default Data Length */
704                         hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
705                 }
706
707                 hci_set_le_support(req);
708         }
709
710         /* Read features beyond page 1 if available */
711         for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
712                 struct hci_cp_read_local_ext_features cp;
713
714                 cp.page = p;
715                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
716                             sizeof(cp), &cp);
717         }
718
719         return 0;
720 }
721
722 static int hci_init4_req(struct hci_request *req, unsigned long opt)
723 {
724         struct hci_dev *hdev = req->hdev;
725
726         /* Some Broadcom based Bluetooth controllers do not support the
727          * Delete Stored Link Key command. They are clearly indicating its
728          * absence in the bit mask of supported commands.
729          *
730          * Check the supported commands and only if the the command is marked
731          * as supported send it. If not supported assume that the controller
732          * does not have actual support for stored link keys which makes this
733          * command redundant anyway.
734          *
735          * Some controllers indicate that they support handling deleting
736          * stored link keys, but they don't. The quirk lets a driver
737          * just disable this command.
738          */
739         if (hdev->commands[6] & 0x80 &&
740             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
741                 struct hci_cp_delete_stored_link_key cp;
742
743                 bacpy(&cp.bdaddr, BDADDR_ANY);
744                 cp.delete_all = 0x01;
745                 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
746                             sizeof(cp), &cp);
747         }
748
749         /* Set event mask page 2 if the HCI command for it is supported */
750         if (hdev->commands[22] & 0x04)
751                 hci_set_event_mask_page_2(req);
752
753         /* Read local codec list if the HCI command is supported */
754         if (hdev->commands[29] & 0x20)
755                 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
756
757         /* Get MWS transport configuration if the HCI command is supported */
758         if (hdev->commands[30] & 0x08)
759                 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
760
761         /* Check for Synchronization Train support */
762         if (lmp_sync_train_capable(hdev))
763                 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
764
765         /* Enable Secure Connections if supported and configured */
766         if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
767             bredr_sc_enabled(hdev)) {
768                 u8 support = 0x01;
769
770                 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
771                             sizeof(support), &support);
772         }
773
774         return 0;
775 }
776
777 static int __hci_init(struct hci_dev *hdev)
778 {
779         int err;
780
781         err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
782         if (err < 0)
783                 return err;
784
785         if (hci_dev_test_flag(hdev, HCI_SETUP))
786                 hci_debugfs_create_basic(hdev);
787
788         err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
789         if (err < 0)
790                 return err;
791
792         /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
793          * BR/EDR/LE type controllers. AMP controllers only need the
794          * first two stages of init.
795          */
796         if (hdev->dev_type != HCI_PRIMARY)
797                 return 0;
798
799         err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
800         if (err < 0)
801                 return err;
802
803         err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
804         if (err < 0)
805                 return err;
806
807         /* This function is only called when the controller is actually in
808          * configured state. When the controller is marked as unconfigured,
809          * this initialization procedure is not run.
810          *
811          * It means that it is possible that a controller runs through its
812          * setup phase and then discovers missing settings. If that is the
813          * case, then this function will not be called. It then will only
814          * be called during the config phase.
815          *
816          * So only when in setup phase or config phase, create the debugfs
817          * entries and register the SMP channels.
818          */
819         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
820             !hci_dev_test_flag(hdev, HCI_CONFIG))
821                 return 0;
822
823         hci_debugfs_create_common(hdev);
824
825         if (lmp_bredr_capable(hdev))
826                 hci_debugfs_create_bredr(hdev);
827
828         if (lmp_le_capable(hdev))
829                 hci_debugfs_create_le(hdev);
830
831         return 0;
832 }
833
834 static int hci_init0_req(struct hci_request *req, unsigned long opt)
835 {
836         struct hci_dev *hdev = req->hdev;
837
838         BT_DBG("%s %ld", hdev->name, opt);
839
840         /* Reset */
841         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
842                 hci_reset_req(req, 0);
843
844         /* Read Local Version */
845         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
846
847         /* Read BD Address */
848         if (hdev->set_bdaddr)
849                 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
850
851         return 0;
852 }
853
854 static int __hci_unconf_init(struct hci_dev *hdev)
855 {
856         int err;
857
858         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
859                 return 0;
860
861         err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
862         if (err < 0)
863                 return err;
864
865         if (hci_dev_test_flag(hdev, HCI_SETUP))
866                 hci_debugfs_create_basic(hdev);
867
868         return 0;
869 }
870
871 static int hci_scan_req(struct hci_request *req, unsigned long opt)
872 {
873         __u8 scan = opt;
874
875         BT_DBG("%s %x", req->hdev->name, scan);
876
877         /* Inquiry and Page scans */
878         hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
879         return 0;
880 }
881
882 static int hci_auth_req(struct hci_request *req, unsigned long opt)
883 {
884         __u8 auth = opt;
885
886         BT_DBG("%s %x", req->hdev->name, auth);
887
888         /* Authentication */
889         hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
890         return 0;
891 }
892
893 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
894 {
895         __u8 encrypt = opt;
896
897         BT_DBG("%s %x", req->hdev->name, encrypt);
898
899         /* Encryption */
900         hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
901         return 0;
902 }
903
904 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
905 {
906         __le16 policy = cpu_to_le16(opt);
907
908         BT_DBG("%s %x", req->hdev->name, policy);
909
910         /* Default link policy */
911         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
912         return 0;
913 }
914
915 /* Get HCI device by index.
916  * Device is held on return. */
917 struct hci_dev *hci_dev_get(int index)
918 {
919         struct hci_dev *hdev = NULL, *d;
920
921         BT_DBG("%d", index);
922
923         if (index < 0)
924                 return NULL;
925
926         read_lock(&hci_dev_list_lock);
927         list_for_each_entry(d, &hci_dev_list, list) {
928                 if (d->id == index) {
929                         hdev = hci_dev_hold(d);
930                         break;
931                 }
932         }
933         read_unlock(&hci_dev_list_lock);
934         return hdev;
935 }
936
937 /* ---- Inquiry support ---- */
938
939 bool hci_discovery_active(struct hci_dev *hdev)
940 {
941         struct discovery_state *discov = &hdev->discovery;
942
943         switch (discov->state) {
944         case DISCOVERY_FINDING:
945         case DISCOVERY_RESOLVING:
946                 return true;
947
948         default:
949                 return false;
950         }
951 }
952
953 void hci_discovery_set_state(struct hci_dev *hdev, int state)
954 {
955         int old_state = hdev->discovery.state;
956
957         BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
958
959         if (old_state == state)
960                 return;
961
962         hdev->discovery.state = state;
963
964         switch (state) {
965         case DISCOVERY_STOPPED:
966                 hci_update_background_scan(hdev);
967
968                 if (old_state != DISCOVERY_STARTING)
969                         mgmt_discovering(hdev, 0);
970                 break;
971         case DISCOVERY_STARTING:
972                 break;
973         case DISCOVERY_FINDING:
974                 mgmt_discovering(hdev, 1);
975                 break;
976         case DISCOVERY_RESOLVING:
977                 break;
978         case DISCOVERY_STOPPING:
979                 break;
980         }
981 }
982
983 void hci_inquiry_cache_flush(struct hci_dev *hdev)
984 {
985         struct discovery_state *cache = &hdev->discovery;
986         struct inquiry_entry *p, *n;
987
988         list_for_each_entry_safe(p, n, &cache->all, all) {
989                 list_del(&p->all);
990                 kfree(p);
991         }
992
993         INIT_LIST_HEAD(&cache->unknown);
994         INIT_LIST_HEAD(&cache->resolve);
995 }
996
997 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
998                                                bdaddr_t *bdaddr)
999 {
1000         struct discovery_state *cache = &hdev->discovery;
1001         struct inquiry_entry *e;
1002
1003         BT_DBG("cache %p, %pMR", cache, bdaddr);
1004
1005         list_for_each_entry(e, &cache->all, all) {
1006                 if (!bacmp(&e->data.bdaddr, bdaddr))
1007                         return e;
1008         }
1009
1010         return NULL;
1011 }
1012
1013 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1014                                                        bdaddr_t *bdaddr)
1015 {
1016         struct discovery_state *cache = &hdev->discovery;
1017         struct inquiry_entry *e;
1018
1019         BT_DBG("cache %p, %pMR", cache, bdaddr);
1020
1021         list_for_each_entry(e, &cache->unknown, list) {
1022                 if (!bacmp(&e->data.bdaddr, bdaddr))
1023                         return e;
1024         }
1025
1026         return NULL;
1027 }
1028
1029 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1030                                                        bdaddr_t *bdaddr,
1031                                                        int state)
1032 {
1033         struct discovery_state *cache = &hdev->discovery;
1034         struct inquiry_entry *e;
1035
1036         BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1037
1038         list_for_each_entry(e, &cache->resolve, list) {
1039                 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1040                         return e;
1041                 if (!bacmp(&e->data.bdaddr, bdaddr))
1042                         return e;
1043         }
1044
1045         return NULL;
1046 }
1047
1048 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1049                                       struct inquiry_entry *ie)
1050 {
1051         struct discovery_state *cache = &hdev->discovery;
1052         struct list_head *pos = &cache->resolve;
1053         struct inquiry_entry *p;
1054
1055         list_del(&ie->list);
1056
1057         list_for_each_entry(p, &cache->resolve, list) {
1058                 if (p->name_state != NAME_PENDING &&
1059                     abs(p->data.rssi) >= abs(ie->data.rssi))
1060                         break;
1061                 pos = &p->list;
1062         }
1063
1064         list_add(&ie->list, pos);
1065 }
1066
1067 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1068                              bool name_known)
1069 {
1070         struct discovery_state *cache = &hdev->discovery;
1071         struct inquiry_entry *ie;
1072         u32 flags = 0;
1073
1074         BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1075
1076         hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1077
1078         if (!data->ssp_mode)
1079                 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1080
1081         ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1082         if (ie) {
1083                 if (!ie->data.ssp_mode)
1084                         flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1085
1086                 if (ie->name_state == NAME_NEEDED &&
1087                     data->rssi != ie->data.rssi) {
1088                         ie->data.rssi = data->rssi;
1089                         hci_inquiry_cache_update_resolve(hdev, ie);
1090                 }
1091
1092                 goto update;
1093         }
1094
1095         /* Entry not in the cache. Add new one. */
1096         ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1097         if (!ie) {
1098                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1099                 goto done;
1100         }
1101
1102         list_add(&ie->all, &cache->all);
1103
1104         if (name_known) {
1105                 ie->name_state = NAME_KNOWN;
1106         } else {
1107                 ie->name_state = NAME_NOT_KNOWN;
1108                 list_add(&ie->list, &cache->unknown);
1109         }
1110
1111 update:
1112         if (name_known && ie->name_state != NAME_KNOWN &&
1113             ie->name_state != NAME_PENDING) {
1114                 ie->name_state = NAME_KNOWN;
1115                 list_del(&ie->list);
1116         }
1117
1118         memcpy(&ie->data, data, sizeof(*data));
1119         ie->timestamp = jiffies;
1120         cache->timestamp = jiffies;
1121
1122         if (ie->name_state == NAME_NOT_KNOWN)
1123                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1124
1125 done:
1126         return flags;
1127 }
1128
1129 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1130 {
1131         struct discovery_state *cache = &hdev->discovery;
1132         struct inquiry_info *info = (struct inquiry_info *) buf;
1133         struct inquiry_entry *e;
1134         int copied = 0;
1135
1136         list_for_each_entry(e, &cache->all, all) {
1137                 struct inquiry_data *data = &e->data;
1138
1139                 if (copied >= num)
1140                         break;
1141
1142                 bacpy(&info->bdaddr, &data->bdaddr);
1143                 info->pscan_rep_mode    = data->pscan_rep_mode;
1144                 info->pscan_period_mode = data->pscan_period_mode;
1145                 info->pscan_mode        = data->pscan_mode;
1146                 memcpy(info->dev_class, data->dev_class, 3);
1147                 info->clock_offset      = data->clock_offset;
1148
1149                 info++;
1150                 copied++;
1151         }
1152
1153         BT_DBG("cache %p, copied %d", cache, copied);
1154         return copied;
1155 }
1156
1157 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1158 {
1159         struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1160         struct hci_dev *hdev = req->hdev;
1161         struct hci_cp_inquiry cp;
1162
1163         BT_DBG("%s", hdev->name);
1164
1165         if (test_bit(HCI_INQUIRY, &hdev->flags))
1166                 return 0;
1167
1168         /* Start Inquiry */
1169         memcpy(&cp.lap, &ir->lap, 3);
1170         cp.length  = ir->length;
1171         cp.num_rsp = ir->num_rsp;
1172         hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1173
1174         return 0;
1175 }
1176
1177 int hci_inquiry(void __user *arg)
1178 {
1179         __u8 __user *ptr = arg;
1180         struct hci_inquiry_req ir;
1181         struct hci_dev *hdev;
1182         int err = 0, do_inquiry = 0, max_rsp;
1183         long timeo;
1184         __u8 *buf;
1185
1186         if (copy_from_user(&ir, ptr, sizeof(ir)))
1187                 return -EFAULT;
1188
1189         hdev = hci_dev_get(ir.dev_id);
1190         if (!hdev)
1191                 return -ENODEV;
1192
1193         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1194                 err = -EBUSY;
1195                 goto done;
1196         }
1197
1198         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1199                 err = -EOPNOTSUPP;
1200                 goto done;
1201         }
1202
1203         if (hdev->dev_type != HCI_PRIMARY) {
1204                 err = -EOPNOTSUPP;
1205                 goto done;
1206         }
1207
1208         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1209                 err = -EOPNOTSUPP;
1210                 goto done;
1211         }
1212
1213         hci_dev_lock(hdev);
1214         if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1215             inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1216                 hci_inquiry_cache_flush(hdev);
1217                 do_inquiry = 1;
1218         }
1219         hci_dev_unlock(hdev);
1220
1221         timeo = ir.length * msecs_to_jiffies(2000);
1222
1223         if (do_inquiry) {
1224                 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1225                                    timeo, NULL);
1226                 if (err < 0)
1227                         goto done;
1228
1229                 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1230                  * cleared). If it is interrupted by a signal, return -EINTR.
