Merge tag 'dmaengine-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw...
[cascardo/linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 #include <linux/errqueue.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly;       /* Taps */
149 static struct list_head offload_base __read_mostly;
150
151 static int netif_rx_internal(struct sk_buff *skb);
152 static int call_netdevice_notifiers_info(unsigned long val,
153                                          struct net_device *dev,
154                                          struct netdev_notifier_info *info);
155
156 /*
157  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158  * semaphore.
159  *
160  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161  *
162  * Writers must hold the rtnl semaphore while they loop through the
163  * dev_base_head list, and hold dev_base_lock for writing when they do the
164  * actual updates.  This allows pure readers to access the list even
165  * while a writer is preparing to update it.
166  *
167  * To put it another way, dev_base_lock is held for writing only to
168  * protect against pure readers; the rtnl semaphore provides the
169  * protection against other writers.
170  *
171  * See, for example usages, register_netdevice() and
172  * unregister_netdevice(), which must be called with the rtnl
173  * semaphore held.
174  */
175 DEFINE_RWLOCK(dev_base_lock);
176 EXPORT_SYMBOL(dev_base_lock);
177
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180
181 static unsigned int napi_gen_id;
182 static DEFINE_HASHTABLE(napi_hash, 8);
183
184 static seqcount_t devnet_rename_seq;
185
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188         while (++net->dev_base_seq == 0);
189 }
190
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
195         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202
203 static inline void rps_lock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206         spin_lock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
210 static inline void rps_unlock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213         spin_unlock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 /* Device list insertion */
218 static void list_netdevice(struct net_device *dev)
219 {
220         struct net *net = dev_net(dev);
221
222         ASSERT_RTNL();
223
224         write_lock_bh(&dev_base_lock);
225         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227         hlist_add_head_rcu(&dev->index_hlist,
228                            dev_index_hash(net, dev->ifindex));
229         write_unlock_bh(&dev_base_lock);
230
231         dev_base_seq_inc(net);
232 }
233
234 /* Device list removal
235  * caller must respect a RCU grace period before freeing/reusing dev
236  */
237 static void unlist_netdevice(struct net_device *dev)
238 {
239         ASSERT_RTNL();
240
241         /* Unlink dev from the device chain */
242         write_lock_bh(&dev_base_lock);
243         list_del_rcu(&dev->dev_list);
244         hlist_del_rcu(&dev->name_hlist);
245         hlist_del_rcu(&dev->index_hlist);
246         write_unlock_bh(&dev_base_lock);
247
248         dev_base_seq_inc(dev_net(dev));
249 }
250
251 /*
252  *      Our notifier list
253  */
254
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256
257 /*
258  *      Device drivers call our routines to queue packets here. We empty the
259  *      queue in the local softnet handler.
260  */
261
262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263 EXPORT_PER_CPU_SYMBOL(softnet_data);
264
265 #ifdef CONFIG_LOCKDEP
266 /*
267  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268  * according to dev->type
269  */
270 static const unsigned short netdev_lock_type[] =
271         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286
287 static const char *const netdev_lock_name[] =
288         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309         int i;
310
311         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312                 if (netdev_lock_type[i] == dev_type)
313                         return i;
314         /* the last key is used by default */
315         return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319                                                  unsigned short dev_type)
320 {
321         int i;
322
323         i = netdev_lock_pos(dev_type);
324         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325                                    netdev_lock_name[i]);
326 }
327
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330         int i;
331
332         i = netdev_lock_pos(dev->type);
333         lockdep_set_class_and_name(&dev->addr_list_lock,
334                                    &netdev_addr_lock_key[i],
335                                    netdev_lock_name[i]);
336 }
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339                                                  unsigned short dev_type)
340 {
341 }
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346
347 /*******************************************************************************
348
349                 Protocol management and registration routines
350
351 *******************************************************************************/
352
353 /*
354  *      Add a protocol ID to the list. Now that the input handler is
355  *      smarter we can dispense with all the messy stuff that used to be
356  *      here.
357  *
358  *      BEWARE!!! Protocol handlers, mangling input packets,
359  *      MUST BE last in hash buckets and checking protocol handlers
360  *      MUST start from promiscuous ptype_all chain in net_bh.
361  *      It is true now, do not change it.
362  *      Explanation follows: if protocol handler, mangling packet, will
363  *      be the first on list, it is not able to sense, that packet
364  *      is cloned and should be copied-on-write, so that it will
365  *      change it and subsequent readers will get broken packet.
366  *                                                      --ANK (980803)
367  */
368
369 static inline struct list_head *ptype_head(const struct packet_type *pt)
370 {
371         if (pt->type == htons(ETH_P_ALL))
372                 return &ptype_all;
373         else
374                 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375 }
376
377 /**
378  *      dev_add_pack - add packet handler
379  *      @pt: packet type declaration
380  *
381  *      Add a protocol handler to the networking stack. The passed &packet_type
382  *      is linked into kernel lists and may not be freed until it has been
383  *      removed from the kernel lists.
384  *
385  *      This call does not sleep therefore it can not
386  *      guarantee all CPU's that are in middle of receiving packets
387  *      will see the new packet type (until the next received packet).
388  */
389
390 void dev_add_pack(struct packet_type *pt)
391 {
392         struct list_head *head = ptype_head(pt);
393
394         spin_lock(&ptype_lock);
395         list_add_rcu(&pt->list, head);
396         spin_unlock(&ptype_lock);
397 }
398 EXPORT_SYMBOL(dev_add_pack);
399
400 /**
401  *      __dev_remove_pack        - remove packet handler
402  *      @pt: packet type declaration
403  *
404  *      Remove a protocol handler that was previously added to the kernel
405  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
406  *      from the kernel lists and can be freed or reused once this function
407  *      returns.
408  *
409  *      The packet type might still be in use by receivers
410  *      and must not be freed until after all the CPU's have gone
411  *      through a quiescent state.
412  */
413 void __dev_remove_pack(struct packet_type *pt)
414 {
415         struct list_head *head = ptype_head(pt);
416         struct packet_type *pt1;
417
418         spin_lock(&ptype_lock);
419
420         list_for_each_entry(pt1, head, list) {
421                 if (pt == pt1) {
422                         list_del_rcu(&pt->list);
423                         goto out;
424                 }
425         }
426
427         pr_warn("dev_remove_pack: %p not found\n", pt);
428 out:
429         spin_unlock(&ptype_lock);
430 }
431 EXPORT_SYMBOL(__dev_remove_pack);
432
433 /**
434  *      dev_remove_pack  - remove packet handler
435  *      @pt: packet type declaration
436  *
437  *      Remove a protocol handler that was previously added to the kernel
438  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
439  *      from the kernel lists and can be freed or reused once this function
440  *      returns.
441  *
442  *      This call sleeps to guarantee that no CPU is looking at the packet
443  *      type after return.
444  */
445 void dev_remove_pack(struct packet_type *pt)
446 {
447         __dev_remove_pack(pt);
448
449         synchronize_net();
450 }
451 EXPORT_SYMBOL(dev_remove_pack);
452
453
454 /**
455  *      dev_add_offload - register offload handlers
456  *      @po: protocol offload declaration
457  *
458  *      Add protocol offload handlers to the networking stack. The passed
459  *      &proto_offload is linked into kernel lists and may not be freed until
460  *      it has been removed from the kernel lists.
461  *
462  *      This call does not sleep therefore it can not
463  *      guarantee all CPU's that are in middle of receiving packets
464  *      will see the new offload handlers (until the next received packet).
465  */
466 void dev_add_offload(struct packet_offload *po)
467 {
468         struct list_head *head = &offload_base;
469
470         spin_lock(&offload_lock);
471         list_add_rcu(&po->list, head);
472         spin_unlock(&offload_lock);
473 }
474 EXPORT_SYMBOL(dev_add_offload);
475
476 /**
477  *      __dev_remove_offload     - remove offload handler
478  *      @po: packet offload declaration
479  *
480  *      Remove a protocol offload handler that was previously added to the
481  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
482  *      is removed from the kernel lists and can be freed or reused once this
483  *      function returns.
484  *
485  *      The packet type might still be in use by receivers
486  *      and must not be freed until after all the CPU's have gone
487  *      through a quiescent state.
488  */
489 static void __dev_remove_offload(struct packet_offload *po)
490 {
491         struct list_head *head = &offload_base;
492         struct packet_offload *po1;
493
494         spin_lock(&offload_lock);
495
496         list_for_each_entry(po1, head, list) {
497                 if (po == po1) {
498                         list_del_rcu(&po->list);
499                         goto out;
500                 }
501         }
502
503         pr_warn("dev_remove_offload: %p not found\n", po);
504 out:
505         spin_unlock(&offload_lock);
506 }
507
508 /**
509  *      dev_remove_offload       - remove packet offload handler
510  *      @po: packet offload declaration
511  *
512  *      Remove a packet offload handler that was previously added to the kernel
513  *      offload handlers by dev_add_offload(). The passed &offload_type is
514  *      removed from the kernel lists and can be freed or reused once this
515  *      function returns.
516  *
517  *      This call sleeps to guarantee that no CPU is looking at the packet
518  *      type after return.
519  */
520 void dev_remove_offload(struct packet_offload *po)
521 {
522         __dev_remove_offload(po);
523
524         synchronize_net();
525 }
526 EXPORT_SYMBOL(dev_remove_offload);
527
528 /******************************************************************************
529
530                       Device Boot-time Settings Routines
531
532 *******************************************************************************/
533
534 /* Boot time configuration table */
535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537 /**
538  *      netdev_boot_setup_add   - add new setup entry
539  *      @name: name of the device
540  *      @map: configured settings for the device
541  *
542  *      Adds new setup entry to the dev_boot_setup list.  The function
543  *      returns 0 on error and 1 on success.  This is a generic routine to
544  *      all netdevices.
545  */
546 static int netdev_boot_setup_add(char *name, struct ifmap *map)
547 {
548         struct netdev_boot_setup *s;
549         int i;
550
551         s = dev_boot_setup;
552         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554                         memset(s[i].name, 0, sizeof(s[i].name));
555                         strlcpy(s[i].name, name, IFNAMSIZ);
556                         memcpy(&s[i].map, map, sizeof(s[i].map));
557                         break;
558                 }
559         }
560
561         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562 }
563
564 /**
565  *      netdev_boot_setup_check - check boot time settings
566  *      @dev: the netdevice
567  *
568  *      Check boot time settings for the device.
569  *      The found settings are set for the device to be used
570  *      later in the device probing.
571  *      Returns 0 if no settings found, 1 if they are.
572  */
573 int netdev_boot_setup_check(struct net_device *dev)
574 {
575         struct netdev_boot_setup *s = dev_boot_setup;
576         int i;
577
578         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580                     !strcmp(dev->name, s[i].name)) {
581                         dev->irq        = s[i].map.irq;
582                         dev->base_addr  = s[i].map.base_addr;
583                         dev->mem_start  = s[i].map.mem_start;
584                         dev->mem_end    = s[i].map.mem_end;
585                         return 1;
586                 }
587         }
588         return 0;
589 }
590 EXPORT_SYMBOL(netdev_boot_setup_check);
591
592
593 /**
594  *      netdev_boot_base        - get address from boot time settings
595  *      @prefix: prefix for network device
596  *      @unit: id for network device
597  *
598  *      Check boot time settings for the base address of device.
599  *      The found settings are set for the device to be used
600  *      later in the device probing.
601  *      Returns 0 if no settings found.
602  */
603 unsigned long netdev_boot_base(const char *prefix, int unit)
604 {
605         const struct netdev_boot_setup *s = dev_boot_setup;
606         char name[IFNAMSIZ];
607         int i;
608
609         sprintf(name, "%s%d", prefix, unit);
610
611         /*
612          * If device already registered then return base of 1
613          * to indicate not to probe for this interface
614          */
615         if (__dev_get_by_name(&init_net, name))
616                 return 1;
617
618         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619                 if (!strcmp(name, s[i].name))
620                         return s[i].map.base_addr;
621         return 0;
622 }
623
624 /*
625  * Saves at boot time configured settings for any netdevice.
626  */
627 int __init netdev_boot_setup(char *str)
628 {
629         int ints[5];
630         struct ifmap map;
631
632         str = get_options(str, ARRAY_SIZE(ints), ints);
633         if (!str || !*str)
634                 return 0;
635
636         /* Save settings */
637         memset(&map, 0, sizeof(map));
638         if (ints[0] > 0)
639                 map.irq = ints[1];
640         if (ints[0] > 1)
641                 map.base_addr = ints[2];
642         if (ints[0] > 2)
643                 map.mem_start = ints[3];
644         if (ints[0] > 3)
645                 map.mem_end = ints[4];
646
647         /* Add new entry to the list */
648         return netdev_boot_setup_add(str, &map);
649 }
650
651 __setup("netdev=", netdev_boot_setup);
652
653 /*******************************************************************************
654
655                             Device Interface Subroutines
656
657 *******************************************************************************/
658
659 /**
660  *      __dev_get_by_name       - find a device by its name
661  *      @net: the applicable net namespace
662  *      @name: name to find
663  *
664  *      Find an interface by name. Must be called under RTNL semaphore
665  *      or @dev_base_lock. If the name is found a pointer to the device
666  *      is returned. If the name is not found then %NULL is returned. The
667  *      reference counters are not incremented so the caller must be
668  *      careful with locks.
669  */
670
671 struct net_device *__dev_get_by_name(struct net *net, const char *name)
672 {
673         struct net_device *dev;
674         struct hlist_head *head = dev_name_hash(net, name);
675
676         hlist_for_each_entry(dev, head, name_hlist)
677                 if (!strncmp(dev->name, name, IFNAMSIZ))
678                         return dev;
679
680         return NULL;
681 }
682 EXPORT_SYMBOL(__dev_get_by_name);
683
684 /**
685  *      dev_get_by_name_rcu     - find a device by its name
686  *      @net: the applicable net namespace
687  *      @name: name to find
688  *
689  *      Find an interface by name.
690  *      If the name is found a pointer to the device is returned.
691  *      If the name is not found then %NULL is returned.
692  *      The reference counters are not incremented so the caller must be
693  *      careful with locks. The caller must hold RCU lock.
694  */
695
696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697 {
698         struct net_device *dev;
699         struct hlist_head *head = dev_name_hash(net, name);
700
701         hlist_for_each_entry_rcu(dev, head, name_hlist)
702                 if (!strncmp(dev->name, name, IFNAMSIZ))
703                         return dev;
704
705         return NULL;
706 }
707 EXPORT_SYMBOL(dev_get_by_name_rcu);
708
709 /**
710  *      dev_get_by_name         - find a device by its name
711  *      @net: the applicable net namespace
712  *      @name: name to find
713  *
714  *      Find an interface by name. This can be called from any
715  *      context and does its own locking. The returned handle has
716  *      the usage count incremented and the caller must use dev_put() to
717  *      release it when it is no longer needed. %NULL is returned if no
718  *      matching device is found.
719  */
720
721 struct net_device *dev_get_by_name(struct net *net, const char *name)
722 {
723         struct net_device *dev;
724
725         rcu_read_lock();
726         dev = dev_get_by_name_rcu(net, name);
727         if (dev)
728                 dev_hold(dev);
729         rcu_read_unlock();
730         return dev;
731 }
732 EXPORT_SYMBOL(dev_get_by_name);
733
734 /**
735  *      __dev_get_by_index - find a device by its ifindex
736  *      @net: the applicable net namespace
737  *      @ifindex: index of device
738  *
739  *      Search for an interface by index. Returns %NULL if the device
740  *      is not found or a pointer to the device. The device has not
741  *      had its reference counter increased so the caller must be careful
742  *      about locking. The caller must hold either the RTNL semaphore
743  *      or @dev_base_lock.
744  */
745
746 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747 {
748         struct net_device *dev;
749         struct hlist_head *head = dev_index_hash(net, ifindex);
750
751         hlist_for_each_entry(dev, head, index_hlist)
752                 if (dev->ifindex == ifindex)
753                         return dev;
754
755         return NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_index);
758
759 /**
760  *      dev_get_by_index_rcu - find a device by its ifindex
761  *      @net: the applicable net namespace
762  *      @ifindex: index of device
763  *
764  *      Search for an interface by index. Returns %NULL if the device
765  *      is not found or a pointer to the device. The device has not
766  *      had its reference counter increased so the caller must be careful
767  *      about locking. The caller must hold RCU lock.
768  */
769
770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771 {
772         struct net_device *dev;
773         struct hlist_head *head = dev_index_hash(net, ifindex);
774
775         hlist_for_each_entry_rcu(dev, head, index_hlist)
776                 if (dev->ifindex == ifindex)
777                         return dev;
778
779         return NULL;
780 }
781 EXPORT_SYMBOL(dev_get_by_index_rcu);
782
783
784 /**
785  *      dev_get_by_index - find a device by its ifindex
786  *      @net: the applicable net namespace
787  *      @ifindex: index of device
788  *
789  *      Search for an interface by index. Returns NULL if the device
790  *      is not found or a pointer to the device. The device returned has
791  *      had a reference added and the pointer is safe until the user calls
792  *      dev_put to indicate they have finished with it.
793  */
794
795 struct net_device *dev_get_by_index(struct net *net, int ifindex)
796 {
797         struct net_device *dev;
798
799         rcu_read_lock();
800         dev = dev_get_by_index_rcu(net, ifindex);
801         if (dev)
802                 dev_hold(dev);
803         rcu_read_unlock();
804         return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_index);
807
808 /**
809  *      netdev_get_name - get a netdevice name, knowing its ifindex.
810  *      @net: network namespace
811  *      @name: a pointer to the buffer where the name will be stored.
812  *      @ifindex: the ifindex of the interface to get the name from.
813  *
814  *      The use of raw_seqcount_begin() and cond_resched() before
815  *      retrying is required as we want to give the writers a chance
816  *      to complete when CONFIG_PREEMPT is not set.
817  */
818 int netdev_get_name(struct net *net, char *name, int ifindex)
819 {
820         struct net_device *dev;
821         unsigned int seq;
822
823 retry:
824         seq = raw_seqcount_begin(&devnet_rename_seq);
825         rcu_read_lock();
826         dev = dev_get_by_index_rcu(net, ifindex);
827         if (!dev) {
828                 rcu_read_unlock();
829                 return -ENODEV;
830         }
831
832         strcpy(name, dev->name);
833         rcu_read_unlock();
834         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835                 cond_resched();
836                 goto retry;
837         }
838
839         return 0;
840 }
841
842 /**
843  *      dev_getbyhwaddr_rcu - find a device by its hardware address
844  *      @net: the applicable net namespace
845  *      @type: media type of device
846  *      @ha: hardware address
847  *
848  *      Search for an interface by MAC address. Returns NULL if the device
849  *      is not found or a pointer to the device.
850  *      The caller must hold RCU or RTNL.
851  *      The returned device has not had its ref count increased
852  *      and the caller must therefore be careful about locking
853  *
854  */
855
856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857                                        const char *ha)
858 {
859         struct net_device *dev;
860
861         for_each_netdev_rcu(net, dev)
862                 if (dev->type == type &&
863                     !memcmp(dev->dev_addr, ha, dev->addr_len))
864                         return dev;
865
866         return NULL;
867 }
868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869
870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871 {
872         struct net_device *dev;
873
874         ASSERT_RTNL();
875         for_each_netdev(net, dev)
876                 if (dev->type == type)
877                         return dev;
878
879         return NULL;
880 }
881 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884 {
885         struct net_device *dev, *ret = NULL;
886
887         rcu_read_lock();
888         for_each_netdev_rcu(net, dev)
889                 if (dev->type == type) {
890                         dev_hold(dev);
891                         ret = dev;
892                         break;
893                 }
894         rcu_read_unlock();
895         return ret;
896 }
897 EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899 /**
900  *      dev_get_by_flags_rcu - find any device with given flags
901  *      @net: the applicable net namespace
902  *      @if_flags: IFF_* values
903  *      @mask: bitmask of bits in if_flags to check
904  *
905  *      Search for any interface with the given flags. Returns NULL if a device
906  *      is not found or a pointer to the device. Must be called inside
907  *      rcu_read_lock(), and result refcount is unchanged.
908  */
909
910 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
911                                     unsigned short mask)
912 {
913         struct net_device *dev, *ret;
914
915         ret = NULL;
916         for_each_netdev_rcu(net, dev) {
917                 if (((dev->flags ^ if_flags) & mask) == 0) {
918                         ret = dev;
919                         break;
920                 }
921         }
922         return ret;
923 }
924 EXPORT_SYMBOL(dev_get_by_flags_rcu);
925
926 /**
927  *      dev_valid_name - check if name is okay for network device
928  *      @name: name string
929  *
930  *      Network device names need to be valid file names to
931  *      to allow sysfs to work.  We also disallow any kind of
932  *      whitespace.
933  */
934 bool dev_valid_name(const char *name)
935 {
936         if (*name == '\0')
937                 return false;
938         if (strlen(name) >= IFNAMSIZ)
939                 return false;
940         if (!strcmp(name, ".") || !strcmp(name, ".."))
941                 return false;
942
943         while (*name) {
944                 if (*name == '/' || isspace(*name))
945                         return false;
946                 name++;
947         }
948         return true;
949 }
950 EXPORT_SYMBOL(dev_valid_name);
951
952 /**
953  *      __dev_alloc_name - allocate a name for a device
954  *      @net: network namespace to allocate the device name in
955  *      @name: name format string
956  *      @buf:  scratch buffer and result name string
957  *
958  *      Passed a format string - eg "lt%d" it will try and find a suitable
959  *      id. It scans list of devices to build up a free map, then chooses
960  *      the first empty slot. The caller must hold the dev_base or rtnl lock
961  *      while allocating the name and adding the device in order to avoid
962  *      duplicates.
963  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
964  *      Returns the number of the unit assigned or a negative errno code.
965  */
966
967 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
968 {
969         int i = 0;
970         const char *p;
971         const int max_netdevices = 8*PAGE_SIZE;
972         unsigned long *inuse;
973         struct net_device *d;
974
975         p = strnchr(name, IFNAMSIZ-1, '%');
976         if (p) {
977                 /*
978                  * Verify the string as this thing may have come from
979                  * the user.  There must be either one "%d" and no other "%"
980                  * characters.
981                  */
982                 if (p[1] != 'd' || strchr(p + 2, '%'))
983                         return -EINVAL;
984
985                 /* Use one page as a bit array of possible slots */
986                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
987                 if (!inuse)
988                         return -ENOMEM;
989
990                 for_each_netdev(net, d) {
991                         if (!sscanf(d->name, name, &i))
992                                 continue;
993                         if (i < 0 || i >= max_netdevices)
994                                 continue;
995
996                         /*  avoid cases where sscanf is not exact inverse of printf */
997                         snprintf(buf, IFNAMSIZ, name, i);
998                         if (!strncmp(buf, d->name, IFNAMSIZ))
999                                 set_bit(i, inuse);
1000                 }
1001
1002                 i = find_first_zero_bit(inuse, max_netdevices);
1003                 free_page((unsigned long) inuse);
1004         }
1005
1006         if (buf != name)
1007                 snprintf(buf, IFNAMSIZ, name, i);
1008         if (!__dev_get_by_name(net, buf))
1009                 return i;
1010
1011         /* It is possible to run out of possible slots
1012          * when the name is long and there isn't enough space left
1013          * for the digits, or if all bits are used.
1014          */
1015         return -ENFILE;
1016 }
1017
1018 /**
1019  *      dev_alloc_name - allocate a name for a device
1020  *      @dev: device
1021  *      @name: name format string
1022  *
1023  *      Passed a format string - eg "lt%d" it will try and find a suitable
1024  *      id. It scans list of devices to build up a free map, then chooses
1025  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1026  *      while allocating the name and adding the device in order to avoid
1027  *      duplicates.
1028  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1029  *      Returns the number of the unit assigned or a negative errno code.
1030  */
1031
1032 int dev_alloc_name(struct net_device *dev, const char *name)
1033 {
1034         char buf[IFNAMSIZ];
1035         struct net *net;
1036         int ret;
1037
1038         BUG_ON(!dev_net(dev));
1039         net = dev_net(dev);
1040         ret = __dev_alloc_name(net, name, buf);
1041         if (ret >= 0)
1042                 strlcpy(dev->name, buf, IFNAMSIZ);
1043         return ret;
1044 }
1045 EXPORT_SYMBOL(dev_alloc_name);
1046
1047 static int dev_alloc_name_ns(struct net *net,
1048                              struct net_device *dev,
1049                              const char *name)
1050 {
1051         char buf[IFNAMSIZ];
1052         int ret;
1053
1054         ret = __dev_alloc_name(net, name, buf);
1055         if (ret >= 0)
1056                 strlcpy(dev->name, buf, IFNAMSIZ);
1057         return ret;
1058 }
1059
1060 static int dev_get_valid_name(struct net *net,
1061                               struct net_device *dev,
1062                               const char *name)
1063 {
1064         BUG_ON(!net);
1065
1066         if (!dev_valid_name(name))
1067                 return -EINVAL;
1068
1069         if (strchr(name, '%'))
1070                 return dev_alloc_name_ns(net, dev, name);
1071         else if (__dev_get_by_name(net, name))
1072                 return -EEXIST;
1073         else if (dev->name != name)
1074                 strlcpy(dev->name, name, IFNAMSIZ);
1075
1076         return 0;
1077 }
1078
1079 /**
1080  *      dev_change_name - change name of a device
1081  *      @dev: device
1082  *      @newname: name (or format string) must be at least IFNAMSIZ
1083  *
1084  *      Change name of a device, can pass format strings "eth%d".
1085  *      for wildcarding.
