Merge branch 'pci/resource' into next
[cascardo/linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
142
143 #include "net-sysfs.h"
144
145 /* Instead of increasing this, you should create a hash table. */
146 #define MAX_GRO_SKBS 8
147
148 /* This should be increased if a protocol with a bigger head is added. */
149 #define GRO_MAX_HEAD (MAX_HEADER + 128)
150
151 static DEFINE_SPINLOCK(ptype_lock);
152 static DEFINE_SPINLOCK(offload_lock);
153 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154 struct list_head ptype_all __read_mostly;       /* Taps */
155 static struct list_head offload_base __read_mostly;
156
157 static int netif_rx_internal(struct sk_buff *skb);
158 static int call_netdevice_notifiers_info(unsigned long val,
159                                          struct net_device *dev,
160                                          struct netdev_notifier_info *info);
161
162 /*
163  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
164  * semaphore.
165  *
166  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
167  *
168  * Writers must hold the rtnl semaphore while they loop through the
169  * dev_base_head list, and hold dev_base_lock for writing when they do the
170  * actual updates.  This allows pure readers to access the list even
171  * while a writer is preparing to update it.
172  *
173  * To put it another way, dev_base_lock is held for writing only to
174  * protect against pure readers; the rtnl semaphore provides the
175  * protection against other writers.
176  *
177  * See, for example usages, register_netdevice() and
178  * unregister_netdevice(), which must be called with the rtnl
179  * semaphore held.
180  */
181 DEFINE_RWLOCK(dev_base_lock);
182 EXPORT_SYMBOL(dev_base_lock);
183
184 /* protects napi_hash addition/deletion and napi_gen_id */
185 static DEFINE_SPINLOCK(napi_hash_lock);
186
187 static unsigned int napi_gen_id = NR_CPUS;
188 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
189
190 static seqcount_t devnet_rename_seq;
191
192 static inline void dev_base_seq_inc(struct net *net)
193 {
194         while (++net->dev_base_seq == 0);
195 }
196
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
198 {
199         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200
201         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208
209 static inline void rps_lock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212         spin_lock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215
216 static inline void rps_unlock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219         spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222
223 /* Device list insertion */
224 static void list_netdevice(struct net_device *dev)
225 {
226         struct net *net = dev_net(dev);
227
228         ASSERT_RTNL();
229
230         write_lock_bh(&dev_base_lock);
231         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233         hlist_add_head_rcu(&dev->index_hlist,
234                            dev_index_hash(net, dev->ifindex));
235         write_unlock_bh(&dev_base_lock);
236
237         dev_base_seq_inc(net);
238 }
239
240 /* Device list removal
241  * caller must respect a RCU grace period before freeing/reusing dev
242  */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245         ASSERT_RTNL();
246
247         /* Unlink dev from the device chain */
248         write_lock_bh(&dev_base_lock);
249         list_del_rcu(&dev->dev_list);
250         hlist_del_rcu(&dev->name_hlist);
251         hlist_del_rcu(&dev->index_hlist);
252         write_unlock_bh(&dev_base_lock);
253
254         dev_base_seq_inc(dev_net(dev));
255 }
256
257 /*
258  *      Our notifier list
259  */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264  *      Device drivers call our routines to queue packets here. We empty the
265  *      queue in the local softnet handler.
266  */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274  * according to dev->type
275  */
276 static const unsigned short netdev_lock_type[] =
277         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
309
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315         int i;
316
317         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318                 if (netdev_lock_type[i] == dev_type)
319                         return i;
320         /* the last key is used by default */
321         return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325                                                  unsigned short dev_type)
326 {
327         int i;
328
329         i = netdev_lock_pos(dev_type);
330         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331                                    netdev_lock_name[i]);
332 }
333
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336         int i;
337
338         i = netdev_lock_pos(dev->type);
339         lockdep_set_class_and_name(&dev->addr_list_lock,
340                                    &netdev_addr_lock_key[i],
341                                    netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345                                                  unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352
353 /*******************************************************************************
354
355                 Protocol management and registration routines
356
357 *******************************************************************************/
358
359 /*
360  *      Add a protocol ID to the list. Now that the input handler is
361  *      smarter we can dispense with all the messy stuff that used to be
362  *      here.
363  *
364  *      BEWARE!!! Protocol handlers, mangling input packets,
365  *      MUST BE last in hash buckets and checking protocol handlers
366  *      MUST start from promiscuous ptype_all chain in net_bh.
367  *      It is true now, do not change it.
368  *      Explanation follows: if protocol handler, mangling packet, will
369  *      be the first on list, it is not able to sense, that packet
370  *      is cloned and should be copied-on-write, so that it will
371  *      change it and subsequent readers will get broken packet.
372  *                                                      --ANK (980803)
373  */
374
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377         if (pt->type == htons(ETH_P_ALL))
378                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
379         else
380                 return pt->dev ? &pt->dev->ptype_specific :
381                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
382 }
383
384 /**
385  *      dev_add_pack - add packet handler
386  *      @pt: packet type declaration
387  *
388  *      Add a protocol handler to the networking stack. The passed &packet_type
389  *      is linked into kernel lists and may not be freed until it has been
390  *      removed from the kernel lists.
391  *
392  *      This call does not sleep therefore it can not
393  *      guarantee all CPU's that are in middle of receiving packets
394  *      will see the new packet type (until the next received packet).
395  */
396
397 void dev_add_pack(struct packet_type *pt)
398 {
399         struct list_head *head = ptype_head(pt);
400
401         spin_lock(&ptype_lock);
402         list_add_rcu(&pt->list, head);
403         spin_unlock(&ptype_lock);
404 }
405 EXPORT_SYMBOL(dev_add_pack);
406
407 /**
408  *      __dev_remove_pack        - remove packet handler
409  *      @pt: packet type declaration
410  *
411  *      Remove a protocol handler that was previously added to the kernel
412  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
413  *      from the kernel lists and can be freed or reused once this function
414  *      returns.
415  *
416  *      The packet type might still be in use by receivers
417  *      and must not be freed until after all the CPU's have gone
418  *      through a quiescent state.
419  */
420 void __dev_remove_pack(struct packet_type *pt)
421 {
422         struct list_head *head = ptype_head(pt);
423         struct packet_type *pt1;
424
425         spin_lock(&ptype_lock);
426
427         list_for_each_entry(pt1, head, list) {
428                 if (pt == pt1) {
429                         list_del_rcu(&pt->list);
430                         goto out;
431                 }
432         }
433
434         pr_warn("dev_remove_pack: %p not found\n", pt);
435 out:
436         spin_unlock(&ptype_lock);
437 }
438 EXPORT_SYMBOL(__dev_remove_pack);
439
440 /**
441  *      dev_remove_pack  - remove packet handler
442  *      @pt: packet type declaration
443  *
444  *      Remove a protocol handler that was previously added to the kernel
445  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
446  *      from the kernel lists and can be freed or reused once this function
447  *      returns.
448  *
449  *      This call sleeps to guarantee that no CPU is looking at the packet
450  *      type after return.
451  */
452 void dev_remove_pack(struct packet_type *pt)
453 {
454         __dev_remove_pack(pt);
455
456         synchronize_net();
457 }
458 EXPORT_SYMBOL(dev_remove_pack);
459
460
461 /**
462  *      dev_add_offload - register offload handlers
463  *      @po: protocol offload declaration
464  *
465  *      Add protocol offload handlers to the networking stack. The passed
466  *      &proto_offload is linked into kernel lists and may not be freed until
467  *      it has been removed from the kernel lists.
468  *
469  *      This call does not sleep therefore it can not
470  *      guarantee all CPU's that are in middle of receiving packets
471  *      will see the new offload handlers (until the next received packet).
472  */
473 void dev_add_offload(struct packet_offload *po)
474 {
475         struct packet_offload *elem;
476
477         spin_lock(&offload_lock);
478         list_for_each_entry(elem, &offload_base, list) {
479                 if (po->priority < elem->priority)
480                         break;
481         }
482         list_add_rcu(&po->list, elem->list.prev);
483         spin_unlock(&offload_lock);
484 }
485 EXPORT_SYMBOL(dev_add_offload);
486
487 /**
488  *      __dev_remove_offload     - remove offload handler
489  *      @po: packet offload declaration
490  *
491  *      Remove a protocol offload handler that was previously added to the
492  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
493  *      is removed from the kernel lists and can be freed or reused once this
494  *      function returns.
495  *
496  *      The packet type might still be in use by receivers
497  *      and must not be freed until after all the CPU's have gone
498  *      through a quiescent state.
499  */
500 static void __dev_remove_offload(struct packet_offload *po)
501 {
502         struct list_head *head = &offload_base;
503         struct packet_offload *po1;
504
505         spin_lock(&offload_lock);
506
507         list_for_each_entry(po1, head, list) {
508                 if (po == po1) {
509                         list_del_rcu(&po->list);
510                         goto out;
511                 }
512         }
513
514         pr_warn("dev_remove_offload: %p not found\n", po);
515 out:
516         spin_unlock(&offload_lock);
517 }
518
519 /**
520  *      dev_remove_offload       - remove packet offload handler
521  *      @po: packet offload declaration
522  *
523  *      Remove a packet offload handler that was previously added to the kernel
524  *      offload handlers by dev_add_offload(). The passed &offload_type is
525  *      removed from the kernel lists and can be freed or reused once this
526  *      function returns.
527  *
528  *      This call sleeps to guarantee that no CPU is looking at the packet
529  *      type after return.
530  */
531 void dev_remove_offload(struct packet_offload *po)
532 {
533         __dev_remove_offload(po);
534
535         synchronize_net();
536 }
537 EXPORT_SYMBOL(dev_remove_offload);
538
539 /******************************************************************************
540
541                       Device Boot-time Settings Routines
542
543 *******************************************************************************/
544
545 /* Boot time configuration table */
546 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547
548 /**
549  *      netdev_boot_setup_add   - add new setup entry
550  *      @name: name of the device
551  *      @map: configured settings for the device
552  *
553  *      Adds new setup entry to the dev_boot_setup list.  The function
554  *      returns 0 on error and 1 on success.  This is a generic routine to
555  *      all netdevices.
556  */
557 static int netdev_boot_setup_add(char *name, struct ifmap *map)
558 {
559         struct netdev_boot_setup *s;
560         int i;
561
562         s = dev_boot_setup;
563         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565                         memset(s[i].name, 0, sizeof(s[i].name));
566                         strlcpy(s[i].name, name, IFNAMSIZ);
567                         memcpy(&s[i].map, map, sizeof(s[i].map));
568                         break;
569                 }
570         }
571
572         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573 }
574
575 /**
576  *      netdev_boot_setup_check - check boot time settings
577  *      @dev: the netdevice
578  *
579  *      Check boot time settings for the device.
580  *      The found settings are set for the device to be used
581  *      later in the device probing.
582  *      Returns 0 if no settings found, 1 if they are.
583  */
584 int netdev_boot_setup_check(struct net_device *dev)
585 {
586         struct netdev_boot_setup *s = dev_boot_setup;
587         int i;
588
589         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
591                     !strcmp(dev->name, s[i].name)) {
592                         dev->irq        = s[i].map.irq;
593                         dev->base_addr  = s[i].map.base_addr;
594                         dev->mem_start  = s[i].map.mem_start;
595                         dev->mem_end    = s[i].map.mem_end;
596                         return 1;
597                 }
598         }
599         return 0;
600 }
601 EXPORT_SYMBOL(netdev_boot_setup_check);
602
603
604 /**
605  *      netdev_boot_base        - get address from boot time settings
606  *      @prefix: prefix for network device
607  *      @unit: id for network device
608  *
609  *      Check boot time settings for the base address of device.
610  *      The found settings are set for the device to be used
611  *      later in the device probing.
612  *      Returns 0 if no settings found.
613  */
614 unsigned long netdev_boot_base(const char *prefix, int unit)
615 {
616         const struct netdev_boot_setup *s = dev_boot_setup;
617         char name[IFNAMSIZ];
618         int i;
619
620         sprintf(name, "%s%d", prefix, unit);
621
622         /*
623          * If device already registered then return base of 1
624          * to indicate not to probe for this interface
625          */
626         if (__dev_get_by_name(&init_net, name))
627                 return 1;
628
629         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630                 if (!strcmp(name, s[i].name))
631                         return s[i].map.base_addr;
632         return 0;
633 }
634
635 /*
636  * Saves at boot time configured settings for any netdevice.
637  */
638 int __init netdev_boot_setup(char *str)
639 {
640         int ints[5];
641         struct ifmap map;
642
643         str = get_options(str, ARRAY_SIZE(ints), ints);
644         if (!str || !*str)
645                 return 0;
646
647         /* Save settings */
648         memset(&map, 0, sizeof(map));
649         if (ints[0] > 0)
650                 map.irq = ints[1];
651         if (ints[0] > 1)
652                 map.base_addr = ints[2];
653         if (ints[0] > 2)
654                 map.mem_start = ints[3];
655         if (ints[0] > 3)
656                 map.mem_end = ints[4];
657
658         /* Add new entry to the list */
659         return netdev_boot_setup_add(str, &map);
660 }
661
662 __setup("netdev=", netdev_boot_setup);
663
664 /*******************************************************************************
665
666                             Device Interface Subroutines
667
668 *******************************************************************************/
669
670 /**
671  *      dev_get_iflink  - get 'iflink' value of a interface
672  *      @dev: targeted interface
673  *
674  *      Indicates the ifindex the interface is linked to.
675  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
676  */
677
678 int dev_get_iflink(const struct net_device *dev)
679 {
680         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681                 return dev->netdev_ops->ndo_get_iflink(dev);
682
683         return dev->ifindex;
684 }
685 EXPORT_SYMBOL(dev_get_iflink);
686
687 /**
688  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
689  *      @dev: targeted interface
690  *      @skb: The packet.
691  *
692  *      For better visibility of tunnel traffic OVS needs to retrieve
693  *      egress tunnel information for a packet. Following API allows
694  *      user to get this info.
695  */
696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697 {
698         struct ip_tunnel_info *info;
699
700         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
701                 return -EINVAL;
702
703         info = skb_tunnel_info_unclone(skb);
704         if (!info)
705                 return -ENOMEM;
706         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707                 return -EINVAL;
708
709         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710 }
711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712
713 /**
714  *      __dev_get_by_name       - find a device by its name
715  *      @net: the applicable net namespace
716  *      @name: name to find
717  *
718  *      Find an interface by name. Must be called under RTNL semaphore
719  *      or @dev_base_lock. If the name is found a pointer to the device
720  *      is returned. If the name is not found then %NULL is returned. The
721  *      reference counters are not incremented so the caller must be
722  *      careful with locks.
723  */
724
725 struct net_device *__dev_get_by_name(struct net *net, const char *name)
726 {
727         struct net_device *dev;
728         struct hlist_head *head = dev_name_hash(net, name);
729
730         hlist_for_each_entry(dev, head, name_hlist)
731                 if (!strncmp(dev->name, name, IFNAMSIZ))
732                         return dev;
733
734         return NULL;
735 }
736 EXPORT_SYMBOL(__dev_get_by_name);
737
738 /**
739  *      dev_get_by_name_rcu     - find a device by its name
740  *      @net: the applicable net namespace
741  *      @name: name to find
742  *
743  *      Find an interface by name.
744  *      If the name is found a pointer to the device is returned.
745  *      If the name is not found then %NULL is returned.
746  *      The reference counters are not incremented so the caller must be
747  *      careful with locks. The caller must hold RCU lock.
748  */
749
750 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751 {
752         struct net_device *dev;
753         struct hlist_head *head = dev_name_hash(net, name);
754
755         hlist_for_each_entry_rcu(dev, head, name_hlist)
756                 if (!strncmp(dev->name, name, IFNAMSIZ))
757                         return dev;
758
759         return NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764  *      dev_get_by_name         - find a device by its name
765  *      @net: the applicable net namespace
766  *      @name: name to find
767  *
768  *      Find an interface by name. This can be called from any
769  *      context and does its own locking. The returned handle has
770  *      the usage count incremented and the caller must use dev_put() to
771  *      release it when it is no longer needed. %NULL is returned if no
772  *      matching device is found.
773  */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777         struct net_device *dev;
778
779         rcu_read_lock();
780         dev = dev_get_by_name_rcu(net, name);
781         if (dev)
782                 dev_hold(dev);
783         rcu_read_unlock();
784         return dev;
785 }
786 EXPORT_SYMBOL(dev_get_by_name);
787
788 /**
789  *      __dev_get_by_index - find a device by its ifindex
790  *      @net: the applicable net namespace
791  *      @ifindex: index of device
792  *
793  *      Search for an interface by index. Returns %NULL if the device
794  *      is not found or a pointer to the device. The device has not
795  *      had its reference counter increased so the caller must be careful
796  *      about locking. The caller must hold either the RTNL semaphore
797  *      or @dev_base_lock.
798  */
799
800 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
801 {
802         struct net_device *dev;
803         struct hlist_head *head = dev_index_hash(net, ifindex);
804
805         hlist_for_each_entry(dev, head, index_hlist)
806                 if (dev->ifindex == ifindex)
807                         return dev;
808
809         return NULL;
810 }
811 EXPORT_SYMBOL(__dev_get_by_index);
812
813 /**
814  *      dev_get_by_index_rcu - find a device by its ifindex
815  *      @net: the applicable net namespace
816  *      @ifindex: index of device
817  *
818  *      Search for an interface by index. Returns %NULL if the device
819  *      is not found or a pointer to the device. The device has not
820  *      had its reference counter increased so the caller must be careful
821  *      about locking. The caller must hold RCU lock.
822  */
823
824 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825 {
826         struct net_device *dev;
827         struct hlist_head *head = dev_index_hash(net, ifindex);
828
829         hlist_for_each_entry_rcu(dev, head, index_hlist)
830                 if (dev->ifindex == ifindex)
831                         return dev;
832
833         return NULL;
834 }
835 EXPORT_SYMBOL(dev_get_by_index_rcu);
836
837
838 /**
839  *      dev_get_by_index - find a device by its ifindex
840  *      @net: the applicable net namespace
841  *      @ifindex: index of device
842  *
843  *      Search for an interface by index. Returns NULL if the device
844  *      is not found or a pointer to the device. The device returned has
845  *      had a reference added and the pointer is safe until the user calls
846  *      dev_put to indicate they have finished with it.
847  */
848
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
850 {
851         struct net_device *dev;
852
853         rcu_read_lock();
854         dev = dev_get_by_index_rcu(net, ifindex);
855         if (dev)
856                 dev_hold(dev);
857         rcu_read_unlock();
858         return dev;
859 }
860 EXPORT_SYMBOL(dev_get_by_index);
861
862 /**
863  *      netdev_get_name - get a netdevice name, knowing its ifindex.
864  *      @net: network namespace
865  *      @name: a pointer to the buffer where the name will be stored.
866  *      @ifindex: the ifindex of the interface to get the name from.
867  *
868  *      The use of raw_seqcount_begin() and cond_resched() before
869  *      retrying is required as we want to give the writers a chance
870  *      to complete when CONFIG_PREEMPT is not set.
871  */
872 int netdev_get_name(struct net *net, char *name, int ifindex)
873 {
874         struct net_device *dev;
875         unsigned int seq;
876
877 retry:
878         seq = raw_seqcount_begin(&devnet_rename_seq);
879         rcu_read_lock();
880         dev = dev_get_by_index_rcu(net, ifindex);
881         if (!dev) {
882                 rcu_read_unlock();
883                 return -ENODEV;
884         }
885
886         strcpy(name, dev->name);
887         rcu_read_unlock();
888         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889                 cond_resched();
890                 goto retry;
891         }
892
893         return 0;
894 }
895
896 /**
897  *      dev_getbyhwaddr_rcu - find a device by its hardware address
898  *      @net: the applicable net namespace
899  *      @type: media type of device
900  *      @ha: hardware address
901  *
902  *      Search for an interface by MAC address. Returns NULL if the device
903  *      is not found or a pointer to the device.
904  *      The caller must hold RCU or RTNL.
905  *      The returned device has not had its ref count increased
906  *      and the caller must therefore be careful about locking
907  *
908  */
909
910 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911                                        const char *ha)
912 {
913         struct net_device *dev;
914
915         for_each_netdev_rcu(net, dev)
916                 if (dev->type == type &&
917                     !memcmp(dev->dev_addr, ha, dev->addr_len))
918                         return dev;
919
920         return NULL;
921 }
922 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
923
924 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
925 {
926         struct net_device *dev;
927
928         ASSERT_RTNL();
929         for_each_netdev(net, dev)
930                 if (dev->type == type)
931                         return dev;
932
933         return NULL;
934 }
935 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939         struct net_device *dev, *ret = NULL;
940
941         rcu_read_lock();
942         for_each_netdev_rcu(net, dev)
943                 if (dev->type == type) {
944                         dev_hold(dev);
945                         ret = dev;
946                         break;
947                 }
948         rcu_read_unlock();
949         return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952
953 /**
954  *      __dev_get_by_flags - find any device with given flags
955  *      @net: the applicable net namespace
956  *      @if_flags: IFF_* values
957  *      @mask: bitmask of bits in if_flags to check
958  *
959  *      Search for any interface with the given flags. Returns NULL if a device
960  *      is not found or a pointer to the device. Must be called inside
961  *      rtnl_lock(), and result refcount is unchanged.
962  */
963
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965                                       unsigned short mask)
966 {
967         struct net_device *dev, *ret;
968
969         ASSERT_RTNL();
970
971         ret = NULL;
972         for_each_netdev(net, dev) {
973                 if (((dev->flags ^ if_flags) & mask) == 0) {
974                         ret = dev;
975                         break;
976                 }
977         }
978         return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981
982 /**
983  *      dev_valid_name - check if name is okay for network device
984  *      @name: name string
985  *
986  *      Network device names need to be valid file names to
987  *      to allow sysfs to work.  We also disallow any kind of
988  *      whitespace.
989  */
990 bool dev_valid_name(const char *name)
991 {
992         if (*name == '\0')
993                 return false;
994         if (strlen(name) >= IFNAMSIZ)
995                 return false;
996         if (!strcmp(name, ".") || !strcmp(name, ".."))
997                 return false;
998
999         while (*name) {
1000                 if (*name == '/' || *name == ':' || isspace(*name))
1001                         return false;
1002                 name++;
1003         }
1004         return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007
1008 /**
1009  *      __dev_alloc_name - allocate a name for a device
1010  *      @net: network namespace to allocate the device name in
1011  *      @name: name format string
1012  *      @buf:  scratch buffer and result name string
1013  *
1014  *      Passed a format string - eg "lt%d" it will try and find a suitable
1015  *      id. It scans list of devices to build up a free map, then chooses
1016  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1017  *      while allocating the name and adding the device in order to avoid
1018  *      duplicates.
1019  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020  *      Returns the number of the unit assigned or a negative errno code.
1021  */
1022
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025         int i = 0;
1026         const char *p;
1027         const int max_netdevices = 8*PAGE_SIZE;
1028         unsigned long *inuse;
1029         struct net_device *d;
1030
1031         p = strnchr(name, IFNAMSIZ-1, '%');
1032         if (p) {
1033                 /*
1034                  * Verify the string as this thing may have come from
1035                  * the user.  There must be either one "%d" and no other "%"
1036                  * characters.
1037                  */
1038                 if (p[1] != 'd' || strchr(p + 2, '%'))
1039                         return -EINVAL;
1040
1041                 /* Use one page as a bit array of possible slots */
1042                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1043                 if (!inuse)
1044                         return -ENOMEM;
1045
1046                 for_each_netdev(net, d) {
1047                         if (!sscanf(d->name, name, &i))
1048                                 continue;
1049                         if (i < 0 || i >= max_netdevices)
1050                                 continue;
1051
1052                         /*  avoid cases where sscanf is not exact inverse of printf */
1053                         snprintf(buf, IFNAMSIZ, name, i);
1054                         if (!strncmp(buf, d->name, IFNAMSIZ))
1055                                 set_bit(i, inuse);
1056                 }
1057
1058                 i = find_first_zero_bit(inuse, max_netdevices);
1059                 free_page((unsigned long) inuse);
1060         }
1061
1062         if (buf != name)
1063                 snprintf(buf, IFNAMSIZ, name, i);
1064         if (!__dev_get_by_name(net, buf))
1065                 return i;
1066
1067         /* It is possible to run out of possible slots
1068          * when the name is long and there isn't enough space left
1069          * for the digits, or if all bits are used.
1070          */
1071         return -ENFILE;
1072 }
1073
1074 /**
1075  *      dev_alloc_name - allocate a name for a device
1076  *      @dev: device
1077  *      @name: name format string
1078  *
1079  *      Passed a format string - eg "lt%d" it will try and find a suitable
1080  *      id. It scans list of devices to build up a free map, then chooses
1081  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1082  *      while allocating the name and adding the device in order to avoid
1083  *      duplicates.
1084  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085  *      Returns the number of the unit assigned or a negative errno code.
1086  */
1087
1088 int dev_alloc_name(struct net_device *dev, const char *name)
1089 {
1090         char buf[IFNAMSIZ];
1091         struct net *net;
1092         int ret;
1093
1094         BUG_ON(!dev_net(dev));
1095         net = dev_net(dev);
1096         ret = __dev_alloc_name(net, name, buf);
1097         if (ret >= 0)
1098                 strlcpy(dev->name, buf, IFNAMSIZ);
1099         return ret;
1100 }
1101 EXPORT_SYMBOL(dev_alloc_name);
1102
1103 static int dev_alloc_name_ns(struct net *net,
1104                              struct net_device *dev,
1105                              const char *name)
1106 {
1107         char buf[IFNAMSIZ];
1108         int ret;
1109
1110         ret = __dev_alloc_name(net, name, buf);
1111         if (ret >= 0)
1112                 strlcpy(dev->name, buf, IFNAMSIZ);
1113         return ret;
1114 }
1115
1116 static int dev_get_valid_name(struct net *net,
1117                               struct net_device *dev,
1118                               const char *name)
1119 {
1120         BUG_ON(!net);
1121
1122         if (!dev_valid_name(name))
1123                 return -EINVAL;
1124
1125         if (strchr(name, '%'))
1126                 return dev_alloc_name_ns(net, dev, name);
1127         else if (__dev_get_by_name(net, name))
1128                 return -EEXIST;
1129         else if (dev->name != name)
1130                 strlcpy(dev->name, name, IFNAMSIZ);
1131
1132         return 0;
1133 }
1134
1135 /**
1136  *      dev_change_name - change name of a device
1137  *      @dev: device
1138  *      @newname: name (or format string) must be at least IFNAMSIZ
1139  *
1140  *      Change name of a device, can pass format strings "eth%d".
1141  *      for wildcarding.
1142  */
1143 int dev_change_name(struct net_device *dev, const char *newname)
1144 {
1145         unsigned char old_assign_type;
1146         char oldname[IFNAMSIZ];
1147         int err = 0;
1148         int ret;
1149         struct net *net;
1150
1151         ASSERT_RTNL();
1152         BUG_ON(!dev_net(dev));
1153
1154         net = dev_net(dev);
1155         if (dev->flags & IFF_UP)
1156                 return -EBUSY;
1157
1158         write_seqcount_begin(&devnet_rename_seq);
1159
1160         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1161                 write_seqcount_end(&devnet_rename_seq);
1162                 return 0;
1163         }
1164
1165         memcpy(oldname, dev->name, IFNAMSIZ);
1166
1167         err = dev_get_valid_name(net, dev, newname);
1168         if (err < 0) {
1169                 write_seqcount_end(&devnet_rename_seq);
1170                 return err;
1171         }
1172
1173         if (oldname[0] && !strchr(oldname, '%'))
1174                 netdev_info(dev, "renamed from %s\n", oldname);
1175
1176         old_assign_type = dev->name_assign_type;
1177         dev->name_assign_type = NET_NAME_RENAMED;
1178
1179 rollback:
1180         ret = device_rename(&dev->dev, dev->name);
1181         if (ret) {
1182                 memcpy(dev->name, oldname, IFNAMSIZ);
1183                 dev->name_assign_type = old_assign_type;
1184                 write_seqcount_end(&devnet_rename_seq);
1185                 return ret;
1186         }
1187
1188         write_seqcount_end(&devnet_rename_seq);
1189
1190         netdev_adjacent_rename_links(dev, oldname);
1191
1192         write_lock_bh(&dev_base_lock);
1193         hlist_del_rcu(&dev->name_hlist);
1194         write_unlock_bh(&dev_base_lock);
1195
1196         synchronize_rcu();
1197
1198         write_lock_bh(&dev_base_lock);
1199         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1200         write_unlock_bh(&dev_base_lock);
1201
1202         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1203         ret = notifier_to_errno(ret);
1204
1205         if (ret) {
1206                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1207                 if (err >= 0) {
1208                         err = ret;
1209                         write_seqcount_begin(&devnet_rename_seq);
1210                         memcpy(dev->name, oldname, IFNAMSIZ);
1211                         memcpy(oldname, newname, IFNAMSIZ);
1212                         dev->name_assign_type = old_assign_type;
1213                         old_assign_type = NET_NAME_RENAMED;
1214                         goto rollback;
1215                 } else {
1216                         pr_err("%s: name change rollback failed: %d\n",
1217                                dev->name, ret);
1218                 }
1219         }
1220
1221         return err;
1222 }
1223
1224 /**
1225  *      dev_set_alias - change ifalias of a device
1226  *      @dev: device
1227  *      @alias: name up to IFALIASZ
1228  *      @len: limit of bytes to copy from info
1229  *
1230  *      Set ifalias for a device,
1231  */
1232 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233 {
1234         char *new_ifalias;
1235
1236         ASSERT_RTNL();
1237
1238         if (len >= IFALIASZ)
1239                 return -EINVAL;
1240
1241         if (!len) {
1242                 kfree(dev->ifalias);
1243                 dev->ifalias = NULL;
1244                 return 0;
1245         }
1246
1247         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248         if (!new_ifalias)
1249                 return -ENOMEM;
1250         dev->ifalias = new_ifalias;
1251
1252         strlcpy(dev->ifalias, alias, len+1);
1253         return len;
1254 }
1255
1256
1257 /**
1258  *      netdev_features_change - device changes features
1259  *      @dev: device to cause notification
1260  *
1261  *      Called to indicate a device has changed features.