1231                  */
1232                 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1233                                 TASK_INTERRUPTIBLE))
1234                         return -EINTR;
1235         }
1236
1237         /* for unlimited number of responses we will use buffer with
1238          * 255 entries
1239          */
1240         max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1241
1242         /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1243          * copy it to the user space.
1244          */
1245         buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1246         if (!buf) {
1247                 err = -ENOMEM;
1248                 goto done;
1249         }
1250
1251         hci_dev_lock(hdev);
1252         ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1253         hci_dev_unlock(hdev);
1254
1255         BT_DBG("num_rsp %d", ir.num_rsp);
1256
1257         if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1258                 ptr += sizeof(ir);
1259                 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1260                                  ir.num_rsp))
1261                         err = -EFAULT;
1262         } else
1263                 err = -EFAULT;
1264
1265         kfree(buf);
1266
1267 done:
1268         hci_dev_put(hdev);
1269         return err;
1270 }
1271
1272 static int hci_dev_do_open(struct hci_dev *hdev)
1273 {
1274         int ret = 0;
1275
1276         BT_DBG("%s %p", hdev->name, hdev);
1277
1278         hci_req_sync_lock(hdev);
1279
1280         if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1281                 ret = -ENODEV;
1282                 goto done;
1283         }
1284
1285         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1286             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1287                 /* Check for rfkill but allow the HCI setup stage to
1288                  * proceed (which in itself doesn't cause any RF activity).
1289                  */
1290                 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1291                         ret = -ERFKILL;
1292                         goto done;
1293                 }
1294
1295                 /* Check for valid public address or a configured static
1296                  * random adddress, but let the HCI setup proceed to
1297                  * be able to determine if there is a public address
1298                  * or not.
1299                  *
1300                  * In case of user channel usage, it is not important
1301                  * if a public address or static random address is
1302                  * available.
1303                  *
1304                  * This check is only valid for BR/EDR controllers
1305                  * since AMP controllers do not have an address.
1306                  */
1307                 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1308                     hdev->dev_type == HCI_PRIMARY &&
1309                     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1310                     !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1311                         ret = -EADDRNOTAVAIL;
1312                         goto done;
1313                 }
1314         }
1315
1316         if (test_bit(HCI_UP, &hdev->flags)) {
1317                 ret = -EALREADY;
1318                 goto done;
1319         }
1320
1321         if (hdev->open(hdev)) {
1322                 ret = -EIO;
1323                 goto done;
1324         }
1325
1326         set_bit(HCI_RUNNING, &hdev->flags);
1327         hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1328
1329         atomic_set(&hdev->cmd_cnt, 1);
1330         set_bit(HCI_INIT, &hdev->flags);
1331
1332         if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1333                 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1334
1335                 if (hdev->setup)
1336                         ret = hdev->setup(hdev);
1337
1338                 /* The transport driver can set these quirks before
1339                  * creating the HCI device or in its setup callback.
1340                  *
1341                  * In case any of them is set, the controller has to
1342                  * start up as unconfigured.
1343                  */
1344                 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1345                     test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1346                         hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1347
1348                 /* For an unconfigured controller it is required to
1349                  * read at least the version information provided by
1350                  * the Read Local Version Information command.
1351                  *
1352                  * If the set_bdaddr driver callback is provided, then
1353                  * also the original Bluetooth public device address
1354                  * will be read using the Read BD Address command.
1355                  */
1356                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1357                         ret = __hci_unconf_init(hdev);
1358         }
1359
1360         if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1361                 /* If public address change is configured, ensure that
1362                  * the address gets programmed. If the driver does not
1363                  * support changing the public address, fail the power
1364                  * on procedure.
1365                  */
1366                 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1367                     hdev->set_bdaddr)
1368                         ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1369                 else
1370                         ret = -EADDRNOTAVAIL;
1371         }
1372
1373         if (!ret) {
1374                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1375                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1376                         ret = __hci_init(hdev);
1377                         if (!ret && hdev->post_init)
1378                                 ret = hdev->post_init(hdev);
1379                 }
1380         }
1381
1382         /* If the HCI Reset command is clearing all diagnostic settings,
1383          * then they need to be reprogrammed after the init procedure
1384          * completed.
1385          */
1386         if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1387             hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1388                 ret = hdev->set_diag(hdev, true);
1389
1390         clear_bit(HCI_INIT, &hdev->flags);
1391
1392         if (!ret) {
1393                 hci_dev_hold(hdev);
1394                 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1395                 set_bit(HCI_UP, &hdev->flags);
1396                 hci_sock_dev_event(hdev, HCI_DEV_UP);
1397                 hci_leds_update_powered(hdev, true);
1398                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399                     !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1400                     !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1401                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1402                     hci_dev_test_flag(hdev, HCI_MGMT) &&
1403                     hdev->dev_type == HCI_PRIMARY) {
1404                         ret = __hci_req_hci_power_on(hdev);
1405                         mgmt_power_on(hdev, ret);
1406                 }
1407         } else {
1408                 /* Init failed, cleanup */
1409                 flush_work(&hdev->tx_work);
1410                 flush_work(&hdev->cmd_work);
1411                 flush_work(&hdev->rx_work);
1412
1413                 skb_queue_purge(&hdev->cmd_q);
1414                 skb_queue_purge(&hdev->rx_q);
1415
1416                 if (hdev->flush)
1417                         hdev->flush(hdev);
1418
1419                 if (hdev->sent_cmd) {
1420                         kfree_skb(hdev->sent_cmd);
1421                         hdev->sent_cmd = NULL;
1422                 }
1423
1424                 clear_bit(HCI_RUNNING, &hdev->flags);
1425                 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1426
1427                 hdev->close(hdev);
1428                 hdev->flags &= BIT(HCI_RAW);
1429         }
1430
1431 done:
1432         hci_req_sync_unlock(hdev);
1433         return ret;
1434 }
1435
1436 /* ---- HCI ioctl helpers ---- */
1437
1438 int hci_dev_open(__u16 dev)
1439 {
1440         struct hci_dev *hdev;
1441         int err;
1442
1443         hdev = hci_dev_get(dev);
1444         if (!hdev)
1445                 return -ENODEV;
1446
1447         /* Devices that are marked as unconfigured can only be powered
1448          * up as user channel. Trying to bring them up as normal devices
1449          * will result into a failure. Only user channel operation is
1450          * possible.
1451          *
1452          * When this function is called for a user channel, the flag
1453          * HCI_USER_CHANNEL will be set first before attempting to
1454          * open the device.
1455          */
1456         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1457             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1458                 err = -EOPNOTSUPP;
1459                 goto done;
1460         }
1461
1462         /* We need to ensure that no other power on/off work is pending
1463          * before proceeding to call hci_dev_do_open. This is
1464          * particularly important if the setup procedure has not yet
1465          * completed.
1466          */
1467         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1468                 cancel_delayed_work(&hdev->power_off);
1469
1470         /* After this call it is guaranteed that the setup procedure
1471          * has finished. This means that error conditions like RFKILL
1472          * or no valid public or static random address apply.
1473          */
1474         flush_workqueue(hdev->req_workqueue);
1475
1476         /* For controllers not using the management interface and that
1477          * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1478          * so that pairing works for them. Once the management interface
1479          * is in use this bit will be cleared again and userspace has
1480          * to explicitly enable it.
1481          */
1482         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1483             !hci_dev_test_flag(hdev, HCI_MGMT))
1484                 hci_dev_set_flag(hdev, HCI_BONDABLE);
1485
1486         err = hci_dev_do_open(hdev);
1487
1488 done:
1489         hci_dev_put(hdev);
1490         return err;
1491 }
1492
1493 /* This function requires the caller holds hdev->lock */
1494 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1495 {
1496         struct hci_conn_params *p;
1497
1498         list_for_each_entry(p, &hdev->le_conn_params, list) {
1499                 if (p->conn) {
1500                         hci_conn_drop(p->conn);
1501                         hci_conn_put(p->conn);
1502                         p->conn = NULL;
1503                 }
1504                 list_del_init(&p->action);
1505         }
1506
1507         BT_DBG("All LE pending actions cleared");
1508 }
1509
1510 int hci_dev_do_close(struct hci_dev *hdev)
1511 {
1512         bool auto_off;
1513
1514         BT_DBG("%s %p", hdev->name, hdev);
1515
1516         if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1517             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1518             test_bit(HCI_UP, &hdev->flags)) {
1519                 /* Execute vendor specific shutdown routine */
1520                 if (hdev->shutdown)
1521                         hdev->shutdown(hdev);
1522         }
1523
1524         cancel_delayed_work(&hdev->power_off);
1525
1526         hci_request_cancel_all(hdev);
1527         hci_req_sync_lock(hdev);
1528
1529         if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1530                 cancel_delayed_work_sync(&hdev->cmd_timer);
1531                 hci_req_sync_unlock(hdev);
1532                 return 0;
1533         }
1534
1535         hci_leds_update_powered(hdev, false);
1536
1537         /* Flush RX and TX works */
1538         flush_work(&hdev->tx_work);
1539         flush_work(&hdev->rx_work);
1540
1541         if (hdev->discov_timeout > 0) {
1542                 hdev->discov_timeout = 0;
1543                 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1544                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1545         }
1546
1547         if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1548                 cancel_delayed_work(&hdev->service_cache);
1549
1550         if (hci_dev_test_flag(hdev, HCI_MGMT))
1551                 cancel_delayed_work_sync(&hdev->rpa_expired);
1552
1553         /* Avoid potential lockdep warnings from the *_flush() calls by
1554          * ensuring the workqueue is empty up front.
