Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetoot...
[cascardo/linux.git] / net / bluetooth / hci_core.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
34
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
39
40 #include "hci_request.h"
41 #include "hci_debugfs.h"
42 #include "smp.h"
43
44 static void hci_rx_work(struct work_struct *work);
45 static void hci_cmd_work(struct work_struct *work);
46 static void hci_tx_work(struct work_struct *work);
47
48 /* HCI device list */
49 LIST_HEAD(hci_dev_list);
50 DEFINE_RWLOCK(hci_dev_list_lock);
51
52 /* HCI callback list */
53 LIST_HEAD(hci_cb_list);
54 DEFINE_MUTEX(hci_cb_list_lock);
55
56 /* HCI ID Numbering */
57 static DEFINE_IDA(hci_index_ida);
58
59 /* ----- HCI requests ----- */
60
61 #define HCI_REQ_DONE      0
62 #define HCI_REQ_PEND      1
63 #define HCI_REQ_CANCELED  2
64
65 #define hci_req_lock(d)         mutex_lock(&d->req_lock)
66 #define hci_req_unlock(d)       mutex_unlock(&d->req_lock)
67
68 /* ---- HCI notifications ---- */
69
70 static void hci_notify(struct hci_dev *hdev, int event)
71 {
72         hci_sock_dev_event(hdev, event);
73 }
74
75 /* ---- HCI debugfs entries ---- */
76
77 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
78                              size_t count, loff_t *ppos)
79 {
80         struct hci_dev *hdev = file->private_data;
81         char buf[3];
82
83         buf[0] = test_bit(HCI_DUT_MODE, &hdev->dbg_flags) ? 'Y': 'N';
84         buf[1] = '\n';
85         buf[2] = '\0';
86         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
87 }
88
89 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
90                               size_t count, loff_t *ppos)
91 {
92         struct hci_dev *hdev = file->private_data;
93         struct sk_buff *skb;
94         char buf[32];
95         size_t buf_size = min(count, (sizeof(buf)-1));
96         bool enable;
97         int err;
98
99         if (!test_bit(HCI_UP, &hdev->flags))
100                 return -ENETDOWN;
101
102         if (copy_from_user(buf, user_buf, buf_size))
103                 return -EFAULT;
104
105         buf[buf_size] = '\0';
106         if (strtobool(buf, &enable))
107                 return -EINVAL;
108
109         if (enable == test_bit(HCI_DUT_MODE, &hdev->dbg_flags))
110                 return -EALREADY;
111
112         hci_req_lock(hdev);
113         if (enable)
114                 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
115                                      HCI_CMD_TIMEOUT);
116         else
117                 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
118                                      HCI_CMD_TIMEOUT);
119         hci_req_unlock(hdev);
120
121         if (IS_ERR(skb))
122                 return PTR_ERR(skb);
123
124         err = -bt_to_errno(skb->data[0]);
125         kfree_skb(skb);
126
127         if (err < 0)
128                 return err;
129
130         change_bit(HCI_DUT_MODE, &hdev->dbg_flags);
131
132         return count;
133 }
134
135 static const struct file_operations dut_mode_fops = {
136         .open           = simple_open,
137         .read           = dut_mode_read,
138         .write          = dut_mode_write,
139         .llseek         = default_llseek,
140 };
141
142 /* ---- HCI requests ---- */
143
144 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode)
145 {
146         BT_DBG("%s result 0x%2.2x", hdev->name, result);
147
148         if (hdev->req_status == HCI_REQ_PEND) {
149                 hdev->req_result = result;
150                 hdev->req_status = HCI_REQ_DONE;
151                 wake_up_interruptible(&hdev->req_wait_q);
152         }
153 }
154
155 static void hci_req_cancel(struct hci_dev *hdev, int err)
156 {
157         BT_DBG("%s err 0x%2.2x", hdev->name, err);
158
159         if (hdev->req_status == HCI_REQ_PEND) {
160                 hdev->req_result = err;
161                 hdev->req_status = HCI_REQ_CANCELED;
162                 wake_up_interruptible(&hdev->req_wait_q);
163         }
164 }
165
166 static struct sk_buff *hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode,
167                                             u8 event)
168 {
169         struct hci_ev_cmd_complete *ev;
170         struct hci_event_hdr *hdr;
171         struct sk_buff *skb;
172
173         hci_dev_lock(hdev);
174
175         skb = hdev->recv_evt;
176         hdev->recv_evt = NULL;
177
178         hci_dev_unlock(hdev);
179
180         if (!skb)
181                 return ERR_PTR(-ENODATA);
182
183         if (skb->len < sizeof(*hdr)) {
184                 BT_ERR("Too short HCI event");
185                 goto failed;
186         }
187
188         hdr = (void *) skb->data;
189         skb_pull(skb, HCI_EVENT_HDR_SIZE);
190
191         if (event) {
192                 if (hdr->evt != event)
193                         goto failed;
194                 return skb;
195         }
196
197         if (hdr->evt != HCI_EV_CMD_COMPLETE) {
198                 BT_DBG("Last event is not cmd complete (0x%2.2x)", hdr->evt);
199                 goto failed;
200         }
201
202         if (skb->len < sizeof(*ev)) {
203                 BT_ERR("Too short cmd_complete event");
204                 goto failed;
205         }
206
207         ev = (void *) skb->data;
208         skb_pull(skb, sizeof(*ev));
209
210         if (opcode == __le16_to_cpu(ev->opcode))
211                 return skb;
212
213         BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode,
214                __le16_to_cpu(ev->opcode));
215
216 failed:
217         kfree_skb(skb);
218         return ERR_PTR(-ENODATA);
219 }
220
221 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
222                                   const void *param, u8 event, u32 timeout)
223 {
224         DECLARE_WAITQUEUE(wait, current);
225         struct hci_request req;
226         int err = 0;
227
228         BT_DBG("%s", hdev->name);
229
230         hci_req_init(&req, hdev);
231
232         hci_req_add_ev(&req, opcode, plen, param, event);
233
234         hdev->req_status = HCI_REQ_PEND;
235
236         add_wait_queue(&hdev->req_wait_q, &wait);
237         set_current_state(TASK_INTERRUPTIBLE);
238
239         err = hci_req_run(&req, hci_req_sync_complete);
240         if (err < 0) {
241                 remove_wait_queue(&hdev->req_wait_q, &wait);
242                 set_current_state(TASK_RUNNING);
243                 return ERR_PTR(err);
244         }
245
246         schedule_timeout(timeout);
247
248         remove_wait_queue(&hdev->req_wait_q, &wait);
249
250         if (signal_pending(current))
251                 return ERR_PTR(-EINTR);
252
253         switch (hdev->req_status) {
254         case HCI_REQ_DONE:
255                 err = -bt_to_errno(hdev->req_result);
256                 break;
257
258         case HCI_REQ_CANCELED:
259                 err = -hdev->req_result;
260                 break;
261
262         default:
263                 err = -ETIMEDOUT;
264                 break;
265         }
266
267         hdev->req_status = hdev->req_result = 0;
268
269         BT_DBG("%s end: err %d", hdev->name, err);
270
271         if (err < 0)
272                 return ERR_PTR(err);
273
274         return hci_get_cmd_complete(hdev, opcode, event);
275 }
276 EXPORT_SYMBOL(__hci_cmd_sync_ev);
277
278 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
279                                const void *param, u32 timeout)
280 {
281         return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
282 }
283 EXPORT_SYMBOL(__hci_cmd_sync);
284
285 /* Execute request and wait for completion. */
286 static int __hci_req_sync(struct hci_dev *hdev,
287                           void (*func)(struct hci_request *req,
288                                       unsigned long opt),
289                           unsigned long opt, __u32 timeout)
290 {
291         struct hci_request req;
292         DECLARE_WAITQUEUE(wait, current);
293         int err = 0;
294
295         BT_DBG("%s start", hdev->name);
296
297         hci_req_init(&req, hdev);
298
299         hdev->req_status = HCI_REQ_PEND;
300
301         func(&req, opt);
302
303         add_wait_queue(&hdev->req_wait_q, &wait);
304         set_current_state(TASK_INTERRUPTIBLE);
305
306         err = hci_req_run(&req, hci_req_sync_complete);
307         if (err < 0) {
308                 hdev->req_status = 0;
309
310                 remove_wait_queue(&hdev->req_wait_q, &wait);
311                 set_current_state(TASK_RUNNING);
312
313                 /* ENODATA means the HCI request command queue is empty.
314                  * This can happen when a request with conditionals doesn't
315                  * trigger any commands to be sent. This is normal behavior
316                  * and should not trigger an error return.
317                  */
318                 if (err == -ENODATA)
319                         return 0;
320
321                 return err;
322         }
323
324         schedule_timeout(timeout);
325
326         remove_wait_queue(&hdev->req_wait_q, &wait);
327
328         if (signal_pending(current))
329                 return -EINTR;
330
331         switch (hdev->req_status) {
332         case HCI_REQ_DONE:
333                 err = -bt_to_errno(hdev->req_result);
334                 break;
335
336         case HCI_REQ_CANCELED:
337                 err = -hdev->req_result;
338                 break;
339
340         default:
341                 err = -ETIMEDOUT;
342                 break;
343         }
344
345         hdev->req_status = hdev->req_result = 0;
346
347         BT_DBG("%s end: err %d", hdev->name, err);
348
349         return err;
350 }
351
352 static int hci_req_sync(struct hci_dev *hdev,
353                         void (*req)(struct hci_request *req,
354                                     unsigned long opt),
355                         unsigned long opt, __u32 timeout)
356 {
357         int ret;
358
359         if (!test_bit(HCI_UP, &hdev->flags))
360                 return -ENETDOWN;
361
362         /* Serialize all requests */
363         hci_req_lock(hdev);
364         ret = __hci_req_sync(hdev, req, opt, timeout);
365         hci_req_unlock(hdev);
366
367         return ret;
368 }
369
370 static void hci_reset_req(struct hci_request *req, unsigned long opt)
371 {
372         BT_DBG("%s %ld", req->hdev->name, opt);
373
374         /* Reset device */
375         set_bit(HCI_RESET, &req->hdev->flags);
376         hci_req_add(req, HCI_OP_RESET, 0, NULL);
377 }
378
379 static void bredr_init(struct hci_request *req)
380 {
381         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
382
383         /* Read Local Supported Features */
384         hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
385
386         /* Read Local Version */
387         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
388
389         /* Read BD Address */
390         hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
391 }
392
393 static void amp_init1(struct hci_request *req)
394 {
395         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
396
397         /* Read Local Version */
398         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
399
400         /* Read Local Supported Commands */
401         hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
402
403         /* Read Local AMP Info */
404         hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
405
406         /* Read Data Blk size */
407         hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
408
409         /* Read Flow Control Mode */
410         hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
411
412         /* Read Location Data */
413         hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
414 }
415
416 static void amp_init2(struct hci_request *req)
417 {
418         /* Read Local Supported Features. Not all AMP controllers
419          * support this so it's placed conditionally in the second
420          * stage init.
421          */
422         if (req->hdev->commands[14] & 0x20)
423                 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
424 }
425
426 static void hci_init1_req(struct hci_request *req, unsigned long opt)
427 {
428         struct hci_dev *hdev = req->hdev;
429
430         BT_DBG("%s %ld", hdev->name, opt);
431
432         /* Reset */
433         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
434                 hci_reset_req(req, 0);
435
436         switch (hdev->dev_type) {
437         case HCI_BREDR:
438                 bredr_init(req);
439                 break;
440
441         case HCI_AMP:
442                 amp_init1(req);
443                 break;
444
445         default:
446                 BT_ERR("Unknown device type %d", hdev->dev_type);
447                 break;
448         }
449 }
450
451 static void bredr_setup(struct hci_request *req)
452 {
453         __le16 param;
454         __u8 flt_type;
455
456         /* Read Buffer Size (ACL mtu, max pkt, etc.) */
457         hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
458
459         /* Read Class of Device */
460         hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
461
462         /* Read Local Name */
463         hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
464
465         /* Read Voice Setting */
466         hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
467
468         /* Read Number of Supported IAC */
469         hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
470
471         /* Read Current IAC LAP */
472         hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
473
474         /* Clear Event Filters */
475         flt_type = HCI_FLT_CLEAR_ALL;
476         hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
477
478         /* Connection accept timeout ~20 secs */
479         param = cpu_to_le16(0x7d00);
480         hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
481 }
482
483 static void le_setup(struct hci_request *req)
484 {
485         struct hci_dev *hdev = req->hdev;
486
487         /* Read LE Buffer Size */
488         hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
489
490         /* Read LE Local Supported Features */
491         hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
492
493         /* Read LE Supported States */
494         hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
495
496         /* Read LE White List Size */
497         hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL);
498
499         /* Clear LE White List */
500         hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
501
502         /* LE-only controllers have LE implicitly enabled */
503         if (!lmp_bredr_capable(hdev))
504                 set_bit(HCI_LE_ENABLED, &hdev->dev_flags);
505 }
506
507 static void hci_setup_event_mask(struct hci_request *req)
508 {
509         struct hci_dev *hdev = req->hdev;
510
511         /* The second byte is 0xff instead of 0x9f (two reserved bits
512          * disabled) since a Broadcom 1.2 dongle doesn't respond to the
513          * command otherwise.
514          */
515         u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
516
517         /* CSR 1.1 dongles does not accept any bitfield so don't try to set
518          * any event mask for pre 1.2 devices.
519          */
520         if (hdev->hci_ver < BLUETOOTH_VER_1_2)
521                 return;
522
523         if (lmp_bredr_capable(hdev)) {
524                 events[4] |= 0x01; /* Flow Specification Complete */
525                 events[4] |= 0x02; /* Inquiry Result with RSSI */
526                 events[4] |= 0x04; /* Read Remote Extended Features Complete */
527                 events[5] |= 0x08; /* Synchronous Connection Complete */
528                 events[5] |= 0x10; /* Synchronous Connection Changed */
529         } else {
530                 /* Use a different default for LE-only devices */
531                 memset(events, 0, sizeof(events));
532                 events[0] |= 0x10; /* Disconnection Complete */
533                 events[1] |= 0x08; /* Read Remote Version Information Complete */
534                 events[1] |= 0x20; /* Command Complete */
535                 events[1] |= 0x40; /* Command Status */
536                 events[1] |= 0x80; /* Hardware Error */
537                 events[2] |= 0x04; /* Number of Completed Packets */
538                 events[3] |= 0x02; /* Data Buffer Overflow */
539
540                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
541                         events[0] |= 0x80; /* Encryption Change */
542                         events[5] |= 0x80; /* Encryption Key Refresh Complete */
543                 }
544         }
545
546         if (lmp_inq_rssi_capable(hdev))
547                 events[4] |= 0x02; /* Inquiry Result with RSSI */
548
549         if (lmp_sniffsubr_capable(hdev))
550                 events[5] |= 0x20; /* Sniff Subrating */
551
552         if (lmp_pause_enc_capable(hdev))
553                 events[5] |= 0x80; /* Encryption Key Refresh Complete */
554
555         if (lmp_ext_inq_capable(hdev))
556                 events[5] |= 0x40; /* Extended Inquiry Result */
557
558         if (lmp_no_flush_capable(hdev))
559                 events[7] |= 0x01; /* Enhanced Flush Complete */
560
561         if (lmp_lsto_capable(hdev))
562                 events[6] |= 0x80; /* Link Supervision Timeout Changed */
563
564         if (lmp_ssp_capable(hdev)) {
565                 events[6] |= 0x01;      /* IO Capability Request */
566                 events[6] |= 0x02;      /* IO Capability Response */
567                 events[6] |= 0x04;      /* User Confirmation Request */
568                 events[6] |= 0x08;      /* User Passkey Request */
569                 events[6] |= 0x10;      /* Remote OOB Data Request */
570                 events[6] |= 0x20;      /* Simple Pairing Complete */
571                 events[7] |= 0x04;      /* User Passkey Notification */
572                 events[7] |= 0x08;      /* Keypress Notification */
573                 events[7] |= 0x10;      /* Remote Host Supported
574                                          * Features Notification
575                                          */
576         }
577
578         if (lmp_le_capable(hdev))
579                 events[7] |= 0x20;      /* LE Meta-Event */
580
581         hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
582 }
583
584 static void hci_init2_req(struct hci_request *req, unsigned long opt)
585 {
586         struct hci_dev *hdev = req->hdev;
587
588         if (hdev->dev_type == HCI_AMP)
589                 return amp_init2(req);
590
591         if (lmp_bredr_capable(hdev))
592                 bredr_setup(req);
593         else
594                 clear_bit(HCI_BREDR_ENABLED, &hdev->dev_flags);
595
596         if (lmp_le_capable(hdev))
597                 le_setup(req);
598
599         /* All Bluetooth 1.2 and later controllers should support the
600          * HCI command for reading the local supported commands.