1086  */
1087 int dev_change_name(struct net_device *dev, const char *newname)
1088 {
1089         unsigned char old_assign_type;
1090         char oldname[IFNAMSIZ];
1091         int err = 0;
1092         int ret;
1093         struct net *net;
1094
1095         ASSERT_RTNL();
1096         BUG_ON(!dev_net(dev));
1097
1098         net = dev_net(dev);
1099         if (dev->flags & IFF_UP)
1100                 return -EBUSY;
1101
1102         write_seqcount_begin(&devnet_rename_seq);
1103
1104         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1105                 write_seqcount_end(&devnet_rename_seq);
1106                 return 0;
1107         }
1108
1109         memcpy(oldname, dev->name, IFNAMSIZ);
1110
1111         err = dev_get_valid_name(net, dev, newname);
1112         if (err < 0) {
1113                 write_seqcount_end(&devnet_rename_seq);
1114                 return err;
1115         }
1116
1117         if (oldname[0] && !strchr(oldname, '%'))
1118                 netdev_info(dev, "renamed from %s\n", oldname);
1119
1120         old_assign_type = dev->name_assign_type;
1121         dev->name_assign_type = NET_NAME_RENAMED;
1122
1123 rollback:
1124         ret = device_rename(&dev->dev, dev->name);
1125         if (ret) {
1126                 memcpy(dev->name, oldname, IFNAMSIZ);
1127                 dev->name_assign_type = old_assign_type;
1128                 write_seqcount_end(&devnet_rename_seq);
1129                 return ret;
1130         }
1131
1132         write_seqcount_end(&devnet_rename_seq);
1133
1134         netdev_adjacent_rename_links(dev, oldname);
1135
1136         write_lock_bh(&dev_base_lock);
1137         hlist_del_rcu(&dev->name_hlist);
1138         write_unlock_bh(&dev_base_lock);
1139
1140         synchronize_rcu();
1141
1142         write_lock_bh(&dev_base_lock);
1143         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1144         write_unlock_bh(&dev_base_lock);
1145
1146         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1147         ret = notifier_to_errno(ret);
1148
1149         if (ret) {
1150                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1151                 if (err >= 0) {
1152                         err = ret;
1153                         write_seqcount_begin(&devnet_rename_seq);
1154                         memcpy(dev->name, oldname, IFNAMSIZ);
1155                         memcpy(oldname, newname, IFNAMSIZ);
1156                         dev->name_assign_type = old_assign_type;
1157                         old_assign_type = NET_NAME_RENAMED;
1158                         goto rollback;
1159                 } else {
1160                         pr_err("%s: name change rollback failed: %d\n",
1161                                dev->name, ret);
1162                 }
1163         }
1164
1165         return err;
1166 }
1167
1168 /**
1169  *      dev_set_alias - change ifalias of a device
1170  *      @dev: device
1171  *      @alias: name up to IFALIASZ
1172  *      @len: limit of bytes to copy from info
1173  *
1174  *      Set ifalias for a device,
1175  */
1176 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1177 {
1178         char *new_ifalias;
1179
1180         ASSERT_RTNL();
1181
1182         if (len >= IFALIASZ)
1183                 return -EINVAL;
1184
1185         if (!len) {
1186                 kfree(dev->ifalias);
1187                 dev->ifalias = NULL;
1188                 return 0;
1189         }
1190
1191         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1192         if (!new_ifalias)
1193                 return -ENOMEM;
1194         dev->ifalias = new_ifalias;
1195
1196         strlcpy(dev->ifalias, alias, len+1);
1197         return len;
1198 }
1199
1200
1201 /**
1202  *      netdev_features_change - device changes features
1203  *      @dev: device to cause notification
1204  *
1205  *      Called to indicate a device has changed features.
1206  */
1207 void netdev_features_change(struct net_device *dev)
1208 {
1209         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1210 }
1211 EXPORT_SYMBOL(netdev_features_change);
1212
1213 /**
1214  *      netdev_state_change - device changes state
1215  *      @dev: device to cause notification
1216  *
1217  *      Called to indicate a device has changed state. This function calls
1218  *      the notifier chains for netdev_chain and sends a NEWLINK message
1219  *      to the routing socket.
1220  */
1221 void netdev_state_change(struct net_device *dev)
1222 {
1223         if (dev->flags & IFF_UP) {
1224                 struct netdev_notifier_change_info change_info;
1225
1226                 change_info.flags_changed = 0;
1227                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1228                                               &change_info.info);
1229                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1230         }
1231 }
1232 EXPORT_SYMBOL(netdev_state_change);
1233
1234 /**
1235  *      netdev_notify_peers - notify network peers about existence of @dev
1236  *      @dev: network device
1237  *
1238  * Generate traffic such that interested network peers are aware of
1239  * @dev, such as by generating a gratuitous ARP. This may be used when
1240  * a device wants to inform the rest of the network about some sort of
1241  * reconfiguration such as a failover event or virtual machine
1242  * migration.
1243  */
1244 void netdev_notify_peers(struct net_device *dev)
1245 {
1246         rtnl_lock();
1247         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1248         rtnl_unlock();
1249 }
1250 EXPORT_SYMBOL(netdev_notify_peers);
1251
1252 static int __dev_open(struct net_device *dev)
1253 {
1254         const struct net_device_ops *ops = dev->netdev_ops;
1255         int ret;
1256
1257         ASSERT_RTNL();
1258
1259         if (!netif_device_present(dev))
1260                 return -ENODEV;
1261
1262         /* Block netpoll from trying to do any rx path servicing.
1263          * If we don't do this there is a chance ndo_poll_controller
1264          * or ndo_poll may be running while we open the device
1265          */
1266         netpoll_poll_disable(dev);
1267
1268         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1269         ret = notifier_to_errno(ret);
1270         if (ret)
1271                 return ret;
1272
1273         set_bit(__LINK_STATE_START, &dev->state);
1274
1275         if (ops->ndo_validate_addr)
1276                 ret = ops->ndo_validate_addr(dev);
1277
1278         if (!ret && ops->ndo_open)
1279                 ret = ops->ndo_open(dev);
1280
1281         netpoll_poll_enable(dev);
1282
1283         if (ret)
1284                 clear_bit(__LINK_STATE_START, &dev->state);
1285         else {
1286                 dev->flags |= IFF_UP;
1287                 dev_set_rx_mode(dev);
1288                 dev_activate(dev);
1289                 add_device_randomness(dev->dev_addr, dev->addr_len);
1290         }
1291
1292         return ret;
1293 }
1294
1295 /**
1296  *      dev_open        - prepare an interface for use.
1297  *      @dev:   device to open
1298  *
1299  *      Takes a device from down to up state. The device's private open
1300  *      function is invoked and then the multicast lists are loaded. Finally
1301  *      the device is moved into the up state and a %NETDEV_UP message is
1302  *      sent to the netdev notifier chain.
1303  *
1304  *      Calling this function on an active interface is a nop. On a failure
1305  *      a negative errno code is returned.
1306  */
1307 int dev_open(struct net_device *dev)
1308 {
1309         int ret;
1310
1311         if (dev->flags & IFF_UP)
1312                 return 0;
1313
1314         ret = __dev_open(dev);
1315         if (ret < 0)
1316                 return ret;
1317
1318         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1319         call_netdevice_notifiers(NETDEV_UP, dev);
1320
1321         return ret;
1322 }
1323 EXPORT_SYMBOL(dev_open);
1324
1325 static int __dev_close_many(struct list_head *head)
1326 {
1327         struct net_device *dev;
1328
1329         ASSERT_RTNL();
1330         might_sleep();
1331
1332         list_for_each_entry(dev, head, close_list) {
1333                 /* Temporarily disable netpoll until the interface is down */
1334                 netpoll_poll_disable(dev);
1335
1336                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1337
1338                 clear_bit(__LINK_STATE_START, &dev->state);
1339
1340                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1341                  * can be even on different cpu. So just clear netif_running().
1342                  *
1343                  * dev->stop() will invoke napi_disable() on all of it's
1344                  * napi_struct instances on this device.
1345                  */
1346                 smp_mb__after_atomic(); /* Commit netif_running(). */
1347         }
1348
1349         dev_deactivate_many(head);
1350
1351         list_for_each_entry(dev, head, close_list) {
1352                 const struct net_device_ops *ops = dev->netdev_ops;
1353
1354                 /*
1355                  *      Call the device specific close. This cannot fail.
1356                  *      Only if device is UP
1357                  *
1358                  *      We allow it to be called even after a DETACH hot-plug
1359                  *      event.
1360                  */
1361                 if (ops->ndo_stop)
1362                         ops->ndo_stop(dev);
1363
1364                 dev->flags &= ~IFF_UP;
1365                 netpoll_poll_enable(dev);
1366         }
1367
1368         return 0;
1369 }
1370
1371 static int __dev_close(struct net_device *dev)
1372 {
1373         int retval;
1374         LIST_HEAD(single);
1375
1376         list_add(&dev->close_list, &single);
1377         retval = __dev_close_many(&single);
1378         list_del(&single);
1379
1380         return retval;
1381 }
1382
1383 static int dev_close_many(struct list_head *head)
1384 {
1385         struct net_device *dev, *tmp;
1386
1387         /* Remove the devices that don't need to be closed */
1388         list_for_each_entry_safe(dev, tmp, head, close_list)
1389                 if (!(dev->flags & IFF_UP))
1390                         list_del_init(&dev->close_list);
1391
1392         __dev_close_many(head);
1393
1394         list_for_each_entry_safe(dev, tmp, head, close_list) {
1395                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1396                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1397                 list_del_init(&dev->close_list);
1398         }
1399
1400         return 0;
1401 }
1402
1403 /**
1404  *      dev_close - shutdown an interface.
1405  *      @dev: device to shutdown
1406  *
1407  *      This function moves an active device into down state. A
1408  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1409  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1410  *      chain.
1411  */
1412 int dev_close(struct net_device *dev)
1413 {
1414         if (dev->flags & IFF_UP) {
1415                 LIST_HEAD(single);
1416
1417                 list_add(&dev->close_list, &single);
1418                 dev_close_many(&single);
1419                 list_del(&single);
1420         }
1421         return 0;
1422 }
1423 EXPORT_SYMBOL(dev_close);
1424
1425
1426 /**
1427  *      dev_disable_lro - disable Large Receive Offload on a device
1428  *      @dev: device
1429  *
1430  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1431  *      called under RTNL.  This is needed if received packets may be
1432  *      forwarded to another interface.
1433  */
1434 void dev_disable_lro(struct net_device *dev)
1435 {
1436         /*
1437          * If we're trying to disable lro on a vlan device
1438          * use the underlying physical device instead
1439          */
1440         if (is_vlan_dev(dev))
1441                 dev = vlan_dev_real_dev(dev);
1442
1443         /* the same for macvlan devices */
1444         if (netif_is_macvlan(dev))
1445                 dev = macvlan_dev_real_dev(dev);
1446
1447         dev->wanted_features &= ~NETIF_F_LRO;
1448         netdev_update_features(dev);
1449
1450         if (unlikely(dev->features & NETIF_F_LRO))
1451                 netdev_WARN(dev, "failed to disable LRO!\n");
1452 }
1453 EXPORT_SYMBOL(dev_disable_lro);
1454
1455 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1456                                    struct net_device *dev)
1457 {
1458         struct netdev_notifier_info info;
1459
1460         netdev_notifier_info_init(&info, dev);
1461         return nb->notifier_call(nb, val, &info);
1462 }
1463
1464 static int dev_boot_phase = 1;
1465
1466 /**
1467  *      register_netdevice_notifier - register a network notifier block
1468  *      @nb: notifier
1469  *
1470  *      Register a notifier to be called when network device events occur.
1471  *      The notifier passed is linked into the kernel structures and must
1472  *      not be reused until it has been unregistered. A negative errno code
1473  *      is returned on a failure.
1474  *
1475  *      When registered all registration and up events are replayed
1476  *      to the new notifier to allow device to have a race free
1477  *      view of the network device list.
1478  */
1479
1480 int register_netdevice_notifier(struct notifier_block *nb)
1481 {
1482         struct net_device *dev;
1483         struct net_device *last;
1484         struct net *net;
1485         int err;
1486
1487         rtnl_lock();
1488         err = raw_notifier_chain_register(&netdev_chain, nb);
1489         if (err)
1490                 goto unlock;
1491         if (dev_boot_phase)
1492                 goto unlock;
1493         for_each_net(net) {
1494                 for_each_netdev(net, dev) {
1495                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1496                         err = notifier_to_errno(err);
1497                         if (err)
1498                                 goto rollback;
1499
1500                         if (!(dev->flags & IFF_UP))
1501                                 continue;
1502
1503                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1504                 }
1505         }
1506
1507 unlock:
1508         rtnl_unlock();
1509         return err;
1510
1511 rollback:
1512         last = dev;
1513         for_each_net(net) {
1514                 for_each_netdev(net, dev) {
1515                         if (dev == last)
1516                                 goto outroll;
1517
1518                         if (dev->flags & IFF_UP) {
1519                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1520                                                         dev);
1521                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1522                         }
1523                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1524                 }
1525         }
1526
1527 outroll:
1528         raw_notifier_chain_unregister(&netdev_chain, nb);
1529         goto unlock;
1530 }
1531 EXPORT_SYMBOL(register_netdevice_notifier);
1532
1533 /**
1534  *      unregister_netdevice_notifier - unregister a network notifier block
1535  *      @nb: notifier
1536  *
1537  *      Unregister a notifier previously registered by
1538  *      register_netdevice_notifier(). The notifier is unlinked into the
1539  *      kernel structures and may then be reused. A negative errno code
1540  *      is returned on a failure.
1541  *
1542  *      After unregistering unregister and down device events are synthesized
1543  *      for all devices on the device list to the removed notifier to remove
1544  *      the need for special case cleanup code.
1545  */
1546
1547 int unregister_netdevice_notifier(struct notifier_block *nb)
1548 {
1549         struct net_device *dev;
1550         struct net *net;
1551         int err;
1552
1553         rtnl_lock();
1554         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1555         if (err)
1556                 goto unlock;
1557
1558         for_each_net(net) {
1559                 for_each_netdev(net, dev) {
1560                         if (dev->flags & IFF_UP) {
1561                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1562                                                         dev);
1563                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1564                         }
1565                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1566                 }
1567         }
1568 unlock:
1569         rtnl_unlock();
1570         return err;
1571 }
1572 EXPORT_SYMBOL(unregister_netdevice_notifier);
1573
1574 /**
1575  *      call_netdevice_notifiers_info - call all network notifier blocks
1576  *      @val: value passed unmodified to notifier function
1577  *      @dev: net_device pointer passed unmodified to notifier function
1578  *      @info: notifier information data
1579  *
1580  *      Call all network notifier blocks.  Parameters and return value
1581  *      are as for raw_notifier_call_chain().
1582  */
1583
1584 static int call_netdevice_notifiers_info(unsigned long val,
1585                                          struct net_device *dev,
1586                                          struct netdev_notifier_info *info)
1587 {
1588         ASSERT_RTNL();
1589         netdev_notifier_info_init(info, dev);
1590         return raw_notifier_call_chain(&netdev_chain, val, info);
1591 }
1592
1593 /**
1594  *      call_netdevice_notifiers - call all network notifier blocks
1595  *      @val: value passed unmodified to notifier function
1596  *      @dev: net_device pointer passed unmodified to notifier function
1597  *
1598  *      Call all network notifier blocks.  Parameters and return value
1599  *      are as for raw_notifier_call_chain().
1600  */
1601
1602 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1603 {
1604         struct netdev_notifier_info info;
1605
1606         return call_netdevice_notifiers_info(val, dev, &info);
1607 }
1608 EXPORT_SYMBOL(call_netdevice_notifiers);
1609
1610 static struct static_key netstamp_needed __read_mostly;
1611 #ifdef HAVE_JUMP_LABEL
1612 /* We are not allowed to call static_key_slow_dec() from irq context
1613  * If net_disable_timestamp() is called from irq context, defer the
1614  * static_key_slow_dec() calls.
1615  */
1616 static atomic_t netstamp_needed_deferred;
1617 #endif
1618
1619 void net_enable_timestamp(void)
1620 {
1621 #ifdef HAVE_JUMP_LABEL
1622         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1623
1624         if (deferred) {
1625                 while (--deferred)
1626                         static_key_slow_dec(&netstamp_needed);
1627                 return;
1628         }
1629 #endif
1630         static_key_slow_inc(&netstamp_needed);
1631 }
1632 EXPORT_SYMBOL(net_enable_timestamp);
1633
1634 void net_disable_timestamp(void)
1635 {
1636 #ifdef HAVE_JUMP_LABEL
1637         if (in_interrupt()) {
1638                 atomic_inc(&netstamp_needed_deferred);
1639                 return;
1640         }
1641 #endif
1642         static_key_slow_dec(&netstamp_needed);
1643 }
1644 EXPORT_SYMBOL(net_disable_timestamp);
1645
1646 static inline void net_timestamp_set(struct sk_buff *skb)
1647 {
1648         skb->tstamp.tv64 = 0;
1649         if (static_key_false(&netstamp_needed))
1650                 __net_timestamp(skb);
1651 }
1652
1653 #define net_timestamp_check(COND, SKB)                  \
1654         if (static_key_false(&netstamp_needed)) {               \
1655                 if ((COND) && !(SKB)->tstamp.tv64)      \
1656                         __net_timestamp(SKB);           \
1657         }                                               \
1658
1659 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1660 {
1661         unsigned int len;
1662
1663         if (!(dev->flags & IFF_UP))
1664                 return false;
1665
1666         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1667         if (skb->len <= len)
1668                 return true;
1669
1670         /* if TSO is enabled, we don't care about the length as the packet
1671          * could be forwarded without being segmented before
1672          */
1673         if (skb_is_gso(skb))
1674                 return true;
1675
1676         return false;
1677 }
1678 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1679
1680 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1681 {
1682         if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1683                 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1684                         atomic_long_inc(&dev->rx_dropped);
1685                         kfree_skb(skb);
1686                         return NET_RX_DROP;
1687                 }
1688         }
1689
1690         if (unlikely(!is_skb_forwardable(dev, skb))) {
1691                 atomic_long_inc(&dev->rx_dropped);
1692                 kfree_skb(skb);
1693                 return NET_RX_DROP;
1694         }
1695
1696         skb_scrub_packet(skb, true);
1697         skb->protocol = eth_type_trans(skb, dev);
1698
1699         return 0;
1700 }
1701 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1702
1703 /**
1704  * dev_forward_skb - loopback an skb to another netif
1705  *
1706  * @dev: destination network device
1707  * @skb: buffer to forward
1708  *
1709  * return values:
1710  *      NET_RX_SUCCESS  (no congestion)
1711  *      NET_RX_DROP     (packet was dropped, but freed)
1712  *
1713  * dev_forward_skb can be used for injecting an skb from the
1714  * start_xmit function of one device into the receive queue
1715  * of another device.
1716  *
1717  * The receiving device may be in another namespace, so
1718  * we have to clear all information in the skb that could
1719  * impact namespace isolation.
1720  */
1721 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1722 {
1723         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1724 }
1725 EXPORT_SYMBOL_GPL(dev_forward_skb);
1726
1727 static inline int deliver_skb(struct sk_buff *skb,
1728                               struct packet_type *pt_prev,
1729                               struct net_device *orig_dev)
1730 {
1731         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1732                 return -ENOMEM;
1733         atomic_inc(&skb->users);
1734         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1735 }
1736
1737 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1738 {
1739         if (!ptype->af_packet_priv || !skb->sk)
1740                 return false;
1741
1742         if (ptype->id_match)
1743                 return ptype->id_match(ptype, skb->sk);
1744         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1745                 return true;
1746
1747         return false;
1748 }
1749
1750 /*
1751  *      Support routine. Sends outgoing frames to any network
1752  *      taps currently in use.
1753  */
1754
1755 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1756 {
1757         struct packet_type *ptype;
1758         struct sk_buff *skb2 = NULL;
1759         struct packet_type *pt_prev = NULL;
1760
1761         rcu_read_lock();
1762         list_for_each_entry_rcu(ptype, &ptype_all, list) {
1763                 /* Never send packets back to the socket
1764                  * they originated from - MvS (miquels@drinkel.ow.org)
1765                  */
1766                 if ((ptype->dev == dev || !ptype->dev) &&
1767                     (!skb_loop_sk(ptype, skb))) {
1768                         if (pt_prev) {
1769                                 deliver_skb(skb2, pt_prev, skb->dev);
1770                                 pt_prev = ptype;
1771                                 continue;
1772                         }
1773
1774                         skb2 = skb_clone(skb, GFP_ATOMIC);
1775                         if (!skb2)
1776                                 break;
1777
1778                         net_timestamp_set(skb2);
1779
1780                         /* skb->nh should be correctly
1781                            set by sender, so that the second statement is
1782                            just protection against buggy protocols.
1783                          */
1784                         skb_reset_mac_header(skb2);
1785
1786                         if (skb_network_header(skb2) < skb2->data ||
1787                             skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1788                                 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1789                                                      ntohs(skb2->protocol),
1790                                                      dev->name);
1791                                 skb_reset_network_header(skb2);
1792                         }
1793
1794                         skb2->transport_header = skb2->network_header;
1795                         skb2->pkt_type = PACKET_OUTGOING;
1796                         pt_prev = ptype;
1797                 }
1798         }
1799         if (pt_prev)
1800                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1801         rcu_read_unlock();
1802 }
1803
1804 /**
1805  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1806  * @dev: Network device
1807  * @txq: number of queues available
1808  *
1809  * If real_num_tx_queues is changed the tc mappings may no longer be
1810  * valid. To resolve this verify the tc mapping remains valid and if
1811  * not NULL the mapping. With no priorities mapping to this
1812  * offset/count pair it will no longer be used. In the worst case TC0
1813  * is invalid nothing can be done so disable priority mappings. If is
1814  * expected that drivers will fix this mapping if they can before
1815  * calling netif_set_real_num_tx_queues.
1816  */
1817 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1818 {
1819         int i;
1820         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1821
1822         /* If TC0 is invalidated disable TC mapping */
1823         if (tc->offset + tc->count > txq) {
1824                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1825                 dev->num_tc = 0;
1826                 return;
1827         }
1828
1829         /* Invalidated prio to tc mappings set to TC0 */
1830         for (i = 1; i < TC_BITMASK + 1; i++) {
1831                 int q = netdev_get_prio_tc_map(dev, i);
1832
1833                 tc = &dev->tc_to_txq[q];
1834                 if (tc->offset + tc->count > txq) {
1835                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1836                                 i, q);
1837                         netdev_set_prio_tc_map(dev, i, 0);
1838                 }
1839         }
1840 }
1841
1842 #ifdef CONFIG_XPS
1843 static DEFINE_MUTEX(xps_map_mutex);
1844 #define xmap_dereference(P)             \
1845         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1846
1847 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1848                                         int cpu, u16 index)
1849 {
1850         struct xps_map *map = NULL;
1851         int pos;
1852
1853         if (dev_maps)
1854                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1855
1856         for (pos = 0; map && pos < map->len; pos++) {
1857                 if (map->queues[pos] == index) {
1858                         if (map->len > 1) {
1859                                 map->queues[pos] = map->queues[--map->len];
1860                         } else {
1861                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1862                                 kfree_rcu(map, rcu);
1863                                 map = NULL;
1864                         }
1865                         break;
1866                 }
1867         }
1868
1869         return map;
1870 }
1871
1872 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1873 {
1874         struct xps_dev_maps *dev_maps;
1875         int cpu, i;
1876         bool active = false;
1877
1878         mutex_lock(&xps_map_mutex);
1879         dev_maps = xmap_dereference(dev->xps_maps);
1880
1881         if (!dev_maps)
1882                 goto out_no_maps;
1883
1884         for_each_possible_cpu(cpu) {
1885                 for (i = index; i < dev->num_tx_queues; i++) {
1886                         if (!remove_xps_queue(dev_maps, cpu, i))
1887                                 break;
1888                 }
1889                 if (i == dev->num_tx_queues)
1890                         active = true;
1891         }
1892
1893         if (!active) {
1894                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1895                 kfree_rcu(dev_maps, rcu);
1896         }
1897
1898         for (i = index; i < dev->num_tx_queues; i++)
1899                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1900                                              NUMA_NO_NODE);
1901
1902 out_no_maps:
1903         mutex_unlock(&xps_map_mutex);
1904 }
1905
1906 static struct xps_map *expand_xps_map(struct xps_map *map,
1907                                       int cpu, u16 index)
1908 {
1909         struct xps_map *new_map;
1910         int alloc_len = XPS_MIN_MAP_ALLOC;
1911         int i, pos;
1912
1913         for (pos = 0; map && pos < map->len; pos++) {
1914                 if (map->queues[pos] != index)
1915                         continue;
1916                 return map;
1917         }
1918
1919         /* Need to add queue to this CPU's existing map */
1920         if (map) {
1921                 if (pos < map->alloc_len)
1922                         return map;
1923
1924                 alloc_len = map->alloc_len * 2;
1925         }
1926
1927         /* Need to allocate new map to store queue on this CPU's map */
1928         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1929                                cpu_to_node(cpu));
1930         if (!new_map)
1931                 return NULL;
1932
1933         for (i = 0; i < pos; i++)
1934                 new_map->queues[i] = map->queues[i];
1935         new_map->alloc_len = alloc_len;
1936         new_map->len = pos;
1937
1938         return new_map;
1939 }
1940
1941 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1942                         u16 index)
1943 {
1944         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1945         struct xps_map *map, *new_map;
1946         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1947         int cpu, numa_node_id = -2;
1948         bool active = false;
1949
1950         mutex_lock(&xps_map_mutex);
1951
1952         dev_maps = xmap_dereference(dev->xps_maps);
1953
1954         /* allocate memory for queue storage */
1955         for_each_online_cpu(cpu) {
1956                 if (!cpumask_test_cpu(cpu, mask))
1957                         continue;
1958
1959                 if (!new_dev_maps)
1960                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1961                 if (!new_dev_maps) {
1962                         mutex_unlock(&xps_map_mutex);
1963                         return -ENOMEM;
1964                 }
1965
1966                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1967                                  NULL;
1968
1969                 map = expand_xps_map(map, cpu, index);
1970                 if (!map)
1971                         goto error;
1972
1973                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1974         }
1975
1976         if (!new_dev_maps)
1977                 goto out_no_new_maps;
1978
1979         for_each_possible_cpu(cpu) {
1980                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1981                         /* add queue to CPU maps */
1982                         int pos = 0;
1983
1984                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1985                         while ((pos < map->len) && (map->queues[pos] != index))
1986                                 pos++;
1987
1988                         if (pos == map->len)
1989                                 map->queues[map->len++] = index;
1990 #ifdef CONFIG_NUMA
1991                         if (numa_node_id == -2)
1992                                 numa_node_id = cpu_to_node(cpu);
1993                         else if (numa_node_id != cpu_to_node(cpu))
1994                                 numa_node_id = -1;
1995 #endif
1996                 } else if (dev_maps) {
1997                         /* fill in the new device map from the old device map */
1998                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
1999                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2000                 }
2001
2002         }
2003
2004         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2005
2006         /* Cleanup old maps */
2007         if (dev_maps) {
2008                 for_each_possible_cpu(cpu) {
2009                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2010                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2011                         if (map && map != new_map)
2012                                 kfree_rcu(map, rcu);
2013                 }
2014
2015                 kfree_rcu(dev_maps, rcu);
2016         }
2017
2018         dev_maps = new_dev_maps;
2019         active = true;
2020
2021 out_no_new_maps:
2022         /* update Tx queue numa node */
2023         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2024                                      (numa_node_id >= 0) ? numa_node_id :
2025                                      NUMA_NO_NODE);
2026
2027         if (!dev_maps)
2028                 goto out_no_maps;
2029
2030         /* removes queue from unused CPUs */
2031         for_each_possible_cpu(cpu) {
2032                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2033                         continue;
2034
2035                 if (remove_xps_queue(dev_maps, cpu, index))
2036                         active = true;
2037         }
2038
2039         /* free map if not active */
2040         if (!active) {
2041                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2042                 kfree_rcu(dev_maps, rcu);
2043         }
2044
2045 out_no_maps:
2046         mutex_unlock(&xps_map_mutex);
2047
2048         return 0;
2049 error:
2050         /* remove any maps that we added */
2051         for_each_possible_cpu(cpu) {
2052                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2053                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2054                                  NULL;
2055                 if (new_map && new_map != map)
2056                         kfree(new_map);
2057         }
2058
2059         mutex_unlock(&xps_map_mutex);
2060
2061         kfree(new_dev_maps);
2062         return -ENOMEM;
2063 }
2064 EXPORT_SYMBOL(netif_set_xps_queue);
2065
2066 #endif
2067 /*
2068  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2069  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2070  */
2071 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2072 {
2073         int rc;
2074
2075         if (txq < 1 || txq > dev->num_tx_queues)
2076                 return -EINVAL;
2077
2078         if (dev->reg_state == NETREG_REGISTERED ||
2079             dev->reg_state == NETREG_UNREGISTERING) {
2080                 ASSERT_RTNL();
2081
2082                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2083                                                   txq);
2084                 if (rc)
2085                         return rc;
2086
2087                 if (dev->num_tc)
2088                         netif_setup_tc(dev, txq);
2089
2090                 if (txq < dev->real_num_tx_queues) {
2091                         qdisc_reset_all_tx_gt(dev, txq);
2092 #ifdef CONFIG_XPS
2093                         netif_reset_xps_queues_gt(dev, txq);
2094 #endif
2095                 }
2096         }
2097
2098         dev->real_num_tx_queues = txq;
2099         return 0;
2100 }
2101 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2102
2103 #ifdef CONFIG_SYSFS
2104 /**
2105  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2106  *      @dev: Network device
2107  *      @rxq: Actual number of RX queues
2108  *
2109  *      This must be called either with the rtnl_lock held or before
2110  *      registration of the net device.  Returns 0 on success, or a
2111  *      negative error code.  If called before registration, it always
2112  *      succeeds.