1555          */
1556         drain_workqueue(hdev->workqueue);
1557
1558         hci_dev_lock(hdev);
1559
1560         hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1561
1562         auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1563
1564         if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1565             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1566             hci_dev_test_flag(hdev, HCI_MGMT))
1567                 __mgmt_power_off(hdev);
1568
1569         hci_inquiry_cache_flush(hdev);
1570         hci_pend_le_actions_clear(hdev);
1571         hci_conn_hash_flush(hdev);
1572         hci_dev_unlock(hdev);
1573
1574         smp_unregister(hdev);
1575
1576         hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1577
1578         if (hdev->flush)
1579                 hdev->flush(hdev);
1580
1581         /* Reset device */
1582         skb_queue_purge(&hdev->cmd_q);
1583         atomic_set(&hdev->cmd_cnt, 1);
1584         if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1585             !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1586                 set_bit(HCI_INIT, &hdev->flags);
1587                 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1588                 clear_bit(HCI_INIT, &hdev->flags);
1589         }
1590
1591         /* flush cmd  work */
1592         flush_work(&hdev->cmd_work);
1593
1594         /* Drop queues */
1595         skb_queue_purge(&hdev->rx_q);
1596         skb_queue_purge(&hdev->cmd_q);
1597         skb_queue_purge(&hdev->raw_q);
1598
1599         /* Drop last sent command */
1600         if (hdev->sent_cmd) {
1601                 cancel_delayed_work_sync(&hdev->cmd_timer);
1602                 kfree_skb(hdev->sent_cmd);
1603                 hdev->sent_cmd = NULL;
1604         }
1605
1606         clear_bit(HCI_RUNNING, &hdev->flags);
1607         hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1608
1609         /* After this point our queues are empty
1610          * and no tasks are scheduled. */
1611         hdev->close(hdev);
1612
1613         /* Clear flags */
1614         hdev->flags &= BIT(HCI_RAW);
1615         hci_dev_clear_volatile_flags(hdev);
1616
1617         /* Controller radio is available but is currently powered down */
1618         hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1619
1620         memset(hdev->eir, 0, sizeof(hdev->eir));
1621         memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1622         bacpy(&hdev->random_addr, BDADDR_ANY);
1623
1624         hci_req_sync_unlock(hdev);
1625
1626         hci_dev_put(hdev);
1627         return 0;
1628 }
1629
1630 int hci_dev_close(__u16 dev)
1631 {
1632         struct hci_dev *hdev;
1633         int err;
1634
1635         hdev = hci_dev_get(dev);
1636         if (!hdev)
1637                 return -ENODEV;
1638
1639         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1640                 err = -EBUSY;
1641                 goto done;
1642         }
1643
1644         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1645                 cancel_delayed_work(&hdev->power_off);
1646
1647         err = hci_dev_do_close(hdev);
1648
1649 done:
1650         hci_dev_put(hdev);
1651         return err;
1652 }
1653
1654 static int hci_dev_do_reset(struct hci_dev *hdev)
1655 {
1656         int ret;
1657
1658         BT_DBG("%s %p", hdev->name, hdev);
1659
1660         hci_req_sync_lock(hdev);
1661
1662         /* Drop queues */
1663         skb_queue_purge(&hdev->rx_q);
1664         skb_queue_purge(&hdev->cmd_q);
1665
1666         /* Avoid potential lockdep warnings from the *_flush() calls by
1667          * ensuring the workqueue is empty up front.
1668          */
1669         drain_workqueue(hdev->workqueue);
1670
1671         hci_dev_lock(hdev);
1672         hci_inquiry_cache_flush(hdev);
1673         hci_conn_hash_flush(hdev);
1674         hci_dev_unlock(hdev);
1675
1676         if (hdev->flush)
1677                 hdev->flush(hdev);
1678
1679         atomic_set(&hdev->cmd_cnt, 1);
1680         hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1681
1682         ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1683
1684         hci_req_sync_unlock(hdev);
1685         return ret;
1686 }
1687
1688 int hci_dev_reset(__u16 dev)
1689 {
1690         struct hci_dev *hdev;
1691         int err;
1692
1693         hdev = hci_dev_get(dev);
1694         if (!hdev)
1695                 return -ENODEV;
1696
1697         if (!test_bit(HCI_UP, &hdev->flags)) {
1698                 err = -ENETDOWN;
1699                 goto done;
1700         }
1701
1702         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1703                 err = -EBUSY;
1704                 goto done;
1705         }
1706
1707         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1708                 err = -EOPNOTSUPP;
1709                 goto done;
1710         }
1711
1712         err = hci_dev_do_reset(hdev);
1713
1714 done:
1715         hci_dev_put(hdev);
1716         return err;
1717 }
1718
1719 int hci_dev_reset_stat(__u16 dev)
1720 {
1721         struct hci_dev *hdev;
1722         int ret = 0;
1723
1724         hdev = hci_dev_get(dev);
1725         if (!hdev)
1726                 return -ENODEV;
1727
1728         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1729                 ret = -EBUSY;
1730                 goto done;
1731         }
1732
1733         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1734                 ret = -EOPNOTSUPP;
1735                 goto done;
1736         }
1737
1738         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1739
1740 done:
1741         hci_dev_put(hdev);
1742         return ret;
1743 }
1744
1745 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1746 {
1747         bool conn_changed, discov_changed;
1748
1749         BT_DBG("%s scan 0x%02x", hdev->name, scan);
1750
1751         if ((scan & SCAN_PAGE))
1752                 conn_changed = !hci_dev_test_and_set_flag(hdev,
1753                                                           HCI_CONNECTABLE);
1754         else
1755                 conn_changed = hci_dev_test_and_clear_flag(hdev,
1756                                                            HCI_CONNECTABLE);
1757
1758         if ((scan & SCAN_INQUIRY)) {
1759                 discov_changed = !hci_dev_test_and_set_flag(hdev,
1760                                                             HCI_DISCOVERABLE);
1761         } else {
1762                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1763                 discov_changed = hci_dev_test_and_clear_flag(hdev,
1764                                                              HCI_DISCOVERABLE);
1765         }
1766
1767         if (!hci_dev_test_flag(hdev, HCI_MGMT))
1768                 return;
1769
1770         if (conn_changed || discov_changed) {
1771                 /* In case this was disabled through mgmt */
1772                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1773
1774                 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1775                         hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1776
1777                 mgmt_new_settings(hdev);
1778         }
1779 }
1780
1781 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1782 {
1783         struct hci_dev *hdev;
1784         struct hci_dev_req dr;
1785         int err = 0;
1786
1787         if (copy_from_user(&dr, arg, sizeof(dr)))
1788                 return -EFAULT;
1789
1790         hdev = hci_dev_get(dr.dev_id);
1791         if (!hdev)
1792                 return -ENODEV;
1793
1794         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1795                 err = -EBUSY;
1796                 goto done;
1797         }
1798
1799         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1800                 err = -EOPNOTSUPP;
1801                 goto done;
1802         }
1803
1804         if (hdev->dev_type != HCI_PRIMARY) {
1805                 err = -EOPNOTSUPP;
1806                 goto done;
1807         }
1808
1809         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1810                 err = -EOPNOTSUPP;
1811                 goto done;
1812         }
1813
1814         switch (cmd) {
1815         case HCISETAUTH:
1816                 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1817                                    HCI_INIT_TIMEOUT, NULL);
1818                 break;
1819
1820         case HCISETENCRYPT:
1821                 if (!lmp_encrypt_capable(hdev)) {
1822                         err = -EOPNOTSUPP;
1823                         break;
1824                 }
1825
1826                 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1827                         /* Auth must be enabled first */
1828                         err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1829                                            HCI_INIT_TIMEOUT, NULL);
1830                         if (err)
1831                                 break;
1832                 }
1833
1834                 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1835                                    HCI_INIT_TIMEOUT, NULL);
1836                 break;
1837
1838         case HCISETSCAN:
1839                 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1840                                    HCI_INIT_TIMEOUT, NULL);
1841
1842                 /* Ensure that the connectable and discoverable states
1843                  * get correctly modified as this was a non-mgmt change.
1844                  */
1845                 if (!err)
1846                         hci_update_scan_state(hdev, dr.dev_opt);
1847                 break;
1848
1849         case HCISETLINKPOL:
1850                 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1851                                    HCI_INIT_TIMEOUT, NULL);
1852                 break;
1853
1854         case HCISETLINKMODE:
1855                 hdev->link_mode = ((__u16) dr.dev_opt) &
1856                                         (HCI_LM_MASTER | HCI_LM_ACCEPT);
1857                 break;
1858
1859         case HCISETPTYPE:
1860                 hdev->pkt_type = (__u16) dr.dev_opt;
1861                 break;
1862
1863         case HCISETACLMTU:
1864                 hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1865                 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1866                 break;
1867
1868         case HCISETSCOMTU:
1869                 hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1870                 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1871                 break;
1872
1873         default:
1874                 err = -EINVAL;
1875                 break;
1876         }
1877
1878 done:
1879         hci_dev_put(hdev);
1880         return err;
1881 }
1882
1883 int hci_get_dev_list(void __user *arg)
1884 {
1885         struct hci_dev *hdev;
1886         struct hci_dev_list_req *dl;
1887         struct hci_dev_req *dr;
1888         int n = 0, size, err;
1889         __u16 dev_num;
1890
1891         if (get_user(dev_num, (__u16 __user *) arg))
1892                 return -EFAULT;
1893
1894         if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1895                 return -EINVAL;
1896
1897         size = sizeof(*dl) + dev_num * sizeof(*dr);
1898
1899         dl = kzalloc(size, GFP_KERNEL);
1900         if (!dl)
1901                 return -ENOMEM;
1902
1903         dr = dl->dev_req;
1904
1905         read_lock(&hci_dev_list_lock);
1906         list_for_each_entry(hdev, &hci_dev_list, list) {
1907                 unsigned long flags = hdev->flags;
1908
1909                 /* When the auto-off is configured it means the transport
1910                  * is running, but in that case still indicate that the
1911                  * device is actually down.
1912                  */
1913                 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1914                         flags &= ~BIT(HCI_UP);
1915
1916                 (dr + n)->dev_id  = hdev->id;
1917                 (dr + n)->dev_opt = flags;
1918
1919                 if (++n >= dev_num)
1920                         break;
1921         }
1922         read_unlock(&hci_dev_list_lock);
1923
1924         dl->dev_num = n;
1925         size = sizeof(*dl) + n * sizeof(*dr);
1926
1927         err = copy_to_user(arg, dl, size);
1928         kfree(dl);
1929
1930         return err ? -EFAULT : 0;
1931 }
1932
1933 int hci_get_dev_info(void __user *arg)
1934 {
1935         struct hci_dev *hdev;
1936         struct hci_dev_info di;
1937         unsigned long flags;
1938         int err = 0;
1939
1940         if (copy_from_user(&di, arg, sizeof(di)))
1941                 return -EFAULT;
1942
1943         hdev = hci_dev_get(di.dev_id);
1944         if (!hdev)
1945                 return -ENODEV;
1946
1947         /* When the auto-off is configured it means the transport
1948          * is running, but in that case still indicate that the
1949          * device is actually down.
1950          */
1951         if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1952                 flags = hdev->flags & ~BIT(HCI_UP);
1953         else
1954                 flags = hdev->flags;
1955
1956         strcpy(di.name, hdev->name);
1957         di.bdaddr   = hdev->bdaddr;
1958         di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1959         di.flags    = flags;
1960         di.pkt_type = hdev->pkt_type;
1961         if (lmp_bredr_capable(hdev)) {
1962                 di.acl_mtu  = hdev->acl_mtu;
1963                 di.acl_pkts = hdev->acl_pkts;
1964                 di.sco_mtu  = hdev->sco_mtu;
1965                 di.sco_pkts = hdev->sco_pkts;
1966         } else {
1967                 di.acl_mtu  = hdev->le_mtu;
1968                 di.acl_pkts = hdev->le_pkts;
1969                 di.sco_mtu  = 0;
1970                 di.sco_pkts = 0;
1971         }
1972         di.link_policy = hdev->link_policy;
1973         di.link_mode   = hdev->link_mode;
1974
1975         memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1976         memcpy(&di.features, &hdev->features, sizeof(di.features));
1977
1978         if (copy_to_user(arg, &di, sizeof(di)))
1979                 err = -EFAULT;
1980
1981         hci_dev_put(hdev);
1982
1983         return err;
1984 }
1985
1986 /* ---- Interface to HCI drivers ---- */
1987
1988 static int hci_rfkill_set_block(void *data, bool blocked)
1989 {
1990         struct hci_dev *hdev = data;
1991
1992         BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1993
1994         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1995                 return -EBUSY;
1996
1997         if (blocked) {
1998                 hci_dev_set_flag(hdev, HCI_RFKILLED);
1999                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2000                     !hci_dev_test_flag(hdev, HCI_CONFIG))
2001                         hci_dev_do_close(hdev);
2002         } else {
2003                 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2004         }
2005
2006         return 0;
2007 }
2008
2009 static const struct rfkill_ops hci_rfkill_ops = {
2010         .set_block = hci_rfkill_set_block,
2011 };
2012
2013 static void hci_power_on(struct work_struct *work)
2014 {
2015         struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2016         int err;
2017
2018         BT_DBG("%s", hdev->name);
2019
2020         if (test_bit(HCI_UP, &hdev->flags) &&
2021             hci_dev_test_flag(hdev, HCI_MGMT) &&
2022             hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2023                 cancel_delayed_work(&hdev->power_off);
2024                 hci_req_sync_lock(hdev);
2025                 err = __hci_req_hci_power_on(hdev);
2026                 hci_req_sync_unlock(hdev);
2027                 mgmt_power_on(hdev, err);
2028                 return;
2029         }
2030
2031         err = hci_dev_do_open(hdev);
2032         if (err < 0) {
2033                 hci_dev_lock(hdev);
2034                 mgmt_set_powered_failed(hdev, err);
2035                 hci_dev_unlock(hdev);
2036                 return;
2037         }
2038
2039         /* During the HCI setup phase, a few error conditions are
2040          * ignored and they need to be checked now. If they are still
2041          * valid, it is important to turn the device back off.