601          *
602          * Unfortunately some controllers indicate Bluetooth 1.2 support,
603          * but do not have support for this command. If that is the case,
604          * the driver can quirk the behavior and skip reading the local
605          * supported commands.
606          */
607         if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
608             !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
609                 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
610
611         if (lmp_ssp_capable(hdev)) {
612                 /* When SSP is available, then the host features page
613                  * should also be available as well. However some
614                  * controllers list the max_page as 0 as long as SSP
615                  * has not been enabled. To achieve proper debugging
616                  * output, force the minimum max_page to 1 at least.
617                  */
618                 hdev->max_page = 0x01;
619
620                 if (test_bit(HCI_SSP_ENABLED, &hdev->dev_flags)) {
621                         u8 mode = 0x01;
622
623                         hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
624                                     sizeof(mode), &mode);
625                 } else {
626                         struct hci_cp_write_eir cp;
627
628                         memset(hdev->eir, 0, sizeof(hdev->eir));
629                         memset(&cp, 0, sizeof(cp));
630
631                         hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
632                 }
633         }
634
635         if (lmp_inq_rssi_capable(hdev) ||
636             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
637                 u8 mode;
638
639                 /* If Extended Inquiry Result events are supported, then
640                  * they are clearly preferred over Inquiry Result with RSSI
641                  * events.
642                  */
643                 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
644
645                 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
646         }
647
648         if (lmp_inq_tx_pwr_capable(hdev))
649                 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
650
651         if (lmp_ext_feat_capable(hdev)) {
652                 struct hci_cp_read_local_ext_features cp;
653
654                 cp.page = 0x01;
655                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
656                             sizeof(cp), &cp);
657         }
658
659         if (test_bit(HCI_LINK_SECURITY, &hdev->dev_flags)) {
660                 u8 enable = 1;
661                 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
662                             &enable);
663         }
664 }
665
666 static void hci_setup_link_policy(struct hci_request *req)
667 {
668         struct hci_dev *hdev = req->hdev;
669         struct hci_cp_write_def_link_policy cp;
670         u16 link_policy = 0;
671
672         if (lmp_rswitch_capable(hdev))
673                 link_policy |= HCI_LP_RSWITCH;
674         if (lmp_hold_capable(hdev))
675                 link_policy |= HCI_LP_HOLD;
676         if (lmp_sniff_capable(hdev))
677                 link_policy |= HCI_LP_SNIFF;
678         if (lmp_park_capable(hdev))
679                 link_policy |= HCI_LP_PARK;
680
681         cp.policy = cpu_to_le16(link_policy);
682         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
683 }
684
685 static void hci_set_le_support(struct hci_request *req)
686 {
687         struct hci_dev *hdev = req->hdev;
688         struct hci_cp_write_le_host_supported cp;
689
690         /* LE-only devices do not support explicit enablement */
691         if (!lmp_bredr_capable(hdev))
692                 return;
693
694         memset(&cp, 0, sizeof(cp));
695
696         if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) {
697                 cp.le = 0x01;
698                 cp.simul = 0x00;
699         }
700
701         if (cp.le != lmp_host_le_capable(hdev))
702                 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
703                             &cp);
704 }
705
706 static void hci_set_event_mask_page_2(struct hci_request *req)
707 {
708         struct hci_dev *hdev = req->hdev;
709         u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
710
711         /* If Connectionless Slave Broadcast master role is supported
712          * enable all necessary events for it.
713          */
714         if (lmp_csb_master_capable(hdev)) {
715                 events[1] |= 0x40;      /* Triggered Clock Capture */
716                 events[1] |= 0x80;      /* Synchronization Train Complete */
717                 events[2] |= 0x10;      /* Slave Page Response Timeout */
718                 events[2] |= 0x20;      /* CSB Channel Map Change */
719         }
720
721         /* If Connectionless Slave Broadcast slave role is supported
722          * enable all necessary events for it.
723          */
724         if (lmp_csb_slave_capable(hdev)) {
725                 events[2] |= 0x01;      /* Synchronization Train Received */
726                 events[2] |= 0x02;      /* CSB Receive */
727                 events[2] |= 0x04;      /* CSB Timeout */
728                 events[2] |= 0x08;      /* Truncated Page Complete */
729         }
730
731         /* Enable Authenticated Payload Timeout Expired event if supported */
732         if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
733                 events[2] |= 0x80;
734
735         hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
736 }
737
738 static void hci_init3_req(struct hci_request *req, unsigned long opt)
739 {
740         struct hci_dev *hdev = req->hdev;
741         u8 p;
742
743         hci_setup_event_mask(req);
744
745         if (hdev->commands[6] & 0x20) {
746                 struct hci_cp_read_stored_link_key cp;
747
748                 bacpy(&cp.bdaddr, BDADDR_ANY);
749                 cp.read_all = 0x01;
750                 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
751         }
752
753         if (hdev->commands[5] & 0x10)
754                 hci_setup_link_policy(req);
755
756         if (hdev->commands[8] & 0x01)
757                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
758
759         /* Some older Broadcom based Bluetooth 1.2 controllers do not
760          * support the Read Page Scan Type command. Check support for
761          * this command in the bit mask of supported commands.
762          */
763         if (hdev->commands[13] & 0x01)
764                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
765
766         if (lmp_le_capable(hdev)) {
767                 u8 events[8];
768
769                 memset(events, 0, sizeof(events));
770                 events[0] = 0x0f;
771
772                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
773                         events[0] |= 0x10;      /* LE Long Term Key Request */
774
775                 /* If controller supports the Connection Parameters Request
776                  * Link Layer Procedure, enable the corresponding event.
777                  */
778                 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
779                         events[0] |= 0x20;      /* LE Remote Connection
780                                                  * Parameter Request
781                                                  */
782
783                 /* If the controller supports the Data Length Extension
784                  * feature, enable the corresponding event.
785                  */
786                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
787                         events[0] |= 0x40;      /* LE Data Length Change */
788
789                 /* If the controller supports Extended Scanner Filter
790                  * Policies, enable the correspondig event.
791                  */
792                 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
793                         events[1] |= 0x04;      /* LE Direct Advertising
794                                                  * Report
795                                                  */
796
797                 /* If the controller supports the LE Read Local P-256
798                  * Public Key command, enable the corresponding event.
799                  */
800                 if (hdev->commands[34] & 0x02)
801                         events[0] |= 0x80;      /* LE Read Local P-256
802                                                  * Public Key Complete
803                                                  */
804
805                 /* If the controller supports the LE Generate DHKey
806                  * command, enable the corresponding event.
807                  */
808                 if (hdev->commands[34] & 0x04)
809                         events[1] |= 0x01;      /* LE Generate DHKey Complete */
810
811                 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
812                             events);
813
814                 if (hdev->commands[25] & 0x40) {
815                         /* Read LE Advertising Channel TX Power */
816                         hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
817                 }
818
819                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
820                         /* Read LE Maximum Data Length */
821                         hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
822
823                         /* Read LE Suggested Default Data Length */
824                         hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
825                 }
826
827                 hci_set_le_support(req);
828         }
829
830         /* Read features beyond page 1 if available */
831         for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
832                 struct hci_cp_read_local_ext_features cp;
833
834                 cp.page = p;
835                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
836                             sizeof(cp), &cp);
837         }
838 }
839
840 static void hci_init4_req(struct hci_request *req, unsigned long opt)
841 {
842         struct hci_dev *hdev = req->hdev;
843
844         /* Some Broadcom based Bluetooth controllers do not support the
845          * Delete Stored Link Key command. They are clearly indicating its
846          * absence in the bit mask of supported commands.
847          *
848          * Check the supported commands and only if the the command is marked
849          * as supported send it. If not supported assume that the controller
850          * does not have actual support for stored link keys which makes this
851          * command redundant anyway.
852          *
853          * Some controllers indicate that they support handling deleting
854          * stored link keys, but they don't. The quirk lets a driver
855          * just disable this command.
856          */
857         if (hdev->commands[6] & 0x80 &&
858             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
859                 struct hci_cp_delete_stored_link_key cp;
860
861                 bacpy(&cp.bdaddr, BDADDR_ANY);
862                 cp.delete_all = 0x01;
863                 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
864                             sizeof(cp), &cp);
865         }
866
867         /* Set event mask page 2 if the HCI command for it is supported */
868         if (hdev->commands[22] & 0x04)
869                 hci_set_event_mask_page_2(req);
870
871         /* Read local codec list if the HCI command is supported */
872         if (hdev->commands[29] & 0x20)
873                 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
874
875         /* Get MWS transport configuration if the HCI command is supported */
876         if (hdev->commands[30] & 0x08)
877                 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
878
879         /* Check for Synchronization Train support */
880         if (lmp_sync_train_capable(hdev))
881                 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
882
883         /* Enable Secure Connections if supported and configured */
884         if (test_bit(HCI_SSP_ENABLED, &hdev->dev_flags) &&
885             bredr_sc_enabled(hdev)) {
886                 u8 support = 0x01;
887
888                 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
889                             sizeof(support), &support);
890         }
891 }
892
893 static int __hci_init(struct hci_dev *hdev)
894 {
895         int err;
896
897         err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT);
898         if (err < 0)
899                 return err;
900
901         /* The Device Under Test (DUT) mode is special and available for
902          * all controller types. So just create it early on.
903          */
904         if (test_bit(HCI_SETUP, &hdev->dev_flags)) {
905                 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
906                                     &dut_mode_fops);
907         }
908
909         err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT);
910         if (err < 0)
911                 return err;
912
913         /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
914          * BR/EDR/LE type controllers. AMP controllers only need the
915          * first two stages of init.
916          */
917         if (hdev->dev_type != HCI_BREDR)
918                 return 0;
919
920         err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT);
921         if (err < 0)
922                 return err;
923
924         err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT);
925         if (err < 0)
926                 return err;
927
928         /* This function is only called when the controller is actually in
929          * configured state. When the controller is marked as unconfigured,
930          * this initialization procedure is not run.
931          *
932          * It means that it is possible that a controller runs through its
933          * setup phase and then discovers missing settings. If that is the
934          * case, then this function will not be called. It then will only
935          * be called during the config phase.
936          *
937          * So only when in setup phase or config phase, create the debugfs
938          * entries and register the SMP channels.
939          */
940         if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
941             !test_bit(HCI_CONFIG, &hdev->dev_flags))
942                 return 0;
943
944         hci_debugfs_create_common(hdev);
945
946         if (lmp_bredr_capable(hdev))
947                 hci_debugfs_create_bredr(hdev);
948
949         if (lmp_le_capable(hdev))
950                 hci_debugfs_create_le(hdev);
951
952         return 0;
953 }
954
955 static void hci_init0_req(struct hci_request *req, unsigned long opt)
956 {
957         struct hci_dev *hdev = req->hdev;
958
959         BT_DBG("%s %ld", hdev->name, opt);
960
961         /* Reset */
962         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
963                 hci_reset_req(req, 0);
964
965         /* Read Local Version */
966         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
967
968         /* Read BD Address */
969         if (hdev->set_bdaddr)
970                 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
971 }
972
973 static int __hci_unconf_init(struct hci_dev *hdev)
974 {
975         int err;
976
977         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
978                 return 0;
979
980         err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT);
981         if (err < 0)
982                 return err;
983
984         return 0;
985 }
986
987 static void hci_scan_req(struct hci_request *req, unsigned long opt)
988 {
989         __u8 scan = opt;
990
991         BT_DBG("%s %x", req->hdev->name, scan);
992
993         /* Inquiry and Page scans */
994         hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
995 }
996
997 static void hci_auth_req(struct hci_request *req, unsigned long opt)
998 {
999         __u8 auth = opt;
1000
1001         BT_DBG("%s %x", req->hdev->name, auth);
1002
1003         /* Authentication */
1004         hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1005 }
1006
1007 static void hci_encrypt_req(struct hci_request *req, unsigned long opt)
1008 {
1009         __u8 encrypt = opt;
1010
1011         BT_DBG("%s %x", req->hdev->name, encrypt);
1012
1013         /* Encryption */
1014         hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1015 }
1016
1017 static void hci_linkpol_req(struct hci_request *req, unsigned long opt)
1018 {
1019         __le16 policy = cpu_to_le16(opt);
1020
1021         BT_DBG("%s %x", req->hdev->name, policy);
1022
1023         /* Default link policy */
1024         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1025 }
1026
1027 /* Get HCI device by index.
