Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[cascardo/linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
144
145 #include "net-sysfs.h"
146
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;       /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161                                          struct net_device *dev,
162                                          struct netdev_notifier_info *info);
163
164 /*
165  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166  * semaphore.
167  *
168  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169  *
170  * Writers must hold the rtnl semaphore while they loop through the
171  * dev_base_head list, and hold dev_base_lock for writing when they do the
172  * actual updates.  This allows pure readers to access the list even
173  * while a writer is preparing to update it.
174  *
175  * To put it another way, dev_base_lock is held for writing only to
176  * protect against pure readers; the rtnl semaphore provides the
177  * protection against other writers.
178  *
179  * See, for example usages, register_netdevice() and
180  * unregister_netdevice(), which must be called with the rtnl
181  * semaphore held.
182  */
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
185
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
188
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191
192 static seqcount_t devnet_rename_seq;
193
194 static inline void dev_base_seq_inc(struct net *net)
195 {
196         while (++net->dev_base_seq == 0);
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214         spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228         struct net *net = dev_net(dev);
229
230         ASSERT_RTNL();
231
232         write_lock_bh(&dev_base_lock);
233         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235         hlist_add_head_rcu(&dev->index_hlist,
236                            dev_index_hash(net, dev->ifindex));
237         write_unlock_bh(&dev_base_lock);
238
239         dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247         ASSERT_RTNL();
248
249         /* Unlink dev from the device chain */
250         write_lock_bh(&dev_base_lock);
251         list_del_rcu(&dev->dev_list);
252         hlist_del_rcu(&dev->name_hlist);
253         hlist_del_rcu(&dev->index_hlist);
254         write_unlock_bh(&dev_base_lock);
255
256         dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260  *      Our notifier list
261  */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266  *      Device drivers call our routines to queue packets here. We empty the
267  *      queue in the local softnet handler.
268  */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276  * according to dev->type
277  */
278 static const unsigned short netdev_lock_type[] =
279         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317         int i;
318
319         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320                 if (netdev_lock_type[i] == dev_type)
321                         return i;
322         /* the last key is used by default */
323         return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327                                                  unsigned short dev_type)
328 {
329         int i;
330
331         i = netdev_lock_pos(dev_type);
332         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333                                    netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338         int i;
339
340         i = netdev_lock_pos(dev->type);
341         lockdep_set_class_and_name(&dev->addr_list_lock,
342                                    &netdev_addr_lock_key[i],
343                                    netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347                                                  unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357                 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362  *      Add a protocol ID to the list. Now that the input handler is
363  *      smarter we can dispense with all the messy stuff that used to be
364  *      here.
365  *
366  *      BEWARE!!! Protocol handlers, mangling input packets,
367  *      MUST BE last in hash buckets and checking protocol handlers
368  *      MUST start from promiscuous ptype_all chain in net_bh.
369  *      It is true now, do not change it.
370  *      Explanation follows: if protocol handler, mangling packet, will
371  *      be the first on list, it is not able to sense, that packet
372  *      is cloned and should be copied-on-write, so that it will
373  *      change it and subsequent readers will get broken packet.
374  *                                                      --ANK (980803)
375  */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379         if (pt->type == htons(ETH_P_ALL))
380                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381         else
382                 return pt->dev ? &pt->dev->ptype_specific :
383                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387  *      dev_add_pack - add packet handler
388  *      @pt: packet type declaration
389  *
390  *      Add a protocol handler to the networking stack. The passed &packet_type
391  *      is linked into kernel lists and may not be freed until it has been
392  *      removed from the kernel lists.
393  *
394  *      This call does not sleep therefore it can not
395  *      guarantee all CPU's that are in middle of receiving packets
396  *      will see the new packet type (until the next received packet).
397  */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401         struct list_head *head = ptype_head(pt);
402
403         spin_lock(&ptype_lock);
404         list_add_rcu(&pt->list, head);
405         spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410  *      __dev_remove_pack        - remove packet handler
411  *      @pt: packet type declaration
412  *
413  *      Remove a protocol handler that was previously added to the kernel
414  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
415  *      from the kernel lists and can be freed or reused once this function
416  *      returns.
417  *
418  *      The packet type might still be in use by receivers
419  *      and must not be freed until after all the CPU's have gone
420  *      through a quiescent state.
421  */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424         struct list_head *head = ptype_head(pt);
425         struct packet_type *pt1;
426
427         spin_lock(&ptype_lock);
428
429         list_for_each_entry(pt1, head, list) {
430                 if (pt == pt1) {
431                         list_del_rcu(&pt->list);
432                         goto out;
433                 }
434         }
435
436         pr_warn("dev_remove_pack: %p not found\n", pt);
437 out:
438         spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443  *      dev_remove_pack  - remove packet handler
444  *      @pt: packet type declaration
445  *
446  *      Remove a protocol handler that was previously added to the kernel
447  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
448  *      from the kernel lists and can be freed or reused once this function
449  *      returns.
450  *
451  *      This call sleeps to guarantee that no CPU is looking at the packet
452  *      type after return.
453  */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456         __dev_remove_pack(pt);
457
458         synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462
463 /**
464  *      dev_add_offload - register offload handlers
465  *      @po: protocol offload declaration
466  *
467  *      Add protocol offload handlers to the networking stack. The passed
468  *      &proto_offload is linked into kernel lists and may not be freed until
469  *      it has been removed from the kernel lists.
470  *
471  *      This call does not sleep therefore it can not
472  *      guarantee all CPU's that are in middle of receiving packets
473  *      will see the new offload handlers (until the next received packet).
474  */
475 void dev_add_offload(struct packet_offload *po)
476 {
477         struct packet_offload *elem;
478
479         spin_lock(&offload_lock);
480         list_for_each_entry(elem, &offload_base, list) {
481                 if (po->priority < elem->priority)
482                         break;
483         }
484         list_add_rcu(&po->list, elem->list.prev);
485         spin_unlock(&offload_lock);
486 }
487 EXPORT_SYMBOL(dev_add_offload);
488
489 /**
490  *      __dev_remove_offload     - remove offload handler
491  *      @po: packet offload declaration
492  *
493  *      Remove a protocol offload handler that was previously added to the
494  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
495  *      is removed from the kernel lists and can be freed or reused once this
496  *      function returns.
497  *
498  *      The packet type might still be in use by receivers
499  *      and must not be freed until after all the CPU's have gone
500  *      through a quiescent state.
501  */
502 static void __dev_remove_offload(struct packet_offload *po)
503 {
504         struct list_head *head = &offload_base;
505         struct packet_offload *po1;
506
507         spin_lock(&offload_lock);
508
509         list_for_each_entry(po1, head, list) {
510                 if (po == po1) {
511                         list_del_rcu(&po->list);
512                         goto out;
513                 }
514         }
515
516         pr_warn("dev_remove_offload: %p not found\n", po);
517 out:
518         spin_unlock(&offload_lock);
519 }
520
521 /**
522  *      dev_remove_offload       - remove packet offload handler
523  *      @po: packet offload declaration
524  *
525  *      Remove a packet offload handler that was previously added to the kernel
526  *      offload handlers by dev_add_offload(). The passed &offload_type is
527  *      removed from the kernel lists and can be freed or reused once this
528  *      function returns.
529  *
530  *      This call sleeps to guarantee that no CPU is looking at the packet
531  *      type after return.
532  */
533 void dev_remove_offload(struct packet_offload *po)
534 {
535         __dev_remove_offload(po);
536
537         synchronize_net();
538 }
539 EXPORT_SYMBOL(dev_remove_offload);
540
541 /******************************************************************************
542
543                       Device Boot-time Settings Routines
544
545 *******************************************************************************/
546
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550 /**
551  *      netdev_boot_setup_add   - add new setup entry
552  *      @name: name of the device
553  *      @map: configured settings for the device
554  *
555  *      Adds new setup entry to the dev_boot_setup list.  The function
556  *      returns 0 on error and 1 on success.  This is a generic routine to
557  *      all netdevices.
558  */
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 {
561         struct netdev_boot_setup *s;
562         int i;
563
564         s = dev_boot_setup;
565         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567                         memset(s[i].name, 0, sizeof(s[i].name));
568                         strlcpy(s[i].name, name, IFNAMSIZ);
569                         memcpy(&s[i].map, map, sizeof(s[i].map));
570                         break;
571                 }
572         }
573
574         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575 }
576
577 /**
578  *      netdev_boot_setup_check - check boot time settings
579  *      @dev: the netdevice
580  *
581  *      Check boot time settings for the device.
582  *      The found settings are set for the device to be used
583  *      later in the device probing.
584  *      Returns 0 if no settings found, 1 if they are.
585  */
586 int netdev_boot_setup_check(struct net_device *dev)
587 {
588         struct netdev_boot_setup *s = dev_boot_setup;
589         int i;
590
591         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593                     !strcmp(dev->name, s[i].name)) {
594                         dev->irq        = s[i].map.irq;
595                         dev->base_addr  = s[i].map.base_addr;
596                         dev->mem_start  = s[i].map.mem_start;
597                         dev->mem_end    = s[i].map.mem_end;
598                         return 1;
599                 }
600         }
601         return 0;
602 }
603 EXPORT_SYMBOL(netdev_boot_setup_check);
604
605
606 /**
607  *      netdev_boot_base        - get address from boot time settings
608  *      @prefix: prefix for network device
609  *      @unit: id for network device
610  *
611  *      Check boot time settings for the base address of device.
612  *      The found settings are set for the device to be used
613  *      later in the device probing.
614  *      Returns 0 if no settings found.
615  */
616 unsigned long netdev_boot_base(const char *prefix, int unit)
617 {
618         const struct netdev_boot_setup *s = dev_boot_setup;
619         char name[IFNAMSIZ];
620         int i;
621
622         sprintf(name, "%s%d", prefix, unit);
623
624         /*
625          * If device already registered then return base of 1
626          * to indicate not to probe for this interface
627          */
628         if (__dev_get_by_name(&init_net, name))
629                 return 1;
630
631         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632                 if (!strcmp(name, s[i].name))
633                         return s[i].map.base_addr;
634         return 0;
635 }
636
637 /*
638  * Saves at boot time configured settings for any netdevice.
639  */
640 int __init netdev_boot_setup(char *str)
641 {
642         int ints[5];
643         struct ifmap map;
644
645         str = get_options(str, ARRAY_SIZE(ints), ints);
646         if (!str || !*str)
647                 return 0;
648
649         /* Save settings */
650         memset(&map, 0, sizeof(map));
651         if (ints[0] > 0)
652                 map.irq = ints[1];
653         if (ints[0] > 1)
654                 map.base_addr = ints[2];
655         if (ints[0] > 2)
656                 map.mem_start = ints[3];
657         if (ints[0] > 3)
658                 map.mem_end = ints[4];
659
660         /* Add new entry to the list */
661         return netdev_boot_setup_add(str, &map);
662 }
663
664 __setup("netdev=", netdev_boot_setup);
665
666 /*******************************************************************************
667
668                             Device Interface Subroutines
669
670 *******************************************************************************/
671
672 /**
673  *      dev_get_iflink  - get 'iflink' value of a interface
674  *      @dev: targeted interface
675  *
676  *      Indicates the ifindex the interface is linked to.
677  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
678  */
679
680 int dev_get_iflink(const struct net_device *dev)
681 {
682         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683                 return dev->netdev_ops->ndo_get_iflink(dev);
684
685         return dev->ifindex;
686 }
687 EXPORT_SYMBOL(dev_get_iflink);
688
689 /**
690  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
691  *      @dev: targeted interface
692  *      @skb: The packet.
693  *
694  *      For better visibility of tunnel traffic OVS needs to retrieve
695  *      egress tunnel information for a packet. Following API allows
696  *      user to get this info.
697  */
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 {
700         struct ip_tunnel_info *info;
701
702         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
703                 return -EINVAL;
704
705         info = skb_tunnel_info_unclone(skb);
706         if (!info)
707                 return -ENOMEM;
708         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709                 return -EINVAL;
710
711         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 }
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
715 /**
716  *      __dev_get_by_name       - find a device by its name
717  *      @net: the applicable net namespace
718  *      @name: name to find
719  *
720  *      Find an interface by name. Must be called under RTNL semaphore
721  *      or @dev_base_lock. If the name is found a pointer to the device
722  *      is returned. If the name is not found then %NULL is returned. The
723  *      reference counters are not incremented so the caller must be
724  *      careful with locks.
725  */
726
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 {
729         struct net_device *dev;
730         struct hlist_head *head = dev_name_hash(net, name);
731
732         hlist_for_each_entry(dev, head, name_hlist)
733                 if (!strncmp(dev->name, name, IFNAMSIZ))
734                         return dev;
735
736         return NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739
740 /**
741  *      dev_get_by_name_rcu     - find a device by its name
742  *      @net: the applicable net namespace
743  *      @name: name to find
744  *
745  *      Find an interface by name.
746  *      If the name is found a pointer to the device is returned.
747  *      If the name is not found then %NULL is returned.
748  *      The reference counters are not incremented so the caller must be
749  *      careful with locks. The caller must hold RCU lock.
750  */
751
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754         struct net_device *dev;
755         struct hlist_head *head = dev_name_hash(net, name);
756
757         hlist_for_each_entry_rcu(dev, head, name_hlist)
758                 if (!strncmp(dev->name, name, IFNAMSIZ))
759                         return dev;
760
761         return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
764
765 /**
766  *      dev_get_by_name         - find a device by its name
767  *      @net: the applicable net namespace
768  *      @name: name to find
769  *
770  *      Find an interface by name. This can be called from any
771  *      context and does its own locking. The returned handle has
772  *      the usage count incremented and the caller must use dev_put() to
773  *      release it when it is no longer needed. %NULL is returned if no
774  *      matching device is found.
775  */
776
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 {
779         struct net_device *dev;
780
781         rcu_read_lock();
782         dev = dev_get_by_name_rcu(net, name);
783         if (dev)
784                 dev_hold(dev);
785         rcu_read_unlock();
786         return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_name);
789
790 /**
791  *      __dev_get_by_index - find a device by its ifindex
792  *      @net: the applicable net namespace
793  *      @ifindex: index of device
794  *
795  *      Search for an interface by index. Returns %NULL if the device
796  *      is not found or a pointer to the device. The device has not
797  *      had its reference counter increased so the caller must be careful
798  *      about locking. The caller must hold either the RTNL semaphore
799  *      or @dev_base_lock.
800  */
801
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 {
804         struct net_device *dev;
805         struct hlist_head *head = dev_index_hash(net, ifindex);
806
807         hlist_for_each_entry(dev, head, index_hlist)
808                 if (dev->ifindex == ifindex)
809                         return dev;
810
811         return NULL;
812 }
813 EXPORT_SYMBOL(__dev_get_by_index);
814
815 /**
816  *      dev_get_by_index_rcu - find a device by its ifindex
817  *      @net: the applicable net namespace
818  *      @ifindex: index of device
819  *
820  *      Search for an interface by index. Returns %NULL if the device
821  *      is not found or a pointer to the device. The device has not
822  *      had its reference counter increased so the caller must be careful
823  *      about locking. The caller must hold RCU lock.
824  */
825
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 {
828         struct net_device *dev;
829         struct hlist_head *head = dev_index_hash(net, ifindex);
830
831         hlist_for_each_entry_rcu(dev, head, index_hlist)
832                 if (dev->ifindex == ifindex)
833                         return dev;
834
835         return NULL;
836 }
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
838
839
840 /**
841  *      dev_get_by_index - find a device by its ifindex
842  *      @net: the applicable net namespace
843  *      @ifindex: index of device
844  *
845  *      Search for an interface by index. Returns NULL if the device
846  *      is not found or a pointer to the device. The device returned has
847  *      had a reference added and the pointer is safe until the user calls
848  *      dev_put to indicate they have finished with it.
849  */
850
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 {
853         struct net_device *dev;
854
855         rcu_read_lock();
856         dev = dev_get_by_index_rcu(net, ifindex);
857         if (dev)
858                 dev_hold(dev);
859         rcu_read_unlock();
860         return dev;
861 }
862 EXPORT_SYMBOL(dev_get_by_index);
863
864 /**
865  *      netdev_get_name - get a netdevice name, knowing its ifindex.
866  *      @net: network namespace
867  *      @name: a pointer to the buffer where the name will be stored.
868  *      @ifindex: the ifindex of the interface to get the name from.
869  *
870  *      The use of raw_seqcount_begin() and cond_resched() before
871  *      retrying is required as we want to give the writers a chance
872  *      to complete when CONFIG_PREEMPT is not set.
873  */
874 int netdev_get_name(struct net *net, char *name, int ifindex)
875 {
876         struct net_device *dev;
877         unsigned int seq;
878
879 retry:
880         seq = raw_seqcount_begin(&devnet_rename_seq);
881         rcu_read_lock();
882         dev = dev_get_by_index_rcu(net, ifindex);
883         if (!dev) {
884                 rcu_read_unlock();
885                 return -ENODEV;
886         }
887
888         strcpy(name, dev->name);
889         rcu_read_unlock();
890         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891                 cond_resched();
892                 goto retry;
893         }
894
895         return 0;
896 }
897
898 /**
899  *      dev_getbyhwaddr_rcu - find a device by its hardware address
900  *      @net: the applicable net namespace
901  *      @type: media type of device
902  *      @ha: hardware address
903  *
904  *      Search for an interface by MAC address. Returns NULL if the device
905  *      is not found or a pointer to the device.
906  *      The caller must hold RCU or RTNL.
907  *      The returned device has not had its ref count increased
908  *      and the caller must therefore be careful about locking
909  *
910  */
911
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913                                        const char *ha)
914 {
915         struct net_device *dev;
916
917         for_each_netdev_rcu(net, dev)
918                 if (dev->type == type &&
919                     !memcmp(dev->dev_addr, ha, dev->addr_len))
920                         return dev;
921
922         return NULL;
923 }
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 {
928         struct net_device *dev;
929
930         ASSERT_RTNL();
931         for_each_netdev(net, dev)
932                 if (dev->type == type)
933                         return dev;
934
935         return NULL;
936 }
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941         struct net_device *dev, *ret = NULL;
942
943         rcu_read_lock();
944         for_each_netdev_rcu(net, dev)
945                 if (dev->type == type) {
946                         dev_hold(dev);
947                         ret = dev;
948                         break;
949                 }
950         rcu_read_unlock();
951         return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955 /**
956  *      __dev_get_by_flags - find any device with given flags
957  *      @net: the applicable net namespace
958  *      @if_flags: IFF_* values
959  *      @mask: bitmask of bits in if_flags to check
960  *
961  *      Search for any interface with the given flags. Returns NULL if a device
962  *      is not found or a pointer to the device. Must be called inside
963  *      rtnl_lock(), and result refcount is unchanged.
964  */
965
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967                                       unsigned short mask)
968 {
969         struct net_device *dev, *ret;
970
971         ASSERT_RTNL();
972
973         ret = NULL;
974         for_each_netdev(net, dev) {
975                 if (((dev->flags ^ if_flags) & mask) == 0) {
976                         ret = dev;
977                         break;
978                 }
979         }
980         return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983
984 /**
985  *      dev_valid_name - check if name is okay for network device
986  *      @name: name string
987  *
988  *      Network device names need to be valid file names to
989  *      to allow sysfs to work.  We also disallow any kind of
990  *      whitespace.
991  */
992 bool dev_valid_name(const char *name)
993 {
994         if (*name == '\0')
995                 return false;
996         if (strlen(name) >= IFNAMSIZ)
997                 return false;
998         if (!strcmp(name, ".") || !strcmp(name, ".."))
999                 return false;
1000
1001         while (*name) {
1002                 if (*name == '/' || *name == ':' || isspace(*name))
1003                         return false;
1004                 name++;
1005         }
1006         return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009
1010 /**
1011  *      __dev_alloc_name - allocate a name for a device
1012  *      @net: network namespace to allocate the device name in
1013  *      @name: name format string
1014  *      @buf:  scratch buffer and result name string
1015  *
1016  *      Passed a format string - eg "lt%d" it will try and find a suitable
1017  *      id. It scans list of devices to build up a free map, then chooses
1018  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1019  *      while allocating the name and adding the device in order to avoid
1020  *      duplicates.
1021  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022  *      Returns the number of the unit assigned or a negative errno code.
1023  */
1024
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027         int i = 0;
1028         const char *p;
1029         const int max_netdevices = 8*PAGE_SIZE;
1030         unsigned long *inuse;
1031         struct net_device *d;
1032
1033         p = strnchr(name, IFNAMSIZ-1, '%');
1034         if (p) {
1035                 /*
1036                  * Verify the string as this thing may have come from
1037                  * the user.  There must be either one "%d" and no other "%"
1038                  * characters.
1039                  */
1040                 if (p[1] != 'd' || strchr(p + 2, '%'))
1041                         return -EINVAL;
1042
1043                 /* Use one page as a bit array of possible slots */
1044                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1045                 if (!inuse)
1046                         return -ENOMEM;
1047
1048                 for_each_netdev(net, d) {
1049                         if (!sscanf(d->name, name, &i))
1050                                 continue;
1051                         if (i < 0 || i >= max_netdevices)
1052                                 continue;
1053
1054                         /*  avoid cases where sscanf is not exact inverse of printf */
1055                         snprintf(buf, IFNAMSIZ, name, i);
1056                         if (!strncmp(buf, d->name, IFNAMSIZ))
1057                                 set_bit(i, inuse);
1058                 }
1059
1060                 i = find_first_zero_bit(inuse, max_netdevices);
1061                 free_page((unsigned long) inuse);
1062         }
1063
1064         if (buf != name)
1065                 snprintf(buf, IFNAMSIZ, name, i);
1066         if (!__dev_get_by_name(net, buf))
1067                 return i;
1068
1069         /* It is possible to run out of possible slots
1070          * when the name is long and there isn't enough space left
1071          * for the digits, or if all bits are used.
1072          */
1073         return -ENFILE;
1074 }
1075
1076 /**
1077  *      dev_alloc_name - allocate a name for a device
1078  *      @dev: device
1079  *      @name: name format string
1080  *
1081  *      Passed a format string - eg "lt%d" it will try and find a suitable
1082  *      id. It scans list of devices to build up a free map, then chooses
1083  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1084  *      while allocating the name and adding the device in order to avoid
1085  *      duplicates.
1086  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087  *      Returns the number of the unit assigned or a negative errno code.
1088  */
1089
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1091 {
1092         char buf[IFNAMSIZ];
1093         struct net *net;
1094         int ret;
1095
1096         BUG_ON(!dev_net(dev));
1097         net = dev_net(dev);
1098         ret = __dev_alloc_name(net, name, buf);
1099         if (ret >= 0)
1100                 strlcpy(dev->name, buf, IFNAMSIZ);
1101         return ret;
1102 }
1103 EXPORT_SYMBOL(dev_alloc_name);
1104
1105 static int dev_alloc_name_ns(struct net *net,
1106                              struct net_device *dev,
1107                              const char *name)
1108 {
1109         char buf[IFNAMSIZ];
1110         int ret;
1111
1112         ret = __dev_alloc_name(net, name, buf);
1113         if (ret >= 0)
1114                 strlcpy(dev->name, buf, IFNAMSIZ);
1115         return ret;
1116 }
1117
1118 static int dev_get_valid_name(struct net *net,
1119                               struct net_device *dev,
1120                               const char *name)
1121 {
1122         BUG_ON(!net);
1123
1124         if (!dev_valid_name(name))
1125                 return -EINVAL;
1126
1127         if (strchr(name, '%'))
1128                 return dev_alloc_name_ns(net, dev, name);
1129         else if (__dev_get_by_name(net, name))
1130                 return -EEXIST;
1131         else if (dev->name != name)
1132                 strlcpy(dev->name, name, IFNAMSIZ);
1133
1134         return 0;
1135 }
1136
1137 /**
1138  *      dev_change_name - change name of a device
1139  *      @dev: device
1140  *      @newname: name (or format string) must be at least IFNAMSIZ
1141  *
1142  *      Change name of a device, can pass format strings "eth%d".
1143  *      for wildcarding.
1144  */
1145 int dev_change_name(struct net_device *dev, const char *newname)
1146 {
1147         unsigned char old_assign_type;
1148         char oldname[IFNAMSIZ];
1149         int err = 0;
1150         int ret;
1151         struct net *net;
1152
1153         ASSERT_RTNL();
1154         BUG_ON(!dev_net(dev));
1155
1156         net = dev_net(dev);
1157         if (dev->flags & IFF_UP)
1158                 return -EBUSY;
1159
1160         write_seqcount_begin(&devnet_rename_seq);
1161
1162         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163                 write_seqcount_end(&devnet_rename_seq);
1164                 return 0;
1165         }
1166
1167         memcpy(oldname, dev->name, IFNAMSIZ);
1168
1169         err = dev_get_valid_name(net, dev, newname);
1170         if (err < 0) {
1171                 write_seqcount_end(&devnet_rename_seq);
1172                 return err;
1173         }
1174
1175         if (oldname[0] && !strchr(oldname, '%'))
1176                 netdev_info(dev, "renamed from %s\n", oldname);
1177
1178         old_assign_type = dev->name_assign_type;
1179         dev->name_assign_type = NET_NAME_RENAMED;
1180
1181 rollback:
1182         ret = device_rename(&dev->dev, dev->name);
1183         if (ret) {
1184                 memcpy(dev->name, oldname, IFNAMSIZ);
1185                 dev->name_assign_type = old_assign_type;
1186                 write_seqcount_end(&devnet_rename_seq);
1187                 return ret;
1188         }
1189
1190         write_seqcount_end(&devnet_rename_seq);
1191
1192         netdev_adjacent_rename_links(dev, oldname);
1193
1194         write_lock_bh(&dev_base_lock);
1195         hlist_del_rcu(&dev->name_hlist);
1196         write_unlock_bh(&dev_base_lock);
1197
1198         synchronize_rcu();
1199
1200         write_lock_bh(&dev_base_lock);
1201         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202         write_unlock_bh(&dev_base_lock);
1203
1204         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205         ret = notifier_to_errno(ret);
1206
1207         if (ret) {
1208                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209                 if (err >= 0) {
1210                         err = ret;
1211                         write_seqcount_begin(&devnet_rename_seq);
1212                         memcpy(dev->name, oldname, IFNAMSIZ);
1213                         memcpy(oldname, newname, IFNAMSIZ);
1214                         dev->name_assign_type = old_assign_type;
1215                         old_assign_type = NET_NAME_RENAMED;
1216                         goto rollback;
1217                 } else {
1218                         pr_err("%s: name change rollback failed: %d\n",
1219                                dev->name, ret);
1220                 }
1221         }
1222
1223         return err;
1224 }
1225
1226 /**
1227  *      dev_set_alias - change ifalias of a device
1228  *      @dev: device
1229  *      @alias: name up to IFALIASZ
1230  *      @len: limit of bytes to copy from info
1231  *
1232  *      Set ifalias for a device,
1233  */
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 {
1236         char *new_ifalias;
1237
1238         ASSERT_RTNL();
1239
1240         if (len >= IFALIASZ)
1241                 return -EINVAL;
1242
1243         if (!len) {
1244                 kfree(dev->ifalias);
1245                 dev->ifalias = NULL;
1246                 return 0;
1247         }
1248
1249         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250         if (!new_ifalias)
1251                 return -ENOMEM;
1252         dev->ifalias = new_ifalias;
1253
1254         strlcpy(dev->ifalias, alias, len+1);
1255         return len;
1256 }
1257
1258
1259 /**
1260  *      netdev_features_change - device changes features
1261  *      @dev: device to cause notification
1262  *
1263  *      Called to indicate a device has changed features.
1264  */
1265 void netdev_features_change(struct net_device *dev)
1266 {
1267         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 }
1269 EXPORT_SYMBOL(netdev_features_change);
1270
1271 /**
1272  *      netdev_state_change - device changes state
1273  *      @dev: device to cause notification
1274  *
1275  *      Called to indicate a device has changed state. This function calls
1276  *      the notifier chains for netdev_chain and sends a NEWLINK message
1277  *      to the routing socket.
1278  */
1279 void netdev_state_change(struct net_device *dev)
1280 {
1281         if (dev->flags & IFF_UP) {
1282                 struct netdev_notifier_change_info change_info;
1283
1284                 change_info.flags_changed = 0;
1285                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286                                               &change_info.info);
1287                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288         }
1289 }
1290 EXPORT_SYMBOL(netdev_state_change);
1291
1292 /**
1293  *      netdev_notify_peers - notify network peers about existence of @dev
1294  *      @dev: network device
1295  *
1296  * Generate traffic such that interested network peers are aware of
1297  * @dev, such as by generating a gratuitous ARP. This may be used when
1298  * a device wants to inform the rest of the network about some sort of
1299  * reconfiguration such as a failover event or virtual machine
1300  * migration.
1301  */
1302 void netdev_notify_peers(struct net_device *dev)
1303 {
1304         rtnl_lock();
1305         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306         rtnl_unlock();
1307 }
1308 EXPORT_SYMBOL(netdev_notify_peers);
1309
1310 static int __dev_open(struct net_device *dev)
1311 {
1312         const struct net_device_ops *ops = dev->netdev_ops;
1313         int ret;
1314
1315         ASSERT_RTNL();
1316
1317         if (!netif_device_present(dev))
1318                 return -ENODEV;
1319
1320         /* Block netpoll from trying to do any rx path servicing.