1262  */
1263 void netdev_features_change(struct net_device *dev)
1264 {
1265         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1266 }
1267 EXPORT_SYMBOL(netdev_features_change);
1268
1269 /**
1270  *      netdev_state_change - device changes state
1271  *      @dev: device to cause notification
1272  *
1273  *      Called to indicate a device has changed state. This function calls
1274  *      the notifier chains for netdev_chain and sends a NEWLINK message
1275  *      to the routing socket.
1276  */
1277 void netdev_state_change(struct net_device *dev)
1278 {
1279         if (dev->flags & IFF_UP) {
1280                 struct netdev_notifier_change_info change_info;
1281
1282                 change_info.flags_changed = 0;
1283                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284                                               &change_info.info);
1285                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1286         }
1287 }
1288 EXPORT_SYMBOL(netdev_state_change);
1289
1290 /**
1291  *      netdev_notify_peers - notify network peers about existence of @dev
1292  *      @dev: network device
1293  *
1294  * Generate traffic such that interested network peers are aware of
1295  * @dev, such as by generating a gratuitous ARP. This may be used when
1296  * a device wants to inform the rest of the network about some sort of
1297  * reconfiguration such as a failover event or virtual machine
1298  * migration.
1299  */
1300 void netdev_notify_peers(struct net_device *dev)
1301 {
1302         rtnl_lock();
1303         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304         rtnl_unlock();
1305 }
1306 EXPORT_SYMBOL(netdev_notify_peers);
1307
1308 static int __dev_open(struct net_device *dev)
1309 {
1310         const struct net_device_ops *ops = dev->netdev_ops;
1311         int ret;
1312
1313         ASSERT_RTNL();
1314
1315         if (!netif_device_present(dev))
1316                 return -ENODEV;
1317
1318         /* Block netpoll from trying to do any rx path servicing.
1319          * If we don't do this there is a chance ndo_poll_controller
1320          * or ndo_poll may be running while we open the device
1321          */
1322         netpoll_poll_disable(dev);
1323
1324         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325         ret = notifier_to_errno(ret);
1326         if (ret)
1327                 return ret;
1328
1329         set_bit(__LINK_STATE_START, &dev->state);
1330
1331         if (ops->ndo_validate_addr)
1332                 ret = ops->ndo_validate_addr(dev);
1333
1334         if (!ret && ops->ndo_open)
1335                 ret = ops->ndo_open(dev);
1336
1337         netpoll_poll_enable(dev);
1338
1339         if (ret)
1340                 clear_bit(__LINK_STATE_START, &dev->state);
1341         else {
1342                 dev->flags |= IFF_UP;
1343                 dev_set_rx_mode(dev);
1344                 dev_activate(dev);
1345                 add_device_randomness(dev->dev_addr, dev->addr_len);
1346         }
1347
1348         return ret;
1349 }
1350
1351 /**
1352  *      dev_open        - prepare an interface for use.
1353  *      @dev:   device to open
1354  *
1355  *      Takes a device from down to up state. The device's private open
1356  *      function is invoked and then the multicast lists are loaded. Finally
1357  *      the device is moved into the up state and a %NETDEV_UP message is
1358  *      sent to the netdev notifier chain.
1359  *
1360  *      Calling this function on an active interface is a nop. On a failure
1361  *      a negative errno code is returned.
1362  */
1363 int dev_open(struct net_device *dev)
1364 {
1365         int ret;
1366
1367         if (dev->flags & IFF_UP)
1368                 return 0;
1369
1370         ret = __dev_open(dev);
1371         if (ret < 0)
1372                 return ret;
1373
1374         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375         call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377         return ret;
1378 }
1379 EXPORT_SYMBOL(dev_open);
1380
1381 static int __dev_close_many(struct list_head *head)
1382 {
1383         struct net_device *dev;
1384
1385         ASSERT_RTNL();
1386         might_sleep();
1387
1388         list_for_each_entry(dev, head, close_list) {
1389                 /* Temporarily disable netpoll until the interface is down */
1390                 netpoll_poll_disable(dev);
1391
1392                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1393
1394                 clear_bit(__LINK_STATE_START, &dev->state);
1395
1396                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397                  * can be even on different cpu. So just clear netif_running().
1398                  *
1399                  * dev->stop() will invoke napi_disable() on all of it's
1400                  * napi_struct instances on this device.
1401                  */
1402                 smp_mb__after_atomic(); /* Commit netif_running(). */
1403         }
1404
1405         dev_deactivate_many(head);
1406
1407         list_for_each_entry(dev, head, close_list) {
1408                 const struct net_device_ops *ops = dev->netdev_ops;
1409
1410                 /*
1411                  *      Call the device specific close. This cannot fail.
1412                  *      Only if device is UP
1413                  *
1414                  *      We allow it to be called even after a DETACH hot-plug
1415                  *      event.
1416                  */
1417                 if (ops->ndo_stop)
1418                         ops->ndo_stop(dev);
1419
1420                 dev->flags &= ~IFF_UP;
1421                 netpoll_poll_enable(dev);
1422         }
1423
1424         return 0;
1425 }
1426
1427 static int __dev_close(struct net_device *dev)
1428 {
1429         int retval;
1430         LIST_HEAD(single);
1431
1432         list_add(&dev->close_list, &single);
1433         retval = __dev_close_many(&single);
1434         list_del(&single);
1435
1436         return retval;
1437 }
1438
1439 int dev_close_many(struct list_head *head, bool unlink)
1440 {
1441         struct net_device *dev, *tmp;
1442
1443         /* Remove the devices that don't need to be closed */
1444         list_for_each_entry_safe(dev, tmp, head, close_list)
1445                 if (!(dev->flags & IFF_UP))
1446                         list_del_init(&dev->close_list);
1447
1448         __dev_close_many(head);
1449
1450         list_for_each_entry_safe(dev, tmp, head, close_list) {
1451                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1453                 if (unlink)
1454                         list_del_init(&dev->close_list);
1455         }
1456
1457         return 0;
1458 }
1459 EXPORT_SYMBOL(dev_close_many);
1460
1461 /**
1462  *      dev_close - shutdown an interface.
1463  *      @dev: device to shutdown
1464  *
1465  *      This function moves an active device into down state. A
1466  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468  *      chain.
1469  */
1470 int dev_close(struct net_device *dev)
1471 {
1472         if (dev->flags & IFF_UP) {
1473                 LIST_HEAD(single);
1474
1475                 list_add(&dev->close_list, &single);
1476                 dev_close_many(&single, true);
1477                 list_del(&single);
1478         }
1479         return 0;
1480 }
1481 EXPORT_SYMBOL(dev_close);
1482
1483
1484 /**
1485  *      dev_disable_lro - disable Large Receive Offload on a device
1486  *      @dev: device
1487  *
1488  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1489  *      called under RTNL.  This is needed if received packets may be
1490  *      forwarded to another interface.
1491  */
1492 void dev_disable_lro(struct net_device *dev)
1493 {
1494         struct net_device *lower_dev;
1495         struct list_head *iter;
1496
1497         dev->wanted_features &= ~NETIF_F_LRO;
1498         netdev_update_features(dev);
1499
1500         if (unlikely(dev->features & NETIF_F_LRO))
1501                 netdev_WARN(dev, "failed to disable LRO!\n");
1502
1503         netdev_for_each_lower_dev(dev, lower_dev, iter)
1504                 dev_disable_lro(lower_dev);
1505 }
1506 EXPORT_SYMBOL(dev_disable_lro);
1507
1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509                                    struct net_device *dev)
1510 {
1511         struct netdev_notifier_info info;
1512
1513         netdev_notifier_info_init(&info, dev);
1514         return nb->notifier_call(nb, val, &info);
1515 }
1516
1517 static int dev_boot_phase = 1;
1518
1519 /**
1520  *      register_netdevice_notifier - register a network notifier block
1521  *      @nb: notifier
1522  *
1523  *      Register a notifier to be called when network device events occur.
1524  *      The notifier passed is linked into the kernel structures and must
1525  *      not be reused until it has been unregistered. A negative errno code
1526  *      is returned on a failure.
1527  *
1528  *      When registered all registration and up events are replayed
1529  *      to the new notifier to allow device to have a race free
1530  *      view of the network device list.
1531  */
1532
1533 int register_netdevice_notifier(struct notifier_block *nb)
1534 {
1535         struct net_device *dev;
1536         struct net_device *last;
1537         struct net *net;
1538         int err;
1539
1540         rtnl_lock();
1541         err = raw_notifier_chain_register(&netdev_chain, nb);
1542         if (err)
1543                 goto unlock;
1544         if (dev_boot_phase)
1545                 goto unlock;
1546         for_each_net(net) {
1547                 for_each_netdev(net, dev) {
1548                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549                         err = notifier_to_errno(err);
1550                         if (err)
1551                                 goto rollback;
1552
1553                         if (!(dev->flags & IFF_UP))
1554                                 continue;
1555
1556                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1557                 }
1558         }
1559
1560 unlock:
1561         rtnl_unlock();
1562         return err;
1563
1564 rollback:
1565         last = dev;
1566         for_each_net(net) {
1567                 for_each_netdev(net, dev) {
1568                         if (dev == last)
1569                                 goto outroll;
1570
1571                         if (dev->flags & IFF_UP) {
1572                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573                                                         dev);
1574                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1575                         }
1576                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1577                 }
1578         }
1579
1580 outroll:
1581         raw_notifier_chain_unregister(&netdev_chain, nb);
1582         goto unlock;
1583 }
1584 EXPORT_SYMBOL(register_netdevice_notifier);
1585
1586 /**
1587  *      unregister_netdevice_notifier - unregister a network notifier block
1588  *      @nb: notifier
1589  *
1590  *      Unregister a notifier previously registered by
1591  *      register_netdevice_notifier(). The notifier is unlinked into the
1592  *      kernel structures and may then be reused. A negative errno code
1593  *      is returned on a failure.
1594  *
1595  *      After unregistering unregister and down device events are synthesized
1596  *      for all devices on the device list to the removed notifier to remove
1597  *      the need for special case cleanup code.
1598  */
1599
1600 int unregister_netdevice_notifier(struct notifier_block *nb)
1601 {
1602         struct net_device *dev;
1603         struct net *net;
1604         int err;
1605
1606         rtnl_lock();
1607         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1608         if (err)
1609                 goto unlock;
1610
1611         for_each_net(net) {
1612                 for_each_netdev(net, dev) {
1613                         if (dev->flags & IFF_UP) {
1614                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615                                                         dev);
1616                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1617                         }
1618                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1619                 }
1620         }
1621 unlock:
1622         rtnl_unlock();
1623         return err;
1624 }
1625 EXPORT_SYMBOL(unregister_netdevice_notifier);
1626
1627 /**
1628  *      call_netdevice_notifiers_info - call all network notifier blocks
1629  *      @val: value passed unmodified to notifier function
1630  *      @dev: net_device pointer passed unmodified to notifier function
1631  *      @info: notifier information data
1632  *
1633  *      Call all network notifier blocks.  Parameters and return value
1634  *      are as for raw_notifier_call_chain().
1635  */
1636
1637 static int call_netdevice_notifiers_info(unsigned long val,
1638                                          struct net_device *dev,
1639                                          struct netdev_notifier_info *info)
1640 {
1641         ASSERT_RTNL();
1642         netdev_notifier_info_init(info, dev);
1643         return raw_notifier_call_chain(&netdev_chain, val, info);
1644 }
1645
1646 /**
1647  *      call_netdevice_notifiers - call all network notifier blocks
1648  *      @val: value passed unmodified to notifier function
1649  *      @dev: net_device pointer passed unmodified to notifier function
1650  *
1651  *      Call all network notifier blocks.  Parameters and return value
1652  *      are as for raw_notifier_call_chain().
1653  */
1654
1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1656 {
1657         struct netdev_notifier_info info;
1658
1659         return call_netdevice_notifiers_info(val, dev, &info);
1660 }
1661 EXPORT_SYMBOL(call_netdevice_notifiers);
1662
1663 #ifdef CONFIG_NET_INGRESS
1664 static struct static_key ingress_needed __read_mostly;
1665
1666 void net_inc_ingress_queue(void)
1667 {
1668         static_key_slow_inc(&ingress_needed);
1669 }
1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672 void net_dec_ingress_queue(void)
1673 {
1674         static_key_slow_dec(&ingress_needed);
1675 }
1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677 #endif
1678
1679 #ifdef CONFIG_NET_EGRESS
1680 static struct static_key egress_needed __read_mostly;
1681
1682 void net_inc_egress_queue(void)
1683 {
1684         static_key_slow_inc(&egress_needed);
1685 }
1686 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687
1688 void net_dec_egress_queue(void)
1689 {
1690         static_key_slow_dec(&egress_needed);
1691 }
1692 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693 #endif
1694
1695 static struct static_key netstamp_needed __read_mostly;
1696 #ifdef HAVE_JUMP_LABEL
1697 /* We are not allowed to call static_key_slow_dec() from irq context
1698  * If net_disable_timestamp() is called from irq context, defer the
1699  * static_key_slow_dec() calls.
1700  */
1701 static atomic_t netstamp_needed_deferred;
1702 #endif
1703
1704 void net_enable_timestamp(void)
1705 {
1706 #ifdef HAVE_JUMP_LABEL
1707         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708
1709         if (deferred) {
1710                 while (--deferred)
1711                         static_key_slow_dec(&netstamp_needed);
1712                 return;
1713         }
1714 #endif
1715         static_key_slow_inc(&netstamp_needed);
1716 }
1717 EXPORT_SYMBOL(net_enable_timestamp);
1718
1719 void net_disable_timestamp(void)
1720 {
1721 #ifdef HAVE_JUMP_LABEL
1722         if (in_interrupt()) {
1723                 atomic_inc(&netstamp_needed_deferred);
1724                 return;
1725         }
1726 #endif
1727         static_key_slow_dec(&netstamp_needed);
1728 }
1729 EXPORT_SYMBOL(net_disable_timestamp);
1730
1731 static inline void net_timestamp_set(struct sk_buff *skb)
1732 {
1733         skb->tstamp.tv64 = 0;
1734         if (static_key_false(&netstamp_needed))
1735                 __net_timestamp(skb);
1736 }
1737
1738 #define net_timestamp_check(COND, SKB)                  \
1739         if (static_key_false(&netstamp_needed)) {               \
1740                 if ((COND) && !(SKB)->tstamp.tv64)      \
1741                         __net_timestamp(SKB);           \
1742         }                                               \
1743
1744 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1745 {
1746         unsigned int len;
1747
1748         if (!(dev->flags & IFF_UP))
1749                 return false;
1750
1751         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752         if (skb->len <= len)
1753                 return true;
1754
1755         /* if TSO is enabled, we don't care about the length as the packet
1756          * could be forwarded without being segmented before
1757          */
1758         if (skb_is_gso(skb))
1759                 return true;
1760
1761         return false;
1762 }
1763 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1764
1765 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766 {
1767         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768             unlikely(!is_skb_forwardable(dev, skb))) {
1769                 atomic_long_inc(&dev->rx_dropped);
1770                 kfree_skb(skb);
1771                 return NET_RX_DROP;
1772         }
1773
1774         skb_scrub_packet(skb, true);
1775         skb->priority = 0;
1776         skb->protocol = eth_type_trans(skb, dev);
1777         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1778
1779         return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782
1783 /**
1784  * dev_forward_skb - loopback an skb to another netif
1785  *
1786  * @dev: destination network device
1787  * @skb: buffer to forward
1788  *
1789  * return values:
1790  *      NET_RX_SUCCESS  (no congestion)
1791  *      NET_RX_DROP     (packet was dropped, but freed)
1792  *
1793  * dev_forward_skb can be used for injecting an skb from the
1794  * start_xmit function of one device into the receive queue
1795  * of another device.
1796  *
1797  * The receiving device may be in another namespace, so
1798  * we have to clear all information in the skb that could
1799  * impact namespace isolation.
1800  */
1801 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802 {
1803         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1804 }
1805 EXPORT_SYMBOL_GPL(dev_forward_skb);
1806
1807 static inline int deliver_skb(struct sk_buff *skb,
1808                               struct packet_type *pt_prev,
1809                               struct net_device *orig_dev)
1810 {
1811         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812                 return -ENOMEM;
1813         atomic_inc(&skb->users);
1814         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815 }
1816
1817 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818                                           struct packet_type **pt,
1819                                           struct net_device *orig_dev,
1820                                           __be16 type,
1821                                           struct list_head *ptype_list)
1822 {
1823         struct packet_type *ptype, *pt_prev = *pt;
1824
1825         list_for_each_entry_rcu(ptype, ptype_list, list) {
1826                 if (ptype->type != type)
1827                         continue;
1828                 if (pt_prev)
1829                         deliver_skb(skb, pt_prev, orig_dev);
1830                 pt_prev = ptype;
1831         }
1832         *pt = pt_prev;
1833 }
1834
1835 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836 {
1837         if (!ptype->af_packet_priv || !skb->sk)
1838                 return false;
1839
1840         if (ptype->id_match)
1841                 return ptype->id_match(ptype, skb->sk);
1842         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843                 return true;
1844
1845         return false;
1846 }
1847
1848 /*
1849  *      Support routine. Sends outgoing frames to any network
1850  *      taps currently in use.
1851  */
1852
1853 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1854 {
1855         struct packet_type *ptype;
1856         struct sk_buff *skb2 = NULL;
1857         struct packet_type *pt_prev = NULL;
1858         struct list_head *ptype_list = &ptype_all;
1859
1860         rcu_read_lock();
1861 again:
1862         list_for_each_entry_rcu(ptype, ptype_list, list) {
1863                 /* Never send packets back to the socket
1864                  * they originated from - MvS (miquels@drinkel.ow.org)
1865                  */
1866                 if (skb_loop_sk(ptype, skb))
1867                         continue;
1868
1869                 if (pt_prev) {
1870                         deliver_skb(skb2, pt_prev, skb->dev);
1871                         pt_prev = ptype;
1872                         continue;
1873                 }
1874
1875                 /* need to clone skb, done only once */
1876                 skb2 = skb_clone(skb, GFP_ATOMIC);
1877                 if (!skb2)
1878                         goto out_unlock;
1879
1880                 net_timestamp_set(skb2);
1881
1882                 /* skb->nh should be correctly
1883                  * set by sender, so that the second statement is
1884                  * just protection against buggy protocols.
1885                  */
1886                 skb_reset_mac_header(skb2);
1887
1888                 if (skb_network_header(skb2) < skb2->data ||
1889                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891                                              ntohs(skb2->protocol),
1892                                              dev->name);
1893                         skb_reset_network_header(skb2);
1894                 }
1895
1896                 skb2->transport_header = skb2->network_header;
1897                 skb2->pkt_type = PACKET_OUTGOING;
1898                 pt_prev = ptype;
1899         }
1900
1901         if (ptype_list == &ptype_all) {
1902                 ptype_list = &dev->ptype_all;
1903                 goto again;
1904         }
1905 out_unlock:
1906         if (pt_prev)
1907                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1908         rcu_read_unlock();
1909 }
1910
1911 /**
1912  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1913  * @dev: Network device
1914  * @txq: number of queues available
1915  *
1916  * If real_num_tx_queues is changed the tc mappings may no longer be
1917  * valid. To resolve this verify the tc mapping remains valid and if
1918  * not NULL the mapping. With no priorities mapping to this
1919  * offset/count pair it will no longer be used. In the worst case TC0
1920  * is invalid nothing can be done so disable priority mappings. If is
1921  * expected that drivers will fix this mapping if they can before
1922  * calling netif_set_real_num_tx_queues.
1923  */
1924 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1925 {
1926         int i;
1927         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1928
1929         /* If TC0 is invalidated disable TC mapping */
1930         if (tc->offset + tc->count > txq) {
1931                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1932                 dev->num_tc = 0;
1933                 return;
1934         }
1935
1936         /* Invalidated prio to tc mappings set to TC0 */
1937         for (i = 1; i < TC_BITMASK + 1; i++) {
1938                 int q = netdev_get_prio_tc_map(dev, i);
1939
1940                 tc = &dev->tc_to_txq[q];
1941                 if (tc->offset + tc->count > txq) {
1942                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1943                                 i, q);
1944                         netdev_set_prio_tc_map(dev, i, 0);
1945                 }
1946         }
1947 }
1948
1949 #ifdef CONFIG_XPS
1950 static DEFINE_MUTEX(xps_map_mutex);
1951 #define xmap_dereference(P)             \
1952         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1953
1954 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1955                                         int cpu, u16 index)
1956 {
1957         struct xps_map *map = NULL;
1958         int pos;
1959
1960         if (dev_maps)
1961                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1962
1963         for (pos = 0; map && pos < map->len; pos++) {
1964                 if (map->queues[pos] == index) {
1965                         if (map->len > 1) {
1966                                 map->queues[pos] = map->queues[--map->len];
1967                         } else {
1968                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1969                                 kfree_rcu(map, rcu);
1970                                 map = NULL;
1971                         }
1972                         break;
1973                 }
1974         }
1975
1976         return map;
1977 }
1978
1979 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1980 {
1981         struct xps_dev_maps *dev_maps;
1982         int cpu, i;
1983         bool active = false;
1984
1985         mutex_lock(&xps_map_mutex);
1986         dev_maps = xmap_dereference(dev->xps_maps);
1987
1988         if (!dev_maps)
1989                 goto out_no_maps;
1990
1991         for_each_possible_cpu(cpu) {
1992                 for (i = index; i < dev->num_tx_queues; i++) {
1993                         if (!remove_xps_queue(dev_maps, cpu, i))
1994                                 break;
1995                 }
1996                 if (i == dev->num_tx_queues)
1997                         active = true;
1998         }
1999
2000         if (!active) {
2001                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2002                 kfree_rcu(dev_maps, rcu);
2003         }
2004
2005         for (i = index; i < dev->num_tx_queues; i++)
2006                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2007                                              NUMA_NO_NODE);
2008
2009 out_no_maps:
2010         mutex_unlock(&xps_map_mutex);
2011 }
2012
2013 static struct xps_map *expand_xps_map(struct xps_map *map,
2014                                       int cpu, u16 index)
2015 {
2016         struct xps_map *new_map;
2017         int alloc_len = XPS_MIN_MAP_ALLOC;
2018         int i, pos;
2019
2020         for (pos = 0; map && pos < map->len; pos++) {
2021                 if (map->queues[pos] != index)
2022                         continue;
2023                 return map;
2024         }
2025
2026         /* Need to add queue to this CPU's existing map */
2027         if (map) {
2028                 if (pos < map->alloc_len)
2029                         return map;
2030
2031                 alloc_len = map->alloc_len * 2;
2032         }
2033
2034         /* Need to allocate new map to store queue on this CPU's map */
2035         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2036                                cpu_to_node(cpu));
2037         if (!new_map)
2038                 return NULL;
2039
2040         for (i = 0; i < pos; i++)
2041                 new_map->queues[i] = map->queues[i];
2042         new_map->alloc_len = alloc_len;
2043         new_map->len = pos;
2044
2045         return new_map;
2046 }
2047
2048 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2049                         u16 index)
2050 {
2051         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2052         struct xps_map *map, *new_map;
2053         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2054         int cpu, numa_node_id = -2;
2055         bool active = false;
2056
2057         mutex_lock(&xps_map_mutex);
2058
2059         dev_maps = xmap_dereference(dev->xps_maps);
2060
2061         /* allocate memory for queue storage */
2062         for_each_online_cpu(cpu) {
2063                 if (!cpumask_test_cpu(cpu, mask))
2064                         continue;
2065
2066                 if (!new_dev_maps)
2067                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2068                 if (!new_dev_maps) {
2069                         mutex_unlock(&xps_map_mutex);
2070                         return -ENOMEM;
2071                 }
2072
2073                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2074                                  NULL;
2075
2076                 map = expand_xps_map(map, cpu, index);
2077                 if (!map)
2078                         goto error;
2079
2080                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2081         }
2082
2083         if (!new_dev_maps)
2084                 goto out_no_new_maps;
2085
2086         for_each_possible_cpu(cpu) {
2087                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088                         /* add queue to CPU maps */
2089                         int pos = 0;
2090
2091                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2092                         while ((pos < map->len) && (map->queues[pos] != index))
2093                                 pos++;
2094
2095                         if (pos == map->len)
2096                                 map->queues[map->len++] = index;
2097 #ifdef CONFIG_NUMA
2098                         if (numa_node_id == -2)
2099                                 numa_node_id = cpu_to_node(cpu);
2100                         else if (numa_node_id != cpu_to_node(cpu))
2101                                 numa_node_id = -1;
2102 #endif
2103                 } else if (dev_maps) {
2104                         /* fill in the new device map from the old device map */
2105                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2107                 }
2108
2109         }
2110
2111         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2112
2113         /* Cleanup old maps */
2114         if (dev_maps) {
2115                 for_each_possible_cpu(cpu) {
2116                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118                         if (map && map != new_map)
2119                                 kfree_rcu(map, rcu);
2120                 }
2121
2122                 kfree_rcu(dev_maps, rcu);
2123         }
2124
2125         dev_maps = new_dev_maps;
2126         active = true;
2127
2128 out_no_new_maps:
2129         /* update Tx queue numa node */
2130         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131                                      (numa_node_id >= 0) ? numa_node_id :
2132                                      NUMA_NO_NODE);
2133
2134         if (!dev_maps)
2135                 goto out_no_maps;
2136
2137         /* removes queue from unused CPUs */
2138         for_each_possible_cpu(cpu) {
2139                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2140                         continue;
2141
2142                 if (remove_xps_queue(dev_maps, cpu, index))
2143                         active = true;
2144         }
2145
2146         /* free map if not active */
2147         if (!active) {
2148                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2149                 kfree_rcu(dev_maps, rcu);
2150         }
2151
2152 out_no_maps:
2153         mutex_unlock(&xps_map_mutex);
2154
2155         return 0;
2156 error:
2157         /* remove any maps that we added */
2158         for_each_possible_cpu(cpu) {
2159                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2161                                  NULL;
2162                 if (new_map && new_map != map)
2163                         kfree(new_map);
2164         }
2165
2166         mutex_unlock(&xps_map_mutex);
2167
2168         kfree(new_dev_maps);
2169         return -ENOMEM;
2170 }
2171 EXPORT_SYMBOL(netif_set_xps_queue);
2172
2173 #endif
2174 /*
2175  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2177  */
2178 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2179 {
2180         int rc;
2181
2182         if (txq < 1 || txq > dev->num_tx_queues)
2183                 return -EINVAL;
2184
2185         if (dev->reg_state == NETREG_REGISTERED ||
2186             dev->reg_state == NETREG_UNREGISTERING) {
2187                 ASSERT_RTNL();
2188
2189                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2190                                                   txq);
2191                 if (rc)
2192                         return rc;
2193
2194                 if (dev->num_tc)
2195                         netif_setup_tc(dev, txq);
2196
2197                 if (txq < dev->real_num_tx_queues) {
2198                         qdisc_reset_all_tx_gt(dev, txq);
2199 #ifdef CONFIG_XPS
2200                         netif_reset_xps_queues_gt(dev, txq);
2201 #endif
2202                 }
2203         }
2204
2205         dev->real_num_tx_queues = txq;
2206         return 0;
2207 }
2208 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2209
2210 #ifdef CONFIG_SYSFS
2211 /**
2212  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2213  *      @dev: Network device
2214  *      @rxq: Actual number of RX queues
2215  *
2216  *      This must be called either with the rtnl_lock held or before
2217  *      registration of the net device.  Returns 0 on success, or a
2218  *      negative error code.  If called before registration, it always
2219  *      succeeds.
2220  */
2221 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2222 {
2223         int rc;
2224
2225         if (rxq < 1 || rxq > dev->num_rx_queues)
2226                 return -EINVAL;
2227
2228         if (dev->reg_state == NETREG_REGISTERED) {
2229                 ASSERT_RTNL();
2230
2231                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2232                                                   rxq);
2233                 if (rc)
2234                         return rc;
2235         }
2236
2237         dev->real_num_rx_queues = rxq;
2238         return 0;
2239 }
2240 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2241 #endif
2242
2243 /**
2244  * netif_get_num_default_rss_queues - default number of RSS queues
2245  *
2246  * This routine should set an upper limit on the number of RSS queues
2247  * used by default by multiqueue devices.