1028  * Device is held on return. */
1029 struct hci_dev *hci_dev_get(int index)
1030 {
1031         struct hci_dev *hdev = NULL, *d;
1032
1033         BT_DBG("%d", index);
1034
1035         if (index < 0)
1036                 return NULL;
1037
1038         read_lock(&hci_dev_list_lock);
1039         list_for_each_entry(d, &hci_dev_list, list) {
1040                 if (d->id == index) {
1041                         hdev = hci_dev_hold(d);
1042                         break;
1043                 }
1044         }
1045         read_unlock(&hci_dev_list_lock);
1046         return hdev;
1047 }
1048
1049 /* ---- Inquiry support ---- */
1050
1051 bool hci_discovery_active(struct hci_dev *hdev)
1052 {
1053         struct discovery_state *discov = &hdev->discovery;
1054
1055         switch (discov->state) {
1056         case DISCOVERY_FINDING:
1057         case DISCOVERY_RESOLVING:
1058                 return true;
1059
1060         default:
1061                 return false;
1062         }
1063 }
1064
1065 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1066 {
1067         int old_state = hdev->discovery.state;
1068
1069         BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1070
1071         if (old_state == state)
1072                 return;
1073
1074         hdev->discovery.state = state;
1075
1076         switch (state) {
1077         case DISCOVERY_STOPPED:
1078                 hci_update_background_scan(hdev);
1079
1080                 if (old_state != DISCOVERY_STARTING)
1081                         mgmt_discovering(hdev, 0);
1082                 break;
1083         case DISCOVERY_STARTING:
1084                 break;
1085         case DISCOVERY_FINDING:
1086                 mgmt_discovering(hdev, 1);
1087                 break;
1088         case DISCOVERY_RESOLVING:
1089                 break;
1090         case DISCOVERY_STOPPING:
1091                 break;
1092         }
1093 }
1094
1095 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1096 {
1097         struct discovery_state *cache = &hdev->discovery;
1098         struct inquiry_entry *p, *n;
1099
1100         list_for_each_entry_safe(p, n, &cache->all, all) {
1101                 list_del(&p->all);
1102                 kfree(p);
1103         }
1104
1105         INIT_LIST_HEAD(&cache->unknown);
1106         INIT_LIST_HEAD(&cache->resolve);
1107 }
1108
1109 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1110                                                bdaddr_t *bdaddr)
1111 {
1112         struct discovery_state *cache = &hdev->discovery;
1113         struct inquiry_entry *e;
1114
1115         BT_DBG("cache %p, %pMR", cache, bdaddr);
1116
1117         list_for_each_entry(e, &cache->all, all) {
1118                 if (!bacmp(&e->data.bdaddr, bdaddr))
1119                         return e;
1120         }
1121
1122         return NULL;
1123 }
1124
1125 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1126                                                        bdaddr_t *bdaddr)
1127 {
1128         struct discovery_state *cache = &hdev->discovery;
1129         struct inquiry_entry *e;
1130
1131         BT_DBG("cache %p, %pMR", cache, bdaddr);
1132
1133         list_for_each_entry(e, &cache->unknown, list) {
1134                 if (!bacmp(&e->data.bdaddr, bdaddr))
1135                         return e;
1136         }
1137
1138         return NULL;
1139 }
1140
1141 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1142                                                        bdaddr_t *bdaddr,
1143                                                        int state)
1144 {
1145         struct discovery_state *cache = &hdev->discovery;
1146         struct inquiry_entry *e;
1147
1148         BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1149
1150         list_for_each_entry(e, &cache->resolve, list) {
1151                 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1152                         return e;
1153                 if (!bacmp(&e->data.bdaddr, bdaddr))
1154                         return e;
1155         }
1156
1157         return NULL;
1158 }
1159
1160 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1161                                       struct inquiry_entry *ie)
1162 {
1163         struct discovery_state *cache = &hdev->discovery;
1164         struct list_head *pos = &cache->resolve;
1165         struct inquiry_entry *p;
1166
1167         list_del(&ie->list);
1168
1169         list_for_each_entry(p, &cache->resolve, list) {
1170                 if (p->name_state != NAME_PENDING &&
1171                     abs(p->data.rssi) >= abs(ie->data.rssi))
1172                         break;
1173                 pos = &p->list;
1174         }
1175
1176         list_add(&ie->list, pos);
1177 }
1178
1179 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1180                              bool name_known)
1181 {
1182         struct discovery_state *cache = &hdev->discovery;
1183         struct inquiry_entry *ie;
1184         u32 flags = 0;
1185
1186         BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1187
1188         hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1189
1190         if (!data->ssp_mode)
1191                 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1192
1193         ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1194         if (ie) {
1195                 if (!ie->data.ssp_mode)
1196                         flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1197
1198                 if (ie->name_state == NAME_NEEDED &&
1199                     data->rssi != ie->data.rssi) {
1200                         ie->data.rssi = data->rssi;
1201                         hci_inquiry_cache_update_resolve(hdev, ie);
1202                 }
1203
1204                 goto update;
1205         }
1206
1207         /* Entry not in the cache. Add new one. */
1208         ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1209         if (!ie) {
1210                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1211                 goto done;
1212         }
1213
1214         list_add(&ie->all, &cache->all);
1215
1216         if (name_known) {
1217                 ie->name_state = NAME_KNOWN;
1218         } else {
1219                 ie->name_state = NAME_NOT_KNOWN;
1220                 list_add(&ie->list, &cache->unknown);
1221         }
1222
1223 update:
1224         if (name_known && ie->name_state != NAME_KNOWN &&
1225             ie->name_state != NAME_PENDING) {
1226                 ie->name_state = NAME_KNOWN;
1227                 list_del(&ie->list);
1228         }
1229
1230         memcpy(&ie->data, data, sizeof(*data));
1231         ie->timestamp = jiffies;
1232         cache->timestamp = jiffies;
1233
1234         if (ie->name_state == NAME_NOT_KNOWN)
1235                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1236
1237 done:
1238         return flags;
1239 }
1240
1241 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1242 {
1243         struct discovery_state *cache = &hdev->discovery;
1244         struct inquiry_info *info = (struct inquiry_info *) buf;
1245         struct inquiry_entry *e;
1246         int copied = 0;
1247
1248         list_for_each_entry(e, &cache->all, all) {
1249                 struct inquiry_data *data = &e->data;
1250
1251                 if (copied >= num)
1252                         break;
1253
1254                 bacpy(&info->bdaddr, &data->bdaddr);
1255                 info->pscan_rep_mode    = data->pscan_rep_mode;
1256                 info->pscan_period_mode = data->pscan_period_mode;
1257                 info->pscan_mode        = data->pscan_mode;
1258                 memcpy(info->dev_class, data->dev_class, 3);
1259                 info->clock_offset      = data->clock_offset;
1260
1261                 info++;
1262                 copied++;
1263         }
1264
1265         BT_DBG("cache %p, copied %d", cache, copied);
1266         return copied;
1267 }
1268
1269 static void hci_inq_req(struct hci_request *req, unsigned long opt)
1270 {
1271         struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1272         struct hci_dev *hdev = req->hdev;
1273         struct hci_cp_inquiry cp;
1274
1275         BT_DBG("%s", hdev->name);
1276
1277         if (test_bit(HCI_INQUIRY, &hdev->flags))
1278                 return;
1279
1280         /* Start Inquiry */
1281         memcpy(&cp.lap, &ir->lap, 3);
1282         cp.length  = ir->length;
1283         cp.num_rsp = ir->num_rsp;
1284         hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1285 }
1286
1287 int hci_inquiry(void __user *arg)
1288 {
1289         __u8 __user *ptr = arg;
1290         struct hci_inquiry_req ir;
1291         struct hci_dev *hdev;
1292         int err = 0, do_inquiry = 0, max_rsp;
1293         long timeo;
1294         __u8 *buf;
1295
1296         if (copy_from_user(&ir, ptr, sizeof(ir)))
1297                 return -EFAULT;
1298
1299         hdev = hci_dev_get(ir.dev_id);
1300         if (!hdev)
1301                 return -ENODEV;
1302
1303         if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
1304                 err = -EBUSY;
1305                 goto done;
1306         }
1307
1308         if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
1309                 err = -EOPNOTSUPP;
1310                 goto done;
1311         }
1312
1313         if (hdev->dev_type != HCI_BREDR) {
1314                 err = -EOPNOTSUPP;
1315                 goto done;
1316         }
1317
1318         if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) {
1319                 err = -EOPNOTSUPP;
1320                 goto done;
1321         }
1322
1323         hci_dev_lock(hdev);
1324         if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1325             inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1326                 hci_inquiry_cache_flush(hdev);
1327                 do_inquiry = 1;
1328         }
1329         hci_dev_unlock(hdev);
1330
1331         timeo = ir.length * msecs_to_jiffies(2000);
1332
1333         if (do_inquiry) {
1334                 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1335                                    timeo);
1336                 if (err < 0)
1337                         goto done;
1338
1339                 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1340                  * cleared). If it is interrupted by a signal, return -EINTR.
1341                  */
1342                 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1343                                 TASK_INTERRUPTIBLE))
1344                         return -EINTR;
1345         }
1346
1347         /* for unlimited number of responses we will use buffer with
1348          * 255 entries
1349          */
1350         max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1351
1352         /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1353          * copy it to the user space.
1354          */
1355         buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1356         if (!buf) {
1357                 err = -ENOMEM;
1358                 goto done;
1359         }
1360
1361         hci_dev_lock(hdev);
1362         ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1363         hci_dev_unlock(hdev);
1364
1365         BT_DBG("num_rsp %d", ir.num_rsp);
1366
1367         if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1368                 ptr += sizeof(ir);
1369                 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1370                                  ir.num_rsp))
1371                         err = -EFAULT;
1372         } else
1373                 err = -EFAULT;
1374
1375         kfree(buf);
1376
1377 done:
1378         hci_dev_put(hdev);
1379         return err;
1380 }
1381
1382 static int hci_dev_do_open(struct hci_dev *hdev)
1383 {
1384         int ret = 0;
1385
1386         BT_DBG("%s %p", hdev->name, hdev);
1387
1388         hci_req_lock(hdev);
1389
1390         if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) {
1391                 ret = -ENODEV;
1392                 goto done;
1393         }
1394
1395         if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
1396             !test_bit(HCI_CONFIG, &hdev->dev_flags)) {
1397                 /* Check for rfkill but allow the HCI setup stage to
1398                  * proceed (which in itself doesn't cause any RF activity).
1399                  */
1400                 if (test_bit(HCI_RFKILLED, &hdev->dev_flags)) {
1401                         ret = -ERFKILL;
1402                         goto done;
1403                 }
1404
1405                 /* Check for valid public address or a configured static
1406                  * random adddress, but let the HCI setup proceed to
1407                  * be able to determine if there is a public address
1408                  * or not.
1409                  *
1410                  * In case of user channel usage, it is not important
1411                  * if a public address or static random address is
1412                  * available.
1413                  *
1414                  * This check is only valid for BR/EDR controllers
1415                  * since AMP controllers do not have an address.
1416                  */
1417                 if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) &&
1418                     hdev->dev_type == HCI_BREDR &&
1419                     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1420                     !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1421                         ret = -EADDRNOTAVAIL;
1422                         goto done;
1423                 }
1424         }
1425
1426         if (test_bit(HCI_UP, &hdev->flags)) {
1427                 ret = -EALREADY;
1428                 goto done;
1429         }
1430
1431         if (hdev->open(hdev)) {
1432                 ret = -EIO;
1433                 goto done;
1434         }
1435
1436         atomic_set(&hdev->cmd_cnt, 1);
1437         set_bit(HCI_INIT, &hdev->flags);
1438
1439         if (test_bit(HCI_SETUP, &hdev->dev_flags)) {
1440                 if (hdev->setup)
1441                         ret = hdev->setup(hdev);
1442
1443                 /* The transport driver can set these quirks before
1444                  * creating the HCI device or in its setup callback.
1445                  *
1446                  * In case any of them is set, the controller has to
1447                  * start up as unconfigured.
1448                  */
1449                 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1450                     test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1451                         set_bit(HCI_UNCONFIGURED, &hdev->dev_flags);
1452
1453                 /* For an unconfigured controller it is required to
1454                  * read at least the version information provided by
1455                  * the Read Local Version Information command.
1456                  *
1457                  * If the set_bdaddr driver callback is provided, then
1458                  * also the original Bluetooth public device address
1459                  * will be read using the Read BD Address command.
1460                  */
1461                 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags))
1462                         ret = __hci_unconf_init(hdev);
1463         }
1464
1465         if (test_bit(HCI_CONFIG, &hdev->dev_flags)) {
1466                 /* If public address change is configured, ensure that
1467                  * the address gets programmed. If the driver does not
1468                  * support changing the public address, fail the power
1469                  * on procedure.
1470                  */
1471                 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1472                     hdev->set_bdaddr)
1473                         ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1474                 else
1475                         ret = -EADDRNOTAVAIL;
1476         }
1477
1478         if (!ret) {
1479                 if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) &&
1480                     !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags))
1481                         ret = __hci_init(hdev);
1482         }
1483
1484         clear_bit(HCI_INIT, &hdev->flags);
1485
1486         if (!ret) {
1487                 hci_dev_hold(hdev);
1488                 set_bit(HCI_RPA_EXPIRED, &hdev->dev_flags);
1489                 set_bit(HCI_UP, &hdev->flags);
1490                 hci_notify(hdev, HCI_DEV_UP);
1491                 if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
1492                     !test_bit(HCI_CONFIG, &hdev->dev_flags) &&
1493                     !test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) &&
1494                     !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) &&
1495                     hdev->dev_type == HCI_BREDR) {
1496                         hci_dev_lock(hdev);
1497                         mgmt_powered(hdev, 1);
1498                         hci_dev_unlock(hdev);
1499                 }
1500         } else {
1501                 /* Init failed, cleanup */
1502                 flush_work(&hdev->tx_work);
1503                 flush_work(&hdev->cmd_work);
1504                 flush_work(&hdev->rx_work);
1505
1506                 skb_queue_purge(&hdev->cmd_q);
1507                 skb_queue_purge(&hdev->rx_q);
1508
1509                 if (hdev->flush)
1510                         hdev->flush(hdev);
1511
1512                 if (hdev->sent_cmd) {
1513                         kfree_skb(hdev->sent_cmd);
1514                         hdev->sent_cmd = NULL;
1515                 }
1516
1517                 hdev->close(hdev);
1518                 hdev->flags &= BIT(HCI_RAW);
1519         }
1520
1521 done:
1522         hci_req_unlock(hdev);
1523         return ret;
1524 }
1525
1526 /* ---- HCI ioctl helpers ---- */
1527
1528 int hci_dev_open(__u16 dev)
1529 {
1530         struct hci_dev *hdev;
1531         int err;
1532
1533         hdev = hci_dev_get(dev);
1534         if (!hdev)
1535                 return -ENODEV;
1536
1537         /* Devices that are marked as unconfigured can only be powered
1538          * up as user channel. Trying to bring them up as normal devices
1539          * will result into a failure. Only user channel operation is
1540          * possible.
1541          *
1542          * When this function is called for a user channel, the flag
1543          * HCI_USER_CHANNEL will be set first before attempting to
1544          * open the device.
1545          */
1546         if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) &&
1547             !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
1548                 err = -EOPNOTSUPP;
1549                 goto done;
1550         }
1551
1552         /* We need to ensure that no other power on/off work is pending
1553          * before proceeding to call hci_dev_do_open. This is
1554          * particularly important if the setup procedure has not yet
1555          * completed.
1556          */
1557         if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1558                 cancel_delayed_work(&hdev->power_off);
1559
1560         /* After this call it is guaranteed that the setup procedure
1561          * has finished. This means that error conditions like RFKILL
1562          * or no valid public or static random address apply.
1563          */
1564         flush_workqueue(hdev->req_workqueue);
1565
1566         /* For controllers not using the management interface and that
1567          * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1568          * so that pairing works for them. Once the management interface
1569          * is in use this bit will be cleared again and userspace has
1570          * to explicitly enable it.
1571          */
1572         if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) &&
1573             !test_bit(HCI_MGMT, &hdev->dev_flags))
1574                 set_bit(HCI_BONDABLE, &hdev->dev_flags);
1575
1576         err = hci_dev_do_open(hdev);
1577
1578 done:
1579         hci_dev_put(hdev);
1580         return err;
1581 }
1582
1583 /* This function requires the caller holds hdev->lock */
1584 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1585 {
1586         struct hci_conn_params *p;
1587
1588         list_for_each_entry(p, &hdev->le_conn_params, list) {
1589                 if (p->conn) {
1590                         hci_conn_drop(p->conn);
1591                         hci_conn_put(p->conn);
1592                         p->conn = NULL;
1593                 }
1594                 list_del_init(&p->action);
1595         }
1596
1597         BT_DBG("All LE pending actions cleared");
1598 }
1599
1600 static int hci_dev_do_close(struct hci_dev *hdev)
1601 {
1602         BT_DBG("%s %p", hdev->name, hdev);
1603
1604         if (!test_bit(HCI_UNREGISTER, &hdev->dev_flags)) {
1605                 /* Execute vendor specific shutdown routine */
1606                 if (hdev->shutdown)
1607                         hdev->shutdown(hdev);
1608         }
1609
1610         cancel_delayed_work(&hdev->power_off);
1611
1612         hci_req_cancel(hdev, ENODEV);
1613         hci_req_lock(hdev);
1614
1615         if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1616                 cancel_delayed_work_sync(&hdev->cmd_timer);
1617                 hci_req_unlock(hdev);
1618                 return 0;
1619         }
1620
1621         /* Flush RX and TX works */
1622         flush_work(&hdev->tx_work);
1623         flush_work(&hdev->rx_work);
1624
1625         if (hdev->discov_timeout > 0) {
1626                 cancel_delayed_work(&hdev->discov_off);
1627                 hdev->discov_timeout = 0;
1628                 clear_bit(HCI_DISCOVERABLE, &hdev->dev_flags);
1629                 clear_bit(HCI_LIMITED_DISCOVERABLE, &hdev->dev_flags);
1630         }
1631
1632         if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags))
1633                 cancel_delayed_work(&hdev->service_cache);
1634
1635         cancel_delayed_work_sync(&hdev->le_scan_disable);
1636         cancel_delayed_work_sync(&hdev->le_scan_restart);
1637
1638         if (test_bit(HCI_MGMT, &hdev->dev_flags))
1639                 cancel_delayed_work_sync(&hdev->rpa_expired);
1640
1641         /* Avoid potential lockdep warnings from the *_flush() calls by
1642          * ensuring the workqueue is empty up front.