1321          * If we don't do this there is a chance ndo_poll_controller
1322          * or ndo_poll may be running while we open the device
1323          */
1324         netpoll_poll_disable(dev);
1325
1326         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327         ret = notifier_to_errno(ret);
1328         if (ret)
1329                 return ret;
1330
1331         set_bit(__LINK_STATE_START, &dev->state);
1332
1333         if (ops->ndo_validate_addr)
1334                 ret = ops->ndo_validate_addr(dev);
1335
1336         if (!ret && ops->ndo_open)
1337                 ret = ops->ndo_open(dev);
1338
1339         netpoll_poll_enable(dev);
1340
1341         if (ret)
1342                 clear_bit(__LINK_STATE_START, &dev->state);
1343         else {
1344                 dev->flags |= IFF_UP;
1345                 dev_set_rx_mode(dev);
1346                 dev_activate(dev);
1347                 add_device_randomness(dev->dev_addr, dev->addr_len);
1348         }
1349
1350         return ret;
1351 }
1352
1353 /**
1354  *      dev_open        - prepare an interface for use.
1355  *      @dev:   device to open
1356  *
1357  *      Takes a device from down to up state. The device's private open
1358  *      function is invoked and then the multicast lists are loaded. Finally
1359  *      the device is moved into the up state and a %NETDEV_UP message is
1360  *      sent to the netdev notifier chain.
1361  *
1362  *      Calling this function on an active interface is a nop. On a failure
1363  *      a negative errno code is returned.
1364  */
1365 int dev_open(struct net_device *dev)
1366 {
1367         int ret;
1368
1369         if (dev->flags & IFF_UP)
1370                 return 0;
1371
1372         ret = __dev_open(dev);
1373         if (ret < 0)
1374                 return ret;
1375
1376         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377         call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379         return ret;
1380 }
1381 EXPORT_SYMBOL(dev_open);
1382
1383 static int __dev_close_many(struct list_head *head)
1384 {
1385         struct net_device *dev;
1386
1387         ASSERT_RTNL();
1388         might_sleep();
1389
1390         list_for_each_entry(dev, head, close_list) {
1391                 /* Temporarily disable netpoll until the interface is down */
1392                 netpoll_poll_disable(dev);
1393
1394                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395
1396                 clear_bit(__LINK_STATE_START, &dev->state);
1397
1398                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399                  * can be even on different cpu. So just clear netif_running().
1400                  *
1401                  * dev->stop() will invoke napi_disable() on all of it's
1402                  * napi_struct instances on this device.
1403                  */
1404                 smp_mb__after_atomic(); /* Commit netif_running(). */
1405         }
1406
1407         dev_deactivate_many(head);
1408
1409         list_for_each_entry(dev, head, close_list) {
1410                 const struct net_device_ops *ops = dev->netdev_ops;
1411
1412                 /*
1413                  *      Call the device specific close. This cannot fail.
1414                  *      Only if device is UP
1415                  *
1416                  *      We allow it to be called even after a DETACH hot-plug
1417                  *      event.
1418                  */
1419                 if (ops->ndo_stop)
1420                         ops->ndo_stop(dev);
1421
1422                 dev->flags &= ~IFF_UP;
1423                 netpoll_poll_enable(dev);
1424         }
1425
1426         return 0;
1427 }
1428
1429 static int __dev_close(struct net_device *dev)
1430 {
1431         int retval;
1432         LIST_HEAD(single);
1433
1434         list_add(&dev->close_list, &single);
1435         retval = __dev_close_many(&single);
1436         list_del(&single);
1437
1438         return retval;
1439 }
1440
1441 int dev_close_many(struct list_head *head, bool unlink)
1442 {
1443         struct net_device *dev, *tmp;
1444
1445         /* Remove the devices that don't need to be closed */
1446         list_for_each_entry_safe(dev, tmp, head, close_list)
1447                 if (!(dev->flags & IFF_UP))
1448                         list_del_init(&dev->close_list);
1449
1450         __dev_close_many(head);
1451
1452         list_for_each_entry_safe(dev, tmp, head, close_list) {
1453                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1455                 if (unlink)
1456                         list_del_init(&dev->close_list);
1457         }
1458
1459         return 0;
1460 }
1461 EXPORT_SYMBOL(dev_close_many);
1462
1463 /**
1464  *      dev_close - shutdown an interface.
1465  *      @dev: device to shutdown
1466  *
1467  *      This function moves an active device into down state. A
1468  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470  *      chain.
1471  */
1472 int dev_close(struct net_device *dev)
1473 {
1474         if (dev->flags & IFF_UP) {
1475                 LIST_HEAD(single);
1476
1477                 list_add(&dev->close_list, &single);
1478                 dev_close_many(&single, true);
1479                 list_del(&single);
1480         }
1481         return 0;
1482 }
1483 EXPORT_SYMBOL(dev_close);
1484
1485
1486 /**
1487  *      dev_disable_lro - disable Large Receive Offload on a device
1488  *      @dev: device
1489  *
1490  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1491  *      called under RTNL.  This is needed if received packets may be
1492  *      forwarded to another interface.
1493  */
1494 void dev_disable_lro(struct net_device *dev)
1495 {
1496         struct net_device *lower_dev;
1497         struct list_head *iter;
1498
1499         dev->wanted_features &= ~NETIF_F_LRO;
1500         netdev_update_features(dev);
1501
1502         if (unlikely(dev->features & NETIF_F_LRO))
1503                 netdev_WARN(dev, "failed to disable LRO!\n");
1504
1505         netdev_for_each_lower_dev(dev, lower_dev, iter)
1506                 dev_disable_lro(lower_dev);
1507 }
1508 EXPORT_SYMBOL(dev_disable_lro);
1509
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511                                    struct net_device *dev)
1512 {
1513         struct netdev_notifier_info info;
1514
1515         netdev_notifier_info_init(&info, dev);
1516         return nb->notifier_call(nb, val, &info);
1517 }
1518
1519 static int dev_boot_phase = 1;
1520
1521 /**
1522  *      register_netdevice_notifier - register a network notifier block
1523  *      @nb: notifier
1524  *
1525  *      Register a notifier to be called when network device events occur.
1526  *      The notifier passed is linked into the kernel structures and must
1527  *      not be reused until it has been unregistered. A negative errno code
1528  *      is returned on a failure.
1529  *
1530  *      When registered all registration and up events are replayed
1531  *      to the new notifier to allow device to have a race free
1532  *      view of the network device list.
1533  */
1534
1535 int register_netdevice_notifier(struct notifier_block *nb)
1536 {
1537         struct net_device *dev;
1538         struct net_device *last;
1539         struct net *net;
1540         int err;
1541
1542         rtnl_lock();
1543         err = raw_notifier_chain_register(&netdev_chain, nb);
1544         if (err)
1545                 goto unlock;
1546         if (dev_boot_phase)
1547                 goto unlock;
1548         for_each_net(net) {
1549                 for_each_netdev(net, dev) {
1550                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551                         err = notifier_to_errno(err);
1552                         if (err)
1553                                 goto rollback;
1554
1555                         if (!(dev->flags & IFF_UP))
1556                                 continue;
1557
1558                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1559                 }
1560         }
1561
1562 unlock:
1563         rtnl_unlock();
1564         return err;
1565
1566 rollback:
1567         last = dev;
1568         for_each_net(net) {
1569                 for_each_netdev(net, dev) {
1570                         if (dev == last)
1571                                 goto outroll;
1572
1573                         if (dev->flags & IFF_UP) {
1574                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575                                                         dev);
1576                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577                         }
1578                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1579                 }
1580         }
1581
1582 outroll:
1583         raw_notifier_chain_unregister(&netdev_chain, nb);
1584         goto unlock;
1585 }
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1587
1588 /**
1589  *      unregister_netdevice_notifier - unregister a network notifier block
1590  *      @nb: notifier
1591  *
1592  *      Unregister a notifier previously registered by
1593  *      register_netdevice_notifier(). The notifier is unlinked into the
1594  *      kernel structures and may then be reused. A negative errno code
1595  *      is returned on a failure.
1596  *
1597  *      After unregistering unregister and down device events are synthesized
1598  *      for all devices on the device list to the removed notifier to remove
1599  *      the need for special case cleanup code.
1600  */
1601
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 {
1604         struct net_device *dev;
1605         struct net *net;
1606         int err;
1607
1608         rtnl_lock();
1609         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1610         if (err)
1611                 goto unlock;
1612
1613         for_each_net(net) {
1614                 for_each_netdev(net, dev) {
1615                         if (dev->flags & IFF_UP) {
1616                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617                                                         dev);
1618                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619                         }
1620                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621                 }
1622         }
1623 unlock:
1624         rtnl_unlock();
1625         return err;
1626 }
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628
1629 /**
1630  *      call_netdevice_notifiers_info - call all network notifier blocks
1631  *      @val: value passed unmodified to notifier function
1632  *      @dev: net_device pointer passed unmodified to notifier function
1633  *      @info: notifier information data
1634  *
1635  *      Call all network notifier blocks.  Parameters and return value
1636  *      are as for raw_notifier_call_chain().
1637  */
1638
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640                                          struct net_device *dev,
1641                                          struct netdev_notifier_info *info)
1642 {
1643         ASSERT_RTNL();
1644         netdev_notifier_info_init(info, dev);
1645         return raw_notifier_call_chain(&netdev_chain, val, info);
1646 }
1647
1648 /**
1649  *      call_netdevice_notifiers - call all network notifier blocks
1650  *      @val: value passed unmodified to notifier function
1651  *      @dev: net_device pointer passed unmodified to notifier function
1652  *
1653  *      Call all network notifier blocks.  Parameters and return value
1654  *      are as for raw_notifier_call_chain().
1655  */
1656
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 {
1659         struct netdev_notifier_info info;
1660
1661         return call_netdevice_notifiers_info(val, dev, &info);
1662 }
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1664
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1667
1668 void net_inc_ingress_queue(void)
1669 {
1670         static_key_slow_inc(&ingress_needed);
1671 }
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674 void net_dec_ingress_queue(void)
1675 {
1676         static_key_slow_dec(&ingress_needed);
1677 }
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #endif
1680
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1683
1684 void net_inc_egress_queue(void)
1685 {
1686         static_key_slow_inc(&egress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690 void net_dec_egress_queue(void)
1691 {
1692         static_key_slow_dec(&egress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 #endif
1696
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700  * If net_disable_timestamp() is called from irq context, defer the
1701  * static_key_slow_dec() calls.
1702  */
1703 static atomic_t netstamp_needed_deferred;
1704 #endif
1705
1706 void net_enable_timestamp(void)
1707 {
1708 #ifdef HAVE_JUMP_LABEL
1709         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711         if (deferred) {
1712                 while (--deferred)
1713                         static_key_slow_dec(&netstamp_needed);
1714                 return;
1715         }
1716 #endif
1717         static_key_slow_inc(&netstamp_needed);
1718 }
1719 EXPORT_SYMBOL(net_enable_timestamp);
1720
1721 void net_disable_timestamp(void)
1722 {
1723 #ifdef HAVE_JUMP_LABEL
1724         if (in_interrupt()) {
1725                 atomic_inc(&netstamp_needed_deferred);
1726                 return;
1727         }
1728 #endif
1729         static_key_slow_dec(&netstamp_needed);
1730 }
1731 EXPORT_SYMBOL(net_disable_timestamp);
1732
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1734 {
1735         skb->tstamp.tv64 = 0;
1736         if (static_key_false(&netstamp_needed))
1737                 __net_timestamp(skb);
1738 }
1739
1740 #define net_timestamp_check(COND, SKB)                  \
1741         if (static_key_false(&netstamp_needed)) {               \
1742                 if ((COND) && !(SKB)->tstamp.tv64)      \
1743                         __net_timestamp(SKB);           \
1744         }                                               \
1745
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 {
1748         unsigned int len;
1749
1750         if (!(dev->flags & IFF_UP))
1751                 return false;
1752
1753         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754         if (skb->len <= len)
1755                 return true;
1756
1757         /* if TSO is enabled, we don't care about the length as the packet
1758          * could be forwarded without being segmented before
1759          */
1760         if (skb_is_gso(skb))
1761                 return true;
1762
1763         return false;
1764 }
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770             unlikely(!is_skb_forwardable(dev, skb))) {
1771                 atomic_long_inc(&dev->rx_dropped);
1772                 kfree_skb(skb);
1773                 return NET_RX_DROP;
1774         }
1775
1776         skb_scrub_packet(skb, true);
1777         skb->priority = 0;
1778         skb->protocol = eth_type_trans(skb, dev);
1779         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1780
1781         return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784
1785 /**
1786  * dev_forward_skb - loopback an skb to another netif
1787  *
1788  * @dev: destination network device
1789  * @skb: buffer to forward
1790  *
1791  * return values:
1792  *      NET_RX_SUCCESS  (no congestion)
1793  *      NET_RX_DROP     (packet was dropped, but freed)
1794  *
1795  * dev_forward_skb can be used for injecting an skb from the
1796  * start_xmit function of one device into the receive queue
1797  * of another device.
1798  *
1799  * The receiving device may be in another namespace, so
1800  * we have to clear all information in the skb that could
1801  * impact namespace isolation.
1802  */
1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804 {
1805         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1806 }
1807 EXPORT_SYMBOL_GPL(dev_forward_skb);
1808
1809 static inline int deliver_skb(struct sk_buff *skb,
1810                               struct packet_type *pt_prev,
1811                               struct net_device *orig_dev)
1812 {
1813         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814                 return -ENOMEM;
1815         atomic_inc(&skb->users);
1816         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817 }
1818
1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820                                           struct packet_type **pt,
1821                                           struct net_device *orig_dev,
1822                                           __be16 type,
1823                                           struct list_head *ptype_list)
1824 {
1825         struct packet_type *ptype, *pt_prev = *pt;
1826
1827         list_for_each_entry_rcu(ptype, ptype_list, list) {
1828                 if (ptype->type != type)
1829                         continue;
1830                 if (pt_prev)
1831                         deliver_skb(skb, pt_prev, orig_dev);
1832                 pt_prev = ptype;
1833         }
1834         *pt = pt_prev;
1835 }
1836
1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838 {
1839         if (!ptype->af_packet_priv || !skb->sk)
1840                 return false;
1841
1842         if (ptype->id_match)
1843                 return ptype->id_match(ptype, skb->sk);
1844         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845                 return true;
1846
1847         return false;
1848 }
1849
1850 /*
1851  *      Support routine. Sends outgoing frames to any network
1852  *      taps currently in use.
1853  */
1854
1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1856 {
1857         struct packet_type *ptype;
1858         struct sk_buff *skb2 = NULL;
1859         struct packet_type *pt_prev = NULL;
1860         struct list_head *ptype_list = &ptype_all;
1861
1862         rcu_read_lock();
1863 again:
1864         list_for_each_entry_rcu(ptype, ptype_list, list) {
1865                 /* Never send packets back to the socket
1866                  * they originated from - MvS (miquels@drinkel.ow.org)
1867                  */
1868                 if (skb_loop_sk(ptype, skb))
1869                         continue;
1870
1871                 if (pt_prev) {
1872                         deliver_skb(skb2, pt_prev, skb->dev);
1873                         pt_prev = ptype;
1874                         continue;
1875                 }
1876
1877                 /* need to clone skb, done only once */
1878                 skb2 = skb_clone(skb, GFP_ATOMIC);
1879                 if (!skb2)
1880                         goto out_unlock;
1881
1882                 net_timestamp_set(skb2);
1883
1884                 /* skb->nh should be correctly
1885                  * set by sender, so that the second statement is
1886                  * just protection against buggy protocols.
1887                  */
1888                 skb_reset_mac_header(skb2);
1889
1890                 if (skb_network_header(skb2) < skb2->data ||
1891                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893                                              ntohs(skb2->protocol),
1894                                              dev->name);
1895                         skb_reset_network_header(skb2);
1896                 }
1897
1898                 skb2->transport_header = skb2->network_header;
1899                 skb2->pkt_type = PACKET_OUTGOING;
1900                 pt_prev = ptype;
1901         }
1902
1903         if (ptype_list == &ptype_all) {
1904                 ptype_list = &dev->ptype_all;
1905                 goto again;
1906         }
1907 out_unlock:
1908         if (pt_prev)
1909                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1910         rcu_read_unlock();
1911 }
1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1913
1914 /**
1915  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1916  * @dev: Network device
1917  * @txq: number of queues available
1918  *
1919  * If real_num_tx_queues is changed the tc mappings may no longer be
1920  * valid. To resolve this verify the tc mapping remains valid and if
1921  * not NULL the mapping. With no priorities mapping to this
1922  * offset/count pair it will no longer be used. In the worst case TC0
1923  * is invalid nothing can be done so disable priority mappings. If is
1924  * expected that drivers will fix this mapping if they can before
1925  * calling netif_set_real_num_tx_queues.
1926  */
1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1928 {
1929         int i;
1930         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931
1932         /* If TC0 is invalidated disable TC mapping */
1933         if (tc->offset + tc->count > txq) {
1934                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1935                 dev->num_tc = 0;
1936                 return;
1937         }
1938
1939         /* Invalidated prio to tc mappings set to TC0 */
1940         for (i = 1; i < TC_BITMASK + 1; i++) {
1941                 int q = netdev_get_prio_tc_map(dev, i);
1942
1943                 tc = &dev->tc_to_txq[q];
1944                 if (tc->offset + tc->count > txq) {
1945                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946                                 i, q);
1947                         netdev_set_prio_tc_map(dev, i, 0);
1948                 }
1949         }
1950 }
1951
1952 #ifdef CONFIG_XPS
1953 static DEFINE_MUTEX(xps_map_mutex);
1954 #define xmap_dereference(P)             \
1955         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956
1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958                                         int cpu, u16 index)
1959 {
1960         struct xps_map *map = NULL;
1961         int pos;
1962
1963         if (dev_maps)
1964                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1965
1966         for (pos = 0; map && pos < map->len; pos++) {
1967                 if (map->queues[pos] == index) {
1968                         if (map->len > 1) {
1969                                 map->queues[pos] = map->queues[--map->len];
1970                         } else {
1971                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1972                                 kfree_rcu(map, rcu);
1973                                 map = NULL;
1974                         }
1975                         break;
1976                 }
1977         }
1978
1979         return map;
1980 }
1981
1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1983 {
1984         struct xps_dev_maps *dev_maps;
1985         int cpu, i;
1986         bool active = false;
1987
1988         mutex_lock(&xps_map_mutex);
1989         dev_maps = xmap_dereference(dev->xps_maps);
1990
1991         if (!dev_maps)
1992                 goto out_no_maps;
1993
1994         for_each_possible_cpu(cpu) {
1995                 for (i = index; i < dev->num_tx_queues; i++) {
1996                         if (!remove_xps_queue(dev_maps, cpu, i))
1997                                 break;
1998                 }
1999                 if (i == dev->num_tx_queues)
2000                         active = true;
2001         }
2002
2003         if (!active) {
2004                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005                 kfree_rcu(dev_maps, rcu);
2006         }
2007
2008         for (i = index; i < dev->num_tx_queues; i++)
2009                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010                                              NUMA_NO_NODE);
2011
2012 out_no_maps:
2013         mutex_unlock(&xps_map_mutex);
2014 }
2015
2016 static struct xps_map *expand_xps_map(struct xps_map *map,
2017                                       int cpu, u16 index)
2018 {
2019         struct xps_map *new_map;
2020         int alloc_len = XPS_MIN_MAP_ALLOC;
2021         int i, pos;
2022
2023         for (pos = 0; map && pos < map->len; pos++) {
2024                 if (map->queues[pos] != index)
2025                         continue;
2026                 return map;
2027         }
2028
2029         /* Need to add queue to this CPU's existing map */
2030         if (map) {
2031                 if (pos < map->alloc_len)
2032                         return map;
2033
2034                 alloc_len = map->alloc_len * 2;
2035         }
2036
2037         /* Need to allocate new map to store queue on this CPU's map */
2038         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039                                cpu_to_node(cpu));
2040         if (!new_map)
2041                 return NULL;
2042
2043         for (i = 0; i < pos; i++)
2044                 new_map->queues[i] = map->queues[i];
2045         new_map->alloc_len = alloc_len;
2046         new_map->len = pos;
2047
2048         return new_map;
2049 }
2050
2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052                         u16 index)
2053 {
2054         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2055         struct xps_map *map, *new_map;
2056         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2057         int cpu, numa_node_id = -2;
2058         bool active = false;
2059
2060         mutex_lock(&xps_map_mutex);
2061
2062         dev_maps = xmap_dereference(dev->xps_maps);
2063
2064         /* allocate memory for queue storage */
2065         for_each_online_cpu(cpu) {
2066                 if (!cpumask_test_cpu(cpu, mask))
2067                         continue;
2068
2069                 if (!new_dev_maps)
2070                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2071                 if (!new_dev_maps) {
2072                         mutex_unlock(&xps_map_mutex);
2073                         return -ENOMEM;
2074                 }
2075
2076                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077                                  NULL;
2078
2079                 map = expand_xps_map(map, cpu, index);
2080                 if (!map)
2081                         goto error;
2082
2083                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084         }
2085
2086         if (!new_dev_maps)
2087                 goto out_no_new_maps;
2088
2089         for_each_possible_cpu(cpu) {
2090                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091                         /* add queue to CPU maps */
2092                         int pos = 0;
2093
2094                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095                         while ((pos < map->len) && (map->queues[pos] != index))
2096                                 pos++;
2097
2098                         if (pos == map->len)
2099                                 map->queues[map->len++] = index;
2100 #ifdef CONFIG_NUMA
2101                         if (numa_node_id == -2)
2102                                 numa_node_id = cpu_to_node(cpu);
2103                         else if (numa_node_id != cpu_to_node(cpu))
2104                                 numa_node_id = -1;
2105 #endif
2106                 } else if (dev_maps) {
2107                         /* fill in the new device map from the old device map */
2108                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2110                 }
2111
2112         }
2113
2114         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115
2116         /* Cleanup old maps */
2117         if (dev_maps) {
2118                 for_each_possible_cpu(cpu) {
2119                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121                         if (map && map != new_map)
2122                                 kfree_rcu(map, rcu);
2123                 }
2124
2125                 kfree_rcu(dev_maps, rcu);
2126         }
2127
2128         dev_maps = new_dev_maps;
2129         active = true;
2130
2131 out_no_new_maps:
2132         /* update Tx queue numa node */
2133         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134                                      (numa_node_id >= 0) ? numa_node_id :
2135                                      NUMA_NO_NODE);
2136
2137         if (!dev_maps)
2138                 goto out_no_maps;
2139
2140         /* removes queue from unused CPUs */
2141         for_each_possible_cpu(cpu) {
2142                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143                         continue;
2144
2145                 if (remove_xps_queue(dev_maps, cpu, index))
2146                         active = true;
2147         }
2148
2149         /* free map if not active */
2150         if (!active) {
2151                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152                 kfree_rcu(dev_maps, rcu);
2153         }
2154
2155 out_no_maps:
2156         mutex_unlock(&xps_map_mutex);
2157
2158         return 0;
2159 error:
2160         /* remove any maps that we added */
2161         for_each_possible_cpu(cpu) {
2162                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164                                  NULL;
2165                 if (new_map && new_map != map)
2166                         kfree(new_map);
2167         }
2168
2169         mutex_unlock(&xps_map_mutex);
2170
2171         kfree(new_dev_maps);
2172         return -ENOMEM;
2173 }
2174 EXPORT_SYMBOL(netif_set_xps_queue);
2175
2176 #endif
2177 /*
2178  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180  */
2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2182 {
2183         int rc;
2184
2185         if (txq < 1 || txq > dev->num_tx_queues)
2186                 return -EINVAL;
2187
2188         if (dev->reg_state == NETREG_REGISTERED ||
2189             dev->reg_state == NETREG_UNREGISTERING) {
2190                 ASSERT_RTNL();
2191
2192                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193                                                   txq);
2194                 if (rc)
2195                         return rc;
2196
2197                 if (dev->num_tc)
2198                         netif_setup_tc(dev, txq);
2199
2200                 if (txq < dev->real_num_tx_queues) {
2201                         qdisc_reset_all_tx_gt(dev, txq);
2202 #ifdef CONFIG_XPS
2203                         netif_reset_xps_queues_gt(dev, txq);
2204 #endif
2205                 }
2206         }
2207
2208         dev->real_num_tx_queues = txq;
2209         return 0;
2210 }
2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2212
2213 #ifdef CONFIG_SYSFS
2214 /**
2215  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2216  *      @dev: Network device
2217  *      @rxq: Actual number of RX queues
2218  *
2219  *      This must be called either with the rtnl_lock held or before
2220  *      registration of the net device.  Returns 0 on success, or a
2221  *      negative error code.  If called before registration, it always
2222  *      succeeds.
2223  */
2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225 {
2226         int rc;
2227
2228         if (rxq < 1 || rxq > dev->num_rx_queues)
2229                 return -EINVAL;
2230
2231         if (dev->reg_state == NETREG_REGISTERED) {
2232                 ASSERT_RTNL();
2233
2234                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235                                                   rxq);
2236                 if (rc)
2237                         return rc;
2238         }
2239
2240         dev->real_num_rx_queues = rxq;
2241         return 0;
2242 }
2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244 #endif
2245
2246 /**
2247  * netif_get_num_default_rss_queues - default number of RSS queues
2248  *
2249  * This routine should set an upper limit on the number of RSS queues
2250  * used by default by multiqueue devices.
2251  */
2252 int netif_get_num_default_rss_queues(void)
2253 {
2254         return is_kdump_kernel() ?
2255                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2256 }
2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
2259 static void __netif_reschedule(struct Qdisc *q)
2260 {
2261         struct softnet_data *sd;
2262         unsigned long flags;
2263
2264         local_irq_save(flags);
2265         sd = this_cpu_ptr(&softnet_data);
2266         q->next_sched = NULL;
2267         *sd->output_queue_tailp = q;
2268         sd->output_queue_tailp = &q->next_sched;
2269         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270         local_irq_restore(flags);
2271 }
2272
2273 void __netif_schedule(struct Qdisc *q)
2274 {
2275         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276                 __netif_reschedule(q);
2277 }
2278 EXPORT_SYMBOL(__netif_schedule);
2279
2280 struct dev_kfree_skb_cb {
2281         enum skb_free_reason reason;
2282 };
2283
2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2285 {
2286         return (struct dev_kfree_skb_cb *)skb->cb;
2287 }
2288
2289 void netif_schedule_queue(struct netdev_queue *txq)
2290 {
2291         rcu_read_lock();
2292         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295                 __netif_schedule(q);
2296         }
2297         rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL(netif_schedule_queue);
2300
2301 /**
2302  *      netif_wake_subqueue - allow sending packets on subqueue
2303  *      @dev: network device
2304  *      @queue_index: sub queue index
2305  *
2306  * Resume individual transmit queue of a device with multiple transmit queues.
2307  */
2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313                 struct Qdisc *q;
2314
2315                 rcu_read_lock();
2316                 q = rcu_dereference(txq->qdisc);
2317                 __netif_schedule(q);
2318                 rcu_read_unlock();
2319         }
2320 }
2321 EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324 {
2325         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326                 struct Qdisc *q;
2327
2328                 rcu_read_lock();
2329                 q = rcu_dereference(dev_queue->qdisc);
2330                 __netif_schedule(q);
2331                 rcu_read_unlock();
2332         }
2333 }
2334 EXPORT_SYMBOL(netif_tx_wake_queue);
2335
2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2337 {
2338         unsigned long flags;
2339
2340         if (likely(atomic_read(&skb->users) == 1)) {
2341                 smp_rmb();
2342                 atomic_set(&skb->users, 0);
2343         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344                 return;
2345         }
2346         get_kfree_skb_cb(skb)->reason = reason;
2347         local_irq_save(flags);
2348         skb->next = __this_cpu_read(softnet_data.completion_queue);
2349         __this_cpu_write(softnet_data.completion_queue, skb);
2350         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351         local_irq_restore(flags);
2352 }
2353 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2354
2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2356 {
2357         if (in_irq() || irqs_disabled())
2358                 __dev_kfree_skb_irq(skb, reason);
2359         else
2360                 dev_kfree_skb(skb);
2361 }
2362 EXPORT_SYMBOL(__dev_kfree_skb_any);
2363
2364
2365 /**
2366  * netif_device_detach - mark device as removed
2367  * @dev: network device
2368  *
2369  * Mark device as removed from system and therefore no longer available.
2370  */
2371 void netif_device_detach(struct net_device *dev)
2372 {
2373         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374             netif_running(dev)) {
2375                 netif_tx_stop_all_queues(dev);
2376         }
2377 }
2378 EXPORT_SYMBOL(netif_device_detach);
2379
2380 /**
2381  * netif_device_attach - mark device as attached
2382  * @dev: network device
2383  *
2384  * Mark device as attached from system and restart if needed.
2385  */
2386 void netif_device_attach(struct net_device *dev)
2387 {
2388         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389             netif_running(dev)) {
2390                 netif_tx_wake_all_queues(dev);
2391                 __netdev_watchdog_up(dev);
2392         }
2393 }
2394 EXPORT_SYMBOL(netif_device_attach);
2395
2396 /*
2397  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398  * to be used as a distribution range.
