fs: Replace current_fs_time() with current_time()
[cascardo/linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
144
145 #include "net-sysfs.h"
146
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;       /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161                                          struct net_device *dev,
162                                          struct netdev_notifier_info *info);
163
164 /*
165  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166  * semaphore.
167  *
168  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169  *
170  * Writers must hold the rtnl semaphore while they loop through the
171  * dev_base_head list, and hold dev_base_lock for writing when they do the
172  * actual updates.  This allows pure readers to access the list even
173  * while a writer is preparing to update it.
174  *
175  * To put it another way, dev_base_lock is held for writing only to
176  * protect against pure readers; the rtnl semaphore provides the
177  * protection against other writers.
178  *
179  * See, for example usages, register_netdevice() and
180  * unregister_netdevice(), which must be called with the rtnl
181  * semaphore held.
182  */
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
185
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
188
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191
192 static seqcount_t devnet_rename_seq;
193
194 static inline void dev_base_seq_inc(struct net *net)
195 {
196         while (++net->dev_base_seq == 0);
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214         spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228         struct net *net = dev_net(dev);
229
230         ASSERT_RTNL();
231
232         write_lock_bh(&dev_base_lock);
233         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235         hlist_add_head_rcu(&dev->index_hlist,
236                            dev_index_hash(net, dev->ifindex));
237         write_unlock_bh(&dev_base_lock);
238
239         dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247         ASSERT_RTNL();
248
249         /* Unlink dev from the device chain */
250         write_lock_bh(&dev_base_lock);
251         list_del_rcu(&dev->dev_list);
252         hlist_del_rcu(&dev->name_hlist);
253         hlist_del_rcu(&dev->index_hlist);
254         write_unlock_bh(&dev_base_lock);
255
256         dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260  *      Our notifier list
261  */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266  *      Device drivers call our routines to queue packets here. We empty the
267  *      queue in the local softnet handler.
268  */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276  * according to dev->type
277  */
278 static const unsigned short netdev_lock_type[] =
279         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317         int i;
318
319         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320                 if (netdev_lock_type[i] == dev_type)
321                         return i;
322         /* the last key is used by default */
323         return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327                                                  unsigned short dev_type)
328 {
329         int i;
330
331         i = netdev_lock_pos(dev_type);
332         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333                                    netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338         int i;
339
340         i = netdev_lock_pos(dev->type);
341         lockdep_set_class_and_name(&dev->addr_list_lock,
342                                    &netdev_addr_lock_key[i],
343                                    netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347                                                  unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357                 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362  *      Add a protocol ID to the list. Now that the input handler is
363  *      smarter we can dispense with all the messy stuff that used to be
364  *      here.
365  *
366  *      BEWARE!!! Protocol handlers, mangling input packets,
367  *      MUST BE last in hash buckets and checking protocol handlers
368  *      MUST start from promiscuous ptype_all chain in net_bh.
369  *      It is true now, do not change it.
370  *      Explanation follows: if protocol handler, mangling packet, will
371  *      be the first on list, it is not able to sense, that packet
372  *      is cloned and should be copied-on-write, so that it will
373  *      change it and subsequent readers will get broken packet.
374  *                                                      --ANK (980803)
375  */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379         if (pt->type == htons(ETH_P_ALL))
380                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381         else
382                 return pt->dev ? &pt->dev->ptype_specific :
383                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387  *      dev_add_pack - add packet handler
388  *      @pt: packet type declaration
389  *
390  *      Add a protocol handler to the networking stack. The passed &packet_type
391  *      is linked into kernel lists and may not be freed until it has been
392  *      removed from the kernel lists.
393  *
394  *      This call does not sleep therefore it can not
395  *      guarantee all CPU's that are in middle of receiving packets
396  *      will see the new packet type (until the next received packet).
397  */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401         struct list_head *head = ptype_head(pt);
402
403         spin_lock(&ptype_lock);
404         list_add_rcu(&pt->list, head);
405         spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410  *      __dev_remove_pack        - remove packet handler
411  *      @pt: packet type declaration
412  *
413  *      Remove a protocol handler that was previously added to the kernel
414  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
415  *      from the kernel lists and can be freed or reused once this function
416  *      returns.
417  *
418  *      The packet type might still be in use by receivers
419  *      and must not be freed until after all the CPU's have gone
420  *      through a quiescent state.
421  */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424         struct list_head *head = ptype_head(pt);
425         struct packet_type *pt1;
426
427         spin_lock(&ptype_lock);
428
429         list_for_each_entry(pt1, head, list) {
430                 if (pt == pt1) {
431                         list_del_rcu(&pt->list);
432                         goto out;
433                 }
434         }
435
436         pr_warn("dev_remove_pack: %p not found\n", pt);
437 out:
438         spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443  *      dev_remove_pack  - remove packet handler
444  *      @pt: packet type declaration
445  *
446  *      Remove a protocol handler that was previously added to the kernel
447  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
448  *      from the kernel lists and can be freed or reused once this function
449  *      returns.
450  *
451  *      This call sleeps to guarantee that no CPU is looking at the packet
452  *      type after return.
453  */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456         __dev_remove_pack(pt);
457
458         synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462
463 /**
464  *      dev_add_offload - register offload handlers
465  *      @po: protocol offload declaration
466  *
467  *      Add protocol offload handlers to the networking stack. The passed
468  *      &proto_offload is linked into kernel lists and may not be freed until
469  *      it has been removed from the kernel lists.
470  *
471  *      This call does not sleep therefore it can not
472  *      guarantee all CPU's that are in middle of receiving packets
473  *      will see the new offload handlers (until the next received packet).
474  */
475 void dev_add_offload(struct packet_offload *po)
476 {
477         struct packet_offload *elem;
478
479         spin_lock(&offload_lock);
480         list_for_each_entry(elem, &offload_base, list) {
481                 if (po->priority < elem->priority)
482                         break;
483         }
484         list_add_rcu(&po->list, elem->list.prev);
485         spin_unlock(&offload_lock);
486 }
487 EXPORT_SYMBOL(dev_add_offload);
488
489 /**
490  *      __dev_remove_offload     - remove offload handler
491  *      @po: packet offload declaration
492  *
493  *      Remove a protocol offload handler that was previously added to the
494  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
495  *      is removed from the kernel lists and can be freed or reused once this
496  *      function returns.