1643          */
1644         drain_workqueue(hdev->workqueue);
1645
1646         hci_dev_lock(hdev);
1647
1648         hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1649
1650         if (!test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags)) {
1651                 if (hdev->dev_type == HCI_BREDR)
1652                         mgmt_powered(hdev, 0);
1653         }
1654
1655         hci_inquiry_cache_flush(hdev);
1656         hci_pend_le_actions_clear(hdev);
1657         hci_conn_hash_flush(hdev);
1658         hci_dev_unlock(hdev);
1659
1660         smp_unregister(hdev);
1661
1662         hci_notify(hdev, HCI_DEV_DOWN);
1663
1664         if (hdev->flush)
1665                 hdev->flush(hdev);
1666
1667         /* Reset device */
1668         skb_queue_purge(&hdev->cmd_q);
1669         atomic_set(&hdev->cmd_cnt, 1);
1670         if (!test_bit(HCI_AUTO_OFF, &hdev->dev_flags) &&
1671             !test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) &&
1672             test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
1673                 set_bit(HCI_INIT, &hdev->flags);
1674                 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT);
1675                 clear_bit(HCI_INIT, &hdev->flags);
1676         }
1677
1678         /* flush cmd  work */
1679         flush_work(&hdev->cmd_work);
1680
1681         /* Drop queues */
1682         skb_queue_purge(&hdev->rx_q);
1683         skb_queue_purge(&hdev->cmd_q);
1684         skb_queue_purge(&hdev->raw_q);
1685
1686         /* Drop last sent command */
1687         if (hdev->sent_cmd) {
1688                 cancel_delayed_work_sync(&hdev->cmd_timer);
1689                 kfree_skb(hdev->sent_cmd);
1690                 hdev->sent_cmd = NULL;
1691         }
1692
1693         kfree_skb(hdev->recv_evt);
1694         hdev->recv_evt = NULL;
1695
1696         /* After this point our queues are empty
1697          * and no tasks are scheduled. */
1698         hdev->close(hdev);
1699
1700         /* Clear flags */
1701         hdev->flags &= BIT(HCI_RAW);
1702         hdev->dev_flags &= ~HCI_PERSISTENT_MASK;
1703
1704         /* Controller radio is available but is currently powered down */
1705         hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1706
1707         memset(hdev->eir, 0, sizeof(hdev->eir));
1708         memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1709         bacpy(&hdev->random_addr, BDADDR_ANY);
1710
1711         hci_req_unlock(hdev);
1712
1713         hci_dev_put(hdev);
1714         return 0;
1715 }
1716
1717 int hci_dev_close(__u16 dev)
1718 {
1719         struct hci_dev *hdev;
1720         int err;
1721
1722         hdev = hci_dev_get(dev);
1723         if (!hdev)
1724                 return -ENODEV;
1725
1726         if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
1727                 err = -EBUSY;
1728                 goto done;
1729         }
1730
1731         if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1732                 cancel_delayed_work(&hdev->power_off);
1733
1734         err = hci_dev_do_close(hdev);
1735
1736 done:
1737         hci_dev_put(hdev);
1738         return err;
1739 }
1740
1741 static int hci_dev_do_reset(struct hci_dev *hdev)
1742 {
1743         int ret;
1744
1745         BT_DBG("%s %p", hdev->name, hdev);
1746
1747         hci_req_lock(hdev);
1748
1749         /* Drop queues */
1750         skb_queue_purge(&hdev->rx_q);
1751         skb_queue_purge(&hdev->cmd_q);
1752
1753         /* Avoid potential lockdep warnings from the *_flush() calls by
1754          * ensuring the workqueue is empty up front.
1755          */
1756         drain_workqueue(hdev->workqueue);
1757
1758         hci_dev_lock(hdev);
1759         hci_inquiry_cache_flush(hdev);
1760         hci_conn_hash_flush(hdev);
1761         hci_dev_unlock(hdev);
1762
1763         if (hdev->flush)
1764                 hdev->flush(hdev);
1765
1766         atomic_set(&hdev->cmd_cnt, 1);
1767         hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1768
1769         ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT);
1770
1771         hci_req_unlock(hdev);
1772         return ret;
1773 }
1774
1775 int hci_dev_reset(__u16 dev)
1776 {
1777         struct hci_dev *hdev;
1778         int err;
1779
1780         hdev = hci_dev_get(dev);
1781         if (!hdev)
1782                 return -ENODEV;
1783
1784         if (!test_bit(HCI_UP, &hdev->flags)) {
1785                 err = -ENETDOWN;
1786                 goto done;
1787         }
1788
1789         if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
1790                 err = -EBUSY;
1791                 goto done;
1792         }
1793
1794         if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
1795                 err = -EOPNOTSUPP;
1796                 goto done;
1797         }
1798
1799         err = hci_dev_do_reset(hdev);
1800
1801 done:
1802         hci_dev_put(hdev);
1803         return err;
1804 }
1805
1806 int hci_dev_reset_stat(__u16 dev)
1807 {
1808         struct hci_dev *hdev;
1809         int ret = 0;
1810
1811         hdev = hci_dev_get(dev);
1812         if (!hdev)
1813                 return -ENODEV;
1814
1815         if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
1816                 ret = -EBUSY;
1817                 goto done;
1818         }
1819
1820         if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
1821                 ret = -EOPNOTSUPP;
1822                 goto done;
1823         }
1824
1825         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1826
1827 done:
1828         hci_dev_put(hdev);
1829         return ret;
1830 }
1831
1832 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1833 {
1834         bool conn_changed, discov_changed;
1835
1836         BT_DBG("%s scan 0x%02x", hdev->name, scan);
1837
1838         if ((scan & SCAN_PAGE))
1839                 conn_changed = !test_and_set_bit(HCI_CONNECTABLE,
1840                                                  &hdev->dev_flags);
1841         else
1842                 conn_changed = test_and_clear_bit(HCI_CONNECTABLE,
1843                                                   &hdev->dev_flags);
1844
1845         if ((scan & SCAN_INQUIRY)) {
1846                 discov_changed = !test_and_set_bit(HCI_DISCOVERABLE,
1847                                                    &hdev->dev_flags);
1848         } else {
1849                 clear_bit(HCI_LIMITED_DISCOVERABLE, &hdev->dev_flags);
1850                 discov_changed = test_and_clear_bit(HCI_DISCOVERABLE,
1851                                                     &hdev->dev_flags);
1852         }
1853
1854         if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1855                 return;
1856
1857         if (conn_changed || discov_changed) {
1858                 /* In case this was disabled through mgmt */
1859                 set_bit(HCI_BREDR_ENABLED, &hdev->dev_flags);
1860
1861                 if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags))
1862                         mgmt_update_adv_data(hdev);
1863
1864                 mgmt_new_settings(hdev);
1865         }
1866 }
1867
1868 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1869 {
1870         struct hci_dev *hdev;
1871         struct hci_dev_req dr;
1872         int err = 0;
1873
1874         if (copy_from_user(&dr, arg, sizeof(dr)))
1875                 return -EFAULT;
1876
1877         hdev = hci_dev_get(dr.dev_id);
1878         if (!hdev)
1879                 return -ENODEV;
1880
1881         if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
1882                 err = -EBUSY;
1883                 goto done;
1884         }
1885
1886         if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
1887                 err = -EOPNOTSUPP;
1888                 goto done;
1889         }
1890
1891         if (hdev->dev_type != HCI_BREDR) {
1892                 err = -EOPNOTSUPP;
1893                 goto done;
1894         }
1895
1896         if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) {
1897                 err = -EOPNOTSUPP;
1898                 goto done;
1899         }
1900
1901         switch (cmd) {
1902         case HCISETAUTH:
1903                 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1904                                    HCI_INIT_TIMEOUT);
1905                 break;
1906
1907         case HCISETENCRYPT:
1908                 if (!lmp_encrypt_capable(hdev)) {
1909                         err = -EOPNOTSUPP;
1910                         break;
1911                 }
1912
1913                 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1914                         /* Auth must be enabled first */
1915                         err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1916                                            HCI_INIT_TIMEOUT);
1917                         if (err)
1918                                 break;
1919                 }
1920
1921                 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1922                                    HCI_INIT_TIMEOUT);
1923                 break;
1924
1925         case HCISETSCAN:
1926                 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1927                                    HCI_INIT_TIMEOUT);
1928
1929                 /* Ensure that the connectable and discoverable states
1930                  * get correctly modified as this was a non-mgmt change.
1931                  */
1932                 if (!err)
1933                         hci_update_scan_state(hdev, dr.dev_opt);
1934                 break;
1935
1936         case HCISETLINKPOL:
1937                 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1938                                    HCI_INIT_TIMEOUT);
1939                 break;
1940
1941         case HCISETLINKMODE:
1942                 hdev->link_mode = ((__u16) dr.dev_opt) &
1943                                         (HCI_LM_MASTER | HCI_LM_ACCEPT);
1944                 break;
1945
1946         case HCISETPTYPE:
1947                 hdev->pkt_type = (__u16) dr.dev_opt;
1948                 break;
1949
1950         case HCISETACLMTU:
1951                 hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1952                 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1953                 break;
1954
1955         case HCISETSCOMTU:
1956                 hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1957                 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1958                 break;
1959
1960         default:
1961                 err = -EINVAL;
1962                 break;
1963         }
1964
1965 done:
1966         hci_dev_put(hdev);
1967         return err;
1968 }
1969
1970 int hci_get_dev_list(void __user *arg)
1971 {
1972         struct hci_dev *hdev;
1973         struct hci_dev_list_req *dl;
1974         struct hci_dev_req *dr;
1975         int n = 0, size, err;
1976         __u16 dev_num;
1977
1978         if (get_user(dev_num, (__u16 __user *) arg))
1979                 return -EFAULT;
1980
1981         if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1982                 return -EINVAL;
1983
1984         size = sizeof(*dl) + dev_num * sizeof(*dr);
1985
1986         dl = kzalloc(size, GFP_KERNEL);
1987         if (!dl)
1988                 return -ENOMEM;
1989
1990         dr = dl->dev_req;
1991
1992         read_lock(&hci_dev_list_lock);
1993         list_for_each_entry(hdev, &hci_dev_list, list) {
1994                 unsigned long flags = hdev->flags;
1995
1996                 /* When the auto-off is configured it means the transport
1997                  * is running, but in that case still indicate that the
1998                  * device is actually down.
1999                  */
2000                 if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2001                         flags &= ~BIT(HCI_UP);
2002
2003                 (dr + n)->dev_id  = hdev->id;
2004                 (dr + n)->dev_opt = flags;
2005
2006                 if (++n >= dev_num)
2007                         break;
2008         }
2009         read_unlock(&hci_dev_list_lock);
2010
2011         dl->dev_num = n;
2012         size = sizeof(*dl) + n * sizeof(*dr);
2013
2014         err = copy_to_user(arg, dl, size);
2015         kfree(dl);
2016
2017         return err ? -EFAULT : 0;
2018 }
2019
2020 int hci_get_dev_info(void __user *arg)
2021 {
2022         struct hci_dev *hdev;
2023         struct hci_dev_info di;
2024         unsigned long flags;
2025         int err = 0;
2026
2027         if (copy_from_user(&di, arg, sizeof(di)))
2028                 return -EFAULT;
2029
2030         hdev = hci_dev_get(di.dev_id);
2031         if (!hdev)
2032                 return -ENODEV;
2033
2034         /* When the auto-off is configured it means the transport
2035          * is running, but in that case still indicate that the
2036          * device is actually down.
2037          */
2038         if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2039                 flags = hdev->flags & ~BIT(HCI_UP);
2040         else
2041                 flags = hdev->flags;
2042
2043         strcpy(di.name, hdev->name);
2044         di.bdaddr   = hdev->bdaddr;
2045         di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2046         di.flags    = flags;
2047         di.pkt_type = hdev->pkt_type;
2048         if (lmp_bredr_capable(hdev)) {
2049                 di.acl_mtu  = hdev->acl_mtu;
2050                 di.acl_pkts = hdev->acl_pkts;
2051                 di.sco_mtu  = hdev->sco_mtu;
2052                 di.sco_pkts = hdev->sco_pkts;
2053         } else {
2054                 di.acl_mtu  = hdev->le_mtu;
2055                 di.acl_pkts = hdev->le_pkts;
2056                 di.sco_mtu  = 0;
2057                 di.sco_pkts = 0;
2058         }
2059         di.link_policy = hdev->link_policy;
2060         di.link_mode   = hdev->link_mode;
2061
2062         memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2063         memcpy(&di.features, &hdev->features, sizeof(di.features));
2064
2065         if (copy_to_user(arg, &di, sizeof(di)))
2066                 err = -EFAULT;
2067
2068         hci_dev_put(hdev);
2069
2070         return err;
2071 }
2072
2073 /* ---- Interface to HCI drivers ---- */
2074
2075 static int hci_rfkill_set_block(void *data, bool blocked)
2076 {
2077         struct hci_dev *hdev = data;
2078
2079         BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2080
2081         if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags))
2082                 return -EBUSY;
2083
2084         if (blocked) {
2085                 set_bit(HCI_RFKILLED, &hdev->dev_flags);
2086                 if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
2087                     !test_bit(HCI_CONFIG, &hdev->dev_flags))
2088                         hci_dev_do_close(hdev);
2089         } else {
2090                 clear_bit(HCI_RFKILLED, &hdev->dev_flags);
2091         }
2092
2093         return 0;
2094 }
2095
2096 static const struct rfkill_ops hci_rfkill_ops = {
2097         .set_block = hci_rfkill_set_block,
2098 };
2099
2100 static void hci_power_on(struct work_struct *work)
2101 {
2102         struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2103         int err;
2104
2105         BT_DBG("%s", hdev->name);
2106
2107         err = hci_dev_do_open(hdev);
2108         if (err < 0) {
2109                 hci_dev_lock(hdev);
2110                 mgmt_set_powered_failed(hdev, err);
2111                 hci_dev_unlock(hdev);
2112                 return;
2113         }
2114
2115         /* During the HCI setup phase, a few error conditions are
2116          * ignored and they need to be checked now. If they are still
2117          * valid, it is important to turn the device back off.
2118          */
2119         if (test_bit(HCI_RFKILLED, &hdev->dev_flags) ||
2120             test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) ||
2121             (hdev->dev_type == HCI_BREDR &&
2122              !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2123              !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2124                 clear_bit(HCI_AUTO_OFF, &hdev->dev_flags);
2125                 hci_dev_do_close(hdev);
2126         } else if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags)) {
2127                 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2128                                    HCI_AUTO_OFF_TIMEOUT);
2129         }
2130
2131         if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags)) {
2132                 /* For unconfigured devices, set the HCI_RAW flag
2133                  * so that userspace can easily identify them.
2134                  */
2135                 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags))
2136                         set_bit(HCI_RAW, &hdev->flags);
2137
2138                 /* For fully configured devices, this will send
2139                  * the Index Added event. For unconfigured devices,
2140                  * it will send Unconfigued Index Added event.
2141                  *
2142                  * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2143                  * and no event will be send.
2144                  */
2145                 mgmt_index_added(hdev);
2146         } else if (test_and_clear_bit(HCI_CONFIG, &hdev->dev_flags)) {
2147                 /* When the controller is now configured, then it
2148                  * is important to clear the HCI_RAW flag.
2149                  */
2150                 if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags))
2151                         clear_bit(HCI_RAW, &hdev->flags);
2152
2153                 /* Powering on the controller with HCI_CONFIG set only
2154                  * happens with the transition from unconfigured to
2155                  * configured. This will send the Index Added event.