2399  */
2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401                   unsigned int num_tx_queues)
2402 {
2403         u32 hash;
2404         u16 qoffset = 0;
2405         u16 qcount = num_tx_queues;
2406
2407         if (skb_rx_queue_recorded(skb)) {
2408                 hash = skb_get_rx_queue(skb);
2409                 while (unlikely(hash >= num_tx_queues))
2410                         hash -= num_tx_queues;
2411                 return hash;
2412         }
2413
2414         if (dev->num_tc) {
2415                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416                 qoffset = dev->tc_to_txq[tc].offset;
2417                 qcount = dev->tc_to_txq[tc].count;
2418         }
2419
2420         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421 }
2422 EXPORT_SYMBOL(__skb_tx_hash);
2423
2424 static void skb_warn_bad_offload(const struct sk_buff *skb)
2425 {
2426         static const netdev_features_t null_features;
2427         struct net_device *dev = skb->dev;
2428         const char *name = "";
2429
2430         if (!net_ratelimit())
2431                 return;
2432
2433         if (dev) {
2434                 if (dev->dev.parent)
2435                         name = dev_driver_string(dev->dev.parent);
2436                 else
2437                         name = netdev_name(dev);
2438         }
2439         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440              "gso_type=%d ip_summed=%d\n",
2441              name, dev ? &dev->features : &null_features,
2442              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2443              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444              skb_shinfo(skb)->gso_type, skb->ip_summed);
2445 }
2446
2447 /*
2448  * Invalidate hardware checksum when packet is to be mangled, and
2449  * complete checksum manually on outgoing path.
2450  */
2451 int skb_checksum_help(struct sk_buff *skb)
2452 {
2453         __wsum csum;
2454         int ret = 0, offset;
2455
2456         if (skb->ip_summed == CHECKSUM_COMPLETE)
2457                 goto out_set_summed;
2458
2459         if (unlikely(skb_shinfo(skb)->gso_size)) {
2460                 skb_warn_bad_offload(skb);
2461                 return -EINVAL;
2462         }
2463
2464         /* Before computing a checksum, we should make sure no frag could
2465          * be modified by an external entity : checksum could be wrong.
2466          */
2467         if (skb_has_shared_frag(skb)) {
2468                 ret = __skb_linearize(skb);
2469                 if (ret)
2470                         goto out;
2471         }
2472
2473         offset = skb_checksum_start_offset(skb);
2474         BUG_ON(offset >= skb_headlen(skb));
2475         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477         offset += skb->csum_offset;
2478         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480         if (skb_cloned(skb) &&
2481             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2482                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483                 if (ret)
2484                         goto out;
2485         }
2486
2487         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2488 out_set_summed:
2489         skb->ip_summed = CHECKSUM_NONE;
2490 out:
2491         return ret;
2492 }
2493 EXPORT_SYMBOL(skb_checksum_help);
2494
2495 /* skb_csum_offload_check - Driver helper function to determine if a device
2496  * with limited checksum offload capabilities is able to offload the checksum
2497  * for a given packet.
2498  *
2499  * Arguments:
2500  *   skb - sk_buff for the packet in question
2501  *   spec - contains the description of what device can offload
2502  *   csum_encapped - returns true if the checksum being offloaded is
2503  *            encpasulated. That is it is checksum for the transport header
2504  *            in the inner headers.
2505  *   checksum_help - when set indicates that helper function should
2506  *            call skb_checksum_help if offload checks fail
2507  *
2508  * Returns:
2509  *   true: Packet has passed the checksum checks and should be offloadable to
2510  *         the device (a driver may still need to check for additional
2511  *         restrictions of its device)
2512  *   false: Checksum is not offloadable. If checksum_help was set then
2513  *         skb_checksum_help was called to resolve checksum for non-GSO
2514  *         packets and when IP protocol is not SCTP
2515  */
2516 bool __skb_csum_offload_chk(struct sk_buff *skb,
2517                             const struct skb_csum_offl_spec *spec,
2518                             bool *csum_encapped,
2519                             bool csum_help)
2520 {
2521         struct iphdr *iph;
2522         struct ipv6hdr *ipv6;
2523         void *nhdr;
2524         int protocol;
2525         u8 ip_proto;
2526
2527         if (skb->protocol == htons(ETH_P_8021Q) ||
2528             skb->protocol == htons(ETH_P_8021AD)) {
2529                 if (!spec->vlan_okay)
2530                         goto need_help;
2531         }
2532
2533         /* We check whether the checksum refers to a transport layer checksum in
2534          * the outermost header or an encapsulated transport layer checksum that
2535          * corresponds to the inner headers of the skb. If the checksum is for
2536          * something else in the packet we need help.
2537          */
2538         if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539                 /* Non-encapsulated checksum */
2540                 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541                 nhdr = skb_network_header(skb);
2542                 *csum_encapped = false;
2543                 if (spec->no_not_encapped)
2544                         goto need_help;
2545         } else if (skb->encapsulation && spec->encap_okay &&
2546                    skb_checksum_start_offset(skb) ==
2547                    skb_inner_transport_offset(skb)) {
2548                 /* Encapsulated checksum */
2549                 *csum_encapped = true;
2550                 switch (skb->inner_protocol_type) {
2551                 case ENCAP_TYPE_ETHER:
2552                         protocol = eproto_to_ipproto(skb->inner_protocol);
2553                         break;
2554                 case ENCAP_TYPE_IPPROTO:
2555                         protocol = skb->inner_protocol;
2556                         break;
2557                 }
2558                 nhdr = skb_inner_network_header(skb);
2559         } else {
2560                 goto need_help;
2561         }
2562
2563         switch (protocol) {
2564         case IPPROTO_IP:
2565                 if (!spec->ipv4_okay)
2566                         goto need_help;
2567                 iph = nhdr;
2568                 ip_proto = iph->protocol;
2569                 if (iph->ihl != 5 && !spec->ip_options_okay)
2570                         goto need_help;
2571                 break;
2572         case IPPROTO_IPV6:
2573                 if (!spec->ipv6_okay)
2574                         goto need_help;
2575                 if (spec->no_encapped_ipv6 && *csum_encapped)
2576                         goto need_help;
2577                 ipv6 = nhdr;
2578                 nhdr += sizeof(*ipv6);
2579                 ip_proto = ipv6->nexthdr;
2580                 break;
2581         default:
2582                 goto need_help;
2583         }
2584
2585 ip_proto_again:
2586         switch (ip_proto) {
2587         case IPPROTO_TCP:
2588                 if (!spec->tcp_okay ||
2589                     skb->csum_offset != offsetof(struct tcphdr, check))
2590                         goto need_help;
2591                 break;
2592         case IPPROTO_UDP:
2593                 if (!spec->udp_okay ||
2594                     skb->csum_offset != offsetof(struct udphdr, check))
2595                         goto need_help;
2596                 break;
2597         case IPPROTO_SCTP:
2598                 if (!spec->sctp_okay ||
2599                     skb->csum_offset != offsetof(struct sctphdr, checksum))
2600                         goto cant_help;
2601                 break;
2602         case NEXTHDR_HOP:
2603         case NEXTHDR_ROUTING:
2604         case NEXTHDR_DEST: {
2605                 u8 *opthdr = nhdr;
2606
2607                 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608                         goto need_help;
2609
2610                 ip_proto = opthdr[0];
2611                 nhdr += (opthdr[1] + 1) << 3;
2612
2613                 goto ip_proto_again;
2614         }
2615         default:
2616                 goto need_help;
2617         }
2618
2619         /* Passed the tests for offloading checksum */
2620         return true;
2621
2622 need_help:
2623         if (csum_help && !skb_shinfo(skb)->gso_size)
2624                 skb_checksum_help(skb);
2625 cant_help:
2626         return false;
2627 }
2628 EXPORT_SYMBOL(__skb_csum_offload_chk);
2629
2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2631 {
2632         __be16 type = skb->protocol;
2633
2634         /* Tunnel gso handlers can set protocol to ethernet. */
2635         if (type == htons(ETH_P_TEB)) {
2636                 struct ethhdr *eth;
2637
2638                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639                         return 0;
2640
2641                 eth = (struct ethhdr *)skb_mac_header(skb);
2642                 type = eth->h_proto;
2643         }
2644
2645         return __vlan_get_protocol(skb, type, depth);
2646 }
2647
2648 /**
2649  *      skb_mac_gso_segment - mac layer segmentation handler.
2650  *      @skb: buffer to segment
2651  *      @features: features for the output path (see dev->features)
2652  */
2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654                                     netdev_features_t features)
2655 {
2656         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657         struct packet_offload *ptype;
2658         int vlan_depth = skb->mac_len;
2659         __be16 type = skb_network_protocol(skb, &vlan_depth);
2660
2661         if (unlikely(!type))
2662                 return ERR_PTR(-EINVAL);
2663
2664         __skb_pull(skb, vlan_depth);
2665
2666         rcu_read_lock();
2667         list_for_each_entry_rcu(ptype, &offload_base, list) {
2668                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2669                         segs = ptype->callbacks.gso_segment(skb, features);
2670                         break;
2671                 }
2672         }
2673         rcu_read_unlock();
2674
2675         __skb_push(skb, skb->data - skb_mac_header(skb));
2676
2677         return segs;
2678 }
2679 EXPORT_SYMBOL(skb_mac_gso_segment);
2680
2681
2682 /* openvswitch calls this on rx path, so we need a different check.
2683  */
2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685 {
2686         if (tx_path)
2687                 return skb->ip_summed != CHECKSUM_PARTIAL;
2688         else
2689                 return skb->ip_summed == CHECKSUM_NONE;
2690 }
2691
2692 /**
2693  *      __skb_gso_segment - Perform segmentation on skb.
2694  *      @skb: buffer to segment
2695  *      @features: features for the output path (see dev->features)
2696  *      @tx_path: whether it is called in TX path
2697  *
2698  *      This function segments the given skb and returns a list of segments.
2699  *
2700  *      It may return NULL if the skb requires no segmentation.  This is
2701  *      only possible when GSO is used for verifying header integrity.
2702  *
2703  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2704  */
2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706                                   netdev_features_t features, bool tx_path)
2707 {
2708         if (unlikely(skb_needs_check(skb, tx_path))) {
2709                 int err;
2710
2711                 skb_warn_bad_offload(skb);
2712
2713                 err = skb_cow_head(skb, 0);
2714                 if (err < 0)
2715                         return ERR_PTR(err);
2716         }
2717
2718         /* Only report GSO partial support if it will enable us to
2719          * support segmentation on this frame without needing additional
2720          * work.
2721          */
2722         if (features & NETIF_F_GSO_PARTIAL) {
2723                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724                 struct net_device *dev = skb->dev;
2725
2726                 partial_features |= dev->features & dev->gso_partial_features;
2727                 if (!skb_gso_ok(skb, features | partial_features))
2728                         features &= ~NETIF_F_GSO_PARTIAL;
2729         }
2730
2731         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733
2734         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2735         SKB_GSO_CB(skb)->encap_level = 0;
2736
2737         skb_reset_mac_header(skb);
2738         skb_reset_mac_len(skb);
2739
2740         return skb_mac_gso_segment(skb, features);
2741 }
2742 EXPORT_SYMBOL(__skb_gso_segment);
2743
2744 /* Take action when hardware reception checksum errors are detected. */
2745 #ifdef CONFIG_BUG
2746 void netdev_rx_csum_fault(struct net_device *dev)
2747 {
2748         if (net_ratelimit()) {
2749                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2750                 dump_stack();
2751         }
2752 }
2753 EXPORT_SYMBOL(netdev_rx_csum_fault);
2754 #endif
2755
2756 /* Actually, we should eliminate this check as soon as we know, that:
2757  * 1. IOMMU is present and allows to map all the memory.
2758  * 2. No high memory really exists on this machine.
2759  */
2760
2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2762 {
2763 #ifdef CONFIG_HIGHMEM
2764         int i;
2765         if (!(dev->features & NETIF_F_HIGHDMA)) {
2766                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768                         if (PageHighMem(skb_frag_page(frag)))
2769                                 return 1;
2770                 }
2771         }
2772
2773         if (PCI_DMA_BUS_IS_PHYS) {
2774                 struct device *pdev = dev->dev.parent;
2775
2776                 if (!pdev)
2777                         return 0;
2778                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2781                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782                                 return 1;
2783                 }
2784         }
2785 #endif
2786         return 0;
2787 }
2788
2789 /* If MPLS offload request, verify we are testing hardware MPLS features
2790  * instead of standard features for the netdev.
2791  */
2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2793 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794                                            netdev_features_t features,
2795                                            __be16 type)
2796 {
2797         if (eth_p_mpls(type))
2798                 features &= skb->dev->mpls_features;
2799
2800         return features;
2801 }
2802 #else
2803 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804                                            netdev_features_t features,
2805                                            __be16 type)
2806 {
2807         return features;
2808 }
2809 #endif
2810
2811 static netdev_features_t harmonize_features(struct sk_buff *skb,
2812         netdev_features_t features)
2813 {
2814         int tmp;
2815         __be16 type;
2816
2817         type = skb_network_protocol(skb, &tmp);
2818         features = net_mpls_features(skb, features, type);
2819
2820         if (skb->ip_summed != CHECKSUM_NONE &&
2821             !can_checksum_protocol(features, type)) {
2822                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2823         } else if (illegal_highdma(skb->dev, skb)) {
2824                 features &= ~NETIF_F_SG;
2825         }
2826
2827         return features;
2828 }
2829
2830 netdev_features_t passthru_features_check(struct sk_buff *skb,
2831                                           struct net_device *dev,
2832                                           netdev_features_t features)
2833 {
2834         return features;
2835 }
2836 EXPORT_SYMBOL(passthru_features_check);
2837
2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839                                              struct net_device *dev,
2840                                              netdev_features_t features)
2841 {
2842         return vlan_features_check(skb, features);
2843 }
2844
2845 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846                                             struct net_device *dev,
2847                                             netdev_features_t features)
2848 {
2849         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850
2851         if (gso_segs > dev->gso_max_segs)
2852                 return features & ~NETIF_F_GSO_MASK;
2853
2854         /* Support for GSO partial features requires software
2855          * intervention before we can actually process the packets
2856          * so we need to strip support for any partial features now
2857          * and we can pull them back in after we have partially
2858          * segmented the frame.
2859          */
2860         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861                 features &= ~dev->gso_partial_features;
2862
2863         /* Make sure to clear the IPv4 ID mangling feature if the
2864          * IPv4 header has the potential to be fragmented.
2865          */
2866         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867                 struct iphdr *iph = skb->encapsulation ?
2868                                     inner_ip_hdr(skb) : ip_hdr(skb);
2869
2870                 if (!(iph->frag_off & htons(IP_DF)))
2871                         features &= ~NETIF_F_TSO_MANGLEID;
2872         }
2873
2874         return features;
2875 }
2876
2877 netdev_features_t netif_skb_features(struct sk_buff *skb)
2878 {
2879         struct net_device *dev = skb->dev;
2880         netdev_features_t features = dev->features;
2881
2882         if (skb_is_gso(skb))
2883                 features = gso_features_check(skb, dev, features);
2884
2885         /* If encapsulation offload request, verify we are testing
2886          * hardware encapsulation features instead of standard
2887          * features for the netdev
2888          */
2889         if (skb->encapsulation)
2890                 features &= dev->hw_enc_features;
2891
2892         if (skb_vlan_tagged(skb))
2893                 features = netdev_intersect_features(features,
2894                                                      dev->vlan_features |
2895                                                      NETIF_F_HW_VLAN_CTAG_TX |
2896                                                      NETIF_F_HW_VLAN_STAG_TX);
2897
2898         if (dev->netdev_ops->ndo_features_check)
2899                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900                                                                 features);
2901         else
2902                 features &= dflt_features_check(skb, dev, features);
2903
2904         return harmonize_features(skb, features);
2905 }
2906 EXPORT_SYMBOL(netif_skb_features);
2907
2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2909                     struct netdev_queue *txq, bool more)
2910 {
2911         unsigned int len;
2912         int rc;
2913
2914         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2915                 dev_queue_xmit_nit(skb, dev);
2916
2917         len = skb->len;
2918         trace_net_dev_start_xmit(skb, dev);
2919         rc = netdev_start_xmit(skb, dev, txq, more);
2920         trace_net_dev_xmit(skb, rc, dev, len);
2921
2922         return rc;
2923 }
2924
2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926                                     struct netdev_queue *txq, int *ret)
2927 {
2928         struct sk_buff *skb = first;
2929         int rc = NETDEV_TX_OK;
2930
2931         while (skb) {
2932                 struct sk_buff *next = skb->next;
2933
2934                 skb->next = NULL;
2935                 rc = xmit_one(skb, dev, txq, next != NULL);
2936                 if (unlikely(!dev_xmit_complete(rc))) {
2937                         skb->next = next;
2938                         goto out;
2939                 }
2940
2941                 skb = next;
2942                 if (netif_xmit_stopped(txq) && skb) {
2943                         rc = NETDEV_TX_BUSY;
2944                         break;
2945                 }
2946         }
2947
2948 out:
2949         *ret = rc;
2950         return skb;
2951 }
2952
2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954                                           netdev_features_t features)
2955 {
2956         if (skb_vlan_tag_present(skb) &&
2957             !vlan_hw_offload_capable(features, skb->vlan_proto))
2958                 skb = __vlan_hwaccel_push_inside(skb);
2959         return skb;
2960 }
2961
2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2963 {
2964         netdev_features_t features;
2965
2966         features = netif_skb_features(skb);
2967         skb = validate_xmit_vlan(skb, features);
2968         if (unlikely(!skb))
2969                 goto out_null;
2970
2971         if (netif_needs_gso(skb, features)) {
2972                 struct sk_buff *segs;
2973
2974                 segs = skb_gso_segment(skb, features);
2975                 if (IS_ERR(segs)) {
2976                         goto out_kfree_skb;
2977                 } else if (segs) {
2978                         consume_skb(skb);
2979                         skb = segs;
2980                 }
2981         } else {
2982                 if (skb_needs_linearize(skb, features) &&
2983                     __skb_linearize(skb))
2984                         goto out_kfree_skb;
2985
2986                 /* If packet is not checksummed and device does not
2987                  * support checksumming for this protocol, complete
2988                  * checksumming here.
2989                  */
2990                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991                         if (skb->encapsulation)
2992                                 skb_set_inner_transport_header(skb,
2993                                                                skb_checksum_start_offset(skb));
2994                         else
2995                                 skb_set_transport_header(skb,
2996                                                          skb_checksum_start_offset(skb));
2997                         if (!(features & NETIF_F_CSUM_MASK) &&
2998                             skb_checksum_help(skb))
2999                                 goto out_kfree_skb;
3000                 }
3001         }
3002
3003         return skb;
3004
3005 out_kfree_skb:
3006         kfree_skb(skb);
3007 out_null:
3008         atomic_long_inc(&dev->tx_dropped);
3009         return NULL;
3010 }
3011
3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013 {
3014         struct sk_buff *next, *head = NULL, *tail;
3015
3016         for (; skb != NULL; skb = next) {
3017                 next = skb->next;
3018                 skb->next = NULL;
3019
3020                 /* in case skb wont be segmented, point to itself */
3021                 skb->prev = skb;
3022
3023                 skb = validate_xmit_skb(skb, dev);
3024                 if (!skb)
3025                         continue;
3026
3027                 if (!head)
3028                         head = skb;
3029                 else
3030                         tail->next = skb;
3031                 /* If skb was segmented, skb->prev points to
3032                  * the last segment. If not, it still contains skb.
3033                  */
3034                 tail = skb->prev;
3035         }
3036         return head;
3037 }
3038
3039 static void qdisc_pkt_len_init(struct sk_buff *skb)
3040 {
3041         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042
3043         qdisc_skb_cb(skb)->pkt_len = skb->len;
3044
3045         /* To get more precise estimation of bytes sent on wire,
3046          * we add to pkt_len the headers size of all segments
3047          */
3048         if (shinfo->gso_size)  {
3049                 unsigned int hdr_len;
3050                 u16 gso_segs = shinfo->gso_segs;
3051
3052                 /* mac layer + network layer */
3053                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054
3055                 /* + transport layer */
3056                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057                         hdr_len += tcp_hdrlen(skb);
3058                 else
3059                         hdr_len += sizeof(struct udphdr);
3060
3061                 if (shinfo->gso_type & SKB_GSO_DODGY)
3062                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063                                                 shinfo->gso_size);
3064
3065                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3066         }
3067 }
3068
3069 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070                                  struct net_device *dev,
3071                                  struct netdev_queue *txq)
3072 {
3073         spinlock_t *root_lock = qdisc_lock(q);
3074         struct sk_buff *to_free = NULL;
3075         bool contended;
3076         int rc;
3077
3078         qdisc_calculate_pkt_len(skb, q);
3079         /*
3080          * Heuristic to force contended enqueues to serialize on a
3081          * separate lock before trying to get qdisc main lock.
3082          * This permits qdisc->running owner to get the lock more
3083          * often and dequeue packets faster.
3084          */
3085         contended = qdisc_is_running(q);
3086         if (unlikely(contended))
3087                 spin_lock(&q->busylock);
3088
3089         spin_lock(root_lock);
3090         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3091                 __qdisc_drop(skb, &to_free);
3092                 rc = NET_XMIT_DROP;
3093         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3094                    qdisc_run_begin(q)) {
3095                 /*
3096                  * This is a work-conserving queue; there are no old skbs
3097                  * waiting to be sent out; and the qdisc is not running -
3098                  * xmit the skb directly.
3099                  */
3100
3101                 qdisc_bstats_update(q, skb);
3102
3103                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3104                         if (unlikely(contended)) {
3105                                 spin_unlock(&q->busylock);
3106                                 contended = false;
3107                         }
3108                         __qdisc_run(q);
3109                 } else
3110                         qdisc_run_end(q);
3111
3112                 rc = NET_XMIT_SUCCESS;
3113         } else {
3114                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3115                 if (qdisc_run_begin(q)) {
3116                         if (unlikely(contended)) {
3117                                 spin_unlock(&q->busylock);
3118                                 contended = false;
3119                         }
3120                         __qdisc_run(q);
3121                 }
3122         }
3123         spin_unlock(root_lock);
3124         if (unlikely(to_free))
3125                 kfree_skb_list(to_free);
3126         if (unlikely(contended))
3127                 spin_unlock(&q->busylock);
3128         return rc;
3129 }
3130
3131 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3132 static void skb_update_prio(struct sk_buff *skb)
3133 {
3134         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3135
3136         if (!skb->priority && skb->sk && map) {
3137                 unsigned int prioidx =
3138                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3139
3140                 if (prioidx < map->priomap_len)
3141                         skb->priority = map->priomap[prioidx];
3142         }
3143 }
3144 #else
3145 #define skb_update_prio(skb)
3146 #endif
3147
3148 DEFINE_PER_CPU(int, xmit_recursion);
3149 EXPORT_SYMBOL(xmit_recursion);
3150
3151 /**
3152  *      dev_loopback_xmit - loop back @skb
3153  *      @net: network namespace this loopback is happening in
3154  *      @sk:  sk needed to be a netfilter okfn
3155  *      @skb: buffer to transmit
3156  */
3157 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3158 {
3159         skb_reset_mac_header(skb);
3160         __skb_pull(skb, skb_network_offset(skb));
3161         skb->pkt_type = PACKET_LOOPBACK;
3162         skb->ip_summed = CHECKSUM_UNNECESSARY;
3163         WARN_ON(!skb_dst(skb));
3164         skb_dst_force(skb);
3165         netif_rx_ni(skb);
3166         return 0;
3167 }
3168 EXPORT_SYMBOL(dev_loopback_xmit);
3169
3170 #ifdef CONFIG_NET_EGRESS
3171 static struct sk_buff *
3172 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173 {
3174         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175         struct tcf_result cl_res;
3176
3177         if (!cl)
3178                 return skb;
3179
3180         /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181          * earlier by the caller.
3182          */
3183         qdisc_bstats_cpu_update(cl->q, skb);
3184
3185         switch (tc_classify(skb, cl, &cl_res, false)) {
3186         case TC_ACT_OK:
3187         case TC_ACT_RECLASSIFY:
3188                 skb->tc_index = TC_H_MIN(cl_res.classid);
3189                 break;
3190         case TC_ACT_SHOT:
3191                 qdisc_qstats_cpu_drop(cl->q);
3192                 *ret = NET_XMIT_DROP;
3193                 kfree_skb(skb);
3194                 return NULL;
3195         case TC_ACT_STOLEN:
3196         case TC_ACT_QUEUED:
3197                 *ret = NET_XMIT_SUCCESS;
3198                 consume_skb(skb);
3199                 return NULL;
3200         case TC_ACT_REDIRECT:
3201                 /* No need to push/pop skb's mac_header here on egress! */
3202                 skb_do_redirect(skb);
3203                 *ret = NET_XMIT_SUCCESS;
3204                 return NULL;
3205         default:
3206                 break;
3207         }
3208
3209         return skb;
3210 }
3211 #endif /* CONFIG_NET_EGRESS */
3212
3213 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3214 {
3215 #ifdef CONFIG_XPS
3216         struct xps_dev_maps *dev_maps;
3217         struct xps_map *map;
3218         int queue_index = -1;
3219
3220         rcu_read_lock();
3221         dev_maps = rcu_dereference(dev->xps_maps);
3222         if (dev_maps) {
3223                 map = rcu_dereference(
3224                     dev_maps->cpu_map[skb->sender_cpu - 1]);
3225                 if (map) {
3226                         if (map->len == 1)
3227                                 queue_index = map->queues[0];
3228                         else
3229                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3230                                                                            map->len)];
3231                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3232                                 queue_index = -1;
3233                 }
3234         }
3235         rcu_read_unlock();
3236
3237         return queue_index;
3238 #else
3239         return -1;
3240 #endif
3241 }
3242
3243 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3244 {
3245         struct sock *sk = skb->sk;
3246         int queue_index = sk_tx_queue_get(sk);
3247
3248         if (queue_index < 0 || skb->ooo_okay ||
3249             queue_index >= dev->real_num_tx_queues) {
3250                 int new_index = get_xps_queue(dev, skb);
3251                 if (new_index < 0)
3252                         new_index = skb_tx_hash(dev, skb);
3253
3254                 if (queue_index != new_index && sk &&
3255                     sk_fullsock(sk) &&
3256                     rcu_access_pointer(sk->sk_dst_cache))
3257                         sk_tx_queue_set(sk, new_index);
3258
3259                 queue_index = new_index;
3260         }
3261
3262         return queue_index;
3263 }
3264
3265 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266                                     struct sk_buff *skb,
3267                                     void *accel_priv)
3268 {
3269         int queue_index = 0;
3270
3271 #ifdef CONFIG_XPS
3272         u32 sender_cpu = skb->sender_cpu - 1;
3273
3274         if (sender_cpu >= (u32)NR_CPUS)
3275                 skb->sender_cpu = raw_smp_processor_id() + 1;
3276 #endif
3277
3278         if (dev->real_num_tx_queues != 1) {
3279                 const struct net_device_ops *ops = dev->netdev_ops;
3280                 if (ops->ndo_select_queue)
3281                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3282                                                             __netdev_pick_tx);
3283                 else
3284                         queue_index = __netdev_pick_tx(dev, skb);
3285
3286                 if (!accel_priv)
3287                         queue_index = netdev_cap_txqueue(dev, queue_index);
3288         }
3289
3290         skb_set_queue_mapping(skb, queue_index);
3291         return netdev_get_tx_queue(dev, queue_index);
3292 }
3293
3294 /**
3295  *      __dev_queue_xmit - transmit a buffer
3296  *      @skb: buffer to transmit
3297  *      @accel_priv: private data used for L2 forwarding offload
3298  *
3299  *      Queue a buffer for transmission to a network device. The caller must
3300  *      have set the device and priority and built the buffer before calling
3301  *      this function. The function can be called from an interrupt.
3302  *
3303  *      A negative errno code is returned on a failure. A success does not
3304  *      guarantee the frame will be transmitted as it may be dropped due
3305  *      to congestion or traffic shaping.
3306  *
3307  * -----------------------------------------------------------------------------------
3308  *      I notice this method can also return errors from the queue disciplines,
3309  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3310  *      be positive.
3311  *
3312  *      Regardless of the return value, the skb is consumed, so it is currently
3313  *      difficult to retry a send to this method.  (You can bump the ref count
3314  *      before sending to hold a reference for retry if you are careful.)
3315  *
3316  *      When calling this method, interrupts MUST be enabled.  This is because
3317  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3318  *          --BLG
3319  */
3320 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3321 {
3322         struct net_device *dev = skb->dev;
3323         struct netdev_queue *txq;
3324         struct Qdisc *q;
3325         int rc = -ENOMEM;
3326
3327         skb_reset_mac_header(skb);
3328
3329         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3331
3332         /* Disable soft irqs for various locks below. Also
3333          * stops preemption for RCU.
3334          */
3335         rcu_read_lock_bh();
3336
3337         skb_update_prio(skb);
3338
3339         qdisc_pkt_len_init(skb);
3340 #ifdef CONFIG_NET_CLS_ACT
3341         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342 # ifdef CONFIG_NET_EGRESS
3343         if (static_key_false(&egress_needed)) {
3344                 skb = sch_handle_egress(skb, &rc, dev);
3345                 if (!skb)
3346                         goto out;
3347         }
3348 # endif
3349 #endif
3350         /* If device/qdisc don't need skb->dst, release it right now while
3351          * its hot in this cpu cache.
3352          */
3353         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354                 skb_dst_drop(skb);
3355         else
3356                 skb_dst_force(skb);
3357
3358         txq = netdev_pick_tx(dev, skb, accel_priv);
3359         q = rcu_dereference_bh(txq->qdisc);
3360
3361         trace_net_dev_queue(skb);
3362         if (q->enqueue) {
3363                 rc = __dev_xmit_skb(skb, q, dev, txq);
3364                 goto out;
3365         }
3366
3367         /* The device has no queue. Common case for software devices:
3368            loopback, all the sorts of tunnels...