2042          */
2043         if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2044             hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2045             (hdev->dev_type == HCI_PRIMARY &&
2046              !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2047              !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2048                 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2049                 hci_dev_do_close(hdev);
2050         } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2051                 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2052                                    HCI_AUTO_OFF_TIMEOUT);
2053         }
2054
2055         if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2056                 /* For unconfigured devices, set the HCI_RAW flag
2057                  * so that userspace can easily identify them.
2058                  */
2059                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2060                         set_bit(HCI_RAW, &hdev->flags);
2061
2062                 /* For fully configured devices, this will send
2063                  * the Index Added event. For unconfigured devices,
2064                  * it will send Unconfigued Index Added event.
2065                  *
2066                  * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2067                  * and no event will be send.
2068                  */
2069                 mgmt_index_added(hdev);
2070         } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2071                 /* When the controller is now configured, then it
2072                  * is important to clear the HCI_RAW flag.
2073                  */
2074                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2075                         clear_bit(HCI_RAW, &hdev->flags);
2076
2077                 /* Powering on the controller with HCI_CONFIG set only
2078                  * happens with the transition from unconfigured to
2079                  * configured. This will send the Index Added event.
2080                  */
2081                 mgmt_index_added(hdev);
2082         }
2083 }
2084
2085 static void hci_power_off(struct work_struct *work)
2086 {
2087         struct hci_dev *hdev = container_of(work, struct hci_dev,
2088                                             power_off.work);
2089
2090         BT_DBG("%s", hdev->name);
2091
2092         hci_dev_do_close(hdev);
2093 }
2094
2095 static void hci_error_reset(struct work_struct *work)
2096 {
2097         struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2098
2099         BT_DBG("%s", hdev->name);
2100
2101         if (hdev->hw_error)
2102                 hdev->hw_error(hdev, hdev->hw_error_code);
2103         else
2104                 BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2105                        hdev->hw_error_code);
2106
2107         if (hci_dev_do_close(hdev))
2108                 return;
2109
2110         hci_dev_do_open(hdev);
2111 }
2112
2113 void hci_uuids_clear(struct hci_dev *hdev)
2114 {
2115         struct bt_uuid *uuid, *tmp;
2116
2117         list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2118                 list_del(&uuid->list);
2119                 kfree(uuid);
2120         }
2121 }
2122
2123 void hci_link_keys_clear(struct hci_dev *hdev)
2124 {
2125         struct link_key *key;
2126
2127         list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2128                 list_del_rcu(&key->list);
2129                 kfree_rcu(key, rcu);
2130         }
2131 }
2132
2133 void hci_smp_ltks_clear(struct hci_dev *hdev)
2134 {
2135         struct smp_ltk *k;
2136
2137         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2138                 list_del_rcu(&k->list);
2139                 kfree_rcu(k, rcu);
2140         }
2141 }
2142
2143 void hci_smp_irks_clear(struct hci_dev *hdev)
2144 {
2145         struct smp_irk *k;
2146
2147         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2148                 list_del_rcu(&k->list);
2149                 kfree_rcu(k, rcu);
2150         }
2151 }
2152
2153 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2154 {
2155         struct link_key *k;
2156
2157         rcu_read_lock();
2158         list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2159                 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2160                         rcu_read_unlock();
2161                         return k;
2162                 }
2163         }
2164         rcu_read_unlock();
2165
2166         return NULL;
2167 }
2168
2169 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2170                                u8 key_type, u8 old_key_type)
2171 {
2172         /* Legacy key */
2173         if (key_type < 0x03)
2174                 return true;
2175
2176         /* Debug keys are insecure so don't store them persistently */
2177         if (key_type == HCI_LK_DEBUG_COMBINATION)
2178                 return false;
2179
2180         /* Changed combination key and there's no previous one */
2181         if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2182                 return false;
2183
2184         /* Security mode 3 case */
2185         if (!conn)
2186                 return true;
2187
2188         /* BR/EDR key derived using SC from an LE link */
2189         if (conn->type == LE_LINK)
2190                 return true;
2191
2192         /* Neither local nor remote side had no-bonding as requirement */
2193         if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2194                 return true;
2195
2196         /* Local side had dedicated bonding as requirement */
2197         if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2198                 return true;
2199
2200         /* Remote side had dedicated bonding as requirement */
2201         if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2202                 return true;
2203
2204         /* If none of the above criteria match, then don't store the key
2205          * persistently */
2206         return false;
2207 }
2208
2209 static u8 ltk_role(u8 type)
2210 {
2211         if (type == SMP_LTK)
2212                 return HCI_ROLE_MASTER;
2213
2214         return HCI_ROLE_SLAVE;
2215 }
2216
2217 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2218                              u8 addr_type, u8 role)
2219 {
2220         struct smp_ltk *k;
2221
2222         rcu_read_lock();
2223         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2224                 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2225                         continue;
2226
2227                 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2228                         rcu_read_unlock();
2229                         return k;
2230                 }
2231         }
2232         rcu_read_unlock();
2233
2234         return NULL;
2235 }
2236
2237 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2238 {
2239         struct smp_irk *irk;
2240
2241         rcu_read_lock();
2242         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2243                 if (!bacmp(&irk->rpa, rpa)) {
2244                         rcu_read_unlock();
2245                         return irk;
2246                 }
2247         }
2248
2249         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2250                 if (smp_irk_matches(hdev, irk->val, rpa)) {
2251                         bacpy(&irk->rpa, rpa);
2252                         rcu_read_unlock();
2253                         return irk;
2254                 }
2255         }
2256         rcu_read_unlock();
2257
2258         return NULL;
2259 }
2260
2261 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2262                                      u8 addr_type)
2263 {
2264         struct smp_irk *irk;
2265
2266         /* Identity Address must be public or static random */
2267         if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2268                 return NULL;
2269
2270         rcu_read_lock();
2271         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2272                 if (addr_type == irk->addr_type &&
2273                     bacmp(bdaddr, &irk->bdaddr) == 0) {
2274                         rcu_read_unlock();
2275                         return irk;
2276                 }
2277         }
2278         rcu_read_unlock();
2279
2280         return NULL;
2281 }
2282
2283 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2284                                   bdaddr_t *bdaddr, u8 *val, u8 type,
2285                                   u8 pin_len, bool *persistent)
2286 {
2287         struct link_key *key, *old_key;
2288         u8 old_key_type;
2289
2290         old_key = hci_find_link_key(hdev, bdaddr);
2291         if (old_key) {
2292                 old_key_type = old_key->type;
2293                 key = old_key;
2294         } else {
2295                 old_key_type = conn ? conn->key_type : 0xff;
2296                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2297                 if (!key)
2298                         return NULL;
2299                 list_add_rcu(&key->list, &hdev->link_keys);
2300         }
2301
2302         BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2303
2304         /* Some buggy controller combinations generate a changed
2305          * combination key for legacy pairing even when there's no
2306          * previous key */
2307         if (type == HCI_LK_CHANGED_COMBINATION &&
2308             (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2309                 type = HCI_LK_COMBINATION;
2310                 if (conn)
2311                         conn->key_type = type;
2312         }
2313
2314         bacpy(&key->bdaddr, bdaddr);
2315         memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2316         key->pin_len = pin_len;
2317
2318         if (type == HCI_LK_CHANGED_COMBINATION)
2319                 key->type = old_key_type;
2320         else
2321                 key->type = type;
2322
2323         if (persistent)
2324                 *persistent = hci_persistent_key(hdev, conn, type,
2325                                                  old_key_type);
2326
2327         return key;
2328 }
2329
2330 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2331                             u8 addr_type, u8 type, u8 authenticated,
2332                             u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2333 {
2334         struct smp_ltk *key, *old_key;
2335         u8 role = ltk_role(type);
2336
2337         old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2338         if (old_key)
2339                 key = old_key;
2340         else {
2341                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2342                 if (!key)
2343                         return NULL;
2344                 list_add_rcu(&key->list, &hdev->long_term_keys);
2345         }
2346
2347         bacpy(&key->bdaddr, bdaddr);
2348         key->bdaddr_type = addr_type;
2349         memcpy(key->val, tk, sizeof(key->val));
2350         key->authenticated = authenticated;
2351         key->ediv = ediv;
2352         key->rand = rand;
2353         key->enc_size = enc_size;
2354         key->type = type;
2355
2356         return key;
2357 }
2358
2359 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2360                             u8 addr_type, u8 val[16], bdaddr_t *rpa)
2361 {
2362         struct smp_irk *irk;
2363
2364         irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2365         if (!irk) {
2366                 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2367                 if (!irk)
2368                         return NULL;
2369
2370                 bacpy(&irk->bdaddr, bdaddr);
2371                 irk->addr_type = addr_type;
2372
2373                 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2374         }
2375
2376         memcpy(irk->val, val, 16);
2377         bacpy(&irk->rpa, rpa);
2378
2379         return irk;
2380 }
2381
2382 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2383 {
2384         struct link_key *key;
2385
2386         key = hci_find_link_key(hdev, bdaddr);
2387         if (!key)
2388                 return -ENOENT;
2389
2390         BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2391
2392         list_del_rcu(&key->list);
2393         kfree_rcu(key, rcu);
2394
2395         return 0;
2396 }
2397
2398 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2399 {
2400         struct smp_ltk *k;
2401         int removed = 0;
2402
2403         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2404                 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2405                         continue;
2406
2407                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2408
2409                 list_del_rcu(&k->list);
2410                 kfree_rcu(k, rcu);
2411                 removed++;
2412         }
2413
2414         return removed ? 0 : -ENOENT;
2415 }
2416
2417 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2418 {
2419         struct smp_irk *k;
2420
2421         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2422                 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2423                         continue;
2424
2425                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2426
2427                 list_del_rcu(&k->list);
2428                 kfree_rcu(k, rcu);
2429         }
2430 }
2431
2432 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2433 {
2434         struct smp_ltk *k;
2435         struct smp_irk *irk;
2436         u8 addr_type;
2437
2438         if (type == BDADDR_BREDR) {
2439                 if (hci_find_link_key(hdev, bdaddr))
2440                         return true;
2441                 return false;
2442         }
2443
2444         /* Convert to HCI addr type which struct smp_ltk uses */
2445         if (type == BDADDR_LE_PUBLIC)
2446                 addr_type = ADDR_LE_DEV_PUBLIC;
2447         else
2448                 addr_type = ADDR_LE_DEV_RANDOM;
2449
2450         irk = hci_get_irk(hdev, bdaddr, addr_type);
2451         if (irk) {
2452                 bdaddr = &irk->bdaddr;
2453                 addr_type = irk->addr_type;
2454         }
2455
2456         rcu_read_lock();
2457         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2458                 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2459                         rcu_read_unlock();
2460                         return true;
2461                 }
2462         }
2463         rcu_read_unlock();
2464
2465         return false;
2466 }
2467
2468 /* HCI command timer function */
2469 static void hci_cmd_timeout(struct work_struct *work)
2470 {
2471         struct hci_dev *hdev = container_of(work, struct hci_dev,
2472                                             cmd_timer.work);
2473
2474         if (hdev->sent_cmd) {
2475                 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2476                 u16 opcode = __le16_to_cpu(sent->opcode);
2477