497  *
498  *      The packet type might still be in use by receivers
499  *      and must not be freed until after all the CPU's have gone
500  *      through a quiescent state.
501  */
502 static void __dev_remove_offload(struct packet_offload *po)
503 {
504         struct list_head *head = &offload_base;
505         struct packet_offload *po1;
506
507         spin_lock(&offload_lock);
508
509         list_for_each_entry(po1, head, list) {
510                 if (po == po1) {
511                         list_del_rcu(&po->list);
512                         goto out;
513                 }
514         }
515
516         pr_warn("dev_remove_offload: %p not found\n", po);
517 out:
518         spin_unlock(&offload_lock);
519 }
520
521 /**
522  *      dev_remove_offload       - remove packet offload handler
523  *      @po: packet offload declaration
524  *
525  *      Remove a packet offload handler that was previously added to the kernel
526  *      offload handlers by dev_add_offload(). The passed &offload_type is
527  *      removed from the kernel lists and can be freed or reused once this
528  *      function returns.
529  *
530  *      This call sleeps to guarantee that no CPU is looking at the packet
531  *      type after return.
532  */
533 void dev_remove_offload(struct packet_offload *po)
534 {
535         __dev_remove_offload(po);
536
537         synchronize_net();
538 }
539 EXPORT_SYMBOL(dev_remove_offload);
540
541 /******************************************************************************
542
543                       Device Boot-time Settings Routines
544
545 *******************************************************************************/
546
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550 /**
551  *      netdev_boot_setup_add   - add new setup entry
552  *      @name: name of the device
553  *      @map: configured settings for the device
554  *
555  *      Adds new setup entry to the dev_boot_setup list.  The function
556  *      returns 0 on error and 1 on success.  This is a generic routine to
557  *      all netdevices.
558  */
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 {
561         struct netdev_boot_setup *s;
562         int i;
563
564         s = dev_boot_setup;
565         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567                         memset(s[i].name, 0, sizeof(s[i].name));
568                         strlcpy(s[i].name, name, IFNAMSIZ);
569                         memcpy(&s[i].map, map, sizeof(s[i].map));
570                         break;
571                 }
572         }
573
574         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575 }
576
577 /**
578  *      netdev_boot_setup_check - check boot time settings
579  *      @dev: the netdevice
580  *
581  *      Check boot time settings for the device.
582  *      The found settings are set for the device to be used
583  *      later in the device probing.
584  *      Returns 0 if no settings found, 1 if they are.
585  */
586 int netdev_boot_setup_check(struct net_device *dev)
587 {
588         struct netdev_boot_setup *s = dev_boot_setup;
589         int i;
590
591         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593                     !strcmp(dev->name, s[i].name)) {
594                         dev->irq        = s[i].map.irq;
595                         dev->base_addr  = s[i].map.base_addr;
596                         dev->mem_start  = s[i].map.mem_start;
597                         dev->mem_end    = s[i].map.mem_end;
598                         return 1;
599                 }
600         }
601         return 0;
602 }
603 EXPORT_SYMBOL(netdev_boot_setup_check);
604
605
606 /**
607  *      netdev_boot_base        - get address from boot time settings
608  *      @prefix: prefix for network device
609  *      @unit: id for network device
610  *
611  *      Check boot time settings for the base address of device.
612  *      The found settings are set for the device to be used
613  *      later in the device probing.
614  *      Returns 0 if no settings found.
615  */
616 unsigned long netdev_boot_base(const char *prefix, int unit)
617 {
618         const struct netdev_boot_setup *s = dev_boot_setup;
619         char name[IFNAMSIZ];
620         int i;
621
622         sprintf(name, "%s%d", prefix, unit);
623
624         /*
625          * If device already registered then return base of 1
626          * to indicate not to probe for this interface
627          */
628         if (__dev_get_by_name(&init_net, name))
629                 return 1;
630
631         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632                 if (!strcmp(name, s[i].name))
633                         return s[i].map.base_addr;
634         return 0;
635 }
636
637 /*
638  * Saves at boot time configured settings for any netdevice.
639  */
640 int __init netdev_boot_setup(char *str)
641 {
642         int ints[5];
643         struct ifmap map;
644
645         str = get_options(str, ARRAY_SIZE(ints), ints);
646         if (!str || !*str)
647                 return 0;
648
649         /* Save settings */
650         memset(&map, 0, sizeof(map));
651         if (ints[0] > 0)
652                 map.irq = ints[1];
653         if (ints[0] > 1)
654                 map.base_addr = ints[2];
655         if (ints[0] > 2)
656                 map.mem_start = ints[3];
657         if (ints[0] > 3)
658                 map.mem_end = ints[4];
659
660         /* Add new entry to the list */
661         return netdev_boot_setup_add(str, &map);
662 }
663
664 __setup("netdev=", netdev_boot_setup);
665
666 /*******************************************************************************
667
668                             Device Interface Subroutines
669
670 *******************************************************************************/
671
672 /**
673  *      dev_get_iflink  - get 'iflink' value of a interface
674  *      @dev: targeted interface
675  *
676  *      Indicates the ifindex the interface is linked to.
677  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
678  */
679
680 int dev_get_iflink(const struct net_device *dev)
681 {
682         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683                 return dev->netdev_ops->ndo_get_iflink(dev);
684
685         return dev->ifindex;
686 }
687 EXPORT_SYMBOL(dev_get_iflink);
688
689 /**
690  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
691  *      @dev: targeted interface
692  *      @skb: The packet.
693  *
694  *      For better visibility of tunnel traffic OVS needs to retrieve
695  *      egress tunnel information for a packet. Following API allows
696  *      user to get this info.