2113  */
2114 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2115 {
2116         int rc;
2117
2118         if (rxq < 1 || rxq > dev->num_rx_queues)
2119                 return -EINVAL;
2120
2121         if (dev->reg_state == NETREG_REGISTERED) {
2122                 ASSERT_RTNL();
2123
2124                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2125                                                   rxq);
2126                 if (rc)
2127                         return rc;
2128         }
2129
2130         dev->real_num_rx_queues = rxq;
2131         return 0;
2132 }
2133 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2134 #endif
2135
2136 /**
2137  * netif_get_num_default_rss_queues - default number of RSS queues
2138  *
2139  * This routine should set an upper limit on the number of RSS queues
2140  * used by default by multiqueue devices.
2141  */
2142 int netif_get_num_default_rss_queues(void)
2143 {
2144         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2145 }
2146 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2147
2148 static inline void __netif_reschedule(struct Qdisc *q)
2149 {
2150         struct softnet_data *sd;
2151         unsigned long flags;
2152
2153         local_irq_save(flags);
2154         sd = &__get_cpu_var(softnet_data);
2155         q->next_sched = NULL;
2156         *sd->output_queue_tailp = q;
2157         sd->output_queue_tailp = &q->next_sched;
2158         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2159         local_irq_restore(flags);
2160 }
2161
2162 void __netif_schedule(struct Qdisc *q)
2163 {
2164         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2165                 __netif_reschedule(q);
2166 }
2167 EXPORT_SYMBOL(__netif_schedule);
2168
2169 struct dev_kfree_skb_cb {
2170         enum skb_free_reason reason;
2171 };
2172
2173 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2174 {
2175         return (struct dev_kfree_skb_cb *)skb->cb;
2176 }
2177
2178 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2179 {
2180         unsigned long flags;
2181
2182         if (likely(atomic_read(&skb->users) == 1)) {
2183                 smp_rmb();
2184                 atomic_set(&skb->users, 0);
2185         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2186                 return;
2187         }
2188         get_kfree_skb_cb(skb)->reason = reason;
2189         local_irq_save(flags);
2190         skb->next = __this_cpu_read(softnet_data.completion_queue);
2191         __this_cpu_write(softnet_data.completion_queue, skb);
2192         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2193         local_irq_restore(flags);
2194 }
2195 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2196
2197 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2198 {
2199         if (in_irq() || irqs_disabled())
2200                 __dev_kfree_skb_irq(skb, reason);
2201         else
2202                 dev_kfree_skb(skb);
2203 }
2204 EXPORT_SYMBOL(__dev_kfree_skb_any);
2205
2206
2207 /**
2208  * netif_device_detach - mark device as removed
2209  * @dev: network device
2210  *
2211  * Mark device as removed from system and therefore no longer available.
2212  */
2213 void netif_device_detach(struct net_device *dev)
2214 {
2215         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2216             netif_running(dev)) {
2217                 netif_tx_stop_all_queues(dev);
2218         }
2219 }
2220 EXPORT_SYMBOL(netif_device_detach);
2221
2222 /**
2223  * netif_device_attach - mark device as attached
2224  * @dev: network device
2225  *
2226  * Mark device as attached from system and restart if needed.
2227  */
2228 void netif_device_attach(struct net_device *dev)
2229 {
2230         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2231             netif_running(dev)) {
2232                 netif_tx_wake_all_queues(dev);
2233                 __netdev_watchdog_up(dev);
2234         }
2235 }
2236 EXPORT_SYMBOL(netif_device_attach);
2237
2238 static void skb_warn_bad_offload(const struct sk_buff *skb)
2239 {
2240         static const netdev_features_t null_features = 0;
2241         struct net_device *dev = skb->dev;
2242         const char *driver = "";
2243
2244         if (!net_ratelimit())
2245                 return;
2246
2247         if (dev && dev->dev.parent)
2248                 driver = dev_driver_string(dev->dev.parent);
2249
2250         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2251              "gso_type=%d ip_summed=%d\n",
2252              driver, dev ? &dev->features : &null_features,
2253              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2254              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2255              skb_shinfo(skb)->gso_type, skb->ip_summed);
2256 }
2257
2258 /*
2259  * Invalidate hardware checksum when packet is to be mangled, and
2260  * complete checksum manually on outgoing path.
2261  */
2262 int skb_checksum_help(struct sk_buff *skb)
2263 {
2264         __wsum csum;
2265         int ret = 0, offset;
2266
2267         if (skb->ip_summed == CHECKSUM_COMPLETE)
2268                 goto out_set_summed;
2269
2270         if (unlikely(skb_shinfo(skb)->gso_size)) {
2271                 skb_warn_bad_offload(skb);
2272                 return -EINVAL;
2273         }
2274
2275         /* Before computing a checksum, we should make sure no frag could
2276          * be modified by an external entity : checksum could be wrong.
2277          */
2278         if (skb_has_shared_frag(skb)) {
2279                 ret = __skb_linearize(skb);
2280                 if (ret)
2281                         goto out;
2282         }
2283
2284         offset = skb_checksum_start_offset(skb);
2285         BUG_ON(offset >= skb_headlen(skb));
2286         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2287
2288         offset += skb->csum_offset;
2289         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2290
2291         if (skb_cloned(skb) &&
2292             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2293                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2294                 if (ret)
2295                         goto out;
2296         }
2297
2298         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2299 out_set_summed:
2300         skb->ip_summed = CHECKSUM_NONE;
2301 out:
2302         return ret;
2303 }
2304 EXPORT_SYMBOL(skb_checksum_help);
2305
2306 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2307 {
2308         unsigned int vlan_depth = skb->mac_len;
2309         __be16 type = skb->protocol;
2310
2311         /* Tunnel gso handlers can set protocol to ethernet. */
2312         if (type == htons(ETH_P_TEB)) {
2313                 struct ethhdr *eth;
2314
2315                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2316                         return 0;
2317
2318                 eth = (struct ethhdr *)skb_mac_header(skb);
2319                 type = eth->h_proto;
2320         }
2321
2322         /* if skb->protocol is 802.1Q/AD then the header should already be
2323          * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2324          * ETH_HLEN otherwise
2325          */
2326         if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2327                 if (vlan_depth) {
2328                         if (WARN_ON(vlan_depth < VLAN_HLEN))
2329                                 return 0;
2330                         vlan_depth -= VLAN_HLEN;
2331                 } else {
2332                         vlan_depth = ETH_HLEN;
2333                 }
2334                 do {
2335                         struct vlan_hdr *vh;
2336
2337                         if (unlikely(!pskb_may_pull(skb,
2338                                                     vlan_depth + VLAN_HLEN)))
2339                                 return 0;
2340
2341                         vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2342                         type = vh->h_vlan_encapsulated_proto;
2343                         vlan_depth += VLAN_HLEN;
2344                 } while (type == htons(ETH_P_8021Q) ||
2345                          type == htons(ETH_P_8021AD));
2346         }
2347
2348         *depth = vlan_depth;
2349
2350         return type;
2351 }
2352
2353 /**
2354  *      skb_mac_gso_segment - mac layer segmentation handler.
2355  *      @skb: buffer to segment
2356  *      @features: features for the output path (see dev->features)
2357  */
2358 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2359                                     netdev_features_t features)
2360 {
2361         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2362         struct packet_offload *ptype;
2363         int vlan_depth = skb->mac_len;
2364         __be16 type = skb_network_protocol(skb, &vlan_depth);
2365
2366         if (unlikely(!type))
2367                 return ERR_PTR(-EINVAL);
2368
2369         __skb_pull(skb, vlan_depth);
2370
2371         rcu_read_lock();
2372         list_for_each_entry_rcu(ptype, &offload_base, list) {
2373                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2374                         if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2375                                 int err;
2376
2377                                 err = ptype->callbacks.gso_send_check(skb);
2378                                 segs = ERR_PTR(err);
2379                                 if (err || skb_gso_ok(skb, features))
2380                                         break;
2381                                 __skb_push(skb, (skb->data -
2382                                                  skb_network_header(skb)));
2383                         }
2384                         segs = ptype->callbacks.gso_segment(skb, features);
2385                         break;
2386                 }
2387         }
2388         rcu_read_unlock();
2389
2390         __skb_push(skb, skb->data - skb_mac_header(skb));
2391
2392         return segs;
2393 }
2394 EXPORT_SYMBOL(skb_mac_gso_segment);
2395
2396
2397 /* openvswitch calls this on rx path, so we need a different check.
2398  */
2399 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2400 {
2401         if (tx_path)
2402                 return skb->ip_summed != CHECKSUM_PARTIAL;
2403         else
2404                 return skb->ip_summed == CHECKSUM_NONE;
2405 }
2406
2407 /**
2408  *      __skb_gso_segment - Perform segmentation on skb.
2409  *      @skb: buffer to segment
2410  *      @features: features for the output path (see dev->features)
2411  *      @tx_path: whether it is called in TX path
2412  *
2413  *      This function segments the given skb and returns a list of segments.
2414  *
2415  *      It may return NULL if the skb requires no segmentation.  This is
2416  *      only possible when GSO is used for verifying header integrity.
2417  */
2418 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2419                                   netdev_features_t features, bool tx_path)
2420 {
2421         if (unlikely(skb_needs_check(skb, tx_path))) {
2422                 int err;
2423
2424                 skb_warn_bad_offload(skb);
2425
2426                 err = skb_cow_head(skb, 0);
2427                 if (err < 0)
2428                         return ERR_PTR(err);
2429         }
2430
2431         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2432         SKB_GSO_CB(skb)->encap_level = 0;
2433
2434         skb_reset_mac_header(skb);
2435         skb_reset_mac_len(skb);
2436
2437         return skb_mac_gso_segment(skb, features);
2438 }
2439 EXPORT_SYMBOL(__skb_gso_segment);
2440
2441 /* Take action when hardware reception checksum errors are detected. */
2442 #ifdef CONFIG_BUG
2443 void netdev_rx_csum_fault(struct net_device *dev)
2444 {
2445         if (net_ratelimit()) {
2446                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2447                 dump_stack();
2448         }
2449 }
2450 EXPORT_SYMBOL(netdev_rx_csum_fault);
2451 #endif
2452
2453 /* Actually, we should eliminate this check as soon as we know, that:
2454  * 1. IOMMU is present and allows to map all the memory.
2455  * 2. No high memory really exists on this machine.
2456  */
2457
2458 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2459 {
2460 #ifdef CONFIG_HIGHMEM
2461         int i;
2462         if (!(dev->features & NETIF_F_HIGHDMA)) {
2463                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2464                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2465                         if (PageHighMem(skb_frag_page(frag)))
2466                                 return 1;
2467                 }
2468         }
2469
2470         if (PCI_DMA_BUS_IS_PHYS) {
2471                 struct device *pdev = dev->dev.parent;
2472
2473                 if (!pdev)
2474                         return 0;
2475                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2476                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2477                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2478                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2479                                 return 1;
2480                 }
2481         }
2482 #endif
2483         return 0;
2484 }
2485
2486 struct dev_gso_cb {
2487         void (*destructor)(struct sk_buff *skb);
2488 };
2489
2490 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2491
2492 static void dev_gso_skb_destructor(struct sk_buff *skb)
2493 {
2494         struct dev_gso_cb *cb;
2495
2496         kfree_skb_list(skb->next);
2497         skb->next = NULL;
2498
2499         cb = DEV_GSO_CB(skb);
2500         if (cb->destructor)
2501                 cb->destructor(skb);
2502 }
2503
2504 /**
2505  *      dev_gso_segment - Perform emulated hardware segmentation on skb.
2506  *      @skb: buffer to segment
2507  *      @features: device features as applicable to this skb
2508  *
2509  *      This function segments the given skb and stores the list of segments
2510  *      in skb->next.
2511  */
2512 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2513 {
2514         struct sk_buff *segs;
2515
2516         segs = skb_gso_segment(skb, features);
2517
2518         /* Verifying header integrity only. */
2519         if (!segs)
2520                 return 0;
2521
2522         if (IS_ERR(segs))
2523                 return PTR_ERR(segs);
2524
2525         skb->next = segs;
2526         DEV_GSO_CB(skb)->destructor = skb->destructor;
2527         skb->destructor = dev_gso_skb_destructor;
2528
2529         return 0;
2530 }
2531
2532 /* If MPLS offload request, verify we are testing hardware MPLS features
2533  * instead of standard features for the netdev.
2534  */
2535 #ifdef CONFIG_NET_MPLS_GSO
2536 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2537                                            netdev_features_t features,
2538                                            __be16 type)
2539 {
2540         if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2541                 features &= skb->dev->mpls_features;
2542
2543         return features;
2544 }
2545 #else
2546 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2547                                            netdev_features_t features,
2548                                            __be16 type)
2549 {
2550         return features;
2551 }
2552 #endif
2553
2554 static netdev_features_t harmonize_features(struct sk_buff *skb,
2555         netdev_features_t features)
2556 {
2557         int tmp;
2558         __be16 type;
2559
2560         type = skb_network_protocol(skb, &tmp);
2561         features = net_mpls_features(skb, features, type);
2562
2563         if (skb->ip_summed != CHECKSUM_NONE &&
2564             !can_checksum_protocol(features, type)) {
2565                 features &= ~NETIF_F_ALL_CSUM;
2566         } else if (illegal_highdma(skb->dev, skb)) {
2567                 features &= ~NETIF_F_SG;
2568         }
2569
2570         return features;
2571 }
2572
2573 netdev_features_t netif_skb_features(struct sk_buff *skb)
2574 {
2575         __be16 protocol = skb->protocol;
2576         netdev_features_t features = skb->dev->features;
2577
2578         if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2579                 features &= ~NETIF_F_GSO_MASK;
2580
2581         if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2582                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2583                 protocol = veh->h_vlan_encapsulated_proto;
2584         } else if (!vlan_tx_tag_present(skb)) {
2585                 return harmonize_features(skb, features);
2586         }
2587
2588         features = netdev_intersect_features(features,
2589                                              skb->dev->vlan_features |
2590                                              NETIF_F_HW_VLAN_CTAG_TX |
2591                                              NETIF_F_HW_VLAN_STAG_TX);
2592
2593         if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2594                 features = netdev_intersect_features(features,
2595                                                      NETIF_F_SG |
2596                                                      NETIF_F_HIGHDMA |
2597                                                      NETIF_F_FRAGLIST |
2598                                                      NETIF_F_GEN_CSUM |
2599                                                      NETIF_F_HW_VLAN_CTAG_TX |
2600                                                      NETIF_F_HW_VLAN_STAG_TX);
2601
2602         return harmonize_features(skb, features);
2603 }
2604 EXPORT_SYMBOL(netif_skb_features);
2605
2606 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2607                         struct netdev_queue *txq)
2608 {
2609         const struct net_device_ops *ops = dev->netdev_ops;
2610         int rc = NETDEV_TX_OK;
2611         unsigned int skb_len;
2612
2613         if (likely(!skb->next)) {
2614                 netdev_features_t features;
2615
2616                 /*
2617                  * If device doesn't need skb->dst, release it right now while
2618                  * its hot in this cpu cache
2619                  */
2620                 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2621                         skb_dst_drop(skb);
2622
2623                 features = netif_skb_features(skb);
2624
2625                 if (vlan_tx_tag_present(skb) &&
2626                     !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2627                         skb = __vlan_put_tag(skb, skb->vlan_proto,
2628                                              vlan_tx_tag_get(skb));
2629                         if (unlikely(!skb))
2630                                 goto out;
2631
2632                         skb->vlan_tci = 0;
2633                 }
2634
2635                 /* If encapsulation offload request, verify we are testing
2636                  * hardware encapsulation features instead of standard
2637                  * features for the netdev
2638                  */
2639                 if (skb->encapsulation)
2640                         features &= dev->hw_enc_features;
2641
2642                 if (netif_needs_gso(skb, features)) {
2643                         if (unlikely(dev_gso_segment(skb, features)))
2644                                 goto out_kfree_skb;
2645                         if (skb->next)
2646                                 goto gso;
2647                 } else {
2648                         if (skb_needs_linearize(skb, features) &&
2649                             __skb_linearize(skb))
2650                                 goto out_kfree_skb;
2651
2652                         /* If packet is not checksummed and device does not
2653                          * support checksumming for this protocol, complete
2654                          * checksumming here.
2655                          */
2656                         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2657                                 if (skb->encapsulation)
2658                                         skb_set_inner_transport_header(skb,
2659                                                 skb_checksum_start_offset(skb));
2660                                 else
2661                                         skb_set_transport_header(skb,
2662                                                 skb_checksum_start_offset(skb));
2663                                 if (!(features & NETIF_F_ALL_CSUM) &&
2664                                      skb_checksum_help(skb))
2665                                         goto out_kfree_skb;
2666                         }
2667                 }
2668
2669                 if (!list_empty(&ptype_all))
2670                         dev_queue_xmit_nit(skb, dev);
2671
2672                 skb_len = skb->len;
2673                 trace_net_dev_start_xmit(skb, dev);
2674                 rc = ops->ndo_start_xmit(skb, dev);
2675                 trace_net_dev_xmit(skb, rc, dev, skb_len);
2676                 if (rc == NETDEV_TX_OK)
2677                         txq_trans_update(txq);
2678                 return rc;
2679         }
2680
2681 gso:
2682         do {
2683                 struct sk_buff *nskb = skb->next;
2684
2685                 skb->next = nskb->next;
2686                 nskb->next = NULL;
2687
2688                 if (!list_empty(&ptype_all))
2689                         dev_queue_xmit_nit(nskb, dev);
2690
2691                 skb_len = nskb->len;
2692                 trace_net_dev_start_xmit(nskb, dev);
2693                 rc = ops->ndo_start_xmit(nskb, dev);
2694                 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2695                 if (unlikely(rc != NETDEV_TX_OK)) {
2696                         if (rc & ~NETDEV_TX_MASK)
2697                                 goto out_kfree_gso_skb;
2698                         nskb->next = skb->next;
2699                         skb->next = nskb;
2700                         return rc;
2701                 }
2702                 txq_trans_update(txq);
2703                 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2704                         return NETDEV_TX_BUSY;
2705         } while (skb->next);
2706
2707 out_kfree_gso_skb:
2708         if (likely(skb->next == NULL)) {
2709                 skb->destructor = DEV_GSO_CB(skb)->destructor;
2710                 consume_skb(skb);
2711                 return rc;
2712         }
2713 out_kfree_skb:
2714         kfree_skb(skb);
2715 out:
2716         return rc;
2717 }
2718 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2719
2720 static void qdisc_pkt_len_init(struct sk_buff *skb)
2721 {
2722         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2723
2724         qdisc_skb_cb(skb)->pkt_len = skb->len;
2725
2726         /* To get more precise estimation of bytes sent on wire,
2727          * we add to pkt_len the headers size of all segments
2728          */
2729         if (shinfo->gso_size)  {
2730                 unsigned int hdr_len;
2731                 u16 gso_segs = shinfo->gso_segs;
2732
2733                 /* mac layer + network layer */
2734                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2735
2736                 /* + transport layer */
2737                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2738                         hdr_len += tcp_hdrlen(skb);
2739                 else
2740                         hdr_len += sizeof(struct udphdr);
2741
2742                 if (shinfo->gso_type & SKB_GSO_DODGY)
2743                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2744                                                 shinfo->gso_size);
2745
2746                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2747         }
2748 }
2749
2750 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2751                                  struct net_device *dev,
2752                                  struct netdev_queue *txq)
2753 {
2754         spinlock_t *root_lock = qdisc_lock(q);
2755         bool contended;
2756         int rc;
2757
2758         qdisc_pkt_len_init(skb);
2759         qdisc_calculate_pkt_len(skb, q);
2760         /*
2761          * Heuristic to force contended enqueues to serialize on a
2762          * separate lock before trying to get qdisc main lock.
2763          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2764          * often and dequeue packets faster.
2765          */
2766         contended = qdisc_is_running(q);
2767         if (unlikely(contended))
2768                 spin_lock(&q->busylock);
2769
2770         spin_lock(root_lock);
2771         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2772                 kfree_skb(skb);
2773                 rc = NET_XMIT_DROP;
2774         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2775                    qdisc_run_begin(q)) {
2776                 /*
2777                  * This is a work-conserving queue; there are no old skbs
2778                  * waiting to be sent out; and the qdisc is not running -
2779                  * xmit the skb directly.
2780                  */
2781                 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2782                         skb_dst_force(skb);
2783
2784                 qdisc_bstats_update(q, skb);
2785
2786                 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2787                         if (unlikely(contended)) {
2788                                 spin_unlock(&q->busylock);
2789                                 contended = false;
2790                         }
2791                         __qdisc_run(q);
2792                 } else
2793                         qdisc_run_end(q);
2794
2795                 rc = NET_XMIT_SUCCESS;
2796         } else {
2797                 skb_dst_force(skb);
2798                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2799                 if (qdisc_run_begin(q)) {
2800                         if (unlikely(contended)) {
2801                                 spin_unlock(&q->busylock);
2802                                 contended = false;
2803                         }
2804                         __qdisc_run(q);
2805                 }
2806         }
2807         spin_unlock(root_lock);
2808         if (unlikely(contended))
2809                 spin_unlock(&q->busylock);
2810         return rc;
2811 }
2812
2813 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2814 static void skb_update_prio(struct sk_buff *skb)
2815 {
2816         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2817
2818         if (!skb->priority && skb->sk && map) {
2819                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2820
2821                 if (prioidx < map->priomap_len)
2822                         skb->priority = map->priomap[prioidx];
2823         }
2824 }
2825 #else
2826 #define skb_update_prio(skb)
2827 #endif
2828
2829 static DEFINE_PER_CPU(int, xmit_recursion);
2830 #define RECURSION_LIMIT 10
2831
2832 /**
2833  *      dev_loopback_xmit - loop back @skb
2834  *      @skb: buffer to transmit
2835  */
2836 int dev_loopback_xmit(struct sk_buff *skb)
2837 {
2838         skb_reset_mac_header(skb);
2839         __skb_pull(skb, skb_network_offset(skb));
2840         skb->pkt_type = PACKET_LOOPBACK;
2841         skb->ip_summed = CHECKSUM_UNNECESSARY;
2842         WARN_ON(!skb_dst(skb));
2843         skb_dst_force(skb);
2844         netif_rx_ni(skb);
2845         return 0;
2846 }
2847 EXPORT_SYMBOL(dev_loopback_xmit);
2848
2849 /**
2850  *      __dev_queue_xmit - transmit a buffer
2851  *      @skb: buffer to transmit
2852  *      @accel_priv: private data used for L2 forwarding offload
2853  *
2854  *      Queue a buffer for transmission to a network device. The caller must
2855  *      have set the device and priority and built the buffer before calling
2856  *      this function. The function can be called from an interrupt.
2857  *
2858  *      A negative errno code is returned on a failure. A success does not
2859  *      guarantee the frame will be transmitted as it may be dropped due
2860  *      to congestion or traffic shaping.
2861  *
2862  * -----------------------------------------------------------------------------------
2863  *      I notice this method can also return errors from the queue disciplines,
2864  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2865  *      be positive.
2866  *
2867  *      Regardless of the return value, the skb is consumed, so it is currently
2868  *      difficult to retry a send to this method.  (You can bump the ref count
2869  *      before sending to hold a reference for retry if you are careful.)