3369
3370            Really, it is unlikely that netif_tx_lock protection is necessary
3371            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3372            counters.)
3373            However, it is possible, that they rely on protection
3374            made by us here.
3375
3376            Check this and shot the lock. It is not prone from deadlocks.
3377            Either shot noqueue qdisc, it is even simpler 8)
3378          */
3379         if (dev->flags & IFF_UP) {
3380                 int cpu = smp_processor_id(); /* ok because BHs are off */
3381
3382                 if (txq->xmit_lock_owner != cpu) {
3383                         if (unlikely(__this_cpu_read(xmit_recursion) >
3384                                      XMIT_RECURSION_LIMIT))
3385                                 goto recursion_alert;
3386
3387                         skb = validate_xmit_skb(skb, dev);
3388                         if (!skb)
3389                                 goto out;
3390
3391                         HARD_TX_LOCK(dev, txq, cpu);
3392
3393                         if (!netif_xmit_stopped(txq)) {
3394                                 __this_cpu_inc(xmit_recursion);
3395                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3396                                 __this_cpu_dec(xmit_recursion);
3397                                 if (dev_xmit_complete(rc)) {
3398                                         HARD_TX_UNLOCK(dev, txq);
3399                                         goto out;
3400                                 }
3401                         }
3402                         HARD_TX_UNLOCK(dev, txq);
3403                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3404                                              dev->name);
3405                 } else {
3406                         /* Recursion is detected! It is possible,
3407                          * unfortunately
3408                          */
3409 recursion_alert:
3410                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3411                                              dev->name);
3412                 }
3413         }
3414
3415         rc = -ENETDOWN;
3416         rcu_read_unlock_bh();
3417
3418         atomic_long_inc(&dev->tx_dropped);
3419         kfree_skb_list(skb);
3420         return rc;
3421 out:
3422         rcu_read_unlock_bh();
3423         return rc;
3424 }
3425
3426 int dev_queue_xmit(struct sk_buff *skb)
3427 {
3428         return __dev_queue_xmit(skb, NULL);
3429 }
3430 EXPORT_SYMBOL(dev_queue_xmit);
3431
3432 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3433 {
3434         return __dev_queue_xmit(skb, accel_priv);
3435 }
3436 EXPORT_SYMBOL(dev_queue_xmit_accel);
3437
3438
3439 /*=======================================================================
3440                         Receiver routines
3441   =======================================================================*/
3442
3443 int netdev_max_backlog __read_mostly = 1000;
3444 EXPORT_SYMBOL(netdev_max_backlog);
3445
3446 int netdev_tstamp_prequeue __read_mostly = 1;
3447 int netdev_budget __read_mostly = 300;
3448 int weight_p __read_mostly = 64;            /* old backlog weight */
3449
3450 /* Called with irq disabled */
3451 static inline void ____napi_schedule(struct softnet_data *sd,
3452                                      struct napi_struct *napi)
3453 {
3454         list_add_tail(&napi->poll_list, &sd->poll_list);
3455         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3456 }
3457
3458 #ifdef CONFIG_RPS
3459
3460 /* One global table that all flow-based protocols share. */
3461 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3462 EXPORT_SYMBOL(rps_sock_flow_table);
3463 u32 rps_cpu_mask __read_mostly;
3464 EXPORT_SYMBOL(rps_cpu_mask);
3465
3466 struct static_key rps_needed __read_mostly;
3467 EXPORT_SYMBOL(rps_needed);
3468
3469 static struct rps_dev_flow *
3470 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3471             struct rps_dev_flow *rflow, u16 next_cpu)
3472 {
3473         if (next_cpu < nr_cpu_ids) {
3474 #ifdef CONFIG_RFS_ACCEL
3475                 struct netdev_rx_queue *rxqueue;
3476                 struct rps_dev_flow_table *flow_table;
3477                 struct rps_dev_flow *old_rflow;
3478                 u32 flow_id;
3479                 u16 rxq_index;
3480                 int rc;
3481
3482                 /* Should we steer this flow to a different hardware queue? */
3483                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3484                     !(dev->features & NETIF_F_NTUPLE))
3485                         goto out;
3486                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3487                 if (rxq_index == skb_get_rx_queue(skb))
3488                         goto out;
3489
3490                 rxqueue = dev->_rx + rxq_index;
3491                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3492                 if (!flow_table)
3493                         goto out;
3494                 flow_id = skb_get_hash(skb) & flow_table->mask;
3495                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3496                                                         rxq_index, flow_id);
3497                 if (rc < 0)
3498                         goto out;
3499                 old_rflow = rflow;
3500                 rflow = &flow_table->flows[flow_id];
3501                 rflow->filter = rc;
3502                 if (old_rflow->filter == rflow->filter)
3503                         old_rflow->filter = RPS_NO_FILTER;
3504         out:
3505 #endif
3506                 rflow->last_qtail =
3507                         per_cpu(softnet_data, next_cpu).input_queue_head;
3508         }
3509
3510         rflow->cpu = next_cpu;
3511         return rflow;
3512 }
3513
3514 /*
3515  * get_rps_cpu is called from netif_receive_skb and returns the target
3516  * CPU from the RPS map of the receiving queue for a given skb.
3517  * rcu_read_lock must be held on entry.
3518  */
3519 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3520                        struct rps_dev_flow **rflowp)
3521 {
3522         const struct rps_sock_flow_table *sock_flow_table;
3523         struct netdev_rx_queue *rxqueue = dev->_rx;
3524         struct rps_dev_flow_table *flow_table;
3525         struct rps_map *map;
3526         int cpu = -1;
3527         u32 tcpu;
3528         u32 hash;
3529
3530         if (skb_rx_queue_recorded(skb)) {
3531                 u16 index = skb_get_rx_queue(skb);
3532
3533                 if (unlikely(index >= dev->real_num_rx_queues)) {
3534                         WARN_ONCE(dev->real_num_rx_queues > 1,
3535                                   "%s received packet on queue %u, but number "
3536                                   "of RX queues is %u\n",
3537                                   dev->name, index, dev->real_num_rx_queues);
3538                         goto done;
3539                 }
3540                 rxqueue += index;
3541         }
3542
3543         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3544
3545         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3546         map = rcu_dereference(rxqueue->rps_map);
3547         if (!flow_table && !map)
3548                 goto done;
3549
3550         skb_reset_network_header(skb);
3551         hash = skb_get_hash(skb);
3552         if (!hash)
3553                 goto done;
3554
3555         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3556         if (flow_table && sock_flow_table) {
3557                 struct rps_dev_flow *rflow;
3558                 u32 next_cpu;
3559                 u32 ident;
3560
3561                 /* First check into global flow table if there is a match */
3562                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3563                 if ((ident ^ hash) & ~rps_cpu_mask)
3564                         goto try_rps;
3565
3566                 next_cpu = ident & rps_cpu_mask;
3567
3568                 /* OK, now we know there is a match,
3569                  * we can look at the local (per receive queue) flow table
3570                  */
3571                 rflow = &flow_table->flows[hash & flow_table->mask];
3572                 tcpu = rflow->cpu;
3573
3574                 /*
3575                  * If the desired CPU (where last recvmsg was done) is
3576                  * different from current CPU (one in the rx-queue flow
3577                  * table entry), switch if one of the following holds:
3578                  *   - Current CPU is unset (>= nr_cpu_ids).
3579                  *   - Current CPU is offline.
3580                  *   - The current CPU's queue tail has advanced beyond the
3581                  *     last packet that was enqueued using this table entry.
3582                  *     This guarantees that all previous packets for the flow
3583                  *     have been dequeued, thus preserving in order delivery.
3584                  */
3585                 if (unlikely(tcpu != next_cpu) &&
3586                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3587                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3588                       rflow->last_qtail)) >= 0)) {
3589                         tcpu = next_cpu;
3590                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3591                 }
3592
3593                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3594                         *rflowp = rflow;
3595                         cpu = tcpu;
3596                         goto done;
3597                 }
3598         }
3599
3600 try_rps:
3601
3602         if (map) {
3603                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3604                 if (cpu_online(tcpu)) {
3605                         cpu = tcpu;
3606                         goto done;
3607                 }
3608         }
3609
3610 done:
3611         return cpu;
3612 }
3613
3614 #ifdef CONFIG_RFS_ACCEL
3615
3616 /**
3617  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3618  * @dev: Device on which the filter was set
3619  * @rxq_index: RX queue index
3620  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3621  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3622  *
3623  * Drivers that implement ndo_rx_flow_steer() should periodically call
3624  * this function for each installed filter and remove the filters for
3625  * which it returns %true.
3626  */
3627 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3628                          u32 flow_id, u16 filter_id)
3629 {
3630         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3631         struct rps_dev_flow_table *flow_table;
3632         struct rps_dev_flow *rflow;
3633         bool expire = true;
3634         unsigned int cpu;
3635
3636         rcu_read_lock();
3637         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3638         if (flow_table && flow_id <= flow_table->mask) {
3639                 rflow = &flow_table->flows[flow_id];
3640                 cpu = ACCESS_ONCE(rflow->cpu);
3641                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3642                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3643                            rflow->last_qtail) <
3644                      (int)(10 * flow_table->mask)))
3645                         expire = false;
3646         }
3647         rcu_read_unlock();
3648         return expire;
3649 }
3650 EXPORT_SYMBOL(rps_may_expire_flow);
3651
3652 #endif /* CONFIG_RFS_ACCEL */
3653
3654 /* Called from hardirq (IPI) context */
3655 static void rps_trigger_softirq(void *data)
3656 {
3657         struct softnet_data *sd = data;
3658
3659         ____napi_schedule(sd, &sd->backlog);
3660         sd->received_rps++;
3661 }
3662
3663 #endif /* CONFIG_RPS */
3664
3665 /*
3666  * Check if this softnet_data structure is another cpu one
3667  * If yes, queue it to our IPI list and return 1
3668  * If no, return 0
3669  */
3670 static int rps_ipi_queued(struct softnet_data *sd)
3671 {
3672 #ifdef CONFIG_RPS
3673         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3674
3675         if (sd != mysd) {
3676                 sd->rps_ipi_next = mysd->rps_ipi_list;
3677                 mysd->rps_ipi_list = sd;
3678
3679                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3680                 return 1;
3681         }
3682 #endif /* CONFIG_RPS */
3683         return 0;
3684 }
3685
3686 #ifdef CONFIG_NET_FLOW_LIMIT
3687 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3688 #endif
3689
3690 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3691 {
3692 #ifdef CONFIG_NET_FLOW_LIMIT
3693         struct sd_flow_limit *fl;
3694         struct softnet_data *sd;
3695         unsigned int old_flow, new_flow;
3696
3697         if (qlen < (netdev_max_backlog >> 1))
3698                 return false;
3699
3700         sd = this_cpu_ptr(&softnet_data);
3701
3702         rcu_read_lock();
3703         fl = rcu_dereference(sd->flow_limit);
3704         if (fl) {
3705                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3706                 old_flow = fl->history[fl->history_head];
3707                 fl->history[fl->history_head] = new_flow;
3708
3709                 fl->history_head++;
3710                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3711
3712                 if (likely(fl->buckets[old_flow]))
3713                         fl->buckets[old_flow]--;
3714
3715                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3716                         fl->count++;
3717                         rcu_read_unlock();
3718                         return true;
3719                 }
3720         }
3721         rcu_read_unlock();
3722 #endif
3723         return false;
3724 }
3725
3726 /*
3727  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3728  * queue (may be a remote CPU queue).
3729  */
3730 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3731                               unsigned int *qtail)
3732 {
3733         struct softnet_data *sd;
3734         unsigned long flags;
3735         unsigned int qlen;
3736
3737         sd = &per_cpu(softnet_data, cpu);
3738
3739         local_irq_save(flags);
3740
3741         rps_lock(sd);
3742         if (!netif_running(skb->dev))
3743                 goto drop;
3744         qlen = skb_queue_len(&sd->input_pkt_queue);
3745         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3746                 if (qlen) {
3747 enqueue:
3748                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3749                         input_queue_tail_incr_save(sd, qtail);
3750                         rps_unlock(sd);
3751                         local_irq_restore(flags);
3752                         return NET_RX_SUCCESS;
3753                 }
3754
3755                 /* Schedule NAPI for backlog device
3756                  * We can use non atomic operation since we own the queue lock
3757                  */
3758                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3759                         if (!rps_ipi_queued(sd))
3760                                 ____napi_schedule(sd, &sd->backlog);
3761                 }
3762                 goto enqueue;
3763         }
3764
3765 drop:
3766         sd->dropped++;
3767         rps_unlock(sd);
3768
3769         local_irq_restore(flags);
3770
3771         atomic_long_inc(&skb->dev->rx_dropped);
3772         kfree_skb(skb);
3773         return NET_RX_DROP;
3774 }
3775
3776 static int netif_rx_internal(struct sk_buff *skb)
3777 {
3778         int ret;
3779
3780         net_timestamp_check(netdev_tstamp_prequeue, skb);
3781
3782         trace_netif_rx(skb);
3783 #ifdef CONFIG_RPS
3784         if (static_key_false(&rps_needed)) {
3785                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3786                 int cpu;
3787
3788                 preempt_disable();
3789                 rcu_read_lock();
3790
3791                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3792                 if (cpu < 0)
3793                         cpu = smp_processor_id();
3794
3795                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3796
3797                 rcu_read_unlock();
3798                 preempt_enable();
3799         } else
3800 #endif
3801         {
3802                 unsigned int qtail;
3803                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3804                 put_cpu();
3805         }
3806         return ret;
3807 }
3808
3809 /**
3810  *      netif_rx        -       post buffer to the network code
3811  *      @skb: buffer to post
3812  *
3813  *      This function receives a packet from a device driver and queues it for
3814  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3815  *      may be dropped during processing for congestion control or by the
3816  *      protocol layers.
3817  *
3818  *      return values:
3819  *      NET_RX_SUCCESS  (no congestion)
3820  *      NET_RX_DROP     (packet was dropped)
3821  *
3822  */
3823
3824 int netif_rx(struct sk_buff *skb)
3825 {
3826         trace_netif_rx_entry(skb);
3827
3828         return netif_rx_internal(skb);
3829 }
3830 EXPORT_SYMBOL(netif_rx);
3831
3832 int netif_rx_ni(struct sk_buff *skb)
3833 {
3834         int err;
3835
3836         trace_netif_rx_ni_entry(skb);
3837
3838         preempt_disable();
3839         err = netif_rx_internal(skb);
3840         if (local_softirq_pending())
3841                 do_softirq();
3842         preempt_enable();
3843
3844         return err;
3845 }
3846 EXPORT_SYMBOL(netif_rx_ni);
3847
3848 static void net_tx_action(struct softirq_action *h)
3849 {
3850         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3851
3852         if (sd->completion_queue) {
3853                 struct sk_buff *clist;
3854
3855                 local_irq_disable();
3856                 clist = sd->completion_queue;
3857                 sd->completion_queue = NULL;
3858                 local_irq_enable();
3859
3860                 while (clist) {
3861                         struct sk_buff *skb = clist;
3862                         clist = clist->next;
3863
3864                         WARN_ON(atomic_read(&skb->users));
3865                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3866                                 trace_consume_skb(skb);
3867                         else
3868                                 trace_kfree_skb(skb, net_tx_action);
3869
3870                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3871                                 __kfree_skb(skb);
3872                         else
3873                                 __kfree_skb_defer(skb);
3874                 }
3875
3876                 __kfree_skb_flush();
3877         }
3878
3879         if (sd->output_queue) {
3880                 struct Qdisc *head;
3881
3882                 local_irq_disable();
3883                 head = sd->output_queue;
3884                 sd->output_queue = NULL;
3885                 sd->output_queue_tailp = &sd->output_queue;
3886                 local_irq_enable();
3887
3888                 while (head) {
3889                         struct Qdisc *q = head;
3890                         spinlock_t *root_lock;
3891
3892                         head = head->next_sched;
3893
3894                         root_lock = qdisc_lock(q);
3895                         spin_lock(root_lock);
3896                         /* We need to make sure head->next_sched is read
3897                          * before clearing __QDISC_STATE_SCHED
3898                          */
3899                         smp_mb__before_atomic();
3900                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3901                         qdisc_run(q);
3902                         spin_unlock(root_lock);
3903                 }
3904         }
3905 }
3906
3907 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3908 /* This hook is defined here for ATM LANE */
3909 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3910                              unsigned char *addr) __read_mostly;
3911 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3912 #endif
3913
3914 static inline struct sk_buff *
3915 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3916                    struct net_device *orig_dev)
3917 {
3918 #ifdef CONFIG_NET_CLS_ACT
3919         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3920         struct tcf_result cl_res;
3921
3922         /* If there's at least one ingress present somewhere (so
3923          * we get here via enabled static key), remaining devices
3924          * that are not configured with an ingress qdisc will bail
3925          * out here.
3926          */
3927         if (!cl)
3928                 return skb;
3929         if (*pt_prev) {
3930                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3931                 *pt_prev = NULL;
3932         }
3933
3934         qdisc_skb_cb(skb)->pkt_len = skb->len;
3935         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3936         qdisc_bstats_cpu_update(cl->q, skb);
3937
3938         switch (tc_classify(skb, cl, &cl_res, false)) {
3939         case TC_ACT_OK:
3940         case TC_ACT_RECLASSIFY:
3941                 skb->tc_index = TC_H_MIN(cl_res.classid);
3942                 break;
3943         case TC_ACT_SHOT:
3944                 qdisc_qstats_cpu_drop(cl->q);
3945                 kfree_skb(skb);
3946                 return NULL;
3947         case TC_ACT_STOLEN:
3948         case TC_ACT_QUEUED:
3949                 consume_skb(skb);
3950                 return NULL;
3951         case TC_ACT_REDIRECT:
3952                 /* skb_mac_header check was done by cls/act_bpf, so
3953                  * we can safely push the L2 header back before
3954                  * redirecting to another netdev
3955                  */
3956                 __skb_push(skb, skb->mac_len);
3957                 skb_do_redirect(skb);
3958                 return NULL;
3959         default:
3960                 break;
3961         }
3962 #endif /* CONFIG_NET_CLS_ACT */
3963         return skb;
3964 }
3965
3966 /**
3967  *      netdev_is_rx_handler_busy - check if receive handler is registered
3968  *      @dev: device to check
3969  *
3970  *      Check if a receive handler is already registered for a given device.
3971  *      Return true if there one.
3972  *
3973  *      The caller must hold the rtnl_mutex.
3974  */
3975 bool netdev_is_rx_handler_busy(struct net_device *dev)
3976 {
3977         ASSERT_RTNL();
3978         return dev && rtnl_dereference(dev->rx_handler);
3979 }
3980 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3981
3982 /**
3983  *      netdev_rx_handler_register - register receive handler
3984  *      @dev: device to register a handler for
3985  *      @rx_handler: receive handler to register
3986  *      @rx_handler_data: data pointer that is used by rx handler
3987  *
3988  *      Register a receive handler for a device. This handler will then be
3989  *      called from __netif_receive_skb. A negative errno code is returned
3990  *      on a failure.
3991  *
3992  *      The caller must hold the rtnl_mutex.
3993  *
3994  *      For a general description of rx_handler, see enum rx_handler_result.
3995  */
3996 int netdev_rx_handler_register(struct net_device *dev,
3997                                rx_handler_func_t *rx_handler,
3998                                void *rx_handler_data)
3999 {
4000         ASSERT_RTNL();
4001
4002         if (dev->rx_handler)
4003                 return -EBUSY;
4004
4005         /* Note: rx_handler_data must be set before rx_handler */
4006         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4007         rcu_assign_pointer(dev->rx_handler, rx_handler);
4008
4009         return 0;
4010 }
4011 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4012
4013 /**
4014  *      netdev_rx_handler_unregister - unregister receive handler
4015  *      @dev: device to unregister a handler from
4016  *
4017  *      Unregister a receive handler from a device.
4018  *
4019  *      The caller must hold the rtnl_mutex.
4020  */
4021 void netdev_rx_handler_unregister(struct net_device *dev)
4022 {
4023
4024         ASSERT_RTNL();
4025         RCU_INIT_POINTER(dev->rx_handler, NULL);
4026         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4027          * section has a guarantee to see a non NULL rx_handler_data
4028          * as well.
4029          */
4030         synchronize_net();
4031         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4032 }
4033 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4034
4035 /*
4036  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4037  * the special handling of PFMEMALLOC skbs.
4038  */
4039 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4040 {
4041         switch (skb->protocol) {
4042         case htons(ETH_P_ARP):
4043         case htons(ETH_P_IP):
4044         case htons(ETH_P_IPV6):
4045         case htons(ETH_P_8021Q):
4046         case htons(ETH_P_8021AD):
4047                 return true;
4048         default:
4049                 return false;
4050         }
4051 }
4052
4053 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4054                              int *ret, struct net_device *orig_dev)
4055 {
4056 #ifdef CONFIG_NETFILTER_INGRESS
4057         if (nf_hook_ingress_active(skb)) {
4058                 if (*pt_prev) {
4059                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4060                         *pt_prev = NULL;
4061                 }
4062
4063                 return nf_hook_ingress(skb);
4064         }
4065 #endif /* CONFIG_NETFILTER_INGRESS */
4066         return 0;
4067 }
4068
4069 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4070 {
4071         struct packet_type *ptype, *pt_prev;
4072         rx_handler_func_t *rx_handler;
4073         struct net_device *orig_dev;
4074         bool deliver_exact = false;
4075         int ret = NET_RX_DROP;
4076         __be16 type;
4077
4078         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4079
4080         trace_netif_receive_skb(skb);
4081
4082         orig_dev = skb->dev;
4083
4084         skb_reset_network_header(skb);
4085         if (!skb_transport_header_was_set(skb))
4086                 skb_reset_transport_header(skb);
4087         skb_reset_mac_len(skb);
4088
4089         pt_prev = NULL;
4090
4091 another_round:
4092         skb->skb_iif = skb->dev->ifindex;
4093
4094         __this_cpu_inc(softnet_data.processed);
4095
4096         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4097             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4098                 skb = skb_vlan_untag(skb);
4099                 if (unlikely(!skb))
4100                         goto out;
4101         }
4102
4103 #ifdef CONFIG_NET_CLS_ACT
4104         if (skb->tc_verd & TC_NCLS) {
4105                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4106                 goto ncls;
4107         }
4108 #endif
4109
4110         if (pfmemalloc)
4111                 goto skip_taps;
4112
4113         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4114                 if (pt_prev)
4115                         ret = deliver_skb(skb, pt_prev, orig_dev);
4116                 pt_prev = ptype;
4117         }
4118
4119         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4120                 if (pt_prev)
4121                         ret = deliver_skb(skb, pt_prev, orig_dev);
4122                 pt_prev = ptype;
4123         }
4124
4125 skip_taps:
4126 #ifdef CONFIG_NET_INGRESS
4127         if (static_key_false(&ingress_needed)) {
4128                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4129                 if (!skb)
4130                         goto out;
4131
4132                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4133                         goto out;
4134         }
4135 #endif
4136 #ifdef CONFIG_NET_CLS_ACT
4137         skb->tc_verd = 0;
4138 ncls:
4139 #endif
4140         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4141                 goto drop;
4142
4143         if (skb_vlan_tag_present(skb)) {
4144                 if (pt_prev) {
4145                         ret = deliver_skb(skb, pt_prev, orig_dev);
4146                         pt_prev = NULL;
4147                 }
4148                 if (vlan_do_receive(&skb))
4149                         goto another_round;
4150                 else if (unlikely(!skb))
4151                         goto out;
4152         }
4153
4154         rx_handler = rcu_dereference(skb->dev->rx_handler);
4155         if (rx_handler) {
4156                 if (pt_prev) {
4157                         ret = deliver_skb(skb, pt_prev, orig_dev);
4158                         pt_prev = NULL;
4159                 }
4160                 switch (rx_handler(&skb)) {
4161                 case RX_HANDLER_CONSUMED:
4162                         ret = NET_RX_SUCCESS;
4163                         goto out;
4164                 case RX_HANDLER_ANOTHER:
4165                         goto another_round;
4166                 case RX_HANDLER_EXACT:
4167                         deliver_exact = true;
4168                 case RX_HANDLER_PASS:
4169                         break;
4170                 default:
4171                         BUG();
4172                 }
4173         }
4174
4175         if (unlikely(skb_vlan_tag_present(skb))) {
4176                 if (skb_vlan_tag_get_id(skb))
4177                         skb->pkt_type = PACKET_OTHERHOST;
4178                 /* Note: we might in the future use prio bits
4179                  * and set skb->priority like in vlan_do_receive()
4180                  * For the time being, just ignore Priority Code Point
4181                  */
4182                 skb->vlan_tci = 0;
4183         }
4184
4185         type = skb->protocol;
4186
4187         /* deliver only exact match when indicated */
4188         if (likely(!deliver_exact)) {
4189                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4190                                        &ptype_base[ntohs(type) &
4191                                                    PTYPE_HASH_MASK]);
4192         }
4193
4194         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4195                                &orig_dev->ptype_specific);
4196
4197         if (unlikely(skb->dev != orig_dev)) {
4198                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4199                                        &skb->dev->ptype_specific);
4200         }
4201
4202         if (pt_prev) {
4203                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4204                         goto drop;
4205                 else
4206                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4207         } else {
4208 drop:
4209                 if (!deliver_exact)
4210                         atomic_long_inc(&skb->dev->rx_dropped);
4211                 else
4212                         atomic_long_inc(&skb->dev->rx_nohandler);
4213                 kfree_skb(skb);
4214                 /* Jamal, now you will not able to escape explaining
4215                  * me how you were going to use this. :-)
4216                  */
4217                 ret = NET_RX_DROP;
4218         }
4219
4220 out:
4221         return ret;
4222 }
4223
4224 static int __netif_receive_skb(struct sk_buff *skb)
4225 {
4226         int ret;
4227
4228         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4229                 unsigned long pflags = current->flags;
4230
4231                 /*
4232                  * PFMEMALLOC skbs are special, they should
4233                  * - be delivered to SOCK_MEMALLOC sockets only
4234                  * - stay away from userspace
4235                  * - have bounded memory usage
4236                  *
4237                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4238                  * context down to all allocation sites.
4239                  */
4240                 current->flags |= PF_MEMALLOC;
4241                 ret = __netif_receive_skb_core(skb, true);
4242                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4243         } else
4244                 ret = __netif_receive_skb_core(skb, false);
4245
4246         return ret;
4247 }
4248
4249 static int netif_receive_skb_internal(struct sk_buff *skb)
4250 {
4251         int ret;
4252
4253         net_timestamp_check(netdev_tstamp_prequeue, skb);
4254
4255         if (skb_defer_rx_timestamp(skb))
4256                 return NET_RX_SUCCESS;
4257
4258         rcu_read_lock();
4259
4260 #ifdef CONFIG_RPS
4261         if (static_key_false(&rps_needed)) {
4262                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4263                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4264
4265                 if (cpu >= 0) {
4266                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4267                         rcu_read_unlock();
4268                         return ret;
4269                 }
4270         }
4271 #endif
4272         ret = __netif_receive_skb(skb);
4273         rcu_read_unlock();
4274         return ret;
4275 }
4276
4277 /**
4278  *      netif_receive_skb - process receive buffer from network
4279  *      @skb: buffer to process
4280  *
4281  *      netif_receive_skb() is the main receive data processing function.
4282  *      It always succeeds. The buffer may be dropped during processing
4283  *      for congestion control or by the protocol layers.
4284  *
4285  *      This function may only be called from softirq context and interrupts
4286  *      should be enabled.
4287  *
4288  *      Return values (usually ignored):
4289  *      NET_RX_SUCCESS: no congestion
4290  *      NET_RX_DROP: packet was dropped
4291  */
4292 int netif_receive_skb(struct sk_buff *skb)
4293 {
4294         trace_netif_receive_skb_entry(skb);
4295
4296         return netif_receive_skb_internal(skb);
4297 }
4298 EXPORT_SYMBOL(netif_receive_skb);
4299
4300 DEFINE_PER_CPU(struct work_struct, flush_works);
4301
4302 /* Network device is going away, flush any packets still pending */
4303 static void flush_backlog(struct work_struct *work)
4304 {
4305         struct sk_buff *skb, *tmp;
4306         struct softnet_data *sd;
4307
4308         local_bh_disable();
4309         sd = this_cpu_ptr(&softnet_data);
4310
4311         local_irq_disable();
4312         rps_lock(sd);
4313         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4314                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4315                         __skb_unlink(skb, &sd->input_pkt_queue);
4316                         kfree_skb(skb);
4317                         input_queue_head_incr(sd);
4318                 }
4319         }
4320         rps_unlock(sd);
4321         local_irq_enable();
4322
4323         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4324                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4325                         __skb_unlink(skb, &sd->process_queue);
4326                         kfree_skb(skb);
4327                         input_queue_head_incr(sd);
4328                 }
4329         }
4330         local_bh_enable();
4331 }
4332
4333 static void flush_all_backlogs(void)
4334 {
4335         unsigned int cpu;
4336
4337         get_online_cpus();
4338
4339         for_each_online_cpu(cpu)
4340                 queue_work_on(cpu, system_highpri_wq,
4341                               per_cpu_ptr(&flush_works, cpu));
4342
4343         for_each_online_cpu(cpu)
4344                 flush_work(per_cpu_ptr(&flush_works, cpu));
4345
4346         put_online_cpus();
4347 }
4348
4349 static int napi_gro_complete(struct sk_buff *skb)
4350 {
4351         struct packet_offload *ptype;
4352         __be16 type = skb->protocol;
4353         struct list_head *head = &offload_base;
4354         int err = -ENOENT;
4355
4356         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4357
4358         if (NAPI_GRO_CB(skb)->count == 1) {
4359                 skb_shinfo(skb)->gso_size = 0;
4360                 goto out;
4361         }
4362
4363         rcu_read_lock();
4364         list_for_each_entry_rcu(ptype, head, list) {
4365                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4366                         continue;
4367
4368                 err = ptype->callbacks.gro_complete(skb, 0);
4369                 break;
4370         }
4371         rcu_read_unlock();
4372
4373         if (err) {
4374                 WARN_ON(&ptype->list == head);
4375                 kfree_skb(skb);
4376                 return NET_RX_SUCCESS;
4377         }
4378
4379 out:
4380         return netif_receive_skb_internal(skb);
4381 }
4382
4383 /* napi->gro_list contains packets ordered by age.