697  */
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 {
700         struct ip_tunnel_info *info;
701
702         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
703                 return -EINVAL;
704
705         info = skb_tunnel_info_unclone(skb);
706         if (!info)
707                 return -ENOMEM;
708         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709                 return -EINVAL;
710
711         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 }
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
715 /**
716  *      __dev_get_by_name       - find a device by its name
717  *      @net: the applicable net namespace
718  *      @name: name to find
719  *
720  *      Find an interface by name. Must be called under RTNL semaphore
721  *      or @dev_base_lock. If the name is found a pointer to the device
722  *      is returned. If the name is not found then %NULL is returned. The
723  *      reference counters are not incremented so the caller must be
724  *      careful with locks.
725  */
726
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 {
729         struct net_device *dev;
730         struct hlist_head *head = dev_name_hash(net, name);
731
732         hlist_for_each_entry(dev, head, name_hlist)
733                 if (!strncmp(dev->name, name, IFNAMSIZ))
734                         return dev;
735
736         return NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739
740 /**
741  *      dev_get_by_name_rcu     - find a device by its name
742  *      @net: the applicable net namespace
743  *      @name: name to find
744  *
745  *      Find an interface by name.
746  *      If the name is found a pointer to the device is returned.
747  *      If the name is not found then %NULL is returned.
748  *      The reference counters are not incremented so the caller must be
749  *      careful with locks. The caller must hold RCU lock.
750  */
751
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754         struct net_device *dev;
755         struct hlist_head *head = dev_name_hash(net, name);
756
757         hlist_for_each_entry_rcu(dev, head, name_hlist)
758                 if (!strncmp(dev->name, name, IFNAMSIZ))
759                         return dev;
760
761         return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
764
765 /**
766  *      dev_get_by_name         - find a device by its name
767  *      @net: the applicable net namespace
768  *      @name: name to find
769  *
770  *      Find an interface by name. This can be called from any
771  *      context and does its own locking. The returned handle has
772  *      the usage count incremented and the caller must use dev_put() to
773  *      release it when it is no longer needed. %NULL is returned if no
774  *      matching device is found.
775  */
776
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 {
779         struct net_device *dev;
780
781         rcu_read_lock();
782         dev = dev_get_by_name_rcu(net, name);
783         if (dev)
784                 dev_hold(dev);
785         rcu_read_unlock();
786         return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_name);
789
790 /**
791  *      __dev_get_by_index - find a device by its ifindex
792  *      @net: the applicable net namespace
793  *      @ifindex: index of device
794  *
795  *      Search for an interface by index. Returns %NULL if the device
796  *      is not found or a pointer to the device. The device has not
797  *      had its reference counter increased so the caller must be careful
798  *      about locking. The caller must hold either the RTNL semaphore
799  *      or @dev_base_lock.
800  */
801
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 {
804         struct net_device *dev;
805         struct hlist_head *head = dev_index_hash(net, ifindex);
806
807         hlist_for_each_entry(dev, head, index_hlist)
808                 if (dev->ifindex == ifindex)
809                         return dev;
810
811         return NULL;
812 }
813 EXPORT_SYMBOL(__dev_get_by_index);
814
815 /**
816  *      dev_get_by_index_rcu - find a device by its ifindex
817  *      @net: the applicable net namespace
818  *      @ifindex: index of device
819  *
820  *      Search for an interface by index. Returns %NULL if the device
821  *      is not found or a pointer to the device. The device has not
822  *      had its reference counter increased so the caller must be careful
823  *      about locking. The caller must hold RCU lock.
824  */
825
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 {
828         struct net_device *dev;
829         struct hlist_head *head = dev_index_hash(net, ifindex);
830
831         hlist_for_each_entry_rcu(dev, head, index_hlist)
832                 if (dev->ifindex == ifindex)
833                         return dev;
834
835         return NULL;
836 }
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
838
839
840 /**
841  *      dev_get_by_index - find a device by its ifindex
842  *      @net: the applicable net namespace
843  *      @ifindex: index of device
844  *
845  *      Search for an interface by index. Returns NULL if the device
846  *      is not found or a pointer to the device. The device returned has
847  *      had a reference added and the pointer is safe until the user calls
848  *      dev_put to indicate they have finished with it.
849  */
850
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 {
853         struct net_device *dev;
854
855         rcu_read_lock();
856         dev = dev_get_by_index_rcu(net, ifindex);
857         if (dev)
858                 dev_hold(dev);
859         rcu_read_unlock();
860         return dev;
861 }
862 EXPORT_SYMBOL(dev_get_by_index);
863
864 /**
865  *      netdev_get_name - get a netdevice name, knowing its ifindex.
866  *      @net: network namespace
867  *      @name: a pointer to the buffer where the name will be stored.
868  *      @ifindex: the ifindex of the interface to get the name from.
869  *
870  *      The use of raw_seqcount_begin() and cond_resched() before
871  *      retrying is required as we want to give the writers a chance
872  *      to complete when CONFIG_PREEMPT is not set.
873  */
874 int netdev_get_name(struct net *net, char *name, int ifindex)
875 {
876         struct net_device *dev;
877         unsigned int seq;
878
879 retry:
880         seq = raw_seqcount_begin(&devnet_rename_seq);
881         rcu_read_lock();
882         dev = dev_get_by_index_rcu(net, ifindex);
883         if (!dev) {
884                 rcu_read_unlock();
885                 return -ENODEV;
886         }
887
888         strcpy(name, dev->name);
889         rcu_read_unlock();
890         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891                 cond_resched();
892                 goto retry;
893         }
894
895         return 0;
896 }
897
898 /**
899  *      dev_getbyhwaddr_rcu - find a device by its hardware address
900  *      @net: the applicable net namespace
901  *      @type: media type of device
902  *      @ha: hardware address
903  *
904  *      Search for an interface by MAC address. Returns NULL if the device
905  *      is not found or a pointer to the device.
906  *      The caller must hold RCU or RTNL.