2156                  */
2157                 mgmt_index_added(hdev);
2158         }
2159 }
2160
2161 static void hci_power_off(struct work_struct *work)
2162 {
2163         struct hci_dev *hdev = container_of(work, struct hci_dev,
2164                                             power_off.work);
2165
2166         BT_DBG("%s", hdev->name);
2167
2168         hci_dev_do_close(hdev);
2169 }
2170
2171 static void hci_error_reset(struct work_struct *work)
2172 {
2173         struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2174
2175         BT_DBG("%s", hdev->name);
2176
2177         if (hdev->hw_error)
2178                 hdev->hw_error(hdev, hdev->hw_error_code);
2179         else
2180                 BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2181                        hdev->hw_error_code);
2182
2183         if (hci_dev_do_close(hdev))
2184                 return;
2185
2186         hci_dev_do_open(hdev);
2187 }
2188
2189 static void hci_discov_off(struct work_struct *work)
2190 {
2191         struct hci_dev *hdev;
2192
2193         hdev = container_of(work, struct hci_dev, discov_off.work);
2194
2195         BT_DBG("%s", hdev->name);
2196
2197         mgmt_discoverable_timeout(hdev);
2198 }
2199
2200 void hci_uuids_clear(struct hci_dev *hdev)
2201 {
2202         struct bt_uuid *uuid, *tmp;
2203
2204         list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2205                 list_del(&uuid->list);
2206                 kfree(uuid);
2207         }
2208 }
2209
2210 void hci_link_keys_clear(struct hci_dev *hdev)
2211 {
2212         struct link_key *key;
2213
2214         list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2215                 list_del_rcu(&key->list);
2216                 kfree_rcu(key, rcu);
2217         }
2218 }
2219
2220 void hci_smp_ltks_clear(struct hci_dev *hdev)
2221 {
2222         struct smp_ltk *k;
2223
2224         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2225                 list_del_rcu(&k->list);
2226                 kfree_rcu(k, rcu);
2227         }
2228 }
2229
2230 void hci_smp_irks_clear(struct hci_dev *hdev)
2231 {
2232         struct smp_irk *k;
2233
2234         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2235                 list_del_rcu(&k->list);
2236                 kfree_rcu(k, rcu);
2237         }
2238 }
2239
2240 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2241 {
2242         struct link_key *k;
2243
2244         rcu_read_lock();
2245         list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2246                 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2247                         rcu_read_unlock();
2248                         return k;
2249                 }
2250         }
2251         rcu_read_unlock();
2252
2253         return NULL;
2254 }
2255
2256 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2257                                u8 key_type, u8 old_key_type)
2258 {
2259         /* Legacy key */
2260         if (key_type < 0x03)
2261                 return true;
2262
2263         /* Debug keys are insecure so don't store them persistently */
2264         if (key_type == HCI_LK_DEBUG_COMBINATION)
2265                 return false;
2266
2267         /* Changed combination key and there's no previous one */
2268         if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2269                 return false;
2270
2271         /* Security mode 3 case */
2272         if (!conn)
2273                 return true;
2274
2275         /* BR/EDR key derived using SC from an LE link */
2276         if (conn->type == LE_LINK)
2277                 return true;
2278
2279         /* Neither local nor remote side had no-bonding as requirement */
2280         if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2281                 return true;
2282
2283         /* Local side had dedicated bonding as requirement */
2284         if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2285                 return true;
2286
2287         /* Remote side had dedicated bonding as requirement */
2288         if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2289                 return true;
2290
2291         /* If none of the above criteria match, then don't store the key
2292          * persistently */
2293         return false;
2294 }
2295
2296 static u8 ltk_role(u8 type)
2297 {
2298         if (type == SMP_LTK)
2299                 return HCI_ROLE_MASTER;
2300
2301         return HCI_ROLE_SLAVE;
2302 }
2303
2304 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2305                              u8 addr_type, u8 role)
2306 {
2307         struct smp_ltk *k;
2308
2309         rcu_read_lock();
2310         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2311                 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2312                         continue;
2313
2314                 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2315                         rcu_read_unlock();
2316                         return k;
2317                 }
2318         }
2319         rcu_read_unlock();
2320
2321         return NULL;
2322 }
2323
2324 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2325 {
2326         struct smp_irk *irk;
2327
2328         rcu_read_lock();
2329         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2330                 if (!bacmp(&irk->rpa, rpa)) {
2331                         rcu_read_unlock();
2332                         return irk;
2333                 }
2334         }
2335
2336         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2337                 if (smp_irk_matches(hdev, irk->val, rpa)) {
2338                         bacpy(&irk->rpa, rpa);
2339                         rcu_read_unlock();
2340                         return irk;
2341                 }
2342         }
2343         rcu_read_unlock();
2344
2345         return NULL;
2346 }
2347
2348 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2349                                      u8 addr_type)
2350 {
2351         struct smp_irk *irk;
2352
2353         /* Identity Address must be public or static random */
2354         if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2355                 return NULL;
2356
2357         rcu_read_lock();
2358         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2359                 if (addr_type == irk->addr_type &&
2360                     bacmp(bdaddr, &irk->bdaddr) == 0) {
2361                         rcu_read_unlock();
2362                         return irk;
2363                 }
2364         }
2365         rcu_read_unlock();
2366
2367         return NULL;
2368 }
2369
2370 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2371                                   bdaddr_t *bdaddr, u8 *val, u8 type,
2372                                   u8 pin_len, bool *persistent)
2373 {
2374         struct link_key *key, *old_key;
2375         u8 old_key_type;
2376
2377         old_key = hci_find_link_key(hdev, bdaddr);
2378         if (old_key) {
2379                 old_key_type = old_key->type;
2380                 key = old_key;
2381         } else {
2382                 old_key_type = conn ? conn->key_type : 0xff;
2383                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2384                 if (!key)
2385                         return NULL;
2386                 list_add_rcu(&key->list, &hdev->link_keys);
2387         }
2388
2389         BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2390
2391         /* Some buggy controller combinations generate a changed
2392          * combination key for legacy pairing even when there's no
2393          * previous key */
2394         if (type == HCI_LK_CHANGED_COMBINATION &&
2395             (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2396                 type = HCI_LK_COMBINATION;
2397                 if (conn)
2398                         conn->key_type = type;
2399         }
2400
2401         bacpy(&key->bdaddr, bdaddr);
2402         memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2403         key->pin_len = pin_len;
2404
2405         if (type == HCI_LK_CHANGED_COMBINATION)
2406                 key->type = old_key_type;
2407         else
2408                 key->type = type;
2409
2410         if (persistent)
2411                 *persistent = hci_persistent_key(hdev, conn, type,
2412                                                  old_key_type);
2413
2414         return key;
2415 }
2416
2417 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2418                             u8 addr_type, u8 type, u8 authenticated,
2419                             u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2420 {
2421         struct smp_ltk *key, *old_key;
2422         u8 role = ltk_role(type);
2423
2424         old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2425         if (old_key)
2426                 key = old_key;
2427         else {
2428                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2429                 if (!key)
2430                         return NULL;
2431                 list_add_rcu(&key->list, &hdev->long_term_keys);
2432         }
2433
2434         bacpy(&key->bdaddr, bdaddr);
2435         key->bdaddr_type = addr_type;
2436         memcpy(key->val, tk, sizeof(key->val));
2437         key->authenticated = authenticated;
2438         key->ediv = ediv;
2439         key->rand = rand;
2440         key->enc_size = enc_size;
2441         key->type = type;
2442
2443         return key;
2444 }
2445
2446 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2447                             u8 addr_type, u8 val[16], bdaddr_t *rpa)
2448 {
2449         struct smp_irk *irk;
2450
2451         irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2452         if (!irk) {
2453                 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2454                 if (!irk)
2455                         return NULL;
2456
2457                 bacpy(&irk->bdaddr, bdaddr);
2458                 irk->addr_type = addr_type;
2459
2460                 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2461         }
2462
2463         memcpy(irk->val, val, 16);
2464         bacpy(&irk->rpa, rpa);
2465
2466         return irk;
2467 }
2468
2469 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2470 {
2471         struct link_key *key;
2472
2473         key = hci_find_link_key(hdev, bdaddr);
2474         if (!key)
2475                 return -ENOENT;
2476
2477         BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2478
2479         list_del_rcu(&key->list);
2480         kfree_rcu(key, rcu);
2481
2482         return 0;
2483 }
2484
2485 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2486 {
2487         struct smp_ltk *k;
2488         int removed = 0;
2489
2490         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2491                 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2492                         continue;
2493
2494                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2495
2496                 list_del_rcu(&k->list);
2497                 kfree_rcu(k, rcu);
2498                 removed++;
2499         }
2500
2501         return removed ? 0 : -ENOENT;
2502 }
2503
2504 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2505 {
2506         struct smp_irk *k;
2507
2508         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2509                 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2510                         continue;
2511
2512                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2513
2514                 list_del_rcu(&k->list);
2515                 kfree_rcu(k, rcu);
2516         }
2517 }
2518
2519 /* HCI command timer function */
2520 static void hci_cmd_timeout(struct work_struct *work)
2521 {
2522         struct hci_dev *hdev = container_of(work, struct hci_dev,
2523                                             cmd_timer.work);
2524
2525         if (hdev->sent_cmd) {
2526                 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2527                 u16 opcode = __le16_to_cpu(sent->opcode);
2528
2529                 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2530         } else {
2531                 BT_ERR("%s command tx timeout", hdev->name);
2532         }
2533
2534         atomic_set(&hdev->cmd_cnt, 1);
2535         queue_work(hdev->workqueue, &hdev->cmd_work);
2536 }
2537
2538 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2539                                           bdaddr_t *bdaddr, u8 bdaddr_type)
2540 {
2541         struct oob_data *data;
2542
2543         list_for_each_entry(data, &hdev->remote_oob_data, list) {
2544                 if (bacmp(bdaddr, &data->bdaddr) != 0)
2545                         continue;
2546                 if (data->bdaddr_type != bdaddr_type)
2547                         continue;
2548                 return data;
2549         }
2550
2551         return NULL;
2552 }
2553
2554 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2555                                u8 bdaddr_type)
2556 {
2557         struct oob_data *data;
2558
2559         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2560         if (!data)
2561                 return -ENOENT;
2562
2563         BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2564
2565         list_del(&data->list);
2566         kfree(data);
2567
2568         return 0;
2569 }
2570
2571 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2572 {
2573         struct oob_data *data, *n;
2574
2575         list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2576                 list_del(&data->list);
2577                 kfree(data);
2578         }
2579 }
2580
2581 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2582                             u8 bdaddr_type, u8 *hash192, u8 *rand192,
2583                             u8 *hash256, u8 *rand256)
2584 {
2585         struct oob_data *data;
2586
2587         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2588         if (!data) {
2589                 data = kmalloc(sizeof(*data), GFP_KERNEL);
2590                 if (!data)
2591                         return -ENOMEM;
2592
2593                 bacpy(&data->bdaddr, bdaddr);
2594                 data->bdaddr_type = bdaddr_type;
2595                 list_add(&data->list, &hdev->remote_oob_data);
2596         }
2597
2598         if (hash192 && rand192) {
2599                 memcpy(data->hash192, hash192, sizeof(data->hash192));
2600                 memcpy(data->rand192, rand192, sizeof(data->rand192));
2601                 if (hash256 && rand256)
2602                         data->present = 0x03;
2603         } else {
2604                 memset(data->hash192, 0, sizeof(data->hash192));
2605                 memset(data->rand192, 0, sizeof(data->rand192));
2606                 if (hash256 && rand256)
2607                         data->present = 0x02;
2608                 else
2609                         data->present = 0x00;
2610         }
2611
2612         if (hash256 && rand256) {
2613                 memcpy(data->hash256, hash256, sizeof(data->hash256));
2614                 memcpy(data->rand256, rand256, sizeof(data->rand256));
2615         } else {
2616                 memset(data->hash256, 0, sizeof(data->hash256));
2617                 memset(data->rand256, 0, sizeof(data->rand256));
2618                 if (hash192 && rand192)
2619                         data->present = 0x01;
2620         }
2621
2622         BT_DBG("%s for %pMR", hdev->name, bdaddr);
2623
2624         return 0;
2625 }
2626
2627 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2628                                          bdaddr_t *bdaddr, u8 type)
2629 {
2630         struct bdaddr_list *b;
2631
2632         list_for_each_entry(b, bdaddr_list, list) {
2633                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2634                         return b;
2635         }
2636
2637         return NULL;
2638 }
2639
2640 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2641 {
2642         struct list_head *p, *n;
2643
2644         list_for_each_safe(p, n, bdaddr_list) {
2645                 struct bdaddr_list *b = list_entry(p, struct bdaddr_list, list);
2646
2647                 list_del(p);
2648                 kfree(b);
2649         }
2650 }
2651
2652 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2653 {
2654         struct bdaddr_list *entry;
2655
2656         if (!bacmp(bdaddr, BDADDR_ANY))
2657                 return -EBADF;
2658
2659         if (hci_bdaddr_list_lookup(list, bdaddr, type))
2660                 return -EEXIST;
2661
2662         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2663         if (!entry)
2664                 return -ENOMEM;
2665
2666         bacpy(&entry->bdaddr, bdaddr);
2667         entry->bdaddr_type = type;
2668
2669         list_add(&entry->list, list);
2670
2671         return 0;
2672 }
2673
2674 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2675 {
2676         struct bdaddr_list *entry;
2677
2678         if (!bacmp(bdaddr, BDADDR_ANY)) {
2679                 hci_bdaddr_list_clear(list);
2680                 return 0;
2681         }
2682
2683         entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2684         if (!entry)
2685                 return -ENOENT;
2686
2687         list_del(&entry->list);
2688         kfree(entry);
2689
2690         return 0;
2691 }
2692
2693 /* This function requires the caller holds hdev->lock */
2694 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2695                                                bdaddr_t *addr, u8 addr_type)
2696 {
2697         struct hci_conn_params *params;
2698
2699         /* The conn params list only contains identity addresses */
2700         if (!hci_is_identity_address(addr, addr_type))
2701                 return NULL;
2702
2703         list_for_each_entry(params, &hdev->le_conn_params, list) {
2704                 if (bacmp(&params->addr, addr) == 0 &&
2705                     params->addr_type == addr_type) {
2706                         return params;
2707                 }
2708         }
2709
2710         return NULL;
2711 }
2712
2713 /* This function requires the caller holds hdev->lock */
2714 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2715                                                   bdaddr_t *addr, u8 addr_type)
2716 {
2717         struct hci_conn_params *param;
2718
2719         /* The list only contains identity addresses */
2720         if (!hci_is_identity_address(addr, addr_type))
2721                 return NULL;
2722
2723         list_for_each_entry(param, list, action) {
2724                 if (bacmp(&param->addr, addr) == 0 &&
2725                     param->addr_type == addr_type)
2726                         return param;
2727         }
2728
2729         return NULL;
2730 }
2731
2732 /* This function requires the caller holds hdev->lock */
2733 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2734                                             bdaddr_t *addr, u8 addr_type)
2735 {
2736         struct hci_conn_params *params;
2737
2738         if (!hci_is_identity_address(addr, addr_type))
2739                 return NULL;
2740
2741         params = hci_conn_params_lookup(hdev, addr, addr_type);
2742         if (params)
2743                 return params;
2744
2745         params = kzalloc(sizeof(*params), GFP_KERNEL);
2746         if (!params) {
2747                 BT_ERR("Out of memory");
2748                 return NULL;
2749         }
2750
2751         bacpy(&params->addr, addr);
2752         params->addr_type = addr_type;
2753
2754         list_add(&params->list, &hdev->le_conn_params);
2755         INIT_LIST_HEAD(&params->action);
2756
2757         params->conn_min_interval = hdev->le_conn_min_interval;
2758         params->conn_max_interval = hdev->le_conn_max_interval;
2759         params->conn_latency = hdev->le_conn_latency;
2760         params->supervision_timeout = hdev->le_supv_timeout;
2761         params->auto_connect = HCI_AUTO_CONN_DISABLED;
2762
2763         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2764
2765         return params;
2766 }
2767
2768 static void hci_conn_params_free(struct hci_conn_params *params)
2769 {
2770         if (params->conn) {
2771                 hci_conn_drop(params->conn);
2772                 hci_conn_put(params->conn);
2773         }
2774
2775         list_del(&params->action);
2776         list_del(&params->list);
2777         kfree(params);
2778 }
2779
2780 /* This function requires the caller holds hdev->lock */
2781 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2782 {
2783         struct hci_conn_params *params;
2784
2785         params = hci_conn_params_lookup(hdev, addr, addr_type);
2786         if (!params)
2787                 return;
2788
2789         hci_conn_params_free(params);
2790
2791         hci_update_background_scan(hdev);
2792
2793         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2794 }
2795
2796 /* This function requires the caller holds hdev->lock */
2797 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2798 {
2799         struct hci_conn_params *params, *tmp;
2800
2801         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2802                 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2803                         continue;
2804                 list_del(&params->list);
2805                 kfree(params);
2806         }
2807
2808         BT_DBG("All LE disabled connection parameters were removed");
2809 }
2810
2811 /* This function requires the caller holds hdev->lock */
2812 void hci_conn_params_clear_all(struct hci_dev *hdev)
2813 {
2814         struct hci_conn_params *params, *tmp;
2815
2816         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2817                 hci_conn_params_free(params);
2818
2819         hci_update_background_scan(hdev);
2820
2821         BT_DBG("All LE connection parameters were removed");
2822 }
2823
2824 static void inquiry_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2825 {
2826         if (status) {
2827                 BT_ERR("Failed to start inquiry: status %d", status);
2828
2829                 hci_dev_lock(hdev);
2830                 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2831                 hci_dev_unlock(hdev);
2832                 return;
2833         }
2834 }
2835
2836 static void le_scan_disable_work_complete(struct hci_dev *hdev, u8 status,
2837                                           u16 opcode)
2838 {
2839         /* General inquiry access code (GIAC) */
2840         u8 lap[3] = { 0x33, 0x8b, 0x9e };
2841         struct hci_request req;
2842         struct hci_cp_inquiry cp;
2843         int err;
2844
2845         if (status) {
2846                 BT_ERR("Failed to disable LE scanning: status %d", status);
2847                 return;
2848         }
2849
2850         hdev->discovery.scan_start = 0;
2851
2852         switch (hdev->discovery.type) {
2853         case DISCOV_TYPE_LE:
2854                 hci_dev_lock(hdev);
2855                 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2856                 hci_dev_unlock(hdev);
2857                 break;
2858
2859         case DISCOV_TYPE_INTERLEAVED:
2860                 hci_req_init(&req, hdev);
2861
2862                 memset(&cp, 0, sizeof(cp));
2863                 memcpy(&cp.lap, lap, sizeof(cp.lap));
2864                 cp.length = DISCOV_INTERLEAVED_INQUIRY_LEN;
2865                 hci_req_add(&req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2866
2867                 hci_dev_lock(hdev);
2868
2869                 hci_inquiry_cache_flush(hdev);
2870
2871                 err = hci_req_run(&req, inquiry_complete);
2872                 if (err) {
2873                         BT_ERR("Inquiry request failed: err %d", err);
2874                         hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2875                 }
2876
2877                 hci_dev_unlock(hdev);
2878                 break;
2879         }
2880 }
2881
2882 static void le_scan_disable_work(struct work_struct *work)
2883 {
2884         struct hci_dev *hdev = container_of(work, struct hci_dev,
2885                                             le_scan_disable.work);
2886         struct hci_request req;
2887         int err;
2888
2889         BT_DBG("%s", hdev->name);
2890
2891         cancel_delayed_work_sync(&hdev->le_scan_restart);
2892
2893         hci_req_init(&req, hdev);
2894
2895         hci_req_add_le_scan_disable(&req);
2896
2897         err = hci_req_run(&req, le_scan_disable_work_complete);
2898         if (err)
2899                 BT_ERR("Disable LE scanning request failed: err %d", err);
2900 }
2901
2902 static void le_scan_restart_work_complete(struct hci_dev *hdev, u8 status,
2903                                           u16 opcode)
2904 {
2905         unsigned long timeout, duration, scan_start, now;
2906
2907         BT_DBG("%s", hdev->name);
2908
2909         if (status) {
2910                 BT_ERR("Failed to restart LE scan: status %d", status);
2911                 return;
2912         }
2913
2914         if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
2915             !hdev->discovery.scan_start)
2916                 return;
2917
2918         /* When the scan was started, hdev->le_scan_disable has been queued
2919          * after duration from scan_start. During scan restart this job
2920          * has been canceled, and we need to queue it again after proper
2921          * timeout, to make sure that scan does not run indefinitely.