4384  * youngest packets at the head of it.
4385  * Complete skbs in reverse order to reduce latencies.
4386  */
4387 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4388 {
4389         struct sk_buff *skb, *prev = NULL;
4390
4391         /* scan list and build reverse chain */
4392         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4393                 skb->prev = prev;
4394                 prev = skb;
4395         }
4396
4397         for (skb = prev; skb; skb = prev) {
4398                 skb->next = NULL;
4399
4400                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4401                         return;
4402
4403                 prev = skb->prev;
4404                 napi_gro_complete(skb);
4405                 napi->gro_count--;
4406         }
4407
4408         napi->gro_list = NULL;
4409 }
4410 EXPORT_SYMBOL(napi_gro_flush);
4411
4412 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4413 {
4414         struct sk_buff *p;
4415         unsigned int maclen = skb->dev->hard_header_len;
4416         u32 hash = skb_get_hash_raw(skb);
4417
4418         for (p = napi->gro_list; p; p = p->next) {
4419                 unsigned long diffs;
4420
4421                 NAPI_GRO_CB(p)->flush = 0;
4422
4423                 if (hash != skb_get_hash_raw(p)) {
4424                         NAPI_GRO_CB(p)->same_flow = 0;
4425                         continue;
4426                 }
4427
4428                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4429                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4430                 diffs |= skb_metadata_dst_cmp(p, skb);
4431                 if (maclen == ETH_HLEN)
4432                         diffs |= compare_ether_header(skb_mac_header(p),
4433                                                       skb_mac_header(skb));
4434                 else if (!diffs)
4435                         diffs = memcmp(skb_mac_header(p),
4436                                        skb_mac_header(skb),
4437                                        maclen);
4438                 NAPI_GRO_CB(p)->same_flow = !diffs;
4439         }
4440 }
4441
4442 static void skb_gro_reset_offset(struct sk_buff *skb)
4443 {
4444         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4445         const skb_frag_t *frag0 = &pinfo->frags[0];
4446
4447         NAPI_GRO_CB(skb)->data_offset = 0;
4448         NAPI_GRO_CB(skb)->frag0 = NULL;
4449         NAPI_GRO_CB(skb)->frag0_len = 0;
4450
4451         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4452             pinfo->nr_frags &&
4453             !PageHighMem(skb_frag_page(frag0))) {
4454                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4455                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4456         }
4457 }
4458
4459 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4460 {
4461         struct skb_shared_info *pinfo = skb_shinfo(skb);
4462
4463         BUG_ON(skb->end - skb->tail < grow);
4464
4465         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4466
4467         skb->data_len -= grow;
4468         skb->tail += grow;
4469
4470         pinfo->frags[0].page_offset += grow;
4471         skb_frag_size_sub(&pinfo->frags[0], grow);
4472
4473         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4474                 skb_frag_unref(skb, 0);
4475                 memmove(pinfo->frags, pinfo->frags + 1,
4476                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4477         }
4478 }
4479
4480 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4481 {
4482         struct sk_buff **pp = NULL;
4483         struct packet_offload *ptype;
4484         __be16 type = skb->protocol;
4485         struct list_head *head = &offload_base;
4486         int same_flow;
4487         enum gro_result ret;
4488         int grow;
4489
4490         if (!(skb->dev->features & NETIF_F_GRO))
4491                 goto normal;
4492
4493         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4494                 goto normal;
4495
4496         gro_list_prepare(napi, skb);
4497
4498         rcu_read_lock();
4499         list_for_each_entry_rcu(ptype, head, list) {
4500                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4501                         continue;
4502
4503                 skb_set_network_header(skb, skb_gro_offset(skb));
4504                 skb_reset_mac_len(skb);
4505                 NAPI_GRO_CB(skb)->same_flow = 0;
4506                 NAPI_GRO_CB(skb)->flush = 0;
4507                 NAPI_GRO_CB(skb)->free = 0;
4508                 NAPI_GRO_CB(skb)->encap_mark = 0;
4509                 NAPI_GRO_CB(skb)->is_fou = 0;
4510                 NAPI_GRO_CB(skb)->is_atomic = 1;
4511                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4512
4513                 /* Setup for GRO checksum validation */
4514                 switch (skb->ip_summed) {
4515                 case CHECKSUM_COMPLETE:
4516                         NAPI_GRO_CB(skb)->csum = skb->csum;
4517                         NAPI_GRO_CB(skb)->csum_valid = 1;
4518                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4519                         break;
4520                 case CHECKSUM_UNNECESSARY:
4521                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4522                         NAPI_GRO_CB(skb)->csum_valid = 0;
4523                         break;
4524                 default:
4525                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4526                         NAPI_GRO_CB(skb)->csum_valid = 0;
4527                 }
4528
4529                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4530                 break;
4531         }
4532         rcu_read_unlock();
4533
4534         if (&ptype->list == head)
4535                 goto normal;
4536
4537         same_flow = NAPI_GRO_CB(skb)->same_flow;
4538         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4539
4540         if (pp) {
4541                 struct sk_buff *nskb = *pp;
4542
4543                 *pp = nskb->next;
4544                 nskb->next = NULL;
4545                 napi_gro_complete(nskb);
4546                 napi->gro_count--;
4547         }
4548
4549         if (same_flow)
4550                 goto ok;
4551
4552         if (NAPI_GRO_CB(skb)->flush)
4553                 goto normal;
4554
4555         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4556                 struct sk_buff *nskb = napi->gro_list;
4557
4558                 /* locate the end of the list to select the 'oldest' flow */
4559                 while (nskb->next) {
4560                         pp = &nskb->next;
4561                         nskb = *pp;
4562                 }
4563                 *pp = NULL;
4564                 nskb->next = NULL;
4565                 napi_gro_complete(nskb);
4566         } else {
4567                 napi->gro_count++;
4568         }
4569         NAPI_GRO_CB(skb)->count = 1;
4570         NAPI_GRO_CB(skb)->age = jiffies;
4571         NAPI_GRO_CB(skb)->last = skb;
4572         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4573         skb->next = napi->gro_list;
4574         napi->gro_list = skb;
4575         ret = GRO_HELD;
4576
4577 pull:
4578         grow = skb_gro_offset(skb) - skb_headlen(skb);
4579         if (grow > 0)
4580                 gro_pull_from_frag0(skb, grow);
4581 ok:
4582         return ret;
4583
4584 normal:
4585         ret = GRO_NORMAL;
4586         goto pull;
4587 }
4588
4589 struct packet_offload *gro_find_receive_by_type(__be16 type)
4590 {
4591         struct list_head *offload_head = &offload_base;
4592         struct packet_offload *ptype;
4593
4594         list_for_each_entry_rcu(ptype, offload_head, list) {
4595                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4596                         continue;
4597                 return ptype;
4598         }
4599         return NULL;
4600 }
4601 EXPORT_SYMBOL(gro_find_receive_by_type);
4602
4603 struct packet_offload *gro_find_complete_by_type(__be16 type)
4604 {
4605         struct list_head *offload_head = &offload_base;
4606         struct packet_offload *ptype;
4607
4608         list_for_each_entry_rcu(ptype, offload_head, list) {
4609                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4610                         continue;
4611                 return ptype;
4612         }
4613         return NULL;
4614 }
4615 EXPORT_SYMBOL(gro_find_complete_by_type);
4616
4617 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4618 {
4619         switch (ret) {
4620         case GRO_NORMAL:
4621                 if (netif_receive_skb_internal(skb))
4622                         ret = GRO_DROP;
4623                 break;
4624
4625         case GRO_DROP:
4626                 kfree_skb(skb);
4627                 break;
4628
4629         case GRO_MERGED_FREE:
4630                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4631                         skb_dst_drop(skb);
4632                         kmem_cache_free(skbuff_head_cache, skb);
4633                 } else {
4634                         __kfree_skb(skb);
4635                 }
4636                 break;
4637
4638         case GRO_HELD:
4639         case GRO_MERGED:
4640                 break;
4641         }
4642
4643         return ret;
4644 }
4645
4646 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4647 {
4648         skb_mark_napi_id(skb, napi);
4649         trace_napi_gro_receive_entry(skb);
4650
4651         skb_gro_reset_offset(skb);
4652
4653         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4654 }
4655 EXPORT_SYMBOL(napi_gro_receive);
4656
4657 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4658 {
4659         if (unlikely(skb->pfmemalloc)) {
4660                 consume_skb(skb);
4661                 return;
4662         }
4663         __skb_pull(skb, skb_headlen(skb));
4664         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4665         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4666         skb->vlan_tci = 0;
4667         skb->dev = napi->dev;
4668         skb->skb_iif = 0;
4669         skb->encapsulation = 0;
4670         skb_shinfo(skb)->gso_type = 0;
4671         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4672
4673         napi->skb = skb;
4674 }
4675
4676 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4677 {
4678         struct sk_buff *skb = napi->skb;
4679
4680         if (!skb) {
4681                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4682                 if (skb) {
4683                         napi->skb = skb;
4684                         skb_mark_napi_id(skb, napi);
4685                 }
4686         }
4687         return skb;
4688 }
4689 EXPORT_SYMBOL(napi_get_frags);
4690
4691 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4692                                       struct sk_buff *skb,
4693                                       gro_result_t ret)
4694 {
4695         switch (ret) {
4696         case GRO_NORMAL:
4697         case GRO_HELD:
4698                 __skb_push(skb, ETH_HLEN);
4699                 skb->protocol = eth_type_trans(skb, skb->dev);
4700                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4701                         ret = GRO_DROP;
4702                 break;
4703
4704         case GRO_DROP:
4705         case GRO_MERGED_FREE:
4706                 napi_reuse_skb(napi, skb);
4707                 break;
4708
4709         case GRO_MERGED:
4710                 break;
4711         }
4712
4713         return ret;
4714 }
4715
4716 /* Upper GRO stack assumes network header starts at gro_offset=0
4717  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4718  * We copy ethernet header into skb->data to have a common layout.
4719  */
4720 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4721 {
4722         struct sk_buff *skb = napi->skb;
4723         const struct ethhdr *eth;
4724         unsigned int hlen = sizeof(*eth);
4725
4726         napi->skb = NULL;
4727
4728         skb_reset_mac_header(skb);
4729         skb_gro_reset_offset(skb);
4730
4731         eth = skb_gro_header_fast(skb, 0);
4732         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4733                 eth = skb_gro_header_slow(skb, hlen, 0);
4734                 if (unlikely(!eth)) {
4735                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4736                                              __func__, napi->dev->name);
4737                         napi_reuse_skb(napi, skb);
4738                         return NULL;
4739                 }
4740         } else {
4741                 gro_pull_from_frag0(skb, hlen);
4742                 NAPI_GRO_CB(skb)->frag0 += hlen;
4743                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4744         }
4745         __skb_pull(skb, hlen);
4746
4747         /*
4748          * This works because the only protocols we care about don't require
4749          * special handling.
4750          * We'll fix it up properly in napi_frags_finish()
4751          */
4752         skb->protocol = eth->h_proto;
4753
4754         return skb;
4755 }
4756
4757 gro_result_t napi_gro_frags(struct napi_struct *napi)
4758 {
4759         struct sk_buff *skb = napi_frags_skb(napi);
4760
4761         if (!skb)
4762                 return GRO_DROP;
4763
4764         trace_napi_gro_frags_entry(skb);
4765
4766         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4767 }
4768 EXPORT_SYMBOL(napi_gro_frags);
4769
4770 /* Compute the checksum from gro_offset and return the folded value
4771  * after adding in any pseudo checksum.
4772  */
4773 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4774 {
4775         __wsum wsum;
4776         __sum16 sum;
4777
4778         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4779
4780         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4781         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4782         if (likely(!sum)) {
4783                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4784                     !skb->csum_complete_sw)
4785                         netdev_rx_csum_fault(skb->dev);
4786         }
4787
4788         NAPI_GRO_CB(skb)->csum = wsum;
4789         NAPI_GRO_CB(skb)->csum_valid = 1;
4790
4791         return sum;
4792 }
4793 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4794
4795 /*
4796  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4797  * Note: called with local irq disabled, but exits with local irq enabled.
4798  */
4799 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4800 {
4801 #ifdef CONFIG_RPS
4802         struct softnet_data *remsd = sd->rps_ipi_list;
4803
4804         if (remsd) {
4805                 sd->rps_ipi_list = NULL;
4806
4807                 local_irq_enable();
4808
4809                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4810                 while (remsd) {
4811                         struct softnet_data *next = remsd->rps_ipi_next;
4812
4813                         if (cpu_online(remsd->cpu))
4814                                 smp_call_function_single_async(remsd->cpu,
4815                                                            &remsd->csd);
4816                         remsd = next;
4817                 }
4818         } else
4819 #endif
4820                 local_irq_enable();
4821 }
4822
4823 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4824 {
4825 #ifdef CONFIG_RPS
4826         return sd->rps_ipi_list != NULL;
4827 #else
4828         return false;
4829 #endif
4830 }
4831
4832 static int process_backlog(struct napi_struct *napi, int quota)
4833 {
4834         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4835         bool again = true;
4836         int work = 0;
4837
4838         /* Check if we have pending ipi, its better to send them now,
4839          * not waiting net_rx_action() end.
4840          */
4841         if (sd_has_rps_ipi_waiting(sd)) {
4842                 local_irq_disable();
4843                 net_rps_action_and_irq_enable(sd);
4844         }
4845
4846         napi->weight = weight_p;
4847         while (again) {
4848                 struct sk_buff *skb;
4849
4850                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4851                         rcu_read_lock();
4852                         __netif_receive_skb(skb);
4853                         rcu_read_unlock();
4854                         input_queue_head_incr(sd);
4855                         if (++work >= quota)
4856                                 return work;
4857
4858                 }
4859
4860                 local_irq_disable();
4861                 rps_lock(sd);
4862                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4863                         /*
4864                          * Inline a custom version of __napi_complete().
4865                          * only current cpu owns and manipulates this napi,
4866                          * and NAPI_STATE_SCHED is the only possible flag set
4867                          * on backlog.
4868                          * We can use a plain write instead of clear_bit(),
4869                          * and we dont need an smp_mb() memory barrier.
4870                          */
4871                         napi->state = 0;
4872                         again = false;
4873                 } else {
4874                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
4875                                                    &sd->process_queue);
4876                 }
4877                 rps_unlock(sd);
4878                 local_irq_enable();
4879         }
4880
4881         return work;
4882 }
4883
4884 /**
4885  * __napi_schedule - schedule for receive
4886  * @n: entry to schedule
4887  *
4888  * The entry's receive function will be scheduled to run.
4889  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4890  */
4891 void __napi_schedule(struct napi_struct *n)
4892 {
4893         unsigned long flags;
4894
4895         local_irq_save(flags);
4896         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4897         local_irq_restore(flags);
4898 }
4899 EXPORT_SYMBOL(__napi_schedule);
4900
4901 /**
4902  * __napi_schedule_irqoff - schedule for receive
4903  * @n: entry to schedule
4904  *
4905  * Variant of __napi_schedule() assuming hard irqs are masked
4906  */
4907 void __napi_schedule_irqoff(struct napi_struct *n)
4908 {
4909         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4910 }
4911 EXPORT_SYMBOL(__napi_schedule_irqoff);
4912
4913 void __napi_complete(struct napi_struct *n)
4914 {
4915         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4916
4917         list_del_init(&n->poll_list);
4918         smp_mb__before_atomic();
4919         clear_bit(NAPI_STATE_SCHED, &n->state);
4920 }
4921 EXPORT_SYMBOL(__napi_complete);
4922
4923 void napi_complete_done(struct napi_struct *n, int work_done)
4924 {
4925         unsigned long flags;
4926
4927         /*
4928          * don't let napi dequeue from the cpu poll list
4929          * just in case its running on a different cpu
4930          */
4931         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4932                 return;
4933
4934         if (n->gro_list) {
4935                 unsigned long timeout = 0;
4936
4937                 if (work_done)
4938                         timeout = n->dev->gro_flush_timeout;
4939
4940                 if (timeout)
4941                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4942                                       HRTIMER_MODE_REL_PINNED);
4943                 else
4944                         napi_gro_flush(n, false);
4945         }
4946         if (likely(list_empty(&n->poll_list))) {
4947                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4948         } else {
4949                 /* If n->poll_list is not empty, we need to mask irqs */
4950                 local_irq_save(flags);
4951                 __napi_complete(n);
4952                 local_irq_restore(flags);
4953         }
4954 }
4955 EXPORT_SYMBOL(napi_complete_done);
4956
4957 /* must be called under rcu_read_lock(), as we dont take a reference */
4958 static struct napi_struct *napi_by_id(unsigned int napi_id)
4959 {
4960         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4961         struct napi_struct *napi;
4962
4963         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4964                 if (napi->napi_id == napi_id)
4965                         return napi;
4966
4967         return NULL;
4968 }
4969
4970 #if defined(CONFIG_NET_RX_BUSY_POLL)
4971 #define BUSY_POLL_BUDGET 8
4972 bool sk_busy_loop(struct sock *sk, int nonblock)
4973 {
4974         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4975         int (*busy_poll)(struct napi_struct *dev);
4976         struct napi_struct *napi;
4977         int rc = false;
4978
4979         rcu_read_lock();
4980
4981         napi = napi_by_id(sk->sk_napi_id);
4982         if (!napi)
4983                 goto out;
4984
4985         /* Note: ndo_busy_poll method is optional in linux-4.5 */
4986         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4987
4988         do {
4989                 rc = 0;
4990                 local_bh_disable();
4991                 if (busy_poll) {
4992                         rc = busy_poll(napi);
4993                 } else if (napi_schedule_prep(napi)) {
4994                         void *have = netpoll_poll_lock(napi);
4995
4996                         if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4997                                 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4998                                 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
4999                                 if (rc == BUSY_POLL_BUDGET) {
5000                                         napi_complete_done(napi, rc);
5001                                         napi_schedule(napi);
5002                                 }
5003                         }
5004                         netpoll_poll_unlock(have);
5005                 }
5006                 if (rc > 0)
5007                         __NET_ADD_STATS(sock_net(sk),
5008                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5009                 local_bh_enable();
5010
5011                 if (rc == LL_FLUSH_FAILED)
5012                         break; /* permanent failure */
5013
5014                 cpu_relax();
5015         } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5016                  !need_resched() && !busy_loop_timeout(end_time));
5017
5018         rc = !skb_queue_empty(&sk->sk_receive_queue);
5019 out:
5020         rcu_read_unlock();
5021         return rc;
5022 }
5023 EXPORT_SYMBOL(sk_busy_loop);
5024
5025 #endif /* CONFIG_NET_RX_BUSY_POLL */
5026
5027 void napi_hash_add(struct napi_struct *napi)
5028 {
5029         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5030             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5031                 return;
5032
5033         spin_lock(&napi_hash_lock);
5034
5035         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5036         do {
5037                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5038                         napi_gen_id = NR_CPUS + 1;
5039         } while (napi_by_id(napi_gen_id));
5040         napi->napi_id = napi_gen_id;
5041
5042         hlist_add_head_rcu(&napi->napi_hash_node,
5043                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5044
5045         spin_unlock(&napi_hash_lock);
5046 }
5047 EXPORT_SYMBOL_GPL(napi_hash_add);
5048
5049 /* Warning : caller is responsible to make sure rcu grace period
5050  * is respected before freeing memory containing @napi
5051  */
5052 bool napi_hash_del(struct napi_struct *napi)
5053 {
5054         bool rcu_sync_needed = false;
5055
5056         spin_lock(&napi_hash_lock);
5057
5058         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5059                 rcu_sync_needed = true;
5060                 hlist_del_rcu(&napi->napi_hash_node);
5061         }
5062         spin_unlock(&napi_hash_lock);
5063         return rcu_sync_needed;
5064 }
5065 EXPORT_SYMBOL_GPL(napi_hash_del);
5066
5067 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5068 {
5069         struct napi_struct *napi;
5070
5071         napi = container_of(timer, struct napi_struct, timer);
5072         if (napi->gro_list)
5073                 napi_schedule(napi);
5074
5075         return HRTIMER_NORESTART;
5076 }
5077
5078 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5079                     int (*poll)(struct napi_struct *, int), int weight)
5080 {
5081         INIT_LIST_HEAD(&napi->poll_list);
5082         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5083         napi->timer.function = napi_watchdog;
5084         napi->gro_count = 0;
5085         napi->gro_list = NULL;
5086         napi->skb = NULL;
5087         napi->poll = poll;
5088         if (weight > NAPI_POLL_WEIGHT)
5089                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5090                             weight, dev->name);
5091         napi->weight = weight;
5092         list_add(&napi->dev_list, &dev->napi_list);
5093         napi->dev = dev;
5094 #ifdef CONFIG_NETPOLL
5095         spin_lock_init(&napi->poll_lock);
5096         napi->poll_owner = -1;
5097 #endif
5098         set_bit(NAPI_STATE_SCHED, &napi->state);
5099         napi_hash_add(napi);
5100 }
5101 EXPORT_SYMBOL(netif_napi_add);
5102
5103 void napi_disable(struct napi_struct *n)
5104 {
5105         might_sleep();
5106         set_bit(NAPI_STATE_DISABLE, &n->state);
5107
5108         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5109                 msleep(1);
5110         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5111                 msleep(1);
5112
5113         hrtimer_cancel(&n->timer);
5114
5115         clear_bit(NAPI_STATE_DISABLE, &n->state);
5116 }
5117 EXPORT_SYMBOL(napi_disable);
5118
5119 /* Must be called in process context */
5120 void netif_napi_del(struct napi_struct *napi)
5121 {
5122         might_sleep();
5123         if (napi_hash_del(napi))
5124                 synchronize_net();
5125         list_del_init(&napi->dev_list);
5126         napi_free_frags(napi);
5127
5128         kfree_skb_list(napi->gro_list);
5129         napi->gro_list = NULL;
5130         napi->gro_count = 0;
5131 }
5132 EXPORT_SYMBOL(netif_napi_del);
5133
5134 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5135 {
5136         void *have;
5137         int work, weight;
5138
5139         list_del_init(&n->poll_list);
5140
5141         have = netpoll_poll_lock(n);
5142
5143         weight = n->weight;
5144
5145         /* This NAPI_STATE_SCHED test is for avoiding a race
5146          * with netpoll's poll_napi().  Only the entity which
5147          * obtains the lock and sees NAPI_STATE_SCHED set will
5148          * actually make the ->poll() call.  Therefore we avoid
5149          * accidentally calling ->poll() when NAPI is not scheduled.
5150          */
5151         work = 0;
5152         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5153                 work = n->poll(n, weight);
5154                 trace_napi_poll(n, work, weight);
5155         }
5156
5157         WARN_ON_ONCE(work > weight);
5158
5159         if (likely(work < weight))
5160                 goto out_unlock;
5161
5162         /* Drivers must not modify the NAPI state if they
5163          * consume the entire weight.  In such cases this code
5164          * still "owns" the NAPI instance and therefore can
5165          * move the instance around on the list at-will.
5166          */
5167         if (unlikely(napi_disable_pending(n))) {
5168                 napi_complete(n);
5169                 goto out_unlock;
5170         }
5171
5172         if (n->gro_list) {
5173                 /* flush too old packets
5174                  * If HZ < 1000, flush all packets.
5175                  */
5176                 napi_gro_flush(n, HZ >= 1000);
5177         }
5178
5179         /* Some drivers may have called napi_schedule
5180          * prior to exhausting their budget.
5181          */
5182         if (unlikely(!list_empty(&n->poll_list))) {
5183                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5184                              n->dev ? n->dev->name : "backlog");
5185                 goto out_unlock;
5186         }
5187
5188         list_add_tail(&n->poll_list, repoll);
5189
5190 out_unlock:
5191         netpoll_poll_unlock(have);
5192
5193         return work;
5194 }
5195
5196 static void net_rx_action(struct softirq_action *h)
5197 {
5198         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5199         unsigned long time_limit = jiffies + 2;
5200         int budget = netdev_budget;
5201         LIST_HEAD(list);
5202         LIST_HEAD(repoll);
5203
5204         local_irq_disable();
5205         list_splice_init(&sd->poll_list, &list);
5206         local_irq_enable();
5207
5208         for (;;) {
5209                 struct napi_struct *n;
5210
5211                 if (list_empty(&list)) {
5212                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5213                                 return;
5214                         break;
5215                 }
5216
5217                 n = list_first_entry(&list, struct napi_struct, poll_list);
5218                 budget -= napi_poll(n, &repoll);
5219
5220                 /* If softirq window is exhausted then punt.
5221                  * Allow this to run for 2 jiffies since which will allow
5222                  * an average latency of 1.5/HZ.
5223                  */
5224                 if (unlikely(budget <= 0 ||
5225                              time_after_eq(jiffies, time_limit))) {
5226                         sd->time_squeeze++;
5227                         break;
5228                 }
5229         }
5230
5231         __kfree_skb_flush();
5232         local_irq_disable();
5233
5234         list_splice_tail_init(&sd->poll_list, &list);
5235         list_splice_tail(&repoll, &list);
5236         list_splice(&list, &sd->poll_list);
5237         if (!list_empty(&sd->poll_list))
5238                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5239
5240         net_rps_action_and_irq_enable(sd);
5241 }
5242
5243 struct netdev_adjacent {
5244         struct net_device *dev;
5245
5246         /* upper master flag, there can only be one master device per list */
5247         bool master;
5248
5249         /* counter for the number of times this device was added to us */
5250         u16 ref_nr;
5251
5252         /* private field for the users */
5253         void *private;
5254
5255         struct list_head list;
5256         struct rcu_head rcu;
5257 };
5258
5259 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5260                                                  struct list_head *adj_list)
5261 {
5262         struct netdev_adjacent *adj;
5263
5264         list_for_each_entry(adj, adj_list, list) {
5265                 if (adj->dev == adj_dev)
5266                         return adj;
5267         }
5268         return NULL;
5269 }
5270
5271 /**
5272  * netdev_has_upper_dev - Check if device is linked to an upper device
5273  * @dev: device
5274  * @upper_dev: upper device to check
5275  *
5276  * Find out if a device is linked to specified upper device and return true
5277  * in case it is. Note that this checks only immediate upper device,
5278  * not through a complete stack of devices. The caller must hold the RTNL lock.
5279  */
5280 bool netdev_has_upper_dev(struct net_device *dev,
5281                           struct net_device *upper_dev)
5282 {
5283         ASSERT_RTNL();
5284
5285         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5286 }
5287 EXPORT_SYMBOL(netdev_has_upper_dev);
5288
5289 /**
5290  * netdev_has_any_upper_dev - Check if device is linked to some device
5291  * @dev: device
5292  *
5293  * Find out if a device is linked to an upper device and return true in case
5294  * it is. The caller must hold the RTNL lock.
5295  */
5296 static bool netdev_has_any_upper_dev(struct net_device *dev)
5297 {
5298         ASSERT_RTNL();
5299
5300         return !list_empty(&dev->all_adj_list.upper);
5301 }
5302
5303 /**
5304  * netdev_master_upper_dev_get - Get master upper device
5305  * @dev: device
5306  *
5307  * Find a master upper device and return pointer to it or NULL in case
5308  * it's not there. The caller must hold the RTNL lock.
5309  */
5310 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5311 {
5312         struct netdev_adjacent *upper;
5313
5314         ASSERT_RTNL();
5315
5316         if (list_empty(&dev->adj_list.upper))
5317                 return NULL;
5318
5319         upper = list_first_entry(&dev->adj_list.upper,
5320                                  struct netdev_adjacent, list);
5321         if (likely(upper->master))
5322                 return upper->dev;
5323         return NULL;
5324 }
5325 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5326
5327 void *netdev_adjacent_get_private(struct list_head *adj_list)
5328 {
5329         struct netdev_adjacent *adj;
5330
5331         adj = list_entry(adj_list, struct netdev_adjacent, list);
5332
5333         return adj->private;
5334 }
5335 EXPORT_SYMBOL(netdev_adjacent_get_private);
5336
5337 /**
5338  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5339  * @dev: device
5340  * @iter: list_head ** of the current position
5341  *
5342  * Gets the next device from the dev's upper list, starting from iter
5343  * position. The caller must hold RCU read lock.
5344  */
5345 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5346                                                  struct list_head **iter)
5347 {
5348         struct netdev_adjacent *upper;
5349
5350         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5351
5352         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5353
5354         if (&upper->list == &dev->adj_list.upper)
5355                 return NULL;
5356
5357         *iter = &upper->list;
5358
5359         return upper->dev;
5360 }
5361 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5362
5363 /**
5364  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5365  * @dev: device
5366  * @iter: list_head ** of the current position
5367  *
5368  * Gets the next device from the dev's upper list, starting from iter
5369  * position. The caller must hold RCU read lock.