2248  */
2249 int netif_get_num_default_rss_queues(void)
2250 {
2251         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2252 }
2253 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2254
2255 static inline void __netif_reschedule(struct Qdisc *q)
2256 {
2257         struct softnet_data *sd;
2258         unsigned long flags;
2259
2260         local_irq_save(flags);
2261         sd = this_cpu_ptr(&softnet_data);
2262         q->next_sched = NULL;
2263         *sd->output_queue_tailp = q;
2264         sd->output_queue_tailp = &q->next_sched;
2265         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266         local_irq_restore(flags);
2267 }
2268
2269 void __netif_schedule(struct Qdisc *q)
2270 {
2271         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272                 __netif_reschedule(q);
2273 }
2274 EXPORT_SYMBOL(__netif_schedule);
2275
2276 struct dev_kfree_skb_cb {
2277         enum skb_free_reason reason;
2278 };
2279
2280 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2281 {
2282         return (struct dev_kfree_skb_cb *)skb->cb;
2283 }
2284
2285 void netif_schedule_queue(struct netdev_queue *txq)
2286 {
2287         rcu_read_lock();
2288         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2290
2291                 __netif_schedule(q);
2292         }
2293         rcu_read_unlock();
2294 }
2295 EXPORT_SYMBOL(netif_schedule_queue);
2296
2297 /**
2298  *      netif_wake_subqueue - allow sending packets on subqueue
2299  *      @dev: network device
2300  *      @queue_index: sub queue index
2301  *
2302  * Resume individual transmit queue of a device with multiple transmit queues.
2303  */
2304 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2305 {
2306         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2307
2308         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2309                 struct Qdisc *q;
2310
2311                 rcu_read_lock();
2312                 q = rcu_dereference(txq->qdisc);
2313                 __netif_schedule(q);
2314                 rcu_read_unlock();
2315         }
2316 }
2317 EXPORT_SYMBOL(netif_wake_subqueue);
2318
2319 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2320 {
2321         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2322                 struct Qdisc *q;
2323
2324                 rcu_read_lock();
2325                 q = rcu_dereference(dev_queue->qdisc);
2326                 __netif_schedule(q);
2327                 rcu_read_unlock();
2328         }
2329 }
2330 EXPORT_SYMBOL(netif_tx_wake_queue);
2331
2332 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2333 {
2334         unsigned long flags;
2335
2336         if (likely(atomic_read(&skb->users) == 1)) {
2337                 smp_rmb();
2338                 atomic_set(&skb->users, 0);
2339         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2340                 return;
2341         }
2342         get_kfree_skb_cb(skb)->reason = reason;
2343         local_irq_save(flags);
2344         skb->next = __this_cpu_read(softnet_data.completion_queue);
2345         __this_cpu_write(softnet_data.completion_queue, skb);
2346         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347         local_irq_restore(flags);
2348 }
2349 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2350
2351 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2352 {
2353         if (in_irq() || irqs_disabled())
2354                 __dev_kfree_skb_irq(skb, reason);
2355         else
2356                 dev_kfree_skb(skb);
2357 }
2358 EXPORT_SYMBOL(__dev_kfree_skb_any);
2359
2360
2361 /**
2362  * netif_device_detach - mark device as removed
2363  * @dev: network device
2364  *
2365  * Mark device as removed from system and therefore no longer available.
2366  */
2367 void netif_device_detach(struct net_device *dev)
2368 {
2369         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370             netif_running(dev)) {
2371                 netif_tx_stop_all_queues(dev);
2372         }
2373 }
2374 EXPORT_SYMBOL(netif_device_detach);
2375
2376 /**
2377  * netif_device_attach - mark device as attached
2378  * @dev: network device
2379  *
2380  * Mark device as attached from system and restart if needed.
2381  */
2382 void netif_device_attach(struct net_device *dev)
2383 {
2384         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385             netif_running(dev)) {
2386                 netif_tx_wake_all_queues(dev);
2387                 __netdev_watchdog_up(dev);
2388         }
2389 }
2390 EXPORT_SYMBOL(netif_device_attach);
2391
2392 /*
2393  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394  * to be used as a distribution range.
2395  */
2396 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397                   unsigned int num_tx_queues)
2398 {
2399         u32 hash;
2400         u16 qoffset = 0;
2401         u16 qcount = num_tx_queues;
2402
2403         if (skb_rx_queue_recorded(skb)) {
2404                 hash = skb_get_rx_queue(skb);
2405                 while (unlikely(hash >= num_tx_queues))
2406                         hash -= num_tx_queues;
2407                 return hash;
2408         }
2409
2410         if (dev->num_tc) {
2411                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412                 qoffset = dev->tc_to_txq[tc].offset;
2413                 qcount = dev->tc_to_txq[tc].count;
2414         }
2415
2416         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2417 }
2418 EXPORT_SYMBOL(__skb_tx_hash);
2419
2420 static void skb_warn_bad_offload(const struct sk_buff *skb)
2421 {
2422         static const netdev_features_t null_features = 0;
2423         struct net_device *dev = skb->dev;
2424         const char *name = "";
2425
2426         if (!net_ratelimit())
2427                 return;
2428
2429         if (dev) {
2430                 if (dev->dev.parent)
2431                         name = dev_driver_string(dev->dev.parent);
2432                 else
2433                         name = netdev_name(dev);
2434         }
2435         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436              "gso_type=%d ip_summed=%d\n",
2437              name, dev ? &dev->features : &null_features,
2438              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2439              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440              skb_shinfo(skb)->gso_type, skb->ip_summed);
2441 }
2442
2443 /*
2444  * Invalidate hardware checksum when packet is to be mangled, and
2445  * complete checksum manually on outgoing path.
2446  */
2447 int skb_checksum_help(struct sk_buff *skb)
2448 {
2449         __wsum csum;
2450         int ret = 0, offset;
2451
2452         if (skb->ip_summed == CHECKSUM_COMPLETE)
2453                 goto out_set_summed;
2454
2455         if (unlikely(skb_shinfo(skb)->gso_size)) {
2456                 skb_warn_bad_offload(skb);
2457                 return -EINVAL;
2458         }
2459
2460         /* Before computing a checksum, we should make sure no frag could
2461          * be modified by an external entity : checksum could be wrong.
2462          */
2463         if (skb_has_shared_frag(skb)) {
2464                 ret = __skb_linearize(skb);
2465                 if (ret)
2466                         goto out;
2467         }
2468
2469         offset = skb_checksum_start_offset(skb);
2470         BUG_ON(offset >= skb_headlen(skb));
2471         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2472
2473         offset += skb->csum_offset;
2474         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2475
2476         if (skb_cloned(skb) &&
2477             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2478                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479                 if (ret)
2480                         goto out;
2481         }
2482
2483         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2484 out_set_summed:
2485         skb->ip_summed = CHECKSUM_NONE;
2486 out:
2487         return ret;
2488 }
2489 EXPORT_SYMBOL(skb_checksum_help);
2490
2491 /* skb_csum_offload_check - Driver helper function to determine if a device
2492  * with limited checksum offload capabilities is able to offload the checksum
2493  * for a given packet.
2494  *
2495  * Arguments:
2496  *   skb - sk_buff for the packet in question
2497  *   spec - contains the description of what device can offload
2498  *   csum_encapped - returns true if the checksum being offloaded is
2499  *            encpasulated. That is it is checksum for the transport header
2500  *            in the inner headers.
2501  *   checksum_help - when set indicates that helper function should
2502  *            call skb_checksum_help if offload checks fail
2503  *
2504  * Returns:
2505  *   true: Packet has passed the checksum checks and should be offloadable to
2506  *         the device (a driver may still need to check for additional
2507  *         restrictions of its device)
2508  *   false: Checksum is not offloadable. If checksum_help was set then
2509  *         skb_checksum_help was called to resolve checksum for non-GSO
2510  *         packets and when IP protocol is not SCTP
2511  */
2512 bool __skb_csum_offload_chk(struct sk_buff *skb,
2513                             const struct skb_csum_offl_spec *spec,
2514                             bool *csum_encapped,
2515                             bool csum_help)
2516 {
2517         struct iphdr *iph;
2518         struct ipv6hdr *ipv6;
2519         void *nhdr;
2520         int protocol;
2521         u8 ip_proto;
2522
2523         if (skb->protocol == htons(ETH_P_8021Q) ||
2524             skb->protocol == htons(ETH_P_8021AD)) {
2525                 if (!spec->vlan_okay)
2526                         goto need_help;
2527         }
2528
2529         /* We check whether the checksum refers to a transport layer checksum in
2530          * the outermost header or an encapsulated transport layer checksum that
2531          * corresponds to the inner headers of the skb. If the checksum is for
2532          * something else in the packet we need help.
2533          */
2534         if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535                 /* Non-encapsulated checksum */
2536                 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537                 nhdr = skb_network_header(skb);
2538                 *csum_encapped = false;
2539                 if (spec->no_not_encapped)
2540                         goto need_help;
2541         } else if (skb->encapsulation && spec->encap_okay &&
2542                    skb_checksum_start_offset(skb) ==
2543                    skb_inner_transport_offset(skb)) {
2544                 /* Encapsulated checksum */
2545                 *csum_encapped = true;
2546                 switch (skb->inner_protocol_type) {
2547                 case ENCAP_TYPE_ETHER:
2548                         protocol = eproto_to_ipproto(skb->inner_protocol);
2549                         break;
2550                 case ENCAP_TYPE_IPPROTO:
2551                         protocol = skb->inner_protocol;
2552                         break;
2553                 }
2554                 nhdr = skb_inner_network_header(skb);
2555         } else {
2556                 goto need_help;
2557         }
2558
2559         switch (protocol) {
2560         case IPPROTO_IP:
2561                 if (!spec->ipv4_okay)
2562                         goto need_help;
2563                 iph = nhdr;
2564                 ip_proto = iph->protocol;
2565                 if (iph->ihl != 5 && !spec->ip_options_okay)
2566                         goto need_help;
2567                 break;
2568         case IPPROTO_IPV6:
2569                 if (!spec->ipv6_okay)
2570                         goto need_help;
2571                 if (spec->no_encapped_ipv6 && *csum_encapped)
2572                         goto need_help;
2573                 ipv6 = nhdr;
2574                 nhdr += sizeof(*ipv6);
2575                 ip_proto = ipv6->nexthdr;
2576                 break;
2577         default:
2578                 goto need_help;
2579         }
2580
2581 ip_proto_again:
2582         switch (ip_proto) {
2583         case IPPROTO_TCP:
2584                 if (!spec->tcp_okay ||
2585                     skb->csum_offset != offsetof(struct tcphdr, check))
2586                         goto need_help;
2587                 break;
2588         case IPPROTO_UDP:
2589                 if (!spec->udp_okay ||
2590                     skb->csum_offset != offsetof(struct udphdr, check))
2591                         goto need_help;
2592                 break;
2593         case IPPROTO_SCTP:
2594                 if (!spec->sctp_okay ||
2595                     skb->csum_offset != offsetof(struct sctphdr, checksum))
2596                         goto cant_help;
2597                 break;
2598         case NEXTHDR_HOP:
2599         case NEXTHDR_ROUTING:
2600         case NEXTHDR_DEST: {
2601                 u8 *opthdr = nhdr;
2602
2603                 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2604                         goto need_help;
2605
2606                 ip_proto = opthdr[0];
2607                 nhdr += (opthdr[1] + 1) << 3;
2608
2609                 goto ip_proto_again;
2610         }
2611         default:
2612                 goto need_help;
2613         }
2614
2615         /* Passed the tests for offloading checksum */
2616         return true;
2617
2618 need_help:
2619         if (csum_help && !skb_shinfo(skb)->gso_size)
2620                 skb_checksum_help(skb);
2621 cant_help:
2622         return false;
2623 }
2624 EXPORT_SYMBOL(__skb_csum_offload_chk);
2625
2626 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2627 {
2628         __be16 type = skb->protocol;
2629
2630         /* Tunnel gso handlers can set protocol to ethernet. */
2631         if (type == htons(ETH_P_TEB)) {
2632                 struct ethhdr *eth;
2633
2634                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2635                         return 0;
2636
2637                 eth = (struct ethhdr *)skb_mac_header(skb);
2638                 type = eth->h_proto;
2639         }
2640
2641         return __vlan_get_protocol(skb, type, depth);
2642 }
2643
2644 /**
2645  *      skb_mac_gso_segment - mac layer segmentation handler.
2646  *      @skb: buffer to segment
2647  *      @features: features for the output path (see dev->features)
2648  */
2649 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650                                     netdev_features_t features)
2651 {
2652         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653         struct packet_offload *ptype;
2654         int vlan_depth = skb->mac_len;
2655         __be16 type = skb_network_protocol(skb, &vlan_depth);
2656
2657         if (unlikely(!type))
2658                 return ERR_PTR(-EINVAL);
2659
2660         __skb_pull(skb, vlan_depth);
2661
2662         rcu_read_lock();
2663         list_for_each_entry_rcu(ptype, &offload_base, list) {
2664                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2665                         segs = ptype->callbacks.gso_segment(skb, features);
2666                         break;
2667                 }
2668         }
2669         rcu_read_unlock();
2670
2671         __skb_push(skb, skb->data - skb_mac_header(skb));
2672
2673         return segs;
2674 }
2675 EXPORT_SYMBOL(skb_mac_gso_segment);
2676
2677
2678 /* openvswitch calls this on rx path, so we need a different check.
2679  */
2680 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2681 {
2682         if (tx_path)
2683                 return skb->ip_summed != CHECKSUM_PARTIAL;
2684         else
2685                 return skb->ip_summed == CHECKSUM_NONE;
2686 }
2687
2688 /**
2689  *      __skb_gso_segment - Perform segmentation on skb.
2690  *      @skb: buffer to segment
2691  *      @features: features for the output path (see dev->features)
2692  *      @tx_path: whether it is called in TX path
2693  *
2694  *      This function segments the given skb and returns a list of segments.
2695  *
2696  *      It may return NULL if the skb requires no segmentation.  This is
2697  *      only possible when GSO is used for verifying header integrity.
2698  *
2699  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2700  */
2701 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2702                                   netdev_features_t features, bool tx_path)
2703 {
2704         if (unlikely(skb_needs_check(skb, tx_path))) {
2705                 int err;
2706
2707                 skb_warn_bad_offload(skb);
2708
2709                 err = skb_cow_head(skb, 0);
2710                 if (err < 0)
2711                         return ERR_PTR(err);
2712         }
2713
2714         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2715                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2716
2717         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2718         SKB_GSO_CB(skb)->encap_level = 0;
2719
2720         skb_reset_mac_header(skb);
2721         skb_reset_mac_len(skb);
2722
2723         return skb_mac_gso_segment(skb, features);
2724 }
2725 EXPORT_SYMBOL(__skb_gso_segment);
2726
2727 /* Take action when hardware reception checksum errors are detected. */
2728 #ifdef CONFIG_BUG
2729 void netdev_rx_csum_fault(struct net_device *dev)
2730 {
2731         if (net_ratelimit()) {
2732                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2733                 dump_stack();
2734         }
2735 }
2736 EXPORT_SYMBOL(netdev_rx_csum_fault);
2737 #endif
2738
2739 /* Actually, we should eliminate this check as soon as we know, that:
2740  * 1. IOMMU is present and allows to map all the memory.
2741  * 2. No high memory really exists on this machine.
2742  */
2743
2744 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2745 {
2746 #ifdef CONFIG_HIGHMEM
2747         int i;
2748         if (!(dev->features & NETIF_F_HIGHDMA)) {
2749                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2750                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2751                         if (PageHighMem(skb_frag_page(frag)))
2752                                 return 1;
2753                 }
2754         }
2755
2756         if (PCI_DMA_BUS_IS_PHYS) {
2757                 struct device *pdev = dev->dev.parent;
2758
2759                 if (!pdev)
2760                         return 0;
2761                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2762                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2763                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2764                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2765                                 return 1;
2766                 }
2767         }
2768 #endif
2769         return 0;
2770 }
2771
2772 /* If MPLS offload request, verify we are testing hardware MPLS features
2773  * instead of standard features for the netdev.
2774  */
2775 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2776 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2777                                            netdev_features_t features,
2778                                            __be16 type)
2779 {
2780         if (eth_p_mpls(type))
2781                 features &= skb->dev->mpls_features;
2782
2783         return features;
2784 }
2785 #else
2786 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2787                                            netdev_features_t features,
2788                                            __be16 type)
2789 {
2790         return features;
2791 }
2792 #endif
2793
2794 static netdev_features_t harmonize_features(struct sk_buff *skb,
2795         netdev_features_t features)
2796 {
2797         int tmp;
2798         __be16 type;
2799
2800         type = skb_network_protocol(skb, &tmp);
2801         features = net_mpls_features(skb, features, type);
2802
2803         if (skb->ip_summed != CHECKSUM_NONE &&
2804             !can_checksum_protocol(features, type)) {
2805                 features &= ~NETIF_F_CSUM_MASK;
2806         } else if (illegal_highdma(skb->dev, skb)) {
2807                 features &= ~NETIF_F_SG;
2808         }
2809
2810         return features;
2811 }
2812
2813 netdev_features_t passthru_features_check(struct sk_buff *skb,
2814                                           struct net_device *dev,
2815                                           netdev_features_t features)
2816 {
2817         return features;
2818 }
2819 EXPORT_SYMBOL(passthru_features_check);
2820
2821 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2822                                              struct net_device *dev,
2823                                              netdev_features_t features)
2824 {
2825         return vlan_features_check(skb, features);
2826 }
2827
2828 netdev_features_t netif_skb_features(struct sk_buff *skb)
2829 {
2830         struct net_device *dev = skb->dev;
2831         netdev_features_t features = dev->features;
2832         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2833
2834         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2835                 features &= ~NETIF_F_GSO_MASK;
2836
2837         /* If encapsulation offload request, verify we are testing
2838          * hardware encapsulation features instead of standard
2839          * features for the netdev
2840          */
2841         if (skb->encapsulation)
2842                 features &= dev->hw_enc_features;
2843
2844         if (skb_vlan_tagged(skb))
2845                 features = netdev_intersect_features(features,
2846                                                      dev->vlan_features |
2847                                                      NETIF_F_HW_VLAN_CTAG_TX |
2848                                                      NETIF_F_HW_VLAN_STAG_TX);
2849
2850         if (dev->netdev_ops->ndo_features_check)
2851                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2852                                                                 features);
2853         else
2854                 features &= dflt_features_check(skb, dev, features);
2855
2856         return harmonize_features(skb, features);
2857 }
2858 EXPORT_SYMBOL(netif_skb_features);
2859
2860 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2861                     struct netdev_queue *txq, bool more)
2862 {
2863         unsigned int len;
2864         int rc;
2865
2866         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2867                 dev_queue_xmit_nit(skb, dev);
2868
2869         len = skb->len;
2870         trace_net_dev_start_xmit(skb, dev);
2871         rc = netdev_start_xmit(skb, dev, txq, more);
2872         trace_net_dev_xmit(skb, rc, dev, len);
2873
2874         return rc;
2875 }
2876
2877 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2878                                     struct netdev_queue *txq, int *ret)
2879 {
2880         struct sk_buff *skb = first;
2881         int rc = NETDEV_TX_OK;
2882
2883         while (skb) {
2884                 struct sk_buff *next = skb->next;
2885
2886                 skb->next = NULL;
2887                 rc = xmit_one(skb, dev, txq, next != NULL);
2888                 if (unlikely(!dev_xmit_complete(rc))) {
2889                         skb->next = next;
2890                         goto out;
2891                 }
2892
2893                 skb = next;
2894                 if (netif_xmit_stopped(txq) && skb) {
2895                         rc = NETDEV_TX_BUSY;
2896                         break;
2897                 }
2898         }
2899
2900 out:
2901         *ret = rc;
2902         return skb;
2903 }
2904
2905 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2906                                           netdev_features_t features)
2907 {
2908         if (skb_vlan_tag_present(skb) &&
2909             !vlan_hw_offload_capable(features, skb->vlan_proto))
2910                 skb = __vlan_hwaccel_push_inside(skb);
2911         return skb;
2912 }
2913
2914 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2915 {
2916         netdev_features_t features;
2917
2918         if (skb->next)
2919                 return skb;
2920
2921         features = netif_skb_features(skb);
2922         skb = validate_xmit_vlan(skb, features);
2923         if (unlikely(!skb))
2924                 goto out_null;
2925
2926         if (netif_needs_gso(skb, features)) {
2927                 struct sk_buff *segs;
2928
2929                 segs = skb_gso_segment(skb, features);
2930                 if (IS_ERR(segs)) {
2931                         goto out_kfree_skb;
2932                 } else if (segs) {
2933                         consume_skb(skb);
2934                         skb = segs;
2935                 }
2936         } else {
2937                 if (skb_needs_linearize(skb, features) &&
2938                     __skb_linearize(skb))
2939                         goto out_kfree_skb;
2940
2941                 /* If packet is not checksummed and device does not
2942                  * support checksumming for this protocol, complete
2943                  * checksumming here.
2944                  */
2945                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2946                         if (skb->encapsulation)
2947                                 skb_set_inner_transport_header(skb,
2948                                                                skb_checksum_start_offset(skb));
2949                         else
2950                                 skb_set_transport_header(skb,
2951                                                          skb_checksum_start_offset(skb));
2952                         if (!(features & NETIF_F_CSUM_MASK) &&
2953                             skb_checksum_help(skb))
2954                                 goto out_kfree_skb;
2955                 }
2956         }
2957
2958         return skb;
2959
2960 out_kfree_skb:
2961         kfree_skb(skb);
2962 out_null:
2963         return NULL;
2964 }
2965
2966 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2967 {
2968         struct sk_buff *next, *head = NULL, *tail;
2969
2970         for (; skb != NULL; skb = next) {
2971                 next = skb->next;
2972                 skb->next = NULL;
2973
2974                 /* in case skb wont be segmented, point to itself */
2975                 skb->prev = skb;
2976
2977                 skb = validate_xmit_skb(skb, dev);
2978                 if (!skb)
2979                         continue;
2980
2981                 if (!head)
2982                         head = skb;
2983                 else
2984                         tail->next = skb;
2985                 /* If skb was segmented, skb->prev points to
2986                  * the last segment. If not, it still contains skb.
2987                  */
2988                 tail = skb->prev;
2989         }
2990         return head;
2991 }
2992
2993 static void qdisc_pkt_len_init(struct sk_buff *skb)
2994 {
2995         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2996
2997         qdisc_skb_cb(skb)->pkt_len = skb->len;
2998
2999         /* To get more precise estimation of bytes sent on wire,
3000          * we add to pkt_len the headers size of all segments
3001          */
3002         if (shinfo->gso_size)  {
3003                 unsigned int hdr_len;
3004                 u16 gso_segs = shinfo->gso_segs;
3005
3006                 /* mac layer + network layer */
3007                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3008
3009                 /* + transport layer */
3010                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3011                         hdr_len += tcp_hdrlen(skb);
3012                 else
3013                         hdr_len += sizeof(struct udphdr);
3014
3015                 if (shinfo->gso_type & SKB_GSO_DODGY)
3016                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3017                                                 shinfo->gso_size);
3018
3019                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3020         }
3021 }
3022
3023 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3024                                  struct net_device *dev,
3025                                  struct netdev_queue *txq)
3026 {
3027         spinlock_t *root_lock = qdisc_lock(q);
3028         bool contended;
3029         int rc;
3030
3031         qdisc_calculate_pkt_len(skb, q);
3032         /*
3033          * Heuristic to force contended enqueues to serialize on a
3034          * separate lock before trying to get qdisc main lock.
3035          * This permits __QDISC___STATE_RUNNING owner to get the lock more
3036          * often and dequeue packets faster.
3037          */
3038         contended = qdisc_is_running(q);
3039         if (unlikely(contended))
3040                 spin_lock(&q->busylock);
3041
3042         spin_lock(root_lock);
3043         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3044                 kfree_skb(skb);
3045                 rc = NET_XMIT_DROP;
3046         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3047                    qdisc_run_begin(q)) {
3048                 /*
3049                  * This is a work-conserving queue; there are no old skbs
3050                  * waiting to be sent out; and the qdisc is not running -
3051                  * xmit the skb directly.
3052                  */
3053
3054                 qdisc_bstats_update(q, skb);
3055
3056                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3057                         if (unlikely(contended)) {
3058                                 spin_unlock(&q->busylock);
3059                                 contended = false;
3060                         }
3061                         __qdisc_run(q);
3062                 } else
3063                         qdisc_run_end(q);
3064
3065                 rc = NET_XMIT_SUCCESS;
3066         } else {
3067                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
3068                 if (qdisc_run_begin(q)) {
3069                         if (unlikely(contended)) {
3070                                 spin_unlock(&q->busylock);
3071                                 contended = false;
3072                         }
3073                         __qdisc_run(q);
3074                 }
3075         }
3076         spin_unlock(root_lock);
3077         if (unlikely(contended))
3078                 spin_unlock(&q->busylock);
3079         return rc;
3080 }
3081
3082 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3083 static void skb_update_prio(struct sk_buff *skb)
3084 {
3085         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3086
3087         if (!skb->priority && skb->sk && map) {
3088                 unsigned int prioidx =
3089                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3090
3091                 if (prioidx < map->priomap_len)
3092                         skb->priority = map->priomap[prioidx];
3093         }
3094 }
3095 #else
3096 #define skb_update_prio(skb)
3097 #endif
3098
3099 DEFINE_PER_CPU(int, xmit_recursion);
3100 EXPORT_SYMBOL(xmit_recursion);
3101
3102 #define RECURSION_LIMIT 10
3103
3104 /**
3105  *      dev_loopback_xmit - loop back @skb
3106  *      @net: network namespace this loopback is happening in
3107  *      @sk:  sk needed to be a netfilter okfn
3108  *      @skb: buffer to transmit
3109  */
3110 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3111 {
3112         skb_reset_mac_header(skb);
3113         __skb_pull(skb, skb_network_offset(skb));
3114         skb->pkt_type = PACKET_LOOPBACK;
3115         skb->ip_summed = CHECKSUM_UNNECESSARY;
3116         WARN_ON(!skb_dst(skb));
3117         skb_dst_force(skb);
3118         netif_rx_ni(skb);
3119         return 0;
3120 }
3121 EXPORT_SYMBOL(dev_loopback_xmit);
3122
3123 #ifdef CONFIG_NET_EGRESS
3124 static struct sk_buff *
3125 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3126 {
3127         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3128         struct tcf_result cl_res;
3129
3130         if (!cl)
3131                 return skb;
3132
3133         /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3134          * earlier by the caller.
3135          */
3136         qdisc_bstats_cpu_update(cl->q, skb);
3137
3138         switch (tc_classify(skb, cl, &cl_res, false)) {
3139         case TC_ACT_OK:
3140         case TC_ACT_RECLASSIFY:
3141                 skb->tc_index = TC_H_MIN(cl_res.classid);
3142                 break;
3143         case TC_ACT_SHOT:
3144                 qdisc_qstats_cpu_drop(cl->q);
3145                 *ret = NET_XMIT_DROP;
3146                 goto drop;
3147         case TC_ACT_STOLEN:
3148         case TC_ACT_QUEUED:
3149                 *ret = NET_XMIT_SUCCESS;
3150 drop:
3151                 kfree_skb(skb);
3152                 return NULL;
3153         case TC_ACT_REDIRECT:
3154                 /* No need to push/pop skb's mac_header here on egress! */
3155                 skb_do_redirect(skb);
3156                 *ret = NET_XMIT_SUCCESS;
3157                 return NULL;
3158         default:
3159                 break;
3160         }
3161
3162         return skb;
3163 }
3164 #endif /* CONFIG_NET_EGRESS */
3165
3166 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3167 {
3168 #ifdef CONFIG_XPS
3169         struct xps_dev_maps *dev_maps;
3170         struct xps_map *map;
3171         int queue_index = -1;
3172
3173         rcu_read_lock();
3174         dev_maps = rcu_dereference(dev->xps_maps);
3175         if (dev_maps) {
3176                 map = rcu_dereference(
3177                     dev_maps->cpu_map[skb->sender_cpu - 1]);
3178                 if (map) {
3179                         if (map->len == 1)
3180                                 queue_index = map->queues[0];
3181                         else
3182                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3183                                                                            map->len)];
3184                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3185                                 queue_index = -1;
3186                 }
3187         }
3188         rcu_read_unlock();
3189
3190         return queue_index;
3191 #else
3192         return -1;
3193 #endif
3194 }
3195
3196 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3197 {
3198         struct sock *sk = skb->sk;
3199         int queue_index = sk_tx_queue_get(sk);
3200
3201         if (queue_index < 0 || skb->ooo_okay ||
3202             queue_index >= dev->real_num_tx_queues) {
3203                 int new_index = get_xps_queue(dev, skb);
3204                 if (new_index < 0)
3205                         new_index = skb_tx_hash(dev, skb);
3206
3207                 if (queue_index != new_index && sk &&
3208                     sk_fullsock(sk) &&
3209                     rcu_access_pointer(sk->sk_dst_cache))
3210                         sk_tx_queue_set(sk, new_index);
3211
3212                 queue_index = new_index;
3213         }
3214
3215         return queue_index;
3216 }
3217
3218 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3219                                     struct sk_buff *skb,
3220                                     void *accel_priv)
3221 {
3222         int queue_index = 0;
3223
3224 #ifdef CONFIG_XPS
3225         u32 sender_cpu = skb->sender_cpu - 1;
3226
3227         if (sender_cpu >= (u32)NR_CPUS)
3228                 skb->sender_cpu = raw_smp_processor_id() + 1;
3229 #endif
3230
3231         if (dev->real_num_tx_queues != 1) {
3232                 const struct net_device_ops *ops = dev->netdev_ops;
3233                 if (ops->ndo_select_queue)
3234                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3235                                                             __netdev_pick_tx);
3236                 else
3237                         queue_index = __netdev_pick_tx(dev, skb);
3238
3239                 if (!accel_priv)
3240                         queue_index = netdev_cap_txqueue(dev, queue_index);
3241         }
3242
3243         skb_set_queue_mapping(skb, queue_index);
3244         return netdev_get_tx_queue(dev, queue_index);
3245 }
3246
3247 /**
3248  *      __dev_queue_xmit - transmit a buffer
3249  *      @skb: buffer to transmit
3250  *      @accel_priv: private data used for L2 forwarding offload
3251  *
3252  *      Queue a buffer for transmission to a network device. The caller must
3253  *      have set the device and priority and built the buffer before calling
3254  *      this function. The function can be called from an interrupt.