907  *      The returned device has not had its ref count increased
908  *      and the caller must therefore be careful about locking
909  *
910  */
911
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913                                        const char *ha)
914 {
915         struct net_device *dev;
916
917         for_each_netdev_rcu(net, dev)
918                 if (dev->type == type &&
919                     !memcmp(dev->dev_addr, ha, dev->addr_len))
920                         return dev;
921
922         return NULL;
923 }
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 {
928         struct net_device *dev;
929
930         ASSERT_RTNL();
931         for_each_netdev(net, dev)
932                 if (dev->type == type)
933                         return dev;
934
935         return NULL;
936 }
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941         struct net_device *dev, *ret = NULL;
942
943         rcu_read_lock();
944         for_each_netdev_rcu(net, dev)
945                 if (dev->type == type) {
946                         dev_hold(dev);
947                         ret = dev;
948                         break;
949                 }
950         rcu_read_unlock();
951         return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955 /**
956  *      __dev_get_by_flags - find any device with given flags
957  *      @net: the applicable net namespace
958  *      @if_flags: IFF_* values
959  *      @mask: bitmask of bits in if_flags to check
960  *
961  *      Search for any interface with the given flags. Returns NULL if a device
962  *      is not found or a pointer to the device. Must be called inside
963  *      rtnl_lock(), and result refcount is unchanged.
964  */
965
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967                                       unsigned short mask)
968 {
969         struct net_device *dev, *ret;
970
971         ASSERT_RTNL();
972
973         ret = NULL;
974         for_each_netdev(net, dev) {
975                 if (((dev->flags ^ if_flags) & mask) == 0) {
976                         ret = dev;
977                         break;
978                 }
979         }
980         return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983
984 /**
985  *      dev_valid_name - check if name is okay for network device
986  *      @name: name string
987  *
988  *      Network device names need to be valid file names to
989  *      to allow sysfs to work.  We also disallow any kind of
990  *      whitespace.
991  */
992 bool dev_valid_name(const char *name)
993 {
994         if (*name == '\0')
995                 return false;
996         if (strlen(name) >= IFNAMSIZ)
997                 return false;
998         if (!strcmp(name, ".") || !strcmp(name, ".."))
999                 return false;
1000
1001         while (*name) {
1002                 if (*name == '/' || *name == ':' || isspace(*name))
1003                         return false;
1004                 name++;
1005         }
1006         return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009
1010 /**
1011  *      __dev_alloc_name - allocate a name for a device
1012  *      @net: network namespace to allocate the device name in
1013  *      @name: name format string
1014  *      @buf:  scratch buffer and result name string
1015  *
1016  *      Passed a format string - eg "lt%d" it will try and find a suitable
1017  *      id. It scans list of devices to build up a free map, then chooses
1018  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1019  *      while allocating the name and adding the device in order to avoid
1020  *      duplicates.
1021  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022  *      Returns the number of the unit assigned or a negative errno code.
1023  */
1024
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027         int i = 0;
1028         const char *p;
1029         const int max_netdevices = 8*PAGE_SIZE;
1030         unsigned long *inuse;
1031         struct net_device *d;
1032
1033         p = strnchr(name, IFNAMSIZ-1, '%');
1034         if (p) {
1035                 /*
1036                  * Verify the string as this thing may have come from
1037                  * the user.  There must be either one "%d" and no other "%"
1038                  * characters.
1039                  */
1040                 if (p[1] != 'd' || strchr(p + 2, '%'))
1041                         return -EINVAL;
1042
1043                 /* Use one page as a bit array of possible slots */
1044                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1045                 if (!inuse)
1046                         return -ENOMEM;
1047
1048                 for_each_netdev(net, d) {
1049                         if (!sscanf(d->name, name, &i))
1050                                 continue;
1051                         if (i < 0 || i >= max_netdevices)
1052                                 continue;
1053
1054                         /*  avoid cases where sscanf is not exact inverse of printf */
1055                         snprintf(buf, IFNAMSIZ, name, i);
1056                         if (!strncmp(buf, d->name, IFNAMSIZ))
1057                                 set_bit(i, inuse);
1058                 }
1059
1060                 i = find_first_zero_bit(inuse, max_netdevices);
1061                 free_page((unsigned long) inuse);
1062         }
1063
1064         if (buf != name)
1065                 snprintf(buf, IFNAMSIZ, name, i);
1066         if (!__dev_get_by_name(net, buf))
1067                 return i;
1068
1069         /* It is possible to run out of possible slots
1070          * when the name is long and there isn't enough space left
1071          * for the digits, or if all bits are used.
1072          */
1073         return -ENFILE;
1074 }
1075
1076 /**
1077  *      dev_alloc_name - allocate a name for a device
1078  *      @dev: device
1079  *      @name: name format string
1080  *
1081  *      Passed a format string - eg "lt%d" it will try and find a suitable
1082  *      id. It scans list of devices to build up a free map, then chooses
1083  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1084  *      while allocating the name and adding the device in order to avoid
1085  *      duplicates.
1086  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087  *      Returns the number of the unit assigned or a negative errno code.
1088  */
1089
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1091 {
1092         char buf[IFNAMSIZ];
1093         struct net *net;
1094         int ret;
1095
1096         BUG_ON(!dev_net(dev));
1097         net = dev_net(dev);
1098         ret = __dev_alloc_name(net, name, buf);
1099         if (ret >= 0)
1100                 strlcpy(dev->name, buf, IFNAMSIZ);
1101         return ret;
1102 }
1103 EXPORT_SYMBOL(dev_alloc_name);
1104
1105 static int dev_alloc_name_ns(struct net *net,
1106                              struct net_device *dev,
1107                              const char *name)
1108 {
1109         char buf[IFNAMSIZ];
1110         int ret;
1111
1112         ret = __dev_alloc_name(net, name, buf);
1113         if (ret >= 0)
1114                 strlcpy(dev->name, buf, IFNAMSIZ);
1115         return ret;
1116 }
1117
1118 static int dev_get_valid_name(struct net *net,
1119                               struct net_device *dev,
1120                               const char *name)
1121 {
1122         BUG_ON(!net);
1123
1124         if (!dev_valid_name(name))
1125                 return -EINVAL;
1126
1127         if (strchr(name, '%'))
1128                 return dev_alloc_name_ns(net, dev, name);
1129         else if (__dev_get_by_name(net, name))
1130                 return -EEXIST;
1131         else if (dev->name != name)
1132                 strlcpy(dev->name, name, IFNAMSIZ);
1133
1134         return 0;
1135 }
1136
1137 /**
1138  *      dev_change_name - change name of a device
1139  *      @dev: device
1140  *      @newname: name (or format string) must be at least IFNAMSIZ
1141  *
1142  *      Change name of a device, can pass format strings "eth%d".