2922          */
2923         duration = hdev->discovery.scan_duration;
2924         scan_start = hdev->discovery.scan_start;
2925         now = jiffies;
2926         if (now - scan_start <= duration) {
2927                 int elapsed;
2928
2929                 if (now >= scan_start)
2930                         elapsed = now - scan_start;
2931                 else
2932                         elapsed = ULONG_MAX - scan_start + now;
2933
2934                 timeout = duration - elapsed;
2935         } else {
2936                 timeout = 0;
2937         }
2938         queue_delayed_work(hdev->workqueue,
2939                            &hdev->le_scan_disable, timeout);
2940 }
2941
2942 static void le_scan_restart_work(struct work_struct *work)
2943 {
2944         struct hci_dev *hdev = container_of(work, struct hci_dev,
2945                                             le_scan_restart.work);
2946         struct hci_request req;
2947         struct hci_cp_le_set_scan_enable cp;
2948         int err;
2949
2950         BT_DBG("%s", hdev->name);
2951
2952         /* If controller is not scanning we are done. */
2953         if (!test_bit(HCI_LE_SCAN, &hdev->dev_flags))
2954                 return;
2955
2956         hci_req_init(&req, hdev);
2957
2958         hci_req_add_le_scan_disable(&req);
2959
2960         memset(&cp, 0, sizeof(cp));
2961         cp.enable = LE_SCAN_ENABLE;
2962         cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2963         hci_req_add(&req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2964
2965         err = hci_req_run(&req, le_scan_restart_work_complete);
2966         if (err)
2967                 BT_ERR("Restart LE scan request failed: err %d", err);
2968 }
2969
2970 /* Copy the Identity Address of the controller.
2971  *
2972  * If the controller has a public BD_ADDR, then by default use that one.
2973  * If this is a LE only controller without a public address, default to
2974  * the static random address.
2975  *
2976  * For debugging purposes it is possible to force controllers with a
2977  * public address to use the static random address instead.
2978  *
2979  * In case BR/EDR has been disabled on a dual-mode controller and
2980  * userspace has configured a static address, then that address
2981  * becomes the identity address instead of the public BR/EDR address.
2982  */
2983 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2984                                u8 *bdaddr_type)
2985 {
2986         if (test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags) ||
2987             !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2988             (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags) &&
2989              bacmp(&hdev->static_addr, BDADDR_ANY))) {
2990                 bacpy(bdaddr, &hdev->static_addr);
2991                 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2992         } else {
2993                 bacpy(bdaddr, &hdev->bdaddr);
2994                 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2995         }
2996 }
2997
2998 /* Alloc HCI device */
2999 struct hci_dev *hci_alloc_dev(void)
3000 {
3001         struct hci_dev *hdev;
3002
3003         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3004         if (!hdev)
3005                 return NULL;
3006
3007         hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3008         hdev->esco_type = (ESCO_HV1);
3009         hdev->link_mode = (HCI_LM_ACCEPT);
3010         hdev->num_iac = 0x01;           /* One IAC support is mandatory */
3011         hdev->io_capability = 0x03;     /* No Input No Output */
3012         hdev->manufacturer = 0xffff;    /* Default to internal use */
3013         hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3014         hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3015
3016         hdev->sniff_max_interval = 800;
3017         hdev->sniff_min_interval = 80;
3018
3019         hdev->le_adv_channel_map = 0x07;
3020         hdev->le_adv_min_interval = 0x0800;
3021         hdev->le_adv_max_interval = 0x0800;
3022         hdev->le_scan_interval = 0x0060;
3023         hdev->le_scan_window = 0x0030;
3024         hdev->le_conn_min_interval = 0x0028;
3025         hdev->le_conn_max_interval = 0x0038;
3026         hdev->le_conn_latency = 0x0000;
3027         hdev->le_supv_timeout = 0x002a;
3028         hdev->le_def_tx_len = 0x001b;
3029         hdev->le_def_tx_time = 0x0148;
3030         hdev->le_max_tx_len = 0x001b;
3031         hdev->le_max_tx_time = 0x0148;
3032         hdev->le_max_rx_len = 0x001b;
3033         hdev->le_max_rx_time = 0x0148;
3034
3035         hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3036         hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3037         hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3038         hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3039
3040         mutex_init(&hdev->lock);
3041         mutex_init(&hdev->req_lock);
3042
3043         INIT_LIST_HEAD(&hdev->mgmt_pending);
3044         INIT_LIST_HEAD(&hdev->blacklist);
3045         INIT_LIST_HEAD(&hdev->whitelist);
3046         INIT_LIST_HEAD(&hdev->uuids);
3047         INIT_LIST_HEAD(&hdev->link_keys);
3048         INIT_LIST_HEAD(&hdev->long_term_keys);
3049         INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3050         INIT_LIST_HEAD(&hdev->remote_oob_data);
3051         INIT_LIST_HEAD(&hdev->le_white_list);
3052         INIT_LIST_HEAD(&hdev->le_conn_params);
3053         INIT_LIST_HEAD(&hdev->pend_le_conns);
3054         INIT_LIST_HEAD(&hdev->pend_le_reports);
3055         INIT_LIST_HEAD(&hdev->conn_hash.list);
3056
3057         INIT_WORK(&hdev->rx_work, hci_rx_work);
3058         INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3059         INIT_WORK(&hdev->tx_work, hci_tx_work);
3060         INIT_WORK(&hdev->power_on, hci_power_on);
3061         INIT_WORK(&hdev->error_reset, hci_error_reset);
3062
3063         INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3064         INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
3065         INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
3066         INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3067
3068         skb_queue_head_init(&hdev->rx_q);
3069         skb_queue_head_init(&hdev->cmd_q);
3070         skb_queue_head_init(&hdev->raw_q);
3071
3072         init_waitqueue_head(&hdev->req_wait_q);
3073
3074         INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3075
3076         hci_init_sysfs(hdev);
3077         discovery_init(hdev);
3078
3079         return hdev;
3080 }
3081 EXPORT_SYMBOL(hci_alloc_dev);
3082
3083 /* Free HCI device */
3084 void hci_free_dev(struct hci_dev *hdev)
3085 {
3086         /* will free via device release */
3087         put_device(&hdev->dev);
3088 }
3089 EXPORT_SYMBOL(hci_free_dev);
3090
3091 /* Register HCI device */
3092 int hci_register_dev(struct hci_dev *hdev)
3093 {
3094         int id, error;
3095
3096         if (!hdev->open || !hdev->close || !hdev->send)
3097                 return -EINVAL;
3098
3099         /* Do not allow HCI_AMP devices to register at index 0,
3100          * so the index can be used as the AMP controller ID.
3101          */
3102         switch (hdev->dev_type) {
3103         case HCI_BREDR:
3104                 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3105                 break;
3106         case HCI_AMP:
3107                 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3108                 break;
3109         default:
3110                 return -EINVAL;
3111         }
3112
3113         if (id < 0)
3114                 return id;
3115
3116         sprintf(hdev->name, "hci%d", id);
3117         hdev->id = id;
3118
3119         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3120
3121         hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3122                                           WQ_MEM_RECLAIM, 1, hdev->name);
3123         if (!hdev->workqueue) {
3124                 error = -ENOMEM;
3125                 goto err;
3126         }
3127
3128         hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3129                                               WQ_MEM_RECLAIM, 1, hdev->name);
3130         if (!hdev->req_workqueue) {
3131                 destroy_workqueue(hdev->workqueue);
3132                 error = -ENOMEM;
3133                 goto err;
3134         }
3135
3136         if (!IS_ERR_OR_NULL(bt_debugfs))
3137                 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3138
3139         dev_set_name(&hdev->dev, "%s", hdev->name);
3140
3141         error = device_add(&hdev->dev);
3142         if (error < 0)
3143                 goto err_wqueue;
3144
3145         hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3146                                     RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3147                                     hdev);
3148         if (hdev->rfkill) {
3149                 if (rfkill_register(hdev->rfkill) < 0) {
3150                         rfkill_destroy(hdev->rfkill);
3151                         hdev->rfkill = NULL;
3152                 }
3153         }
3154
3155         if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3156                 set_bit(HCI_RFKILLED, &hdev->dev_flags);
3157
3158         set_bit(HCI_SETUP, &hdev->dev_flags);
3159         set_bit(HCI_AUTO_OFF, &hdev->dev_flags);
3160
3161         if (hdev->dev_type == HCI_BREDR) {
3162                 /* Assume BR/EDR support until proven otherwise (such as
3163                  * through reading supported features during init.
3164                  */
3165                 set_bit(HCI_BREDR_ENABLED, &hdev->dev_flags);
3166         }
3167
3168         write_lock(&hci_dev_list_lock);
3169         list_add(&hdev->list, &hci_dev_list);
3170         write_unlock(&hci_dev_list_lock);
3171
3172         /* Devices that are marked for raw-only usage are unconfigured
3173          * and should not be included in normal operation.