5370  */
5371 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5372                                                      struct list_head **iter)
5373 {
5374         struct netdev_adjacent *upper;
5375
5376         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5377
5378         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5379
5380         if (&upper->list == &dev->all_adj_list.upper)
5381                 return NULL;
5382
5383         *iter = &upper->list;
5384
5385         return upper->dev;
5386 }
5387 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5388
5389 /**
5390  * netdev_lower_get_next_private - Get the next ->private from the
5391  *                                 lower neighbour list
5392  * @dev: device
5393  * @iter: list_head ** of the current position
5394  *
5395  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5396  * list, starting from iter position. The caller must hold either hold the
5397  * RTNL lock or its own locking that guarantees that the neighbour lower
5398  * list will remain unchanged.
5399  */
5400 void *netdev_lower_get_next_private(struct net_device *dev,
5401                                     struct list_head **iter)
5402 {
5403         struct netdev_adjacent *lower;
5404
5405         lower = list_entry(*iter, struct netdev_adjacent, list);
5406
5407         if (&lower->list == &dev->adj_list.lower)
5408                 return NULL;
5409
5410         *iter = lower->list.next;
5411
5412         return lower->private;
5413 }
5414 EXPORT_SYMBOL(netdev_lower_get_next_private);
5415
5416 /**
5417  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5418  *                                     lower neighbour list, RCU
5419  *                                     variant
5420  * @dev: device
5421  * @iter: list_head ** of the current position
5422  *
5423  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5424  * list, starting from iter position. The caller must hold RCU read lock.
5425  */
5426 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5427                                         struct list_head **iter)
5428 {
5429         struct netdev_adjacent *lower;
5430
5431         WARN_ON_ONCE(!rcu_read_lock_held());
5432
5433         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5434
5435         if (&lower->list == &dev->adj_list.lower)
5436                 return NULL;
5437
5438         *iter = &lower->list;
5439
5440         return lower->private;
5441 }
5442 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5443
5444 /**
5445  * netdev_lower_get_next - Get the next device from the lower neighbour
5446  *                         list
5447  * @dev: device
5448  * @iter: list_head ** of the current position
5449  *
5450  * Gets the next netdev_adjacent from the dev's lower neighbour
5451  * list, starting from iter position. The caller must hold RTNL lock or
5452  * its own locking that guarantees that the neighbour lower
5453  * list will remain unchanged.
5454  */
5455 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5456 {
5457         struct netdev_adjacent *lower;
5458
5459         lower = list_entry(*iter, struct netdev_adjacent, list);
5460
5461         if (&lower->list == &dev->adj_list.lower)
5462                 return NULL;
5463
5464         *iter = lower->list.next;
5465
5466         return lower->dev;
5467 }
5468 EXPORT_SYMBOL(netdev_lower_get_next);
5469
5470 /**
5471  * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5472  * @dev: device
5473  * @iter: list_head ** of the current position
5474  *
5475  * Gets the next netdev_adjacent from the dev's all lower neighbour
5476  * list, starting from iter position. The caller must hold RTNL lock or
5477  * its own locking that guarantees that the neighbour all lower
5478  * list will remain unchanged.
5479  */
5480 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5481 {
5482         struct netdev_adjacent *lower;
5483
5484         lower = list_entry(*iter, struct netdev_adjacent, list);
5485
5486         if (&lower->list == &dev->all_adj_list.lower)
5487                 return NULL;
5488
5489         *iter = lower->list.next;
5490
5491         return lower->dev;
5492 }
5493 EXPORT_SYMBOL(netdev_all_lower_get_next);
5494
5495 /**
5496  * netdev_all_lower_get_next_rcu - Get the next device from all
5497  *                                 lower neighbour list, RCU variant
5498  * @dev: device
5499  * @iter: list_head ** of the current position
5500  *
5501  * Gets the next netdev_adjacent from the dev's all lower neighbour
5502  * list, starting from iter position. The caller must hold RCU read lock.
5503  */
5504 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5505                                                  struct list_head **iter)
5506 {
5507         struct netdev_adjacent *lower;
5508
5509         lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5510                                        struct netdev_adjacent, list);
5511
5512         return lower ? lower->dev : NULL;
5513 }
5514 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5515
5516 /**
5517  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5518  *                                     lower neighbour list, RCU
5519  *                                     variant
5520  * @dev: device
5521  *
5522  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5523  * list. The caller must hold RCU read lock.
5524  */
5525 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5526 {
5527         struct netdev_adjacent *lower;
5528
5529         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5530                         struct netdev_adjacent, list);
5531         if (lower)
5532                 return lower->private;
5533         return NULL;
5534 }
5535 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5536
5537 /**
5538  * netdev_master_upper_dev_get_rcu - Get master upper device
5539  * @dev: device
5540  *
5541  * Find a master upper device and return pointer to it or NULL in case
5542  * it's not there. The caller must hold the RCU read lock.
5543  */
5544 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5545 {
5546         struct netdev_adjacent *upper;
5547
5548         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5549                                        struct netdev_adjacent, list);
5550         if (upper && likely(upper->master))
5551                 return upper->dev;
5552         return NULL;
5553 }
5554 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5555
5556 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5557                               struct net_device *adj_dev,
5558                               struct list_head *dev_list)
5559 {
5560         char linkname[IFNAMSIZ+7];
5561         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5562                 "upper_%s" : "lower_%s", adj_dev->name);
5563         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5564                                  linkname);
5565 }
5566 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5567                                char *name,
5568                                struct list_head *dev_list)
5569 {
5570         char linkname[IFNAMSIZ+7];
5571         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5572                 "upper_%s" : "lower_%s", name);
5573         sysfs_remove_link(&(dev->dev.kobj), linkname);
5574 }
5575
5576 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5577                                                  struct net_device *adj_dev,
5578                                                  struct list_head *dev_list)
5579 {
5580         return (dev_list == &dev->adj_list.upper ||
5581                 dev_list == &dev->adj_list.lower) &&
5582                 net_eq(dev_net(dev), dev_net(adj_dev));
5583 }
5584
5585 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5586                                         struct net_device *adj_dev,
5587                                         struct list_head *dev_list,
5588                                         void *private, bool master)
5589 {
5590         struct netdev_adjacent *adj;
5591         int ret;
5592
5593         adj = __netdev_find_adj(adj_dev, dev_list);
5594
5595         if (adj) {
5596                 adj->ref_nr++;
5597                 return 0;
5598         }
5599
5600         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5601         if (!adj)
5602                 return -ENOMEM;
5603
5604         adj->dev = adj_dev;
5605         adj->master = master;
5606         adj->ref_nr = 1;
5607         adj->private = private;
5608         dev_hold(adj_dev);
5609
5610         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5611                  adj_dev->name, dev->name, adj_dev->name);
5612
5613         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5614                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5615                 if (ret)
5616                         goto free_adj;
5617         }
5618
5619         /* Ensure that master link is always the first item in list. */
5620         if (master) {
5621                 ret = sysfs_create_link(&(dev->dev.kobj),
5622                                         &(adj_dev->dev.kobj), "master");
5623                 if (ret)
5624                         goto remove_symlinks;
5625
5626                 list_add_rcu(&adj->list, dev_list);
5627         } else {
5628                 list_add_tail_rcu(&adj->list, dev_list);
5629         }
5630
5631         return 0;
5632
5633 remove_symlinks:
5634         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5635                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5636 free_adj:
5637         kfree(adj);
5638         dev_put(adj_dev);
5639
5640         return ret;
5641 }
5642
5643 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5644                                          struct net_device *adj_dev,
5645                                          struct list_head *dev_list)
5646 {
5647         struct netdev_adjacent *adj;
5648
5649         adj = __netdev_find_adj(adj_dev, dev_list);
5650
5651         if (!adj) {
5652                 pr_err("tried to remove device %s from %s\n",
5653                        dev->name, adj_dev->name);
5654                 BUG();
5655         }
5656
5657         if (adj->ref_nr > 1) {
5658                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5659                          adj->ref_nr-1);
5660                 adj->ref_nr--;
5661                 return;
5662         }
5663
5664         if (adj->master)
5665                 sysfs_remove_link(&(dev->dev.kobj), "master");
5666
5667         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5668                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5669
5670         list_del_rcu(&adj->list);
5671         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5672                  adj_dev->name, dev->name, adj_dev->name);
5673         dev_put(adj_dev);
5674         kfree_rcu(adj, rcu);
5675 }
5676
5677 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5678                                             struct net_device *upper_dev,
5679                                             struct list_head *up_list,
5680                                             struct list_head *down_list,
5681                                             void *private, bool master)
5682 {
5683         int ret;
5684
5685         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5686                                            master);
5687         if (ret)
5688                 return ret;
5689
5690         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5691                                            false);
5692         if (ret) {
5693                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5694                 return ret;
5695         }
5696
5697         return 0;
5698 }
5699
5700 static int __netdev_adjacent_dev_link(struct net_device *dev,
5701                                       struct net_device *upper_dev)
5702 {
5703         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5704                                                 &dev->all_adj_list.upper,
5705                                                 &upper_dev->all_adj_list.lower,
5706                                                 NULL, false);
5707 }
5708
5709 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5710                                                struct net_device *upper_dev,
5711                                                struct list_head *up_list,
5712                                                struct list_head *down_list)
5713 {
5714         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5715         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5716 }
5717
5718 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5719                                          struct net_device *upper_dev)
5720 {
5721         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5722                                            &dev->all_adj_list.upper,
5723                                            &upper_dev->all_adj_list.lower);
5724 }
5725
5726 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5727                                                 struct net_device *upper_dev,
5728                                                 void *private, bool master)
5729 {
5730         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5731
5732         if (ret)
5733                 return ret;
5734
5735         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5736                                                &dev->adj_list.upper,
5737                                                &upper_dev->adj_list.lower,
5738                                                private, master);
5739         if (ret) {
5740                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5741                 return ret;
5742         }
5743
5744         return 0;
5745 }
5746
5747 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5748                                                    struct net_device *upper_dev)
5749 {
5750         __netdev_adjacent_dev_unlink(dev, upper_dev);
5751         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5752                                            &dev->adj_list.upper,
5753                                            &upper_dev->adj_list.lower);
5754 }
5755
5756 static int __netdev_upper_dev_link(struct net_device *dev,
5757                                    struct net_device *upper_dev, bool master,
5758                                    void *upper_priv, void *upper_info)
5759 {
5760         struct netdev_notifier_changeupper_info changeupper_info;
5761         struct netdev_adjacent *i, *j, *to_i, *to_j;
5762         int ret = 0;
5763
5764         ASSERT_RTNL();
5765
5766         if (dev == upper_dev)
5767                 return -EBUSY;
5768
5769         /* To prevent loops, check if dev is not upper device to upper_dev. */
5770         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5771                 return -EBUSY;
5772
5773         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5774                 return -EEXIST;
5775
5776         if (master && netdev_master_upper_dev_get(dev))
5777                 return -EBUSY;
5778
5779         changeupper_info.upper_dev = upper_dev;
5780         changeupper_info.master = master;
5781         changeupper_info.linking = true;
5782         changeupper_info.upper_info = upper_info;
5783
5784         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5785                                             &changeupper_info.info);
5786         ret = notifier_to_errno(ret);
5787         if (ret)
5788                 return ret;
5789
5790         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5791                                                    master);
5792         if (ret)
5793                 return ret;
5794
5795         /* Now that we linked these devs, make all the upper_dev's
5796          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5797          * versa, and don't forget the devices itself. All of these
5798          * links are non-neighbours.
5799          */
5800         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5801                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5802                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5803                                  i->dev->name, j->dev->name);
5804                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5805                         if (ret)
5806                                 goto rollback_mesh;
5807                 }
5808         }
5809
5810         /* add dev to every upper_dev's upper device */
5811         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5812                 pr_debug("linking %s's upper device %s with %s\n",
5813                          upper_dev->name, i->dev->name, dev->name);
5814                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5815                 if (ret)
5816                         goto rollback_upper_mesh;
5817         }
5818
5819         /* add upper_dev to every dev's lower device */
5820         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5821                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5822                          i->dev->name, upper_dev->name);
5823                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5824                 if (ret)
5825                         goto rollback_lower_mesh;
5826         }
5827
5828         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5829                                             &changeupper_info.info);
5830         ret = notifier_to_errno(ret);
5831         if (ret)
5832                 goto rollback_lower_mesh;
5833
5834         return 0;
5835
5836 rollback_lower_mesh:
5837         to_i = i;
5838         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5839                 if (i == to_i)
5840                         break;
5841                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5842         }
5843
5844         i = NULL;
5845
5846 rollback_upper_mesh:
5847         to_i = i;
5848         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5849                 if (i == to_i)
5850                         break;
5851                 __netdev_adjacent_dev_unlink(dev, i->dev);
5852         }
5853
5854         i = j = NULL;
5855
5856 rollback_mesh:
5857         to_i = i;
5858         to_j = j;
5859         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5860                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5861                         if (i == to_i && j == to_j)
5862                                 break;
5863                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5864                 }
5865                 if (i == to_i)
5866                         break;
5867         }
5868
5869         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5870
5871         return ret;
5872 }
5873
5874 /**
5875  * netdev_upper_dev_link - Add a link to the upper device
5876  * @dev: device
5877  * @upper_dev: new upper device
5878  *
5879  * Adds a link to device which is upper to this one. The caller must hold
5880  * the RTNL lock. On a failure a negative errno code is returned.
5881  * On success the reference counts are adjusted and the function
5882  * returns zero.
5883  */
5884 int netdev_upper_dev_link(struct net_device *dev,
5885                           struct net_device *upper_dev)
5886 {
5887         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5888 }
5889 EXPORT_SYMBOL(netdev_upper_dev_link);
5890
5891 /**
5892  * netdev_master_upper_dev_link - Add a master link to the upper device
5893  * @dev: device
5894  * @upper_dev: new upper device
5895  * @upper_priv: upper device private
5896  * @upper_info: upper info to be passed down via notifier
5897  *
5898  * Adds a link to device which is upper to this one. In this case, only
5899  * one master upper device can be linked, although other non-master devices
5900  * might be linked as well. The caller must hold the RTNL lock.
5901  * On a failure a negative errno code is returned. On success the reference
5902  * counts are adjusted and the function returns zero.
5903  */
5904 int netdev_master_upper_dev_link(struct net_device *dev,
5905                                  struct net_device *upper_dev,
5906                                  void *upper_priv, void *upper_info)
5907 {
5908         return __netdev_upper_dev_link(dev, upper_dev, true,
5909                                        upper_priv, upper_info);
5910 }
5911 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5912
5913 /**
5914  * netdev_upper_dev_unlink - Removes a link to upper device
5915  * @dev: device
5916  * @upper_dev: new upper device
5917  *
5918  * Removes a link to device which is upper to this one. The caller must hold
5919  * the RTNL lock.
5920  */
5921 void netdev_upper_dev_unlink(struct net_device *dev,
5922                              struct net_device *upper_dev)
5923 {
5924         struct netdev_notifier_changeupper_info changeupper_info;
5925         struct netdev_adjacent *i, *j;
5926         ASSERT_RTNL();
5927
5928         changeupper_info.upper_dev = upper_dev;
5929         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5930         changeupper_info.linking = false;
5931
5932         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5933                                       &changeupper_info.info);
5934
5935         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5936
5937         /* Here is the tricky part. We must remove all dev's lower
5938          * devices from all upper_dev's upper devices and vice
5939          * versa, to maintain the graph relationship.
5940          */
5941         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5942                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5943                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5944
5945         /* remove also the devices itself from lower/upper device
5946          * list
5947          */
5948         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5949                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5950
5951         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5952                 __netdev_adjacent_dev_unlink(dev, i->dev);
5953
5954         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5955                                       &changeupper_info.info);
5956 }
5957 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5958
5959 /**
5960  * netdev_bonding_info_change - Dispatch event about slave change
5961  * @dev: device
5962  * @bonding_info: info to dispatch
5963  *
5964  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5965  * The caller must hold the RTNL lock.
5966  */
5967 void netdev_bonding_info_change(struct net_device *dev,
5968                                 struct netdev_bonding_info *bonding_info)
5969 {
5970         struct netdev_notifier_bonding_info     info;
5971
5972         memcpy(&info.bonding_info, bonding_info,
5973                sizeof(struct netdev_bonding_info));
5974         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5975                                       &info.info);
5976 }
5977 EXPORT_SYMBOL(netdev_bonding_info_change);
5978
5979 static void netdev_adjacent_add_links(struct net_device *dev)
5980 {
5981         struct netdev_adjacent *iter;
5982
5983         struct net *net = dev_net(dev);
5984
5985         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5986                 if (!net_eq(net, dev_net(iter->dev)))
5987                         continue;
5988                 netdev_adjacent_sysfs_add(iter->dev, dev,
5989                                           &iter->dev->adj_list.lower);
5990                 netdev_adjacent_sysfs_add(dev, iter->dev,
5991                                           &dev->adj_list.upper);
5992         }
5993
5994         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5995                 if (!net_eq(net, dev_net(iter->dev)))
5996                         continue;
5997                 netdev_adjacent_sysfs_add(iter->dev, dev,
5998                                           &iter->dev->adj_list.upper);
5999                 netdev_adjacent_sysfs_add(dev, iter->dev,
6000                                           &dev->adj_list.lower);
6001         }
6002 }
6003
6004 static void netdev_adjacent_del_links(struct net_device *dev)
6005 {
6006         struct netdev_adjacent *iter;
6007
6008         struct net *net = dev_net(dev);
6009
6010         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6011                 if (!net_eq(net, dev_net(iter->dev)))
6012                         continue;
6013                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6014                                           &iter->dev->adj_list.lower);
6015                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6016                                           &dev->adj_list.upper);
6017         }
6018
6019         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6020                 if (!net_eq(net, dev_net(iter->dev)))
6021                         continue;
6022                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6023                                           &iter->dev->adj_list.upper);
6024                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6025                                           &dev->adj_list.lower);
6026         }
6027 }
6028
6029 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6030 {
6031         struct netdev_adjacent *iter;
6032
6033         struct net *net = dev_net(dev);
6034
6035         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6036                 if (!net_eq(net, dev_net(iter->dev)))
6037                         continue;
6038                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6039                                           &iter->dev->adj_list.lower);
6040                 netdev_adjacent_sysfs_add(iter->dev, dev,
6041                                           &iter->dev->adj_list.lower);
6042         }
6043
6044         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6045                 if (!net_eq(net, dev_net(iter->dev)))
6046                         continue;
6047                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6048                                           &iter->dev->adj_list.upper);
6049                 netdev_adjacent_sysfs_add(iter->dev, dev,
6050                                           &iter->dev->adj_list.upper);
6051         }
6052 }
6053
6054 void *netdev_lower_dev_get_private(struct net_device *dev,
6055                                    struct net_device *lower_dev)
6056 {
6057         struct netdev_adjacent *lower;
6058
6059         if (!lower_dev)
6060                 return NULL;
6061         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6062         if (!lower)
6063                 return NULL;
6064
6065         return lower->private;
6066 }
6067 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6068
6069
6070 int dev_get_nest_level(struct net_device *dev)
6071 {
6072         struct net_device *lower = NULL;
6073         struct list_head *iter;
6074         int max_nest = -1;
6075         int nest;
6076
6077         ASSERT_RTNL();
6078
6079         netdev_for_each_lower_dev(dev, lower, iter) {
6080                 nest = dev_get_nest_level(lower);
6081                 if (max_nest < nest)
6082                         max_nest = nest;
6083         }
6084
6085         return max_nest + 1;
6086 }
6087 EXPORT_SYMBOL(dev_get_nest_level);
6088
6089 /**
6090  * netdev_lower_change - Dispatch event about lower device state change
6091  * @lower_dev: device
6092  * @lower_state_info: state to dispatch
6093  *
6094  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6095  * The caller must hold the RTNL lock.
6096  */
6097 void netdev_lower_state_changed(struct net_device *lower_dev,
6098                                 void *lower_state_info)
6099 {
6100         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6101
6102         ASSERT_RTNL();
6103         changelowerstate_info.lower_state_info = lower_state_info;
6104         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6105                                       &changelowerstate_info.info);
6106 }
6107 EXPORT_SYMBOL(netdev_lower_state_changed);
6108
6109 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6110                                            struct neighbour *n)
6111 {
6112         struct net_device *lower_dev, *stop_dev;
6113         struct list_head *iter;
6114         int err;
6115
6116         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6117                 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6118                         continue;
6119                 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6120                 if (err) {
6121                         stop_dev = lower_dev;
6122                         goto rollback;
6123                 }
6124         }
6125         return 0;
6126
6127 rollback:
6128         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6129                 if (lower_dev == stop_dev)
6130                         break;
6131                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6132                         continue;
6133                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6134         }
6135         return err;
6136 }
6137 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6138
6139 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6140                                           struct neighbour *n)
6141 {
6142         struct net_device *lower_dev;
6143         struct list_head *iter;
6144
6145         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6146                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6147                         continue;
6148                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6149         }
6150 }
6151 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6152
6153 static void dev_change_rx_flags(struct net_device *dev, int flags)
6154 {
6155         const struct net_device_ops *ops = dev->netdev_ops;
6156
6157         if (ops->ndo_change_rx_flags)
6158                 ops->ndo_change_rx_flags(dev, flags);
6159 }
6160
6161 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6162 {
6163         unsigned int old_flags = dev->flags;
6164         kuid_t uid;
6165         kgid_t gid;
6166
6167         ASSERT_RTNL();
6168
6169         dev->flags |= IFF_PROMISC;
6170         dev->promiscuity += inc;
6171         if (dev->promiscuity == 0) {
6172                 /*
6173                  * Avoid overflow.
6174                  * If inc causes overflow, untouch promisc and return error.
6175                  */
6176                 if (inc < 0)
6177                         dev->flags &= ~IFF_PROMISC;
6178                 else {
6179                         dev->promiscuity -= inc;
6180                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6181                                 dev->name);
6182                         return -EOVERFLOW;
6183                 }
6184         }
6185         if (dev->flags != old_flags) {
6186                 pr_info("device %s %s promiscuous mode\n",
6187                         dev->name,
6188                         dev->flags & IFF_PROMISC ? "entered" : "left");
6189                 if (audit_enabled) {
6190                         current_uid_gid(&uid, &gid);
6191                         audit_log(current->audit_context, GFP_ATOMIC,
6192                                 AUDIT_ANOM_PROMISCUOUS,
6193                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6194                                 dev->name, (dev->flags & IFF_PROMISC),
6195                                 (old_flags & IFF_PROMISC),
6196                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6197                                 from_kuid(&init_user_ns, uid),
6198                                 from_kgid(&init_user_ns, gid),
6199                                 audit_get_sessionid(current));
6200                 }
6201
6202                 dev_change_rx_flags(dev, IFF_PROMISC);
6203         }
6204         if (notify)
6205                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6206         return 0;
6207 }
6208
6209 /**
6210  *      dev_set_promiscuity     - update promiscuity count on a device
6211  *      @dev: device
6212  *      @inc: modifier
6213  *
6214  *      Add or remove promiscuity from a device. While the count in the device
6215  *      remains above zero the interface remains promiscuous. Once it hits zero
6216  *      the device reverts back to normal filtering operation. A negative inc
6217  *      value is used to drop promiscuity on the device.
6218  *      Return 0 if successful or a negative errno code on error.
6219  */
6220 int dev_set_promiscuity(struct net_device *dev, int inc)
6221 {
6222         unsigned int old_flags = dev->flags;
6223         int err;
6224
6225         err = __dev_set_promiscuity(dev, inc, true);
6226         if (err < 0)
6227                 return err;
6228         if (dev->flags != old_flags)
6229                 dev_set_rx_mode(dev);
6230         return err;
6231 }
6232 EXPORT_SYMBOL(dev_set_promiscuity);
6233
6234 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6235 {
6236         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6237
6238         ASSERT_RTNL();
6239
6240         dev->flags |= IFF_ALLMULTI;
6241         dev->allmulti += inc;
6242         if (dev->allmulti == 0) {
6243                 /*
6244                  * Avoid overflow.
6245                  * If inc causes overflow, untouch allmulti and return error.
6246                  */
6247                 if (inc < 0)
6248                         dev->flags &= ~IFF_ALLMULTI;
6249                 else {
6250                         dev->allmulti -= inc;
6251                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6252                                 dev->name);
6253                         return -EOVERFLOW;
6254                 }
6255         }
6256         if (dev->flags ^ old_flags) {
6257                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6258                 dev_set_rx_mode(dev);
6259                 if (notify)
6260                         __dev_notify_flags(dev, old_flags,
6261                                            dev->gflags ^ old_gflags);
6262         }
6263         return 0;
6264 }
6265
6266 /**
6267  *      dev_set_allmulti        - update allmulti count on a device
6268  *      @dev: device
6269  *      @inc: modifier
6270  *
6271  *      Add or remove reception of all multicast frames to a device. While the
6272  *      count in the device remains above zero the interface remains listening
6273  *      to all interfaces. Once it hits zero the device reverts back to normal
6274  *      filtering operation. A negative @inc value is used to drop the counter
6275  *      when releasing a resource needing all multicasts.
6276  *      Return 0 if successful or a negative errno code on error.
6277  */
6278
6279 int dev_set_allmulti(struct net_device *dev, int inc)
6280 {
6281         return __dev_set_allmulti(dev, inc, true);
6282 }
6283 EXPORT_SYMBOL(dev_set_allmulti);
6284
6285 /*
6286  *      Upload unicast and multicast address lists to device and
6287  *      configure RX filtering. When the device doesn't support unicast
6288  *      filtering it is put in promiscuous mode while unicast addresses
6289  *      are present.
6290  */
6291 void __dev_set_rx_mode(struct net_device *dev)
6292 {
6293         const struct net_device_ops *ops = dev->netdev_ops;
6294
6295         /* dev_open will call this function so the list will stay sane. */
6296         if (!(dev->flags&IFF_UP))
6297                 return;
6298
6299         if (!netif_device_present(dev))
6300                 return;
6301
6302         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6303                 /* Unicast addresses changes may only happen under the rtnl,
6304                  * therefore calling __dev_set_promiscuity here is safe.
6305                  */
6306                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6307                         __dev_set_promiscuity(dev, 1, false);
6308                         dev->uc_promisc = true;
6309                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6310                         __dev_set_promiscuity(dev, -1, false);
6311                         dev->uc_promisc = false;
6312                 }
6313         }
6314
6315         if (ops->ndo_set_rx_mode)
6316                 ops->ndo_set_rx_mode(dev);
6317 }
6318
6319 void dev_set_rx_mode(struct net_device *dev)
6320 {
6321         netif_addr_lock_bh(dev);
6322         __dev_set_rx_mode(dev);
6323         netif_addr_unlock_bh(dev);
6324 }
6325
6326 /**
6327  *      dev_get_flags - get flags reported to userspace
6328  *      @dev: device
6329  *
6330  *      Get the combination of flag bits exported through APIs to userspace.
6331  */
6332 unsigned int dev_get_flags(const struct net_device *dev)
6333 {
6334         unsigned int flags;
6335
6336         flags = (dev->flags & ~(IFF_PROMISC |
6337                                 IFF_ALLMULTI |
6338                                 IFF_RUNNING |
6339                                 IFF_LOWER_UP |
6340                                 IFF_DORMANT)) |
6341                 (dev->gflags & (IFF_PROMISC |
6342                                 IFF_ALLMULTI));
6343
6344         if (netif_running(dev)) {
6345                 if (netif_oper_up(dev))
6346                         flags |= IFF_RUNNING;
6347                 if (netif_carrier_ok(dev))
6348                         flags |= IFF_LOWER_UP;
6349                 if (netif_dormant(dev))
6350                         flags |= IFF_DORMANT;
6351         }
6352
6353         return flags;
6354 }
6355 EXPORT_SYMBOL(dev_get_flags);
6356
6357 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6358 {
6359         unsigned int old_flags = dev->flags;
6360         int ret;
6361
6362         ASSERT_RTNL();
6363
6364         /*
6365          *      Set the flags on our device.
6366          */
6367
6368         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6369                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6370                                IFF_AUTOMEDIA)) |
6371                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6372                                     IFF_ALLMULTI));
6373
6374         /*
6375          *      Load in the correct multicast list now the flags have changed.
6376          */
6377
6378         if ((old_flags ^ flags) & IFF_MULTICAST)
6379                 dev_change_rx_flags(dev, IFF_MULTICAST);
6380
6381         dev_set_rx_mode(dev);
6382
6383         /*
6384          *      Have we downed the interface. We handle IFF_UP ourselves
6385          *      according to user attempts to set it, rather than blindly
6386          *      setting it.
6387          */
6388
6389         ret = 0;
6390         if ((old_flags ^ flags) & IFF_UP)
6391                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6392
6393         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6394                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6395                 unsigned int old_flags = dev->flags;
6396
6397                 dev->gflags ^= IFF_PROMISC;
6398
6399                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6400                         if (dev->flags != old_flags)
6401                                 dev_set_rx_mode(dev);
6402         }
6403
6404         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6405            is important. Some (broken) drivers set IFF_PROMISC, when
6406            IFF_ALLMULTI is requested not asking us and not reporting.
6407          */
6408         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6409                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6410
6411                 dev->gflags ^= IFF_ALLMULTI;
6412                 __dev_set_allmulti(dev, inc, false);
6413         }
6414
6415         return ret;
6416 }
6417
6418 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6419                         unsigned int gchanges)
6420 {
6421         unsigned int changes = dev->flags ^ old_flags;
6422
6423         if (gchanges)
6424                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6425
6426         if (changes & IFF_UP) {
6427                 if (dev->flags & IFF_UP)
6428                         call_netdevice_notifiers(NETDEV_UP, dev);
6429                 else
6430                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6431         }
6432
6433         if (dev->flags & IFF_UP &&
6434             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6435                 struct netdev_notifier_change_info change_info;
6436
6437                 change_info.flags_changed = changes;
6438                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6439                                               &change_info.info);
6440         }
6441 }
6442
6443 /**
6444  *      dev_change_flags - change device settings
6445  *      @dev: device
6446  *      @flags: device state flags
6447  *
6448  *      Change settings on device based state flags. The flags are
6449  *      in the userspace exported format.