1143  *      for wildcarding.
1144  */
1145 int dev_change_name(struct net_device *dev, const char *newname)
1146 {
1147         unsigned char old_assign_type;
1148         char oldname[IFNAMSIZ];
1149         int err = 0;
1150         int ret;
1151         struct net *net;
1152
1153         ASSERT_RTNL();
1154         BUG_ON(!dev_net(dev));
1155
1156         net = dev_net(dev);
1157         if (dev->flags & IFF_UP)
1158                 return -EBUSY;
1159
1160         write_seqcount_begin(&devnet_rename_seq);
1161
1162         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163                 write_seqcount_end(&devnet_rename_seq);
1164                 return 0;
1165         }
1166
1167         memcpy(oldname, dev->name, IFNAMSIZ);
1168
1169         err = dev_get_valid_name(net, dev, newname);
1170         if (err < 0) {
1171                 write_seqcount_end(&devnet_rename_seq);
1172                 return err;
1173         }
1174
1175         if (oldname[0] && !strchr(oldname, '%'))
1176                 netdev_info(dev, "renamed from %s\n", oldname);
1177
1178         old_assign_type = dev->name_assign_type;
1179         dev->name_assign_type = NET_NAME_RENAMED;
1180
1181 rollback:
1182         ret = device_rename(&dev->dev, dev->name);
1183         if (ret) {
1184                 memcpy(dev->name, oldname, IFNAMSIZ);
1185                 dev->name_assign_type = old_assign_type;
1186                 write_seqcount_end(&devnet_rename_seq);
1187                 return ret;
1188         }
1189
1190         write_seqcount_end(&devnet_rename_seq);
1191
1192         netdev_adjacent_rename_links(dev, oldname);
1193
1194         write_lock_bh(&dev_base_lock);
1195         hlist_del_rcu(&dev->name_hlist);
1196         write_unlock_bh(&dev_base_lock);
1197
1198         synchronize_rcu();
1199
1200         write_lock_bh(&dev_base_lock);
1201         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202         write_unlock_bh(&dev_base_lock);
1203
1204         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205         ret = notifier_to_errno(ret);
1206
1207         if (ret) {
1208                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209                 if (err >= 0) {
1210                         err = ret;
1211                         write_seqcount_begin(&devnet_rename_seq);
1212                         memcpy(dev->name, oldname, IFNAMSIZ);
1213                         memcpy(oldname, newname, IFNAMSIZ);
1214                         dev->name_assign_type = old_assign_type;
1215                         old_assign_type = NET_NAME_RENAMED;
1216                         goto rollback;
1217                 } else {
1218                         pr_err("%s: name change rollback failed: %d\n",
1219                                dev->name, ret);
1220                 }
1221         }
1222
1223         return err;
1224 }
1225
1226 /**
1227  *      dev_set_alias - change ifalias of a device
1228  *      @dev: device
1229  *      @alias: name up to IFALIASZ
1230  *      @len: limit of bytes to copy from info
1231  *
1232  *      Set ifalias for a device,
1233  */
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 {
1236         char *new_ifalias;
1237
1238         ASSERT_RTNL();
1239
1240         if (len >= IFALIASZ)
1241                 return -EINVAL;
1242
1243         if (!len) {
1244                 kfree(dev->ifalias);
1245                 dev->ifalias = NULL;
1246                 return 0;
1247         }
1248
1249         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250         if (!new_ifalias)
1251                 return -ENOMEM;
1252         dev->ifalias = new_ifalias;
1253
1254         strlcpy(dev->ifalias, alias, len+1);
1255         return len;
1256 }
1257
1258
1259 /**
1260  *      netdev_features_change - device changes features
1261  *      @dev: device to cause notification
1262  *
1263  *      Called to indicate a device has changed features.
1264  */
1265 void netdev_features_change(struct net_device *dev)
1266 {
1267         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 }
1269 EXPORT_SYMBOL(netdev_features_change);
1270
1271 /**
1272  *      netdev_state_change - device changes state
1273  *      @dev: device to cause notification
1274  *
1275  *      Called to indicate a device has changed state. This function calls
1276  *      the notifier chains for netdev_chain and sends a NEWLINK message
1277  *      to the routing socket.
1278  */
1279 void netdev_state_change(struct net_device *dev)
1280 {
1281         if (dev->flags & IFF_UP) {
1282                 struct netdev_notifier_change_info change_info;
1283
1284                 change_info.flags_changed = 0;
1285                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286                                               &change_info.info);
1287                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288         }
1289 }
1290 EXPORT_SYMBOL(netdev_state_change);
1291
1292 /**
1293  *      netdev_notify_peers - notify network peers about existence of @dev
1294  *      @dev: network device
1295  *
1296  * Generate traffic such that interested network peers are aware of
1297  * @dev, such as by generating a gratuitous ARP. This may be used when
1298  * a device wants to inform the rest of the network about some sort of
1299  * reconfiguration such as a failover event or virtual machine
1300  * migration.
1301  */
1302 void netdev_notify_peers(struct net_device *dev)
1303 {
1304         rtnl_lock();
1305         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306         rtnl_unlock();
1307 }
1308 EXPORT_SYMBOL(netdev_notify_peers);
1309
1310 static int __dev_open(struct net_device *dev)
1311 {
1312         const struct net_device_ops *ops = dev->netdev_ops;
1313         int ret;
1314
1315         ASSERT_RTNL();
1316
1317         if (!netif_device_present(dev))
1318                 return -ENODEV;
1319
1320         /* Block netpoll from trying to do any rx path servicing.