3255  *
3256  *      A negative errno code is returned on a failure. A success does not
3257  *      guarantee the frame will be transmitted as it may be dropped due
3258  *      to congestion or traffic shaping.
3259  *
3260  * -----------------------------------------------------------------------------------
3261  *      I notice this method can also return errors from the queue disciplines,
3262  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3263  *      be positive.
3264  *
3265  *      Regardless of the return value, the skb is consumed, so it is currently
3266  *      difficult to retry a send to this method.  (You can bump the ref count
3267  *      before sending to hold a reference for retry if you are careful.)
3268  *
3269  *      When calling this method, interrupts MUST be enabled.  This is because
3270  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3271  *          --BLG
3272  */
3273 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3274 {
3275         struct net_device *dev = skb->dev;
3276         struct netdev_queue *txq;
3277         struct Qdisc *q;
3278         int rc = -ENOMEM;
3279
3280         skb_reset_mac_header(skb);
3281
3282         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3283                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3284
3285         /* Disable soft irqs for various locks below. Also
3286          * stops preemption for RCU.
3287          */
3288         rcu_read_lock_bh();
3289
3290         skb_update_prio(skb);
3291
3292         qdisc_pkt_len_init(skb);
3293 #ifdef CONFIG_NET_CLS_ACT
3294         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3295 # ifdef CONFIG_NET_EGRESS
3296         if (static_key_false(&egress_needed)) {
3297                 skb = sch_handle_egress(skb, &rc, dev);
3298                 if (!skb)
3299                         goto out;
3300         }
3301 # endif
3302 #endif
3303         /* If device/qdisc don't need skb->dst, release it right now while
3304          * its hot in this cpu cache.
3305          */
3306         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3307                 skb_dst_drop(skb);
3308         else
3309                 skb_dst_force(skb);
3310
3311 #ifdef CONFIG_NET_SWITCHDEV
3312         /* Don't forward if offload device already forwarded */
3313         if (skb->offload_fwd_mark &&
3314             skb->offload_fwd_mark == dev->offload_fwd_mark) {
3315                 consume_skb(skb);
3316                 rc = NET_XMIT_SUCCESS;
3317                 goto out;
3318         }
3319 #endif
3320
3321         txq = netdev_pick_tx(dev, skb, accel_priv);
3322         q = rcu_dereference_bh(txq->qdisc);
3323
3324         trace_net_dev_queue(skb);
3325         if (q->enqueue) {
3326                 rc = __dev_xmit_skb(skb, q, dev, txq);
3327                 goto out;
3328         }
3329
3330         /* The device has no queue. Common case for software devices:
3331            loopback, all the sorts of tunnels...
3332
3333            Really, it is unlikely that netif_tx_lock protection is necessary
3334            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3335            counters.)
3336            However, it is possible, that they rely on protection
3337            made by us here.
3338
3339            Check this and shot the lock. It is not prone from deadlocks.
3340            Either shot noqueue qdisc, it is even simpler 8)
3341          */
3342         if (dev->flags & IFF_UP) {
3343                 int cpu = smp_processor_id(); /* ok because BHs are off */
3344
3345                 if (txq->xmit_lock_owner != cpu) {
3346
3347                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3348                                 goto recursion_alert;
3349
3350                         skb = validate_xmit_skb(skb, dev);
3351                         if (!skb)
3352                                 goto drop;
3353
3354                         HARD_TX_LOCK(dev, txq, cpu);
3355
3356                         if (!netif_xmit_stopped(txq)) {
3357                                 __this_cpu_inc(xmit_recursion);
3358                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3359                                 __this_cpu_dec(xmit_recursion);
3360                                 if (dev_xmit_complete(rc)) {
3361                                         HARD_TX_UNLOCK(dev, txq);
3362                                         goto out;
3363                                 }
3364                         }
3365                         HARD_TX_UNLOCK(dev, txq);
3366                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3367                                              dev->name);
3368                 } else {
3369                         /* Recursion is detected! It is possible,
3370                          * unfortunately
3371                          */
3372 recursion_alert:
3373                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3374                                              dev->name);
3375                 }
3376         }
3377
3378         rc = -ENETDOWN;
3379 drop:
3380         rcu_read_unlock_bh();
3381
3382         atomic_long_inc(&dev->tx_dropped);
3383         kfree_skb_list(skb);
3384         return rc;
3385 out:
3386         rcu_read_unlock_bh();
3387         return rc;
3388 }
3389
3390 int dev_queue_xmit(struct sk_buff *skb)
3391 {
3392         return __dev_queue_xmit(skb, NULL);
3393 }
3394 EXPORT_SYMBOL(dev_queue_xmit);
3395
3396 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3397 {
3398         return __dev_queue_xmit(skb, accel_priv);
3399 }
3400 EXPORT_SYMBOL(dev_queue_xmit_accel);
3401
3402
3403 /*=======================================================================
3404                         Receiver routines
3405   =======================================================================*/
3406
3407 int netdev_max_backlog __read_mostly = 1000;
3408 EXPORT_SYMBOL(netdev_max_backlog);
3409
3410 int netdev_tstamp_prequeue __read_mostly = 1;
3411 int netdev_budget __read_mostly = 300;
3412 int weight_p __read_mostly = 64;            /* old backlog weight */
3413
3414 /* Called with irq disabled */
3415 static inline void ____napi_schedule(struct softnet_data *sd,
3416                                      struct napi_struct *napi)
3417 {
3418         list_add_tail(&napi->poll_list, &sd->poll_list);
3419         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3420 }
3421
3422 #ifdef CONFIG_RPS
3423
3424 /* One global table that all flow-based protocols share. */
3425 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3426 EXPORT_SYMBOL(rps_sock_flow_table);
3427 u32 rps_cpu_mask __read_mostly;
3428 EXPORT_SYMBOL(rps_cpu_mask);
3429
3430 struct static_key rps_needed __read_mostly;
3431
3432 static struct rps_dev_flow *
3433 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3434             struct rps_dev_flow *rflow, u16 next_cpu)
3435 {
3436         if (next_cpu < nr_cpu_ids) {
3437 #ifdef CONFIG_RFS_ACCEL
3438                 struct netdev_rx_queue *rxqueue;
3439                 struct rps_dev_flow_table *flow_table;
3440                 struct rps_dev_flow *old_rflow;
3441                 u32 flow_id;
3442                 u16 rxq_index;
3443                 int rc;
3444
3445                 /* Should we steer this flow to a different hardware queue? */
3446                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3447                     !(dev->features & NETIF_F_NTUPLE))
3448                         goto out;
3449                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3450                 if (rxq_index == skb_get_rx_queue(skb))
3451                         goto out;
3452
3453                 rxqueue = dev->_rx + rxq_index;
3454                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3455                 if (!flow_table)
3456                         goto out;
3457                 flow_id = skb_get_hash(skb) & flow_table->mask;
3458                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3459                                                         rxq_index, flow_id);
3460                 if (rc < 0)
3461                         goto out;
3462                 old_rflow = rflow;
3463                 rflow = &flow_table->flows[flow_id];
3464                 rflow->filter = rc;
3465                 if (old_rflow->filter == rflow->filter)
3466                         old_rflow->filter = RPS_NO_FILTER;
3467         out:
3468 #endif
3469                 rflow->last_qtail =
3470                         per_cpu(softnet_data, next_cpu).input_queue_head;
3471         }
3472
3473         rflow->cpu = next_cpu;
3474         return rflow;
3475 }
3476
3477 /*
3478  * get_rps_cpu is called from netif_receive_skb and returns the target
3479  * CPU from the RPS map of the receiving queue for a given skb.
3480  * rcu_read_lock must be held on entry.
3481  */
3482 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483                        struct rps_dev_flow **rflowp)
3484 {
3485         const struct rps_sock_flow_table *sock_flow_table;
3486         struct netdev_rx_queue *rxqueue = dev->_rx;
3487         struct rps_dev_flow_table *flow_table;
3488         struct rps_map *map;
3489         int cpu = -1;
3490         u32 tcpu;
3491         u32 hash;
3492
3493         if (skb_rx_queue_recorded(skb)) {
3494                 u16 index = skb_get_rx_queue(skb);
3495
3496                 if (unlikely(index >= dev->real_num_rx_queues)) {
3497                         WARN_ONCE(dev->real_num_rx_queues > 1,
3498                                   "%s received packet on queue %u, but number "
3499                                   "of RX queues is %u\n",
3500                                   dev->name, index, dev->real_num_rx_queues);
3501                         goto done;
3502                 }
3503                 rxqueue += index;
3504         }
3505
3506         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3507
3508         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3509         map = rcu_dereference(rxqueue->rps_map);
3510         if (!flow_table && !map)
3511                 goto done;
3512
3513         skb_reset_network_header(skb);
3514         hash = skb_get_hash(skb);
3515         if (!hash)
3516                 goto done;
3517
3518         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3519         if (flow_table && sock_flow_table) {
3520                 struct rps_dev_flow *rflow;
3521                 u32 next_cpu;
3522                 u32 ident;
3523
3524                 /* First check into global flow table if there is a match */
3525                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3526                 if ((ident ^ hash) & ~rps_cpu_mask)
3527                         goto try_rps;
3528
3529                 next_cpu = ident & rps_cpu_mask;
3530
3531                 /* OK, now we know there is a match,
3532                  * we can look at the local (per receive queue) flow table
3533                  */
3534                 rflow = &flow_table->flows[hash & flow_table->mask];
3535                 tcpu = rflow->cpu;
3536
3537                 /*
3538                  * If the desired CPU (where last recvmsg was done) is
3539                  * different from current CPU (one in the rx-queue flow
3540                  * table entry), switch if one of the following holds:
3541                  *   - Current CPU is unset (>= nr_cpu_ids).
3542                  *   - Current CPU is offline.
3543                  *   - The current CPU's queue tail has advanced beyond the
3544                  *     last packet that was enqueued using this table entry.
3545                  *     This guarantees that all previous packets for the flow
3546                  *     have been dequeued, thus preserving in order delivery.
3547                  */
3548                 if (unlikely(tcpu != next_cpu) &&
3549                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3550                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3551                       rflow->last_qtail)) >= 0)) {
3552                         tcpu = next_cpu;
3553                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3554                 }
3555
3556                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3557                         *rflowp = rflow;
3558                         cpu = tcpu;
3559                         goto done;
3560                 }
3561         }
3562
3563 try_rps:
3564
3565         if (map) {
3566                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3567                 if (cpu_online(tcpu)) {
3568                         cpu = tcpu;
3569                         goto done;
3570                 }
3571         }
3572
3573 done:
3574         return cpu;
3575 }
3576
3577 #ifdef CONFIG_RFS_ACCEL
3578
3579 /**
3580  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3581  * @dev: Device on which the filter was set
3582  * @rxq_index: RX queue index
3583  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3584  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3585  *
3586  * Drivers that implement ndo_rx_flow_steer() should periodically call
3587  * this function for each installed filter and remove the filters for
3588  * which it returns %true.
3589  */
3590 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3591                          u32 flow_id, u16 filter_id)
3592 {
3593         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3594         struct rps_dev_flow_table *flow_table;
3595         struct rps_dev_flow *rflow;
3596         bool expire = true;
3597         unsigned int cpu;
3598
3599         rcu_read_lock();
3600         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3601         if (flow_table && flow_id <= flow_table->mask) {
3602                 rflow = &flow_table->flows[flow_id];
3603                 cpu = ACCESS_ONCE(rflow->cpu);
3604                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3605                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3606                            rflow->last_qtail) <
3607                      (int)(10 * flow_table->mask)))
3608                         expire = false;
3609         }
3610         rcu_read_unlock();
3611         return expire;
3612 }
3613 EXPORT_SYMBOL(rps_may_expire_flow);
3614
3615 #endif /* CONFIG_RFS_ACCEL */
3616
3617 /* Called from hardirq (IPI) context */
3618 static void rps_trigger_softirq(void *data)
3619 {
3620         struct softnet_data *sd = data;
3621
3622         ____napi_schedule(sd, &sd->backlog);
3623         sd->received_rps++;
3624 }
3625
3626 #endif /* CONFIG_RPS */
3627
3628 /*
3629  * Check if this softnet_data structure is another cpu one
3630  * If yes, queue it to our IPI list and return 1
3631  * If no, return 0
3632  */
3633 static int rps_ipi_queued(struct softnet_data *sd)
3634 {
3635 #ifdef CONFIG_RPS
3636         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3637
3638         if (sd != mysd) {
3639                 sd->rps_ipi_next = mysd->rps_ipi_list;
3640                 mysd->rps_ipi_list = sd;
3641
3642                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3643                 return 1;
3644         }
3645 #endif /* CONFIG_RPS */
3646         return 0;
3647 }
3648
3649 #ifdef CONFIG_NET_FLOW_LIMIT
3650 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3651 #endif
3652
3653 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3654 {
3655 #ifdef CONFIG_NET_FLOW_LIMIT
3656         struct sd_flow_limit *fl;
3657         struct softnet_data *sd;
3658         unsigned int old_flow, new_flow;
3659
3660         if (qlen < (netdev_max_backlog >> 1))
3661                 return false;
3662
3663         sd = this_cpu_ptr(&softnet_data);
3664
3665         rcu_read_lock();
3666         fl = rcu_dereference(sd->flow_limit);
3667         if (fl) {
3668                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3669                 old_flow = fl->history[fl->history_head];
3670                 fl->history[fl->history_head] = new_flow;
3671
3672                 fl->history_head++;
3673                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3674
3675                 if (likely(fl->buckets[old_flow]))
3676                         fl->buckets[old_flow]--;
3677
3678                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3679                         fl->count++;
3680                         rcu_read_unlock();
3681                         return true;
3682                 }
3683         }
3684         rcu_read_unlock();
3685 #endif
3686         return false;
3687 }
3688
3689 /*
3690  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3691  * queue (may be a remote CPU queue).
3692  */
3693 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3694                               unsigned int *qtail)
3695 {
3696         struct softnet_data *sd;
3697         unsigned long flags;
3698         unsigned int qlen;
3699
3700         sd = &per_cpu(softnet_data, cpu);
3701
3702         local_irq_save(flags);
3703
3704         rps_lock(sd);
3705         if (!netif_running(skb->dev))
3706                 goto drop;
3707         qlen = skb_queue_len(&sd->input_pkt_queue);
3708         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3709                 if (qlen) {
3710 enqueue:
3711                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3712                         input_queue_tail_incr_save(sd, qtail);
3713                         rps_unlock(sd);
3714                         local_irq_restore(flags);
3715                         return NET_RX_SUCCESS;
3716                 }
3717
3718                 /* Schedule NAPI for backlog device
3719                  * We can use non atomic operation since we own the queue lock
3720                  */
3721                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3722                         if (!rps_ipi_queued(sd))
3723                                 ____napi_schedule(sd, &sd->backlog);
3724                 }
3725                 goto enqueue;
3726         }
3727
3728 drop:
3729         sd->dropped++;
3730         rps_unlock(sd);
3731
3732         local_irq_restore(flags);
3733
3734         atomic_long_inc(&skb->dev->rx_dropped);
3735         kfree_skb(skb);
3736         return NET_RX_DROP;
3737 }
3738
3739 static int netif_rx_internal(struct sk_buff *skb)
3740 {
3741         int ret;
3742
3743         net_timestamp_check(netdev_tstamp_prequeue, skb);
3744
3745         trace_netif_rx(skb);
3746 #ifdef CONFIG_RPS
3747         if (static_key_false(&rps_needed)) {
3748                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3749                 int cpu;
3750
3751                 preempt_disable();
3752                 rcu_read_lock();
3753
3754                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3755                 if (cpu < 0)
3756                         cpu = smp_processor_id();
3757
3758                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3759
3760                 rcu_read_unlock();
3761                 preempt_enable();
3762         } else
3763 #endif
3764         {
3765                 unsigned int qtail;
3766                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3767                 put_cpu();
3768         }
3769         return ret;
3770 }
3771
3772 /**
3773  *      netif_rx        -       post buffer to the network code
3774  *      @skb: buffer to post
3775  *
3776  *      This function receives a packet from a device driver and queues it for
3777  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3778  *      may be dropped during processing for congestion control or by the
3779  *      protocol layers.
3780  *
3781  *      return values:
3782  *      NET_RX_SUCCESS  (no congestion)
3783  *      NET_RX_DROP     (packet was dropped)
3784  *
3785  */
3786
3787 int netif_rx(struct sk_buff *skb)
3788 {
3789         trace_netif_rx_entry(skb);
3790
3791         return netif_rx_internal(skb);
3792 }
3793 EXPORT_SYMBOL(netif_rx);
3794
3795 int netif_rx_ni(struct sk_buff *skb)
3796 {
3797         int err;
3798
3799         trace_netif_rx_ni_entry(skb);
3800
3801         preempt_disable();
3802         err = netif_rx_internal(skb);
3803         if (local_softirq_pending())
3804                 do_softirq();
3805         preempt_enable();
3806
3807         return err;
3808 }
3809 EXPORT_SYMBOL(netif_rx_ni);
3810
3811 static void net_tx_action(struct softirq_action *h)
3812 {
3813         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3814
3815         if (sd->completion_queue) {
3816                 struct sk_buff *clist;
3817
3818                 local_irq_disable();
3819                 clist = sd->completion_queue;
3820                 sd->completion_queue = NULL;
3821                 local_irq_enable();
3822
3823                 while (clist) {
3824                         struct sk_buff *skb = clist;
3825                         clist = clist->next;
3826
3827                         WARN_ON(atomic_read(&skb->users));
3828                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3829                                 trace_consume_skb(skb);
3830                         else
3831                                 trace_kfree_skb(skb, net_tx_action);
3832                         __kfree_skb(skb);
3833                 }
3834         }
3835
3836         if (sd->output_queue) {
3837                 struct Qdisc *head;
3838
3839                 local_irq_disable();
3840                 head = sd->output_queue;
3841                 sd->output_queue = NULL;
3842                 sd->output_queue_tailp = &sd->output_queue;
3843                 local_irq_enable();
3844
3845                 while (head) {
3846                         struct Qdisc *q = head;
3847                         spinlock_t *root_lock;
3848
3849                         head = head->next_sched;
3850
3851                         root_lock = qdisc_lock(q);
3852                         if (spin_trylock(root_lock)) {
3853                                 smp_mb__before_atomic();
3854                                 clear_bit(__QDISC_STATE_SCHED,
3855                                           &q->state);
3856                                 qdisc_run(q);
3857                                 spin_unlock(root_lock);
3858                         } else {
3859                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3860                                               &q->state)) {
3861                                         __netif_reschedule(q);
3862                                 } else {
3863                                         smp_mb__before_atomic();
3864                                         clear_bit(__QDISC_STATE_SCHED,
3865                                                   &q->state);
3866                                 }
3867                         }
3868                 }
3869         }
3870 }
3871
3872 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3873     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3874 /* This hook is defined here for ATM LANE */
3875 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3876                              unsigned char *addr) __read_mostly;
3877 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3878 #endif
3879
3880 static inline struct sk_buff *
3881 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3882                    struct net_device *orig_dev)
3883 {
3884 #ifdef CONFIG_NET_CLS_ACT
3885         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3886         struct tcf_result cl_res;
3887
3888         /* If there's at least one ingress present somewhere (so
3889          * we get here via enabled static key), remaining devices
3890          * that are not configured with an ingress qdisc will bail
3891          * out here.
3892          */
3893         if (!cl)
3894                 return skb;
3895         if (*pt_prev) {
3896                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3897                 *pt_prev = NULL;
3898         }
3899
3900         qdisc_skb_cb(skb)->pkt_len = skb->len;
3901         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3902         qdisc_bstats_cpu_update(cl->q, skb);
3903
3904         switch (tc_classify(skb, cl, &cl_res, false)) {
3905         case TC_ACT_OK:
3906         case TC_ACT_RECLASSIFY:
3907                 skb->tc_index = TC_H_MIN(cl_res.classid);
3908                 break;
3909         case TC_ACT_SHOT:
3910                 qdisc_qstats_cpu_drop(cl->q);
3911         case TC_ACT_STOLEN:
3912         case TC_ACT_QUEUED:
3913                 kfree_skb(skb);
3914                 return NULL;
3915         case TC_ACT_REDIRECT:
3916                 /* skb_mac_header check was done by cls/act_bpf, so
3917                  * we can safely push the L2 header back before
3918                  * redirecting to another netdev
3919                  */
3920                 __skb_push(skb, skb->mac_len);
3921                 skb_do_redirect(skb);
3922                 return NULL;
3923         default:
3924                 break;
3925         }
3926 #endif /* CONFIG_NET_CLS_ACT */
3927         return skb;
3928 }
3929
3930 /**
3931  *      netdev_rx_handler_register - register receive handler
3932  *      @dev: device to register a handler for
3933  *      @rx_handler: receive handler to register
3934  *      @rx_handler_data: data pointer that is used by rx handler
3935  *
3936  *      Register a receive handler for a device. This handler will then be
3937  *      called from __netif_receive_skb. A negative errno code is returned
3938  *      on a failure.
3939  *
3940  *      The caller must hold the rtnl_mutex.
3941  *
3942  *      For a general description of rx_handler, see enum rx_handler_result.
3943  */
3944 int netdev_rx_handler_register(struct net_device *dev,
3945                                rx_handler_func_t *rx_handler,
3946                                void *rx_handler_data)
3947 {
3948         ASSERT_RTNL();
3949
3950         if (dev->rx_handler)
3951                 return -EBUSY;
3952
3953         /* Note: rx_handler_data must be set before rx_handler */
3954         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3955         rcu_assign_pointer(dev->rx_handler, rx_handler);
3956
3957         return 0;
3958 }
3959 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3960
3961 /**
3962  *      netdev_rx_handler_unregister - unregister receive handler
3963  *      @dev: device to unregister a handler from
3964  *
3965  *      Unregister a receive handler from a device.
3966  *
3967  *      The caller must hold the rtnl_mutex.
3968  */
3969 void netdev_rx_handler_unregister(struct net_device *dev)
3970 {
3971
3972         ASSERT_RTNL();
3973         RCU_INIT_POINTER(dev->rx_handler, NULL);
3974         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3975          * section has a guarantee to see a non NULL rx_handler_data
3976          * as well.
3977          */
3978         synchronize_net();
3979         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3980 }
3981 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3982
3983 /*
3984  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3985  * the special handling of PFMEMALLOC skbs.
3986  */
3987 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3988 {
3989         switch (skb->protocol) {
3990         case htons(ETH_P_ARP):
3991         case htons(ETH_P_IP):
3992         case htons(ETH_P_IPV6):
3993         case htons(ETH_P_8021Q):
3994         case htons(ETH_P_8021AD):
3995                 return true;
3996         default:
3997                 return false;
3998         }
3999 }
4000
4001 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4002                              int *ret, struct net_device *orig_dev)
4003 {
4004 #ifdef CONFIG_NETFILTER_INGRESS
4005         if (nf_hook_ingress_active(skb)) {
4006                 if (*pt_prev) {
4007                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4008                         *pt_prev = NULL;
4009                 }
4010
4011                 return nf_hook_ingress(skb);
4012         }
4013 #endif /* CONFIG_NETFILTER_INGRESS */
4014         return 0;
4015 }
4016
4017 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4018 {
4019         struct packet_type *ptype, *pt_prev;
4020         rx_handler_func_t *rx_handler;
4021         struct net_device *orig_dev;
4022         bool deliver_exact = false;
4023         int ret = NET_RX_DROP;
4024         __be16 type;
4025
4026         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4027
4028         trace_netif_receive_skb(skb);
4029
4030         orig_dev = skb->dev;
4031
4032         skb_reset_network_header(skb);
4033         if (!skb_transport_header_was_set(skb))
4034                 skb_reset_transport_header(skb);
4035         skb_reset_mac_len(skb);
4036
4037         pt_prev = NULL;
4038
4039 another_round:
4040         skb->skb_iif = skb->dev->ifindex;
4041
4042         __this_cpu_inc(softnet_data.processed);
4043
4044         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4045             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4046                 skb = skb_vlan_untag(skb);
4047                 if (unlikely(!skb))
4048                         goto out;
4049         }
4050
4051 #ifdef CONFIG_NET_CLS_ACT
4052         if (skb->tc_verd & TC_NCLS) {
4053                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4054                 goto ncls;
4055         }
4056 #endif
4057
4058         if (pfmemalloc)
4059                 goto skip_taps;
4060
4061         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4062                 if (pt_prev)
4063                         ret = deliver_skb(skb, pt_prev, orig_dev);
4064                 pt_prev = ptype;
4065         }
4066
4067         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4068                 if (pt_prev)
4069                         ret = deliver_skb(skb, pt_prev, orig_dev);
4070                 pt_prev = ptype;
4071         }
4072
4073 skip_taps:
4074 #ifdef CONFIG_NET_INGRESS
4075         if (static_key_false(&ingress_needed)) {
4076                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4077                 if (!skb)
4078                         goto out;
4079
4080                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4081                         goto out;
4082         }
4083 #endif
4084 #ifdef CONFIG_NET_CLS_ACT
4085         skb->tc_verd = 0;
4086 ncls:
4087 #endif
4088         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4089                 goto drop;
4090
4091         if (skb_vlan_tag_present(skb)) {
4092                 if (pt_prev) {
4093                         ret = deliver_skb(skb, pt_prev, orig_dev);
4094                         pt_prev = NULL;
4095                 }
4096                 if (vlan_do_receive(&skb))
4097                         goto another_round;
4098                 else if (unlikely(!skb))
4099                         goto out;
4100         }
4101
4102         rx_handler = rcu_dereference(skb->dev->rx_handler);
4103         if (rx_handler) {
4104                 if (pt_prev) {
4105                         ret = deliver_skb(skb, pt_prev, orig_dev);
4106                         pt_prev = NULL;
4107                 }
4108                 switch (rx_handler(&skb)) {
4109                 case RX_HANDLER_CONSUMED:
4110                         ret = NET_RX_SUCCESS;
4111                         goto out;
4112                 case RX_HANDLER_ANOTHER:
4113                         goto another_round;
4114                 case RX_HANDLER_EXACT:
4115                         deliver_exact = true;
4116                 case RX_HANDLER_PASS:
4117                         break;
4118                 default:
4119                         BUG();
4120                 }
4121         }
4122
4123         if (unlikely(skb_vlan_tag_present(skb))) {
4124                 if (skb_vlan_tag_get_id(skb))
4125                         skb->pkt_type = PACKET_OTHERHOST;
4126                 /* Note: we might in the future use prio bits
4127                  * and set skb->priority like in vlan_do_receive()
4128                  * For the time being, just ignore Priority Code Point
4129                  */
4130                 skb->vlan_tci = 0;
4131         }
4132
4133         type = skb->protocol;
4134
4135         /* deliver only exact match when indicated */
4136         if (likely(!deliver_exact)) {
4137                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4138                                        &ptype_base[ntohs(type) &
4139                                                    PTYPE_HASH_MASK]);
4140         }
4141
4142         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4143                                &orig_dev->ptype_specific);
4144
4145         if (unlikely(skb->dev != orig_dev)) {
4146                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4147                                        &skb->dev->ptype_specific);
4148         }
4149
4150         if (pt_prev) {
4151                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4152                         goto drop;
4153                 else
4154                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4155         } else {
4156 drop:
4157                 atomic_long_inc(&skb->dev->rx_dropped);
4158                 kfree_skb(skb);
4159                 /* Jamal, now you will not able to escape explaining
4160                  * me how you were going to use this. :-)
4161                  */
4162                 ret = NET_RX_DROP;
4163         }
4164
4165 out:
4166         return ret;
4167 }
4168
4169 static int __netif_receive_skb(struct sk_buff *skb)
4170 {
4171         int ret;
4172
4173         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4174                 unsigned long pflags = current->flags;
4175
4176                 /*
4177                  * PFMEMALLOC skbs are special, they should
4178                  * - be delivered to SOCK_MEMALLOC sockets only
4179                  * - stay away from userspace
4180                  * - have bounded memory usage
4181                  *
4182                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4183                  * context down to all allocation sites.