2870  *
2871  *      When calling this method, interrupts MUST be enabled.  This is because
2872  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2873  *          --BLG
2874  */
2875 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2876 {
2877         struct net_device *dev = skb->dev;
2878         struct netdev_queue *txq;
2879         struct Qdisc *q;
2880         int rc = -ENOMEM;
2881
2882         skb_reset_mac_header(skb);
2883
2884         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2885                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2886
2887         /* Disable soft irqs for various locks below. Also
2888          * stops preemption for RCU.
2889          */
2890         rcu_read_lock_bh();
2891
2892         skb_update_prio(skb);
2893
2894         txq = netdev_pick_tx(dev, skb, accel_priv);
2895         q = rcu_dereference_bh(txq->qdisc);
2896
2897 #ifdef CONFIG_NET_CLS_ACT
2898         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2899 #endif
2900         trace_net_dev_queue(skb);
2901         if (q->enqueue) {
2902                 rc = __dev_xmit_skb(skb, q, dev, txq);
2903                 goto out;
2904         }
2905
2906         /* The device has no queue. Common case for software devices:
2907            loopback, all the sorts of tunnels...
2908
2909            Really, it is unlikely that netif_tx_lock protection is necessary
2910            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2911            counters.)
2912            However, it is possible, that they rely on protection
2913            made by us here.
2914
2915            Check this and shot the lock. It is not prone from deadlocks.
2916            Either shot noqueue qdisc, it is even simpler 8)
2917          */
2918         if (dev->flags & IFF_UP) {
2919                 int cpu = smp_processor_id(); /* ok because BHs are off */
2920
2921                 if (txq->xmit_lock_owner != cpu) {
2922
2923                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2924                                 goto recursion_alert;
2925
2926                         HARD_TX_LOCK(dev, txq, cpu);
2927
2928                         if (!netif_xmit_stopped(txq)) {
2929                                 __this_cpu_inc(xmit_recursion);
2930                                 rc = dev_hard_start_xmit(skb, dev, txq);
2931                                 __this_cpu_dec(xmit_recursion);
2932                                 if (dev_xmit_complete(rc)) {
2933                                         HARD_TX_UNLOCK(dev, txq);
2934                                         goto out;
2935                                 }
2936                         }
2937                         HARD_TX_UNLOCK(dev, txq);
2938                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2939                                              dev->name);
2940                 } else {
2941                         /* Recursion is detected! It is possible,
2942                          * unfortunately
2943                          */
2944 recursion_alert:
2945                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2946                                              dev->name);
2947                 }
2948         }
2949
2950         rc = -ENETDOWN;
2951         rcu_read_unlock_bh();
2952
2953         atomic_long_inc(&dev->tx_dropped);
2954         kfree_skb(skb);
2955         return rc;
2956 out:
2957         rcu_read_unlock_bh();
2958         return rc;
2959 }
2960
2961 int dev_queue_xmit(struct sk_buff *skb)
2962 {
2963         return __dev_queue_xmit(skb, NULL);
2964 }
2965 EXPORT_SYMBOL(dev_queue_xmit);
2966
2967 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2968 {
2969         return __dev_queue_xmit(skb, accel_priv);
2970 }
2971 EXPORT_SYMBOL(dev_queue_xmit_accel);
2972
2973
2974 /*=======================================================================
2975                         Receiver routines
2976   =======================================================================*/
2977
2978 int netdev_max_backlog __read_mostly = 1000;
2979 EXPORT_SYMBOL(netdev_max_backlog);
2980
2981 int netdev_tstamp_prequeue __read_mostly = 1;
2982 int netdev_budget __read_mostly = 300;
2983 int weight_p __read_mostly = 64;            /* old backlog weight */
2984
2985 /* Called with irq disabled */
2986 static inline void ____napi_schedule(struct softnet_data *sd,
2987                                      struct napi_struct *napi)
2988 {
2989         list_add_tail(&napi->poll_list, &sd->poll_list);
2990         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2991 }
2992
2993 #ifdef CONFIG_RPS
2994
2995 /* One global table that all flow-based protocols share. */
2996 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2997 EXPORT_SYMBOL(rps_sock_flow_table);
2998
2999 struct static_key rps_needed __read_mostly;
3000
3001 static struct rps_dev_flow *
3002 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3003             struct rps_dev_flow *rflow, u16 next_cpu)
3004 {
3005         if (next_cpu != RPS_NO_CPU) {
3006 #ifdef CONFIG_RFS_ACCEL
3007                 struct netdev_rx_queue *rxqueue;
3008                 struct rps_dev_flow_table *flow_table;
3009                 struct rps_dev_flow *old_rflow;
3010                 u32 flow_id;
3011                 u16 rxq_index;
3012                 int rc;
3013
3014                 /* Should we steer this flow to a different hardware queue? */
3015                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3016                     !(dev->features & NETIF_F_NTUPLE))
3017                         goto out;
3018                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3019                 if (rxq_index == skb_get_rx_queue(skb))
3020                         goto out;
3021
3022                 rxqueue = dev->_rx + rxq_index;
3023                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3024                 if (!flow_table)
3025                         goto out;
3026                 flow_id = skb_get_hash(skb) & flow_table->mask;
3027                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3028                                                         rxq_index, flow_id);
3029                 if (rc < 0)
3030                         goto out;
3031                 old_rflow = rflow;
3032                 rflow = &flow_table->flows[flow_id];
3033                 rflow->filter = rc;
3034                 if (old_rflow->filter == rflow->filter)
3035                         old_rflow->filter = RPS_NO_FILTER;
3036         out:
3037 #endif
3038                 rflow->last_qtail =
3039                         per_cpu(softnet_data, next_cpu).input_queue_head;
3040         }
3041
3042         rflow->cpu = next_cpu;
3043         return rflow;
3044 }
3045
3046 /*
3047  * get_rps_cpu is called from netif_receive_skb and returns the target
3048  * CPU from the RPS map of the receiving queue for a given skb.
3049  * rcu_read_lock must be held on entry.
3050  */
3051 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3052                        struct rps_dev_flow **rflowp)
3053 {
3054         struct netdev_rx_queue *rxqueue;
3055         struct rps_map *map;
3056         struct rps_dev_flow_table *flow_table;
3057         struct rps_sock_flow_table *sock_flow_table;
3058         int cpu = -1;
3059         u16 tcpu;
3060         u32 hash;
3061
3062         if (skb_rx_queue_recorded(skb)) {
3063                 u16 index = skb_get_rx_queue(skb);
3064                 if (unlikely(index >= dev->real_num_rx_queues)) {
3065                         WARN_ONCE(dev->real_num_rx_queues > 1,
3066                                   "%s received packet on queue %u, but number "
3067                                   "of RX queues is %u\n",
3068                                   dev->name, index, dev->real_num_rx_queues);
3069                         goto done;
3070                 }
3071                 rxqueue = dev->_rx + index;
3072         } else
3073                 rxqueue = dev->_rx;
3074
3075         map = rcu_dereference(rxqueue->rps_map);
3076         if (map) {
3077                 if (map->len == 1 &&
3078                     !rcu_access_pointer(rxqueue->rps_flow_table)) {
3079                         tcpu = map->cpus[0];
3080                         if (cpu_online(tcpu))
3081                                 cpu = tcpu;
3082                         goto done;
3083                 }
3084         } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3085                 goto done;
3086         }
3087
3088         skb_reset_network_header(skb);
3089         hash = skb_get_hash(skb);
3090         if (!hash)
3091                 goto done;
3092
3093         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3094         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3095         if (flow_table && sock_flow_table) {
3096                 u16 next_cpu;
3097                 struct rps_dev_flow *rflow;
3098
3099                 rflow = &flow_table->flows[hash & flow_table->mask];
3100                 tcpu = rflow->cpu;
3101
3102                 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3103
3104                 /*
3105                  * If the desired CPU (where last recvmsg was done) is
3106                  * different from current CPU (one in the rx-queue flow
3107                  * table entry), switch if one of the following holds:
3108                  *   - Current CPU is unset (equal to RPS_NO_CPU).
3109                  *   - Current CPU is offline.
3110                  *   - The current CPU's queue tail has advanced beyond the
3111                  *     last packet that was enqueued using this table entry.
3112                  *     This guarantees that all previous packets for the flow
3113                  *     have been dequeued, thus preserving in order delivery.
3114                  */
3115                 if (unlikely(tcpu != next_cpu) &&
3116                     (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3117                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3118                       rflow->last_qtail)) >= 0)) {
3119                         tcpu = next_cpu;
3120                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3121                 }
3122
3123                 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3124                         *rflowp = rflow;
3125                         cpu = tcpu;
3126                         goto done;
3127                 }
3128         }
3129
3130         if (map) {
3131                 tcpu = map->cpus[((u64) hash * map->len) >> 32];
3132
3133                 if (cpu_online(tcpu)) {
3134                         cpu = tcpu;
3135                         goto done;
3136                 }
3137         }
3138
3139 done:
3140         return cpu;
3141 }
3142
3143 #ifdef CONFIG_RFS_ACCEL
3144
3145 /**
3146  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3147  * @dev: Device on which the filter was set
3148  * @rxq_index: RX queue index
3149  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3150  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3151  *
3152  * Drivers that implement ndo_rx_flow_steer() should periodically call
3153  * this function for each installed filter and remove the filters for
3154  * which it returns %true.
3155  */
3156 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3157                          u32 flow_id, u16 filter_id)
3158 {
3159         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3160         struct rps_dev_flow_table *flow_table;
3161         struct rps_dev_flow *rflow;
3162         bool expire = true;
3163         int cpu;
3164
3165         rcu_read_lock();
3166         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3167         if (flow_table && flow_id <= flow_table->mask) {
3168                 rflow = &flow_table->flows[flow_id];
3169                 cpu = ACCESS_ONCE(rflow->cpu);
3170                 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3171                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3172                            rflow->last_qtail) <
3173                      (int)(10 * flow_table->mask)))
3174                         expire = false;
3175         }
3176         rcu_read_unlock();
3177         return expire;
3178 }
3179 EXPORT_SYMBOL(rps_may_expire_flow);
3180
3181 #endif /* CONFIG_RFS_ACCEL */
3182
3183 /* Called from hardirq (IPI) context */
3184 static void rps_trigger_softirq(void *data)
3185 {
3186         struct softnet_data *sd = data;
3187
3188         ____napi_schedule(sd, &sd->backlog);
3189         sd->received_rps++;
3190 }
3191
3192 #endif /* CONFIG_RPS */
3193
3194 /*
3195  * Check if this softnet_data structure is another cpu one
3196  * If yes, queue it to our IPI list and return 1
3197  * If no, return 0
3198  */
3199 static int rps_ipi_queued(struct softnet_data *sd)
3200 {
3201 #ifdef CONFIG_RPS
3202         struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3203
3204         if (sd != mysd) {
3205                 sd->rps_ipi_next = mysd->rps_ipi_list;
3206                 mysd->rps_ipi_list = sd;
3207
3208                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3209                 return 1;
3210         }
3211 #endif /* CONFIG_RPS */
3212         return 0;
3213 }
3214
3215 #ifdef CONFIG_NET_FLOW_LIMIT
3216 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3217 #endif
3218
3219 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3220 {
3221 #ifdef CONFIG_NET_FLOW_LIMIT
3222         struct sd_flow_limit *fl;
3223         struct softnet_data *sd;
3224         unsigned int old_flow, new_flow;
3225
3226         if (qlen < (netdev_max_backlog >> 1))
3227                 return false;
3228
3229         sd = &__get_cpu_var(softnet_data);
3230
3231         rcu_read_lock();
3232         fl = rcu_dereference(sd->flow_limit);
3233         if (fl) {
3234                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3235                 old_flow = fl->history[fl->history_head];
3236                 fl->history[fl->history_head] = new_flow;
3237
3238                 fl->history_head++;
3239                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3240
3241                 if (likely(fl->buckets[old_flow]))
3242                         fl->buckets[old_flow]--;
3243
3244                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3245                         fl->count++;
3246                         rcu_read_unlock();
3247                         return true;
3248                 }
3249         }
3250         rcu_read_unlock();
3251 #endif
3252         return false;
3253 }
3254
3255 /*
3256  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3257  * queue (may be a remote CPU queue).
3258  */
3259 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3260                               unsigned int *qtail)
3261 {
3262         struct softnet_data *sd;
3263         unsigned long flags;
3264         unsigned int qlen;
3265
3266         sd = &per_cpu(softnet_data, cpu);
3267
3268         local_irq_save(flags);
3269
3270         rps_lock(sd);
3271         qlen = skb_queue_len(&sd->input_pkt_queue);
3272         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3273                 if (skb_queue_len(&sd->input_pkt_queue)) {
3274 enqueue:
3275                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3276                         input_queue_tail_incr_save(sd, qtail);
3277                         rps_unlock(sd);
3278                         local_irq_restore(flags);
3279                         return NET_RX_SUCCESS;
3280                 }
3281
3282                 /* Schedule NAPI for backlog device
3283                  * We can use non atomic operation since we own the queue lock
3284                  */
3285                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3286                         if (!rps_ipi_queued(sd))
3287                                 ____napi_schedule(sd, &sd->backlog);
3288                 }
3289                 goto enqueue;
3290         }
3291
3292         sd->dropped++;
3293         rps_unlock(sd);
3294
3295         local_irq_restore(flags);
3296
3297         atomic_long_inc(&skb->dev->rx_dropped);
3298         kfree_skb(skb);
3299         return NET_RX_DROP;
3300 }
3301
3302 static int netif_rx_internal(struct sk_buff *skb)
3303 {
3304         int ret;
3305
3306         net_timestamp_check(netdev_tstamp_prequeue, skb);
3307
3308         trace_netif_rx(skb);
3309 #ifdef CONFIG_RPS
3310         if (static_key_false(&rps_needed)) {
3311                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3312                 int cpu;
3313
3314                 preempt_disable();
3315                 rcu_read_lock();
3316
3317                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3318                 if (cpu < 0)
3319                         cpu = smp_processor_id();
3320
3321                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3322
3323                 rcu_read_unlock();
3324                 preempt_enable();
3325         } else
3326 #endif
3327         {
3328                 unsigned int qtail;
3329                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3330                 put_cpu();
3331         }
3332         return ret;
3333 }
3334
3335 /**
3336  *      netif_rx        -       post buffer to the network code
3337  *      @skb: buffer to post
3338  *
3339  *      This function receives a packet from a device driver and queues it for
3340  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3341  *      may be dropped during processing for congestion control or by the
3342  *      protocol layers.
3343  *
3344  *      return values:
3345  *      NET_RX_SUCCESS  (no congestion)
3346  *      NET_RX_DROP     (packet was dropped)
3347  *
3348  */
3349
3350 int netif_rx(struct sk_buff *skb)
3351 {
3352         trace_netif_rx_entry(skb);
3353
3354         return netif_rx_internal(skb);
3355 }
3356 EXPORT_SYMBOL(netif_rx);
3357
3358 int netif_rx_ni(struct sk_buff *skb)
3359 {
3360         int err;
3361
3362         trace_netif_rx_ni_entry(skb);
3363
3364         preempt_disable();
3365         err = netif_rx_internal(skb);
3366         if (local_softirq_pending())
3367                 do_softirq();
3368         preempt_enable();
3369
3370         return err;
3371 }
3372 EXPORT_SYMBOL(netif_rx_ni);
3373
3374 static void net_tx_action(struct softirq_action *h)
3375 {
3376         struct softnet_data *sd = &__get_cpu_var(softnet_data);
3377
3378         if (sd->completion_queue) {
3379                 struct sk_buff *clist;
3380
3381                 local_irq_disable();
3382                 clist = sd->completion_queue;
3383                 sd->completion_queue = NULL;
3384                 local_irq_enable();
3385
3386                 while (clist) {
3387                         struct sk_buff *skb = clist;
3388                         clist = clist->next;
3389
3390                         WARN_ON(atomic_read(&skb->users));
3391                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3392                                 trace_consume_skb(skb);
3393                         else
3394                                 trace_kfree_skb(skb, net_tx_action);
3395                         __kfree_skb(skb);
3396                 }
3397         }
3398
3399         if (sd->output_queue) {
3400                 struct Qdisc *head;
3401
3402                 local_irq_disable();
3403                 head = sd->output_queue;
3404                 sd->output_queue = NULL;
3405                 sd->output_queue_tailp = &sd->output_queue;
3406                 local_irq_enable();
3407
3408                 while (head) {
3409                         struct Qdisc *q = head;
3410                         spinlock_t *root_lock;
3411
3412                         head = head->next_sched;
3413
3414                         root_lock = qdisc_lock(q);
3415                         if (spin_trylock(root_lock)) {
3416                                 smp_mb__before_atomic();
3417                                 clear_bit(__QDISC_STATE_SCHED,
3418                                           &q->state);
3419                                 qdisc_run(q);
3420                                 spin_unlock(root_lock);
3421                         } else {
3422                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3423                                               &q->state)) {
3424                                         __netif_reschedule(q);
3425                                 } else {
3426                                         smp_mb__before_atomic();
3427                                         clear_bit(__QDISC_STATE_SCHED,
3428                                                   &q->state);
3429                                 }
3430                         }
3431                 }
3432         }
3433 }
3434
3435 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3436     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3437 /* This hook is defined here for ATM LANE */
3438 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3439                              unsigned char *addr) __read_mostly;
3440 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3441 #endif
3442
3443 #ifdef CONFIG_NET_CLS_ACT
3444 /* TODO: Maybe we should just force sch_ingress to be compiled in
3445  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3446  * a compare and 2 stores extra right now if we dont have it on
3447  * but have CONFIG_NET_CLS_ACT
3448  * NOTE: This doesn't stop any functionality; if you dont have
3449  * the ingress scheduler, you just can't add policies on ingress.
3450  *
3451  */
3452 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3453 {
3454         struct net_device *dev = skb->dev;
3455         u32 ttl = G_TC_RTTL(skb->tc_verd);
3456         int result = TC_ACT_OK;
3457         struct Qdisc *q;
3458
3459         if (unlikely(MAX_RED_LOOP < ttl++)) {
3460                 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3461                                      skb->skb_iif, dev->ifindex);
3462                 return TC_ACT_SHOT;
3463         }
3464
3465         skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3466         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3467
3468         q = rxq->qdisc;
3469         if (q != &noop_qdisc) {
3470                 spin_lock(qdisc_lock(q));
3471                 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3472                         result = qdisc_enqueue_root(skb, q);
3473                 spin_unlock(qdisc_lock(q));
3474         }
3475
3476         return result;
3477 }
3478
3479 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3480                                          struct packet_type **pt_prev,
3481                                          int *ret, struct net_device *orig_dev)
3482 {
3483         struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3484
3485         if (!rxq || rxq->qdisc == &noop_qdisc)
3486                 goto out;
3487
3488         if (*pt_prev) {
3489                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3490                 *pt_prev = NULL;
3491         }
3492
3493         switch (ing_filter(skb, rxq)) {
3494         case TC_ACT_SHOT:
3495         case TC_ACT_STOLEN:
3496                 kfree_skb(skb);
3497                 return NULL;
3498         }
3499
3500 out:
3501         skb->tc_verd = 0;
3502         return skb;
3503 }
3504 #endif
3505
3506 /**
3507  *      netdev_rx_handler_register - register receive handler
3508  *      @dev: device to register a handler for
3509  *      @rx_handler: receive handler to register
3510  *      @rx_handler_data: data pointer that is used by rx handler
3511  *
3512  *      Register a receive handler for a device. This handler will then be
3513  *      called from __netif_receive_skb. A negative errno code is returned
3514  *      on a failure.
3515  *
3516  *      The caller must hold the rtnl_mutex.
3517  *
3518  *      For a general description of rx_handler, see enum rx_handler_result.
3519  */
3520 int netdev_rx_handler_register(struct net_device *dev,
3521                                rx_handler_func_t *rx_handler,
3522                                void *rx_handler_data)
3523 {
3524         ASSERT_RTNL();
3525
3526         if (dev->rx_handler)
3527                 return -EBUSY;
3528
3529         /* Note: rx_handler_data must be set before rx_handler */
3530         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3531         rcu_assign_pointer(dev->rx_handler, rx_handler);
3532
3533         return 0;
3534 }
3535 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3536
3537 /**
3538  *      netdev_rx_handler_unregister - unregister receive handler
3539  *      @dev: device to unregister a handler from
3540  *
3541  *      Unregister a receive handler from a device.
3542  *
3543  *      The caller must hold the rtnl_mutex.
3544  */
3545 void netdev_rx_handler_unregister(struct net_device *dev)
3546 {
3547
3548         ASSERT_RTNL();
3549         RCU_INIT_POINTER(dev->rx_handler, NULL);
3550         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3551          * section has a guarantee to see a non NULL rx_handler_data
3552          * as well.
3553          */
3554         synchronize_net();
3555         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3556 }
3557 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3558
3559 /*
3560  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3561  * the special handling of PFMEMALLOC skbs.
3562  */
3563 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3564 {
3565         switch (skb->protocol) {
3566         case htons(ETH_P_ARP):
3567         case htons(ETH_P_IP):
3568         case htons(ETH_P_IPV6):
3569         case htons(ETH_P_8021Q):
3570         case htons(ETH_P_8021AD):
3571                 return true;
3572         default:
3573                 return false;
3574         }
3575 }
3576
3577 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3578 {
3579         struct packet_type *ptype, *pt_prev;
3580         rx_handler_func_t *rx_handler;
3581         struct net_device *orig_dev;
3582         struct net_device *null_or_dev;
3583         bool deliver_exact = false;
3584         int ret = NET_RX_DROP;
3585         __be16 type;
3586
3587         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3588
3589         trace_netif_receive_skb(skb);
3590
3591         orig_dev = skb->dev;
3592
3593         skb_reset_network_header(skb);
3594         if (!skb_transport_header_was_set(skb))
3595                 skb_reset_transport_header(skb);
3596         skb_reset_mac_len(skb);
3597
3598         pt_prev = NULL;
3599
3600         rcu_read_lock();
3601
3602 another_round:
3603         skb->skb_iif = skb->dev->ifindex;
3604
3605         __this_cpu_inc(softnet_data.processed);
3606
3607         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3608             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3609                 skb = skb_vlan_untag(skb);
3610                 if (unlikely(!skb))
3611                         goto unlock;
3612         }
3613
3614 #ifdef CONFIG_NET_CLS_ACT
3615         if (skb->tc_verd & TC_NCLS) {
3616                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3617                 goto ncls;
3618         }
3619 #endif
3620
3621         if (pfmemalloc)
3622                 goto skip_taps;
3623
3624         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3625                 if (!ptype->dev || ptype->dev == skb->dev) {
3626                         if (pt_prev)
3627                                 ret = deliver_skb(skb, pt_prev, orig_dev);
3628                         pt_prev = ptype;
3629                 }
3630         }
3631
3632 skip_taps:
3633 #ifdef CONFIG_NET_CLS_ACT
3634         skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3635         if (!skb)
3636                 goto unlock;
3637 ncls:
3638 #endif
3639
3640         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3641                 goto drop;
3642
3643         if (vlan_tx_tag_present(skb)) {
3644                 if (pt_prev) {
3645                         ret = deliver_skb(skb, pt_prev, orig_dev);
3646                         pt_prev = NULL;
3647                 }
3648                 if (vlan_do_receive(&skb))
3649                         goto another_round;
3650                 else if (unlikely(!skb))
3651                         goto unlock;
3652         }
3653
3654         rx_handler = rcu_dereference(skb->dev->rx_handler);
3655         if (rx_handler) {
3656                 if (pt_prev) {
3657                         ret = deliver_skb(skb, pt_prev, orig_dev);
3658                         pt_prev = NULL;
3659                 }
3660                 switch (rx_handler(&skb)) {
3661                 case RX_HANDLER_CONSUMED:
3662                         ret = NET_RX_SUCCESS;
3663                         goto unlock;
3664                 case RX_HANDLER_ANOTHER:
3665                         goto another_round;
3666                 case RX_HANDLER_EXACT:
3667                         deliver_exact = true;
3668                 case RX_HANDLER_PASS:
3669                         break;
3670                 default:
3671                         BUG();
3672                 }
3673         }
3674
3675         if (unlikely(vlan_tx_tag_present(skb))) {
3676                 if (vlan_tx_tag_get_id(skb))
3677                         skb->pkt_type = PACKET_OTHERHOST;
3678                 /* Note: we might in the future use prio bits
3679                  * and set skb->priority like in vlan_do_receive()
3680                  * For the time being, just ignore Priority Code Point
3681                  */
3682                 skb->vlan_tci = 0;
3683         }
3684
3685         /* deliver only exact match when indicated */
3686         null_or_dev = deliver_exact ? skb->dev : NULL;
3687
3688         type = skb->protocol;
3689         list_for_each_entry_rcu(ptype,
3690                         &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3691                 if (ptype->type == type &&
3692                     (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3693                      ptype->dev == orig_dev)) {
3694                         if (pt_prev)
3695                                 ret = deliver_skb(skb, pt_prev, orig_dev);
3696                         pt_prev = ptype;
3697                 }
3698         }
3699
3700         if (pt_prev) {
3701                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3702                         goto drop;
3703                 else
3704                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3705         } else {
3706 drop:
3707                 atomic_long_inc(&skb->dev->rx_dropped);
3708                 kfree_skb(skb);
3709                 /* Jamal, now you will not able to escape explaining
3710                  * me how you were going to use this. :-)
3711                  */
3712                 ret = NET_RX_DROP;
3713         }
3714
3715 unlock:
3716         rcu_read_unlock();
3717         return ret;
3718 }
3719
3720 static int __netif_receive_skb(struct sk_buff *skb)
3721 {
3722         int ret;
3723
3724         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3725                 unsigned long pflags = current->flags;
3726
3727                 /*
3728                  * PFMEMALLOC skbs are special, they should
3729                  * - be delivered to SOCK_MEMALLOC sockets only
3730                  * - stay away from userspace
3731                  * - have bounded memory usage
3732                  *
3733                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3734                  * context down to all allocation sites.