2478                 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2479         } else {
2480                 BT_ERR("%s command tx timeout", hdev->name);
2481         }
2482
2483         atomic_set(&hdev->cmd_cnt, 1);
2484         queue_work(hdev->workqueue, &hdev->cmd_work);
2485 }
2486
2487 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2488                                           bdaddr_t *bdaddr, u8 bdaddr_type)
2489 {
2490         struct oob_data *data;
2491
2492         list_for_each_entry(data, &hdev->remote_oob_data, list) {
2493                 if (bacmp(bdaddr, &data->bdaddr) != 0)
2494                         continue;
2495                 if (data->bdaddr_type != bdaddr_type)
2496                         continue;
2497                 return data;
2498         }
2499
2500         return NULL;
2501 }
2502
2503 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2504                                u8 bdaddr_type)
2505 {
2506         struct oob_data *data;
2507
2508         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2509         if (!data)
2510                 return -ENOENT;
2511
2512         BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2513
2514         list_del(&data->list);
2515         kfree(data);
2516
2517         return 0;
2518 }
2519
2520 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2521 {
2522         struct oob_data *data, *n;
2523
2524         list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2525                 list_del(&data->list);
2526                 kfree(data);
2527         }
2528 }
2529
2530 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2531                             u8 bdaddr_type, u8 *hash192, u8 *rand192,
2532                             u8 *hash256, u8 *rand256)
2533 {
2534         struct oob_data *data;
2535
2536         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2537         if (!data) {
2538                 data = kmalloc(sizeof(*data), GFP_KERNEL);
2539                 if (!data)
2540                         return -ENOMEM;
2541
2542                 bacpy(&data->bdaddr, bdaddr);
2543                 data->bdaddr_type = bdaddr_type;
2544                 list_add(&data->list, &hdev->remote_oob_data);
2545         }
2546
2547         if (hash192 && rand192) {
2548                 memcpy(data->hash192, hash192, sizeof(data->hash192));
2549                 memcpy(data->rand192, rand192, sizeof(data->rand192));
2550                 if (hash256 && rand256)
2551                         data->present = 0x03;
2552         } else {
2553                 memset(data->hash192, 0, sizeof(data->hash192));
2554                 memset(data->rand192, 0, sizeof(data->rand192));
2555                 if (hash256 && rand256)
2556                         data->present = 0x02;
2557                 else
2558                         data->present = 0x00;
2559         }
2560
2561         if (hash256 && rand256) {
2562                 memcpy(data->hash256, hash256, sizeof(data->hash256));
2563                 memcpy(data->rand256, rand256, sizeof(data->rand256));
2564         } else {
2565                 memset(data->hash256, 0, sizeof(data->hash256));
2566                 memset(data->rand256, 0, sizeof(data->rand256));
2567                 if (hash192 && rand192)
2568                         data->present = 0x01;
2569         }
2570
2571         BT_DBG("%s for %pMR", hdev->name, bdaddr);
2572
2573         return 0;
2574 }
2575
2576 /* This function requires the caller holds hdev->lock */
2577 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2578 {
2579         struct adv_info *adv_instance;
2580
2581         list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2582                 if (adv_instance->instance == instance)
2583                         return adv_instance;
2584         }
2585
2586         return NULL;
2587 }
2588
2589 /* This function requires the caller holds hdev->lock */
2590 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2591 {
2592         struct adv_info *cur_instance;
2593
2594         cur_instance = hci_find_adv_instance(hdev, instance);
2595         if (!cur_instance)
2596                 return NULL;
2597
2598         if (cur_instance == list_last_entry(&hdev->adv_instances,
2599                                             struct adv_info, list))
2600                 return list_first_entry(&hdev->adv_instances,
2601                                                  struct adv_info, list);
2602         else
2603                 return list_next_entry(cur_instance, list);
2604 }
2605
2606 /* This function requires the caller holds hdev->lock */
2607 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2608 {
2609         struct adv_info *adv_instance;
2610
2611         adv_instance = hci_find_adv_instance(hdev, instance);
2612         if (!adv_instance)
2613                 return -ENOENT;
2614
2615         BT_DBG("%s removing %dMR", hdev->name, instance);
2616
2617         if (hdev->cur_adv_instance == instance) {
2618                 if (hdev->adv_instance_timeout) {
2619                         cancel_delayed_work(&hdev->adv_instance_expire);
2620                         hdev->adv_instance_timeout = 0;
2621                 }
2622                 hdev->cur_adv_instance = 0x00;
2623         }
2624
2625         list_del(&adv_instance->list);
2626         kfree(adv_instance);
2627
2628         hdev->adv_instance_cnt--;
2629
2630         return 0;
2631 }
2632
2633 /* This function requires the caller holds hdev->lock */
2634 void hci_adv_instances_clear(struct hci_dev *hdev)
2635 {
2636         struct adv_info *adv_instance, *n;
2637
2638         if (hdev->adv_instance_timeout) {
2639                 cancel_delayed_work(&hdev->adv_instance_expire);
2640                 hdev->adv_instance_timeout = 0;
2641         }
2642
2643         list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2644                 list_del(&adv_instance->list);
2645                 kfree(adv_instance);
2646         }
2647
2648         hdev->adv_instance_cnt = 0;
2649         hdev->cur_adv_instance = 0x00;
2650 }
2651
2652 /* This function requires the caller holds hdev->lock */
2653 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2654                          u16 adv_data_len, u8 *adv_data,
2655                          u16 scan_rsp_len, u8 *scan_rsp_data,
2656                          u16 timeout, u16 duration)
2657 {
2658         struct adv_info *adv_instance;
2659
2660         adv_instance = hci_find_adv_instance(hdev, instance);
2661         if (adv_instance) {
2662                 memset(adv_instance->adv_data, 0,
2663                        sizeof(adv_instance->adv_data));
2664                 memset(adv_instance->scan_rsp_data, 0,
2665                        sizeof(adv_instance->scan_rsp_data));
2666         } else {
2667                 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2668                     instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2669                         return -EOVERFLOW;
2670
2671                 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2672                 if (!adv_instance)
2673                         return -ENOMEM;
2674
2675                 adv_instance->pending = true;
2676                 adv_instance->instance = instance;
2677                 list_add(&adv_instance->list, &hdev->adv_instances);
2678                 hdev->adv_instance_cnt++;
2679         }
2680
2681         adv_instance->flags = flags;
2682         adv_instance->adv_data_len = adv_data_len;
2683         adv_instance->scan_rsp_len = scan_rsp_len;
2684
2685         if (adv_data_len)
2686                 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2687
2688         if (scan_rsp_len)
2689                 memcpy(adv_instance->scan_rsp_data,
2690                        scan_rsp_data, scan_rsp_len);
2691
2692         adv_instance->timeout = timeout;
2693         adv_instance->remaining_time = timeout;
2694
2695         if (duration == 0)
2696                 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2697         else
2698                 adv_instance->duration = duration;
2699
2700         BT_DBG("%s for %dMR", hdev->name, instance);
2701
2702         return 0;
2703 }
2704
2705 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2706                                          bdaddr_t *bdaddr, u8 type)
2707 {
2708         struct bdaddr_list *b;
2709
2710         list_for_each_entry(b, bdaddr_list, list) {
2711                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2712                         return b;
2713         }
2714
2715         return NULL;
2716 }
2717
2718 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2719 {
2720         struct bdaddr_list *b, *n;
2721
2722         list_for_each_entry_safe(b, n, bdaddr_list, list) {
2723                 list_del(&b->list);
2724                 kfree(b);
2725         }
2726 }
2727
2728 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2729 {
2730         struct bdaddr_list *entry;
2731
2732         if (!bacmp(bdaddr, BDADDR_ANY))
2733                 return -EBADF;
2734
2735         if (hci_bdaddr_list_lookup(list, bdaddr, type))
2736                 return -EEXIST;
2737
2738         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2739         if (!entry)
2740                 return -ENOMEM;
2741
2742         bacpy(&entry->bdaddr, bdaddr);
2743         entry->bdaddr_type = type;
2744
2745         list_add(&entry->list, list);
2746
2747         return 0;
2748 }
2749
2750 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2751 {
2752         struct bdaddr_list *entry;
2753
2754         if (!bacmp(bdaddr, BDADDR_ANY)) {
2755                 hci_bdaddr_list_clear(list);
2756                 return 0;
2757         }
2758
2759         entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2760         if (!entry)
2761                 return -ENOENT;
2762
2763         list_del(&entry->list);
2764         kfree(entry);
2765
2766         return 0;
2767 }
2768
2769 /* This function requires the caller holds hdev->lock */
2770 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2771                                                bdaddr_t *addr, u8 addr_type)
2772 {
2773         struct hci_conn_params *params;
2774
2775         list_for_each_entry(params, &hdev->le_conn_params, list) {
2776                 if (bacmp(&params->addr, addr) == 0 &&
2777                     params->addr_type == addr_type) {
2778                         return params;
2779                 }
2780         }
2781
2782         return NULL;
2783 }
2784
2785 /* This function requires the caller holds hdev->lock */
2786 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2787                                                   bdaddr_t *addr, u8 addr_type)
2788 {
2789         struct hci_conn_params *param;
2790
2791         list_for_each_entry(param, list, action) {
2792                 if (bacmp(&param->addr, addr) == 0 &&
2793                     param->addr_type == addr_type)
2794                         return param;
2795         }
2796
2797         return NULL;
2798 }
2799
2800 /* This function requires the caller holds hdev->lock */
2801 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2802                                             bdaddr_t *addr, u8 addr_type)
2803 {
2804         struct hci_conn_params *params;
2805
2806         params = hci_conn_params_lookup(hdev, addr, addr_type);
2807         if (params)
2808                 return params;
2809
2810         params = kzalloc(sizeof(*params), GFP_KERNEL);
2811         if (!params) {
2812                 BT_ERR("Out of memory");
2813                 return NULL;
2814         }
2815
2816         bacpy(&params->addr, addr);
2817         params->addr_type = addr_type;
2818
2819         list_add(&params->list, &hdev->le_conn_params);
2820         INIT_LIST_HEAD(&params->action);
2821
2822         params->conn_min_interval = hdev->le_conn_min_interval;
2823         params->conn_max_interval = hdev->le_conn_max_interval;
2824         params->conn_latency = hdev->le_conn_latency;
2825         params->supervision_timeout = hdev->le_supv_timeout;
2826         params->auto_connect = HCI_AUTO_CONN_DISABLED;
2827
2828         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2829
2830         return params;
2831 }
2832
2833 static void hci_conn_params_free(struct hci_conn_params *params)
2834 {
2835         if (params->conn) {
2836                 hci_conn_drop(params->conn);
2837                 hci_conn_put(params->conn);
2838         }
2839
2840         list_del(&params->action);
2841         list_del(&params->list);
2842         kfree(params);
2843 }
2844
2845 /* This function requires the caller holds hdev->lock */
2846 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2847 {
2848         struct hci_conn_params *params;
2849
2850         params = hci_conn_params_lookup(hdev, addr, addr_type);
2851         if (!params)
2852                 return;
2853
2854         hci_conn_params_free(params);
2855
2856         hci_update_background_scan(hdev);
2857
2858         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2859 }
2860
2861 /* This function requires the caller holds hdev->lock */
2862 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2863 {
2864         struct hci_conn_params *params, *tmp;
2865
2866         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2867                 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2868                         continue;
2869
2870                 /* If trying to estabilish one time connection to disabled
2871                  * device, leave the params, but mark them as just once.
2872                  */
2873                 if (params->explicit_connect) {
2874                         params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2875                         continue;
2876                 }
2877
2878                 list_del(&params->list);
2879                 kfree(params);
2880         }
2881
2882         BT_DBG("All LE disabled connection parameters were removed");
2883 }
2884
2885 /* This function requires the caller holds hdev->lock */
2886 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2887 {
2888         struct hci_conn_params *params, *tmp;
2889
2890         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2891                 hci_conn_params_free(params);
2892
2893         BT_DBG("All LE connection parameters were removed");
2894 }
2895
2896 /* Copy the Identity Address of the controller.
2897  *
2898  * If the controller has a public BD_ADDR, then by default use that one.
2899  * If this is a LE only controller without a public address, default to
2900  * the static random address.
2901  *
2902  * For debugging purposes it is possible to force controllers with a
2903  * public address to use the static random address instead.
2904  *
2905  * In case BR/EDR has been disabled on a dual-mode controller and
2906  * userspace has configured a static address, then that address
2907  * becomes the identity address instead of the public BR/EDR address.