4184                  */
4185                 current->flags |= PF_MEMALLOC;
4186                 ret = __netif_receive_skb_core(skb, true);
4187                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4188         } else
4189                 ret = __netif_receive_skb_core(skb, false);
4190
4191         return ret;
4192 }
4193
4194 static int netif_receive_skb_internal(struct sk_buff *skb)
4195 {
4196         int ret;
4197
4198         net_timestamp_check(netdev_tstamp_prequeue, skb);
4199
4200         if (skb_defer_rx_timestamp(skb))
4201                 return NET_RX_SUCCESS;
4202
4203         rcu_read_lock();
4204
4205 #ifdef CONFIG_RPS
4206         if (static_key_false(&rps_needed)) {
4207                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4208                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4209
4210                 if (cpu >= 0) {
4211                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4212                         rcu_read_unlock();
4213                         return ret;
4214                 }
4215         }
4216 #endif
4217         ret = __netif_receive_skb(skb);
4218         rcu_read_unlock();
4219         return ret;
4220 }
4221
4222 /**
4223  *      netif_receive_skb - process receive buffer from network
4224  *      @skb: buffer to process
4225  *
4226  *      netif_receive_skb() is the main receive data processing function.
4227  *      It always succeeds. The buffer may be dropped during processing
4228  *      for congestion control or by the protocol layers.
4229  *
4230  *      This function may only be called from softirq context and interrupts
4231  *      should be enabled.
4232  *
4233  *      Return values (usually ignored):
4234  *      NET_RX_SUCCESS: no congestion
4235  *      NET_RX_DROP: packet was dropped
4236  */
4237 int netif_receive_skb(struct sk_buff *skb)
4238 {
4239         trace_netif_receive_skb_entry(skb);
4240
4241         return netif_receive_skb_internal(skb);
4242 }
4243 EXPORT_SYMBOL(netif_receive_skb);
4244
4245 /* Network device is going away, flush any packets still pending
4246  * Called with irqs disabled.
4247  */
4248 static void flush_backlog(void *arg)
4249 {
4250         struct net_device *dev = arg;
4251         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4252         struct sk_buff *skb, *tmp;
4253
4254         rps_lock(sd);
4255         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4256                 if (skb->dev == dev) {
4257                         __skb_unlink(skb, &sd->input_pkt_queue);
4258                         kfree_skb(skb);
4259                         input_queue_head_incr(sd);
4260                 }
4261         }
4262         rps_unlock(sd);
4263
4264         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4265                 if (skb->dev == dev) {
4266                         __skb_unlink(skb, &sd->process_queue);
4267                         kfree_skb(skb);
4268                         input_queue_head_incr(sd);
4269                 }
4270         }
4271 }
4272
4273 static int napi_gro_complete(struct sk_buff *skb)
4274 {
4275         struct packet_offload *ptype;
4276         __be16 type = skb->protocol;
4277         struct list_head *head = &offload_base;
4278         int err = -ENOENT;
4279
4280         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4281
4282         if (NAPI_GRO_CB(skb)->count == 1) {
4283                 skb_shinfo(skb)->gso_size = 0;
4284                 goto out;
4285         }
4286
4287         rcu_read_lock();
4288         list_for_each_entry_rcu(ptype, head, list) {
4289                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4290                         continue;
4291
4292                 err = ptype->callbacks.gro_complete(skb, 0);
4293                 break;
4294         }
4295         rcu_read_unlock();
4296
4297         if (err) {
4298                 WARN_ON(&ptype->list == head);
4299                 kfree_skb(skb);
4300                 return NET_RX_SUCCESS;
4301         }
4302
4303 out:
4304         return netif_receive_skb_internal(skb);
4305 }
4306
4307 /* napi->gro_list contains packets ordered by age.
4308  * youngest packets at the head of it.
4309  * Complete skbs in reverse order to reduce latencies.
4310  */
4311 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4312 {
4313         struct sk_buff *skb, *prev = NULL;
4314
4315         /* scan list and build reverse chain */
4316         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4317                 skb->prev = prev;
4318                 prev = skb;
4319         }
4320
4321         for (skb = prev; skb; skb = prev) {
4322                 skb->next = NULL;
4323
4324                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4325                         return;
4326
4327                 prev = skb->prev;
4328                 napi_gro_complete(skb);
4329                 napi->gro_count--;
4330         }
4331
4332         napi->gro_list = NULL;
4333 }
4334 EXPORT_SYMBOL(napi_gro_flush);
4335
4336 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4337 {
4338         struct sk_buff *p;
4339         unsigned int maclen = skb->dev->hard_header_len;
4340         u32 hash = skb_get_hash_raw(skb);
4341
4342         for (p = napi->gro_list; p; p = p->next) {
4343                 unsigned long diffs;
4344
4345                 NAPI_GRO_CB(p)->flush = 0;
4346
4347                 if (hash != skb_get_hash_raw(p)) {
4348                         NAPI_GRO_CB(p)->same_flow = 0;
4349                         continue;
4350                 }
4351
4352                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4353                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4354                 if (maclen == ETH_HLEN)
4355                         diffs |= compare_ether_header(skb_mac_header(p),
4356                                                       skb_mac_header(skb));
4357                 else if (!diffs)
4358                         diffs = memcmp(skb_mac_header(p),
4359                                        skb_mac_header(skb),
4360                                        maclen);
4361                 NAPI_GRO_CB(p)->same_flow = !diffs;
4362         }
4363 }
4364
4365 static void skb_gro_reset_offset(struct sk_buff *skb)
4366 {
4367         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4368         const skb_frag_t *frag0 = &pinfo->frags[0];
4369
4370         NAPI_GRO_CB(skb)->data_offset = 0;
4371         NAPI_GRO_CB(skb)->frag0 = NULL;
4372         NAPI_GRO_CB(skb)->frag0_len = 0;
4373
4374         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4375             pinfo->nr_frags &&
4376             !PageHighMem(skb_frag_page(frag0))) {
4377                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4378                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4379         }
4380 }
4381
4382 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4383 {
4384         struct skb_shared_info *pinfo = skb_shinfo(skb);
4385
4386         BUG_ON(skb->end - skb->tail < grow);
4387
4388         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4389
4390         skb->data_len -= grow;
4391         skb->tail += grow;
4392
4393         pinfo->frags[0].page_offset += grow;
4394         skb_frag_size_sub(&pinfo->frags[0], grow);
4395
4396         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4397                 skb_frag_unref(skb, 0);
4398                 memmove(pinfo->frags, pinfo->frags + 1,
4399                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4400         }
4401 }
4402
4403 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4404 {
4405         struct sk_buff **pp = NULL;
4406         struct packet_offload *ptype;
4407         __be16 type = skb->protocol;
4408         struct list_head *head = &offload_base;
4409         int same_flow;
4410         enum gro_result ret;
4411         int grow;
4412
4413         if (!(skb->dev->features & NETIF_F_GRO))
4414                 goto normal;
4415
4416         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4417                 goto normal;
4418
4419         gro_list_prepare(napi, skb);
4420
4421         rcu_read_lock();
4422         list_for_each_entry_rcu(ptype, head, list) {
4423                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4424                         continue;
4425
4426                 skb_set_network_header(skb, skb_gro_offset(skb));
4427                 skb_reset_mac_len(skb);
4428                 NAPI_GRO_CB(skb)->same_flow = 0;
4429                 NAPI_GRO_CB(skb)->flush = 0;
4430                 NAPI_GRO_CB(skb)->free = 0;
4431                 NAPI_GRO_CB(skb)->udp_mark = 0;
4432                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4433
4434                 /* Setup for GRO checksum validation */
4435                 switch (skb->ip_summed) {
4436                 case CHECKSUM_COMPLETE:
4437                         NAPI_GRO_CB(skb)->csum = skb->csum;
4438                         NAPI_GRO_CB(skb)->csum_valid = 1;
4439                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4440                         break;
4441                 case CHECKSUM_UNNECESSARY:
4442                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4443                         NAPI_GRO_CB(skb)->csum_valid = 0;
4444                         break;
4445                 default:
4446                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4447                         NAPI_GRO_CB(skb)->csum_valid = 0;
4448                 }
4449
4450                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4451                 break;
4452         }
4453         rcu_read_unlock();
4454
4455         if (&ptype->list == head)
4456                 goto normal;
4457
4458         same_flow = NAPI_GRO_CB(skb)->same_flow;
4459         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4460
4461         if (pp) {
4462                 struct sk_buff *nskb = *pp;
4463
4464                 *pp = nskb->next;
4465                 nskb->next = NULL;
4466                 napi_gro_complete(nskb);
4467                 napi->gro_count--;
4468         }
4469
4470         if (same_flow)
4471                 goto ok;
4472
4473         if (NAPI_GRO_CB(skb)->flush)
4474                 goto normal;
4475
4476         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4477                 struct sk_buff *nskb = napi->gro_list;
4478
4479                 /* locate the end of the list to select the 'oldest' flow */
4480                 while (nskb->next) {
4481                         pp = &nskb->next;
4482                         nskb = *pp;
4483                 }
4484                 *pp = NULL;
4485                 nskb->next = NULL;
4486                 napi_gro_complete(nskb);
4487         } else {
4488                 napi->gro_count++;
4489         }
4490         NAPI_GRO_CB(skb)->count = 1;
4491         NAPI_GRO_CB(skb)->age = jiffies;
4492         NAPI_GRO_CB(skb)->last = skb;
4493         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4494         skb->next = napi->gro_list;
4495         napi->gro_list = skb;
4496         ret = GRO_HELD;
4497
4498 pull:
4499         grow = skb_gro_offset(skb) - skb_headlen(skb);
4500         if (grow > 0)
4501                 gro_pull_from_frag0(skb, grow);
4502 ok:
4503         return ret;
4504
4505 normal:
4506         ret = GRO_NORMAL;
4507         goto pull;
4508 }
4509
4510 struct packet_offload *gro_find_receive_by_type(__be16 type)
4511 {
4512         struct list_head *offload_head = &offload_base;
4513         struct packet_offload *ptype;
4514
4515         list_for_each_entry_rcu(ptype, offload_head, list) {
4516                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4517                         continue;
4518                 return ptype;
4519         }
4520         return NULL;
4521 }
4522 EXPORT_SYMBOL(gro_find_receive_by_type);
4523
4524 struct packet_offload *gro_find_complete_by_type(__be16 type)
4525 {
4526         struct list_head *offload_head = &offload_base;
4527         struct packet_offload *ptype;
4528
4529         list_for_each_entry_rcu(ptype, offload_head, list) {
4530                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4531                         continue;
4532                 return ptype;
4533         }
4534         return NULL;
4535 }
4536 EXPORT_SYMBOL(gro_find_complete_by_type);
4537
4538 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4539 {
4540         switch (ret) {
4541         case GRO_NORMAL:
4542                 if (netif_receive_skb_internal(skb))
4543                         ret = GRO_DROP;
4544                 break;
4545
4546         case GRO_DROP:
4547                 kfree_skb(skb);
4548                 break;
4549
4550         case GRO_MERGED_FREE:
4551                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4552                         kmem_cache_free(skbuff_head_cache, skb);
4553                 else
4554                         __kfree_skb(skb);
4555                 break;
4556
4557         case GRO_HELD:
4558         case GRO_MERGED:
4559                 break;
4560         }
4561
4562         return ret;
4563 }
4564
4565 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4566 {
4567         skb_mark_napi_id(skb, napi);
4568         trace_napi_gro_receive_entry(skb);
4569
4570         skb_gro_reset_offset(skb);
4571
4572         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4573 }
4574 EXPORT_SYMBOL(napi_gro_receive);
4575
4576 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4577 {
4578         if (unlikely(skb->pfmemalloc)) {
4579                 consume_skb(skb);
4580                 return;
4581         }
4582         __skb_pull(skb, skb_headlen(skb));
4583         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4584         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4585         skb->vlan_tci = 0;
4586         skb->dev = napi->dev;
4587         skb->skb_iif = 0;
4588         skb->encapsulation = 0;
4589         skb_shinfo(skb)->gso_type = 0;
4590         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4591
4592         napi->skb = skb;
4593 }
4594
4595 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4596 {
4597         struct sk_buff *skb = napi->skb;
4598
4599         if (!skb) {
4600                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4601                 if (skb) {
4602                         napi->skb = skb;
4603                         skb_mark_napi_id(skb, napi);
4604                 }
4605         }
4606         return skb;
4607 }
4608 EXPORT_SYMBOL(napi_get_frags);
4609
4610 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4611                                       struct sk_buff *skb,
4612                                       gro_result_t ret)
4613 {
4614         switch (ret) {
4615         case GRO_NORMAL:
4616         case GRO_HELD:
4617                 __skb_push(skb, ETH_HLEN);
4618                 skb->protocol = eth_type_trans(skb, skb->dev);
4619                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4620                         ret = GRO_DROP;
4621                 break;
4622
4623         case GRO_DROP:
4624         case GRO_MERGED_FREE:
4625                 napi_reuse_skb(napi, skb);
4626                 break;
4627
4628         case GRO_MERGED:
4629                 break;
4630         }
4631
4632         return ret;
4633 }
4634
4635 /* Upper GRO stack assumes network header starts at gro_offset=0
4636  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4637  * We copy ethernet header into skb->data to have a common layout.
4638  */
4639 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4640 {
4641         struct sk_buff *skb = napi->skb;
4642         const struct ethhdr *eth;
4643         unsigned int hlen = sizeof(*eth);
4644
4645         napi->skb = NULL;
4646
4647         skb_reset_mac_header(skb);
4648         skb_gro_reset_offset(skb);
4649
4650         eth = skb_gro_header_fast(skb, 0);
4651         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4652                 eth = skb_gro_header_slow(skb, hlen, 0);
4653                 if (unlikely(!eth)) {
4654                         napi_reuse_skb(napi, skb);
4655                         return NULL;
4656                 }
4657         } else {
4658                 gro_pull_from_frag0(skb, hlen);
4659                 NAPI_GRO_CB(skb)->frag0 += hlen;
4660                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4661         }
4662         __skb_pull(skb, hlen);
4663
4664         /*
4665          * This works because the only protocols we care about don't require
4666          * special handling.
4667          * We'll fix it up properly in napi_frags_finish()
4668          */
4669         skb->protocol = eth->h_proto;
4670
4671         return skb;
4672 }
4673
4674 gro_result_t napi_gro_frags(struct napi_struct *napi)
4675 {
4676         struct sk_buff *skb = napi_frags_skb(napi);
4677
4678         if (!skb)
4679                 return GRO_DROP;
4680
4681         trace_napi_gro_frags_entry(skb);
4682
4683         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4684 }
4685 EXPORT_SYMBOL(napi_gro_frags);
4686
4687 /* Compute the checksum from gro_offset and return the folded value
4688  * after adding in any pseudo checksum.
4689  */
4690 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4691 {
4692         __wsum wsum;
4693         __sum16 sum;
4694
4695         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4696
4697         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4698         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4699         if (likely(!sum)) {
4700                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4701                     !skb->csum_complete_sw)
4702                         netdev_rx_csum_fault(skb->dev);
4703         }
4704
4705         NAPI_GRO_CB(skb)->csum = wsum;
4706         NAPI_GRO_CB(skb)->csum_valid = 1;
4707
4708         return sum;
4709 }
4710 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4711
4712 /*
4713  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4714  * Note: called with local irq disabled, but exits with local irq enabled.
4715  */
4716 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4717 {
4718 #ifdef CONFIG_RPS
4719         struct softnet_data *remsd = sd->rps_ipi_list;
4720
4721         if (remsd) {
4722                 sd->rps_ipi_list = NULL;
4723
4724                 local_irq_enable();
4725
4726                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4727                 while (remsd) {
4728                         struct softnet_data *next = remsd->rps_ipi_next;
4729
4730                         if (cpu_online(remsd->cpu))
4731                                 smp_call_function_single_async(remsd->cpu,
4732                                                            &remsd->csd);
4733                         remsd = next;
4734                 }
4735         } else
4736 #endif
4737                 local_irq_enable();
4738 }
4739
4740 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4741 {
4742 #ifdef CONFIG_RPS
4743         return sd->rps_ipi_list != NULL;
4744 #else
4745         return false;
4746 #endif
4747 }
4748
4749 static int process_backlog(struct napi_struct *napi, int quota)
4750 {
4751         int work = 0;
4752         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4753
4754         /* Check if we have pending ipi, its better to send them now,
4755          * not waiting net_rx_action() end.
4756          */
4757         if (sd_has_rps_ipi_waiting(sd)) {
4758                 local_irq_disable();
4759                 net_rps_action_and_irq_enable(sd);
4760         }
4761
4762         napi->weight = weight_p;
4763         local_irq_disable();
4764         while (1) {
4765                 struct sk_buff *skb;
4766
4767                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4768                         rcu_read_lock();
4769                         local_irq_enable();
4770                         __netif_receive_skb(skb);
4771                         rcu_read_unlock();
4772                         local_irq_disable();
4773                         input_queue_head_incr(sd);
4774                         if (++work >= quota) {
4775                                 local_irq_enable();
4776                                 return work;
4777                         }
4778                 }
4779
4780                 rps_lock(sd);
4781                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4782                         /*
4783                          * Inline a custom version of __napi_complete().
4784                          * only current cpu owns and manipulates this napi,
4785                          * and NAPI_STATE_SCHED is the only possible flag set
4786                          * on backlog.
4787                          * We can use a plain write instead of clear_bit(),
4788                          * and we dont need an smp_mb() memory barrier.
4789                          */
4790                         napi->state = 0;
4791                         rps_unlock(sd);
4792
4793                         break;
4794                 }
4795
4796                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4797                                            &sd->process_queue);
4798                 rps_unlock(sd);
4799         }
4800         local_irq_enable();
4801
4802         return work;
4803 }
4804
4805 /**
4806  * __napi_schedule - schedule for receive
4807  * @n: entry to schedule
4808  *
4809  * The entry's receive function will be scheduled to run.
4810  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4811  */
4812 void __napi_schedule(struct napi_struct *n)
4813 {
4814         unsigned long flags;
4815
4816         local_irq_save(flags);
4817         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4818         local_irq_restore(flags);
4819 }
4820 EXPORT_SYMBOL(__napi_schedule);
4821
4822 /**
4823  * __napi_schedule_irqoff - schedule for receive
4824  * @n: entry to schedule
4825  *
4826  * Variant of __napi_schedule() assuming hard irqs are masked
4827  */
4828 void __napi_schedule_irqoff(struct napi_struct *n)
4829 {
4830         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4831 }
4832 EXPORT_SYMBOL(__napi_schedule_irqoff);
4833
4834 void __napi_complete(struct napi_struct *n)
4835 {
4836         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4837
4838         list_del_init(&n->poll_list);
4839         smp_mb__before_atomic();
4840         clear_bit(NAPI_STATE_SCHED, &n->state);
4841 }
4842 EXPORT_SYMBOL(__napi_complete);
4843
4844 void napi_complete_done(struct napi_struct *n, int work_done)
4845 {
4846         unsigned long flags;
4847
4848         /*
4849          * don't let napi dequeue from the cpu poll list
4850          * just in case its running on a different cpu
4851          */
4852         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4853                 return;
4854
4855         if (n->gro_list) {
4856                 unsigned long timeout = 0;
4857
4858                 if (work_done)
4859                         timeout = n->dev->gro_flush_timeout;
4860
4861                 if (timeout)
4862                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4863                                       HRTIMER_MODE_REL_PINNED);
4864                 else
4865                         napi_gro_flush(n, false);
4866         }
4867         if (likely(list_empty(&n->poll_list))) {
4868                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4869         } else {
4870                 /* If n->poll_list is not empty, we need to mask irqs */
4871                 local_irq_save(flags);
4872                 __napi_complete(n);
4873                 local_irq_restore(flags);
4874         }
4875 }
4876 EXPORT_SYMBOL(napi_complete_done);
4877
4878 /* must be called under rcu_read_lock(), as we dont take a reference */
4879 static struct napi_struct *napi_by_id(unsigned int napi_id)
4880 {
4881         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4882         struct napi_struct *napi;
4883
4884         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4885                 if (napi->napi_id == napi_id)
4886                         return napi;
4887
4888         return NULL;
4889 }
4890
4891 #if defined(CONFIG_NET_RX_BUSY_POLL)
4892 #define BUSY_POLL_BUDGET 8
4893 bool sk_busy_loop(struct sock *sk, int nonblock)
4894 {
4895         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4896         int (*busy_poll)(struct napi_struct *dev);
4897         struct napi_struct *napi;
4898         int rc = false;
4899
4900         rcu_read_lock();
4901
4902         napi = napi_by_id(sk->sk_napi_id);
4903         if (!napi)
4904                 goto out;
4905
4906         /* Note: ndo_busy_poll method is optional in linux-4.5 */
4907         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4908
4909         do {
4910                 rc = 0;
4911                 local_bh_disable();
4912                 if (busy_poll) {
4913                         rc = busy_poll(napi);
4914                 } else if (napi_schedule_prep(napi)) {
4915                         void *have = netpoll_poll_lock(napi);
4916
4917                         if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4918                                 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4919                                 trace_napi_poll(napi);
4920                                 if (rc == BUSY_POLL_BUDGET) {
4921                                         napi_complete_done(napi, rc);
4922                                         napi_schedule(napi);
4923                                 }
4924                         }
4925                         netpoll_poll_unlock(have);
4926                 }
4927                 if (rc > 0)
4928                         NET_ADD_STATS_BH(sock_net(sk),
4929                                          LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4930                 local_bh_enable();
4931
4932                 if (rc == LL_FLUSH_FAILED)
4933                         break; /* permanent failure */
4934
4935                 cpu_relax();
4936         } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4937                  !need_resched() && !busy_loop_timeout(end_time));
4938
4939         rc = !skb_queue_empty(&sk->sk_receive_queue);
4940 out:
4941         rcu_read_unlock();
4942         return rc;
4943 }
4944 EXPORT_SYMBOL(sk_busy_loop);
4945
4946 #endif /* CONFIG_NET_RX_BUSY_POLL */
4947
4948 void napi_hash_add(struct napi_struct *napi)
4949 {
4950         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4951             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4952                 return;
4953
4954         spin_lock(&napi_hash_lock);
4955
4956         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4957         do {
4958                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4959                         napi_gen_id = NR_CPUS + 1;
4960         } while (napi_by_id(napi_gen_id));
4961         napi->napi_id = napi_gen_id;
4962
4963         hlist_add_head_rcu(&napi->napi_hash_node,
4964                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4965
4966         spin_unlock(&napi_hash_lock);
4967 }
4968 EXPORT_SYMBOL_GPL(napi_hash_add);
4969
4970 /* Warning : caller is responsible to make sure rcu grace period
4971  * is respected before freeing memory containing @napi
4972  */
4973 bool napi_hash_del(struct napi_struct *napi)
4974 {
4975         bool rcu_sync_needed = false;
4976
4977         spin_lock(&napi_hash_lock);
4978
4979         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4980                 rcu_sync_needed = true;
4981                 hlist_del_rcu(&napi->napi_hash_node);
4982         }
4983         spin_unlock(&napi_hash_lock);
4984         return rcu_sync_needed;
4985 }
4986 EXPORT_SYMBOL_GPL(napi_hash_del);
4987
4988 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4989 {
4990         struct napi_struct *napi;
4991
4992         napi = container_of(timer, struct napi_struct, timer);
4993         if (napi->gro_list)
4994                 napi_schedule(napi);
4995
4996         return HRTIMER_NORESTART;
4997 }
4998
4999 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5000                     int (*poll)(struct napi_struct *, int), int weight)
5001 {
5002         INIT_LIST_HEAD(&napi->poll_list);
5003         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5004         napi->timer.function = napi_watchdog;
5005         napi->gro_count = 0;
5006         napi->gro_list = NULL;
5007         napi->skb = NULL;
5008         napi->poll = poll;
5009         if (weight > NAPI_POLL_WEIGHT)
5010                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5011                             weight, dev->name);
5012         napi->weight = weight;
5013         list_add(&napi->dev_list, &dev->napi_list);
5014         napi->dev = dev;
5015 #ifdef CONFIG_NETPOLL
5016         spin_lock_init(&napi->poll_lock);
5017         napi->poll_owner = -1;
5018 #endif
5019         set_bit(NAPI_STATE_SCHED, &napi->state);
5020         napi_hash_add(napi);
5021 }
5022 EXPORT_SYMBOL(netif_napi_add);
5023
5024 void napi_disable(struct napi_struct *n)
5025 {
5026         might_sleep();
5027         set_bit(NAPI_STATE_DISABLE, &n->state);
5028
5029         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5030                 msleep(1);
5031         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5032                 msleep(1);
5033
5034         hrtimer_cancel(&n->timer);
5035
5036         clear_bit(NAPI_STATE_DISABLE, &n->state);
5037 }
5038 EXPORT_SYMBOL(napi_disable);
5039
5040 /* Must be called in process context */
5041 void netif_napi_del(struct napi_struct *napi)
5042 {
5043         might_sleep();
5044         if (napi_hash_del(napi))
5045                 synchronize_net();
5046         list_del_init(&napi->dev_list);
5047         napi_free_frags(napi);
5048
5049         kfree_skb_list(napi->gro_list);
5050         napi->gro_list = NULL;
5051         napi->gro_count = 0;
5052 }
5053 EXPORT_SYMBOL(netif_napi_del);
5054
5055 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5056 {
5057         void *have;
5058         int work, weight;
5059
5060         list_del_init(&n->poll_list);
5061
5062         have = netpoll_poll_lock(n);
5063
5064         weight = n->weight;
5065
5066         /* This NAPI_STATE_SCHED test is for avoiding a race
5067          * with netpoll's poll_napi().  Only the entity which
5068          * obtains the lock and sees NAPI_STATE_SCHED set will
5069          * actually make the ->poll() call.  Therefore we avoid
5070          * accidentally calling ->poll() when NAPI is not scheduled.
5071          */
5072         work = 0;
5073         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5074                 work = n->poll(n, weight);
5075                 trace_napi_poll(n);
5076         }
5077
5078         WARN_ON_ONCE(work > weight);
5079
5080         if (likely(work < weight))
5081                 goto out_unlock;
5082
5083         /* Drivers must not modify the NAPI state if they
5084          * consume the entire weight.  In such cases this code
5085          * still "owns" the NAPI instance and therefore can
5086          * move the instance around on the list at-will.
5087          */
5088         if (unlikely(napi_disable_pending(n))) {
5089                 napi_complete(n);
5090                 goto out_unlock;
5091         }
5092
5093         if (n->gro_list) {
5094                 /* flush too old packets
5095                  * If HZ < 1000, flush all packets.
5096                  */
5097                 napi_gro_flush(n, HZ >= 1000);
5098         }
5099
5100         /* Some drivers may have called napi_schedule
5101          * prior to exhausting their budget.
5102          */
5103         if (unlikely(!list_empty(&n->poll_list))) {
5104                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5105                              n->dev ? n->dev->name : "backlog");
5106                 goto out_unlock;
5107         }
5108
5109         list_add_tail(&n->poll_list, repoll);
5110
5111 out_unlock:
5112         netpoll_poll_unlock(have);
5113
5114         return work;
5115 }
5116
5117 static void net_rx_action(struct softirq_action *h)
5118 {
5119         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5120         unsigned long time_limit = jiffies + 2;
5121         int budget = netdev_budget;
5122         LIST_HEAD(list);
5123         LIST_HEAD(repoll);
5124
5125         local_irq_disable();
5126         list_splice_init(&sd->poll_list, &list);
5127         local_irq_enable();
5128
5129         for (;;) {
5130                 struct napi_struct *n;
5131
5132                 if (list_empty(&list)) {
5133                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5134                                 return;
5135                         break;
5136                 }
5137
5138                 n = list_first_entry(&list, struct napi_struct, poll_list);
5139                 budget -= napi_poll(n, &repoll);
5140
5141                 /* If softirq window is exhausted then punt.
5142                  * Allow this to run for 2 jiffies since which will allow
5143                  * an average latency of 1.5/HZ.