6450  */
6451 int dev_change_flags(struct net_device *dev, unsigned int flags)
6452 {
6453         int ret;
6454         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6455
6456         ret = __dev_change_flags(dev, flags);
6457         if (ret < 0)
6458                 return ret;
6459
6460         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6461         __dev_notify_flags(dev, old_flags, changes);
6462         return ret;
6463 }
6464 EXPORT_SYMBOL(dev_change_flags);
6465
6466 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6467 {
6468         const struct net_device_ops *ops = dev->netdev_ops;
6469
6470         if (ops->ndo_change_mtu)
6471                 return ops->ndo_change_mtu(dev, new_mtu);
6472
6473         dev->mtu = new_mtu;
6474         return 0;
6475 }
6476
6477 /**
6478  *      dev_set_mtu - Change maximum transfer unit
6479  *      @dev: device
6480  *      @new_mtu: new transfer unit
6481  *
6482  *      Change the maximum transfer size of the network device.
6483  */
6484 int dev_set_mtu(struct net_device *dev, int new_mtu)
6485 {
6486         int err, orig_mtu;
6487
6488         if (new_mtu == dev->mtu)
6489                 return 0;
6490
6491         /*      MTU must be positive.    */
6492         if (new_mtu < 0)
6493                 return -EINVAL;
6494
6495         if (!netif_device_present(dev))
6496                 return -ENODEV;
6497
6498         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6499         err = notifier_to_errno(err);
6500         if (err)
6501                 return err;
6502
6503         orig_mtu = dev->mtu;
6504         err = __dev_set_mtu(dev, new_mtu);
6505
6506         if (!err) {
6507                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6508                 err = notifier_to_errno(err);
6509                 if (err) {
6510                         /* setting mtu back and notifying everyone again,
6511                          * so that they have a chance to revert changes.
6512                          */
6513                         __dev_set_mtu(dev, orig_mtu);
6514                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6515                 }
6516         }
6517         return err;
6518 }
6519 EXPORT_SYMBOL(dev_set_mtu);
6520
6521 /**
6522  *      dev_set_group - Change group this device belongs to
6523  *      @dev: device
6524  *      @new_group: group this device should belong to
6525  */
6526 void dev_set_group(struct net_device *dev, int new_group)
6527 {
6528         dev->group = new_group;
6529 }
6530 EXPORT_SYMBOL(dev_set_group);
6531
6532 /**
6533  *      dev_set_mac_address - Change Media Access Control Address
6534  *      @dev: device
6535  *      @sa: new address
6536  *
6537  *      Change the hardware (MAC) address of the device
6538  */
6539 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6540 {
6541         const struct net_device_ops *ops = dev->netdev_ops;
6542         int err;
6543
6544         if (!ops->ndo_set_mac_address)
6545                 return -EOPNOTSUPP;
6546         if (sa->sa_family != dev->type)
6547                 return -EINVAL;
6548         if (!netif_device_present(dev))
6549                 return -ENODEV;
6550         err = ops->ndo_set_mac_address(dev, sa);
6551         if (err)
6552                 return err;
6553         dev->addr_assign_type = NET_ADDR_SET;
6554         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6555         add_device_randomness(dev->dev_addr, dev->addr_len);
6556         return 0;
6557 }
6558 EXPORT_SYMBOL(dev_set_mac_address);
6559
6560 /**
6561  *      dev_change_carrier - Change device carrier
6562  *      @dev: device
6563  *      @new_carrier: new value
6564  *
6565  *      Change device carrier
6566  */
6567 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6568 {
6569         const struct net_device_ops *ops = dev->netdev_ops;
6570
6571         if (!ops->ndo_change_carrier)
6572                 return -EOPNOTSUPP;
6573         if (!netif_device_present(dev))
6574                 return -ENODEV;
6575         return ops->ndo_change_carrier(dev, new_carrier);
6576 }
6577 EXPORT_SYMBOL(dev_change_carrier);
6578
6579 /**
6580  *      dev_get_phys_port_id - Get device physical port ID
6581  *      @dev: device
6582  *      @ppid: port ID
6583  *
6584  *      Get device physical port ID
6585  */
6586 int dev_get_phys_port_id(struct net_device *dev,
6587                          struct netdev_phys_item_id *ppid)
6588 {
6589         const struct net_device_ops *ops = dev->netdev_ops;
6590
6591         if (!ops->ndo_get_phys_port_id)
6592                 return -EOPNOTSUPP;
6593         return ops->ndo_get_phys_port_id(dev, ppid);
6594 }
6595 EXPORT_SYMBOL(dev_get_phys_port_id);
6596
6597 /**
6598  *      dev_get_phys_port_name - Get device physical port name
6599  *      @dev: device
6600  *      @name: port name
6601  *      @len: limit of bytes to copy to name
6602  *
6603  *      Get device physical port name
6604  */
6605 int dev_get_phys_port_name(struct net_device *dev,
6606                            char *name, size_t len)
6607 {
6608         const struct net_device_ops *ops = dev->netdev_ops;
6609
6610         if (!ops->ndo_get_phys_port_name)
6611                 return -EOPNOTSUPP;
6612         return ops->ndo_get_phys_port_name(dev, name, len);
6613 }
6614 EXPORT_SYMBOL(dev_get_phys_port_name);
6615
6616 /**
6617  *      dev_change_proto_down - update protocol port state information
6618  *      @dev: device
6619  *      @proto_down: new value
6620  *
6621  *      This info can be used by switch drivers to set the phys state of the
6622  *      port.
6623  */
6624 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6625 {
6626         const struct net_device_ops *ops = dev->netdev_ops;
6627
6628         if (!ops->ndo_change_proto_down)
6629                 return -EOPNOTSUPP;
6630         if (!netif_device_present(dev))
6631                 return -ENODEV;
6632         return ops->ndo_change_proto_down(dev, proto_down);
6633 }
6634 EXPORT_SYMBOL(dev_change_proto_down);
6635
6636 /**
6637  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6638  *      @dev: device
6639  *      @fd: new program fd or negative value to clear
6640  *
6641  *      Set or clear a bpf program for a device
6642  */
6643 int dev_change_xdp_fd(struct net_device *dev, int fd)
6644 {
6645         const struct net_device_ops *ops = dev->netdev_ops;
6646         struct bpf_prog *prog = NULL;
6647         struct netdev_xdp xdp = {};
6648         int err;
6649
6650         if (!ops->ndo_xdp)
6651                 return -EOPNOTSUPP;
6652         if (fd >= 0) {
6653                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6654                 if (IS_ERR(prog))
6655                         return PTR_ERR(prog);
6656         }
6657
6658         xdp.command = XDP_SETUP_PROG;
6659         xdp.prog = prog;
6660         err = ops->ndo_xdp(dev, &xdp);
6661         if (err < 0 && prog)
6662                 bpf_prog_put(prog);
6663
6664         return err;
6665 }
6666 EXPORT_SYMBOL(dev_change_xdp_fd);
6667
6668 /**
6669  *      dev_new_index   -       allocate an ifindex
6670  *      @net: the applicable net namespace
6671  *
6672  *      Returns a suitable unique value for a new device interface
6673  *      number.  The caller must hold the rtnl semaphore or the
6674  *      dev_base_lock to be sure it remains unique.
6675  */
6676 static int dev_new_index(struct net *net)
6677 {
6678         int ifindex = net->ifindex;
6679         for (;;) {
6680                 if (++ifindex <= 0)
6681                         ifindex = 1;
6682                 if (!__dev_get_by_index(net, ifindex))
6683                         return net->ifindex = ifindex;
6684         }
6685 }
6686
6687 /* Delayed registration/unregisteration */
6688 static LIST_HEAD(net_todo_list);
6689 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6690
6691 static void net_set_todo(struct net_device *dev)
6692 {
6693         list_add_tail(&dev->todo_list, &net_todo_list);
6694         dev_net(dev)->dev_unreg_count++;
6695 }
6696
6697 static void rollback_registered_many(struct list_head *head)
6698 {
6699         struct net_device *dev, *tmp;
6700         LIST_HEAD(close_head);
6701
6702         BUG_ON(dev_boot_phase);
6703         ASSERT_RTNL();
6704
6705         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6706                 /* Some devices call without registering
6707                  * for initialization unwind. Remove those
6708                  * devices and proceed with the remaining.
6709                  */
6710                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6711                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6712                                  dev->name, dev);
6713
6714                         WARN_ON(1);
6715                         list_del(&dev->unreg_list);
6716                         continue;
6717                 }
6718                 dev->dismantle = true;
6719                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6720         }
6721
6722         /* If device is running, close it first. */
6723         list_for_each_entry(dev, head, unreg_list)
6724                 list_add_tail(&dev->close_list, &close_head);
6725         dev_close_many(&close_head, true);
6726
6727         list_for_each_entry(dev, head, unreg_list) {
6728                 /* And unlink it from device chain. */
6729                 unlist_netdevice(dev);
6730
6731                 dev->reg_state = NETREG_UNREGISTERING;
6732         }
6733         flush_all_backlogs();
6734
6735         synchronize_net();
6736
6737         list_for_each_entry(dev, head, unreg_list) {
6738                 struct sk_buff *skb = NULL;
6739
6740                 /* Shutdown queueing discipline. */
6741                 dev_shutdown(dev);
6742
6743
6744                 /* Notify protocols, that we are about to destroy
6745                    this device. They should clean all the things.
6746                 */
6747                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6748
6749                 if (!dev->rtnl_link_ops ||
6750                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6751                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6752                                                      GFP_KERNEL);
6753
6754                 /*
6755                  *      Flush the unicast and multicast chains
6756                  */
6757                 dev_uc_flush(dev);
6758                 dev_mc_flush(dev);
6759
6760                 if (dev->netdev_ops->ndo_uninit)
6761                         dev->netdev_ops->ndo_uninit(dev);
6762
6763                 if (skb)
6764                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6765
6766                 /* Notifier chain MUST detach us all upper devices. */
6767                 WARN_ON(netdev_has_any_upper_dev(dev));
6768
6769                 /* Remove entries from kobject tree */
6770                 netdev_unregister_kobject(dev);
6771 #ifdef CONFIG_XPS
6772                 /* Remove XPS queueing entries */
6773                 netif_reset_xps_queues_gt(dev, 0);
6774 #endif
6775         }
6776
6777         synchronize_net();
6778
6779         list_for_each_entry(dev, head, unreg_list)
6780                 dev_put(dev);
6781 }
6782
6783 static void rollback_registered(struct net_device *dev)
6784 {
6785         LIST_HEAD(single);
6786
6787         list_add(&dev->unreg_list, &single);
6788         rollback_registered_many(&single);
6789         list_del(&single);
6790 }
6791
6792 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6793         struct net_device *upper, netdev_features_t features)
6794 {
6795         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6796         netdev_features_t feature;
6797         int feature_bit;
6798
6799         for_each_netdev_feature(&upper_disables, feature_bit) {
6800                 feature = __NETIF_F_BIT(feature_bit);
6801                 if (!(upper->wanted_features & feature)
6802                     && (features & feature)) {
6803                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6804                                    &feature, upper->name);
6805                         features &= ~feature;
6806                 }
6807         }
6808
6809         return features;
6810 }
6811
6812 static void netdev_sync_lower_features(struct net_device *upper,
6813         struct net_device *lower, netdev_features_t features)
6814 {
6815         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6816         netdev_features_t feature;
6817         int feature_bit;
6818
6819         for_each_netdev_feature(&upper_disables, feature_bit) {
6820                 feature = __NETIF_F_BIT(feature_bit);
6821                 if (!(features & feature) && (lower->features & feature)) {
6822                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6823                                    &feature, lower->name);
6824                         lower->wanted_features &= ~feature;
6825                         netdev_update_features(lower);
6826
6827                         if (unlikely(lower->features & feature))
6828                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6829                                             &feature, lower->name);
6830                 }
6831         }
6832 }
6833
6834 static netdev_features_t netdev_fix_features(struct net_device *dev,
6835         netdev_features_t features)
6836 {
6837         /* Fix illegal checksum combinations */
6838         if ((features & NETIF_F_HW_CSUM) &&
6839             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6840                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6841                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6842         }
6843
6844         /* TSO requires that SG is present as well. */
6845         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6846                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6847                 features &= ~NETIF_F_ALL_TSO;
6848         }
6849
6850         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6851                                         !(features & NETIF_F_IP_CSUM)) {
6852                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6853                 features &= ~NETIF_F_TSO;
6854                 features &= ~NETIF_F_TSO_ECN;
6855         }
6856
6857         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6858                                          !(features & NETIF_F_IPV6_CSUM)) {
6859                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6860                 features &= ~NETIF_F_TSO6;
6861         }
6862
6863         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6864         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6865                 features &= ~NETIF_F_TSO_MANGLEID;
6866
6867         /* TSO ECN requires that TSO is present as well. */
6868         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6869                 features &= ~NETIF_F_TSO_ECN;
6870
6871         /* Software GSO depends on SG. */
6872         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6873                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6874                 features &= ~NETIF_F_GSO;
6875         }
6876
6877         /* UFO needs SG and checksumming */
6878         if (features & NETIF_F_UFO) {
6879                 /* maybe split UFO into V4 and V6? */
6880                 if (!(features & NETIF_F_HW_CSUM) &&
6881                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6882                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6883                         netdev_dbg(dev,
6884                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6885                         features &= ~NETIF_F_UFO;
6886                 }
6887
6888                 if (!(features & NETIF_F_SG)) {
6889                         netdev_dbg(dev,
6890                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6891                         features &= ~NETIF_F_UFO;
6892                 }
6893         }
6894
6895         /* GSO partial features require GSO partial be set */
6896         if ((features & dev->gso_partial_features) &&
6897             !(features & NETIF_F_GSO_PARTIAL)) {
6898                 netdev_dbg(dev,
6899                            "Dropping partially supported GSO features since no GSO partial.\n");
6900                 features &= ~dev->gso_partial_features;
6901         }
6902
6903 #ifdef CONFIG_NET_RX_BUSY_POLL
6904         if (dev->netdev_ops->ndo_busy_poll)
6905                 features |= NETIF_F_BUSY_POLL;
6906         else
6907 #endif
6908                 features &= ~NETIF_F_BUSY_POLL;
6909
6910         return features;
6911 }
6912
6913 int __netdev_update_features(struct net_device *dev)
6914 {
6915         struct net_device *upper, *lower;
6916         netdev_features_t features;
6917         struct list_head *iter;
6918         int err = -1;
6919
6920         ASSERT_RTNL();
6921
6922         features = netdev_get_wanted_features(dev);
6923
6924         if (dev->netdev_ops->ndo_fix_features)
6925                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6926
6927         /* driver might be less strict about feature dependencies */
6928         features = netdev_fix_features(dev, features);
6929
6930         /* some features can't be enabled if they're off an an upper device */
6931         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6932                 features = netdev_sync_upper_features(dev, upper, features);
6933
6934         if (dev->features == features)
6935                 goto sync_lower;
6936
6937         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6938                 &dev->features, &features);
6939
6940         if (dev->netdev_ops->ndo_set_features)
6941                 err = dev->netdev_ops->ndo_set_features(dev, features);
6942         else
6943                 err = 0;
6944
6945         if (unlikely(err < 0)) {
6946                 netdev_err(dev,
6947                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6948                         err, &features, &dev->features);
6949                 /* return non-0 since some features might have changed and
6950                  * it's better to fire a spurious notification than miss it
6951                  */
6952                 return -1;
6953         }
6954
6955 sync_lower:
6956         /* some features must be disabled on lower devices when disabled
6957          * on an upper device (think: bonding master or bridge)
6958          */
6959         netdev_for_each_lower_dev(dev, lower, iter)
6960                 netdev_sync_lower_features(dev, lower, features);
6961
6962         if (!err)
6963                 dev->features = features;
6964
6965         return err < 0 ? 0 : 1;
6966 }
6967
6968 /**
6969  *      netdev_update_features - recalculate device features
6970  *      @dev: the device to check
6971  *
6972  *      Recalculate dev->features set and send notifications if it
6973  *      has changed. Should be called after driver or hardware dependent
6974  *      conditions might have changed that influence the features.
6975  */
6976 void netdev_update_features(struct net_device *dev)
6977 {
6978         if (__netdev_update_features(dev))
6979                 netdev_features_change(dev);
6980 }
6981 EXPORT_SYMBOL(netdev_update_features);
6982
6983 /**
6984  *      netdev_change_features - recalculate device features
6985  *      @dev: the device to check
6986  *
6987  *      Recalculate dev->features set and send notifications even
6988  *      if they have not changed. Should be called instead of
6989  *      netdev_update_features() if also dev->vlan_features might
6990  *      have changed to allow the changes to be propagated to stacked
6991  *      VLAN devices.
6992  */
6993 void netdev_change_features(struct net_device *dev)
6994 {
6995         __netdev_update_features(dev);
6996         netdev_features_change(dev);
6997 }
6998 EXPORT_SYMBOL(netdev_change_features);
6999
7000 /**
7001  *      netif_stacked_transfer_operstate -      transfer operstate
7002  *      @rootdev: the root or lower level device to transfer state from
7003  *      @dev: the device to transfer operstate to
7004  *
7005  *      Transfer operational state from root to device. This is normally
7006  *      called when a stacking relationship exists between the root
7007  *      device and the device(a leaf device).
7008  */
7009 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7010                                         struct net_device *dev)
7011 {
7012         if (rootdev->operstate == IF_OPER_DORMANT)
7013                 netif_dormant_on(dev);
7014         else
7015                 netif_dormant_off(dev);
7016
7017         if (netif_carrier_ok(rootdev)) {
7018                 if (!netif_carrier_ok(dev))
7019                         netif_carrier_on(dev);
7020         } else {
7021                 if (netif_carrier_ok(dev))
7022                         netif_carrier_off(dev);
7023         }
7024 }
7025 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7026
7027 #ifdef CONFIG_SYSFS
7028 static int netif_alloc_rx_queues(struct net_device *dev)
7029 {
7030         unsigned int i, count = dev->num_rx_queues;
7031         struct netdev_rx_queue *rx;
7032         size_t sz = count * sizeof(*rx);
7033
7034         BUG_ON(count < 1);
7035
7036         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7037         if (!rx) {
7038                 rx = vzalloc(sz);
7039                 if (!rx)
7040                         return -ENOMEM;
7041         }
7042         dev->_rx = rx;
7043
7044         for (i = 0; i < count; i++)
7045                 rx[i].dev = dev;
7046         return 0;
7047 }
7048 #endif
7049
7050 static void netdev_init_one_queue(struct net_device *dev,
7051                                   struct netdev_queue *queue, void *_unused)
7052 {
7053         /* Initialize queue lock */
7054         spin_lock_init(&queue->_xmit_lock);
7055         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7056         queue->xmit_lock_owner = -1;
7057         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7058         queue->dev = dev;
7059 #ifdef CONFIG_BQL
7060         dql_init(&queue->dql, HZ);
7061 #endif
7062 }
7063
7064 static void netif_free_tx_queues(struct net_device *dev)
7065 {
7066         kvfree(dev->_tx);
7067 }
7068
7069 static int netif_alloc_netdev_queues(struct net_device *dev)
7070 {
7071         unsigned int count = dev->num_tx_queues;
7072         struct netdev_queue *tx;
7073         size_t sz = count * sizeof(*tx);
7074
7075         if (count < 1 || count > 0xffff)
7076                 return -EINVAL;
7077
7078         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7079         if (!tx) {
7080                 tx = vzalloc(sz);
7081                 if (!tx)
7082                         return -ENOMEM;
7083         }
7084         dev->_tx = tx;
7085
7086         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7087         spin_lock_init(&dev->tx_global_lock);
7088
7089         return 0;
7090 }
7091
7092 void netif_tx_stop_all_queues(struct net_device *dev)
7093 {
7094         unsigned int i;
7095
7096         for (i = 0; i < dev->num_tx_queues; i++) {
7097                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7098                 netif_tx_stop_queue(txq);
7099         }
7100 }
7101 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7102
7103 /**
7104  *      register_netdevice      - register a network device
7105  *      @dev: device to register
7106  *
7107  *      Take a completed network device structure and add it to the kernel
7108  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7109  *      chain. 0 is returned on success. A negative errno code is returned
7110  *      on a failure to set up the device, or if the name is a duplicate.
7111  *
7112  *      Callers must hold the rtnl semaphore. You may want
7113  *      register_netdev() instead of this.
7114  *
7115  *      BUGS:
7116  *      The locking appears insufficient to guarantee two parallel registers
7117  *      will not get the same name.
7118  */
7119
7120 int register_netdevice(struct net_device *dev)
7121 {
7122         int ret;
7123         struct net *net = dev_net(dev);
7124
7125         BUG_ON(dev_boot_phase);
7126         ASSERT_RTNL();
7127
7128         might_sleep();
7129
7130         /* When net_device's are persistent, this will be fatal. */
7131         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7132         BUG_ON(!net);
7133
7134         spin_lock_init(&dev->addr_list_lock);
7135         netdev_set_addr_lockdep_class(dev);
7136
7137         ret = dev_get_valid_name(net, dev, dev->name);
7138         if (ret < 0)
7139                 goto out;
7140
7141         /* Init, if this function is available */
7142         if (dev->netdev_ops->ndo_init) {
7143                 ret = dev->netdev_ops->ndo_init(dev);
7144                 if (ret) {
7145                         if (ret > 0)
7146                                 ret = -EIO;
7147                         goto out;
7148                 }
7149         }
7150
7151         if (((dev->hw_features | dev->features) &
7152              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7153             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7154              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7155                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7156                 ret = -EINVAL;
7157                 goto err_uninit;
7158         }
7159
7160         ret = -EBUSY;
7161         if (!dev->ifindex)
7162                 dev->ifindex = dev_new_index(net);
7163         else if (__dev_get_by_index(net, dev->ifindex))
7164                 goto err_uninit;
7165
7166         /* Transfer changeable features to wanted_features and enable
7167          * software offloads (GSO and GRO).
7168          */
7169         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7170         dev->features |= NETIF_F_SOFT_FEATURES;
7171         dev->wanted_features = dev->features & dev->hw_features;
7172
7173         if (!(dev->flags & IFF_LOOPBACK))
7174                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7175
7176         /* If IPv4 TCP segmentation offload is supported we should also
7177          * allow the device to enable segmenting the frame with the option
7178          * of ignoring a static IP ID value.  This doesn't enable the
7179          * feature itself but allows the user to enable it later.
7180          */
7181         if (dev->hw_features & NETIF_F_TSO)
7182                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7183         if (dev->vlan_features & NETIF_F_TSO)
7184                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7185         if (dev->mpls_features & NETIF_F_TSO)
7186                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7187         if (dev->hw_enc_features & NETIF_F_TSO)
7188                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7189
7190         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7191          */
7192         dev->vlan_features |= NETIF_F_HIGHDMA;
7193
7194         /* Make NETIF_F_SG inheritable to tunnel devices.
7195          */
7196         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7197
7198         /* Make NETIF_F_SG inheritable to MPLS.
7199          */
7200         dev->mpls_features |= NETIF_F_SG;
7201
7202         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7203         ret = notifier_to_errno(ret);
7204         if (ret)
7205                 goto err_uninit;
7206
7207         ret = netdev_register_kobject(dev);
7208         if (ret)
7209                 goto err_uninit;
7210         dev->reg_state = NETREG_REGISTERED;
7211
7212         __netdev_update_features(dev);
7213
7214         /*
7215          *      Default initial state at registry is that the
7216          *      device is present.
7217          */
7218
7219         set_bit(__LINK_STATE_PRESENT, &dev->state);
7220
7221         linkwatch_init_dev(dev);
7222
7223         dev_init_scheduler(dev);
7224         dev_hold(dev);
7225         list_netdevice(dev);
7226         add_device_randomness(dev->dev_addr, dev->addr_len);
7227
7228         /* If the device has permanent device address, driver should
7229          * set dev_addr and also addr_assign_type should be set to
7230          * NET_ADDR_PERM (default value).
7231          */
7232         if (dev->addr_assign_type == NET_ADDR_PERM)
7233                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7234
7235         /* Notify protocols, that a new device appeared. */
7236         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7237         ret = notifier_to_errno(ret);
7238         if (ret) {
7239                 rollback_registered(dev);
7240                 dev->reg_state = NETREG_UNREGISTERED;
7241         }
7242         /*
7243          *      Prevent userspace races by waiting until the network
7244          *      device is fully setup before sending notifications.
7245          */
7246         if (!dev->rtnl_link_ops ||
7247             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7248                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7249
7250 out:
7251         return ret;
7252
7253 err_uninit:
7254         if (dev->netdev_ops->ndo_uninit)
7255                 dev->netdev_ops->ndo_uninit(dev);
7256         goto out;
7257 }
7258 EXPORT_SYMBOL(register_netdevice);
7259
7260 /**
7261  *      init_dummy_netdev       - init a dummy network device for NAPI
7262  *      @dev: device to init
7263  *
7264  *      This takes a network device structure and initialize the minimum
7265  *      amount of fields so it can be used to schedule NAPI polls without
7266  *      registering a full blown interface. This is to be used by drivers
7267  *      that need to tie several hardware interfaces to a single NAPI
7268  *      poll scheduler due to HW limitations.
7269  */
7270 int init_dummy_netdev(struct net_device *dev)
7271 {
7272         /* Clear everything. Note we don't initialize spinlocks
7273          * are they aren't supposed to be taken by any of the
7274          * NAPI code and this dummy netdev is supposed to be
7275          * only ever used for NAPI polls
7276          */
7277         memset(dev, 0, sizeof(struct net_device));
7278
7279         /* make sure we BUG if trying to hit standard
7280          * register/unregister code path
7281          */
7282         dev->reg_state = NETREG_DUMMY;
7283
7284         /* NAPI wants this */
7285         INIT_LIST_HEAD(&dev->napi_list);
7286
7287         /* a dummy interface is started by default */
7288         set_bit(__LINK_STATE_PRESENT, &dev->state);
7289         set_bit(__LINK_STATE_START, &dev->state);
7290
7291         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7292          * because users of this 'device' dont need to change
7293          * its refcount.
7294          */
7295
7296         return 0;
7297 }
7298 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7299
7300
7301 /**
7302  *      register_netdev - register a network device
7303  *      @dev: device to register
7304  *
7305  *      Take a completed network device structure and add it to the kernel
7306  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7307  *      chain. 0 is returned on success. A negative errno code is returned
7308  *      on a failure to set up the device, or if the name is a duplicate.
7309  *
7310  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7311  *      and expands the device name if you passed a format string to
7312  *      alloc_netdev.
7313  */
7314 int register_netdev(struct net_device *dev)
7315 {
7316         int err;
7317
7318         rtnl_lock();
7319         err = register_netdevice(dev);
7320         rtnl_unlock();
7321         return err;
7322 }
7323 EXPORT_SYMBOL(register_netdev);
7324
7325 int netdev_refcnt_read(const struct net_device *dev)
7326 {
7327         int i, refcnt = 0;
7328
7329         for_each_possible_cpu(i)
7330                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7331         return refcnt;
7332 }
7333 EXPORT_SYMBOL(netdev_refcnt_read);
7334
7335 /**
7336  * netdev_wait_allrefs - wait until all references are gone.
7337  * @dev: target net_device
7338  *
7339  * This is called when unregistering network devices.
7340  *
7341  * Any protocol or device that holds a reference should register
7342  * for netdevice notification, and cleanup and put back the
7343  * reference if they receive an UNREGISTER event.
7344  * We can get stuck here if buggy protocols don't correctly
7345  * call dev_put.
7346  */
7347 static void netdev_wait_allrefs(struct net_device *dev)
7348 {
7349         unsigned long rebroadcast_time, warning_time;
7350         int refcnt;
7351
7352         linkwatch_forget_dev(dev);
7353
7354         rebroadcast_time = warning_time = jiffies;
7355         refcnt = netdev_refcnt_read(dev);
7356
7357         while (refcnt != 0) {
7358                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7359                         rtnl_lock();
7360
7361                         /* Rebroadcast unregister notification */
7362                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7363
7364                         __rtnl_unlock();
7365                         rcu_barrier();
7366                         rtnl_lock();
7367
7368                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7369                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7370                                      &dev->state)) {
7371                                 /* We must not have linkwatch events
7372                                  * pending on unregister. If this
7373                                  * happens, we simply run the queue
7374                                  * unscheduled, resulting in a noop
7375                                  * for this device.
7376                                  */
7377                                 linkwatch_run_queue();
7378                         }
7379
7380                         __rtnl_unlock();
7381
7382                         rebroadcast_time = jiffies;
7383                 }
7384
7385                 msleep(250);
7386
7387                 refcnt = netdev_refcnt_read(dev);
7388
7389                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7390                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7391                                  dev->name, refcnt);
7392                         warning_time = jiffies;
7393                 }
7394         }
7395 }
7396
7397 /* The sequence is:
7398  *
7399  *      rtnl_lock();
7400  *      ...