2908  */
2909 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2910                                u8 *bdaddr_type)
2911 {
2912         if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2913             !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2914             (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2915              bacmp(&hdev->static_addr, BDADDR_ANY))) {
2916                 bacpy(bdaddr, &hdev->static_addr);
2917                 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2918         } else {
2919                 bacpy(bdaddr, &hdev->bdaddr);
2920                 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2921         }
2922 }
2923
2924 /* Alloc HCI device */
2925 struct hci_dev *hci_alloc_dev(void)
2926 {
2927         struct hci_dev *hdev;
2928
2929         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2930         if (!hdev)
2931                 return NULL;
2932
2933         hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2934         hdev->esco_type = (ESCO_HV1);
2935         hdev->link_mode = (HCI_LM_ACCEPT);
2936         hdev->num_iac = 0x01;           /* One IAC support is mandatory */
2937         hdev->io_capability = 0x03;     /* No Input No Output */
2938         hdev->manufacturer = 0xffff;    /* Default to internal use */
2939         hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2940         hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2941         hdev->adv_instance_cnt = 0;
2942         hdev->cur_adv_instance = 0x00;
2943         hdev->adv_instance_timeout = 0;
2944
2945         hdev->sniff_max_interval = 800;
2946         hdev->sniff_min_interval = 80;
2947
2948         hdev->le_adv_channel_map = 0x07;
2949         hdev->le_adv_min_interval = 0x0800;
2950         hdev->le_adv_max_interval = 0x0800;
2951         hdev->le_scan_interval = 0x0060;
2952         hdev->le_scan_window = 0x0030;
2953         hdev->le_conn_min_interval = 0x0028;
2954         hdev->le_conn_max_interval = 0x0038;
2955         hdev->le_conn_latency = 0x0000;
2956         hdev->le_supv_timeout = 0x002a;
2957         hdev->le_def_tx_len = 0x001b;
2958         hdev->le_def_tx_time = 0x0148;
2959         hdev->le_max_tx_len = 0x001b;
2960         hdev->le_max_tx_time = 0x0148;
2961         hdev->le_max_rx_len = 0x001b;
2962         hdev->le_max_rx_time = 0x0148;
2963
2964         hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2965         hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2966         hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2967         hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2968
2969         mutex_init(&hdev->lock);
2970         mutex_init(&hdev->req_lock);
2971
2972         INIT_LIST_HEAD(&hdev->mgmt_pending);
2973         INIT_LIST_HEAD(&hdev->blacklist);
2974         INIT_LIST_HEAD(&hdev->whitelist);
2975         INIT_LIST_HEAD(&hdev->uuids);
2976         INIT_LIST_HEAD(&hdev->link_keys);
2977         INIT_LIST_HEAD(&hdev->long_term_keys);
2978         INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2979         INIT_LIST_HEAD(&hdev->remote_oob_data);
2980         INIT_LIST_HEAD(&hdev->le_white_list);
2981         INIT_LIST_HEAD(&hdev->le_conn_params);
2982         INIT_LIST_HEAD(&hdev->pend_le_conns);
2983         INIT_LIST_HEAD(&hdev->pend_le_reports);
2984         INIT_LIST_HEAD(&hdev->conn_hash.list);
2985         INIT_LIST_HEAD(&hdev->adv_instances);
2986
2987         INIT_WORK(&hdev->rx_work, hci_rx_work);
2988         INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2989         INIT_WORK(&hdev->tx_work, hci_tx_work);
2990         INIT_WORK(&hdev->power_on, hci_power_on);
2991         INIT_WORK(&hdev->error_reset, hci_error_reset);
2992
2993         INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2994
2995         skb_queue_head_init(&hdev->rx_q);
2996         skb_queue_head_init(&hdev->cmd_q);
2997         skb_queue_head_init(&hdev->raw_q);
2998
2999         init_waitqueue_head(&hdev->req_wait_q);
3000
3001         INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3002
3003         hci_request_setup(hdev);
3004
3005         hci_init_sysfs(hdev);
3006         discovery_init(hdev);
3007
3008         return hdev;
3009 }
3010 EXPORT_SYMBOL(hci_alloc_dev);
3011
3012 /* Free HCI device */
3013 void hci_free_dev(struct hci_dev *hdev)
3014 {
3015         /* will free via device release */
3016         put_device(&hdev->dev);
3017 }
3018 EXPORT_SYMBOL(hci_free_dev);
3019
3020 /* Register HCI device */
3021 int hci_register_dev(struct hci_dev *hdev)
3022 {
3023         int id, error;
3024
3025         if (!hdev->open || !hdev->close || !hdev->send)
3026                 return -EINVAL;
3027
3028         /* Do not allow HCI_AMP devices to register at index 0,
3029          * so the index can be used as the AMP controller ID.
3030          */
3031         switch (hdev->dev_type) {
3032         case HCI_PRIMARY:
3033                 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3034                 break;
3035         case HCI_AMP:
3036                 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3037                 break;
3038         default:
3039                 return -EINVAL;
3040         }
3041
3042         if (id < 0)
3043                 return id;
3044
3045         sprintf(hdev->name, "hci%d", id);
3046         hdev->id = id;
3047
3048         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3049
3050         hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3051                                           WQ_MEM_RECLAIM, 1, hdev->name);
3052         if (!hdev->workqueue) {
3053                 error = -ENOMEM;
3054                 goto err;
3055         }
3056
3057         hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3058                                               WQ_MEM_RECLAIM, 1, hdev->name);
3059         if (!hdev->req_workqueue) {
3060                 destroy_workqueue(hdev->workqueue);
3061                 error = -ENOMEM;
3062                 goto err;
3063         }
3064
3065         if (!IS_ERR_OR_NULL(bt_debugfs))
3066                 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3067
3068         dev_set_name(&hdev->dev, "%s", hdev->name);
3069
3070         error = device_add(&hdev->dev);
3071         if (error < 0)
3072                 goto err_wqueue;
3073
3074         hci_leds_init(hdev);
3075
3076         hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3077                                     RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3078                                     hdev);
3079         if (hdev->rfkill) {
3080                 if (rfkill_register(hdev->rfkill) < 0) {
3081                         rfkill_destroy(hdev->rfkill);
3082                         hdev->rfkill = NULL;
3083                 }
3084         }
3085
3086         if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3087                 hci_dev_set_flag(hdev, HCI_RFKILLED);
3088
3089         hci_dev_set_flag(hdev, HCI_SETUP);
3090         hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3091
3092         if (hdev->dev_type == HCI_PRIMARY) {
3093                 /* Assume BR/EDR support until proven otherwise (such as
3094                  * through reading supported features during init.
3095                  */
3096                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3097         }
3098
3099         write_lock(&hci_dev_list_lock);
3100         list_add(&hdev->list, &hci_dev_list);
3101         write_unlock(&hci_dev_list_lock);
3102
3103         /* Devices that are marked for raw-only usage are unconfigured
3104          * and should not be included in normal operation.
3105          */
3106         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3107                 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3108
3109         hci_sock_dev_event(hdev, HCI_DEV_REG);
3110         hci_dev_hold(hdev);
3111
3112         queue_work(hdev->req_workqueue, &hdev->power_on);
3113
3114         return id;
3115
3116 err_wqueue:
3117         destroy_workqueue(hdev->workqueue);
3118         destroy_workqueue(hdev->req_workqueue);
3119 err:
3120         ida_simple_remove(&hci_index_ida, hdev->id);
3121
3122         return error;
3123 }
3124 EXPORT_SYMBOL(hci_register_dev);
3125
3126 /* Unregister HCI device */
3127 void hci_unregister_dev(struct hci_dev *hdev)
3128 {
3129         int id;
3130
3131         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3132
3133         hci_dev_set_flag(hdev, HCI_UNREGISTER);
3134
3135         id = hdev->id;
3136
3137         write_lock(&hci_dev_list_lock);
3138         list_del(&hdev->list);
3139         write_unlock(&hci_dev_list_lock);
3140
3141         cancel_work_sync(&hdev->power_on);
3142
3143         hci_dev_do_close(hdev);
3144
3145         if (!test_bit(HCI_INIT, &hdev->flags) &&
3146             !hci_dev_test_flag(hdev, HCI_SETUP) &&
3147             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3148                 hci_dev_lock(hdev);
3149                 mgmt_index_removed(hdev);
3150                 hci_dev_unlock(hdev);
3151         }
3152
3153         /* mgmt_index_removed should take care of emptying the
3154          * pending list */
3155         BUG_ON(!list_empty(&hdev->mgmt_pending));
3156
3157         hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3158
3159         if (hdev->rfkill) {
3160                 rfkill_unregister(hdev->rfkill);
3161                 rfkill_destroy(hdev->rfkill);
3162         }
3163
3164         device_del(&hdev->dev);
3165
3166         debugfs_remove_recursive(hdev->debugfs);
3167         kfree_const(hdev->hw_info);
3168         kfree_const(hdev->fw_info);
3169
3170         destroy_workqueue(hdev->workqueue);
3171         destroy_workqueue(hdev->req_workqueue);
3172
3173         hci_dev_lock(hdev);
3174         hci_bdaddr_list_clear(&hdev->blacklist);
3175         hci_bdaddr_list_clear(&hdev->whitelist);
3176         hci_uuids_clear(hdev);
3177         hci_link_keys_clear(hdev);
3178         hci_smp_ltks_clear(hdev);
3179         hci_smp_irks_clear(hdev);
3180         hci_remote_oob_data_clear(hdev);
3181         hci_adv_instances_clear(hdev);
3182         hci_bdaddr_list_clear(&hdev->le_white_list);
3183         hci_conn_params_clear_all(hdev);
3184         hci_discovery_filter_clear(hdev);
3185         hci_dev_unlock(hdev);
3186
3187         hci_dev_put(hdev);
3188
3189         ida_simple_remove(&hci_index_ida, id);
3190 }
3191 EXPORT_SYMBOL(hci_unregister_dev);
3192
3193 /* Suspend HCI device */
3194 int hci_suspend_dev(struct hci_dev *hdev)
3195 {
3196         hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3197         return 0;
3198 }
3199 EXPORT_SYMBOL(hci_suspend_dev);
3200
3201 /* Resume HCI device */
3202 int hci_resume_dev(struct hci_dev *hdev)
3203 {
3204         hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3205         return 0;
3206 }
3207 EXPORT_SYMBOL(hci_resume_dev);
3208
3209 /* Reset HCI device */
3210 int hci_reset_dev(struct hci_dev *hdev)
3211 {
3212         const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3213         struct sk_buff *skb;
3214
3215         skb = bt_skb_alloc(3, GFP_ATOMIC);
3216         if (!skb)
3217                 return -ENOMEM;
3218
3219         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3220         memcpy(skb_put(skb, 3), hw_err, 3);
3221
3222         /* Send Hardware Error to upper stack */
3223         return hci_recv_frame(hdev, skb);
3224 }
3225 EXPORT_SYMBOL(hci_reset_dev);
3226
3227 /* Receive frame from HCI drivers */
3228 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3229 {
3230         if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3231                       && !test_bit(HCI_INIT, &hdev->flags))) {
3232                 kfree_skb(skb);
3233                 return -ENXIO;
3234         }
3235
3236         if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3237             hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3238             hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3239                 kfree_skb(skb);
3240                 return -EINVAL;
3241         }
3242
3243         /* Incoming skb */
3244         bt_cb(skb)->incoming = 1;
3245
3246         /* Time stamp */
3247         __net_timestamp(skb);
3248
3249         skb_queue_tail(&hdev->rx_q, skb);
3250         queue_work(hdev->workqueue, &hdev->rx_work);
3251
3252         return 0;
3253 }
3254 EXPORT_SYMBOL(hci_recv_frame);
3255
3256 /* Receive diagnostic message from HCI drivers */
3257 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3258 {
3259         /* Mark as diagnostic packet */
3260         hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3261
3262         /* Time stamp */
3263         __net_timestamp(skb);
3264
3265         skb_queue_tail(&hdev->rx_q, skb);
3266         queue_work(hdev->workqueue, &hdev->rx_work);
3267
3268         return 0;
3269 }
3270 EXPORT_SYMBOL(hci_recv_diag);
3271
3272 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3273 {
3274         va_list vargs;
3275
3276         va_start(vargs, fmt);
3277         kfree_const(hdev->hw_info);
3278         hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3279         va_end(vargs);
3280 }
3281 EXPORT_SYMBOL(hci_set_hw_info);
3282
3283 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3284 {
3285         va_list vargs;
3286
3287         va_start(vargs, fmt);
3288         kfree_const(hdev->fw_info);
3289         hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3290         va_end(vargs);
3291 }
3292 EXPORT_SYMBOL(hci_set_fw_info);
3293
3294 /* ---- Interface to upper protocols ---- */
3295
3296 int hci_register_cb(struct hci_cb *cb)
3297 {
3298         BT_DBG("%p name %s", cb, cb->name);
3299
3300         mutex_lock(&hci_cb_list_lock);
3301         list_add_tail(&cb->list, &hci_cb_list);
3302         mutex_unlock(&hci_cb_list_lock);
3303
3304         return 0;
3305 }
3306 EXPORT_SYMBOL(hci_register_cb);
3307
3308 int hci_unregister_cb(struct hci_cb *cb)
3309 {
3310         BT_DBG("%p name %s", cb, cb->name);
3311
3312         mutex_lock(&hci_cb_list_lock);
3313         list_del(&cb->list);
3314         mutex_unlock(&hci_cb_list_lock);
3315
3316         return 0;
3317 }
3318 EXPORT_SYMBOL(hci_unregister_cb);
3319
3320 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3321 {
3322         int err;
3323
3324         BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3325                skb->len);
3326
3327         /* Time stamp */
3328         __net_timestamp(skb);
3329
3330         /* Send copy to monitor */
3331         hci_send_to_monitor(hdev, skb);
3332
3333         if (atomic_read(&hdev->promisc)) {
3334                 /* Send copy to the sockets */
3335                 hci_send_to_sock(hdev, skb);
3336         }
3337
3338         /* Get rid of skb owner, prior to sending to the driver. */
3339         skb_orphan(skb);
3340
3341         if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3342                 kfree_skb(skb);
3343                 return;
3344         }
3345
3346         err = hdev->send(hdev, skb);
3347         if (err < 0) {
3348                 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3349                 kfree_skb(skb);
3350         }
3351 }
3352
3353 /* Send HCI command */
3354 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3355                  const void *param)
3356 {
3357         struct sk_buff *skb;
3358
3359         BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3360
3361         skb = hci_prepare_cmd(hdev, opcode, plen, param);
3362         if (!skb) {
3363                 BT_ERR("%s no memory for command", hdev->name);
3364                 return -ENOMEM;
3365         }
3366
3367         /* Stand-alone HCI commands must be flagged as
3368          * single-command requests.