5144                  */
5145                 if (unlikely(budget <= 0 ||
5146                              time_after_eq(jiffies, time_limit))) {
5147                         sd->time_squeeze++;
5148                         break;
5149                 }
5150         }
5151
5152         local_irq_disable();
5153
5154         list_splice_tail_init(&sd->poll_list, &list);
5155         list_splice_tail(&repoll, &list);
5156         list_splice(&list, &sd->poll_list);
5157         if (!list_empty(&sd->poll_list))
5158                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5159
5160         net_rps_action_and_irq_enable(sd);
5161 }
5162
5163 struct netdev_adjacent {
5164         struct net_device *dev;
5165
5166         /* upper master flag, there can only be one master device per list */
5167         bool master;
5168
5169         /* counter for the number of times this device was added to us */
5170         u16 ref_nr;
5171
5172         /* private field for the users */
5173         void *private;
5174
5175         struct list_head list;
5176         struct rcu_head rcu;
5177 };
5178
5179 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5180                                                  struct list_head *adj_list)
5181 {
5182         struct netdev_adjacent *adj;
5183
5184         list_for_each_entry(adj, adj_list, list) {
5185                 if (adj->dev == adj_dev)
5186                         return adj;
5187         }
5188         return NULL;
5189 }
5190
5191 /**
5192  * netdev_has_upper_dev - Check if device is linked to an upper device
5193  * @dev: device
5194  * @upper_dev: upper device to check
5195  *
5196  * Find out if a device is linked to specified upper device and return true
5197  * in case it is. Note that this checks only immediate upper device,
5198  * not through a complete stack of devices. The caller must hold the RTNL lock.
5199  */
5200 bool netdev_has_upper_dev(struct net_device *dev,
5201                           struct net_device *upper_dev)
5202 {
5203         ASSERT_RTNL();
5204
5205         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5206 }
5207 EXPORT_SYMBOL(netdev_has_upper_dev);
5208
5209 /**
5210  * netdev_has_any_upper_dev - Check if device is linked to some device
5211  * @dev: device
5212  *
5213  * Find out if a device is linked to an upper device and return true in case
5214  * it is. The caller must hold the RTNL lock.
5215  */
5216 static bool netdev_has_any_upper_dev(struct net_device *dev)
5217 {
5218         ASSERT_RTNL();
5219
5220         return !list_empty(&dev->all_adj_list.upper);
5221 }
5222
5223 /**
5224  * netdev_master_upper_dev_get - Get master upper device
5225  * @dev: device
5226  *
5227  * Find a master upper device and return pointer to it or NULL in case
5228  * it's not there. The caller must hold the RTNL lock.
5229  */
5230 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5231 {
5232         struct netdev_adjacent *upper;
5233
5234         ASSERT_RTNL();
5235
5236         if (list_empty(&dev->adj_list.upper))
5237                 return NULL;
5238
5239         upper = list_first_entry(&dev->adj_list.upper,
5240                                  struct netdev_adjacent, list);
5241         if (likely(upper->master))
5242                 return upper->dev;
5243         return NULL;
5244 }
5245 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5246
5247 void *netdev_adjacent_get_private(struct list_head *adj_list)
5248 {
5249         struct netdev_adjacent *adj;
5250
5251         adj = list_entry(adj_list, struct netdev_adjacent, list);
5252
5253         return adj->private;
5254 }
5255 EXPORT_SYMBOL(netdev_adjacent_get_private);
5256
5257 /**
5258  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5259  * @dev: device
5260  * @iter: list_head ** of the current position
5261  *
5262  * Gets the next device from the dev's upper list, starting from iter
5263  * position. The caller must hold RCU read lock.
5264  */
5265 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5266                                                  struct list_head **iter)
5267 {
5268         struct netdev_adjacent *upper;
5269
5270         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5271
5272         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5273
5274         if (&upper->list == &dev->adj_list.upper)
5275                 return NULL;
5276
5277         *iter = &upper->list;
5278
5279         return upper->dev;
5280 }
5281 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5282
5283 /**
5284  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5285  * @dev: device
5286  * @iter: list_head ** of the current position
5287  *
5288  * Gets the next device from the dev's upper list, starting from iter
5289  * position. The caller must hold RCU read lock.
5290  */
5291 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5292                                                      struct list_head **iter)
5293 {
5294         struct netdev_adjacent *upper;
5295
5296         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5297
5298         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5299
5300         if (&upper->list == &dev->all_adj_list.upper)
5301                 return NULL;
5302
5303         *iter = &upper->list;
5304
5305         return upper->dev;
5306 }
5307 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5308
5309 /**
5310  * netdev_lower_get_next_private - Get the next ->private from the
5311  *                                 lower neighbour list
5312  * @dev: device
5313  * @iter: list_head ** of the current position
5314  *
5315  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5316  * list, starting from iter position. The caller must hold either hold the
5317  * RTNL lock or its own locking that guarantees that the neighbour lower
5318  * list will remain unchanged.
5319  */
5320 void *netdev_lower_get_next_private(struct net_device *dev,
5321                                     struct list_head **iter)
5322 {
5323         struct netdev_adjacent *lower;
5324
5325         lower = list_entry(*iter, struct netdev_adjacent, list);
5326
5327         if (&lower->list == &dev->adj_list.lower)
5328                 return NULL;
5329
5330         *iter = lower->list.next;
5331
5332         return lower->private;
5333 }
5334 EXPORT_SYMBOL(netdev_lower_get_next_private);
5335
5336 /**
5337  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5338  *                                     lower neighbour list, RCU
5339  *                                     variant
5340  * @dev: device
5341  * @iter: list_head ** of the current position
5342  *
5343  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5344  * list, starting from iter position. The caller must hold RCU read lock.
5345  */
5346 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5347                                         struct list_head **iter)
5348 {
5349         struct netdev_adjacent *lower;
5350
5351         WARN_ON_ONCE(!rcu_read_lock_held());
5352
5353         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5354
5355         if (&lower->list == &dev->adj_list.lower)
5356                 return NULL;
5357
5358         *iter = &lower->list;
5359
5360         return lower->private;
5361 }
5362 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5363
5364 /**
5365  * netdev_lower_get_next - Get the next device from the lower neighbour
5366  *                         list
5367  * @dev: device
5368  * @iter: list_head ** of the current position
5369  *
5370  * Gets the next netdev_adjacent from the dev's lower neighbour
5371  * list, starting from iter position. The caller must hold RTNL lock or
5372  * its own locking that guarantees that the neighbour lower
5373  * list will remain unchanged.
5374  */
5375 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5376 {
5377         struct netdev_adjacent *lower;
5378
5379         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5380
5381         if (&lower->list == &dev->adj_list.lower)
5382                 return NULL;
5383
5384         *iter = &lower->list;
5385
5386         return lower->dev;
5387 }
5388 EXPORT_SYMBOL(netdev_lower_get_next);
5389
5390 /**
5391  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5392  *                                     lower neighbour list, RCU
5393  *                                     variant
5394  * @dev: device
5395  *
5396  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5397  * list. The caller must hold RCU read lock.
5398  */
5399 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5400 {
5401         struct netdev_adjacent *lower;
5402
5403         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5404                         struct netdev_adjacent, list);
5405         if (lower)
5406                 return lower->private;
5407         return NULL;
5408 }
5409 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5410
5411 /**
5412  * netdev_master_upper_dev_get_rcu - Get master upper device
5413  * @dev: device
5414  *
5415  * Find a master upper device and return pointer to it or NULL in case
5416  * it's not there. The caller must hold the RCU read lock.
5417  */
5418 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5419 {
5420         struct netdev_adjacent *upper;
5421
5422         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5423                                        struct netdev_adjacent, list);
5424         if (upper && likely(upper->master))
5425                 return upper->dev;
5426         return NULL;
5427 }
5428 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5429
5430 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5431                               struct net_device *adj_dev,
5432                               struct list_head *dev_list)
5433 {
5434         char linkname[IFNAMSIZ+7];
5435         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5436                 "upper_%s" : "lower_%s", adj_dev->name);
5437         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5438                                  linkname);
5439 }
5440 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5441                                char *name,
5442                                struct list_head *dev_list)
5443 {
5444         char linkname[IFNAMSIZ+7];
5445         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5446                 "upper_%s" : "lower_%s", name);
5447         sysfs_remove_link(&(dev->dev.kobj), linkname);
5448 }
5449
5450 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5451                                                  struct net_device *adj_dev,
5452                                                  struct list_head *dev_list)
5453 {
5454         return (dev_list == &dev->adj_list.upper ||
5455                 dev_list == &dev->adj_list.lower) &&
5456                 net_eq(dev_net(dev), dev_net(adj_dev));
5457 }
5458
5459 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5460                                         struct net_device *adj_dev,
5461                                         struct list_head *dev_list,
5462                                         void *private, bool master)
5463 {
5464         struct netdev_adjacent *adj;
5465         int ret;
5466
5467         adj = __netdev_find_adj(adj_dev, dev_list);
5468
5469         if (adj) {
5470                 adj->ref_nr++;
5471                 return 0;
5472         }
5473
5474         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5475         if (!adj)
5476                 return -ENOMEM;
5477
5478         adj->dev = adj_dev;
5479         adj->master = master;
5480         adj->ref_nr = 1;
5481         adj->private = private;
5482         dev_hold(adj_dev);
5483
5484         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5485                  adj_dev->name, dev->name, adj_dev->name);
5486
5487         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5488                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5489                 if (ret)
5490                         goto free_adj;
5491         }
5492
5493         /* Ensure that master link is always the first item in list. */
5494         if (master) {
5495                 ret = sysfs_create_link(&(dev->dev.kobj),
5496                                         &(adj_dev->dev.kobj), "master");
5497                 if (ret)
5498                         goto remove_symlinks;
5499
5500                 list_add_rcu(&adj->list, dev_list);
5501         } else {
5502                 list_add_tail_rcu(&adj->list, dev_list);
5503         }
5504
5505         return 0;
5506
5507 remove_symlinks:
5508         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5509                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5510 free_adj:
5511         kfree(adj);
5512         dev_put(adj_dev);
5513
5514         return ret;
5515 }
5516
5517 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5518                                          struct net_device *adj_dev,
5519                                          struct list_head *dev_list)
5520 {
5521         struct netdev_adjacent *adj;
5522
5523         adj = __netdev_find_adj(adj_dev, dev_list);
5524
5525         if (!adj) {
5526                 pr_err("tried to remove device %s from %s\n",
5527                        dev->name, adj_dev->name);
5528                 BUG();
5529         }
5530
5531         if (adj->ref_nr > 1) {
5532                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5533                          adj->ref_nr-1);
5534                 adj->ref_nr--;
5535                 return;
5536         }
5537
5538         if (adj->master)
5539                 sysfs_remove_link(&(dev->dev.kobj), "master");
5540
5541         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5542                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5543
5544         list_del_rcu(&adj->list);
5545         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5546                  adj_dev->name, dev->name, adj_dev->name);
5547         dev_put(adj_dev);
5548         kfree_rcu(adj, rcu);
5549 }
5550
5551 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5552                                             struct net_device *upper_dev,
5553                                             struct list_head *up_list,
5554                                             struct list_head *down_list,
5555                                             void *private, bool master)
5556 {
5557         int ret;
5558
5559         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5560                                            master);
5561         if (ret)
5562                 return ret;
5563
5564         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5565                                            false);
5566         if (ret) {
5567                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5568                 return ret;
5569         }
5570
5571         return 0;
5572 }
5573
5574 static int __netdev_adjacent_dev_link(struct net_device *dev,
5575                                       struct net_device *upper_dev)
5576 {
5577         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5578                                                 &dev->all_adj_list.upper,
5579                                                 &upper_dev->all_adj_list.lower,
5580                                                 NULL, false);
5581 }
5582
5583 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5584                                                struct net_device *upper_dev,
5585                                                struct list_head *up_list,
5586                                                struct list_head *down_list)
5587 {
5588         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5589         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5590 }
5591
5592 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5593                                          struct net_device *upper_dev)
5594 {
5595         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5596                                            &dev->all_adj_list.upper,
5597                                            &upper_dev->all_adj_list.lower);
5598 }
5599
5600 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5601                                                 struct net_device *upper_dev,
5602                                                 void *private, bool master)
5603 {
5604         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5605
5606         if (ret)
5607                 return ret;
5608
5609         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5610                                                &dev->adj_list.upper,
5611                                                &upper_dev->adj_list.lower,
5612                                                private, master);
5613         if (ret) {
5614                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5615                 return ret;
5616         }
5617
5618         return 0;
5619 }
5620
5621 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5622                                                    struct net_device *upper_dev)
5623 {
5624         __netdev_adjacent_dev_unlink(dev, upper_dev);
5625         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5626                                            &dev->adj_list.upper,
5627                                            &upper_dev->adj_list.lower);
5628 }
5629
5630 static int __netdev_upper_dev_link(struct net_device *dev,
5631                                    struct net_device *upper_dev, bool master,
5632                                    void *upper_priv, void *upper_info)
5633 {
5634         struct netdev_notifier_changeupper_info changeupper_info;
5635         struct netdev_adjacent *i, *j, *to_i, *to_j;
5636         int ret = 0;
5637
5638         ASSERT_RTNL();
5639
5640         if (dev == upper_dev)
5641                 return -EBUSY;
5642
5643         /* To prevent loops, check if dev is not upper device to upper_dev. */
5644         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5645                 return -EBUSY;
5646
5647         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5648                 return -EEXIST;
5649
5650         if (master && netdev_master_upper_dev_get(dev))
5651                 return -EBUSY;
5652
5653         changeupper_info.upper_dev = upper_dev;
5654         changeupper_info.master = master;
5655         changeupper_info.linking = true;
5656         changeupper_info.upper_info = upper_info;
5657
5658         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5659                                             &changeupper_info.info);
5660         ret = notifier_to_errno(ret);
5661         if (ret)
5662                 return ret;
5663
5664         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5665                                                    master);
5666         if (ret)
5667                 return ret;
5668
5669         /* Now that we linked these devs, make all the upper_dev's
5670          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5671          * versa, and don't forget the devices itself. All of these
5672          * links are non-neighbours.
5673          */
5674         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5675                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5676                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5677                                  i->dev->name, j->dev->name);
5678                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5679                         if (ret)
5680                                 goto rollback_mesh;
5681                 }
5682         }
5683
5684         /* add dev to every upper_dev's upper device */
5685         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5686                 pr_debug("linking %s's upper device %s with %s\n",
5687                          upper_dev->name, i->dev->name, dev->name);
5688                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5689                 if (ret)
5690                         goto rollback_upper_mesh;
5691         }
5692
5693         /* add upper_dev to every dev's lower device */
5694         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5695                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5696                          i->dev->name, upper_dev->name);
5697                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5698                 if (ret)
5699                         goto rollback_lower_mesh;
5700         }
5701
5702         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5703                                             &changeupper_info.info);
5704         ret = notifier_to_errno(ret);
5705         if (ret)
5706                 goto rollback_lower_mesh;
5707
5708         return 0;
5709
5710 rollback_lower_mesh:
5711         to_i = i;
5712         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5713                 if (i == to_i)
5714                         break;
5715                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5716         }
5717
5718         i = NULL;
5719
5720 rollback_upper_mesh:
5721         to_i = i;
5722         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5723                 if (i == to_i)
5724                         break;
5725                 __netdev_adjacent_dev_unlink(dev, i->dev);
5726         }
5727
5728         i = j = NULL;
5729
5730 rollback_mesh:
5731         to_i = i;
5732         to_j = j;
5733         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5734                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5735                         if (i == to_i && j == to_j)
5736                                 break;
5737                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5738                 }
5739                 if (i == to_i)
5740                         break;
5741         }
5742
5743         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5744
5745         return ret;
5746 }
5747
5748 /**
5749  * netdev_upper_dev_link - Add a link to the upper device
5750  * @dev: device
5751  * @upper_dev: new upper device
5752  *
5753  * Adds a link to device which is upper to this one. The caller must hold
5754  * the RTNL lock. On a failure a negative errno code is returned.
5755  * On success the reference counts are adjusted and the function
5756  * returns zero.
5757  */
5758 int netdev_upper_dev_link(struct net_device *dev,
5759                           struct net_device *upper_dev)
5760 {
5761         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5762 }
5763 EXPORT_SYMBOL(netdev_upper_dev_link);
5764
5765 /**
5766  * netdev_master_upper_dev_link - Add a master link to the upper device
5767  * @dev: device
5768  * @upper_dev: new upper device
5769  * @upper_priv: upper device private
5770  * @upper_info: upper info to be passed down via notifier
5771  *
5772  * Adds a link to device which is upper to this one. In this case, only
5773  * one master upper device can be linked, although other non-master devices
5774  * might be linked as well. The caller must hold the RTNL lock.
5775  * On a failure a negative errno code is returned. On success the reference
5776  * counts are adjusted and the function returns zero.
5777  */
5778 int netdev_master_upper_dev_link(struct net_device *dev,
5779                                  struct net_device *upper_dev,
5780                                  void *upper_priv, void *upper_info)
5781 {
5782         return __netdev_upper_dev_link(dev, upper_dev, true,
5783                                        upper_priv, upper_info);
5784 }
5785 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5786
5787 /**
5788  * netdev_upper_dev_unlink - Removes a link to upper device
5789  * @dev: device
5790  * @upper_dev: new upper device
5791  *
5792  * Removes a link to device which is upper to this one. The caller must hold
5793  * the RTNL lock.
5794  */
5795 void netdev_upper_dev_unlink(struct net_device *dev,
5796                              struct net_device *upper_dev)
5797 {
5798         struct netdev_notifier_changeupper_info changeupper_info;
5799         struct netdev_adjacent *i, *j;
5800         ASSERT_RTNL();
5801
5802         changeupper_info.upper_dev = upper_dev;
5803         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5804         changeupper_info.linking = false;
5805
5806         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5807                                       &changeupper_info.info);
5808
5809         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5810
5811         /* Here is the tricky part. We must remove all dev's lower
5812          * devices from all upper_dev's upper devices and vice
5813          * versa, to maintain the graph relationship.
5814          */
5815         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5816                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5817                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5818
5819         /* remove also the devices itself from lower/upper device
5820          * list
5821          */
5822         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5823                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5824
5825         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5826                 __netdev_adjacent_dev_unlink(dev, i->dev);
5827
5828         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5829                                       &changeupper_info.info);
5830 }
5831 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5832
5833 /**
5834  * netdev_bonding_info_change - Dispatch event about slave change
5835  * @dev: device
5836  * @bonding_info: info to dispatch
5837  *
5838  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5839  * The caller must hold the RTNL lock.
5840  */
5841 void netdev_bonding_info_change(struct net_device *dev,
5842                                 struct netdev_bonding_info *bonding_info)
5843 {
5844         struct netdev_notifier_bonding_info     info;
5845
5846         memcpy(&info.bonding_info, bonding_info,
5847                sizeof(struct netdev_bonding_info));
5848         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5849                                       &info.info);
5850 }
5851 EXPORT_SYMBOL(netdev_bonding_info_change);
5852
5853 static void netdev_adjacent_add_links(struct net_device *dev)
5854 {
5855         struct netdev_adjacent *iter;
5856
5857         struct net *net = dev_net(dev);
5858
5859         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5860                 if (!net_eq(net,dev_net(iter->dev)))
5861                         continue;
5862                 netdev_adjacent_sysfs_add(iter->dev, dev,
5863                                           &iter->dev->adj_list.lower);
5864                 netdev_adjacent_sysfs_add(dev, iter->dev,
5865                                           &dev->adj_list.upper);
5866         }
5867
5868         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5869                 if (!net_eq(net,dev_net(iter->dev)))
5870                         continue;
5871                 netdev_adjacent_sysfs_add(iter->dev, dev,
5872                                           &iter->dev->adj_list.upper);
5873                 netdev_adjacent_sysfs_add(dev, iter->dev,
5874                                           &dev->adj_list.lower);
5875         }
5876 }
5877
5878 static void netdev_adjacent_del_links(struct net_device *dev)
5879 {
5880         struct netdev_adjacent *iter;
5881
5882         struct net *net = dev_net(dev);
5883
5884         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5885                 if (!net_eq(net,dev_net(iter->dev)))
5886                         continue;
5887                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5888                                           &iter->dev->adj_list.lower);
5889                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5890                                           &dev->adj_list.upper);
5891         }
5892
5893         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5894                 if (!net_eq(net,dev_net(iter->dev)))
5895                         continue;
5896                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5897                                           &iter->dev->adj_list.upper);
5898                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5899                                           &dev->adj_list.lower);
5900         }
5901 }
5902
5903 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5904 {
5905         struct netdev_adjacent *iter;
5906
5907         struct net *net = dev_net(dev);
5908
5909         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5910                 if (!net_eq(net,dev_net(iter->dev)))
5911                         continue;
5912                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5913                                           &iter->dev->adj_list.lower);
5914                 netdev_adjacent_sysfs_add(iter->dev, dev,
5915                                           &iter->dev->adj_list.lower);
5916         }
5917
5918         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5919                 if (!net_eq(net,dev_net(iter->dev)))
5920                         continue;
5921                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5922                                           &iter->dev->adj_list.upper);
5923                 netdev_adjacent_sysfs_add(iter->dev, dev,
5924                                           &iter->dev->adj_list.upper);
5925         }
5926 }
5927
5928 void *netdev_lower_dev_get_private(struct net_device *dev,
5929                                    struct net_device *lower_dev)
5930 {
5931         struct netdev_adjacent *lower;
5932
5933         if (!lower_dev)
5934                 return NULL;
5935         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5936         if (!lower)
5937                 return NULL;
5938
5939         return lower->private;
5940 }
5941 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5942
5943
5944 int dev_get_nest_level(struct net_device *dev,
5945                        bool (*type_check)(const struct net_device *dev))
5946 {
5947         struct net_device *lower = NULL;
5948         struct list_head *iter;
5949         int max_nest = -1;
5950         int nest;
5951
5952         ASSERT_RTNL();
5953
5954         netdev_for_each_lower_dev(dev, lower, iter) {
5955                 nest = dev_get_nest_level(lower, type_check);
5956                 if (max_nest < nest)
5957                         max_nest = nest;
5958         }
5959
5960         if (type_check(dev))
5961                 max_nest++;
5962
5963         return max_nest;
5964 }
5965 EXPORT_SYMBOL(dev_get_nest_level);
5966
5967 /**
5968  * netdev_lower_change - Dispatch event about lower device state change
5969  * @lower_dev: device
5970  * @lower_state_info: state to dispatch
5971  *
5972  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
5973  * The caller must hold the RTNL lock.
5974  */
5975 void netdev_lower_state_changed(struct net_device *lower_dev,
5976                                 void *lower_state_info)
5977 {
5978         struct netdev_notifier_changelowerstate_info changelowerstate_info;
5979
5980         ASSERT_RTNL();
5981         changelowerstate_info.lower_state_info = lower_state_info;
5982         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
5983                                       &changelowerstate_info.info);
5984 }
5985 EXPORT_SYMBOL(netdev_lower_state_changed);
5986
5987 static void dev_change_rx_flags(struct net_device *dev, int flags)
5988 {
5989         const struct net_device_ops *ops = dev->netdev_ops;
5990
5991         if (ops->ndo_change_rx_flags)
5992                 ops->ndo_change_rx_flags(dev, flags);
5993 }
5994
5995 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5996 {
5997         unsigned int old_flags = dev->flags;
5998         kuid_t uid;
5999         kgid_t gid;
6000
6001         ASSERT_RTNL();
6002
6003         dev->flags |= IFF_PROMISC;
6004         dev->promiscuity += inc;
6005         if (dev->promiscuity == 0) {
6006                 /*
6007                  * Avoid overflow.
6008                  * If inc causes overflow, untouch promisc and return error.
6009                  */
6010                 if (inc < 0)
6011                         dev->flags &= ~IFF_PROMISC;
6012                 else {
6013                         dev->promiscuity -= inc;
6014                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6015                                 dev->name);
6016                         return -EOVERFLOW;
6017                 }
6018         }
6019         if (dev->flags != old_flags) {
6020                 pr_info("device %s %s promiscuous mode\n",
6021                         dev->name,
6022                         dev->flags & IFF_PROMISC ? "entered" : "left");
6023                 if (audit_enabled) {
6024                         current_uid_gid(&uid, &gid);
6025                         audit_log(current->audit_context, GFP_ATOMIC,
6026                                 AUDIT_ANOM_PROMISCUOUS,
6027                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6028                                 dev->name, (dev->flags & IFF_PROMISC),
6029                                 (old_flags & IFF_PROMISC),
6030                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6031                                 from_kuid(&init_user_ns, uid),
6032                                 from_kgid(&init_user_ns, gid),
6033                                 audit_get_sessionid(current));
6034                 }
6035
6036                 dev_change_rx_flags(dev, IFF_PROMISC);
6037         }
6038         if (notify)
6039                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6040         return 0;
6041 }
6042
6043 /**
6044  *      dev_set_promiscuity     - update promiscuity count on a device
6045  *      @dev: device
6046  *      @inc: modifier
6047  *
6048  *      Add or remove promiscuity from a device. While the count in the device
6049  *      remains above zero the interface remains promiscuous. Once it hits zero
6050  *      the device reverts back to normal filtering operation. A negative inc
6051  *      value is used to drop promiscuity on the device.
6052  *      Return 0 if successful or a negative errno code on error.
6053  */
6054 int dev_set_promiscuity(struct net_device *dev, int inc)
6055 {
6056         unsigned int old_flags = dev->flags;
6057         int err;
6058
6059         err = __dev_set_promiscuity(dev, inc, true);
6060         if (err < 0)
6061                 return err;
6062         if (dev->flags != old_flags)
6063                 dev_set_rx_mode(dev);
6064         return err;
6065 }
6066 EXPORT_SYMBOL(dev_set_promiscuity);
6067
6068 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6069 {
6070         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6071
6072         ASSERT_RTNL();
6073
6074         dev->flags |= IFF_ALLMULTI;
6075         dev->allmulti += inc;
6076         if (dev->allmulti == 0) {
6077                 /*
6078                  * Avoid overflow.
6079                  * If inc causes overflow, untouch allmulti and return error.
6080                  */
6081                 if (inc < 0)
6082                         dev->flags &= ~IFF_ALLMULTI;
6083                 else {
6084                         dev->allmulti -= inc;
6085                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6086                                 dev->name);
6087                         return -EOVERFLOW;
6088                 }
6089         }
6090         if (dev->flags ^ old_flags) {
6091                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6092                 dev_set_rx_mode(dev);
6093                 if (notify)
6094                         __dev_notify_flags(dev, old_flags,
6095                                            dev->gflags ^ old_gflags);
6096         }
6097         return 0;
6098 }
6099
6100 /**
6101  *      dev_set_allmulti        - update allmulti count on a device
6102  *      @dev: device
6103  *      @inc: modifier
6104  *
6105  *      Add or remove reception of all multicast frames to a device. While the
6106  *      count in the device remains above zero the interface remains listening
6107  *      to all interfaces. Once it hits zero the device reverts back to normal
6108  *      filtering operation. A negative @inc value is used to drop the counter
6109  *      when releasing a resource needing all multicasts.
6110  *      Return 0 if successful or a negative errno code on error.
6111  */
6112
6113 int dev_set_allmulti(struct net_device *dev, int inc)
6114 {
6115         return __dev_set_allmulti(dev, inc, true);
6116 }
6117 EXPORT_SYMBOL(dev_set_allmulti);
6118
6119 /*
6120  *      Upload unicast and multicast address lists to device and
6121  *      configure RX filtering. When the device doesn't support unicast
6122  *      filtering it is put in promiscuous mode while unicast addresses
6123  *      are present.
6124  */
6125 void __dev_set_rx_mode(struct net_device *dev)
6126 {
6127         const struct net_device_ops *ops = dev->netdev_ops;
6128
6129         /* dev_open will call this function so the list will stay sane. */
6130         if (!(dev->flags&IFF_UP))
6131                 return;
6132
6133         if (!netif_device_present(dev))
6134                 return;
6135
6136         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6137                 /* Unicast addresses changes may only happen under the rtnl,
6138                  * therefore calling __dev_set_promiscuity here is safe.
6139                  */
6140                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6141                         __dev_set_promiscuity(dev, 1, false);
6142                         dev->uc_promisc = true;
6143                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6144                         __dev_set_promiscuity(dev, -1, false);
6145                         dev->uc_promisc = false;
6146                 }
6147         }
6148
6149         if (ops->ndo_set_rx_mode)
6150                 ops->ndo_set_rx_mode(dev);
6151 }
6152
6153 void dev_set_rx_mode(struct net_device *dev)
6154 {
6155         netif_addr_lock_bh(dev);
6156         __dev_set_rx_mode(dev);
6157         netif_addr_unlock_bh(dev);
6158 }
6159
6160 /**
6161  *      dev_get_flags - get flags reported to userspace
6162  *      @dev: device
6163  *
6164  *      Get the combination of flag bits exported through APIs to userspace.
6165  */
6166 unsigned int dev_get_flags(const struct net_device *dev)
6167 {
6168         unsigned int flags;
6169
6170         flags = (dev->flags & ~(IFF_PROMISC |
6171                                 IFF_ALLMULTI |
6172                                 IFF_RUNNING |
6173                                 IFF_LOWER_UP |
6174                                 IFF_DORMANT)) |
6175                 (dev->gflags & (IFF_PROMISC |
6176                                 IFF_ALLMULTI));
6177
6178         if (netif_running(dev)) {
6179                 if (netif_oper_up(dev))
6180                         flags |= IFF_RUNNING;
6181                 if (netif_carrier_ok(dev))
6182                         flags |= IFF_LOWER_UP;
6183                 if (netif_dormant(dev))
6184                         flags |= IFF_DORMANT;
6185         }
6186
6187         return flags;
6188 }
6189 EXPORT_SYMBOL(dev_get_flags);
6190
6191 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6192 {
6193         unsigned int old_flags = dev->flags;
6194         int ret;
6195
6196         ASSERT_RTNL();
6197
6198         /*
6199          *      Set the flags on our device.