3735                  */
3736                 current->flags |= PF_MEMALLOC;
3737                 ret = __netif_receive_skb_core(skb, true);
3738                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3739         } else
3740                 ret = __netif_receive_skb_core(skb, false);
3741
3742         return ret;
3743 }
3744
3745 static int netif_receive_skb_internal(struct sk_buff *skb)
3746 {
3747         net_timestamp_check(netdev_tstamp_prequeue, skb);
3748
3749         if (skb_defer_rx_timestamp(skb))
3750                 return NET_RX_SUCCESS;
3751
3752 #ifdef CONFIG_RPS
3753         if (static_key_false(&rps_needed)) {
3754                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3755                 int cpu, ret;
3756
3757                 rcu_read_lock();
3758
3759                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3760
3761                 if (cpu >= 0) {
3762                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3763                         rcu_read_unlock();
3764                         return ret;
3765                 }
3766                 rcu_read_unlock();
3767         }
3768 #endif
3769         return __netif_receive_skb(skb);
3770 }
3771
3772 /**
3773  *      netif_receive_skb - process receive buffer from network
3774  *      @skb: buffer to process
3775  *
3776  *      netif_receive_skb() is the main receive data processing function.
3777  *      It always succeeds. The buffer may be dropped during processing
3778  *      for congestion control or by the protocol layers.
3779  *
3780  *      This function may only be called from softirq context and interrupts
3781  *      should be enabled.
3782  *
3783  *      Return values (usually ignored):
3784  *      NET_RX_SUCCESS: no congestion
3785  *      NET_RX_DROP: packet was dropped
3786  */
3787 int netif_receive_skb(struct sk_buff *skb)
3788 {
3789         trace_netif_receive_skb_entry(skb);
3790
3791         return netif_receive_skb_internal(skb);
3792 }
3793 EXPORT_SYMBOL(netif_receive_skb);
3794
3795 /* Network device is going away, flush any packets still pending
3796  * Called with irqs disabled.
3797  */
3798 static void flush_backlog(void *arg)
3799 {
3800         struct net_device *dev = arg;
3801         struct softnet_data *sd = &__get_cpu_var(softnet_data);
3802         struct sk_buff *skb, *tmp;
3803
3804         rps_lock(sd);
3805         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3806                 if (skb->dev == dev) {
3807                         __skb_unlink(skb, &sd->input_pkt_queue);
3808                         kfree_skb(skb);
3809                         input_queue_head_incr(sd);
3810                 }
3811         }
3812         rps_unlock(sd);
3813
3814         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3815                 if (skb->dev == dev) {
3816                         __skb_unlink(skb, &sd->process_queue);
3817                         kfree_skb(skb);
3818                         input_queue_head_incr(sd);
3819                 }
3820         }
3821 }
3822
3823 static int napi_gro_complete(struct sk_buff *skb)
3824 {
3825         struct packet_offload *ptype;
3826         __be16 type = skb->protocol;
3827         struct list_head *head = &offload_base;
3828         int err = -ENOENT;
3829
3830         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3831
3832         if (NAPI_GRO_CB(skb)->count == 1) {
3833                 skb_shinfo(skb)->gso_size = 0;
3834                 goto out;
3835         }
3836
3837         rcu_read_lock();
3838         list_for_each_entry_rcu(ptype, head, list) {
3839                 if (ptype->type != type || !ptype->callbacks.gro_complete)
3840                         continue;
3841
3842                 err = ptype->callbacks.gro_complete(skb, 0);
3843                 break;
3844         }
3845         rcu_read_unlock();
3846
3847         if (err) {
3848                 WARN_ON(&ptype->list == head);
3849                 kfree_skb(skb);
3850                 return NET_RX_SUCCESS;
3851         }
3852
3853 out:
3854         return netif_receive_skb_internal(skb);
3855 }
3856
3857 /* napi->gro_list contains packets ordered by age.
3858  * youngest packets at the head of it.
3859  * Complete skbs in reverse order to reduce latencies.
3860  */
3861 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3862 {
3863         struct sk_buff *skb, *prev = NULL;
3864
3865         /* scan list and build reverse chain */
3866         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3867                 skb->prev = prev;
3868                 prev = skb;
3869         }
3870
3871         for (skb = prev; skb; skb = prev) {
3872                 skb->next = NULL;
3873
3874                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3875                         return;
3876
3877                 prev = skb->prev;
3878                 napi_gro_complete(skb);
3879                 napi->gro_count--;
3880         }
3881
3882         napi->gro_list = NULL;
3883 }
3884 EXPORT_SYMBOL(napi_gro_flush);
3885
3886 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3887 {
3888         struct sk_buff *p;
3889         unsigned int maclen = skb->dev->hard_header_len;
3890         u32 hash = skb_get_hash_raw(skb);
3891
3892         for (p = napi->gro_list; p; p = p->next) {
3893                 unsigned long diffs;
3894
3895                 NAPI_GRO_CB(p)->flush = 0;
3896
3897                 if (hash != skb_get_hash_raw(p)) {
3898                         NAPI_GRO_CB(p)->same_flow = 0;
3899                         continue;
3900                 }
3901
3902                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3903                 diffs |= p->vlan_tci ^ skb->vlan_tci;
3904                 if (maclen == ETH_HLEN)
3905                         diffs |= compare_ether_header(skb_mac_header(p),
3906                                                       skb_mac_header(skb));
3907                 else if (!diffs)
3908                         diffs = memcmp(skb_mac_header(p),
3909                                        skb_mac_header(skb),
3910                                        maclen);
3911                 NAPI_GRO_CB(p)->same_flow = !diffs;
3912         }
3913 }
3914
3915 static void skb_gro_reset_offset(struct sk_buff *skb)
3916 {
3917         const struct skb_shared_info *pinfo = skb_shinfo(skb);
3918         const skb_frag_t *frag0 = &pinfo->frags[0];
3919
3920         NAPI_GRO_CB(skb)->data_offset = 0;
3921         NAPI_GRO_CB(skb)->frag0 = NULL;
3922         NAPI_GRO_CB(skb)->frag0_len = 0;
3923
3924         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3925             pinfo->nr_frags &&
3926             !PageHighMem(skb_frag_page(frag0))) {
3927                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3928                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3929         }
3930 }
3931
3932 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3933 {
3934         struct skb_shared_info *pinfo = skb_shinfo(skb);
3935
3936         BUG_ON(skb->end - skb->tail < grow);
3937
3938         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3939
3940         skb->data_len -= grow;
3941         skb->tail += grow;
3942
3943         pinfo->frags[0].page_offset += grow;
3944         skb_frag_size_sub(&pinfo->frags[0], grow);
3945
3946         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3947                 skb_frag_unref(skb, 0);
3948                 memmove(pinfo->frags, pinfo->frags + 1,
3949                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3950         }
3951 }
3952
3953 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3954 {
3955         struct sk_buff **pp = NULL;
3956         struct packet_offload *ptype;
3957         __be16 type = skb->protocol;
3958         struct list_head *head = &offload_base;
3959         int same_flow;
3960         enum gro_result ret;
3961         int grow;
3962
3963         if (!(skb->dev->features & NETIF_F_GRO))
3964                 goto normal;
3965
3966         if (skb_is_gso(skb) || skb_has_frag_list(skb))
3967                 goto normal;
3968
3969         gro_list_prepare(napi, skb);
3970         NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3971
3972         rcu_read_lock();
3973         list_for_each_entry_rcu(ptype, head, list) {
3974                 if (ptype->type != type || !ptype->callbacks.gro_receive)
3975                         continue;
3976
3977                 skb_set_network_header(skb, skb_gro_offset(skb));
3978                 skb_reset_mac_len(skb);
3979                 NAPI_GRO_CB(skb)->same_flow = 0;
3980                 NAPI_GRO_CB(skb)->flush = 0;
3981                 NAPI_GRO_CB(skb)->free = 0;
3982                 NAPI_GRO_CB(skb)->udp_mark = 0;
3983
3984                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3985                 break;
3986         }
3987         rcu_read_unlock();
3988
3989         if (&ptype->list == head)
3990                 goto normal;
3991
3992         same_flow = NAPI_GRO_CB(skb)->same_flow;
3993         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3994
3995         if (pp) {
3996                 struct sk_buff *nskb = *pp;
3997
3998                 *pp = nskb->next;
3999                 nskb->next = NULL;
4000                 napi_gro_complete(nskb);
4001                 napi->gro_count--;
4002         }
4003
4004         if (same_flow)
4005                 goto ok;
4006
4007         if (NAPI_GRO_CB(skb)->flush)
4008                 goto normal;
4009
4010         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4011                 struct sk_buff *nskb = napi->gro_list;
4012
4013                 /* locate the end of the list to select the 'oldest' flow */
4014                 while (nskb->next) {
4015                         pp = &nskb->next;
4016                         nskb = *pp;
4017                 }
4018                 *pp = NULL;
4019                 nskb->next = NULL;
4020                 napi_gro_complete(nskb);
4021         } else {
4022                 napi->gro_count++;
4023         }
4024         NAPI_GRO_CB(skb)->count = 1;
4025         NAPI_GRO_CB(skb)->age = jiffies;
4026         NAPI_GRO_CB(skb)->last = skb;
4027         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4028         skb->next = napi->gro_list;
4029         napi->gro_list = skb;
4030         ret = GRO_HELD;
4031
4032 pull:
4033         grow = skb_gro_offset(skb) - skb_headlen(skb);
4034         if (grow > 0)
4035                 gro_pull_from_frag0(skb, grow);
4036 ok:
4037         return ret;
4038
4039 normal:
4040         ret = GRO_NORMAL;
4041         goto pull;
4042 }
4043
4044 struct packet_offload *gro_find_receive_by_type(__be16 type)
4045 {
4046         struct list_head *offload_head = &offload_base;
4047         struct packet_offload *ptype;
4048
4049         list_for_each_entry_rcu(ptype, offload_head, list) {
4050                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4051                         continue;
4052                 return ptype;
4053         }
4054         return NULL;
4055 }
4056 EXPORT_SYMBOL(gro_find_receive_by_type);
4057
4058 struct packet_offload *gro_find_complete_by_type(__be16 type)
4059 {
4060         struct list_head *offload_head = &offload_base;
4061         struct packet_offload *ptype;
4062
4063         list_for_each_entry_rcu(ptype, offload_head, list) {
4064                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4065                         continue;
4066                 return ptype;
4067         }
4068         return NULL;
4069 }
4070 EXPORT_SYMBOL(gro_find_complete_by_type);
4071
4072 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4073 {
4074         switch (ret) {
4075         case GRO_NORMAL:
4076                 if (netif_receive_skb_internal(skb))
4077                         ret = GRO_DROP;
4078                 break;
4079
4080         case GRO_DROP:
4081                 kfree_skb(skb);
4082                 break;
4083
4084         case GRO_MERGED_FREE:
4085                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4086                         kmem_cache_free(skbuff_head_cache, skb);
4087                 else
4088                         __kfree_skb(skb);
4089                 break;
4090
4091         case GRO_HELD:
4092         case GRO_MERGED:
4093                 break;
4094         }
4095
4096         return ret;
4097 }
4098
4099 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4100 {
4101         trace_napi_gro_receive_entry(skb);
4102
4103         skb_gro_reset_offset(skb);
4104
4105         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4106 }
4107 EXPORT_SYMBOL(napi_gro_receive);
4108
4109 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4110 {
4111         __skb_pull(skb, skb_headlen(skb));
4112         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4113         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4114         skb->vlan_tci = 0;
4115         skb->dev = napi->dev;
4116         skb->skb_iif = 0;
4117         skb->encapsulation = 0;
4118         skb_shinfo(skb)->gso_type = 0;
4119         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4120
4121         napi->skb = skb;
4122 }
4123
4124 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4125 {
4126         struct sk_buff *skb = napi->skb;
4127
4128         if (!skb) {
4129                 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4130                 napi->skb = skb;
4131         }
4132         return skb;
4133 }
4134 EXPORT_SYMBOL(napi_get_frags);
4135
4136 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4137                                       struct sk_buff *skb,
4138                                       gro_result_t ret)
4139 {
4140         switch (ret) {
4141         case GRO_NORMAL:
4142         case GRO_HELD:
4143                 __skb_push(skb, ETH_HLEN);
4144                 skb->protocol = eth_type_trans(skb, skb->dev);
4145                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4146                         ret = GRO_DROP;
4147                 break;
4148
4149         case GRO_DROP:
4150         case GRO_MERGED_FREE:
4151                 napi_reuse_skb(napi, skb);
4152                 break;
4153
4154         case GRO_MERGED:
4155                 break;
4156         }
4157
4158         return ret;
4159 }
4160
4161 /* Upper GRO stack assumes network header starts at gro_offset=0
4162  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4163  * We copy ethernet header into skb->data to have a common layout.
4164  */
4165 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4166 {
4167         struct sk_buff *skb = napi->skb;
4168         const struct ethhdr *eth;
4169         unsigned int hlen = sizeof(*eth);
4170
4171         napi->skb = NULL;
4172
4173         skb_reset_mac_header(skb);
4174         skb_gro_reset_offset(skb);
4175
4176         eth = skb_gro_header_fast(skb, 0);
4177         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4178                 eth = skb_gro_header_slow(skb, hlen, 0);
4179                 if (unlikely(!eth)) {
4180                         napi_reuse_skb(napi, skb);
4181                         return NULL;
4182                 }
4183         } else {
4184                 gro_pull_from_frag0(skb, hlen);
4185                 NAPI_GRO_CB(skb)->frag0 += hlen;
4186                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4187         }
4188         __skb_pull(skb, hlen);
4189
4190         /*
4191          * This works because the only protocols we care about don't require
4192          * special handling.
4193          * We'll fix it up properly in napi_frags_finish()
4194          */
4195         skb->protocol = eth->h_proto;
4196
4197         return skb;
4198 }
4199
4200 gro_result_t napi_gro_frags(struct napi_struct *napi)
4201 {
4202         struct sk_buff *skb = napi_frags_skb(napi);
4203
4204         if (!skb)
4205                 return GRO_DROP;
4206
4207         trace_napi_gro_frags_entry(skb);
4208
4209         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4210 }
4211 EXPORT_SYMBOL(napi_gro_frags);
4212
4213 /*
4214  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4215  * Note: called with local irq disabled, but exits with local irq enabled.
4216  */
4217 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4218 {
4219 #ifdef CONFIG_RPS
4220         struct softnet_data *remsd = sd->rps_ipi_list;
4221
4222         if (remsd) {
4223                 sd->rps_ipi_list = NULL;
4224
4225                 local_irq_enable();
4226
4227                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4228                 while (remsd) {
4229                         struct softnet_data *next = remsd->rps_ipi_next;
4230
4231                         if (cpu_online(remsd->cpu))
4232                                 smp_call_function_single_async(remsd->cpu,
4233                                                            &remsd->csd);
4234                         remsd = next;
4235                 }
4236         } else
4237 #endif
4238                 local_irq_enable();
4239 }
4240
4241 static int process_backlog(struct napi_struct *napi, int quota)
4242 {
4243         int work = 0;
4244         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4245
4246 #ifdef CONFIG_RPS
4247         /* Check if we have pending ipi, its better to send them now,
4248          * not waiting net_rx_action() end.
4249          */
4250         if (sd->rps_ipi_list) {
4251                 local_irq_disable();
4252                 net_rps_action_and_irq_enable(sd);
4253         }
4254 #endif
4255         napi->weight = weight_p;
4256         local_irq_disable();
4257         while (1) {
4258                 struct sk_buff *skb;
4259
4260                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4261                         local_irq_enable();
4262                         __netif_receive_skb(skb);
4263                         local_irq_disable();
4264                         input_queue_head_incr(sd);
4265                         if (++work >= quota) {
4266                                 local_irq_enable();
4267                                 return work;
4268                         }
4269                 }
4270
4271                 rps_lock(sd);
4272                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4273                         /*
4274                          * Inline a custom version of __napi_complete().
4275                          * only current cpu owns and manipulates this napi,
4276                          * and NAPI_STATE_SCHED is the only possible flag set
4277                          * on backlog.
4278                          * We can use a plain write instead of clear_bit(),
4279                          * and we dont need an smp_mb() memory barrier.
4280                          */
4281                         list_del(&napi->poll_list);
4282                         napi->state = 0;
4283                         rps_unlock(sd);
4284
4285                         break;
4286                 }
4287
4288                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4289                                            &sd->process_queue);
4290                 rps_unlock(sd);
4291         }
4292         local_irq_enable();
4293
4294         return work;
4295 }
4296
4297 /**
4298  * __napi_schedule - schedule for receive
4299  * @n: entry to schedule
4300  *
4301  * The entry's receive function will be scheduled to run
4302  */
4303 void __napi_schedule(struct napi_struct *n)
4304 {
4305         unsigned long flags;
4306
4307         local_irq_save(flags);
4308         ____napi_schedule(&__get_cpu_var(softnet_data), n);
4309         local_irq_restore(flags);
4310 }
4311 EXPORT_SYMBOL(__napi_schedule);
4312
4313 void __napi_complete(struct napi_struct *n)
4314 {
4315         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4316         BUG_ON(n->gro_list);
4317
4318         list_del(&n->poll_list);
4319         smp_mb__before_atomic();
4320         clear_bit(NAPI_STATE_SCHED, &n->state);
4321 }
4322 EXPORT_SYMBOL(__napi_complete);
4323
4324 void napi_complete(struct napi_struct *n)
4325 {
4326         unsigned long flags;
4327
4328         /*
4329          * don't let napi dequeue from the cpu poll list
4330          * just in case its running on a different cpu
4331          */
4332         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4333                 return;
4334
4335         napi_gro_flush(n, false);
4336         local_irq_save(flags);
4337         __napi_complete(n);
4338         local_irq_restore(flags);
4339 }
4340 EXPORT_SYMBOL(napi_complete);
4341
4342 /* must be called under rcu_read_lock(), as we dont take a reference */
4343 struct napi_struct *napi_by_id(unsigned int napi_id)
4344 {
4345         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4346         struct napi_struct *napi;
4347
4348         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4349                 if (napi->napi_id == napi_id)
4350                         return napi;
4351
4352         return NULL;
4353 }
4354 EXPORT_SYMBOL_GPL(napi_by_id);
4355
4356 void napi_hash_add(struct napi_struct *napi)
4357 {
4358         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4359
4360                 spin_lock(&napi_hash_lock);
4361
4362                 /* 0 is not a valid id, we also skip an id that is taken
4363                  * we expect both events to be extremely rare
4364                  */
4365                 napi->napi_id = 0;
4366                 while (!napi->napi_id) {
4367                         napi->napi_id = ++napi_gen_id;
4368                         if (napi_by_id(napi->napi_id))
4369                                 napi->napi_id = 0;
4370                 }
4371
4372                 hlist_add_head_rcu(&napi->napi_hash_node,
4373                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4374
4375                 spin_unlock(&napi_hash_lock);
4376         }
4377 }
4378 EXPORT_SYMBOL_GPL(napi_hash_add);
4379
4380 /* Warning : caller is responsible to make sure rcu grace period
4381  * is respected before freeing memory containing @napi
4382  */
4383 void napi_hash_del(struct napi_struct *napi)
4384 {
4385         spin_lock(&napi_hash_lock);
4386
4387         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4388                 hlist_del_rcu(&napi->napi_hash_node);
4389
4390         spin_unlock(&napi_hash_lock);
4391 }
4392 EXPORT_SYMBOL_GPL(napi_hash_del);
4393
4394 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4395                     int (*poll)(struct napi_struct *, int), int weight)
4396 {
4397         INIT_LIST_HEAD(&napi->poll_list);
4398         napi->gro_count = 0;
4399         napi->gro_list = NULL;
4400         napi->skb = NULL;
4401         napi->poll = poll;
4402         if (weight > NAPI_POLL_WEIGHT)
4403                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4404                             weight, dev->name);
4405         napi->weight = weight;
4406         list_add(&napi->dev_list, &dev->napi_list);
4407         napi->dev = dev;
4408 #ifdef CONFIG_NETPOLL
4409         spin_lock_init(&napi->poll_lock);
4410         napi->poll_owner = -1;
4411 #endif
4412         set_bit(NAPI_STATE_SCHED, &napi->state);
4413 }
4414 EXPORT_SYMBOL(netif_napi_add);
4415
4416 void netif_napi_del(struct napi_struct *napi)
4417 {
4418         list_del_init(&napi->dev_list);
4419         napi_free_frags(napi);
4420
4421         kfree_skb_list(napi->gro_list);
4422         napi->gro_list = NULL;
4423         napi->gro_count = 0;
4424 }
4425 EXPORT_SYMBOL(netif_napi_del);
4426
4427 static void net_rx_action(struct softirq_action *h)
4428 {
4429         struct softnet_data *sd = &__get_cpu_var(softnet_data);
4430         unsigned long time_limit = jiffies + 2;
4431         int budget = netdev_budget;
4432         void *have;
4433
4434         local_irq_disable();
4435
4436         while (!list_empty(&sd->poll_list)) {
4437                 struct napi_struct *n;
4438                 int work, weight;
4439
4440                 /* If softirq window is exhuasted then punt.
4441                  * Allow this to run for 2 jiffies since which will allow
4442                  * an average latency of 1.5/HZ.
4443                  */
4444                 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4445                         goto softnet_break;
4446
4447                 local_irq_enable();
4448
4449                 /* Even though interrupts have been re-enabled, this
4450                  * access is safe because interrupts can only add new
4451                  * entries to the tail of this list, and only ->poll()
4452                  * calls can remove this head entry from the list.
4453                  */
4454                 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4455
4456                 have = netpoll_poll_lock(n);
4457
4458                 weight = n->weight;
4459
4460                 /* This NAPI_STATE_SCHED test is for avoiding a race
4461                  * with netpoll's poll_napi().  Only the entity which
4462                  * obtains the lock and sees NAPI_STATE_SCHED set will
4463                  * actually make the ->poll() call.  Therefore we avoid
4464                  * accidentally calling ->poll() when NAPI is not scheduled.
4465                  */
4466                 work = 0;
4467                 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4468                         work = n->poll(n, weight);
4469                         trace_napi_poll(n);
4470                 }
4471
4472                 WARN_ON_ONCE(work > weight);
4473
4474                 budget -= work;
4475
4476                 local_irq_disable();
4477
4478                 /* Drivers must not modify the NAPI state if they
4479                  * consume the entire weight.  In such cases this code
4480                  * still "owns" the NAPI instance and therefore can
4481                  * move the instance around on the list at-will.
4482                  */
4483                 if (unlikely(work == weight)) {
4484                         if (unlikely(napi_disable_pending(n))) {
4485                                 local_irq_enable();
4486                                 napi_complete(n);
4487                                 local_irq_disable();
4488                         } else {
4489                                 if (n->gro_list) {
4490                                         /* flush too old packets
4491                                          * If HZ < 1000, flush all packets.
4492                                          */
4493                                         local_irq_enable();
4494                                         napi_gro_flush(n, HZ >= 1000);
4495                                         local_irq_disable();
4496                                 }
4497                                 list_move_tail(&n->poll_list, &sd->poll_list);
4498                         }
4499                 }
4500
4501                 netpoll_poll_unlock(have);
4502         }
4503 out:
4504         net_rps_action_and_irq_enable(sd);
4505
4506         return;
4507
4508 softnet_break:
4509         sd->time_squeeze++;
4510         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4511         goto out;
4512 }
4513
4514 struct netdev_adjacent {
4515         struct net_device *dev;
4516
4517         /* upper master flag, there can only be one master device per list */
4518         bool master;
4519
4520         /* counter for the number of times this device was added to us */
4521         u16 ref_nr;
4522
4523         /* private field for the users */
4524         void *private;
4525
4526         struct list_head list;
4527         struct rcu_head rcu;
4528 };
4529
4530 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4531                                                  struct net_device *adj_dev,
4532                                                  struct list_head *adj_list)
4533 {
4534         struct netdev_adjacent *adj;
4535
4536         list_for_each_entry(adj, adj_list, list) {
4537                 if (adj->dev == adj_dev)
4538                         return adj;
4539         }
4540         return NULL;
4541 }
4542
4543 /**
4544  * netdev_has_upper_dev - Check if device is linked to an upper device
4545  * @dev: device
4546  * @upper_dev: upper device to check
4547  *
4548  * Find out if a device is linked to specified upper device and return true
4549  * in case it is. Note that this checks only immediate upper device,
4550  * not through a complete stack of devices. The caller must hold the RTNL lock.
4551  */
4552 bool netdev_has_upper_dev(struct net_device *dev,
4553                           struct net_device *upper_dev)
4554 {
4555         ASSERT_RTNL();
4556
4557         return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4558 }
4559 EXPORT_SYMBOL(netdev_has_upper_dev);
4560
4561 /**
4562  * netdev_has_any_upper_dev - Check if device is linked to some device
4563  * @dev: device
4564  *
4565  * Find out if a device is linked to an upper device and return true in case
4566  * it is. The caller must hold the RTNL lock.
4567  */
4568 static bool netdev_has_any_upper_dev(struct net_device *dev)
4569 {
4570         ASSERT_RTNL();
4571
4572         return !list_empty(&dev->all_adj_list.upper);
4573 }
4574
4575 /**
4576  * netdev_master_upper_dev_get - Get master upper device
4577  * @dev: device
4578  *
4579  * Find a master upper device and return pointer to it or NULL in case
4580  * it's not there. The caller must hold the RTNL lock.
4581  */
4582 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4583 {
4584         struct netdev_adjacent *upper;
4585
4586         ASSERT_RTNL();
4587
4588         if (list_empty(&dev->adj_list.upper))
4589                 return NULL;
4590
4591         upper = list_first_entry(&dev->adj_list.upper,
4592                                  struct netdev_adjacent, list);
4593         if (likely(upper->master))
4594                 return upper->dev;
4595         return NULL;
4596 }
4597 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4598
4599 void *netdev_adjacent_get_private(struct list_head *adj_list)
4600 {
4601         struct netdev_adjacent *adj;
4602
4603         adj = list_entry(adj_list, struct netdev_adjacent, list);
4604
4605         return adj->private;
4606 }
4607 EXPORT_SYMBOL(netdev_adjacent_get_private);
4608
4609 /**
4610  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4611  * @dev: device
4612  * @iter: list_head ** of the current position
4613  *
4614  * Gets the next device from the dev's upper list, starting from iter
4615  * position. The caller must hold RCU read lock.
4616  */
4617 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4618                                                  struct list_head **iter)
4619 {
4620         struct netdev_adjacent *upper;
4621
4622         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4623
4624         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4625
4626         if (&upper->list == &dev->adj_list.upper)
4627                 return NULL;
4628
4629         *iter = &upper->list;
4630
4631         return upper->dev;
4632 }
4633 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4634
4635 /**
4636  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4637  * @dev: device
4638  * @iter: list_head ** of the current position
4639  *
4640  * Gets the next device from the dev's upper list, starting from iter
4641  * position. The caller must hold RCU read lock.