3369          */
3370         bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3371
3372         skb_queue_tail(&hdev->cmd_q, skb);
3373         queue_work(hdev->workqueue, &hdev->cmd_work);
3374
3375         return 0;
3376 }
3377
3378 /* Get data from the previously sent command */
3379 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3380 {
3381         struct hci_command_hdr *hdr;
3382
3383         if (!hdev->sent_cmd)
3384                 return NULL;
3385
3386         hdr = (void *) hdev->sent_cmd->data;
3387
3388         if (hdr->opcode != cpu_to_le16(opcode))
3389                 return NULL;
3390
3391         BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3392
3393         return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3394 }
3395
3396 /* Send HCI command and wait for command commplete event */
3397 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3398                              const void *param, u32 timeout)
3399 {
3400         struct sk_buff *skb;
3401
3402         if (!test_bit(HCI_UP, &hdev->flags))
3403                 return ERR_PTR(-ENETDOWN);
3404
3405         bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3406
3407         hci_req_sync_lock(hdev);
3408         skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3409         hci_req_sync_unlock(hdev);
3410
3411         return skb;
3412 }
3413 EXPORT_SYMBOL(hci_cmd_sync);
3414
3415 /* Send ACL data */
3416 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3417 {
3418         struct hci_acl_hdr *hdr;
3419         int len = skb->len;
3420
3421         skb_push(skb, HCI_ACL_HDR_SIZE);
3422         skb_reset_transport_header(skb);
3423         hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3424         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3425         hdr->dlen   = cpu_to_le16(len);
3426 }
3427
3428 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3429                           struct sk_buff *skb, __u16 flags)
3430 {
3431         struct hci_conn *conn = chan->conn;
3432         struct hci_dev *hdev = conn->hdev;
3433         struct sk_buff *list;
3434
3435         skb->len = skb_headlen(skb);
3436         skb->data_len = 0;
3437
3438         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3439
3440         switch (hdev->dev_type) {
3441         case HCI_PRIMARY:
3442                 hci_add_acl_hdr(skb, conn->handle, flags);
3443                 break;
3444         case HCI_AMP:
3445                 hci_add_acl_hdr(skb, chan->handle, flags);
3446                 break;
3447         default:
3448                 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3449                 return;
3450         }
3451
3452         list = skb_shinfo(skb)->frag_list;
3453         if (!list) {
3454                 /* Non fragmented */
3455                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3456
3457                 skb_queue_tail(queue, skb);
3458         } else {
3459                 /* Fragmented */
3460                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3461
3462                 skb_shinfo(skb)->frag_list = NULL;
3463
3464                 /* Queue all fragments atomically. We need to use spin_lock_bh
3465                  * here because of 6LoWPAN links, as there this function is
3466                  * called from softirq and using normal spin lock could cause
3467                  * deadlocks.
3468                  */
3469                 spin_lock_bh(&queue->lock);
3470
3471                 __skb_queue_tail(queue, skb);
3472
3473                 flags &= ~ACL_START;
3474                 flags |= ACL_CONT;
3475                 do {
3476                         skb = list; list = list->next;
3477
3478                         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3479                         hci_add_acl_hdr(skb, conn->handle, flags);
3480
3481                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3482
3483                         __skb_queue_tail(queue, skb);
3484                 } while (list);
3485
3486                 spin_unlock_bh(&queue->lock);
3487         }
3488 }
3489
3490 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3491 {
3492         struct hci_dev *hdev = chan->conn->hdev;
3493
3494         BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3495
3496         hci_queue_acl(chan, &chan->data_q, skb, flags);
3497
3498         queue_work(hdev->workqueue, &hdev->tx_work);
3499 }
3500
3501 /* Send SCO data */
3502 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3503 {
3504         struct hci_dev *hdev = conn->hdev;
3505         struct hci_sco_hdr hdr;
3506
3507         BT_DBG("%s len %d", hdev->name, skb->len);
3508
3509         hdr.handle = cpu_to_le16(conn->handle);
3510         hdr.dlen   = skb->len;
3511
3512         skb_push(skb, HCI_SCO_HDR_SIZE);
3513         skb_reset_transport_header(skb);
3514         memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3515
3516         hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3517
3518         skb_queue_tail(&conn->data_q, skb);
3519         queue_work(hdev->workqueue, &hdev->tx_work);
3520 }
3521
3522 /* ---- HCI TX task (outgoing data) ---- */
3523
3524 /* HCI Connection scheduler */
3525 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3526                                      int *quote)
3527 {
3528         struct hci_conn_hash *h = &hdev->conn_hash;
3529         struct hci_conn *conn = NULL, *c;
3530         unsigned int num = 0, min = ~0;
3531
3532         /* We don't have to lock device here. Connections are always
3533          * added and removed with TX task disabled. */
3534
3535         rcu_read_lock();
3536
3537         list_for_each_entry_rcu(c, &h->list, list) {
3538                 if (c->type != type || skb_queue_empty(&c->data_q))
3539                         continue;
3540
3541                 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3542                         continue;
3543
3544                 num++;
3545
3546                 if (c->sent < min) {
3547                         min  = c->sent;
3548                         conn = c;
3549                 }
3550
3551                 if (hci_conn_num(hdev, type) == num)
3552                         break;
3553         }
3554
3555         rcu_read_unlock();
3556
3557         if (conn) {
3558                 int cnt, q;
3559
3560                 switch (conn->type) {
3561                 case ACL_LINK:
3562                         cnt = hdev->acl_cnt;
3563                         break;
3564                 case SCO_LINK:
3565                 case ESCO_LINK:
3566                         cnt = hdev->sco_cnt;
3567                         break;
3568                 case LE_LINK:
3569                         cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3570                         break;
3571                 default:
3572                         cnt = 0;
3573                         BT_ERR("Unknown link type");
3574                 }
3575
3576                 q = cnt / num;
3577                 *quote = q ? q : 1;
3578         } else
3579                 *quote = 0;
3580
3581         BT_DBG("conn %p quote %d", conn, *quote);
3582         return conn;
3583 }
3584
3585 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3586 {
3587         struct hci_conn_hash *h = &hdev->conn_hash;
3588         struct hci_conn *c;
3589
3590         BT_ERR("%s link tx timeout", hdev->name);
3591
3592         rcu_read_lock();
3593
3594         /* Kill stalled connections */
3595         list_for_each_entry_rcu(c, &h->list, list) {
3596                 if (c->type == type && c->sent) {
3597                         BT_ERR("%s killing stalled connection %pMR",
3598                                hdev->name, &c->dst);
3599                         hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3600                 }
3601         }
3602
3603         rcu_read_unlock();
3604 }
3605
3606 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3607                                       int *quote)
3608 {
3609         struct hci_conn_hash *h = &hdev->conn_hash;
3610         struct hci_chan *chan = NULL;
3611         unsigned int num = 0, min = ~0, cur_prio = 0;
3612         struct hci_conn *conn;
3613         int cnt, q, conn_num = 0;
3614
3615         BT_DBG("%s", hdev->name);
3616
3617         rcu_read_lock();
3618
3619         list_for_each_entry_rcu(conn, &h->list, list) {
3620                 struct hci_chan *tmp;
3621
3622                 if (conn->type != type)
3623                         continue;
3624
3625                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3626                         continue;
3627
3628                 conn_num++;
3629
3630                 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3631                         struct sk_buff *skb;
3632
3633                         if (skb_queue_empty(&tmp->data_q))
3634                                 continue;
3635
3636                         skb = skb_peek(&tmp->data_q);
3637                         if (skb->priority < cur_prio)
3638                                 continue;
3639
3640                         if (skb->priority > cur_prio) {
3641                                 num = 0;
3642                                 min = ~0;
3643                                 cur_prio = skb->priority;
3644                         }
3645
3646                         num++;
3647
3648                         if (conn->sent < min) {
3649                                 min  = conn->sent;
3650                                 chan = tmp;
3651                         }
3652                 }
3653
3654                 if (hci_conn_num(hdev, type) == conn_num)
3655                         break;
3656         }
3657
3658         rcu_read_unlock();
3659
3660         if (!chan)
3661                 return NULL;
3662
3663         switch (chan->conn->type) {
3664         case ACL_LINK:
3665                 cnt = hdev->acl_cnt;
3666                 break;
3667         case AMP_LINK:
3668                 cnt = hdev->block_cnt;
3669                 break;
3670         case SCO_LINK:
3671         case ESCO_LINK:
3672                 cnt = hdev->sco_cnt;
3673                 break;
3674         case LE_LINK:
3675                 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3676                 break;
3677         default:
3678                 cnt = 0;
3679                 BT_ERR("Unknown link type");
3680         }
3681
3682         q = cnt / num;
3683         *quote = q ? q : 1;
3684         BT_DBG("chan %p quote %d", chan, *quote);
3685         return chan;
3686 }
3687
3688 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3689 {
3690         struct hci_conn_hash *h = &hdev->conn_hash;
3691         struct hci_conn *conn;
3692         int num = 0;
3693
3694         BT_DBG("%s", hdev->name);
3695
3696         rcu_read_lock();
3697
3698         list_for_each_entry_rcu(conn, &h->list, list) {
3699                 struct hci_chan *chan;
3700
3701                 if (conn->type != type)
3702                         continue;
3703
3704                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3705                         continue;
3706
3707                 num++;
3708
3709                 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3710                         struct sk_buff *skb;
3711
3712                         if (chan->sent) {
3713                                 chan->sent = 0;
3714                                 continue;
3715                         }
3716
3717                         if (skb_queue_empty(&chan->data_q))
3718                                 continue;
3719
3720                         skb = skb_peek(&chan->data_q);
3721                         if (skb->priority >= HCI_PRIO_MAX - 1)
3722                                 continue;
3723
3724                         skb->priority = HCI_PRIO_MAX - 1;
3725
3726                         BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3727                                skb->priority);
3728                 }
3729
3730                 if (hci_conn_num(hdev, type) == num)
3731                         break;
3732         }
3733
3734         rcu_read_unlock();
3735
3736 }
3737
3738 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3739 {
3740         /* Calculate count of blocks used by this packet */
3741         return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3742 }
3743
3744 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3745 {
3746         if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3747                 /* ACL tx timeout must be longer than maximum
3748                  * link supervision timeout (40.9 seconds) */
3749                 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3750                                        HCI_ACL_TX_TIMEOUT))
3751                         hci_link_tx_to(hdev, ACL_LINK);
3752         }
3753 }
3754
3755 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3756 {
3757         unsigned int cnt = hdev->acl_cnt;
3758         struct hci_chan *chan;
3759         struct sk_buff *skb;
3760         int quote;
3761
3762         __check_timeout(hdev, cnt);
3763
3764         while (hdev->acl_cnt &&
3765                (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3766                 u32 priority = (skb_peek(&chan->data_q))->priority;
3767                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3768                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3769                                skb->len, skb->priority);
3770
3771                         /* Stop if priority has changed */
3772                         if (skb->priority < priority)
3773                                 break;
3774
3775                         skb = skb_dequeue(&chan->data_q);
3776
3777                         hci_conn_enter_active_mode(chan->conn,
3778                                                    bt_cb(skb)->force_active);
3779
3780                         hci_send_frame(hdev, skb);
3781                         hdev->acl_last_tx = jiffies;
3782
3783                         hdev->acl_cnt--;
3784                         chan->sent++;
3785                         chan->conn->sent++;
3786                 }
3787         }
3788
3789         if (cnt != hdev->acl_cnt)
3790                 hci_prio_recalculate(hdev, ACL_LINK);
3791 }
3792
3793 static void hci_sched_acl_blk(struct hci_dev *hdev)
3794 {
3795         unsigned int cnt = hdev->block_cnt;
3796         struct hci_chan *chan;
3797         struct sk_buff *skb;
3798         int quote;
3799         u8 type;
3800
3801         __check_timeout(hdev, cnt);
3802
3803         BT_DBG("%s", hdev->name);
3804
3805         if (hdev->dev_type == HCI_AMP)
3806                 type = AMP_LINK;
3807         else
3808                 type = ACL_LINK;
3809
3810         while (hdev->block_cnt > 0 &&
3811                (chan = hci_chan_sent(hdev, type, &quote))) {
3812                 u32 priority = (skb_peek(&chan->data_q))->priority;
3813                 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3814                         int blocks;
3815
3816                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3817                                skb->len, skb->priority);
3818