6200          */
6201
6202         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6203                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6204                                IFF_AUTOMEDIA)) |
6205                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6206                                     IFF_ALLMULTI));
6207
6208         /*
6209          *      Load in the correct multicast list now the flags have changed.
6210          */
6211
6212         if ((old_flags ^ flags) & IFF_MULTICAST)
6213                 dev_change_rx_flags(dev, IFF_MULTICAST);
6214
6215         dev_set_rx_mode(dev);
6216
6217         /*
6218          *      Have we downed the interface. We handle IFF_UP ourselves
6219          *      according to user attempts to set it, rather than blindly
6220          *      setting it.
6221          */
6222
6223         ret = 0;
6224         if ((old_flags ^ flags) & IFF_UP)
6225                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6226
6227         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6228                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6229                 unsigned int old_flags = dev->flags;
6230
6231                 dev->gflags ^= IFF_PROMISC;
6232
6233                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6234                         if (dev->flags != old_flags)
6235                                 dev_set_rx_mode(dev);
6236         }
6237
6238         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6239            is important. Some (broken) drivers set IFF_PROMISC, when
6240            IFF_ALLMULTI is requested not asking us and not reporting.
6241          */
6242         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6243                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6244
6245                 dev->gflags ^= IFF_ALLMULTI;
6246                 __dev_set_allmulti(dev, inc, false);
6247         }
6248
6249         return ret;
6250 }
6251
6252 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6253                         unsigned int gchanges)
6254 {
6255         unsigned int changes = dev->flags ^ old_flags;
6256
6257         if (gchanges)
6258                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6259
6260         if (changes & IFF_UP) {
6261                 if (dev->flags & IFF_UP)
6262                         call_netdevice_notifiers(NETDEV_UP, dev);
6263                 else
6264                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6265         }
6266
6267         if (dev->flags & IFF_UP &&
6268             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6269                 struct netdev_notifier_change_info change_info;
6270
6271                 change_info.flags_changed = changes;
6272                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6273                                               &change_info.info);
6274         }
6275 }
6276
6277 /**
6278  *      dev_change_flags - change device settings
6279  *      @dev: device
6280  *      @flags: device state flags
6281  *
6282  *      Change settings on device based state flags. The flags are
6283  *      in the userspace exported format.
6284  */
6285 int dev_change_flags(struct net_device *dev, unsigned int flags)
6286 {
6287         int ret;
6288         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6289
6290         ret = __dev_change_flags(dev, flags);
6291         if (ret < 0)
6292                 return ret;
6293
6294         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6295         __dev_notify_flags(dev, old_flags, changes);
6296         return ret;
6297 }
6298 EXPORT_SYMBOL(dev_change_flags);
6299
6300 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6301 {
6302         const struct net_device_ops *ops = dev->netdev_ops;
6303
6304         if (ops->ndo_change_mtu)
6305                 return ops->ndo_change_mtu(dev, new_mtu);
6306
6307         dev->mtu = new_mtu;
6308         return 0;
6309 }
6310
6311 /**
6312  *      dev_set_mtu - Change maximum transfer unit
6313  *      @dev: device
6314  *      @new_mtu: new transfer unit
6315  *
6316  *      Change the maximum transfer size of the network device.
6317  */
6318 int dev_set_mtu(struct net_device *dev, int new_mtu)
6319 {
6320         int err, orig_mtu;
6321
6322         if (new_mtu == dev->mtu)
6323                 return 0;
6324
6325         /*      MTU must be positive.    */
6326         if (new_mtu < 0)
6327                 return -EINVAL;
6328
6329         if (!netif_device_present(dev))
6330                 return -ENODEV;
6331
6332         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6333         err = notifier_to_errno(err);
6334         if (err)
6335                 return err;
6336
6337         orig_mtu = dev->mtu;
6338         err = __dev_set_mtu(dev, new_mtu);
6339
6340         if (!err) {
6341                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6342                 err = notifier_to_errno(err);
6343                 if (err) {
6344                         /* setting mtu back and notifying everyone again,
6345                          * so that they have a chance to revert changes.
6346                          */
6347                         __dev_set_mtu(dev, orig_mtu);
6348                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6349                 }
6350         }
6351         return err;
6352 }
6353 EXPORT_SYMBOL(dev_set_mtu);
6354
6355 /**
6356  *      dev_set_group - Change group this device belongs to
6357  *      @dev: device
6358  *      @new_group: group this device should belong to
6359  */
6360 void dev_set_group(struct net_device *dev, int new_group)
6361 {
6362         dev->group = new_group;
6363 }
6364 EXPORT_SYMBOL(dev_set_group);
6365
6366 /**
6367  *      dev_set_mac_address - Change Media Access Control Address
6368  *      @dev: device
6369  *      @sa: new address
6370  *
6371  *      Change the hardware (MAC) address of the device
6372  */
6373 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6374 {
6375         const struct net_device_ops *ops = dev->netdev_ops;
6376         int err;
6377
6378         if (!ops->ndo_set_mac_address)
6379                 return -EOPNOTSUPP;
6380         if (sa->sa_family != dev->type)
6381                 return -EINVAL;
6382         if (!netif_device_present(dev))
6383                 return -ENODEV;
6384         err = ops->ndo_set_mac_address(dev, sa);
6385         if (err)
6386                 return err;
6387         dev->addr_assign_type = NET_ADDR_SET;
6388         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6389         add_device_randomness(dev->dev_addr, dev->addr_len);
6390         return 0;
6391 }
6392 EXPORT_SYMBOL(dev_set_mac_address);
6393
6394 /**
6395  *      dev_change_carrier - Change device carrier
6396  *      @dev: device
6397  *      @new_carrier: new value
6398  *
6399  *      Change device carrier
6400  */
6401 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6402 {
6403         const struct net_device_ops *ops = dev->netdev_ops;
6404
6405         if (!ops->ndo_change_carrier)
6406                 return -EOPNOTSUPP;
6407         if (!netif_device_present(dev))
6408                 return -ENODEV;
6409         return ops->ndo_change_carrier(dev, new_carrier);
6410 }
6411 EXPORT_SYMBOL(dev_change_carrier);
6412
6413 /**
6414  *      dev_get_phys_port_id - Get device physical port ID
6415  *      @dev: device
6416  *      @ppid: port ID
6417  *
6418  *      Get device physical port ID
6419  */
6420 int dev_get_phys_port_id(struct net_device *dev,
6421                          struct netdev_phys_item_id *ppid)
6422 {
6423         const struct net_device_ops *ops = dev->netdev_ops;
6424
6425         if (!ops->ndo_get_phys_port_id)
6426                 return -EOPNOTSUPP;
6427         return ops->ndo_get_phys_port_id(dev, ppid);
6428 }
6429 EXPORT_SYMBOL(dev_get_phys_port_id);
6430
6431 /**
6432  *      dev_get_phys_port_name - Get device physical port name
6433  *      @dev: device
6434  *      @name: port name
6435  *
6436  *      Get device physical port name
6437  */
6438 int dev_get_phys_port_name(struct net_device *dev,
6439                            char *name, size_t len)
6440 {
6441         const struct net_device_ops *ops = dev->netdev_ops;
6442
6443         if (!ops->ndo_get_phys_port_name)
6444                 return -EOPNOTSUPP;
6445         return ops->ndo_get_phys_port_name(dev, name, len);
6446 }
6447 EXPORT_SYMBOL(dev_get_phys_port_name);
6448
6449 /**
6450  *      dev_change_proto_down - update protocol port state information
6451  *      @dev: device
6452  *      @proto_down: new value
6453  *
6454  *      This info can be used by switch drivers to set the phys state of the
6455  *      port.
6456  */
6457 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6458 {
6459         const struct net_device_ops *ops = dev->netdev_ops;
6460
6461         if (!ops->ndo_change_proto_down)
6462                 return -EOPNOTSUPP;
6463         if (!netif_device_present(dev))
6464                 return -ENODEV;
6465         return ops->ndo_change_proto_down(dev, proto_down);
6466 }
6467 EXPORT_SYMBOL(dev_change_proto_down);
6468
6469 /**
6470  *      dev_new_index   -       allocate an ifindex
6471  *      @net: the applicable net namespace
6472  *
6473  *      Returns a suitable unique value for a new device interface
6474  *      number.  The caller must hold the rtnl semaphore or the
6475  *      dev_base_lock to be sure it remains unique.
6476  */
6477 static int dev_new_index(struct net *net)
6478 {
6479         int ifindex = net->ifindex;
6480         for (;;) {
6481                 if (++ifindex <= 0)
6482                         ifindex = 1;
6483                 if (!__dev_get_by_index(net, ifindex))
6484                         return net->ifindex = ifindex;
6485         }
6486 }
6487
6488 /* Delayed registration/unregisteration */
6489 static LIST_HEAD(net_todo_list);
6490 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6491
6492 static void net_set_todo(struct net_device *dev)
6493 {
6494         list_add_tail(&dev->todo_list, &net_todo_list);
6495         dev_net(dev)->dev_unreg_count++;
6496 }
6497
6498 static void rollback_registered_many(struct list_head *head)
6499 {
6500         struct net_device *dev, *tmp;
6501         LIST_HEAD(close_head);
6502
6503         BUG_ON(dev_boot_phase);
6504         ASSERT_RTNL();
6505
6506         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6507                 /* Some devices call without registering
6508                  * for initialization unwind. Remove those
6509                  * devices and proceed with the remaining.
6510                  */
6511                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6512                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6513                                  dev->name, dev);
6514
6515                         WARN_ON(1);
6516                         list_del(&dev->unreg_list);
6517                         continue;
6518                 }
6519                 dev->dismantle = true;
6520                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6521         }
6522
6523         /* If device is running, close it first. */
6524         list_for_each_entry(dev, head, unreg_list)
6525                 list_add_tail(&dev->close_list, &close_head);
6526         dev_close_many(&close_head, true);
6527
6528         list_for_each_entry(dev, head, unreg_list) {
6529                 /* And unlink it from device chain. */
6530                 unlist_netdevice(dev);
6531
6532                 dev->reg_state = NETREG_UNREGISTERING;
6533                 on_each_cpu(flush_backlog, dev, 1);
6534         }
6535
6536         synchronize_net();
6537
6538         list_for_each_entry(dev, head, unreg_list) {
6539                 struct sk_buff *skb = NULL;
6540
6541                 /* Shutdown queueing discipline. */
6542                 dev_shutdown(dev);
6543
6544
6545                 /* Notify protocols, that we are about to destroy
6546                    this device. They should clean all the things.
6547                 */
6548                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549
6550                 if (!dev->rtnl_link_ops ||
6551                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6552                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6553                                                      GFP_KERNEL);
6554
6555                 /*
6556                  *      Flush the unicast and multicast chains
6557                  */
6558                 dev_uc_flush(dev);
6559                 dev_mc_flush(dev);
6560
6561                 if (dev->netdev_ops->ndo_uninit)
6562                         dev->netdev_ops->ndo_uninit(dev);
6563
6564                 if (skb)
6565                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6566
6567                 /* Notifier chain MUST detach us all upper devices. */
6568                 WARN_ON(netdev_has_any_upper_dev(dev));
6569
6570                 /* Remove entries from kobject tree */
6571                 netdev_unregister_kobject(dev);
6572 #ifdef CONFIG_XPS
6573                 /* Remove XPS queueing entries */
6574                 netif_reset_xps_queues_gt(dev, 0);
6575 #endif
6576         }
6577
6578         synchronize_net();
6579
6580         list_for_each_entry(dev, head, unreg_list)
6581                 dev_put(dev);
6582 }
6583
6584 static void rollback_registered(struct net_device *dev)
6585 {
6586         LIST_HEAD(single);
6587
6588         list_add(&dev->unreg_list, &single);
6589         rollback_registered_many(&single);
6590         list_del(&single);
6591 }
6592
6593 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6594         struct net_device *upper, netdev_features_t features)
6595 {
6596         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6597         netdev_features_t feature;
6598         int feature_bit;
6599
6600         for_each_netdev_feature(&upper_disables, feature_bit) {
6601                 feature = __NETIF_F_BIT(feature_bit);
6602                 if (!(upper->wanted_features & feature)
6603                     && (features & feature)) {
6604                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6605                                    &feature, upper->name);
6606                         features &= ~feature;
6607                 }
6608         }
6609
6610         return features;
6611 }
6612
6613 static void netdev_sync_lower_features(struct net_device *upper,
6614         struct net_device *lower, netdev_features_t features)
6615 {
6616         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6617         netdev_features_t feature;
6618         int feature_bit;
6619
6620         for_each_netdev_feature(&upper_disables, feature_bit) {
6621                 feature = __NETIF_F_BIT(feature_bit);
6622                 if (!(features & feature) && (lower->features & feature)) {
6623                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6624                                    &feature, lower->name);
6625                         lower->wanted_features &= ~feature;
6626                         netdev_update_features(lower);
6627
6628                         if (unlikely(lower->features & feature))
6629                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6630                                             &feature, lower->name);
6631                 }
6632         }
6633 }
6634
6635 static netdev_features_t netdev_fix_features(struct net_device *dev,
6636         netdev_features_t features)
6637 {
6638         /* Fix illegal checksum combinations */
6639         if ((features & NETIF_F_HW_CSUM) &&
6640             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6641                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6642                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6643         }
6644
6645         /* TSO requires that SG is present as well. */
6646         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6647                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6648                 features &= ~NETIF_F_ALL_TSO;
6649         }
6650
6651         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6652                                         !(features & NETIF_F_IP_CSUM)) {
6653                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6654                 features &= ~NETIF_F_TSO;
6655                 features &= ~NETIF_F_TSO_ECN;
6656         }
6657
6658         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6659                                          !(features & NETIF_F_IPV6_CSUM)) {
6660                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6661                 features &= ~NETIF_F_TSO6;
6662         }
6663
6664         /* TSO ECN requires that TSO is present as well. */
6665         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6666                 features &= ~NETIF_F_TSO_ECN;
6667
6668         /* Software GSO depends on SG. */
6669         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6670                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6671                 features &= ~NETIF_F_GSO;
6672         }
6673
6674         /* UFO needs SG and checksumming */
6675         if (features & NETIF_F_UFO) {
6676                 /* maybe split UFO into V4 and V6? */
6677                 if (!(features & NETIF_F_HW_CSUM) &&
6678                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6679                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6680                         netdev_dbg(dev,
6681                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6682                         features &= ~NETIF_F_UFO;
6683                 }
6684
6685                 if (!(features & NETIF_F_SG)) {
6686                         netdev_dbg(dev,
6687                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6688                         features &= ~NETIF_F_UFO;
6689                 }
6690         }
6691
6692 #ifdef CONFIG_NET_RX_BUSY_POLL
6693         if (dev->netdev_ops->ndo_busy_poll)
6694                 features |= NETIF_F_BUSY_POLL;
6695         else
6696 #endif
6697                 features &= ~NETIF_F_BUSY_POLL;
6698
6699         return features;
6700 }
6701
6702 int __netdev_update_features(struct net_device *dev)
6703 {
6704         struct net_device *upper, *lower;
6705         netdev_features_t features;
6706         struct list_head *iter;
6707         int err = -1;
6708
6709         ASSERT_RTNL();
6710
6711         features = netdev_get_wanted_features(dev);
6712
6713         if (dev->netdev_ops->ndo_fix_features)
6714                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6715
6716         /* driver might be less strict about feature dependencies */
6717         features = netdev_fix_features(dev, features);
6718
6719         /* some features can't be enabled if they're off an an upper device */
6720         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6721                 features = netdev_sync_upper_features(dev, upper, features);
6722
6723         if (dev->features == features)
6724                 goto sync_lower;
6725
6726         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6727                 &dev->features, &features);
6728
6729         if (dev->netdev_ops->ndo_set_features)
6730                 err = dev->netdev_ops->ndo_set_features(dev, features);
6731         else
6732                 err = 0;
6733
6734         if (unlikely(err < 0)) {
6735                 netdev_err(dev,
6736                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6737                         err, &features, &dev->features);
6738                 /* return non-0 since some features might have changed and
6739                  * it's better to fire a spurious notification than miss it
6740                  */
6741                 return -1;
6742         }
6743
6744 sync_lower:
6745         /* some features must be disabled on lower devices when disabled
6746          * on an upper device (think: bonding master or bridge)
6747          */
6748         netdev_for_each_lower_dev(dev, lower, iter)
6749                 netdev_sync_lower_features(dev, lower, features);
6750
6751         if (!err)
6752                 dev->features = features;
6753
6754         return err < 0 ? 0 : 1;
6755 }
6756
6757 /**
6758  *      netdev_update_features - recalculate device features
6759  *      @dev: the device to check
6760  *
6761  *      Recalculate dev->features set and send notifications if it
6762  *      has changed. Should be called after driver or hardware dependent
6763  *      conditions might have changed that influence the features.
6764  */
6765 void netdev_update_features(struct net_device *dev)
6766 {
6767         if (__netdev_update_features(dev))
6768                 netdev_features_change(dev);
6769 }
6770 EXPORT_SYMBOL(netdev_update_features);
6771
6772 /**
6773  *      netdev_change_features - recalculate device features
6774  *      @dev: the device to check
6775  *
6776  *      Recalculate dev->features set and send notifications even
6777  *      if they have not changed. Should be called instead of
6778  *      netdev_update_features() if also dev->vlan_features might
6779  *      have changed to allow the changes to be propagated to stacked
6780  *      VLAN devices.
6781  */
6782 void netdev_change_features(struct net_device *dev)
6783 {
6784         __netdev_update_features(dev);
6785         netdev_features_change(dev);
6786 }
6787 EXPORT_SYMBOL(netdev_change_features);
6788
6789 /**
6790  *      netif_stacked_transfer_operstate -      transfer operstate
6791  *      @rootdev: the root or lower level device to transfer state from
6792  *      @dev: the device to transfer operstate to
6793  *
6794  *      Transfer operational state from root to device. This is normally
6795  *      called when a stacking relationship exists between the root
6796  *      device and the device(a leaf device).
6797  */
6798 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6799                                         struct net_device *dev)
6800 {
6801         if (rootdev->operstate == IF_OPER_DORMANT)
6802                 netif_dormant_on(dev);
6803         else
6804                 netif_dormant_off(dev);
6805
6806         if (netif_carrier_ok(rootdev)) {
6807                 if (!netif_carrier_ok(dev))
6808                         netif_carrier_on(dev);
6809         } else {
6810                 if (netif_carrier_ok(dev))
6811                         netif_carrier_off(dev);
6812         }
6813 }
6814 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6815
6816 #ifdef CONFIG_SYSFS
6817 static int netif_alloc_rx_queues(struct net_device *dev)
6818 {
6819         unsigned int i, count = dev->num_rx_queues;
6820         struct netdev_rx_queue *rx;
6821         size_t sz = count * sizeof(*rx);
6822
6823         BUG_ON(count < 1);
6824
6825         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6826         if (!rx) {
6827                 rx = vzalloc(sz);
6828                 if (!rx)
6829                         return -ENOMEM;
6830         }
6831         dev->_rx = rx;
6832
6833         for (i = 0; i < count; i++)
6834                 rx[i].dev = dev;
6835         return 0;
6836 }
6837 #endif
6838
6839 static void netdev_init_one_queue(struct net_device *dev,
6840                                   struct netdev_queue *queue, void *_unused)
6841 {
6842         /* Initialize queue lock */
6843         spin_lock_init(&queue->_xmit_lock);
6844         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6845         queue->xmit_lock_owner = -1;
6846         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6847         queue->dev = dev;
6848 #ifdef CONFIG_BQL
6849         dql_init(&queue->dql, HZ);
6850 #endif
6851 }
6852
6853 static void netif_free_tx_queues(struct net_device *dev)
6854 {
6855         kvfree(dev->_tx);
6856 }
6857
6858 static int netif_alloc_netdev_queues(struct net_device *dev)
6859 {
6860         unsigned int count = dev->num_tx_queues;
6861         struct netdev_queue *tx;
6862         size_t sz = count * sizeof(*tx);
6863
6864         if (count < 1 || count > 0xffff)
6865                 return -EINVAL;
6866
6867         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6868         if (!tx) {
6869                 tx = vzalloc(sz);
6870                 if (!tx)
6871                         return -ENOMEM;
6872         }
6873         dev->_tx = tx;
6874
6875         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6876         spin_lock_init(&dev->tx_global_lock);
6877
6878         return 0;
6879 }
6880
6881 void netif_tx_stop_all_queues(struct net_device *dev)
6882 {
6883         unsigned int i;
6884
6885         for (i = 0; i < dev->num_tx_queues; i++) {
6886                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6887                 netif_tx_stop_queue(txq);
6888         }
6889 }
6890 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6891
6892 /**
6893  *      register_netdevice      - register a network device
6894  *      @dev: device to register
6895  *
6896  *      Take a completed network device structure and add it to the kernel
6897  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6898  *      chain. 0 is returned on success. A negative errno code is returned
6899  *      on a failure to set up the device, or if the name is a duplicate.
6900  *
6901  *      Callers must hold the rtnl semaphore. You may want
6902  *      register_netdev() instead of this.
6903  *
6904  *      BUGS:
6905  *      The locking appears insufficient to guarantee two parallel registers
6906  *      will not get the same name.
6907  */
6908
6909 int register_netdevice(struct net_device *dev)
6910 {
6911         int ret;
6912         struct net *net = dev_net(dev);
6913
6914         BUG_ON(dev_boot_phase);
6915         ASSERT_RTNL();
6916
6917         might_sleep();
6918
6919         /* When net_device's are persistent, this will be fatal. */
6920         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6921         BUG_ON(!net);
6922
6923         spin_lock_init(&dev->addr_list_lock);
6924         netdev_set_addr_lockdep_class(dev);
6925
6926         ret = dev_get_valid_name(net, dev, dev->name);
6927         if (ret < 0)
6928                 goto out;
6929
6930         /* Init, if this function is available */
6931         if (dev->netdev_ops->ndo_init) {
6932                 ret = dev->netdev_ops->ndo_init(dev);
6933                 if (ret) {
6934                         if (ret > 0)
6935                                 ret = -EIO;
6936                         goto out;
6937                 }
6938         }
6939
6940         if (((dev->hw_features | dev->features) &
6941              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6942             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6943              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6944                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6945                 ret = -EINVAL;
6946                 goto err_uninit;
6947         }
6948
6949         ret = -EBUSY;
6950         if (!dev->ifindex)
6951                 dev->ifindex = dev_new_index(net);
6952         else if (__dev_get_by_index(net, dev->ifindex))
6953                 goto err_uninit;
6954
6955         /* Transfer changeable features to wanted_features and enable
6956          * software offloads (GSO and GRO).
6957          */
6958         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6959         dev->features |= NETIF_F_SOFT_FEATURES;
6960         dev->wanted_features = dev->features & dev->hw_features;
6961
6962         if (!(dev->flags & IFF_LOOPBACK)) {
6963                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6964         }
6965
6966         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6967          */
6968         dev->vlan_features |= NETIF_F_HIGHDMA;
6969
6970         /* Make NETIF_F_SG inheritable to tunnel devices.
6971          */
6972         dev->hw_enc_features |= NETIF_F_SG;
6973
6974         /* Make NETIF_F_SG inheritable to MPLS.
6975          */
6976         dev->mpls_features |= NETIF_F_SG;
6977
6978         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6979         ret = notifier_to_errno(ret);
6980         if (ret)
6981                 goto err_uninit;
6982
6983         ret = netdev_register_kobject(dev);
6984         if (ret)
6985                 goto err_uninit;
6986         dev->reg_state = NETREG_REGISTERED;
6987
6988         __netdev_update_features(dev);
6989
6990         /*
6991          *      Default initial state at registry is that the
6992          *      device is present.
6993          */
6994
6995         set_bit(__LINK_STATE_PRESENT, &dev->state);
6996
6997         linkwatch_init_dev(dev);
6998
6999         dev_init_scheduler(dev);
7000         dev_hold(dev);
7001         list_netdevice(dev);
7002         add_device_randomness(dev->dev_addr, dev->addr_len);
7003
7004         /* If the device has permanent device address, driver should
7005          * set dev_addr and also addr_assign_type should be set to
7006          * NET_ADDR_PERM (default value).
7007          */
7008         if (dev->addr_assign_type == NET_ADDR_PERM)
7009                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7010
7011         /* Notify protocols, that a new device appeared. */
7012         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7013         ret = notifier_to_errno(ret);
7014         if (ret) {
7015                 rollback_registered(dev);
7016                 dev->reg_state = NETREG_UNREGISTERED;
7017         }
7018         /*
7019          *      Prevent userspace races by waiting until the network
7020          *      device is fully setup before sending notifications.
7021          */
7022         if (!dev->rtnl_link_ops ||
7023             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7024                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7025
7026 out:
7027         return ret;
7028
7029 err_uninit:
7030         if (dev->netdev_ops->ndo_uninit)
7031                 dev->netdev_ops->ndo_uninit(dev);
7032         goto out;
7033 }
7034 EXPORT_SYMBOL(register_netdevice);
7035
7036 /**
7037  *      init_dummy_netdev       - init a dummy network device for NAPI
7038  *      @dev: device to init
7039  *
7040  *      This takes a network device structure and initialize the minimum
7041  *      amount of fields so it can be used to schedule NAPI polls without
7042  *      registering a full blown interface. This is to be used by drivers
7043  *      that need to tie several hardware interfaces to a single NAPI
7044  *      poll scheduler due to HW limitations.
7045  */
7046 int init_dummy_netdev(struct net_device *dev)
7047 {
7048         /* Clear everything. Note we don't initialize spinlocks
7049          * are they aren't supposed to be taken by any of the
7050          * NAPI code and this dummy netdev is supposed to be
7051          * only ever used for NAPI polls
7052          */
7053         memset(dev, 0, sizeof(struct net_device));
7054
7055         /* make sure we BUG if trying to hit standard
7056          * register/unregister code path
7057          */
7058         dev->reg_state = NETREG_DUMMY;
7059
7060         /* NAPI wants this */
7061         INIT_LIST_HEAD(&dev->napi_list);
7062
7063         /* a dummy interface is started by default */
7064         set_bit(__LINK_STATE_PRESENT, &dev->state);
7065         set_bit(__LINK_STATE_START, &dev->state);
7066
7067         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7068          * because users of this 'device' dont need to change
7069          * its refcount.
7070          */
7071
7072         return 0;
7073 }
7074 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7075
7076
7077 /**
7078  *      register_netdev - register a network device
7079  *      @dev: device to register
7080  *
7081  *      Take a completed network device structure and add it to the kernel
7082  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7083  *      chain. 0 is returned on success. A negative errno code is returned
7084  *      on a failure to set up the device, or if the name is a duplicate.
7085  *
7086  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7087  *      and expands the device name if you passed a format string to
7088  *      alloc_netdev.
7089  */
7090 int register_netdev(struct net_device *dev)
7091 {
7092         int err;
7093
7094         rtnl_lock();
7095         err = register_netdevice(dev);
7096         rtnl_unlock();
7097         return err;
7098 }
7099 EXPORT_SYMBOL(register_netdev);
7100
7101 int netdev_refcnt_read(const struct net_device *dev)
7102 {
7103         int i, refcnt = 0;
7104
7105         for_each_possible_cpu(i)
7106                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7107         return refcnt;
7108 }
7109 EXPORT_SYMBOL(netdev_refcnt_read);
7110
7111 /**
7112  * netdev_wait_allrefs - wait until all references are gone.
7113  * @dev: target net_device
7114  *
7115  * This is called when unregistering network devices.
7116  *
7117  * Any protocol or device that holds a reference should register
7118  * for netdevice notification, and cleanup and put back the
7119  * reference if they receive an UNREGISTER event.
7120  * We can get stuck here if buggy protocols don't correctly
7121  * call dev_put.
7122  */
7123 static void netdev_wait_allrefs(struct net_device *dev)
7124 {
7125         unsigned long rebroadcast_time, warning_time;
7126         int refcnt;
7127
7128         linkwatch_forget_dev(dev);
7129
7130         rebroadcast_time = warning_time = jiffies;
7131         refcnt = netdev_refcnt_read(dev);
7132
7133         while (refcnt != 0) {
7134                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7135                         rtnl_lock();
7136
7137                         /* Rebroadcast unregister notification */
7138                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7139
7140                         __rtnl_unlock();
7141                         rcu_barrier();
7142                         rtnl_lock();
7143
7144                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7145                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7146                                      &dev->state)) {
7147                                 /* We must not have linkwatch events
7148                                  * pending on unregister. If this
7149                                  * happens, we simply run the queue
7150                                  * unscheduled, resulting in a noop
7151                                  * for this device.
7152                                  */
7153                                 linkwatch_run_queue();
7154                         }
7155
7156                         __rtnl_unlock();
7157
7158                         rebroadcast_time = jiffies;
7159                 }
7160
7161                 msleep(250);
7162
7163                 refcnt = netdev_refcnt_read(dev);
7164
7165                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7166                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7167                                  dev->name, refcnt);
7168                         warning_time = jiffies;
7169                 }
7170         }
7171 }
7172
7173 /* The sequence is:
7174  *
7175  *      rtnl_lock();
7176  *      ...