4642  */
4643 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4644                                                      struct list_head **iter)
4645 {
4646         struct netdev_adjacent *upper;
4647
4648         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4649
4650         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4651
4652         if (&upper->list == &dev->all_adj_list.upper)
4653                 return NULL;
4654
4655         *iter = &upper->list;
4656
4657         return upper->dev;
4658 }
4659 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4660
4661 /**
4662  * netdev_lower_get_next_private - Get the next ->private from the
4663  *                                 lower neighbour list
4664  * @dev: device
4665  * @iter: list_head ** of the current position
4666  *
4667  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4668  * list, starting from iter position. The caller must hold either hold the
4669  * RTNL lock or its own locking that guarantees that the neighbour lower
4670  * list will remain unchainged.
4671  */
4672 void *netdev_lower_get_next_private(struct net_device *dev,
4673                                     struct list_head **iter)
4674 {
4675         struct netdev_adjacent *lower;
4676
4677         lower = list_entry(*iter, struct netdev_adjacent, list);
4678
4679         if (&lower->list == &dev->adj_list.lower)
4680                 return NULL;
4681
4682         *iter = lower->list.next;
4683
4684         return lower->private;
4685 }
4686 EXPORT_SYMBOL(netdev_lower_get_next_private);
4687
4688 /**
4689  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4690  *                                     lower neighbour list, RCU
4691  *                                     variant
4692  * @dev: device
4693  * @iter: list_head ** of the current position
4694  *
4695  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4696  * list, starting from iter position. The caller must hold RCU read lock.
4697  */
4698 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4699                                         struct list_head **iter)
4700 {
4701         struct netdev_adjacent *lower;
4702
4703         WARN_ON_ONCE(!rcu_read_lock_held());
4704
4705         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4706
4707         if (&lower->list == &dev->adj_list.lower)
4708                 return NULL;
4709
4710         *iter = &lower->list;
4711
4712         return lower->private;
4713 }
4714 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4715
4716 /**
4717  * netdev_lower_get_next - Get the next device from the lower neighbour
4718  *                         list
4719  * @dev: device
4720  * @iter: list_head ** of the current position
4721  *
4722  * Gets the next netdev_adjacent from the dev's lower neighbour
4723  * list, starting from iter position. The caller must hold RTNL lock or
4724  * its own locking that guarantees that the neighbour lower
4725  * list will remain unchainged.
4726  */
4727 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4728 {
4729         struct netdev_adjacent *lower;
4730
4731         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4732
4733         if (&lower->list == &dev->adj_list.lower)
4734                 return NULL;
4735
4736         *iter = &lower->list;
4737
4738         return lower->dev;
4739 }
4740 EXPORT_SYMBOL(netdev_lower_get_next);
4741
4742 /**
4743  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4744  *                                     lower neighbour list, RCU
4745  *                                     variant
4746  * @dev: device
4747  *
4748  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4749  * list. The caller must hold RCU read lock.
4750  */
4751 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4752 {
4753         struct netdev_adjacent *lower;
4754
4755         lower = list_first_or_null_rcu(&dev->adj_list.lower,
4756                         struct netdev_adjacent, list);
4757         if (lower)
4758                 return lower->private;
4759         return NULL;
4760 }
4761 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4762
4763 /**
4764  * netdev_master_upper_dev_get_rcu - Get master upper device
4765  * @dev: device
4766  *
4767  * Find a master upper device and return pointer to it or NULL in case
4768  * it's not there. The caller must hold the RCU read lock.
4769  */
4770 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4771 {
4772         struct netdev_adjacent *upper;
4773
4774         upper = list_first_or_null_rcu(&dev->adj_list.upper,
4775                                        struct netdev_adjacent, list);
4776         if (upper && likely(upper->master))
4777                 return upper->dev;
4778         return NULL;
4779 }
4780 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4781
4782 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4783                               struct net_device *adj_dev,
4784                               struct list_head *dev_list)
4785 {
4786         char linkname[IFNAMSIZ+7];
4787         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4788                 "upper_%s" : "lower_%s", adj_dev->name);
4789         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4790                                  linkname);
4791 }
4792 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4793                                char *name,
4794                                struct list_head *dev_list)
4795 {
4796         char linkname[IFNAMSIZ+7];
4797         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4798                 "upper_%s" : "lower_%s", name);
4799         sysfs_remove_link(&(dev->dev.kobj), linkname);
4800 }
4801
4802 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4803                                                  struct net_device *adj_dev,
4804                                                  struct list_head *dev_list)
4805 {
4806         return (dev_list == &dev->adj_list.upper ||
4807                 dev_list == &dev->adj_list.lower) &&
4808                 net_eq(dev_net(dev), dev_net(adj_dev));
4809 }
4810
4811 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4812                                         struct net_device *adj_dev,
4813                                         struct list_head *dev_list,
4814                                         void *private, bool master)
4815 {
4816         struct netdev_adjacent *adj;
4817         int ret;
4818
4819         adj = __netdev_find_adj(dev, adj_dev, dev_list);
4820
4821         if (adj) {
4822                 adj->ref_nr++;
4823                 return 0;
4824         }
4825
4826         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4827         if (!adj)
4828                 return -ENOMEM;
4829
4830         adj->dev = adj_dev;
4831         adj->master = master;
4832         adj->ref_nr = 1;
4833         adj->private = private;
4834         dev_hold(adj_dev);
4835
4836         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4837                  adj_dev->name, dev->name, adj_dev->name);
4838
4839         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
4840                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4841                 if (ret)
4842                         goto free_adj;
4843         }
4844
4845         /* Ensure that master link is always the first item in list. */
4846         if (master) {
4847                 ret = sysfs_create_link(&(dev->dev.kobj),
4848                                         &(adj_dev->dev.kobj), "master");
4849                 if (ret)
4850                         goto remove_symlinks;
4851
4852                 list_add_rcu(&adj->list, dev_list);
4853         } else {
4854                 list_add_tail_rcu(&adj->list, dev_list);
4855         }
4856
4857         return 0;
4858
4859 remove_symlinks:
4860         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4861                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4862 free_adj:
4863         kfree(adj);
4864         dev_put(adj_dev);
4865
4866         return ret;
4867 }
4868
4869 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4870                                          struct net_device *adj_dev,
4871                                          struct list_head *dev_list)
4872 {
4873         struct netdev_adjacent *adj;
4874
4875         adj = __netdev_find_adj(dev, adj_dev, dev_list);
4876
4877         if (!adj) {
4878                 pr_err("tried to remove device %s from %s\n",
4879                        dev->name, adj_dev->name);
4880                 BUG();
4881         }
4882
4883         if (adj->ref_nr > 1) {
4884                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4885                          adj->ref_nr-1);
4886                 adj->ref_nr--;
4887                 return;
4888         }
4889
4890         if (adj->master)
4891                 sysfs_remove_link(&(dev->dev.kobj), "master");
4892
4893         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4894                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4895
4896         list_del_rcu(&adj->list);
4897         pr_debug("dev_put for %s, because link removed from %s to %s\n",
4898                  adj_dev->name, dev->name, adj_dev->name);
4899         dev_put(adj_dev);
4900         kfree_rcu(adj, rcu);
4901 }
4902
4903 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4904                                             struct net_device *upper_dev,
4905                                             struct list_head *up_list,
4906                                             struct list_head *down_list,
4907                                             void *private, bool master)
4908 {
4909         int ret;
4910
4911         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4912                                            master);
4913         if (ret)
4914                 return ret;
4915
4916         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4917                                            false);
4918         if (ret) {
4919                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4920                 return ret;
4921         }
4922
4923         return 0;
4924 }
4925
4926 static int __netdev_adjacent_dev_link(struct net_device *dev,
4927                                       struct net_device *upper_dev)
4928 {
4929         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4930                                                 &dev->all_adj_list.upper,
4931                                                 &upper_dev->all_adj_list.lower,
4932                                                 NULL, false);
4933 }
4934
4935 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4936                                                struct net_device *upper_dev,
4937                                                struct list_head *up_list,
4938                                                struct list_head *down_list)
4939 {
4940         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4941         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4942 }
4943
4944 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4945                                          struct net_device *upper_dev)
4946 {
4947         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4948                                            &dev->all_adj_list.upper,
4949                                            &upper_dev->all_adj_list.lower);
4950 }
4951
4952 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4953                                                 struct net_device *upper_dev,
4954                                                 void *private, bool master)
4955 {
4956         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4957
4958         if (ret)
4959                 return ret;
4960
4961         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4962                                                &dev->adj_list.upper,
4963                                                &upper_dev->adj_list.lower,
4964                                                private, master);
4965         if (ret) {
4966                 __netdev_adjacent_dev_unlink(dev, upper_dev);
4967                 return ret;
4968         }
4969
4970         return 0;
4971 }
4972
4973 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4974                                                    struct net_device *upper_dev)
4975 {
4976         __netdev_adjacent_dev_unlink(dev, upper_dev);
4977         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4978                                            &dev->adj_list.upper,
4979                                            &upper_dev->adj_list.lower);
4980 }
4981
4982 static int __netdev_upper_dev_link(struct net_device *dev,
4983                                    struct net_device *upper_dev, bool master,
4984                                    void *private)
4985 {
4986         struct netdev_adjacent *i, *j, *to_i, *to_j;
4987         int ret = 0;
4988
4989         ASSERT_RTNL();
4990
4991         if (dev == upper_dev)
4992                 return -EBUSY;
4993
4994         /* To prevent loops, check if dev is not upper device to upper_dev. */
4995         if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4996                 return -EBUSY;
4997
4998         if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4999                 return -EEXIST;
5000
5001         if (master && netdev_master_upper_dev_get(dev))
5002                 return -EBUSY;
5003
5004         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5005                                                    master);
5006         if (ret)
5007                 return ret;
5008
5009         /* Now that we linked these devs, make all the upper_dev's
5010          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5011          * versa, and don't forget the devices itself. All of these
5012          * links are non-neighbours.
5013          */
5014         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5015                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5016                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5017                                  i->dev->name, j->dev->name);
5018                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5019                         if (ret)
5020                                 goto rollback_mesh;
5021                 }
5022         }
5023
5024         /* add dev to every upper_dev's upper device */
5025         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5026                 pr_debug("linking %s's upper device %s with %s\n",
5027                          upper_dev->name, i->dev->name, dev->name);
5028                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5029                 if (ret)
5030                         goto rollback_upper_mesh;
5031         }
5032
5033         /* add upper_dev to every dev's lower device */
5034         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5035                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5036                          i->dev->name, upper_dev->name);
5037                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5038                 if (ret)
5039                         goto rollback_lower_mesh;
5040         }
5041
5042         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5043         return 0;
5044
5045 rollback_lower_mesh:
5046         to_i = i;
5047         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5048                 if (i == to_i)
5049                         break;
5050                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5051         }
5052
5053         i = NULL;
5054
5055 rollback_upper_mesh:
5056         to_i = i;
5057         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5058                 if (i == to_i)
5059                         break;
5060                 __netdev_adjacent_dev_unlink(dev, i->dev);
5061         }
5062
5063         i = j = NULL;
5064
5065 rollback_mesh:
5066         to_i = i;
5067         to_j = j;
5068         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5069                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5070                         if (i == to_i && j == to_j)
5071                                 break;
5072                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5073                 }
5074                 if (i == to_i)
5075                         break;
5076         }
5077
5078         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5079
5080         return ret;
5081 }
5082
5083 /**
5084  * netdev_upper_dev_link - Add a link to the upper device
5085  * @dev: device
5086  * @upper_dev: new upper device
5087  *
5088  * Adds a link to device which is upper to this one. The caller must hold
5089  * the RTNL lock. On a failure a negative errno code is returned.
5090  * On success the reference counts are adjusted and the function
5091  * returns zero.
5092  */
5093 int netdev_upper_dev_link(struct net_device *dev,
5094                           struct net_device *upper_dev)
5095 {
5096         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5097 }
5098 EXPORT_SYMBOL(netdev_upper_dev_link);
5099
5100 /**
5101  * netdev_master_upper_dev_link - Add a master link to the upper device
5102  * @dev: device
5103  * @upper_dev: new upper device
5104  *
5105  * Adds a link to device which is upper to this one. In this case, only
5106  * one master upper device can be linked, although other non-master devices
5107  * might be linked as well. The caller must hold the RTNL lock.
5108  * On a failure a negative errno code is returned. On success the reference
5109  * counts are adjusted and the function returns zero.
5110  */
5111 int netdev_master_upper_dev_link(struct net_device *dev,
5112                                  struct net_device *upper_dev)
5113 {
5114         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5115 }
5116 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5117
5118 int netdev_master_upper_dev_link_private(struct net_device *dev,
5119                                          struct net_device *upper_dev,
5120                                          void *private)
5121 {
5122         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5123 }
5124 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5125
5126 /**
5127  * netdev_upper_dev_unlink - Removes a link to upper device
5128  * @dev: device
5129  * @upper_dev: new upper device
5130  *
5131  * Removes a link to device which is upper to this one. The caller must hold
5132  * the RTNL lock.
5133  */
5134 void netdev_upper_dev_unlink(struct net_device *dev,
5135                              struct net_device *upper_dev)
5136 {
5137         struct netdev_adjacent *i, *j;
5138         ASSERT_RTNL();
5139
5140         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5141
5142         /* Here is the tricky part. We must remove all dev's lower
5143          * devices from all upper_dev's upper devices and vice
5144          * versa, to maintain the graph relationship.
5145          */
5146         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5147                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5148                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5149
5150         /* remove also the devices itself from lower/upper device
5151          * list
5152          */
5153         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5154                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5155
5156         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5157                 __netdev_adjacent_dev_unlink(dev, i->dev);
5158
5159         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5160 }
5161 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5162
5163 void netdev_adjacent_add_links(struct net_device *dev)
5164 {
5165         struct netdev_adjacent *iter;
5166
5167         struct net *net = dev_net(dev);
5168
5169         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5170                 if (!net_eq(net,dev_net(iter->dev)))
5171                         continue;
5172                 netdev_adjacent_sysfs_add(iter->dev, dev,
5173                                           &iter->dev->adj_list.lower);
5174                 netdev_adjacent_sysfs_add(dev, iter->dev,
5175                                           &dev->adj_list.upper);
5176         }
5177
5178         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5179                 if (!net_eq(net,dev_net(iter->dev)))
5180                         continue;
5181                 netdev_adjacent_sysfs_add(iter->dev, dev,
5182                                           &iter->dev->adj_list.upper);
5183                 netdev_adjacent_sysfs_add(dev, iter->dev,
5184                                           &dev->adj_list.lower);
5185         }
5186 }
5187
5188 void netdev_adjacent_del_links(struct net_device *dev)
5189 {
5190         struct netdev_adjacent *iter;
5191
5192         struct net *net = dev_net(dev);
5193
5194         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5195                 if (!net_eq(net,dev_net(iter->dev)))
5196                         continue;
5197                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5198                                           &iter->dev->adj_list.lower);
5199                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5200                                           &dev->adj_list.upper);
5201         }
5202
5203         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5204                 if (!net_eq(net,dev_net(iter->dev)))
5205                         continue;
5206                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5207                                           &iter->dev->adj_list.upper);
5208                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5209                                           &dev->adj_list.lower);
5210         }
5211 }
5212
5213 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5214 {
5215         struct netdev_adjacent *iter;
5216
5217         struct net *net = dev_net(dev);
5218
5219         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5220                 if (!net_eq(net,dev_net(iter->dev)))
5221                         continue;
5222                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5223                                           &iter->dev->adj_list.lower);
5224                 netdev_adjacent_sysfs_add(iter->dev, dev,
5225                                           &iter->dev->adj_list.lower);
5226         }
5227
5228         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5229                 if (!net_eq(net,dev_net(iter->dev)))
5230                         continue;
5231                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5232                                           &iter->dev->adj_list.upper);
5233                 netdev_adjacent_sysfs_add(iter->dev, dev,
5234                                           &iter->dev->adj_list.upper);
5235         }
5236 }
5237
5238 void *netdev_lower_dev_get_private(struct net_device *dev,
5239                                    struct net_device *lower_dev)
5240 {
5241         struct netdev_adjacent *lower;
5242
5243         if (!lower_dev)
5244                 return NULL;
5245         lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5246         if (!lower)
5247                 return NULL;
5248
5249         return lower->private;
5250 }
5251 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5252
5253
5254 int dev_get_nest_level(struct net_device *dev,
5255                        bool (*type_check)(struct net_device *dev))
5256 {
5257         struct net_device *lower = NULL;
5258         struct list_head *iter;
5259         int max_nest = -1;
5260         int nest;
5261
5262         ASSERT_RTNL();
5263
5264         netdev_for_each_lower_dev(dev, lower, iter) {
5265                 nest = dev_get_nest_level(lower, type_check);
5266                 if (max_nest < nest)
5267                         max_nest = nest;
5268         }
5269
5270         if (type_check(dev))
5271                 max_nest++;
5272
5273         return max_nest;
5274 }
5275 EXPORT_SYMBOL(dev_get_nest_level);
5276
5277 static void dev_change_rx_flags(struct net_device *dev, int flags)
5278 {
5279         const struct net_device_ops *ops = dev->netdev_ops;
5280
5281         if (ops->ndo_change_rx_flags)
5282                 ops->ndo_change_rx_flags(dev, flags);
5283 }
5284
5285 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5286 {
5287         unsigned int old_flags = dev->flags;
5288         kuid_t uid;
5289         kgid_t gid;
5290
5291         ASSERT_RTNL();
5292
5293         dev->flags |= IFF_PROMISC;
5294         dev->promiscuity += inc;
5295         if (dev->promiscuity == 0) {
5296                 /*
5297                  * Avoid overflow.
5298                  * If inc causes overflow, untouch promisc and return error.
5299                  */
5300                 if (inc < 0)
5301                         dev->flags &= ~IFF_PROMISC;
5302                 else {
5303                         dev->promiscuity -= inc;
5304                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5305                                 dev->name);
5306                         return -EOVERFLOW;
5307                 }
5308         }
5309         if (dev->flags != old_flags) {
5310                 pr_info("device %s %s promiscuous mode\n",
5311                         dev->name,
5312                         dev->flags & IFF_PROMISC ? "entered" : "left");
5313                 if (audit_enabled) {
5314                         current_uid_gid(&uid, &gid);
5315                         audit_log(current->audit_context, GFP_ATOMIC,
5316                                 AUDIT_ANOM_PROMISCUOUS,
5317                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5318                                 dev->name, (dev->flags & IFF_PROMISC),
5319                                 (old_flags & IFF_PROMISC),
5320                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5321                                 from_kuid(&init_user_ns, uid),
5322                                 from_kgid(&init_user_ns, gid),
5323                                 audit_get_sessionid(current));
5324                 }
5325
5326                 dev_change_rx_flags(dev, IFF_PROMISC);
5327         }
5328         if (notify)
5329                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5330         return 0;
5331 }
5332
5333 /**
5334  *      dev_set_promiscuity     - update promiscuity count on a device
5335  *      @dev: device
5336  *      @inc: modifier
5337  *
5338  *      Add or remove promiscuity from a device. While the count in the device
5339  *      remains above zero the interface remains promiscuous. Once it hits zero
5340  *      the device reverts back to normal filtering operation. A negative inc
5341  *      value is used to drop promiscuity on the device.
5342  *      Return 0 if successful or a negative errno code on error.
5343  */
5344 int dev_set_promiscuity(struct net_device *dev, int inc)
5345 {
5346         unsigned int old_flags = dev->flags;
5347         int err;
5348
5349         err = __dev_set_promiscuity(dev, inc, true);
5350         if (err < 0)
5351                 return err;
5352         if (dev->flags != old_flags)
5353                 dev_set_rx_mode(dev);
5354         return err;
5355 }
5356 EXPORT_SYMBOL(dev_set_promiscuity);
5357
5358 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5359 {
5360         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5361
5362         ASSERT_RTNL();
5363
5364         dev->flags |= IFF_ALLMULTI;
5365         dev->allmulti += inc;
5366         if (dev->allmulti == 0) {
5367                 /*
5368                  * Avoid overflow.
5369                  * If inc causes overflow, untouch allmulti and return error.
5370                  */
5371                 if (inc < 0)
5372                         dev->flags &= ~IFF_ALLMULTI;
5373                 else {
5374                         dev->allmulti -= inc;
5375                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5376                                 dev->name);
5377                         return -EOVERFLOW;
5378                 }
5379         }
5380         if (dev->flags ^ old_flags) {
5381                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5382                 dev_set_rx_mode(dev);
5383                 if (notify)
5384                         __dev_notify_flags(dev, old_flags,
5385                                            dev->gflags ^ old_gflags);
5386         }
5387         return 0;
5388 }
5389
5390 /**
5391  *      dev_set_allmulti        - update allmulti count on a device
5392  *      @dev: device
5393  *      @inc: modifier
5394  *
5395  *      Add or remove reception of all multicast frames to a device. While the
5396  *      count in the device remains above zero the interface remains listening
5397  *      to all interfaces. Once it hits zero the device reverts back to normal
5398  *      filtering operation. A negative @inc value is used to drop the counter
5399  *      when releasing a resource needing all multicasts.
5400  *      Return 0 if successful or a negative errno code on error.
5401  */
5402
5403 int dev_set_allmulti(struct net_device *dev, int inc)
5404 {
5405         return __dev_set_allmulti(dev, inc, true);
5406 }
5407 EXPORT_SYMBOL(dev_set_allmulti);
5408
5409 /*
5410  *      Upload unicast and multicast address lists to device and
5411  *      configure RX filtering. When the device doesn't support unicast
5412  *      filtering it is put in promiscuous mode while unicast addresses
5413  *      are present.
5414  */
5415 void __dev_set_rx_mode(struct net_device *dev)
5416 {
5417         const struct net_device_ops *ops = dev->netdev_ops;
5418
5419         /* dev_open will call this function so the list will stay sane. */
5420         if (!(dev->flags&IFF_UP))
5421                 return;
5422
5423         if (!netif_device_present(dev))
5424                 return;
5425
5426         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5427                 /* Unicast addresses changes may only happen under the rtnl,
5428                  * therefore calling __dev_set_promiscuity here is safe.
5429                  */
5430                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5431                         __dev_set_promiscuity(dev, 1, false);
5432                         dev->uc_promisc = true;
5433                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5434                         __dev_set_promiscuity(dev, -1, false);
5435                         dev->uc_promisc = false;
5436                 }
5437         }
5438
5439         if (ops->ndo_set_rx_mode)
5440                 ops->ndo_set_rx_mode(dev);
5441 }
5442
5443 void dev_set_rx_mode(struct net_device *dev)
5444 {
5445         netif_addr_lock_bh(dev);
5446         __dev_set_rx_mode(dev);
5447         netif_addr_unlock_bh(dev);
5448 }
5449
5450 /**
5451  *      dev_get_flags - get flags reported to userspace
5452  *      @dev: device
5453  *
5454  *      Get the combination of flag bits exported through APIs to userspace.
5455  */
5456 unsigned int dev_get_flags(const struct net_device *dev)
5457 {
5458         unsigned int flags;
5459
5460         flags = (dev->flags & ~(IFF_PROMISC |
5461                                 IFF_ALLMULTI |
5462                                 IFF_RUNNING |
5463                                 IFF_LOWER_UP |
5464                                 IFF_DORMANT)) |
5465                 (dev->gflags & (IFF_PROMISC |
5466                                 IFF_ALLMULTI));
5467
5468         if (netif_running(dev)) {
5469                 if (netif_oper_up(dev))
5470                         flags |= IFF_RUNNING;
5471                 if (netif_carrier_ok(dev))
5472                         flags |= IFF_LOWER_UP;
5473                 if (netif_dormant(dev))
5474                         flags |= IFF_DORMANT;
5475         }
5476
5477         return flags;
5478 }
5479 EXPORT_SYMBOL(dev_get_flags);
5480
5481 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5482 {
5483         unsigned int old_flags = dev->flags;
5484         int ret;
5485
5486         ASSERT_RTNL();
5487
5488         /*
5489          *      Set the flags on our device.
5490          */
5491
5492         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5493                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5494                                IFF_AUTOMEDIA)) |
5495                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5496                                     IFF_ALLMULTI));
5497
5498         /*
5499          *      Load in the correct multicast list now the flags have changed.
5500          */
5501
5502         if ((old_flags ^ flags) & IFF_MULTICAST)
5503                 dev_change_rx_flags(dev, IFF_MULTICAST);
5504
5505         dev_set_rx_mode(dev);
5506
5507         /*
5508          *      Have we downed the interface. We handle IFF_UP ourselves
5509          *      according to user attempts to set it, rather than blindly
5510          *      setting it.
5511          */
5512
5513         ret = 0;
5514         if ((old_flags ^ flags) & IFF_UP)
5515                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5516
5517         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5518                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5519                 unsigned int old_flags = dev->flags;
5520
5521                 dev->gflags ^= IFF_PROMISC;
5522
5523                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5524                         if (dev->flags != old_flags)
5525                                 dev_set_rx_mode(dev);
5526         }
5527
5528         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5529            is important. Some (broken) drivers set IFF_PROMISC, when
5530            IFF_ALLMULTI is requested not asking us and not reporting.
5531          */
5532         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5533                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5534
5535                 dev->gflags ^= IFF_ALLMULTI;
5536                 __dev_set_allmulti(dev, inc, false);
5537         }
5538
5539         return ret;
5540 }
5541
5542 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5543                         unsigned int gchanges)
5544 {
5545         unsigned int changes = dev->flags ^ old_flags;
5546
5547         if (gchanges)
5548                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5549
5550         if (changes & IFF_UP) {
5551                 if (dev->flags & IFF_UP)
5552                         call_netdevice_notifiers(NETDEV_UP, dev);
5553                 else
5554                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5555         }
5556
5557         if (dev->flags & IFF_UP &&
5558             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5559                 struct netdev_notifier_change_info change_info;
5560
5561                 change_info.flags_changed = changes;
5562                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5563                                               &change_info.info);
5564         }
5565 }
5566
5567 /**
5568  *      dev_change_flags - change device settings
5569  *      @dev: device
5570  *      @flags: device state flags
5571  *
5572  *      Change settings on device based state flags. The flags are
5573  *      in the userspace exported format.