3174          */
3175         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3176                 set_bit(HCI_UNCONFIGURED, &hdev->dev_flags);
3177
3178         hci_notify(hdev, HCI_DEV_REG);
3179         hci_dev_hold(hdev);
3180
3181         queue_work(hdev->req_workqueue, &hdev->power_on);
3182
3183         return id;
3184
3185 err_wqueue:
3186         destroy_workqueue(hdev->workqueue);
3187         destroy_workqueue(hdev->req_workqueue);
3188 err:
3189         ida_simple_remove(&hci_index_ida, hdev->id);
3190
3191         return error;
3192 }
3193 EXPORT_SYMBOL(hci_register_dev);
3194
3195 /* Unregister HCI device */
3196 void hci_unregister_dev(struct hci_dev *hdev)
3197 {
3198         int i, id;
3199
3200         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3201
3202         set_bit(HCI_UNREGISTER, &hdev->dev_flags);
3203
3204         id = hdev->id;
3205
3206         write_lock(&hci_dev_list_lock);
3207         list_del(&hdev->list);
3208         write_unlock(&hci_dev_list_lock);
3209
3210         hci_dev_do_close(hdev);
3211
3212         for (i = 0; i < NUM_REASSEMBLY; i++)
3213                 kfree_skb(hdev->reassembly[i]);
3214
3215         cancel_work_sync(&hdev->power_on);
3216
3217         if (!test_bit(HCI_INIT, &hdev->flags) &&
3218             !test_bit(HCI_SETUP, &hdev->dev_flags) &&
3219             !test_bit(HCI_CONFIG, &hdev->dev_flags)) {
3220                 hci_dev_lock(hdev);
3221                 mgmt_index_removed(hdev);
3222                 hci_dev_unlock(hdev);
3223         }
3224
3225         /* mgmt_index_removed should take care of emptying the
3226          * pending list */
3227         BUG_ON(!list_empty(&hdev->mgmt_pending));
3228
3229         hci_notify(hdev, HCI_DEV_UNREG);
3230
3231         if (hdev->rfkill) {
3232                 rfkill_unregister(hdev->rfkill);
3233                 rfkill_destroy(hdev->rfkill);
3234         }
3235
3236         device_del(&hdev->dev);
3237
3238         debugfs_remove_recursive(hdev->debugfs);
3239
3240         destroy_workqueue(hdev->workqueue);
3241         destroy_workqueue(hdev->req_workqueue);
3242
3243         hci_dev_lock(hdev);
3244         hci_bdaddr_list_clear(&hdev->blacklist);
3245         hci_bdaddr_list_clear(&hdev->whitelist);
3246         hci_uuids_clear(hdev);
3247         hci_link_keys_clear(hdev);
3248         hci_smp_ltks_clear(hdev);
3249         hci_smp_irks_clear(hdev);
3250         hci_remote_oob_data_clear(hdev);
3251         hci_bdaddr_list_clear(&hdev->le_white_list);
3252         hci_conn_params_clear_all(hdev);
3253         hci_discovery_filter_clear(hdev);
3254         hci_dev_unlock(hdev);
3255
3256         hci_dev_put(hdev);
3257
3258         ida_simple_remove(&hci_index_ida, id);
3259 }
3260 EXPORT_SYMBOL(hci_unregister_dev);
3261
3262 /* Suspend HCI device */
3263 int hci_suspend_dev(struct hci_dev *hdev)
3264 {
3265         hci_notify(hdev, HCI_DEV_SUSPEND);
3266         return 0;
3267 }
3268 EXPORT_SYMBOL(hci_suspend_dev);
3269
3270 /* Resume HCI device */
3271 int hci_resume_dev(struct hci_dev *hdev)
3272 {
3273         hci_notify(hdev, HCI_DEV_RESUME);
3274         return 0;
3275 }
3276 EXPORT_SYMBOL(hci_resume_dev);
3277
3278 /* Reset HCI device */
3279 int hci_reset_dev(struct hci_dev *hdev)
3280 {
3281         const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3282         struct sk_buff *skb;
3283
3284         skb = bt_skb_alloc(3, GFP_ATOMIC);
3285         if (!skb)
3286                 return -ENOMEM;
3287
3288         bt_cb(skb)->pkt_type = HCI_EVENT_PKT;
3289         memcpy(skb_put(skb, 3), hw_err, 3);
3290
3291         /* Send Hardware Error to upper stack */
3292         return hci_recv_frame(hdev, skb);
3293 }
3294 EXPORT_SYMBOL(hci_reset_dev);
3295
3296 /* Receive frame from HCI drivers */
3297 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3298 {
3299         if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3300                       && !test_bit(HCI_INIT, &hdev->flags))) {
3301                 kfree_skb(skb);
3302                 return -ENXIO;
3303         }
3304
3305         /* Incoming skb */
3306         bt_cb(skb)->incoming = 1;
3307
3308         /* Time stamp */
3309         __net_timestamp(skb);
3310
3311         skb_queue_tail(&hdev->rx_q, skb);
3312         queue_work(hdev->workqueue, &hdev->rx_work);
3313
3314         return 0;
3315 }
3316 EXPORT_SYMBOL(hci_recv_frame);
3317
3318 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
3319                           int count, __u8 index)
3320 {
3321         int len = 0;
3322         int hlen = 0;
3323         int remain = count;
3324         struct sk_buff *skb;
3325         struct bt_skb_cb *scb;
3326
3327         if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
3328             index >= NUM_REASSEMBLY)
3329                 return -EILSEQ;
3330
3331         skb = hdev->reassembly[index];
3332
3333         if (!skb) {
3334                 switch (type) {
3335                 case HCI_ACLDATA_PKT:
3336                         len = HCI_MAX_FRAME_SIZE;
3337                         hlen = HCI_ACL_HDR_SIZE;
3338                         break;
3339                 case HCI_EVENT_PKT:
3340                         len = HCI_MAX_EVENT_SIZE;
3341                         hlen = HCI_EVENT_HDR_SIZE;
3342                         break;
3343                 case HCI_SCODATA_PKT:
3344                         len = HCI_MAX_SCO_SIZE;
3345                         hlen = HCI_SCO_HDR_SIZE;
3346                         break;
3347                 }
3348
3349                 skb = bt_skb_alloc(len, GFP_ATOMIC);
3350                 if (!skb)
3351                         return -ENOMEM;
3352
3353                 scb = (void *) skb->cb;
3354                 scb->expect = hlen;
3355                 scb->pkt_type = type;
3356
3357                 hdev->reassembly[index] = skb;
3358         }
3359
3360         while (count) {
3361                 scb = (void *) skb->cb;
3362                 len = min_t(uint, scb->expect, count);
3363
3364                 memcpy(skb_put(skb, len), data, len);
3365
3366                 count -= len;
3367                 data += len;
3368                 scb->expect -= len;
3369                 remain = count;
3370
3371                 switch (type) {
3372                 case HCI_EVENT_PKT:
3373                         if (skb->len == HCI_EVENT_HDR_SIZE) {
3374                                 struct hci_event_hdr *h = hci_event_hdr(skb);
3375                                 scb->expect = h->plen;
3376
3377                                 if (skb_tailroom(skb) < scb->expect) {
3378                                         kfree_skb(skb);
3379                                         hdev->reassembly[index] = NULL;
3380                                         return -ENOMEM;
3381                                 }
3382                         }
3383                         break;
3384
3385                 case HCI_ACLDATA_PKT:
3386                         if (skb->len  == HCI_ACL_HDR_SIZE) {
3387                                 struct hci_acl_hdr *h = hci_acl_hdr(skb);
3388                                 scb->expect = __le16_to_cpu(h->dlen);
3389
3390                                 if (skb_tailroom(skb) < scb->expect) {
3391                                         kfree_skb(skb);
3392                                         hdev->reassembly[index] = NULL;
3393                                         return -ENOMEM;
3394                                 }
3395                         }
3396                         break;
3397
3398                 case HCI_SCODATA_PKT:
3399                         if (skb->len == HCI_SCO_HDR_SIZE) {
3400                                 struct hci_sco_hdr *h = hci_sco_hdr(skb);
3401                                 scb->expect = h->dlen;
3402
3403                                 if (skb_tailroom(skb) < scb->expect) {
3404                                         kfree_skb(skb);
3405                                         hdev->reassembly[index] = NULL;
3406                                         return -ENOMEM;
3407                                 }
3408                         }
3409                         break;
3410                 }
3411
3412                 if (scb->expect == 0) {
3413                         /* Complete frame */
3414
3415                         bt_cb(skb)->pkt_type = type;
3416                         hci_recv_frame(hdev, skb);
3417
3418                         hdev->reassembly[index] = NULL;
3419                         return remain;
3420                 }
3421         }
3422
3423         return remain;
3424 }
3425
3426 #define STREAM_REASSEMBLY 0
3427
3428 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
3429 {
3430         int type;
3431         int rem = 0;
3432
3433         while (count) {
3434                 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
3435
3436                 if (!skb) {
3437                         struct { char type; } *pkt;
3438
3439                         /* Start of the frame */
3440                         pkt = data;
3441                         type = pkt->type;
3442
3443                         data++;
3444                         count--;
3445                 } else
3446                         type = bt_cb(skb)->pkt_type;
3447
3448                 rem = hci_reassembly(hdev, type, data, count,
3449                                      STREAM_REASSEMBLY);
3450                 if (rem < 0)
3451                         return rem;
3452
3453                 data += (count - rem);
3454                 count = rem;
3455         }
3456
3457         return rem;
3458 }
3459 EXPORT_SYMBOL(hci_recv_stream_fragment);
3460
3461 /* ---- Interface to upper protocols ---- */
3462
3463 int hci_register_cb(struct hci_cb *cb)
3464 {
3465         BT_DBG("%p name %s", cb, cb->name);
3466
3467         mutex_lock(&hci_cb_list_lock);
3468         list_add_tail(&cb->list, &hci_cb_list);
3469         mutex_unlock(&hci_cb_list_lock);
3470
3471         return 0;
3472 }
3473 EXPORT_SYMBOL(hci_register_cb);
3474
3475 int hci_unregister_cb(struct hci_cb *cb)
3476 {
3477         BT_DBG("%p name %s", cb, cb->name);
3478
3479         mutex_lock(&hci_cb_list_lock);
3480         list_del(&cb->list);
3481         mutex_unlock(&hci_cb_list_lock);
3482
3483         return 0;
3484 }
3485 EXPORT_SYMBOL(hci_unregister_cb);
3486
3487 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3488 {
3489         int err;
3490
3491         BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
3492
3493         /* Time stamp */
3494         __net_timestamp(skb);
3495
3496         /* Send copy to monitor */
3497         hci_send_to_monitor(hdev, skb);
3498
3499         if (atomic_read(&hdev->promisc)) {
3500                 /* Send copy to the sockets */
3501                 hci_send_to_sock(hdev, skb);
3502         }
3503
3504         /* Get rid of skb owner, prior to sending to the driver. */
3505         skb_orphan(skb);
3506
3507         err = hdev->send(hdev, skb);
3508         if (err < 0) {
3509                 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3510                 kfree_skb(skb);
3511         }
3512 }
3513
3514 bool hci_req_pending(struct hci_dev *hdev)
3515 {
3516         return (hdev->req_status == HCI_REQ_PEND);
3517 }
3518
3519 /* Send HCI command */
3520 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3521                  const void *param)
3522 {
3523         struct sk_buff *skb;
3524
3525         BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3526
3527         skb = hci_prepare_cmd(hdev, opcode, plen, param);
3528         if (!skb) {
3529                 BT_ERR("%s no memory for command", hdev->name);
3530                 return -ENOMEM;
3531         }
3532
3533         /* Stand-alone HCI commands must be flagged as
3534          * single-command requests.
3535          */
3536         bt_cb(skb)->req_start = 1;
3537
3538         skb_queue_tail(&hdev->cmd_q, skb);
3539         queue_work(hdev->workqueue, &hdev->cmd_work);
3540
3541         return 0;
3542 }
3543
3544 /* Get data from the previously sent command */
3545 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3546 {
3547         struct hci_command_hdr *hdr;
3548
3549         if (!hdev->sent_cmd)
3550                 return NULL;
3551
3552         hdr = (void *) hdev->sent_cmd->data;
3553
3554         if (hdr->opcode != cpu_to_le16(opcode))
3555                 return NULL;
3556
3557         BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3558
3559         return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3560 }
3561
3562 /* Send ACL data */
3563 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3564 {
3565         struct hci_acl_hdr *hdr;
3566         int len = skb->len;
3567
3568         skb_push(skb, HCI_ACL_HDR_SIZE);
3569         skb_reset_transport_header(skb);
3570         hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3571         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3572         hdr->dlen   = cpu_to_le16(len);
3573 }
3574
3575 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3576                           struct sk_buff *skb, __u16 flags)
3577 {
3578         struct hci_conn *conn = chan->conn;
3579         struct hci_dev *hdev = conn->hdev;
3580         struct sk_buff *list;
3581
3582         skb->len = skb_headlen(skb);
3583         skb->data_len = 0;
3584
3585         bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
3586
3587         switch (hdev->dev_type) {
3588         case HCI_BREDR:
3589                 hci_add_acl_hdr(skb, conn->handle, flags);
3590                 break;
3591         case HCI_AMP:
3592                 hci_add_acl_hdr(skb, chan->handle, flags);
3593                 break;
3594         default:
3595                 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3596                 return;
3597         }
3598
3599         list = skb_shinfo(skb)->frag_list;
3600         if (!list) {
3601                 /* Non fragmented */
3602                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3603
3604                 skb_queue_tail(queue, skb);
3605         } else {
3606                 /* Fragmented */
3607                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3608
3609                 skb_shinfo(skb)->frag_list = NULL;
3610
3611                 /* Queue all fragments atomically. We need to use spin_lock_bh
3612                  * here because of 6LoWPAN links, as there this function is
3613                  * called from softirq and using normal spin lock could cause
3614                  * deadlocks.
3615                  */
3616                 spin_lock_bh(&queue->lock);
3617
3618                 __skb_queue_tail(queue, skb);
3619
3620                 flags &= ~ACL_START;
3621                 flags |= ACL_CONT;
3622                 do {
3623                         skb = list; list = list->next;
3624
3625                         bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
3626                         hci_add_acl_hdr(skb, conn->handle, flags);
3627
3628                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3629
3630                         __skb_queue_tail(queue, skb);
3631                 } while (list);
3632
3633                 spin_unlock_bh(&queue->lock);
3634         }
3635 }
3636
3637 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3638 {
3639         struct hci_dev *hdev = chan->conn->hdev;
3640
3641         BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3642
3643         hci_queue_acl(chan, &chan->data_q, skb, flags);
3644
3645         queue_work(hdev->workqueue, &hdev->tx_work);
3646 }
3647
3648 /* Send SCO data */
3649 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3650 {
3651         struct hci_dev *hdev = conn->hdev;
3652         struct hci_sco_hdr hdr;
3653
3654         BT_DBG("%s len %d", hdev->name, skb->len);
3655
3656         hdr.handle = cpu_to_le16(conn->handle);
3657         hdr.dlen   = skb->len;
3658
3659         skb_push(skb, HCI_SCO_HDR_SIZE);
3660         skb_reset_transport_header(skb);
3661         memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3662
3663         bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
3664
3665         skb_queue_tail(&conn->data_q, skb);
3666         queue_work(hdev->workqueue, &hdev->tx_work);
3667 }
3668
3669 /* ---- HCI TX task (outgoing data) ---- */
3670
3671 /* HCI Connection scheduler */
3672 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3673                                      int *quote)
3674 {
3675         struct hci_conn_hash *h = &hdev->conn_hash;
3676         struct hci_conn *conn = NULL, *c;
3677         unsigned int num = 0, min = ~0;
3678
3679         /* We don't have to lock device here. Connections are always
3680          * added and removed with TX task disabled. */
3681
3682         rcu_read_lock();
3683
3684         list_for_each_entry_rcu(c, &h->list, list) {
3685                 if (c->type != type || skb_queue_empty(&c->data_q))
3686                         continue;
3687
3688                 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3689                         continue;
3690
3691                 num++;
3692
3693                 if (c->sent < min) {
3694                         min  = c->sent;
3695                         conn = c;
3696                 }
3697
3698                 if (hci_conn_num(hdev, type) == num)
3699                         break;
3700         }
3701
3702         rcu_read_unlock();
3703
3704         if (conn) {
3705                 int cnt, q;
3706
3707                 switch (conn->type) {
3708                 case ACL_LINK:
3709                         cnt = hdev->acl_cnt;
3710                         break;
3711                 case SCO_LINK:
3712                 case ESCO_LINK:
3713                         cnt = hdev->sco_cnt;
3714                         break;
3715                 case LE_LINK:
3716                         cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3717                         break;
3718                 default:
3719                         cnt = 0;
3720                         BT_ERR("Unknown link type");
3721                 }
3722
3723                 q = cnt / num;
3724                 *quote = q ? q : 1;
3725         } else
3726                 *quote = 0;
3727
3728         BT_DBG("conn %p quote %d", conn, *quote);
3729         return conn;
3730 }
3731
3732 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3733 {
3734         struct hci_conn_hash *h = &hdev->conn_hash;
3735         struct hci_conn *c;
3736
3737         BT_ERR("%s link tx timeout", hdev->name);
3738
3739         rcu_read_lock();
3740
3741         /* Kill stalled connections */
3742         list_for_each_entry_rcu(c, &h->list, list) {
3743                 if (c->type == type && c->sent) {
3744                         BT_ERR("%s killing stalled connection %pMR",
3745                                hdev->name, &c->dst);
3746                         hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3747                 }
3748         }
3749
3750         rcu_read_unlock();
3751 }
3752
3753 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3754                                       int *quote)
3755 {
3756         struct hci_conn_hash *h = &hdev->conn_hash;
3757         struct hci_chan *chan = NULL;
3758         unsigned int num = 0, min = ~0, cur_prio = 0;
3759         struct hci_conn *conn;
3760         int cnt, q, conn_num = 0;
3761
3762         BT_DBG("%s", hdev->name);
3763
3764         rcu_read_lock();
3765
3766         list_for_each_entry_rcu(conn, &h->list, list) {
3767                 struct hci_chan *tmp;
3768
3769                 if (conn->type != type)
3770                         continue;
3771
3772                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3773                         continue;
3774
3775                 conn_num++;
3776
3777                 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3778                         struct sk_buff *skb;
3779
3780                         if (skb_queue_empty(&tmp->data_q))
3781                                 continue;
3782
3783                         skb = skb_peek(&tmp->data_q);
3784                         if (skb->priority < cur_prio)
3785                                 continue;
3786
3787                         if (skb->priority > cur_prio) {
3788                                 num = 0;
3789                                 min = ~0;
3790                                 cur_prio = skb->priority;
3791                         }
3792
3793                         num++;
3794
3795                         if (conn->sent < min) {
3796                                 min  = conn->sent;
3797                                 chan = tmp;
3798                         }
3799                 }
3800
3801                 if (hci_conn_num(hdev, type) == conn_num)
3802                         break;