7177  *      register_netdevice(x1);
7178  *      register_netdevice(x2);
7179  *      ...
7180  *      unregister_netdevice(y1);
7181  *      unregister_netdevice(y2);
7182  *      ...
7183  *      rtnl_unlock();
7184  *      free_netdev(y1);
7185  *      free_netdev(y2);
7186  *
7187  * We are invoked by rtnl_unlock().
7188  * This allows us to deal with problems:
7189  * 1) We can delete sysfs objects which invoke hotplug
7190  *    without deadlocking with linkwatch via keventd.
7191  * 2) Since we run with the RTNL semaphore not held, we can sleep
7192  *    safely in order to wait for the netdev refcnt to drop to zero.
7193  *
7194  * We must not return until all unregister events added during
7195  * the interval the lock was held have been completed.
7196  */
7197 void netdev_run_todo(void)
7198 {
7199         struct list_head list;
7200
7201         /* Snapshot list, allow later requests */
7202         list_replace_init(&net_todo_list, &list);
7203
7204         __rtnl_unlock();
7205
7206
7207         /* Wait for rcu callbacks to finish before next phase */
7208         if (!list_empty(&list))
7209                 rcu_barrier();
7210
7211         while (!list_empty(&list)) {
7212                 struct net_device *dev
7213                         = list_first_entry(&list, struct net_device, todo_list);
7214                 list_del(&dev->todo_list);
7215
7216                 rtnl_lock();
7217                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7218                 __rtnl_unlock();
7219
7220                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7221                         pr_err("network todo '%s' but state %d\n",
7222                                dev->name, dev->reg_state);
7223                         dump_stack();
7224                         continue;
7225                 }
7226
7227                 dev->reg_state = NETREG_UNREGISTERED;
7228
7229                 netdev_wait_allrefs(dev);
7230
7231                 /* paranoia */
7232                 BUG_ON(netdev_refcnt_read(dev));
7233                 BUG_ON(!list_empty(&dev->ptype_all));
7234                 BUG_ON(!list_empty(&dev->ptype_specific));
7235                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7236                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7237                 WARN_ON(dev->dn_ptr);
7238
7239                 if (dev->destructor)
7240                         dev->destructor(dev);
7241
7242                 /* Report a network device has been unregistered */
7243                 rtnl_lock();
7244                 dev_net(dev)->dev_unreg_count--;
7245                 __rtnl_unlock();
7246                 wake_up(&netdev_unregistering_wq);
7247
7248                 /* Free network device */
7249                 kobject_put(&dev->dev.kobj);
7250         }
7251 }
7252
7253 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
7254  * fields in the same order, with only the type differing.
7255  */
7256 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7257                              const struct net_device_stats *netdev_stats)
7258 {
7259 #if BITS_PER_LONG == 64
7260         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
7261         memcpy(stats64, netdev_stats, sizeof(*stats64));
7262 #else
7263         size_t i, n = sizeof(*stats64) / sizeof(u64);
7264         const unsigned long *src = (const unsigned long *)netdev_stats;
7265         u64 *dst = (u64 *)stats64;
7266
7267         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
7268                      sizeof(*stats64) / sizeof(u64));
7269         for (i = 0; i < n; i++)
7270                 dst[i] = src[i];
7271 #endif
7272 }
7273 EXPORT_SYMBOL(netdev_stats_to_stats64);
7274
7275 /**
7276  *      dev_get_stats   - get network device statistics
7277  *      @dev: device to get statistics from
7278  *      @storage: place to store stats
7279  *
7280  *      Get network statistics from device. Return @storage.
7281  *      The device driver may provide its own method by setting
7282  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7283  *      otherwise the internal statistics structure is used.
7284  */
7285 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7286                                         struct rtnl_link_stats64 *storage)
7287 {
7288         const struct net_device_ops *ops = dev->netdev_ops;
7289
7290         if (ops->ndo_get_stats64) {
7291                 memset(storage, 0, sizeof(*storage));
7292                 ops->ndo_get_stats64(dev, storage);
7293         } else if (ops->ndo_get_stats) {
7294                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7295         } else {
7296                 netdev_stats_to_stats64(storage, &dev->stats);
7297         }
7298         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7299         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7300         return storage;
7301 }
7302 EXPORT_SYMBOL(dev_get_stats);
7303
7304 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7305 {
7306         struct netdev_queue *queue = dev_ingress_queue(dev);
7307
7308 #ifdef CONFIG_NET_CLS_ACT
7309         if (queue)
7310                 return queue;
7311         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7312         if (!queue)
7313                 return NULL;
7314         netdev_init_one_queue(dev, queue, NULL);
7315         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7316         queue->qdisc_sleeping = &noop_qdisc;
7317         rcu_assign_pointer(dev->ingress_queue, queue);
7318 #endif
7319         return queue;
7320 }
7321
7322 static const struct ethtool_ops default_ethtool_ops;
7323
7324 void netdev_set_default_ethtool_ops(struct net_device *dev,
7325                                     const struct ethtool_ops *ops)
7326 {
7327         if (dev->ethtool_ops == &default_ethtool_ops)
7328                 dev->ethtool_ops = ops;
7329 }
7330 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7331
7332 void netdev_freemem(struct net_device *dev)
7333 {
7334         char *addr = (char *)dev - dev->padded;
7335
7336         kvfree(addr);
7337 }
7338
7339 /**
7340  *      alloc_netdev_mqs - allocate network device
7341  *      @sizeof_priv:           size of private data to allocate space for
7342  *      @name:                  device name format string
7343  *      @name_assign_type:      origin of device name
7344  *      @setup:                 callback to initialize device
7345  *      @txqs:                  the number of TX subqueues to allocate
7346  *      @rxqs:                  the number of RX subqueues to allocate
7347  *
7348  *      Allocates a struct net_device with private data area for driver use
7349  *      and performs basic initialization.  Also allocates subqueue structs
7350  *      for each queue on the device.
7351  */
7352 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7353                 unsigned char name_assign_type,
7354                 void (*setup)(struct net_device *),
7355                 unsigned int txqs, unsigned int rxqs)
7356 {
7357         struct net_device *dev;
7358         size_t alloc_size;
7359         struct net_device *p;
7360
7361         BUG_ON(strlen(name) >= sizeof(dev->name));
7362
7363         if (txqs < 1) {
7364                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7365                 return NULL;
7366         }
7367
7368 #ifdef CONFIG_SYSFS
7369         if (rxqs < 1) {
7370                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7371                 return NULL;
7372         }
7373 #endif
7374
7375         alloc_size = sizeof(struct net_device);
7376         if (sizeof_priv) {
7377                 /* ensure 32-byte alignment of private area */
7378                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7379                 alloc_size += sizeof_priv;
7380         }
7381         /* ensure 32-byte alignment of whole construct */
7382         alloc_size += NETDEV_ALIGN - 1;
7383
7384         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7385         if (!p)
7386                 p = vzalloc(alloc_size);
7387         if (!p)
7388                 return NULL;
7389
7390         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7391         dev->padded = (char *)dev - (char *)p;
7392
7393         dev->pcpu_refcnt = alloc_percpu(int);
7394         if (!dev->pcpu_refcnt)
7395                 goto free_dev;
7396
7397         if (dev_addr_init(dev))
7398                 goto free_pcpu;
7399
7400         dev_mc_init(dev);
7401         dev_uc_init(dev);
7402
7403         dev_net_set(dev, &init_net);
7404
7405         dev->gso_max_size = GSO_MAX_SIZE;
7406         dev->gso_max_segs = GSO_MAX_SEGS;
7407         dev->gso_min_segs = 0;
7408
7409         INIT_LIST_HEAD(&dev->napi_list);
7410         INIT_LIST_HEAD(&dev->unreg_list);
7411         INIT_LIST_HEAD(&dev->close_list);
7412         INIT_LIST_HEAD(&dev->link_watch_list);
7413         INIT_LIST_HEAD(&dev->adj_list.upper);
7414         INIT_LIST_HEAD(&dev->adj_list.lower);
7415         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7416         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7417         INIT_LIST_HEAD(&dev->ptype_all);
7418         INIT_LIST_HEAD(&dev->ptype_specific);
7419         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7420         setup(dev);
7421
7422         if (!dev->tx_queue_len)
7423                 dev->priv_flags |= IFF_NO_QUEUE;
7424
7425         dev->num_tx_queues = txqs;
7426         dev->real_num_tx_queues = txqs;
7427         if (netif_alloc_netdev_queues(dev))
7428                 goto free_all;
7429
7430 #ifdef CONFIG_SYSFS
7431         dev->num_rx_queues = rxqs;
7432         dev->real_num_rx_queues = rxqs;
7433         if (netif_alloc_rx_queues(dev))
7434                 goto free_all;
7435 #endif
7436
7437         strcpy(dev->name, name);
7438         dev->name_assign_type = name_assign_type;
7439         dev->group = INIT_NETDEV_GROUP;
7440         if (!dev->ethtool_ops)
7441                 dev->ethtool_ops = &default_ethtool_ops;
7442
7443         nf_hook_ingress_init(dev);
7444
7445         return dev;
7446
7447 free_all:
7448         free_netdev(dev);
7449         return NULL;
7450
7451 free_pcpu:
7452         free_percpu(dev->pcpu_refcnt);
7453 free_dev:
7454         netdev_freemem(dev);
7455         return NULL;
7456 }
7457 EXPORT_SYMBOL(alloc_netdev_mqs);
7458
7459 /**
7460  *      free_netdev - free network device
7461  *      @dev: device
7462  *
7463  *      This function does the last stage of destroying an allocated device
7464  *      interface. The reference to the device object is released.
7465  *      If this is the last reference then it will be freed.
7466  *      Must be called in process context.
7467  */
7468 void free_netdev(struct net_device *dev)
7469 {
7470         struct napi_struct *p, *n;
7471
7472         might_sleep();
7473         netif_free_tx_queues(dev);
7474 #ifdef CONFIG_SYSFS
7475         kvfree(dev->_rx);
7476 #endif
7477
7478         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7479
7480         /* Flush device addresses */
7481         dev_addr_flush(dev);
7482
7483         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7484                 netif_napi_del(p);
7485
7486         free_percpu(dev->pcpu_refcnt);
7487         dev->pcpu_refcnt = NULL;
7488
7489         /*  Compatibility with error handling in drivers */
7490         if (dev->reg_state == NETREG_UNINITIALIZED) {
7491                 netdev_freemem(dev);
7492                 return;
7493         }
7494
7495         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7496         dev->reg_state = NETREG_RELEASED;
7497
7498         /* will free via device release */
7499         put_device(&dev->dev);
7500 }
7501 EXPORT_SYMBOL(free_netdev);
7502
7503 /**
7504  *      synchronize_net -  Synchronize with packet receive processing
7505  *
7506  *      Wait for packets currently being received to be done.
7507  *      Does not block later packets from starting.
7508  */
7509 void synchronize_net(void)
7510 {
7511         might_sleep();
7512         if (rtnl_is_locked())
7513                 synchronize_rcu_expedited();
7514         else
7515                 synchronize_rcu();
7516 }
7517 EXPORT_SYMBOL(synchronize_net);
7518
7519 /**
7520  *      unregister_netdevice_queue - remove device from the kernel
7521  *      @dev: device
7522  *      @head: list
7523  *
7524  *      This function shuts down a device interface and removes it
7525  *      from the kernel tables.
7526  *      If head not NULL, device is queued to be unregistered later.
7527  *
7528  *      Callers must hold the rtnl semaphore.  You may want
7529  *      unregister_netdev() instead of this.
7530  */
7531
7532 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7533 {
7534         ASSERT_RTNL();
7535
7536         if (head) {
7537                 list_move_tail(&dev->unreg_list, head);
7538         } else {
7539                 rollback_registered(dev);
7540                 /* Finish processing unregister after unlock */
7541                 net_set_todo(dev);
7542         }
7543 }
7544 EXPORT_SYMBOL(unregister_netdevice_queue);
7545
7546 /**
7547  *      unregister_netdevice_many - unregister many devices
7548  *      @head: list of devices
7549  *
7550  *  Note: As most callers use a stack allocated list_head,
7551  *  we force a list_del() to make sure stack wont be corrupted later.
7552  */
7553 void unregister_netdevice_many(struct list_head *head)
7554 {
7555         struct net_device *dev;
7556
7557         if (!list_empty(head)) {
7558                 rollback_registered_many(head);
7559                 list_for_each_entry(dev, head, unreg_list)
7560                         net_set_todo(dev);
7561                 list_del(head);
7562         }
7563 }
7564 EXPORT_SYMBOL(unregister_netdevice_many);
7565
7566 /**
7567  *      unregister_netdev - remove device from the kernel
7568  *      @dev: device
7569  *
7570  *      This function shuts down a device interface and removes it
7571  *      from the kernel tables.
7572  *
7573  *      This is just a wrapper for unregister_netdevice that takes
7574  *      the rtnl semaphore.  In general you want to use this and not
7575  *      unregister_netdevice.
7576  */
7577 void unregister_netdev(struct net_device *dev)
7578 {
7579         rtnl_lock();
7580         unregister_netdevice(dev);
7581         rtnl_unlock();
7582 }
7583 EXPORT_SYMBOL(unregister_netdev);
7584
7585 /**
7586  *      dev_change_net_namespace - move device to different nethost namespace
7587  *      @dev: device
7588  *      @net: network namespace
7589  *      @pat: If not NULL name pattern to try if the current device name
7590  *            is already taken in the destination network namespace.
7591  *
7592  *      This function shuts down a device interface and moves it
7593  *      to a new network namespace. On success 0 is returned, on
7594  *      a failure a netagive errno code is returned.
7595  *
7596  *      Callers must hold the rtnl semaphore.
7597  */
7598
7599 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7600 {
7601         int err;
7602
7603         ASSERT_RTNL();
7604
7605         /* Don't allow namespace local devices to be moved. */
7606         err = -EINVAL;
7607         if (dev->features & NETIF_F_NETNS_LOCAL)
7608                 goto out;
7609
7610         /* Ensure the device has been registrered */
7611         if (dev->reg_state != NETREG_REGISTERED)
7612                 goto out;
7613
7614         /* Get out if there is nothing todo */
7615         err = 0;
7616         if (net_eq(dev_net(dev), net))
7617                 goto out;
7618
7619         /* Pick the destination device name, and ensure
7620          * we can use it in the destination network namespace.
7621          */
7622         err = -EEXIST;
7623         if (__dev_get_by_name(net, dev->name)) {
7624                 /* We get here if we can't use the current device name */
7625                 if (!pat)
7626                         goto out;
7627                 if (dev_get_valid_name(net, dev, pat) < 0)
7628                         goto out;
7629         }
7630
7631         /*
7632          * And now a mini version of register_netdevice unregister_netdevice.
7633          */
7634
7635         /* If device is running close it first. */
7636         dev_close(dev);
7637
7638         /* And unlink it from device chain */
7639         err = -ENODEV;
7640         unlist_netdevice(dev);
7641
7642         synchronize_net();
7643
7644         /* Shutdown queueing discipline. */
7645         dev_shutdown(dev);
7646
7647         /* Notify protocols, that we are about to destroy
7648            this device. They should clean all the things.
7649
7650            Note that dev->reg_state stays at NETREG_REGISTERED.
7651            This is wanted because this way 8021q and macvlan know
7652            the device is just moving and can keep their slaves up.
7653         */
7654         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7655         rcu_barrier();
7656         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7657         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7658
7659         /*
7660          *      Flush the unicast and multicast chains
7661          */
7662         dev_uc_flush(dev);
7663         dev_mc_flush(dev);
7664
7665         /* Send a netdev-removed uevent to the old namespace */
7666         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7667         netdev_adjacent_del_links(dev);
7668
7669         /* Actually switch the network namespace */
7670         dev_net_set(dev, net);
7671
7672         /* If there is an ifindex conflict assign a new one */
7673         if (__dev_get_by_index(net, dev->ifindex))
7674                 dev->ifindex = dev_new_index(net);
7675
7676         /* Send a netdev-add uevent to the new namespace */
7677         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7678         netdev_adjacent_add_links(dev);
7679
7680         /* Fixup kobjects */
7681         err = device_rename(&dev->dev, dev->name);
7682         WARN_ON(err);
7683
7684         /* Add the device back in the hashes */
7685         list_netdevice(dev);
7686
7687         /* Notify protocols, that a new device appeared. */
7688         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7689
7690         /*
7691          *      Prevent userspace races by waiting until the network
7692          *      device is fully setup before sending notifications.
7693          */
7694         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7695
7696         synchronize_net();
7697         err = 0;
7698 out:
7699         return err;
7700 }
7701 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7702
7703 static int dev_cpu_callback(struct notifier_block *nfb,
7704                             unsigned long action,
7705                             void *ocpu)
7706 {
7707         struct sk_buff **list_skb;
7708         struct sk_buff *skb;
7709         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7710         struct softnet_data *sd, *oldsd;
7711
7712         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7713                 return NOTIFY_OK;
7714
7715         local_irq_disable();
7716         cpu = smp_processor_id();
7717         sd = &per_cpu(softnet_data, cpu);
7718         oldsd = &per_cpu(softnet_data, oldcpu);
7719
7720         /* Find end of our completion_queue. */
7721         list_skb = &sd->completion_queue;
7722         while (*list_skb)
7723                 list_skb = &(*list_skb)->next;
7724         /* Append completion queue from offline CPU. */
7725         *list_skb = oldsd->completion_queue;
7726         oldsd->completion_queue = NULL;
7727
7728         /* Append output queue from offline CPU. */
7729         if (oldsd->output_queue) {
7730                 *sd->output_queue_tailp = oldsd->output_queue;
7731                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7732                 oldsd->output_queue = NULL;
7733                 oldsd->output_queue_tailp = &oldsd->output_queue;
7734         }
7735         /* Append NAPI poll list from offline CPU, with one exception :
7736          * process_backlog() must be called by cpu owning percpu backlog.
7737          * We properly handle process_queue & input_pkt_queue later.
7738          */
7739         while (!list_empty(&oldsd->poll_list)) {
7740                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7741                                                             struct napi_struct,
7742                                                             poll_list);
7743
7744                 list_del_init(&napi->poll_list);
7745                 if (napi->poll == process_backlog)
7746                         napi->state = 0;
7747                 else
7748                         ____napi_schedule(sd, napi);
7749         }
7750
7751         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7752         local_irq_enable();
7753
7754         /* Process offline CPU's input_pkt_queue */
7755         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7756                 netif_rx_ni(skb);
7757                 input_queue_head_incr(oldsd);
7758         }
7759         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7760                 netif_rx_ni(skb);
7761                 input_queue_head_incr(oldsd);
7762         }
7763
7764         return NOTIFY_OK;
7765 }
7766
7767
7768 /**
7769  *      netdev_increment_features - increment feature set by one
7770  *      @all: current feature set
7771  *      @one: new feature set
7772  *      @mask: mask feature set
7773  *
7774  *      Computes a new feature set after adding a device with feature set
7775  *      @one to the master device with current feature set @all.  Will not
7776  *      enable anything that is off in @mask. Returns the new feature set.
7777  */
7778 netdev_features_t netdev_increment_features(netdev_features_t all,
7779         netdev_features_t one, netdev_features_t mask)
7780 {
7781         if (mask & NETIF_F_HW_CSUM)
7782                 mask |= NETIF_F_CSUM_MASK;
7783         mask |= NETIF_F_VLAN_CHALLENGED;
7784
7785         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7786         all &= one | ~NETIF_F_ALL_FOR_ALL;
7787
7788         /* If one device supports hw checksumming, set for all. */
7789         if (all & NETIF_F_HW_CSUM)
7790                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7791
7792         return all;
7793 }
7794 EXPORT_SYMBOL(netdev_increment_features);
7795
7796 static struct hlist_head * __net_init netdev_create_hash(void)
7797 {
7798         int i;
7799         struct hlist_head *hash;
7800
7801         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7802         if (hash != NULL)
7803                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7804                         INIT_HLIST_HEAD(&hash[i]);
7805
7806         return hash;
7807 }
7808
7809 /* Initialize per network namespace state */
7810 static int __net_init netdev_init(struct net *net)
7811 {
7812         if (net != &init_net)
7813                 INIT_LIST_HEAD(&net->dev_base_head);
7814
7815         net->dev_name_head = netdev_create_hash();
7816         if (net->dev_name_head == NULL)
7817                 goto err_name;
7818
7819         net->dev_index_head = netdev_create_hash();
7820         if (net->dev_index_head == NULL)
7821                 goto err_idx;
7822
7823         return 0;
7824
7825 err_idx:
7826         kfree(net->dev_name_head);
7827 err_name:
7828         return -ENOMEM;
7829 }
7830
7831 /**
7832  *      netdev_drivername - network driver for the device
7833  *      @dev: network device
7834  *
7835  *      Determine network driver for device.
7836  */
7837 const char *netdev_drivername(const struct net_device *dev)
7838 {
7839         const struct device_driver *driver;
7840         const struct device *parent;
7841         const char *empty = "";
7842
7843         parent = dev->dev.parent;
7844         if (!parent)
7845                 return empty;
7846
7847         driver = parent->driver;
7848         if (driver && driver->name)
7849                 return driver->name;
7850         return empty;
7851 }
7852
7853 static void __netdev_printk(const char *level, const struct net_device *dev,
7854                             struct va_format *vaf)
7855 {
7856         if (dev && dev->dev.parent) {
7857                 dev_printk_emit(level[1] - '0',
7858                                 dev->dev.parent,
7859                                 "%s %s %s%s: %pV",
7860                                 dev_driver_string(dev->dev.parent),
7861                                 dev_name(dev->dev.parent),
7862                                 netdev_name(dev), netdev_reg_state(dev),
7863                                 vaf);
7864         } else if (dev) {
7865                 printk("%s%s%s: %pV",
7866                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7867         } else {
7868                 printk("%s(NULL net_device): %pV", level, vaf);
7869         }
7870 }
7871
7872 void netdev_printk(const char *level, const struct net_device *dev,
7873                    const char *format, ...)
7874 {
7875         struct va_format vaf;
7876         va_list args;
7877
7878         va_start(args, format);
7879
7880         vaf.fmt = format;
7881         vaf.va = &args;
7882
7883         __netdev_printk(level, dev, &vaf);
7884
7885         va_end(args);
7886 }
7887 EXPORT_SYMBOL(netdev_printk);
7888
7889 #define define_netdev_printk_level(func, level)                 \
7890 void func(const struct net_device *dev, const char *fmt, ...)   \
7891 {                                                               \
7892         struct va_format vaf;                                   \
7893         va_list args;                                           \
7894                                                                 \
7895         va_start(args, fmt);                                    \
7896                                                                 \
7897         vaf.fmt = fmt;                                          \
7898         vaf.va = &args;                                         \
7899                                                                 \
7900         __netdev_printk(level, dev, &vaf);                      \
7901                                                                 \
7902         va_end(args);                                           \
7903 }                                                               \
7904 EXPORT_SYMBOL(func);
7905
7906 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7907 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7908 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7909 define_netdev_printk_level(netdev_err, KERN_ERR);
7910 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7911 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7912 define_netdev_printk_level(netdev_info, KERN_INFO);
7913
7914 static void __net_exit netdev_exit(struct net *net)
7915 {
7916         kfree(net->dev_name_head);
7917         kfree(net->dev_index_head);
7918 }
7919
7920 static struct pernet_operations __net_initdata netdev_net_ops = {
7921         .init = netdev_init,
7922         .exit = netdev_exit,
7923 };
7924
7925 static void __net_exit default_device_exit(struct net *net)
7926 {
7927         struct net_device *dev, *aux;
7928         /*
7929          * Push all migratable network devices back to the
7930          * initial network namespace
7931          */
7932         rtnl_lock();
7933         for_each_netdev_safe(net, dev, aux) {
7934                 int err;
7935                 char fb_name[IFNAMSIZ];
7936
7937                 /* Ignore unmoveable devices (i.e. loopback) */
7938                 if (dev->features & NETIF_F_NETNS_LOCAL)
7939                         continue;
7940
7941                 /* Leave virtual devices for the generic cleanup */
7942                 if (dev->rtnl_link_ops)
7943                         continue;
7944
7945                 /* Push remaining network devices to init_net */
7946                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7947                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7948                 if (err) {
7949                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7950                                  __func__, dev->name, err);
7951                         BUG();
7952                 }
7953         }
7954         rtnl_unlock();
7955 }
7956
7957 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7958 {
7959         /* Return with the rtnl_lock held when there are no network
7960          * devices unregistering in any network namespace in net_list.
7961          */
7962         struct net *net;
7963         bool unregistering;
7964         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7965
7966         add_wait_queue(&netdev_unregistering_wq, &wait);
7967         for (;;) {
7968                 unregistering = false;
7969                 rtnl_lock();
7970                 list_for_each_entry(net, net_list, exit_list) {
7971                         if (net->dev_unreg_count > 0) {
7972                                 unregistering = true;
7973                                 break;
7974                         }
7975                 }
7976                 if (!unregistering)
7977                         break;
7978                 __rtnl_unlock();
7979
7980                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7981         }
7982         remove_wait_queue(&netdev_unregistering_wq, &wait);
7983 }
7984
7985 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7986 {
7987         /* At exit all network devices most be removed from a network
7988          * namespace.  Do this in the reverse order of registration.
7989          * Do this across as many network namespaces as possible to
7990          * improve batching efficiency.
7991          */
7992         struct net_device *dev;
7993         struct net *net;
7994         LIST_HEAD(dev_kill_list);
7995
7996         /* To prevent network device cleanup code from dereferencing
7997          * loopback devices or network devices that have been freed
7998          * wait here for all pending unregistrations to complete,
7999          * before unregistring the loopback device and allowing the
8000          * network namespace be freed.
8001          *
8002          * The netdev todo list containing all network devices
8003          * unregistrations that happen in default_device_exit_batch
8004          * will run in the rtnl_unlock() at the end of
8005          * default_device_exit_batch.
8006          */
8007         rtnl_lock_unregistering(net_list);
8008         list_for_each_entry(net, net_list, exit_list) {
8009                 for_each_netdev_reverse(net, dev) {
8010                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8011                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8012                         else
8013                                 unregister_netdevice_queue(dev, &dev_kill_list);
8014                 }
8015         }
8016         unregister_netdevice_many(&dev_kill_list);
8017         rtnl_unlock();
8018 }
8019
8020 static struct pernet_operations __net_initdata default_device_ops = {
8021         .exit = default_device_exit,
8022         .exit_batch = default_device_exit_batch,
8023 };
8024
8025 /*
8026  *      Initialize the DEV module. At boot time this walks the device list and
8027  *      unhooks any devices that fail to initialise (normally hardware not
8028  *      present) and leaves us with a valid list of present and active devices.
8029  *
8030  */
8031
8032 /*
8033  *       This is called single threaded during boot, so no need
8034  *       to take the rtnl semaphore.
8035  */
8036 static int __init net_dev_init(void)
8037 {
8038         int i, rc = -ENOMEM;
8039
8040         BUG_ON(!dev_boot_phase);
8041
8042         if (dev_proc_init())
8043                 goto out;
8044
8045         if (netdev_kobject_init())
8046                 goto out;
8047
8048         INIT_LIST_HEAD(&ptype_all);
8049         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8050                 INIT_LIST_HEAD(&ptype_base[i]);
8051
8052         INIT_LIST_HEAD(&offload_base);
8053
8054         if (register_pernet_subsys(&netdev_net_ops))
8055                 goto out;
8056
8057         /*
8058          *      Initialise the packet receive queues.
8059          */
8060
8061         for_each_possible_cpu(i) {
8062                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8063
8064                 skb_queue_head_init(&sd->input_pkt_queue);
8065                 skb_queue_head_init(&sd->process_queue);
8066                 INIT_LIST_HEAD(&sd->poll_list);
8067                 sd->output_queue_tailp = &sd->output_queue;
8068 #ifdef CONFIG_RPS
8069                 sd->csd.func = rps_trigger_softirq;
8070                 sd->csd.info = sd;
8071                 sd->cpu = i;
8072 #endif
8073
8074                 sd->backlog.poll = process_backlog;
8075                 sd->backlog.weight = weight_p;
8076         }
8077
8078         dev_boot_phase = 0;
8079
8080         /* The loopback device is special if any other network devices
8081          * is present in a network namespace the loopback device must
8082          * be present. Since we now dynamically allocate and free the
8083          * loopback device ensure this invariant is maintained by
8084          * keeping the loopback device as the first device on the
8085          * list of network devices.  Ensuring the loopback devices
8086          * is the first device that appears and the last network device
8087          * that disappears.
8088          */
8089         if (register_pernet_device(&loopback_net_ops))
8090                 goto out;
8091
8092         if (register_pernet_device(&default_device_ops))
8093                 goto out;
8094
8095         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8096         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8097
8098         hotcpu_notifier(dev_cpu_callback, 0);
8099         dst_subsys_init();
8100         rc = 0;
8101 out:
8102         return rc;
8103 }
8104
8105 subsys_initcall(net_dev_init);