7401  *      register_netdevice(x1);
7402  *      register_netdevice(x2);
7403  *      ...
7404  *      unregister_netdevice(y1);
7405  *      unregister_netdevice(y2);
7406  *      ...
7407  *      rtnl_unlock();
7408  *      free_netdev(y1);
7409  *      free_netdev(y2);
7410  *
7411  * We are invoked by rtnl_unlock().
7412  * This allows us to deal with problems:
7413  * 1) We can delete sysfs objects which invoke hotplug
7414  *    without deadlocking with linkwatch via keventd.
7415  * 2) Since we run with the RTNL semaphore not held, we can sleep
7416  *    safely in order to wait for the netdev refcnt to drop to zero.
7417  *
7418  * We must not return until all unregister events added during
7419  * the interval the lock was held have been completed.
7420  */
7421 void netdev_run_todo(void)
7422 {
7423         struct list_head list;
7424
7425         /* Snapshot list, allow later requests */
7426         list_replace_init(&net_todo_list, &list);
7427
7428         __rtnl_unlock();
7429
7430
7431         /* Wait for rcu callbacks to finish before next phase */
7432         if (!list_empty(&list))
7433                 rcu_barrier();
7434
7435         while (!list_empty(&list)) {
7436                 struct net_device *dev
7437                         = list_first_entry(&list, struct net_device, todo_list);
7438                 list_del(&dev->todo_list);
7439
7440                 rtnl_lock();
7441                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7442                 __rtnl_unlock();
7443
7444                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7445                         pr_err("network todo '%s' but state %d\n",
7446                                dev->name, dev->reg_state);
7447                         dump_stack();
7448                         continue;
7449                 }
7450
7451                 dev->reg_state = NETREG_UNREGISTERED;
7452
7453                 netdev_wait_allrefs(dev);
7454
7455                 /* paranoia */
7456                 BUG_ON(netdev_refcnt_read(dev));
7457                 BUG_ON(!list_empty(&dev->ptype_all));
7458                 BUG_ON(!list_empty(&dev->ptype_specific));
7459                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7460                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7461                 WARN_ON(dev->dn_ptr);
7462
7463                 if (dev->destructor)
7464                         dev->destructor(dev);
7465
7466                 /* Report a network device has been unregistered */
7467                 rtnl_lock();
7468                 dev_net(dev)->dev_unreg_count--;
7469                 __rtnl_unlock();
7470                 wake_up(&netdev_unregistering_wq);
7471
7472                 /* Free network device */
7473                 kobject_put(&dev->dev.kobj);
7474         }
7475 }
7476
7477 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7478  * all the same fields in the same order as net_device_stats, with only
7479  * the type differing, but rtnl_link_stats64 may have additional fields
7480  * at the end for newer counters.
7481  */
7482 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7483                              const struct net_device_stats *netdev_stats)
7484 {
7485 #if BITS_PER_LONG == 64
7486         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7487         memcpy(stats64, netdev_stats, sizeof(*stats64));
7488         /* zero out counters that only exist in rtnl_link_stats64 */
7489         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7490                sizeof(*stats64) - sizeof(*netdev_stats));
7491 #else
7492         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7493         const unsigned long *src = (const unsigned long *)netdev_stats;
7494         u64 *dst = (u64 *)stats64;
7495
7496         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7497         for (i = 0; i < n; i++)
7498                 dst[i] = src[i];
7499         /* zero out counters that only exist in rtnl_link_stats64 */
7500         memset((char *)stats64 + n * sizeof(u64), 0,
7501                sizeof(*stats64) - n * sizeof(u64));
7502 #endif
7503 }
7504 EXPORT_SYMBOL(netdev_stats_to_stats64);
7505
7506 /**
7507  *      dev_get_stats   - get network device statistics
7508  *      @dev: device to get statistics from
7509  *      @storage: place to store stats
7510  *
7511  *      Get network statistics from device. Return @storage.
7512  *      The device driver may provide its own method by setting
7513  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7514  *      otherwise the internal statistics structure is used.
7515  */
7516 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7517                                         struct rtnl_link_stats64 *storage)
7518 {
7519         const struct net_device_ops *ops = dev->netdev_ops;
7520
7521         if (ops->ndo_get_stats64) {
7522                 memset(storage, 0, sizeof(*storage));
7523                 ops->ndo_get_stats64(dev, storage);
7524         } else if (ops->ndo_get_stats) {
7525                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7526         } else {
7527                 netdev_stats_to_stats64(storage, &dev->stats);
7528         }
7529         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7530         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7531         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7532         return storage;
7533 }
7534 EXPORT_SYMBOL(dev_get_stats);
7535
7536 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7537 {
7538         struct netdev_queue *queue = dev_ingress_queue(dev);
7539
7540 #ifdef CONFIG_NET_CLS_ACT
7541         if (queue)
7542                 return queue;
7543         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7544         if (!queue)
7545                 return NULL;
7546         netdev_init_one_queue(dev, queue, NULL);
7547         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7548         queue->qdisc_sleeping = &noop_qdisc;
7549         rcu_assign_pointer(dev->ingress_queue, queue);
7550 #endif
7551         return queue;
7552 }
7553
7554 static const struct ethtool_ops default_ethtool_ops;
7555
7556 void netdev_set_default_ethtool_ops(struct net_device *dev,
7557                                     const struct ethtool_ops *ops)
7558 {
7559         if (dev->ethtool_ops == &default_ethtool_ops)
7560                 dev->ethtool_ops = ops;
7561 }
7562 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7563
7564 void netdev_freemem(struct net_device *dev)
7565 {
7566         char *addr = (char *)dev - dev->padded;
7567
7568         kvfree(addr);
7569 }
7570
7571 /**
7572  *      alloc_netdev_mqs - allocate network device
7573  *      @sizeof_priv:           size of private data to allocate space for
7574  *      @name:                  device name format string
7575  *      @name_assign_type:      origin of device name
7576  *      @setup:                 callback to initialize device
7577  *      @txqs:                  the number of TX subqueues to allocate
7578  *      @rxqs:                  the number of RX subqueues to allocate
7579  *
7580  *      Allocates a struct net_device with private data area for driver use
7581  *      and performs basic initialization.  Also allocates subqueue structs
7582  *      for each queue on the device.
7583  */
7584 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7585                 unsigned char name_assign_type,
7586                 void (*setup)(struct net_device *),
7587                 unsigned int txqs, unsigned int rxqs)
7588 {
7589         struct net_device *dev;
7590         size_t alloc_size;
7591         struct net_device *p;
7592
7593         BUG_ON(strlen(name) >= sizeof(dev->name));
7594
7595         if (txqs < 1) {
7596                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7597                 return NULL;
7598         }
7599
7600 #ifdef CONFIG_SYSFS
7601         if (rxqs < 1) {
7602                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7603                 return NULL;
7604         }
7605 #endif
7606
7607         alloc_size = sizeof(struct net_device);
7608         if (sizeof_priv) {
7609                 /* ensure 32-byte alignment of private area */
7610                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7611                 alloc_size += sizeof_priv;
7612         }
7613         /* ensure 32-byte alignment of whole construct */
7614         alloc_size += NETDEV_ALIGN - 1;
7615
7616         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7617         if (!p)
7618                 p = vzalloc(alloc_size);
7619         if (!p)
7620                 return NULL;
7621
7622         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7623         dev->padded = (char *)dev - (char *)p;
7624
7625         dev->pcpu_refcnt = alloc_percpu(int);
7626         if (!dev->pcpu_refcnt)
7627                 goto free_dev;
7628
7629         if (dev_addr_init(dev))
7630                 goto free_pcpu;
7631
7632         dev_mc_init(dev);
7633         dev_uc_init(dev);
7634
7635         dev_net_set(dev, &init_net);
7636
7637         dev->gso_max_size = GSO_MAX_SIZE;
7638         dev->gso_max_segs = GSO_MAX_SEGS;
7639
7640         INIT_LIST_HEAD(&dev->napi_list);
7641         INIT_LIST_HEAD(&dev->unreg_list);
7642         INIT_LIST_HEAD(&dev->close_list);
7643         INIT_LIST_HEAD(&dev->link_watch_list);
7644         INIT_LIST_HEAD(&dev->adj_list.upper);
7645         INIT_LIST_HEAD(&dev->adj_list.lower);
7646         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7647         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7648         INIT_LIST_HEAD(&dev->ptype_all);
7649         INIT_LIST_HEAD(&dev->ptype_specific);
7650 #ifdef CONFIG_NET_SCHED
7651         hash_init(dev->qdisc_hash);
7652 #endif
7653         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7654         setup(dev);
7655
7656         if (!dev->tx_queue_len) {
7657                 dev->priv_flags |= IFF_NO_QUEUE;
7658                 dev->tx_queue_len = 1;
7659         }
7660
7661         dev->num_tx_queues = txqs;
7662         dev->real_num_tx_queues = txqs;
7663         if (netif_alloc_netdev_queues(dev))
7664                 goto free_all;
7665
7666 #ifdef CONFIG_SYSFS
7667         dev->num_rx_queues = rxqs;
7668         dev->real_num_rx_queues = rxqs;
7669         if (netif_alloc_rx_queues(dev))
7670                 goto free_all;
7671 #endif
7672
7673         strcpy(dev->name, name);
7674         dev->name_assign_type = name_assign_type;
7675         dev->group = INIT_NETDEV_GROUP;
7676         if (!dev->ethtool_ops)
7677                 dev->ethtool_ops = &default_ethtool_ops;
7678
7679         nf_hook_ingress_init(dev);
7680
7681         return dev;
7682
7683 free_all:
7684         free_netdev(dev);
7685         return NULL;
7686
7687 free_pcpu:
7688         free_percpu(dev->pcpu_refcnt);
7689 free_dev:
7690         netdev_freemem(dev);
7691         return NULL;
7692 }
7693 EXPORT_SYMBOL(alloc_netdev_mqs);
7694
7695 /**
7696  *      free_netdev - free network device
7697  *      @dev: device
7698  *
7699  *      This function does the last stage of destroying an allocated device
7700  *      interface. The reference to the device object is released.
7701  *      If this is the last reference then it will be freed.
7702  *      Must be called in process context.
7703  */
7704 void free_netdev(struct net_device *dev)
7705 {
7706         struct napi_struct *p, *n;
7707
7708         might_sleep();
7709         netif_free_tx_queues(dev);
7710 #ifdef CONFIG_SYSFS
7711         kvfree(dev->_rx);
7712 #endif
7713
7714         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7715
7716         /* Flush device addresses */
7717         dev_addr_flush(dev);
7718
7719         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7720                 netif_napi_del(p);
7721
7722         free_percpu(dev->pcpu_refcnt);
7723         dev->pcpu_refcnt = NULL;
7724
7725         /*  Compatibility with error handling in drivers */
7726         if (dev->reg_state == NETREG_UNINITIALIZED) {
7727                 netdev_freemem(dev);
7728                 return;
7729         }
7730
7731         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7732         dev->reg_state = NETREG_RELEASED;
7733
7734         /* will free via device release */
7735         put_device(&dev->dev);
7736 }
7737 EXPORT_SYMBOL(free_netdev);
7738
7739 /**
7740  *      synchronize_net -  Synchronize with packet receive processing
7741  *
7742  *      Wait for packets currently being received to be done.
7743  *      Does not block later packets from starting.
7744  */
7745 void synchronize_net(void)
7746 {
7747         might_sleep();
7748         if (rtnl_is_locked())
7749                 synchronize_rcu_expedited();
7750         else
7751                 synchronize_rcu();
7752 }
7753 EXPORT_SYMBOL(synchronize_net);
7754
7755 /**
7756  *      unregister_netdevice_queue - remove device from the kernel
7757  *      @dev: device
7758  *      @head: list
7759  *
7760  *      This function shuts down a device interface and removes it
7761  *      from the kernel tables.
7762  *      If head not NULL, device is queued to be unregistered later.
7763  *
7764  *      Callers must hold the rtnl semaphore.  You may want
7765  *      unregister_netdev() instead of this.
7766  */
7767
7768 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7769 {
7770         ASSERT_RTNL();
7771
7772         if (head) {
7773                 list_move_tail(&dev->unreg_list, head);
7774         } else {
7775                 rollback_registered(dev);
7776                 /* Finish processing unregister after unlock */
7777                 net_set_todo(dev);
7778         }
7779 }
7780 EXPORT_SYMBOL(unregister_netdevice_queue);
7781
7782 /**
7783  *      unregister_netdevice_many - unregister many devices
7784  *      @head: list of devices
7785  *
7786  *  Note: As most callers use a stack allocated list_head,
7787  *  we force a list_del() to make sure stack wont be corrupted later.
7788  */
7789 void unregister_netdevice_many(struct list_head *head)
7790 {
7791         struct net_device *dev;
7792
7793         if (!list_empty(head)) {
7794                 rollback_registered_many(head);
7795                 list_for_each_entry(dev, head, unreg_list)
7796                         net_set_todo(dev);
7797                 list_del(head);
7798         }
7799 }
7800 EXPORT_SYMBOL(unregister_netdevice_many);
7801
7802 /**
7803  *      unregister_netdev - remove device from the kernel
7804  *      @dev: device
7805  *
7806  *      This function shuts down a device interface and removes it
7807  *      from the kernel tables.
7808  *
7809  *      This is just a wrapper for unregister_netdevice that takes
7810  *      the rtnl semaphore.  In general you want to use this and not
7811  *      unregister_netdevice.
7812  */
7813 void unregister_netdev(struct net_device *dev)
7814 {
7815         rtnl_lock();
7816         unregister_netdevice(dev);
7817         rtnl_unlock();
7818 }
7819 EXPORT_SYMBOL(unregister_netdev);
7820
7821 /**
7822  *      dev_change_net_namespace - move device to different nethost namespace
7823  *      @dev: device
7824  *      @net: network namespace
7825  *      @pat: If not NULL name pattern to try if the current device name
7826  *            is already taken in the destination network namespace.
7827  *
7828  *      This function shuts down a device interface and moves it
7829  *      to a new network namespace. On success 0 is returned, on
7830  *      a failure a netagive errno code is returned.
7831  *
7832  *      Callers must hold the rtnl semaphore.
7833  */
7834
7835 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7836 {
7837         int err;
7838
7839         ASSERT_RTNL();
7840
7841         /* Don't allow namespace local devices to be moved. */
7842         err = -EINVAL;
7843         if (dev->features & NETIF_F_NETNS_LOCAL)
7844                 goto out;
7845
7846         /* Ensure the device has been registrered */
7847         if (dev->reg_state != NETREG_REGISTERED)
7848                 goto out;
7849
7850         /* Get out if there is nothing todo */
7851         err = 0;
7852         if (net_eq(dev_net(dev), net))
7853                 goto out;
7854
7855         /* Pick the destination device name, and ensure
7856          * we can use it in the destination network namespace.
7857          */
7858         err = -EEXIST;
7859         if (__dev_get_by_name(net, dev->name)) {
7860                 /* We get here if we can't use the current device name */
7861                 if (!pat)
7862                         goto out;
7863                 if (dev_get_valid_name(net, dev, pat) < 0)
7864                         goto out;
7865         }
7866
7867         /*
7868          * And now a mini version of register_netdevice unregister_netdevice.
7869          */
7870
7871         /* If device is running close it first. */
7872         dev_close(dev);
7873
7874         /* And unlink it from device chain */
7875         err = -ENODEV;
7876         unlist_netdevice(dev);
7877
7878         synchronize_net();
7879
7880         /* Shutdown queueing discipline. */
7881         dev_shutdown(dev);
7882
7883         /* Notify protocols, that we are about to destroy
7884            this device. They should clean all the things.
7885
7886            Note that dev->reg_state stays at NETREG_REGISTERED.
7887            This is wanted because this way 8021q and macvlan know
7888            the device is just moving and can keep their slaves up.
7889         */
7890         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7891         rcu_barrier();
7892         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7893         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7894
7895         /*
7896          *      Flush the unicast and multicast chains
7897          */
7898         dev_uc_flush(dev);
7899         dev_mc_flush(dev);
7900
7901         /* Send a netdev-removed uevent to the old namespace */
7902         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7903         netdev_adjacent_del_links(dev);
7904
7905         /* Actually switch the network namespace */
7906         dev_net_set(dev, net);
7907
7908         /* If there is an ifindex conflict assign a new one */
7909         if (__dev_get_by_index(net, dev->ifindex))
7910                 dev->ifindex = dev_new_index(net);
7911
7912         /* Send a netdev-add uevent to the new namespace */
7913         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7914         netdev_adjacent_add_links(dev);
7915
7916         /* Fixup kobjects */
7917         err = device_rename(&dev->dev, dev->name);
7918         WARN_ON(err);
7919
7920         /* Add the device back in the hashes */
7921         list_netdevice(dev);
7922
7923         /* Notify protocols, that a new device appeared. */
7924         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7925
7926         /*
7927          *      Prevent userspace races by waiting until the network
7928          *      device is fully setup before sending notifications.
7929          */
7930         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7931
7932         synchronize_net();
7933         err = 0;
7934 out:
7935         return err;
7936 }
7937 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7938
7939 static int dev_cpu_callback(struct notifier_block *nfb,
7940                             unsigned long action,
7941                             void *ocpu)
7942 {
7943         struct sk_buff **list_skb;
7944         struct sk_buff *skb;
7945         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7946         struct softnet_data *sd, *oldsd;
7947
7948         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7949                 return NOTIFY_OK;
7950
7951         local_irq_disable();
7952         cpu = smp_processor_id();
7953         sd = &per_cpu(softnet_data, cpu);
7954         oldsd = &per_cpu(softnet_data, oldcpu);
7955
7956         /* Find end of our completion_queue. */
7957         list_skb = &sd->completion_queue;
7958         while (*list_skb)
7959                 list_skb = &(*list_skb)->next;
7960         /* Append completion queue from offline CPU. */
7961         *list_skb = oldsd->completion_queue;
7962         oldsd->completion_queue = NULL;
7963
7964         /* Append output queue from offline CPU. */
7965         if (oldsd->output_queue) {
7966                 *sd->output_queue_tailp = oldsd->output_queue;
7967                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7968                 oldsd->output_queue = NULL;
7969                 oldsd->output_queue_tailp = &oldsd->output_queue;
7970         }
7971         /* Append NAPI poll list from offline CPU, with one exception :
7972          * process_backlog() must be called by cpu owning percpu backlog.
7973          * We properly handle process_queue & input_pkt_queue later.
7974          */
7975         while (!list_empty(&oldsd->poll_list)) {
7976                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7977                                                             struct napi_struct,
7978                                                             poll_list);
7979
7980                 list_del_init(&napi->poll_list);
7981                 if (napi->poll == process_backlog)
7982                         napi->state = 0;
7983                 else
7984                         ____napi_schedule(sd, napi);
7985         }
7986
7987         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7988         local_irq_enable();
7989
7990         /* Process offline CPU's input_pkt_queue */
7991         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7992                 netif_rx_ni(skb);
7993                 input_queue_head_incr(oldsd);
7994         }
7995         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7996                 netif_rx_ni(skb);
7997                 input_queue_head_incr(oldsd);
7998         }
7999
8000         return NOTIFY_OK;
8001 }
8002
8003
8004 /**
8005  *      netdev_increment_features - increment feature set by one
8006  *      @all: current feature set
8007  *      @one: new feature set
8008  *      @mask: mask feature set
8009  *
8010  *      Computes a new feature set after adding a device with feature set
8011  *      @one to the master device with current feature set @all.  Will not
8012  *      enable anything that is off in @mask. Returns the new feature set.
8013  */
8014 netdev_features_t netdev_increment_features(netdev_features_t all,
8015         netdev_features_t one, netdev_features_t mask)
8016 {
8017         if (mask & NETIF_F_HW_CSUM)
8018                 mask |= NETIF_F_CSUM_MASK;
8019         mask |= NETIF_F_VLAN_CHALLENGED;
8020
8021         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8022         all &= one | ~NETIF_F_ALL_FOR_ALL;
8023
8024         /* If one device supports hw checksumming, set for all. */
8025         if (all & NETIF_F_HW_CSUM)
8026                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8027
8028         return all;
8029 }
8030 EXPORT_SYMBOL(netdev_increment_features);
8031
8032 static struct hlist_head * __net_init netdev_create_hash(void)
8033 {
8034         int i;
8035         struct hlist_head *hash;
8036
8037         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8038         if (hash != NULL)
8039                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8040                         INIT_HLIST_HEAD(&hash[i]);
8041
8042         return hash;
8043 }
8044
8045 /* Initialize per network namespace state */
8046 static int __net_init netdev_init(struct net *net)
8047 {
8048         if (net != &init_net)
8049                 INIT_LIST_HEAD(&net->dev_base_head);
8050
8051         net->dev_name_head = netdev_create_hash();
8052         if (net->dev_name_head == NULL)
8053                 goto err_name;
8054
8055         net->dev_index_head = netdev_create_hash();
8056         if (net->dev_index_head == NULL)
8057                 goto err_idx;
8058
8059         return 0;
8060
8061 err_idx:
8062         kfree(net->dev_name_head);
8063 err_name:
8064         return -ENOMEM;
8065 }
8066
8067 /**
8068  *      netdev_drivername - network driver for the device
8069  *      @dev: network device
8070  *
8071  *      Determine network driver for device.
8072  */
8073 const char *netdev_drivername(const struct net_device *dev)
8074 {
8075         const struct device_driver *driver;
8076         const struct device *parent;
8077         const char *empty = "";
8078
8079         parent = dev->dev.parent;
8080         if (!parent)
8081                 return empty;
8082
8083         driver = parent->driver;
8084         if (driver && driver->name)
8085                 return driver->name;
8086         return empty;
8087 }
8088
8089 static void __netdev_printk(const char *level, const struct net_device *dev,
8090                             struct va_format *vaf)
8091 {
8092         if (dev && dev->dev.parent) {
8093                 dev_printk_emit(level[1] - '0',
8094                                 dev->dev.parent,
8095                                 "%s %s %s%s: %pV",
8096                                 dev_driver_string(dev->dev.parent),
8097                                 dev_name(dev->dev.parent),
8098                                 netdev_name(dev), netdev_reg_state(dev),
8099                                 vaf);
8100         } else if (dev) {
8101                 printk("%s%s%s: %pV",
8102                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8103         } else {
8104                 printk("%s(NULL net_device): %pV", level, vaf);
8105         }
8106 }
8107
8108 void netdev_printk(const char *level, const struct net_device *dev,
8109                    const char *format, ...)
8110 {
8111         struct va_format vaf;
8112         va_list args;
8113
8114         va_start(args, format);
8115
8116         vaf.fmt = format;
8117         vaf.va = &args;
8118
8119         __netdev_printk(level, dev, &vaf);
8120
8121         va_end(args);
8122 }
8123 EXPORT_SYMBOL(netdev_printk);
8124
8125 #define define_netdev_printk_level(func, level)                 \
8126 void func(const struct net_device *dev, const char *fmt, ...)   \
8127 {                                                               \
8128         struct va_format vaf;                                   \
8129         va_list args;                                           \
8130                                                                 \
8131         va_start(args, fmt);                                    \
8132                                                                 \
8133         vaf.fmt = fmt;                                          \
8134         vaf.va = &args;                                         \
8135                                                                 \
8136         __netdev_printk(level, dev, &vaf);                      \
8137                                                                 \
8138         va_end(args);                                           \
8139 }                                                               \
8140 EXPORT_SYMBOL(func);
8141
8142 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8143 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8144 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8145 define_netdev_printk_level(netdev_err, KERN_ERR);
8146 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8147 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8148 define_netdev_printk_level(netdev_info, KERN_INFO);
8149
8150 static void __net_exit netdev_exit(struct net *net)
8151 {
8152         kfree(net->dev_name_head);
8153         kfree(net->dev_index_head);
8154 }
8155
8156 static struct pernet_operations __net_initdata netdev_net_ops = {
8157         .init = netdev_init,
8158         .exit = netdev_exit,
8159 };
8160
8161 static void __net_exit default_device_exit(struct net *net)
8162 {
8163         struct net_device *dev, *aux;
8164         /*
8165          * Push all migratable network devices back to the
8166          * initial network namespace
8167          */
8168         rtnl_lock();
8169         for_each_netdev_safe(net, dev, aux) {
8170                 int err;
8171                 char fb_name[IFNAMSIZ];
8172
8173                 /* Ignore unmoveable devices (i.e. loopback) */
8174                 if (dev->features & NETIF_F_NETNS_LOCAL)
8175                         continue;
8176
8177                 /* Leave virtual devices for the generic cleanup */
8178                 if (dev->rtnl_link_ops)
8179                         continue;
8180
8181                 /* Push remaining network devices to init_net */
8182                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8183                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8184                 if (err) {
8185                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8186                                  __func__, dev->name, err);
8187                         BUG();
8188                 }
8189         }
8190         rtnl_unlock();
8191 }
8192
8193 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8194 {
8195         /* Return with the rtnl_lock held when there are no network
8196          * devices unregistering in any network namespace in net_list.
8197          */
8198         struct net *net;
8199         bool unregistering;
8200         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8201
8202         add_wait_queue(&netdev_unregistering_wq, &wait);
8203         for (;;) {
8204                 unregistering = false;
8205                 rtnl_lock();
8206                 list_for_each_entry(net, net_list, exit_list) {
8207                         if (net->dev_unreg_count > 0) {
8208                                 unregistering = true;
8209                                 break;
8210                         }
8211                 }
8212                 if (!unregistering)
8213                         break;
8214                 __rtnl_unlock();
8215
8216                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8217         }
8218         remove_wait_queue(&netdev_unregistering_wq, &wait);
8219 }
8220
8221 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8222 {
8223         /* At exit all network devices most be removed from a network
8224          * namespace.  Do this in the reverse order of registration.
8225          * Do this across as many network namespaces as possible to
8226          * improve batching efficiency.
8227          */
8228         struct net_device *dev;
8229         struct net *net;
8230         LIST_HEAD(dev_kill_list);
8231
8232         /* To prevent network device cleanup code from dereferencing
8233          * loopback devices or network devices that have been freed
8234          * wait here for all pending unregistrations to complete,
8235          * before unregistring the loopback device and allowing the
8236          * network namespace be freed.
8237          *
8238          * The netdev todo list containing all network devices
8239          * unregistrations that happen in default_device_exit_batch
8240          * will run in the rtnl_unlock() at the end of
8241          * default_device_exit_batch.
8242          */
8243         rtnl_lock_unregistering(net_list);
8244         list_for_each_entry(net, net_list, exit_list) {
8245                 for_each_netdev_reverse(net, dev) {
8246                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8247                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8248                         else
8249                                 unregister_netdevice_queue(dev, &dev_kill_list);
8250                 }
8251         }
8252         unregister_netdevice_many(&dev_kill_list);
8253         rtnl_unlock();
8254 }
8255
8256 static struct pernet_operations __net_initdata default_device_ops = {
8257         .exit = default_device_exit,
8258         .exit_batch = default_device_exit_batch,
8259 };
8260
8261 /*
8262  *      Initialize the DEV module. At boot time this walks the device list and
8263  *      unhooks any devices that fail to initialise (normally hardware not
8264  *      present) and leaves us with a valid list of present and active devices.
8265  *
8266  */
8267
8268 /*
8269  *       This is called single threaded during boot, so no need
8270  *       to take the rtnl semaphore.
8271  */
8272 static int __init net_dev_init(void)
8273 {
8274         int i, rc = -ENOMEM;
8275
8276         BUG_ON(!dev_boot_phase);
8277
8278         if (dev_proc_init())
8279                 goto out;
8280
8281         if (netdev_kobject_init())
8282                 goto out;
8283
8284         INIT_LIST_HEAD(&ptype_all);
8285         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8286                 INIT_LIST_HEAD(&ptype_base[i]);
8287
8288         INIT_LIST_HEAD(&offload_base);
8289
8290         if (register_pernet_subsys(&netdev_net_ops))
8291                 goto out;
8292
8293         /*
8294          *      Initialise the packet receive queues.
8295          */
8296
8297         for_each_possible_cpu(i) {
8298                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8299                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8300
8301                 INIT_WORK(flush, flush_backlog);
8302
8303                 skb_queue_head_init(&sd->input_pkt_queue);
8304                 skb_queue_head_init(&sd->process_queue);
8305                 INIT_LIST_HEAD(&sd->poll_list);
8306                 sd->output_queue_tailp = &sd->output_queue;
8307 #ifdef CONFIG_RPS
8308                 sd->csd.func = rps_trigger_softirq;
8309                 sd->csd.info = sd;
8310                 sd->cpu = i;
8311 #endif
8312
8313                 sd->backlog.poll = process_backlog;
8314                 sd->backlog.weight = weight_p;
8315         }
8316
8317         dev_boot_phase = 0;
8318
8319         /* The loopback device is special if any other network devices
8320          * is present in a network namespace the loopback device must
8321          * be present. Since we now dynamically allocate and free the
8322          * loopback device ensure this invariant is maintained by
8323          * keeping the loopback device as the first device on the
8324          * list of network devices.  Ensuring the loopback devices
8325          * is the first device that appears and the last network device
8326          * that disappears.
8327          */
8328         if (register_pernet_device(&loopback_net_ops))
8329                 goto out;
8330
8331         if (register_pernet_device(&default_device_ops))
8332                 goto out;
8333
8334         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8335         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8336
8337         hotcpu_notifier(dev_cpu_callback, 0);
8338         dst_subsys_init();
8339         rc = 0;
8340 out:
8341         return rc;
8342 }
8343
8344 subsys_initcall(net_dev_init);