1321          * If we don't do this there is a chance ndo_poll_controller
1322          * or ndo_poll may be running while we open the device
1323          */
1324         netpoll_poll_disable(dev);
1325
1326         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327         ret = notifier_to_errno(ret);
1328         if (ret)
1329                 return ret;
1330
1331         set_bit(__LINK_STATE_START, &dev->state);
1332
1333         if (ops->ndo_validate_addr)
1334                 ret = ops->ndo_validate_addr(dev);
1335
1336         if (!ret && ops->ndo_open)
1337                 ret = ops->ndo_open(dev);
1338
1339         netpoll_poll_enable(dev);
1340
1341         if (ret)
1342                 clear_bit(__LINK_STATE_START, &dev->state);
1343         else {
1344                 dev->flags |= IFF_UP;
1345                 dev_set_rx_mode(dev);
1346                 dev_activate(dev);
1347                 add_device_randomness(dev->dev_addr, dev->addr_len);
1348         }
1349
1350         return ret;
1351 }
1352
1353 /**
1354  *      dev_open        - prepare an interface for use.
1355  *      @dev:   device to open
1356  *
1357  *      Takes a device from down to up state. The device's private open
1358  *      function is invoked and then the multicast lists are loaded. Finally
1359  *      the device is moved into the up state and a %NETDEV_UP message is
1360  *      sent to the netdev notifier chain.
1361  *
1362  *      Calling this function on an active interface is a nop. On a failure
1363  *      a negative errno code is returned.
1364  */
1365 int dev_open(struct net_device *dev)
1366 {
1367         int ret;
1368
1369         if (dev->flags & IFF_UP)
1370                 return 0;
1371
1372         ret = __dev_open(dev);
1373         if (ret < 0)
1374                 return ret;
1375
1376         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377         call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379         return ret;
1380 }
1381 EXPORT_SYMBOL(dev_open);
1382
1383 static int __dev_close_many(struct list_head *head)
1384 {
1385         struct net_device *dev;
1386
1387         ASSERT_RTNL();
1388         might_sleep();
1389
1390         list_for_each_entry(dev, head, close_list) {
1391                 /* Temporarily disable netpoll until the interface is down */
1392                 netpoll_poll_disable(dev);
1393
1394                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395
1396                 clear_bit(__LINK_STATE_START, &dev->state);
1397
1398                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399                  * can be even on different cpu. So just clear netif_running().
1400                  *
1401                  * dev->stop() will invoke napi_disable() on all of it's
1402                  * napi_struct instances on this device.
1403                  */
1404                 smp_mb__after_atomic(); /* Commit netif_running(). */
1405         }
1406
1407         dev_deactivate_many(head);
1408
1409         list_for_each_entry(dev, head, close_list) {
1410                 const struct net_device_ops *ops = dev->netdev_ops;
1411
1412                 /*
1413                  *      Call the device specific close. This cannot fail.
1414                  *      Only if device is UP
1415                  *
1416                  *      We allow it to be called even after a DETACH hot-plug
1417                  *      event.
1418                  */
1419                 if (ops->ndo_stop)
1420                         ops->ndo_stop(dev);
1421
1422                 dev->flags &= ~IFF_UP;
1423                 netpoll_poll_enable(dev);
1424         }
1425
1426         return 0;
1427 }
1428
1429 static int __dev_close(struct net_device *dev)
1430 {
1431         int retval;
1432         LIST_HEAD(single);
1433
1434         list_add(&dev->close_list, &single);
1435         retval = __dev_close_many(&single);
1436         list_del(&single);
1437
1438         return retval;
1439 }
1440
1441 int dev_close_many(struct list_head *head, bool unlink)
1442 {
1443         struct net_device *dev, *tmp;
1444
1445         /* Remove the devices that don't need to be closed */
1446         list_for_each_entry_safe(dev, tmp, head, close_list)
1447                 if (!(dev->flags & IFF_UP))
1448                         list_del_init(&dev->close_list);
1449
1450         __dev_close_many(head);
1451
1452         list_for_each_entry_safe(dev, tmp, head, close_list) {
1453                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1455                 if (unlink)
1456                         list_del_init(&dev->close_list);
1457         }
1458
1459         return 0;
1460 }
1461 EXPORT_SYMBOL(dev_close_many);
1462
1463 /**
1464  *      dev_close - shutdown an interface.
1465  *      @dev: device to shutdown
1466  *
1467  *      This function moves an active device into down state. A
1468  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470  *      chain.
1471  */
1472 int dev_close(struct net_device *dev)
1473 {
1474         if (dev->flags & IFF_UP) {
1475                 LIST_HEAD(single);
1476
1477                 list_add(&dev->close_list, &single);
1478                 dev_close_many(&single, true);
1479                 list_del(&single);
1480         }
1481         return 0;
1482 }
1483 EXPORT_SYMBOL(dev_close);
1484
1485
1486 /**
1487  *      dev_disable_lro - disable Large Receive Offload on a device
1488  *      @dev: device
1489  *
1490  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1491  *      called under RTNL.  This is needed if received packets may be
1492  *      forwarded to another interface.
1493  */
1494 void dev_disable_lro(struct net_device *dev)
1495 {
1496         struct net_device *lower_dev;
1497         struct list_head *iter;
1498
1499         dev->wanted_features &= ~NETIF_F_LRO;
1500         netdev_update_features(dev);
1501
1502         if (unlikely(dev->features & NETIF_F_LRO))
1503                 netdev_WARN(dev, "failed to disable LRO!\n");
1504
1505         netdev_for_each_lower_dev(dev, lower_dev, iter)
1506                 dev_disable_lro(lower_dev);
1507 }
1508 EXPORT_SYMBOL(dev_disable_lro);
1509
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511                                    struct net_device *dev)
1512 {
1513         struct netdev_notifier_info info;
1514
1515         netdev_notifier_info_init(&info, dev);
1516         return nb->notifier_call(nb, val, &info);
1517 }
1518
1519 static int dev_boot_phase = 1;
1520
1521 /**
1522  *      register_netdevice_notifier - register a network notifier block
1523  *      @nb: notifier
1524  *
1525  *      Register a notifier to be called when network device events occur.
1526  *      The notifier passed is linked into the kernel structures and must
1527  *      not be reused until it has been unregistered. A negative errno code
1528  *      is returned on a failure.
1529  *
1530  *      When registered all registration and up events are replayed
1531  *      to the new notifier to allow device to have a race free
1532  *      view of the network device list.