5574  */
5575 int dev_change_flags(struct net_device *dev, unsigned int flags)
5576 {
5577         int ret;
5578         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5579
5580         ret = __dev_change_flags(dev, flags);
5581         if (ret < 0)
5582                 return ret;
5583
5584         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5585         __dev_notify_flags(dev, old_flags, changes);
5586         return ret;
5587 }
5588 EXPORT_SYMBOL(dev_change_flags);
5589
5590 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5591 {
5592         const struct net_device_ops *ops = dev->netdev_ops;
5593
5594         if (ops->ndo_change_mtu)
5595                 return ops->ndo_change_mtu(dev, new_mtu);
5596
5597         dev->mtu = new_mtu;
5598         return 0;
5599 }
5600
5601 /**
5602  *      dev_set_mtu - Change maximum transfer unit
5603  *      @dev: device
5604  *      @new_mtu: new transfer unit
5605  *
5606  *      Change the maximum transfer size of the network device.
5607  */
5608 int dev_set_mtu(struct net_device *dev, int new_mtu)
5609 {
5610         int err, orig_mtu;
5611
5612         if (new_mtu == dev->mtu)
5613                 return 0;
5614
5615         /*      MTU must be positive.    */
5616         if (new_mtu < 0)
5617                 return -EINVAL;
5618
5619         if (!netif_device_present(dev))
5620                 return -ENODEV;
5621
5622         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5623         err = notifier_to_errno(err);
5624         if (err)
5625                 return err;
5626
5627         orig_mtu = dev->mtu;
5628         err = __dev_set_mtu(dev, new_mtu);
5629
5630         if (!err) {
5631                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5632                 err = notifier_to_errno(err);
5633                 if (err) {
5634                         /* setting mtu back and notifying everyone again,
5635                          * so that they have a chance to revert changes.
5636                          */
5637                         __dev_set_mtu(dev, orig_mtu);
5638                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5639                 }
5640         }
5641         return err;
5642 }
5643 EXPORT_SYMBOL(dev_set_mtu);
5644
5645 /**
5646  *      dev_set_group - Change group this device belongs to
5647  *      @dev: device
5648  *      @new_group: group this device should belong to
5649  */
5650 void dev_set_group(struct net_device *dev, int new_group)
5651 {
5652         dev->group = new_group;
5653 }
5654 EXPORT_SYMBOL(dev_set_group);
5655
5656 /**
5657  *      dev_set_mac_address - Change Media Access Control Address
5658  *      @dev: device
5659  *      @sa: new address
5660  *
5661  *      Change the hardware (MAC) address of the device
5662  */
5663 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5664 {
5665         const struct net_device_ops *ops = dev->netdev_ops;
5666         int err;
5667
5668         if (!ops->ndo_set_mac_address)
5669                 return -EOPNOTSUPP;
5670         if (sa->sa_family != dev->type)
5671                 return -EINVAL;
5672         if (!netif_device_present(dev))
5673                 return -ENODEV;
5674         err = ops->ndo_set_mac_address(dev, sa);
5675         if (err)
5676                 return err;
5677         dev->addr_assign_type = NET_ADDR_SET;
5678         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5679         add_device_randomness(dev->dev_addr, dev->addr_len);
5680         return 0;
5681 }
5682 EXPORT_SYMBOL(dev_set_mac_address);
5683
5684 /**
5685  *      dev_change_carrier - Change device carrier
5686  *      @dev: device
5687  *      @new_carrier: new value
5688  *
5689  *      Change device carrier
5690  */
5691 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5692 {
5693         const struct net_device_ops *ops = dev->netdev_ops;
5694
5695         if (!ops->ndo_change_carrier)
5696                 return -EOPNOTSUPP;
5697         if (!netif_device_present(dev))
5698                 return -ENODEV;
5699         return ops->ndo_change_carrier(dev, new_carrier);
5700 }
5701 EXPORT_SYMBOL(dev_change_carrier);
5702
5703 /**
5704  *      dev_get_phys_port_id - Get device physical port ID
5705  *      @dev: device
5706  *      @ppid: port ID
5707  *
5708  *      Get device physical port ID
5709  */
5710 int dev_get_phys_port_id(struct net_device *dev,
5711                          struct netdev_phys_port_id *ppid)
5712 {
5713         const struct net_device_ops *ops = dev->netdev_ops;
5714
5715         if (!ops->ndo_get_phys_port_id)
5716                 return -EOPNOTSUPP;
5717         return ops->ndo_get_phys_port_id(dev, ppid);
5718 }
5719 EXPORT_SYMBOL(dev_get_phys_port_id);
5720
5721 /**
5722  *      dev_new_index   -       allocate an ifindex
5723  *      @net: the applicable net namespace
5724  *
5725  *      Returns a suitable unique value for a new device interface
5726  *      number.  The caller must hold the rtnl semaphore or the
5727  *      dev_base_lock to be sure it remains unique.
5728  */
5729 static int dev_new_index(struct net *net)
5730 {
5731         int ifindex = net->ifindex;
5732         for (;;) {
5733                 if (++ifindex <= 0)
5734                         ifindex = 1;
5735                 if (!__dev_get_by_index(net, ifindex))
5736                         return net->ifindex = ifindex;
5737         }
5738 }
5739
5740 /* Delayed registration/unregisteration */
5741 static LIST_HEAD(net_todo_list);
5742 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5743
5744 static void net_set_todo(struct net_device *dev)
5745 {
5746         list_add_tail(&dev->todo_list, &net_todo_list);
5747         dev_net(dev)->dev_unreg_count++;
5748 }
5749
5750 static void rollback_registered_many(struct list_head *head)
5751 {
5752         struct net_device *dev, *tmp;
5753         LIST_HEAD(close_head);
5754
5755         BUG_ON(dev_boot_phase);
5756         ASSERT_RTNL();
5757
5758         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5759                 /* Some devices call without registering
5760                  * for initialization unwind. Remove those
5761                  * devices and proceed with the remaining.
5762                  */
5763                 if (dev->reg_state == NETREG_UNINITIALIZED) {
5764                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5765                                  dev->name, dev);
5766
5767                         WARN_ON(1);
5768                         list_del(&dev->unreg_list);
5769                         continue;
5770                 }
5771                 dev->dismantle = true;
5772                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5773         }
5774
5775         /* If device is running, close it first. */
5776         list_for_each_entry(dev, head, unreg_list)
5777                 list_add_tail(&dev->close_list, &close_head);
5778         dev_close_many(&close_head);
5779
5780         list_for_each_entry(dev, head, unreg_list) {
5781                 /* And unlink it from device chain. */
5782                 unlist_netdevice(dev);
5783
5784                 dev->reg_state = NETREG_UNREGISTERING;
5785         }
5786
5787         synchronize_net();
5788
5789         list_for_each_entry(dev, head, unreg_list) {
5790                 /* Shutdown queueing discipline. */
5791                 dev_shutdown(dev);
5792
5793
5794                 /* Notify protocols, that we are about to destroy
5795                    this device. They should clean all the things.
5796                 */
5797                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5798
5799                 /*
5800                  *      Flush the unicast and multicast chains
5801                  */
5802                 dev_uc_flush(dev);
5803                 dev_mc_flush(dev);
5804
5805                 if (dev->netdev_ops->ndo_uninit)
5806                         dev->netdev_ops->ndo_uninit(dev);
5807
5808                 if (!dev->rtnl_link_ops ||
5809                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5810                         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5811
5812                 /* Notifier chain MUST detach us all upper devices. */
5813                 WARN_ON(netdev_has_any_upper_dev(dev));
5814
5815                 /* Remove entries from kobject tree */
5816                 netdev_unregister_kobject(dev);
5817 #ifdef CONFIG_XPS
5818                 /* Remove XPS queueing entries */
5819                 netif_reset_xps_queues_gt(dev, 0);
5820 #endif
5821         }
5822
5823         synchronize_net();
5824
5825         list_for_each_entry(dev, head, unreg_list)
5826                 dev_put(dev);
5827 }
5828
5829 static void rollback_registered(struct net_device *dev)
5830 {
5831         LIST_HEAD(single);
5832
5833         list_add(&dev->unreg_list, &single);
5834         rollback_registered_many(&single);
5835         list_del(&single);
5836 }
5837
5838 static netdev_features_t netdev_fix_features(struct net_device *dev,
5839         netdev_features_t features)
5840 {
5841         /* Fix illegal checksum combinations */
5842         if ((features & NETIF_F_HW_CSUM) &&
5843             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5844                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5845                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5846         }
5847
5848         /* TSO requires that SG is present as well. */
5849         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5850                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5851                 features &= ~NETIF_F_ALL_TSO;
5852         }
5853
5854         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5855                                         !(features & NETIF_F_IP_CSUM)) {
5856                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5857                 features &= ~NETIF_F_TSO;
5858                 features &= ~NETIF_F_TSO_ECN;
5859         }
5860
5861         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5862                                          !(features & NETIF_F_IPV6_CSUM)) {
5863                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5864                 features &= ~NETIF_F_TSO6;
5865         }
5866
5867         /* TSO ECN requires that TSO is present as well. */
5868         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5869                 features &= ~NETIF_F_TSO_ECN;
5870
5871         /* Software GSO depends on SG. */
5872         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5873                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5874                 features &= ~NETIF_F_GSO;
5875         }
5876
5877         /* UFO needs SG and checksumming */
5878         if (features & NETIF_F_UFO) {
5879                 /* maybe split UFO into V4 and V6? */
5880                 if (!((features & NETIF_F_GEN_CSUM) ||
5881                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5882                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5883                         netdev_dbg(dev,
5884                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5885                         features &= ~NETIF_F_UFO;
5886                 }
5887
5888                 if (!(features & NETIF_F_SG)) {
5889                         netdev_dbg(dev,
5890                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5891                         features &= ~NETIF_F_UFO;
5892                 }
5893         }
5894
5895 #ifdef CONFIG_NET_RX_BUSY_POLL
5896         if (dev->netdev_ops->ndo_busy_poll)
5897                 features |= NETIF_F_BUSY_POLL;
5898         else
5899 #endif
5900                 features &= ~NETIF_F_BUSY_POLL;
5901
5902         return features;
5903 }
5904
5905 int __netdev_update_features(struct net_device *dev)
5906 {
5907         netdev_features_t features;
5908         int err = 0;
5909
5910         ASSERT_RTNL();
5911
5912         features = netdev_get_wanted_features(dev);
5913
5914         if (dev->netdev_ops->ndo_fix_features)
5915                 features = dev->netdev_ops->ndo_fix_features(dev, features);
5916
5917         /* driver might be less strict about feature dependencies */
5918         features = netdev_fix_features(dev, features);
5919
5920         if (dev->features == features)
5921                 return 0;
5922
5923         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5924                 &dev->features, &features);
5925
5926         if (dev->netdev_ops->ndo_set_features)
5927                 err = dev->netdev_ops->ndo_set_features(dev, features);
5928
5929         if (unlikely(err < 0)) {
5930                 netdev_err(dev,
5931                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
5932                         err, &features, &dev->features);
5933                 return -1;
5934         }
5935
5936         if (!err)
5937                 dev->features = features;
5938
5939         return 1;
5940 }
5941
5942 /**
5943  *      netdev_update_features - recalculate device features
5944  *      @dev: the device to check
5945  *
5946  *      Recalculate dev->features set and send notifications if it
5947  *      has changed. Should be called after driver or hardware dependent
5948  *      conditions might have changed that influence the features.
5949  */
5950 void netdev_update_features(struct net_device *dev)
5951 {
5952         if (__netdev_update_features(dev))
5953                 netdev_features_change(dev);
5954 }
5955 EXPORT_SYMBOL(netdev_update_features);
5956
5957 /**
5958  *      netdev_change_features - recalculate device features
5959  *      @dev: the device to check
5960  *
5961  *      Recalculate dev->features set and send notifications even
5962  *      if they have not changed. Should be called instead of
5963  *      netdev_update_features() if also dev->vlan_features might
5964  *      have changed to allow the changes to be propagated to stacked
5965  *      VLAN devices.
5966  */
5967 void netdev_change_features(struct net_device *dev)
5968 {
5969         __netdev_update_features(dev);
5970         netdev_features_change(dev);
5971 }
5972 EXPORT_SYMBOL(netdev_change_features);
5973
5974 /**
5975  *      netif_stacked_transfer_operstate -      transfer operstate
5976  *      @rootdev: the root or lower level device to transfer state from
5977  *      @dev: the device to transfer operstate to
5978  *
5979  *      Transfer operational state from root to device. This is normally
5980  *      called when a stacking relationship exists between the root
5981  *      device and the device(a leaf device).
5982  */
5983 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5984                                         struct net_device *dev)
5985 {
5986         if (rootdev->operstate == IF_OPER_DORMANT)
5987                 netif_dormant_on(dev);
5988         else
5989                 netif_dormant_off(dev);
5990
5991         if (netif_carrier_ok(rootdev)) {
5992                 if (!netif_carrier_ok(dev))
5993                         netif_carrier_on(dev);
5994         } else {
5995                 if (netif_carrier_ok(dev))
5996                         netif_carrier_off(dev);
5997         }
5998 }
5999 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6000
6001 #ifdef CONFIG_SYSFS
6002 static int netif_alloc_rx_queues(struct net_device *dev)
6003 {
6004         unsigned int i, count = dev->num_rx_queues;
6005         struct netdev_rx_queue *rx;
6006
6007         BUG_ON(count < 1);
6008
6009         rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6010         if (!rx)
6011                 return -ENOMEM;
6012
6013         dev->_rx = rx;
6014
6015         for (i = 0; i < count; i++)
6016                 rx[i].dev = dev;
6017         return 0;
6018 }
6019 #endif
6020
6021 static void netdev_init_one_queue(struct net_device *dev,
6022                                   struct netdev_queue *queue, void *_unused)
6023 {
6024         /* Initialize queue lock */
6025         spin_lock_init(&queue->_xmit_lock);
6026         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6027         queue->xmit_lock_owner = -1;
6028         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6029         queue->dev = dev;
6030 #ifdef CONFIG_BQL
6031         dql_init(&queue->dql, HZ);
6032 #endif
6033 }
6034
6035 static void netif_free_tx_queues(struct net_device *dev)
6036 {
6037         kvfree(dev->_tx);
6038 }
6039
6040 static int netif_alloc_netdev_queues(struct net_device *dev)
6041 {
6042         unsigned int count = dev->num_tx_queues;
6043         struct netdev_queue *tx;
6044         size_t sz = count * sizeof(*tx);
6045
6046         BUG_ON(count < 1 || count > 0xffff);
6047
6048         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6049         if (!tx) {
6050                 tx = vzalloc(sz);
6051                 if (!tx)
6052                         return -ENOMEM;
6053         }
6054         dev->_tx = tx;
6055
6056         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6057         spin_lock_init(&dev->tx_global_lock);
6058
6059         return 0;
6060 }
6061
6062 /**
6063  *      register_netdevice      - register a network device
6064  *      @dev: device to register
6065  *
6066  *      Take a completed network device structure and add it to the kernel
6067  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6068  *      chain. 0 is returned on success. A negative errno code is returned
6069  *      on a failure to set up the device, or if the name is a duplicate.
6070  *
6071  *      Callers must hold the rtnl semaphore. You may want
6072  *      register_netdev() instead of this.
6073  *
6074  *      BUGS:
6075  *      The locking appears insufficient to guarantee two parallel registers
6076  *      will not get the same name.
6077  */
6078
6079 int register_netdevice(struct net_device *dev)
6080 {
6081         int ret;
6082         struct net *net = dev_net(dev);
6083
6084         BUG_ON(dev_boot_phase);
6085         ASSERT_RTNL();
6086
6087         might_sleep();
6088
6089         /* When net_device's are persistent, this will be fatal. */
6090         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6091         BUG_ON(!net);
6092
6093         spin_lock_init(&dev->addr_list_lock);
6094         netdev_set_addr_lockdep_class(dev);
6095
6096         dev->iflink = -1;
6097
6098         ret = dev_get_valid_name(net, dev, dev->name);
6099         if (ret < 0)
6100                 goto out;
6101
6102         /* Init, if this function is available */
6103         if (dev->netdev_ops->ndo_init) {
6104                 ret = dev->netdev_ops->ndo_init(dev);
6105                 if (ret) {
6106                         if (ret > 0)
6107                                 ret = -EIO;
6108                         goto out;
6109                 }
6110         }
6111
6112         if (((dev->hw_features | dev->features) &
6113              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6114             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6115              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6116                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6117                 ret = -EINVAL;
6118                 goto err_uninit;
6119         }
6120
6121         ret = -EBUSY;
6122         if (!dev->ifindex)
6123                 dev->ifindex = dev_new_index(net);
6124         else if (__dev_get_by_index(net, dev->ifindex))
6125                 goto err_uninit;
6126
6127         if (dev->iflink == -1)
6128                 dev->iflink = dev->ifindex;
6129
6130         /* Transfer changeable features to wanted_features and enable
6131          * software offloads (GSO and GRO).
6132          */
6133         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6134         dev->features |= NETIF_F_SOFT_FEATURES;
6135         dev->wanted_features = dev->features & dev->hw_features;
6136
6137         if (!(dev->flags & IFF_LOOPBACK)) {
6138                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6139         }
6140
6141         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6142          */
6143         dev->vlan_features |= NETIF_F_HIGHDMA;
6144
6145         /* Make NETIF_F_SG inheritable to tunnel devices.
6146          */
6147         dev->hw_enc_features |= NETIF_F_SG;
6148
6149         /* Make NETIF_F_SG inheritable to MPLS.
6150          */
6151         dev->mpls_features |= NETIF_F_SG;
6152
6153         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6154         ret = notifier_to_errno(ret);
6155         if (ret)
6156                 goto err_uninit;
6157
6158         ret = netdev_register_kobject(dev);
6159         if (ret)
6160                 goto err_uninit;
6161         dev->reg_state = NETREG_REGISTERED;
6162
6163         __netdev_update_features(dev);
6164
6165         /*
6166          *      Default initial state at registry is that the
6167          *      device is present.
6168          */
6169
6170         set_bit(__LINK_STATE_PRESENT, &dev->state);
6171
6172         linkwatch_init_dev(dev);
6173
6174         dev_init_scheduler(dev);
6175         dev_hold(dev);
6176         list_netdevice(dev);
6177         add_device_randomness(dev->dev_addr, dev->addr_len);
6178
6179         /* If the device has permanent device address, driver should
6180          * set dev_addr and also addr_assign_type should be set to
6181          * NET_ADDR_PERM (default value).
6182          */
6183         if (dev->addr_assign_type == NET_ADDR_PERM)
6184                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6185
6186         /* Notify protocols, that a new device appeared. */
6187         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6188         ret = notifier_to_errno(ret);
6189         if (ret) {
6190                 rollback_registered(dev);
6191                 dev->reg_state = NETREG_UNREGISTERED;
6192         }
6193         /*
6194          *      Prevent userspace races by waiting until the network
6195          *      device is fully setup before sending notifications.
6196          */
6197         if (!dev->rtnl_link_ops ||
6198             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6199                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6200
6201 out:
6202         return ret;
6203
6204 err_uninit:
6205         if (dev->netdev_ops->ndo_uninit)
6206                 dev->netdev_ops->ndo_uninit(dev);
6207         goto out;
6208 }
6209 EXPORT_SYMBOL(register_netdevice);
6210
6211 /**
6212  *      init_dummy_netdev       - init a dummy network device for NAPI
6213  *      @dev: device to init
6214  *
6215  *      This takes a network device structure and initialize the minimum
6216  *      amount of fields so it can be used to schedule NAPI polls without
6217  *      registering a full blown interface. This is to be used by drivers
6218  *      that need to tie several hardware interfaces to a single NAPI
6219  *      poll scheduler due to HW limitations.
6220  */
6221 int init_dummy_netdev(struct net_device *dev)
6222 {
6223         /* Clear everything. Note we don't initialize spinlocks
6224          * are they aren't supposed to be taken by any of the
6225          * NAPI code and this dummy netdev is supposed to be
6226          * only ever used for NAPI polls
6227          */
6228         memset(dev, 0, sizeof(struct net_device));
6229
6230         /* make sure we BUG if trying to hit standard
6231          * register/unregister code path
6232          */
6233         dev->reg_state = NETREG_DUMMY;
6234
6235         /* NAPI wants this */
6236         INIT_LIST_HEAD(&dev->napi_list);
6237
6238         /* a dummy interface is started by default */
6239         set_bit(__LINK_STATE_PRESENT, &dev->state);
6240         set_bit(__LINK_STATE_START, &dev->state);
6241
6242         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6243          * because users of this 'device' dont need to change
6244          * its refcount.
6245          */
6246
6247         return 0;
6248 }
6249 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6250
6251
6252 /**
6253  *      register_netdev - register a network device
6254  *      @dev: device to register
6255  *
6256  *      Take a completed network device structure and add it to the kernel
6257  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6258  *      chain. 0 is returned on success. A negative errno code is returned
6259  *      on a failure to set up the device, or if the name is a duplicate.
6260  *
6261  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6262  *      and expands the device name if you passed a format string to
6263  *      alloc_netdev.
6264  */
6265 int register_netdev(struct net_device *dev)
6266 {
6267         int err;
6268
6269         rtnl_lock();
6270         err = register_netdevice(dev);
6271         rtnl_unlock();
6272         return err;
6273 }
6274 EXPORT_SYMBOL(register_netdev);
6275
6276 int netdev_refcnt_read(const struct net_device *dev)
6277 {
6278         int i, refcnt = 0;
6279
6280         for_each_possible_cpu(i)
6281                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6282         return refcnt;
6283 }
6284 EXPORT_SYMBOL(netdev_refcnt_read);
6285
6286 /**
6287  * netdev_wait_allrefs - wait until all references are gone.
6288  * @dev: target net_device
6289  *
6290  * This is called when unregistering network devices.
6291  *
6292  * Any protocol or device that holds a reference should register
6293  * for netdevice notification, and cleanup and put back the
6294  * reference if they receive an UNREGISTER event.
6295  * We can get stuck here if buggy protocols don't correctly
6296  * call dev_put.
6297  */
6298 static void netdev_wait_allrefs(struct net_device *dev)
6299 {
6300         unsigned long rebroadcast_time, warning_time;
6301         int refcnt;
6302
6303         linkwatch_forget_dev(dev);
6304
6305         rebroadcast_time = warning_time = jiffies;
6306         refcnt = netdev_refcnt_read(dev);
6307
6308         while (refcnt != 0) {
6309                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6310                         rtnl_lock();
6311
6312                         /* Rebroadcast unregister notification */
6313                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6314
6315                         __rtnl_unlock();
6316                         rcu_barrier();
6317                         rtnl_lock();
6318
6319                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6320                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6321                                      &dev->state)) {
6322                                 /* We must not have linkwatch events
6323                                  * pending on unregister. If this
6324                                  * happens, we simply run the queue
6325                                  * unscheduled, resulting in a noop
6326                                  * for this device.
6327                                  */
6328                                 linkwatch_run_queue();
6329                         }
6330
6331                         __rtnl_unlock();
6332
6333                         rebroadcast_time = jiffies;
6334                 }
6335
6336                 msleep(250);
6337
6338                 refcnt = netdev_refcnt_read(dev);
6339
6340                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6341                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6342                                  dev->name, refcnt);
6343                         warning_time = jiffies;
6344                 }
6345         }
6346 }
6347
6348 /* The sequence is:
6349  *
6350  *      rtnl_lock();
6351  *      ...
6352  *      register_netdevice(x1);
6353  *      register_netdevice(x2);
6354  *      ...
6355  *      unregister_netdevice(y1);
6356  *      unregister_netdevice(y2);
6357  *      ...
6358  *      rtnl_unlock();
6359  *      free_netdev(y1);
6360  *      free_netdev(y2);
6361  *
6362  * We are invoked by rtnl_unlock().
6363  * This allows us to deal with problems:
6364  * 1) We can delete sysfs objects which invoke hotplug
6365  *    without deadlocking with linkwatch via keventd.
6366  * 2) Since we run with the RTNL semaphore not held, we can sleep
6367  *    safely in order to wait for the netdev refcnt to drop to zero.
6368  *
6369  * We must not return until all unregister events added during
6370  * the interval the lock was held have been completed.
6371  */
6372 void netdev_run_todo(void)
6373 {
6374         struct list_head list;
6375
6376         /* Snapshot list, allow later requests */
6377         list_replace_init(&net_todo_list, &list);
6378
6379         __rtnl_unlock();
6380
6381
6382         /* Wait for rcu callbacks to finish before next phase */
6383         if (!list_empty(&list))
6384                 rcu_barrier();
6385
6386         while (!list_empty(&list)) {
6387                 struct net_device *dev
6388                         = list_first_entry(&list, struct net_device, todo_list);
6389                 list_del(&dev->todo_list);
6390
6391                 rtnl_lock();
6392                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6393                 __rtnl_unlock();
6394
6395                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6396                         pr_err("network todo '%s' but state %d\n",
6397                                dev->name, dev->reg_state);
6398                         dump_stack();
6399                         continue;
6400                 }
6401
6402                 dev->reg_state = NETREG_UNREGISTERED;
6403
6404                 on_each_cpu(flush_backlog, dev, 1);
6405
6406                 netdev_wait_allrefs(dev);
6407
6408                 /* paranoia */
6409                 BUG_ON(netdev_refcnt_read(dev));
6410                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6411                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6412                 WARN_ON(dev->dn_ptr);
6413
6414                 if (dev->destructor)
6415                         dev->destructor(dev);
6416
6417                 /* Report a network device has been unregistered */
6418                 rtnl_lock();
6419                 dev_net(dev)->dev_unreg_count--;
6420                 __rtnl_unlock();
6421                 wake_up(&netdev_unregistering_wq);
6422
6423                 /* Free network device */
6424                 kobject_put(&dev->dev.kobj);
6425         }
6426 }
6427
6428 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6429  * fields in the same order, with only the type differing.