3803         }
3804
3805         rcu_read_unlock();
3806
3807         if (!chan)
3808                 return NULL;
3809
3810         switch (chan->conn->type) {
3811         case ACL_LINK:
3812                 cnt = hdev->acl_cnt;
3813                 break;
3814         case AMP_LINK:
3815                 cnt = hdev->block_cnt;
3816                 break;
3817         case SCO_LINK:
3818         case ESCO_LINK:
3819                 cnt = hdev->sco_cnt;
3820                 break;
3821         case LE_LINK:
3822                 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3823                 break;
3824         default:
3825                 cnt = 0;
3826                 BT_ERR("Unknown link type");
3827         }
3828
3829         q = cnt / num;
3830         *quote = q ? q : 1;
3831         BT_DBG("chan %p quote %d", chan, *quote);
3832         return chan;
3833 }
3834
3835 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3836 {
3837         struct hci_conn_hash *h = &hdev->conn_hash;
3838         struct hci_conn *conn;
3839         int num = 0;
3840
3841         BT_DBG("%s", hdev->name);
3842
3843         rcu_read_lock();
3844
3845         list_for_each_entry_rcu(conn, &h->list, list) {
3846                 struct hci_chan *chan;
3847
3848                 if (conn->type != type)
3849                         continue;
3850
3851                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3852                         continue;
3853
3854                 num++;
3855
3856                 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3857                         struct sk_buff *skb;
3858
3859                         if (chan->sent) {
3860                                 chan->sent = 0;
3861                                 continue;
3862                         }
3863
3864                         if (skb_queue_empty(&chan->data_q))
3865                                 continue;
3866
3867                         skb = skb_peek(&chan->data_q);
3868                         if (skb->priority >= HCI_PRIO_MAX - 1)
3869                                 continue;
3870
3871                         skb->priority = HCI_PRIO_MAX - 1;
3872
3873                         BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3874                                skb->priority);
3875                 }
3876
3877                 if (hci_conn_num(hdev, type) == num)
3878                         break;
3879         }
3880
3881         rcu_read_unlock();
3882
3883 }
3884
3885 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3886 {
3887         /* Calculate count of blocks used by this packet */
3888         return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3889 }
3890
3891 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3892 {
3893         if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
3894                 /* ACL tx timeout must be longer than maximum
3895                  * link supervision timeout (40.9 seconds) */
3896                 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3897                                        HCI_ACL_TX_TIMEOUT))
3898                         hci_link_tx_to(hdev, ACL_LINK);
3899         }
3900 }
3901
3902 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3903 {
3904         unsigned int cnt = hdev->acl_cnt;
3905         struct hci_chan *chan;
3906         struct sk_buff *skb;
3907         int quote;
3908
3909         __check_timeout(hdev, cnt);
3910
3911         while (hdev->acl_cnt &&
3912                (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3913                 u32 priority = (skb_peek(&chan->data_q))->priority;
3914                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3915                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3916                                skb->len, skb->priority);
3917
3918                         /* Stop if priority has changed */
3919                         if (skb->priority < priority)
3920                                 break;
3921
3922                         skb = skb_dequeue(&chan->data_q);
3923
3924                         hci_conn_enter_active_mode(chan->conn,
3925                                                    bt_cb(skb)->force_active);
3926
3927                         hci_send_frame(hdev, skb);
3928                         hdev->acl_last_tx = jiffies;
3929
3930                         hdev->acl_cnt--;
3931                         chan->sent++;
3932                         chan->conn->sent++;
3933                 }
3934         }
3935
3936         if (cnt != hdev->acl_cnt)
3937                 hci_prio_recalculate(hdev, ACL_LINK);
3938 }
3939
3940 static void hci_sched_acl_blk(struct hci_dev *hdev)
3941 {
3942         unsigned int cnt = hdev->block_cnt;
3943         struct hci_chan *chan;
3944         struct sk_buff *skb;
3945         int quote;
3946         u8 type;
3947
3948         __check_timeout(hdev, cnt);
3949
3950         BT_DBG("%s", hdev->name);
3951
3952         if (hdev->dev_type == HCI_AMP)
3953                 type = AMP_LINK;
3954         else
3955                 type = ACL_LINK;
3956
3957         while (hdev->block_cnt > 0 &&
3958                (chan = hci_chan_sent(hdev, type, &quote))) {
3959                 u32 priority = (skb_peek(&chan->data_q))->priority;
3960                 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3961                         int blocks;
3962
3963                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3964                                skb->len, skb->priority);
3965
3966                         /* Stop if priority has changed */
3967                         if (skb->priority < priority)
3968                                 break;
3969
3970                         skb = skb_dequeue(&chan->data_q);
3971
3972                         blocks = __get_blocks(hdev, skb);
3973                         if (blocks > hdev->block_cnt)
3974                                 return;
3975
3976                         hci_conn_enter_active_mode(chan->conn,
3977                                                    bt_cb(skb)->force_active);
3978
3979                         hci_send_frame(hdev, skb);
3980                         hdev->acl_last_tx = jiffies;
3981
3982                         hdev->block_cnt -= blocks;
3983                         quote -= blocks;
3984
3985                         chan->sent += blocks;
3986                         chan->conn->sent += blocks;
3987                 }
3988         }
3989
3990         if (cnt != hdev->block_cnt)
3991                 hci_prio_recalculate(hdev, type);
3992 }
3993
3994 static void hci_sched_acl(struct hci_dev *hdev)
3995 {
3996         BT_DBG("%s", hdev->name);
3997
3998         /* No ACL link over BR/EDR controller */
3999         if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
4000                 return;
4001
4002         /* No AMP link over AMP controller */
4003         if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4004                 return;
4005
4006         switch (hdev->flow_ctl_mode) {
4007         case HCI_FLOW_CTL_MODE_PACKET_BASED:
4008                 hci_sched_acl_pkt(hdev);
4009                 break;
4010
4011         case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4012                 hci_sched_acl_blk(hdev);
4013                 break;
4014         }
4015 }
4016
4017 /* Schedule SCO */
4018 static void hci_sched_sco(struct hci_dev *hdev)
4019 {
4020         struct hci_conn *conn;
4021         struct sk_buff *skb;
4022         int quote;
4023
4024         BT_DBG("%s", hdev->name);
4025
4026         if (!hci_conn_num(hdev, SCO_LINK))
4027                 return;
4028
4029         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4030                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4031                         BT_DBG("skb %p len %d", skb, skb->len);
4032                         hci_send_frame(hdev, skb);
4033
4034                         conn->sent++;
4035                         if (conn->sent == ~0)
4036                                 conn->sent = 0;
4037                 }
4038         }
4039 }
4040
4041 static void hci_sched_esco(struct hci_dev *hdev)
4042 {
4043         struct hci_conn *conn;
4044         struct sk_buff *skb;
4045         int quote;
4046
4047         BT_DBG("%s", hdev->name);
4048
4049         if (!hci_conn_num(hdev, ESCO_LINK))
4050                 return;
4051
4052         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4053                                                      &quote))) {
4054                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4055                         BT_DBG("skb %p len %d", skb, skb->len);
4056                         hci_send_frame(hdev, skb);
4057
4058                         conn->sent++;
4059                         if (conn->sent == ~0)
4060                                 conn->sent = 0;
4061                 }
4062         }
4063 }
4064
4065 static void hci_sched_le(struct hci_dev *hdev)
4066 {
4067         struct hci_chan *chan;
4068         struct sk_buff *skb;
4069         int quote, cnt, tmp;
4070
4071         BT_DBG("%s", hdev->name);
4072
4073         if (!hci_conn_num(hdev, LE_LINK))
4074                 return;
4075
4076         if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
4077                 /* LE tx timeout must be longer than maximum
4078                  * link supervision timeout (40.9 seconds) */
4079                 if (!hdev->le_cnt && hdev->le_pkts &&
4080                     time_after(jiffies, hdev->le_last_tx + HZ * 45))
4081                         hci_link_tx_to(hdev, LE_LINK);
4082         }
4083
4084         cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4085         tmp = cnt;
4086         while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4087                 u32 priority = (skb_peek(&chan->data_q))->priority;
4088                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4089                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4090                                skb->len, skb->priority);
4091
4092                         /* Stop if priority has changed */
4093                         if (skb->priority < priority)
4094                                 break;
4095
4096                         skb = skb_dequeue(&chan->data_q);
4097
4098                         hci_send_frame(hdev, skb);
4099                         hdev->le_last_tx = jiffies;
4100
4101                         cnt--;
4102                         chan->sent++;
4103                         chan->conn->sent++;
4104                 }
4105         }
4106
4107         if (hdev->le_pkts)
4108                 hdev->le_cnt = cnt;
4109         else
4110                 hdev->acl_cnt = cnt;
4111
4112         if (cnt != tmp)
4113                 hci_prio_recalculate(hdev, LE_LINK);
4114 }
4115
4116 static void hci_tx_work(struct work_struct *work)
4117 {
4118         struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4119         struct sk_buff *skb;
4120
4121         BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4122                hdev->sco_cnt, hdev->le_cnt);
4123
4124         if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
4125                 /* Schedule queues and send stuff to HCI driver */
4126                 hci_sched_acl(hdev);
4127                 hci_sched_sco(hdev);
4128                 hci_sched_esco(hdev);
4129                 hci_sched_le(hdev);
4130         }
4131
4132         /* Send next queued raw (unknown type) packet */
4133         while ((skb = skb_dequeue(&hdev->raw_q)))
4134                 hci_send_frame(hdev, skb);
4135 }
4136
4137 /* ----- HCI RX task (incoming data processing) ----- */
4138
4139 /* ACL data packet */
4140 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4141 {
4142         struct hci_acl_hdr *hdr = (void *) skb->data;
4143         struct hci_conn *conn;
4144         __u16 handle, flags;
4145
4146         skb_pull(skb, HCI_ACL_HDR_SIZE);
4147
4148         handle = __le16_to_cpu(hdr->handle);
4149         flags  = hci_flags(handle);
4150         handle = hci_handle(handle);
4151
4152         BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4153                handle, flags);
4154
4155         hdev->stat.acl_rx++;
4156
4157         hci_dev_lock(hdev);
4158         conn = hci_conn_hash_lookup_handle(hdev, handle);
4159         hci_dev_unlock(hdev);
4160
4161         if (conn) {
4162                 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4163
4164                 /* Send to upper protocol */
4165                 l2cap_recv_acldata(conn, skb, flags);
4166                 return;
4167         } else {
4168                 BT_ERR("%s ACL packet for unknown connection handle %d",
4169                        hdev->name, handle);
4170         }
4171
4172         kfree_skb(skb);
4173 }
4174
4175 /* SCO data packet */
4176 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4177 {
4178         struct hci_sco_hdr *hdr = (void *) skb->data;
4179         struct hci_conn *conn;
4180         __u16 handle;
4181
4182         skb_pull(skb, HCI_SCO_HDR_SIZE);
4183
4184         handle = __le16_to_cpu(hdr->handle);
4185
4186         BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4187
4188         hdev->stat.sco_rx++;
4189
4190         hci_dev_lock(hdev);
4191         conn = hci_conn_hash_lookup_handle(hdev, handle);
4192         hci_dev_unlock(hdev);
4193
4194         if (conn) {
4195                 /* Send to upper protocol */
4196                 sco_recv_scodata(conn, skb);
4197                 return;
4198         } else {
4199                 BT_ERR("%s SCO packet for unknown connection handle %d",
4200                        hdev->name, handle);
4201         }
4202
4203         kfree_skb(skb);
4204 }
4205
4206 static bool hci_req_is_complete(struct hci_dev *hdev)
4207 {
4208         struct sk_buff *skb;
4209
4210         skb = skb_peek(&hdev->cmd_q);
4211         if (!skb)
4212                 return true;
4213
4214         return bt_cb(skb)->req_start;
4215 }
4216
4217 static void hci_resend_last(struct hci_dev *hdev)
4218 {
4219         struct hci_command_hdr *sent;
4220         struct sk_buff *skb;
4221         u16 opcode;
4222
4223         if (!hdev->sent_cmd)
4224                 return;
4225
4226         sent = (void *) hdev->sent_cmd->data;
4227         opcode = __le16_to_cpu(sent->opcode);
4228         if (opcode == HCI_OP_RESET)
4229                 return;
4230
4231         skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4232         if (!skb)
4233                 return;
4234
4235         skb_queue_head(&hdev->cmd_q, skb);
4236         queue_work(hdev->workqueue, &hdev->cmd_work);
4237 }
4238
4239 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status)
4240 {
4241         hci_req_complete_t req_complete = NULL;
4242         struct sk_buff *skb;
4243         unsigned long flags;
4244
4245         BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4246
4247         /* If the completed command doesn't match the last one that was
4248          * sent we need to do special handling of it.
4249          */
4250         if (!hci_sent_cmd_data(hdev, opcode)) {
4251                 /* Some CSR based controllers generate a spontaneous
4252                  * reset complete event during init and any pending
4253                  * command will never be completed. In such a case we
4254                  * need to resend whatever was the last sent
4255                  * command.
4256                  */
4257                 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4258                         hci_resend_last(hdev);
4259
4260                 return;
4261         }
4262
4263         /* If the command succeeded and there's still more commands in
4264          * this request the request is not yet complete.
4265          */
4266         if (!status && !hci_req_is_complete(hdev))
4267                 return;
4268
4269         /* If this was the last command in a request the complete
4270          * callback would be found in hdev->sent_cmd instead of the
4271          * command queue (hdev->cmd_q).
4272          */
4273         if (hdev->sent_cmd) {
4274                 req_complete = bt_cb(hdev->sent_cmd)->req_complete;
4275
4276                 if (req_complete) {
4277                         /* We must set the complete callback to NULL to
4278                          * avoid calling the callback more than once if
4279                          * this function gets called again.
4280                          */
4281                         bt_cb(hdev->sent_cmd)->req_complete = NULL;
4282
4283                         goto call_complete;
4284                 }
4285         }
4286
4287         /* Remove all pending commands belonging to this request */
4288         spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4289         while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4290                 if (bt_cb(skb)->req_start) {
4291                         __skb_queue_head(&hdev->cmd_q, skb);
4292                         break;
4293                 }
4294
4295                 req_complete = bt_cb(skb)->req_complete;
4296                 kfree_skb(skb);
4297         }
4298         spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4299
4300 call_complete:
4301         if (req_complete)
4302                 req_complete(hdev, status, status ? opcode : HCI_OP_NOP);
4303 }
4304
4305 static void hci_rx_work(struct work_struct *work)
4306 {
4307         struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4308         struct sk_buff *skb;
4309
4310         BT_DBG("%s", hdev->name);
4311
4312         while ((skb = skb_dequeue(&hdev->rx_q))) {
4313                 /* Send copy to monitor */
4314                 hci_send_to_monitor(hdev, skb);
4315
4316                 if (atomic_read(&hdev->promisc)) {
4317                         /* Send copy to the sockets */
4318                         hci_send_to_sock(hdev, skb);
4319                 }
4320
4321                 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
4322                         kfree_skb(skb);
4323                         continue;
4324                 }
4325
4326                 if (test_bit(HCI_INIT, &hdev->flags)) {
4327                         /* Don't process data packets in this states. */
4328                         switch (bt_cb(skb)->pkt_type) {
4329                         case HCI_ACLDATA_PKT:
4330                         case HCI_SCODATA_PKT:
4331                                 kfree_skb(skb);
4332                                 continue;
4333                         }
4334                 }
4335
4336                 /* Process frame */
4337                 switch (bt_cb(skb)->pkt_type) {
4338                 case HCI_EVENT_PKT:
4339                         BT_DBG("%s Event packet", hdev->name);
4340                         hci_event_packet(hdev, skb);
4341                         break;
4342
4343                 case HCI_ACLDATA_PKT:
4344                         BT_DBG("%s ACL data packet", hdev->name);
4345                         hci_acldata_packet(hdev, skb);
4346                         break;
4347
4348                 case HCI_SCODATA_PKT:
4349                         BT_DBG("%s SCO data packet", hdev->name);
4350                         hci_scodata_packet(hdev, skb);
4351                         break;
4352
4353                 default:
4354                         kfree_skb(skb);
4355                         break;
4356                 }
4357         }
4358 }
4359
4360 static void hci_cmd_work(struct work_struct *work)
4361 {
4362         struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4363         struct sk_buff *skb;
4364
4365         BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4366                atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4367
4368         /* Send queued commands */
4369         if (atomic_read(&hdev->cmd_cnt)) {
4370                 skb = skb_dequeue(&hdev->cmd_q);
4371                 if (!skb)
4372                         return;
4373
4374                 kfree_skb(hdev->sent_cmd);
4375
4376                 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4377                 if (hdev->sent_cmd) {
4378                         atomic_dec(&hdev->cmd_cnt);
4379                         hci_send_frame(hdev, skb);
4380                         if (test_bit(HCI_RESET, &hdev->flags))
4381                                 cancel_delayed_work(&hdev->cmd_timer);
4382                         else
4383                                 schedule_delayed_work(&hdev->cmd_timer,
4384                                                       HCI_CMD_TIMEOUT);
4385                 } else {
4386                         skb_queue_head(&hdev->cmd_q, skb);
4387                         queue_work(hdev->workqueue, &hdev->cmd_work);
4388                 }
4389         }
4390 }