1533  */
1534
1535 int register_netdevice_notifier(struct notifier_block *nb)
1536 {
1537         struct net_device *dev;
1538         struct net_device *last;
1539         struct net *net;
1540         int err;
1541
1542         rtnl_lock();
1543         err = raw_notifier_chain_register(&netdev_chain, nb);
1544         if (err)
1545                 goto unlock;
1546         if (dev_boot_phase)
1547                 goto unlock;
1548         for_each_net(net) {
1549                 for_each_netdev(net, dev) {
1550                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551                         err = notifier_to_errno(err);
1552                         if (err)
1553                                 goto rollback;
1554
1555                         if (!(dev->flags & IFF_UP))
1556                                 continue;
1557
1558                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1559                 }
1560         }
1561
1562 unlock:
1563         rtnl_unlock();
1564         return err;
1565
1566 rollback:
1567         last = dev;
1568         for_each_net(net) {
1569                 for_each_netdev(net, dev) {
1570                         if (dev == last)
1571                                 goto outroll;
1572
1573                         if (dev->flags & IFF_UP) {
1574                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575                                                         dev);
1576                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577                         }
1578                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1579                 }
1580         }
1581
1582 outroll:
1583         raw_notifier_chain_unregister(&netdev_chain, nb);
1584         goto unlock;
1585 }
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1587
1588 /**
1589  *      unregister_netdevice_notifier - unregister a network notifier block
1590  *      @nb: notifier
1591  *
1592  *      Unregister a notifier previously registered by
1593  *      register_netdevice_notifier(). The notifier is unlinked into the
1594  *      kernel structures and may then be reused. A negative errno code
1595  *      is returned on a failure.
1596  *
1597  *      After unregistering unregister and down device events are synthesized
1598  *      for all devices on the device list to the removed notifier to remove
1599  *      the need for special case cleanup code.
1600  */
1601
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 {
1604         struct net_device *dev;
1605         struct net *net;
1606         int err;
1607
1608         rtnl_lock();
1609         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1610         if (err)
1611                 goto unlock;
1612
1613         for_each_net(net) {
1614                 for_each_netdev(net, dev) {
1615                         if (dev->flags & IFF_UP) {
1616                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617                                                         dev);
1618                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619                         }
1620                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621                 }
1622         }
1623 unlock:
1624         rtnl_unlock();
1625         return err;
1626 }
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628
1629 /**
1630  *      call_netdevice_notifiers_info - call all network notifier blocks
1631  *      @val: value passed unmodified to notifier function
1632  *      @dev: net_device pointer passed unmodified to notifier function
1633  *      @info: notifier information data
1634  *
1635  *      Call all network notifier blocks.  Parameters and return value
1636  *      are as for raw_notifier_call_chain().
1637  */
1638
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640                                          struct net_device *dev,
1641                                          struct netdev_notifier_info *info)
1642 {
1643         ASSERT_RTNL();
1644         netdev_notifier_info_init(info, dev);
1645         return raw_notifier_call_chain(&netdev_chain, val, info);
1646 }
1647
1648 /**
1649  *      call_netdevice_notifiers - call all network notifier blocks
1650  *      @val: value passed unmodified to notifier function
1651  *      @dev: net_device pointer passed unmodified to notifier function
1652  *
1653  *      Call all network notifier blocks.  Parameters and return value
1654  *      are as for raw_notifier_call_chain().
1655  */
1656
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 {
1659         struct netdev_notifier_info info;
1660
1661         return call_netdevice_notifiers_info(val, dev, &info);
1662 }
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1664
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1667
1668 void net_inc_ingress_queue(void)
1669 {
1670         static_key_slow_inc(&ingress_needed);
1671 }
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674 void net_dec_ingress_queue(void)
1675 {
1676         static_key_slow_dec(&ingress_needed);
1677 }
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #endif
1680
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1683
1684 void net_inc_egress_queue(void)
1685 {
1686         static_key_slow_inc(&egress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690 void net_dec_egress_queue(void)
1691 {
1692         static_key_slow_dec(&egress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 #endif
1696
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700  * If net_disable_timestamp() is called from irq context, defer the
1701  * static_key_slow_dec() calls.
1702  */
1703 static atomic_t netstamp_needed_deferred;
1704 #endif
1705
1706 void net_enable_timestamp(void)
1707 {
1708 #ifdef HAVE_JUMP_LABEL
1709         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711         if (deferred) {
1712                 while (--deferred)
1713                         static_key_slow_dec(&netstamp_needed);
1714                 return;
1715         }
1716 #endif
1717         static_key_slow_inc(&netstamp_needed);
1718 }
1719 EXPORT_SYMBOL(net_enable_timestamp);
1720
1721 void net_disable_timestamp(void)
1722 {
1723 #ifdef HAVE_JUMP_LABEL
1724         if (in_interrupt()) {
1725                 atomic_inc(&netstamp_needed_deferred);
1726                 return;
1727         }
1728 #endif
1729         static_key_slow_dec(&netstamp_needed);
1730 }
1731 EXPORT_SYMBOL(net_disable_timestamp);
1732
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1734 {
1735         skb->tstamp.tv64 = 0;
1736         if (static_key_false(&netstamp_needed))
1737                 __net_timestamp(skb);
1738 }
1739
1740 #define net_timestamp_check(COND, SKB)                  \
1741         if (static_key_false(&netstamp_needed)) {               \
1742                 if ((COND) && !(SKB)->tstamp.tv64)      \
1743                         __net_timestamp(SKB);           \
1744         }                                               \
1745
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 {
1748         unsigned int len;
1749
1750         if (!(dev->flags & IFF_UP))
1751                 return false;
1752
1753         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754         if (skb->len <= len)
1755                 return true;
1756
1757         /* if TSO is enabled, we don't care about the length as the packet
1758          * could be forwarded without being segmented before
1759          */
1760         if (skb_is_gso(skb))
1761                 return true;
1762
1763         return false;
1764 }
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770             unlikely(!is_skb_forwardable(dev, skb))) {
1771                 atomic_long_inc(&dev->rx_dropped);
1772                 kfree_skb(skb);
1773                 return NET_RX_DROP;
1774         }
1775
1776         skb_scrub_packet(skb, true);
1777         skb->priority = 0;
1778         skb->protocol = eth_type_trans(skb, dev);
1779         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1780
1781         return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784
1785 /**
1786  * dev_forward_skb - loopback an skb to another netif
1787  *
1788  * @dev: destination network device
1789  * @skb: buffer to forward
1790  *
1791  * return values:
1792  *      NET_RX_SUCCESS  (no congestion)
1793  *      NET_RX_DROP     (packet was dropped, but freed)
1794  *
1795  * dev_forward_skb can be used for injecting an skb from the
1796  * start_xmit function of one device into the receive queue
1797  * of another device.