6430  */
6431 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6432                              const struct net_device_stats *netdev_stats)
6433 {
6434 #if BITS_PER_LONG == 64
6435         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6436         memcpy(stats64, netdev_stats, sizeof(*stats64));
6437 #else
6438         size_t i, n = sizeof(*stats64) / sizeof(u64);
6439         const unsigned long *src = (const unsigned long *)netdev_stats;
6440         u64 *dst = (u64 *)stats64;
6441
6442         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6443                      sizeof(*stats64) / sizeof(u64));
6444         for (i = 0; i < n; i++)
6445                 dst[i] = src[i];
6446 #endif
6447 }
6448 EXPORT_SYMBOL(netdev_stats_to_stats64);
6449
6450 /**
6451  *      dev_get_stats   - get network device statistics
6452  *      @dev: device to get statistics from
6453  *      @storage: place to store stats
6454  *
6455  *      Get network statistics from device. Return @storage.
6456  *      The device driver may provide its own method by setting
6457  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6458  *      otherwise the internal statistics structure is used.
6459  */
6460 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6461                                         struct rtnl_link_stats64 *storage)
6462 {
6463         const struct net_device_ops *ops = dev->netdev_ops;
6464
6465         if (ops->ndo_get_stats64) {
6466                 memset(storage, 0, sizeof(*storage));
6467                 ops->ndo_get_stats64(dev, storage);
6468         } else if (ops->ndo_get_stats) {
6469                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6470         } else {
6471                 netdev_stats_to_stats64(storage, &dev->stats);
6472         }
6473         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6474         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6475         return storage;
6476 }
6477 EXPORT_SYMBOL(dev_get_stats);
6478
6479 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6480 {
6481         struct netdev_queue *queue = dev_ingress_queue(dev);
6482
6483 #ifdef CONFIG_NET_CLS_ACT
6484         if (queue)
6485                 return queue;
6486         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6487         if (!queue)
6488                 return NULL;
6489         netdev_init_one_queue(dev, queue, NULL);
6490         queue->qdisc = &noop_qdisc;
6491         queue->qdisc_sleeping = &noop_qdisc;
6492         rcu_assign_pointer(dev->ingress_queue, queue);
6493 #endif
6494         return queue;
6495 }
6496
6497 static const struct ethtool_ops default_ethtool_ops;
6498
6499 void netdev_set_default_ethtool_ops(struct net_device *dev,
6500                                     const struct ethtool_ops *ops)
6501 {
6502         if (dev->ethtool_ops == &default_ethtool_ops)
6503                 dev->ethtool_ops = ops;
6504 }
6505 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6506
6507 void netdev_freemem(struct net_device *dev)
6508 {
6509         char *addr = (char *)dev - dev->padded;
6510
6511         kvfree(addr);
6512 }
6513
6514 /**
6515  *      alloc_netdev_mqs - allocate network device
6516  *      @sizeof_priv:           size of private data to allocate space for
6517  *      @name:                  device name format string
6518  *      @name_assign_type:      origin of device name
6519  *      @setup:                 callback to initialize device
6520  *      @txqs:                  the number of TX subqueues to allocate
6521  *      @rxqs:                  the number of RX subqueues to allocate
6522  *
6523  *      Allocates a struct net_device with private data area for driver use
6524  *      and performs basic initialization.  Also allocates subqueue structs
6525  *      for each queue on the device.
6526  */
6527 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6528                 unsigned char name_assign_type,
6529                 void (*setup)(struct net_device *),
6530                 unsigned int txqs, unsigned int rxqs)
6531 {
6532         struct net_device *dev;
6533         size_t alloc_size;
6534         struct net_device *p;
6535
6536         BUG_ON(strlen(name) >= sizeof(dev->name));
6537
6538         if (txqs < 1) {
6539                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6540                 return NULL;
6541         }
6542
6543 #ifdef CONFIG_SYSFS
6544         if (rxqs < 1) {
6545                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6546                 return NULL;
6547         }
6548 #endif
6549
6550         alloc_size = sizeof(struct net_device);
6551         if (sizeof_priv) {
6552                 /* ensure 32-byte alignment of private area */
6553                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6554                 alloc_size += sizeof_priv;
6555         }
6556         /* ensure 32-byte alignment of whole construct */
6557         alloc_size += NETDEV_ALIGN - 1;
6558
6559         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6560         if (!p)
6561                 p = vzalloc(alloc_size);
6562         if (!p)
6563                 return NULL;
6564
6565         dev = PTR_ALIGN(p, NETDEV_ALIGN);
6566         dev->padded = (char *)dev - (char *)p;
6567
6568         dev->pcpu_refcnt = alloc_percpu(int);
6569         if (!dev->pcpu_refcnt)
6570                 goto free_dev;
6571
6572         if (dev_addr_init(dev))
6573                 goto free_pcpu;
6574
6575         dev_mc_init(dev);
6576         dev_uc_init(dev);
6577
6578         dev_net_set(dev, &init_net);
6579
6580         dev->gso_max_size = GSO_MAX_SIZE;
6581         dev->gso_max_segs = GSO_MAX_SEGS;
6582
6583         INIT_LIST_HEAD(&dev->napi_list);
6584         INIT_LIST_HEAD(&dev->unreg_list);
6585         INIT_LIST_HEAD(&dev->close_list);
6586         INIT_LIST_HEAD(&dev->link_watch_list);
6587         INIT_LIST_HEAD(&dev->adj_list.upper);
6588         INIT_LIST_HEAD(&dev->adj_list.lower);
6589         INIT_LIST_HEAD(&dev->all_adj_list.upper);
6590         INIT_LIST_HEAD(&dev->all_adj_list.lower);
6591         dev->priv_flags = IFF_XMIT_DST_RELEASE;
6592         setup(dev);
6593
6594         dev->num_tx_queues = txqs;
6595         dev->real_num_tx_queues = txqs;
6596         if (netif_alloc_netdev_queues(dev))
6597                 goto free_all;
6598
6599 #ifdef CONFIG_SYSFS
6600         dev->num_rx_queues = rxqs;
6601         dev->real_num_rx_queues = rxqs;
6602         if (netif_alloc_rx_queues(dev))
6603                 goto free_all;
6604 #endif
6605
6606         strcpy(dev->name, name);
6607         dev->name_assign_type = name_assign_type;
6608         dev->group = INIT_NETDEV_GROUP;
6609         if (!dev->ethtool_ops)
6610                 dev->ethtool_ops = &default_ethtool_ops;
6611         return dev;
6612
6613 free_all:
6614         free_netdev(dev);
6615         return NULL;
6616
6617 free_pcpu:
6618         free_percpu(dev->pcpu_refcnt);
6619 free_dev:
6620         netdev_freemem(dev);
6621         return NULL;
6622 }
6623 EXPORT_SYMBOL(alloc_netdev_mqs);
6624
6625 /**
6626  *      free_netdev - free network device
6627  *      @dev: device
6628  *
6629  *      This function does the last stage of destroying an allocated device
6630  *      interface. The reference to the device object is released.
6631  *      If this is the last reference then it will be freed.
6632  */
6633 void free_netdev(struct net_device *dev)
6634 {
6635         struct napi_struct *p, *n;
6636
6637         release_net(dev_net(dev));
6638
6639         netif_free_tx_queues(dev);
6640 #ifdef CONFIG_SYSFS
6641         kfree(dev->_rx);
6642 #endif
6643
6644         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6645
6646         /* Flush device addresses */
6647         dev_addr_flush(dev);
6648
6649         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6650                 netif_napi_del(p);
6651
6652         free_percpu(dev->pcpu_refcnt);
6653         dev->pcpu_refcnt = NULL;
6654
6655         /*  Compatibility with error handling in drivers */
6656         if (dev->reg_state == NETREG_UNINITIALIZED) {
6657                 netdev_freemem(dev);
6658                 return;
6659         }
6660
6661         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6662         dev->reg_state = NETREG_RELEASED;
6663
6664         /* will free via device release */
6665         put_device(&dev->dev);
6666 }
6667 EXPORT_SYMBOL(free_netdev);
6668
6669 /**
6670  *      synchronize_net -  Synchronize with packet receive processing
6671  *
6672  *      Wait for packets currently being received to be done.
6673  *      Does not block later packets from starting.
6674  */
6675 void synchronize_net(void)
6676 {
6677         might_sleep();
6678         if (rtnl_is_locked())
6679                 synchronize_rcu_expedited();
6680         else
6681                 synchronize_rcu();
6682 }
6683 EXPORT_SYMBOL(synchronize_net);
6684
6685 /**
6686  *      unregister_netdevice_queue - remove device from the kernel
6687  *      @dev: device
6688  *      @head: list
6689  *
6690  *      This function shuts down a device interface and removes it
6691  *      from the kernel tables.
6692  *      If head not NULL, device is queued to be unregistered later.
6693  *
6694  *      Callers must hold the rtnl semaphore.  You may want
6695  *      unregister_netdev() instead of this.
6696  */
6697
6698 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6699 {
6700         ASSERT_RTNL();
6701
6702         if (head) {
6703                 list_move_tail(&dev->unreg_list, head);
6704         } else {
6705                 rollback_registered(dev);
6706                 /* Finish processing unregister after unlock */
6707                 net_set_todo(dev);
6708         }
6709 }
6710 EXPORT_SYMBOL(unregister_netdevice_queue);
6711
6712 /**
6713  *      unregister_netdevice_many - unregister many devices
6714  *      @head: list of devices
6715  *
6716  *  Note: As most callers use a stack allocated list_head,
6717  *  we force a list_del() to make sure stack wont be corrupted later.
6718  */
6719 void unregister_netdevice_many(struct list_head *head)
6720 {
6721         struct net_device *dev;
6722
6723         if (!list_empty(head)) {
6724                 rollback_registered_many(head);
6725                 list_for_each_entry(dev, head, unreg_list)
6726                         net_set_todo(dev);
6727                 list_del(head);
6728         }
6729 }
6730 EXPORT_SYMBOL(unregister_netdevice_many);
6731
6732 /**
6733  *      unregister_netdev - remove device from the kernel
6734  *      @dev: device
6735  *
6736  *      This function shuts down a device interface and removes it
6737  *      from the kernel tables.
6738  *
6739  *      This is just a wrapper for unregister_netdevice that takes
6740  *      the rtnl semaphore.  In general you want to use this and not
6741  *      unregister_netdevice.
6742  */
6743 void unregister_netdev(struct net_device *dev)
6744 {
6745         rtnl_lock();
6746         unregister_netdevice(dev);
6747         rtnl_unlock();
6748 }
6749 EXPORT_SYMBOL(unregister_netdev);
6750
6751 /**
6752  *      dev_change_net_namespace - move device to different nethost namespace
6753  *      @dev: device
6754  *      @net: network namespace
6755  *      @pat: If not NULL name pattern to try if the current device name
6756  *            is already taken in the destination network namespace.
6757  *
6758  *      This function shuts down a device interface and moves it
6759  *      to a new network namespace. On success 0 is returned, on
6760  *      a failure a netagive errno code is returned.
6761  *
6762  *      Callers must hold the rtnl semaphore.
6763  */
6764
6765 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6766 {
6767         int err;
6768
6769         ASSERT_RTNL();
6770
6771         /* Don't allow namespace local devices to be moved. */
6772         err = -EINVAL;
6773         if (dev->features & NETIF_F_NETNS_LOCAL)
6774                 goto out;
6775
6776         /* Ensure the device has been registrered */
6777         if (dev->reg_state != NETREG_REGISTERED)
6778                 goto out;
6779
6780         /* Get out if there is nothing todo */
6781         err = 0;
6782         if (net_eq(dev_net(dev), net))
6783                 goto out;
6784
6785         /* Pick the destination device name, and ensure
6786          * we can use it in the destination network namespace.
6787          */
6788         err = -EEXIST;
6789         if (__dev_get_by_name(net, dev->name)) {
6790                 /* We get here if we can't use the current device name */
6791                 if (!pat)
6792                         goto out;
6793                 if (dev_get_valid_name(net, dev, pat) < 0)
6794                         goto out;
6795         }
6796
6797         /*
6798          * And now a mini version of register_netdevice unregister_netdevice.
6799          */
6800
6801         /* If device is running close it first. */
6802         dev_close(dev);
6803
6804         /* And unlink it from device chain */
6805         err = -ENODEV;
6806         unlist_netdevice(dev);
6807
6808         synchronize_net();
6809
6810         /* Shutdown queueing discipline. */
6811         dev_shutdown(dev);
6812
6813         /* Notify protocols, that we are about to destroy
6814            this device. They should clean all the things.
6815
6816            Note that dev->reg_state stays at NETREG_REGISTERED.
6817            This is wanted because this way 8021q and macvlan know
6818            the device is just moving and can keep their slaves up.
6819         */
6820         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6821         rcu_barrier();
6822         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6823         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6824
6825         /*
6826          *      Flush the unicast and multicast chains
6827          */
6828         dev_uc_flush(dev);
6829         dev_mc_flush(dev);
6830
6831         /* Send a netdev-removed uevent to the old namespace */
6832         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6833         netdev_adjacent_del_links(dev);
6834
6835         /* Actually switch the network namespace */
6836         dev_net_set(dev, net);
6837
6838         /* If there is an ifindex conflict assign a new one */
6839         if (__dev_get_by_index(net, dev->ifindex)) {
6840                 int iflink = (dev->iflink == dev->ifindex);
6841                 dev->ifindex = dev_new_index(net);
6842                 if (iflink)
6843                         dev->iflink = dev->ifindex;
6844         }
6845
6846         /* Send a netdev-add uevent to the new namespace */
6847         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6848         netdev_adjacent_add_links(dev);
6849
6850         /* Fixup kobjects */
6851         err = device_rename(&dev->dev, dev->name);
6852         WARN_ON(err);
6853
6854         /* Add the device back in the hashes */
6855         list_netdevice(dev);
6856
6857         /* Notify protocols, that a new device appeared. */
6858         call_netdevice_notifiers(NETDEV_REGISTER, dev);
6859
6860         /*
6861          *      Prevent userspace races by waiting until the network
6862          *      device is fully setup before sending notifications.
6863          */
6864         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6865
6866         synchronize_net();
6867         err = 0;
6868 out:
6869         return err;
6870 }
6871 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6872
6873 static int dev_cpu_callback(struct notifier_block *nfb,
6874                             unsigned long action,
6875                             void *ocpu)
6876 {
6877         struct sk_buff **list_skb;
6878         struct sk_buff *skb;
6879         unsigned int cpu, oldcpu = (unsigned long)ocpu;
6880         struct softnet_data *sd, *oldsd;
6881
6882         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6883                 return NOTIFY_OK;
6884
6885         local_irq_disable();
6886         cpu = smp_processor_id();
6887         sd = &per_cpu(softnet_data, cpu);
6888         oldsd = &per_cpu(softnet_data, oldcpu);
6889
6890         /* Find end of our completion_queue. */
6891         list_skb = &sd->completion_queue;
6892         while (*list_skb)
6893                 list_skb = &(*list_skb)->next;
6894         /* Append completion queue from offline CPU. */
6895         *list_skb = oldsd->completion_queue;
6896         oldsd->completion_queue = NULL;
6897
6898         /* Append output queue from offline CPU. */
6899         if (oldsd->output_queue) {
6900                 *sd->output_queue_tailp = oldsd->output_queue;
6901                 sd->output_queue_tailp = oldsd->output_queue_tailp;
6902                 oldsd->output_queue = NULL;
6903                 oldsd->output_queue_tailp = &oldsd->output_queue;
6904         }
6905         /* Append NAPI poll list from offline CPU. */
6906         if (!list_empty(&oldsd->poll_list)) {
6907                 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6908                 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6909         }
6910
6911         raise_softirq_irqoff(NET_TX_SOFTIRQ);
6912         local_irq_enable();
6913
6914         /* Process offline CPU's input_pkt_queue */
6915         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6916                 netif_rx_internal(skb);
6917                 input_queue_head_incr(oldsd);
6918         }
6919         while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6920                 netif_rx_internal(skb);
6921                 input_queue_head_incr(oldsd);
6922         }
6923
6924         return NOTIFY_OK;
6925 }
6926
6927
6928 /**
6929  *      netdev_increment_features - increment feature set by one
6930  *      @all: current feature set
6931  *      @one: new feature set
6932  *      @mask: mask feature set
6933  *
6934  *      Computes a new feature set after adding a device with feature set
6935  *      @one to the master device with current feature set @all.  Will not
6936  *      enable anything that is off in @mask. Returns the new feature set.
6937  */
6938 netdev_features_t netdev_increment_features(netdev_features_t all,
6939         netdev_features_t one, netdev_features_t mask)
6940 {
6941         if (mask & NETIF_F_GEN_CSUM)
6942                 mask |= NETIF_F_ALL_CSUM;
6943         mask |= NETIF_F_VLAN_CHALLENGED;
6944
6945         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6946         all &= one | ~NETIF_F_ALL_FOR_ALL;
6947
6948         /* If one device supports hw checksumming, set for all. */
6949         if (all & NETIF_F_GEN_CSUM)
6950                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6951
6952         return all;
6953 }
6954 EXPORT_SYMBOL(netdev_increment_features);
6955
6956 static struct hlist_head * __net_init netdev_create_hash(void)
6957 {
6958         int i;
6959         struct hlist_head *hash;
6960
6961         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6962         if (hash != NULL)
6963                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6964                         INIT_HLIST_HEAD(&hash[i]);
6965
6966         return hash;
6967 }
6968
6969 /* Initialize per network namespace state */
6970 static int __net_init netdev_init(struct net *net)
6971 {
6972         if (net != &init_net)
6973                 INIT_LIST_HEAD(&net->dev_base_head);
6974
6975         net->dev_name_head = netdev_create_hash();
6976         if (net->dev_name_head == NULL)
6977                 goto err_name;
6978
6979         net->dev_index_head = netdev_create_hash();
6980         if (net->dev_index_head == NULL)
6981                 goto err_idx;
6982
6983         return 0;
6984
6985 err_idx:
6986         kfree(net->dev_name_head);
6987 err_name:
6988         return -ENOMEM;
6989 }
6990
6991 /**
6992  *      netdev_drivername - network driver for the device
6993  *      @dev: network device
6994  *
6995  *      Determine network driver for device.
6996  */
6997 const char *netdev_drivername(const struct net_device *dev)
6998 {
6999         const struct device_driver *driver;
7000         const struct device *parent;
7001         const char *empty = "";
7002
7003         parent = dev->dev.parent;
7004         if (!parent)
7005                 return empty;
7006
7007         driver = parent->driver;
7008         if (driver && driver->name)
7009                 return driver->name;
7010         return empty;
7011 }
7012
7013 static int __netdev_printk(const char *level, const struct net_device *dev,
7014                            struct va_format *vaf)
7015 {
7016         int r;
7017
7018         if (dev && dev->dev.parent) {
7019                 r = dev_printk_emit(level[1] - '0',
7020                                     dev->dev.parent,
7021                                     "%s %s %s%s: %pV",
7022                                     dev_driver_string(dev->dev.parent),
7023                                     dev_name(dev->dev.parent),
7024                                     netdev_name(dev), netdev_reg_state(dev),
7025                                     vaf);
7026         } else if (dev) {
7027                 r = printk("%s%s%s: %pV", level, netdev_name(dev),
7028                            netdev_reg_state(dev), vaf);
7029         } else {
7030                 r = printk("%s(NULL net_device): %pV", level, vaf);
7031         }
7032
7033         return r;
7034 }
7035
7036 int netdev_printk(const char *level, const struct net_device *dev,
7037                   const char *format, ...)
7038 {
7039         struct va_format vaf;
7040         va_list args;
7041         int r;
7042
7043         va_start(args, format);
7044
7045         vaf.fmt = format;
7046         vaf.va = &args;
7047
7048         r = __netdev_printk(level, dev, &vaf);
7049
7050         va_end(args);
7051
7052         return r;
7053 }
7054 EXPORT_SYMBOL(netdev_printk);
7055
7056 #define define_netdev_printk_level(func, level)                 \
7057 int func(const struct net_device *dev, const char *fmt, ...)    \
7058 {                                                               \
7059         int r;                                                  \
7060         struct va_format vaf;                                   \
7061         va_list args;                                           \
7062                                                                 \
7063         va_start(args, fmt);                                    \
7064                                                                 \
7065         vaf.fmt = fmt;                                          \
7066         vaf.va = &args;                                         \
7067                                                                 \
7068         r = __netdev_printk(level, dev, &vaf);                  \
7069                                                                 \
7070         va_end(args);                                           \
7071                                                                 \
7072         return r;                                               \
7073 }                                                               \
7074 EXPORT_SYMBOL(func);
7075
7076 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7077 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7078 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7079 define_netdev_printk_level(netdev_err, KERN_ERR);
7080 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7081 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7082 define_netdev_printk_level(netdev_info, KERN_INFO);
7083
7084 static void __net_exit netdev_exit(struct net *net)
7085 {
7086         kfree(net->dev_name_head);
7087         kfree(net->dev_index_head);
7088 }
7089
7090 static struct pernet_operations __net_initdata netdev_net_ops = {
7091         .init = netdev_init,
7092         .exit = netdev_exit,
7093 };
7094
7095 static void __net_exit default_device_exit(struct net *net)
7096 {
7097         struct net_device *dev, *aux;
7098         /*
7099          * Push all migratable network devices back to the
7100          * initial network namespace
7101          */
7102         rtnl_lock();
7103         for_each_netdev_safe(net, dev, aux) {
7104                 int err;
7105                 char fb_name[IFNAMSIZ];
7106
7107                 /* Ignore unmoveable devices (i.e. loopback) */
7108                 if (dev->features & NETIF_F_NETNS_LOCAL)
7109                         continue;
7110
7111                 /* Leave virtual devices for the generic cleanup */
7112                 if (dev->rtnl_link_ops)
7113                         continue;
7114
7115                 /* Push remaining network devices to init_net */
7116                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7117                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7118                 if (err) {
7119                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7120                                  __func__, dev->name, err);
7121                         BUG();
7122                 }
7123         }
7124         rtnl_unlock();
7125 }
7126
7127 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7128 {
7129         /* Return with the rtnl_lock held when there are no network
7130          * devices unregistering in any network namespace in net_list.
7131          */
7132         struct net *net;
7133         bool unregistering;
7134         DEFINE_WAIT(wait);
7135
7136         for (;;) {
7137                 prepare_to_wait(&netdev_unregistering_wq, &wait,
7138                                 TASK_UNINTERRUPTIBLE);
7139                 unregistering = false;
7140                 rtnl_lock();
7141                 list_for_each_entry(net, net_list, exit_list) {
7142                         if (net->dev_unreg_count > 0) {
7143                                 unregistering = true;
7144                                 break;
7145                         }
7146                 }
7147                 if (!unregistering)
7148                         break;
7149                 __rtnl_unlock();
7150                 schedule();
7151         }
7152         finish_wait(&netdev_unregistering_wq, &wait);
7153 }
7154
7155 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7156 {
7157         /* At exit all network devices most be removed from a network
7158          * namespace.  Do this in the reverse order of registration.
7159          * Do this across as many network namespaces as possible to
7160          * improve batching efficiency.
7161          */
7162         struct net_device *dev;
7163         struct net *net;
7164         LIST_HEAD(dev_kill_list);
7165
7166         /* To prevent network device cleanup code from dereferencing
7167          * loopback devices or network devices that have been freed
7168          * wait here for all pending unregistrations to complete,
7169          * before unregistring the loopback device and allowing the
7170          * network namespace be freed.
7171          *
7172          * The netdev todo list containing all network devices
7173          * unregistrations that happen in default_device_exit_batch
7174          * will run in the rtnl_unlock() at the end of
7175          * default_device_exit_batch.
7176          */
7177         rtnl_lock_unregistering(net_list);
7178         list_for_each_entry(net, net_list, exit_list) {
7179                 for_each_netdev_reverse(net, dev) {
7180                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7181                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7182                         else
7183                                 unregister_netdevice_queue(dev, &dev_kill_list);
7184                 }
7185         }
7186         unregister_netdevice_many(&dev_kill_list);
7187         rtnl_unlock();
7188 }
7189
7190 static struct pernet_operations __net_initdata default_device_ops = {
7191         .exit = default_device_exit,
7192         .exit_batch = default_device_exit_batch,
7193 };
7194
7195 /*
7196  *      Initialize the DEV module. At boot time this walks the device list and
7197  *      unhooks any devices that fail to initialise (normally hardware not
7198  *      present) and leaves us with a valid list of present and active devices.
7199  *
7200  */
7201
7202 /*
7203  *       This is called single threaded during boot, so no need
7204  *       to take the rtnl semaphore.
7205  */
7206 static int __init net_dev_init(void)
7207 {
7208         int i, rc = -ENOMEM;
7209
7210         BUG_ON(!dev_boot_phase);
7211
7212         if (dev_proc_init())
7213                 goto out;
7214
7215         if (netdev_kobject_init())
7216                 goto out;
7217
7218         INIT_LIST_HEAD(&ptype_all);
7219         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7220                 INIT_LIST_HEAD(&ptype_base[i]);
7221
7222         INIT_LIST_HEAD(&offload_base);
7223
7224         if (register_pernet_subsys(&netdev_net_ops))
7225                 goto out;
7226
7227         /*
7228          *      Initialise the packet receive queues.
7229          */
7230
7231         for_each_possible_cpu(i) {
7232                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7233
7234                 skb_queue_head_init(&sd->input_pkt_queue);
7235                 skb_queue_head_init(&sd->process_queue);
7236                 INIT_LIST_HEAD(&sd->poll_list);
7237                 sd->output_queue_tailp = &sd->output_queue;
7238 #ifdef CONFIG_RPS
7239                 sd->csd.func = rps_trigger_softirq;
7240                 sd->csd.info = sd;
7241                 sd->cpu = i;
7242 #endif
7243
7244                 sd->backlog.poll = process_backlog;
7245                 sd->backlog.weight = weight_p;
7246         }
7247
7248         dev_boot_phase = 0;
7249
7250         /* The loopback device is special if any other network devices
7251          * is present in a network namespace the loopback device must
7252          * be present. Since we now dynamically allocate and free the
7253          * loopback device ensure this invariant is maintained by
7254          * keeping the loopback device as the first device on the
7255          * list of network devices.  Ensuring the loopback devices
7256          * is the first device that appears and the last network device
7257          * that disappears.
7258          */
7259         if (register_pernet_device(&loopback_net_ops))
7260                 goto out;
7261
7262         if (register_pernet_device(&default_device_ops))
7263                 goto out;
7264
7265         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7266         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7267
7268         hotcpu_notifier(dev_cpu_callback, 0);
7269         dst_init();
7270         rc = 0;
7271 out:
7272         return rc;
7273 }
7274
7275 subsys_initcall(net_dev_init);