3819                         /* Stop if priority has changed */
3820                         if (skb->priority < priority)
3821                                 break;
3822
3823                         skb = skb_dequeue(&chan->data_q);
3824
3825                         blocks = __get_blocks(hdev, skb);
3826                         if (blocks > hdev->block_cnt)
3827                                 return;
3828
3829                         hci_conn_enter_active_mode(chan->conn,
3830                                                    bt_cb(skb)->force_active);
3831
3832                         hci_send_frame(hdev, skb);
3833                         hdev->acl_last_tx = jiffies;
3834
3835                         hdev->block_cnt -= blocks;
3836                         quote -= blocks;
3837
3838                         chan->sent += blocks;
3839                         chan->conn->sent += blocks;
3840                 }
3841         }
3842
3843         if (cnt != hdev->block_cnt)
3844                 hci_prio_recalculate(hdev, type);
3845 }
3846
3847 static void hci_sched_acl(struct hci_dev *hdev)
3848 {
3849         BT_DBG("%s", hdev->name);
3850
3851         /* No ACL link over BR/EDR controller */
3852         if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3853                 return;
3854
3855         /* No AMP link over AMP controller */
3856         if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3857                 return;
3858
3859         switch (hdev->flow_ctl_mode) {
3860         case HCI_FLOW_CTL_MODE_PACKET_BASED:
3861                 hci_sched_acl_pkt(hdev);
3862                 break;
3863
3864         case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3865                 hci_sched_acl_blk(hdev);
3866                 break;
3867         }
3868 }
3869
3870 /* Schedule SCO */
3871 static void hci_sched_sco(struct hci_dev *hdev)
3872 {
3873         struct hci_conn *conn;
3874         struct sk_buff *skb;
3875         int quote;
3876
3877         BT_DBG("%s", hdev->name);
3878
3879         if (!hci_conn_num(hdev, SCO_LINK))
3880                 return;
3881
3882         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3883                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3884                         BT_DBG("skb %p len %d", skb, skb->len);
3885                         hci_send_frame(hdev, skb);
3886
3887                         conn->sent++;
3888                         if (conn->sent == ~0)
3889                                 conn->sent = 0;
3890                 }
3891         }
3892 }
3893
3894 static void hci_sched_esco(struct hci_dev *hdev)
3895 {
3896         struct hci_conn *conn;
3897         struct sk_buff *skb;
3898         int quote;
3899
3900         BT_DBG("%s", hdev->name);
3901
3902         if (!hci_conn_num(hdev, ESCO_LINK))
3903                 return;
3904
3905         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3906                                                      &quote))) {
3907                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3908                         BT_DBG("skb %p len %d", skb, skb->len);
3909                         hci_send_frame(hdev, skb);
3910
3911                         conn->sent++;
3912                         if (conn->sent == ~0)
3913                                 conn->sent = 0;
3914                 }
3915         }
3916 }
3917
3918 static void hci_sched_le(struct hci_dev *hdev)
3919 {
3920         struct hci_chan *chan;
3921         struct sk_buff *skb;
3922         int quote, cnt, tmp;
3923
3924         BT_DBG("%s", hdev->name);
3925
3926         if (!hci_conn_num(hdev, LE_LINK))
3927                 return;
3928
3929         if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3930                 /* LE tx timeout must be longer than maximum
3931                  * link supervision timeout (40.9 seconds) */
3932                 if (!hdev->le_cnt && hdev->le_pkts &&
3933                     time_after(jiffies, hdev->le_last_tx + HZ * 45))
3934                         hci_link_tx_to(hdev, LE_LINK);
3935         }
3936
3937         cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3938         tmp = cnt;
3939         while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3940                 u32 priority = (skb_peek(&chan->data_q))->priority;
3941                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3942                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3943                                skb->len, skb->priority);
3944
3945                         /* Stop if priority has changed */
3946                         if (skb->priority < priority)
3947                                 break;
3948
3949                         skb = skb_dequeue(&chan->data_q);
3950
3951                         hci_send_frame(hdev, skb);
3952                         hdev->le_last_tx = jiffies;
3953
3954                         cnt--;
3955                         chan->sent++;
3956                         chan->conn->sent++;
3957                 }
3958         }
3959
3960         if (hdev->le_pkts)
3961                 hdev->le_cnt = cnt;
3962         else
3963                 hdev->acl_cnt = cnt;
3964
3965         if (cnt != tmp)
3966                 hci_prio_recalculate(hdev, LE_LINK);
3967 }
3968
3969 static void hci_tx_work(struct work_struct *work)
3970 {
3971         struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3972         struct sk_buff *skb;
3973
3974         BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3975                hdev->sco_cnt, hdev->le_cnt);
3976
3977         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3978                 /* Schedule queues and send stuff to HCI driver */
3979                 hci_sched_acl(hdev);
3980                 hci_sched_sco(hdev);
3981                 hci_sched_esco(hdev);
3982                 hci_sched_le(hdev);
3983         }
3984
3985         /* Send next queued raw (unknown type) packet */
3986         while ((skb = skb_dequeue(&hdev->raw_q)))
3987                 hci_send_frame(hdev, skb);
3988 }
3989
3990 /* ----- HCI RX task (incoming data processing) ----- */
3991
3992 /* ACL data packet */
3993 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3994 {
3995         struct hci_acl_hdr *hdr = (void *) skb->data;
3996         struct hci_conn *conn;
3997         __u16 handle, flags;
3998
3999         skb_pull(skb, HCI_ACL_HDR_SIZE);
4000
4001         handle = __le16_to_cpu(hdr->handle);
4002         flags  = hci_flags(handle);
4003         handle = hci_handle(handle);
4004
4005         BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4006                handle, flags);
4007
4008         hdev->stat.acl_rx++;
4009
4010         hci_dev_lock(hdev);
4011         conn = hci_conn_hash_lookup_handle(hdev, handle);
4012         hci_dev_unlock(hdev);
4013
4014         if (conn) {
4015                 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4016
4017                 /* Send to upper protocol */
4018                 l2cap_recv_acldata(conn, skb, flags);
4019                 return;
4020         } else {
4021                 BT_ERR("%s ACL packet for unknown connection handle %d",
4022                        hdev->name, handle);
4023         }
4024
4025         kfree_skb(skb);
4026 }
4027
4028 /* SCO data packet */
4029 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4030 {
4031         struct hci_sco_hdr *hdr = (void *) skb->data;
4032         struct hci_conn *conn;
4033         __u16 handle;
4034
4035         skb_pull(skb, HCI_SCO_HDR_SIZE);
4036
4037         handle = __le16_to_cpu(hdr->handle);
4038
4039         BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4040
4041         hdev->stat.sco_rx++;
4042
4043         hci_dev_lock(hdev);
4044         conn = hci_conn_hash_lookup_handle(hdev, handle);
4045         hci_dev_unlock(hdev);
4046
4047         if (conn) {
4048                 /* Send to upper protocol */
4049                 sco_recv_scodata(conn, skb);
4050                 return;
4051         } else {
4052                 BT_ERR("%s SCO packet for unknown connection handle %d",
4053                        hdev->name, handle);
4054         }
4055
4056         kfree_skb(skb);
4057 }
4058
4059 static bool hci_req_is_complete(struct hci_dev *hdev)
4060 {
4061         struct sk_buff *skb;
4062
4063         skb = skb_peek(&hdev->cmd_q);
4064         if (!skb)
4065                 return true;
4066
4067         return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4068 }
4069
4070 static void hci_resend_last(struct hci_dev *hdev)
4071 {
4072         struct hci_command_hdr *sent;
4073         struct sk_buff *skb;
4074         u16 opcode;
4075
4076         if (!hdev->sent_cmd)
4077                 return;
4078
4079         sent = (void *) hdev->sent_cmd->data;
4080         opcode = __le16_to_cpu(sent->opcode);
4081         if (opcode == HCI_OP_RESET)
4082                 return;
4083
4084         skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4085         if (!skb)
4086                 return;
4087
4088         skb_queue_head(&hdev->cmd_q, skb);
4089         queue_work(hdev->workqueue, &hdev->cmd_work);
4090 }
4091
4092 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4093                           hci_req_complete_t *req_complete,
4094                           hci_req_complete_skb_t *req_complete_skb)
4095 {
4096         struct sk_buff *skb;
4097         unsigned long flags;
4098
4099         BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4100
4101         /* If the completed command doesn't match the last one that was
4102          * sent we need to do special handling of it.
4103          */
4104         if (!hci_sent_cmd_data(hdev, opcode)) {
4105                 /* Some CSR based controllers generate a spontaneous
4106                  * reset complete event during init and any pending
4107                  * command will never be completed. In such a case we
4108                  * need to resend whatever was the last sent
4109                  * command.
4110                  */
4111                 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4112                         hci_resend_last(hdev);
4113
4114                 return;
4115         }
4116
4117         /* If the command succeeded and there's still more commands in
4118          * this request the request is not yet complete.
4119          */
4120         if (!status && !hci_req_is_complete(hdev))
4121                 return;
4122
4123         /* If this was the last command in a request the complete
4124          * callback would be found in hdev->sent_cmd instead of the
4125          * command queue (hdev->cmd_q).
4126          */
4127         if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4128                 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4129                 return;
4130         }
4131
4132         if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4133                 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4134                 return;
4135         }
4136
4137         /* Remove all pending commands belonging to this request */
4138         spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4139         while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4140                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4141                         __skb_queue_head(&hdev->cmd_q, skb);
4142                         break;
4143                 }
4144
4145                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4146                         *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4147                 else
4148                         *req_complete = bt_cb(skb)->hci.req_complete;
4149                 kfree_skb(skb);
4150         }
4151         spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4152 }
4153
4154 static void hci_rx_work(struct work_struct *work)
4155 {
4156         struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4157         struct sk_buff *skb;
4158
4159         BT_DBG("%s", hdev->name);
4160
4161         while ((skb = skb_dequeue(&hdev->rx_q))) {
4162                 /* Send copy to monitor */
4163                 hci_send_to_monitor(hdev, skb);
4164
4165                 if (atomic_read(&hdev->promisc)) {
4166                         /* Send copy to the sockets */
4167                         hci_send_to_sock(hdev, skb);
4168                 }
4169
4170                 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4171                         kfree_skb(skb);
4172                         continue;
4173                 }
4174
4175                 if (test_bit(HCI_INIT, &hdev->flags)) {
4176                         /* Don't process data packets in this states. */
4177                         switch (hci_skb_pkt_type(skb)) {
4178                         case HCI_ACLDATA_PKT:
4179                         case HCI_SCODATA_PKT:
4180                                 kfree_skb(skb);
4181                                 continue;
4182                         }
4183                 }
4184
4185                 /* Process frame */
4186                 switch (hci_skb_pkt_type(skb)) {
4187                 case HCI_EVENT_PKT:
4188                         BT_DBG("%s Event packet", hdev->name);
4189                         hci_event_packet(hdev, skb);
4190                         break;
4191
4192                 case HCI_ACLDATA_PKT:
4193                         BT_DBG("%s ACL data packet", hdev->name);
4194                         hci_acldata_packet(hdev, skb);
4195                         break;
4196
4197                 case HCI_SCODATA_PKT:
4198                         BT_DBG("%s SCO data packet", hdev->name);
4199                         hci_scodata_packet(hdev, skb);
4200                         break;
4201
4202                 default:
4203                         kfree_skb(skb);
4204                         break;
4205                 }
4206         }
4207 }
4208
4209 static void hci_cmd_work(struct work_struct *work)
4210 {
4211         struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4212         struct sk_buff *skb;
4213
4214         BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4215                atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4216
4217         /* Send queued commands */
4218         if (atomic_read(&hdev->cmd_cnt)) {
4219                 skb = skb_dequeue(&hdev->cmd_q);
4220                 if (!skb)
4221                         return;
4222
4223                 kfree_skb(hdev->sent_cmd);
4224
4225                 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4226                 if (hdev->sent_cmd) {
4227                         atomic_dec(&hdev->cmd_cnt);
4228                         hci_send_frame(hdev, skb);
4229                         if (test_bit(HCI_RESET, &hdev->flags))
4230                                 cancel_delayed_work(&hdev->cmd_timer);
4231                         else
4232                                 schedule_delayed_work(&hdev->cmd_timer,
4233                                                       HCI_CMD_TIMEOUT);
4234                 } else {
4235                         skb_queue_head(&hdev->cmd_q, skb);
4236                         queue_work(hdev->workqueue, &hdev->cmd_work);
4237                 }
4238         }
4239 }