1798  *
1799  * The receiving device may be in another namespace, so
1800  * we have to clear all information in the skb that could
1801  * impact namespace isolation.
1802  */
1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804 {
1805         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1806 }
1807 EXPORT_SYMBOL_GPL(dev_forward_skb);
1808
1809 static inline int deliver_skb(struct sk_buff *skb,
1810                               struct packet_type *pt_prev,
1811                               struct net_device *orig_dev)
1812 {
1813         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814                 return -ENOMEM;
1815         atomic_inc(&skb->users);
1816         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817 }
1818
1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820                                           struct packet_type **pt,
1821                                           struct net_device *orig_dev,
1822                                           __be16 type,
1823                                           struct list_head *ptype_list)
1824 {
1825         struct packet_type *ptype, *pt_prev = *pt;
1826
1827         list_for_each_entry_rcu(ptype, ptype_list, list) {
1828                 if (ptype->type != type)
1829                         continue;
1830                 if (pt_prev)
1831                         deliver_skb(skb, pt_prev, orig_dev);
1832                 pt_prev = ptype;
1833         }
1834         *pt = pt_prev;
1835 }
1836
1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838 {
1839         if (!ptype->af_packet_priv || !skb->sk)
1840                 return false;
1841
1842         if (ptype->id_match)
1843                 return ptype->id_match(ptype, skb->sk);
1844         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845                 return true;
1846
1847         return false;
1848 }
1849
1850 /*
1851  *      Support routine. Sends outgoing frames to any network
1852  *      taps currently in use.
1853  */
1854
1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1856 {
1857         struct packet_type *ptype;
1858         struct sk_buff *skb2 = NULL;
1859         struct packet_type *pt_prev = NULL;
1860         struct list_head *ptype_list = &ptype_all;
1861
1862         rcu_read_lock();
1863 again:
1864         list_for_each_entry_rcu(ptype, ptype_list, list) {
1865                 /* Never send packets back to the socket
1866                  * they originated from - MvS (miquels@drinkel.ow.org)
1867                  */
1868                 if (skb_loop_sk(ptype, skb))
1869                         continue;
1870
1871                 if (pt_prev) {
1872                         deliver_skb(skb2, pt_prev, skb->dev);
1873                         pt_prev = ptype;
1874                         continue;
1875                 }
1876
1877                 /* need to clone skb, done only once */
1878                 skb2 = skb_clone(skb, GFP_ATOMIC);
1879                 if (!skb2)
1880                         goto out_unlock;
1881
1882                 net_timestamp_set(skb2);
1883
1884                 /* skb->nh should be correctly
1885                  * set by sender, so that the second statement is
1886                  * just protection against buggy protocols.
1887                  */
1888                 skb_reset_mac_header(skb2);
1889
1890                 if (skb_network_header(skb2) < skb2->data ||
1891                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893                                              ntohs(skb2->protocol),
1894                                              dev->name);
1895                         skb_reset_network_header(skb2);
1896                 }
1897
1898                 skb2->transport_header = skb2->network_header;
1899                 skb2->pkt_type = PACKET_OUTGOING;
1900                 pt_prev = ptype;
1901         }
1902
1903         if (ptype_list == &ptype_all) {
1904                 ptype_list = &dev->ptype_all;
1905                 goto again;
1906         }
1907 out_unlock:
1908         if (pt_prev)
1909                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1910         rcu_read_unlock();
1911 }
1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1913
1914 /**
1915  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1916  * @dev: Network device
1917  * @txq: number of queues available
1918  *
1919  * If real_num_tx_queues is changed the tc mappings may no longer be
1920  * valid. To resolve this verify the tc mapping remains valid and if
1921  * not NULL the mapping. With no priorities mapping to this
1922  * offset/count pair it will no longer be used. In the worst case TC0
1923  * is invalid nothing can be done so disable priority mappings. If is
1924  * expected that drivers will fix this mapping if they can before
1925  * calling netif_set_real_num_tx_queues.
1926  */
1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1928 {
1929         int i;
1930         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931
1932         /* If TC0 is invalidated disable TC mapping */
1933         if (tc->offset + tc->count > txq) {
1934                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1935                 dev->num_tc = 0;
1936                 return;
1937         }
1938
1939         /* Invalidated prio to tc mappings set to TC0 */
1940         for (i = 1; i < TC_BITMASK + 1; i++) {
1941                 int q = netdev_get_prio_tc_map(dev, i);
1942
1943                 tc = &dev->tc_to_txq[q];
1944                 if (tc->offset + tc->count > txq) {
1945                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946                                 i, q);
1947                         netdev_set_prio_tc_map(dev, i, 0);
1948                 }
1949         }
1950 }
1951
1952 #ifdef CONFIG_XPS
1953 static DEFINE_MUTEX(xps_map_mutex);
1954 #define xmap_dereference(P)             \
1955         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956
1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958                                         int cpu, u16 index)
1959 {
1960         struct xps_map *map = NULL;
1961         int pos;
1962
1963         if (dev_maps)
1964                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1965
1966         for (pos = 0; map && pos < map->len; pos++) {
1967                 if (map->queues[pos] == index) {
1968                         if (map->len > 1) {
1969                                 map->queues[pos] = map->queues[--map->len];
1970                         } else {
1971                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1972                                 kfree_rcu(map, rcu);
1973                                 map = NULL;
1974                         }
1975                         break;
1976                 }
1977         }
1978
1979         return map;
1980 }
1981
1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1983 {
1984         struct xps_dev_maps *dev_maps;
1985         int cpu, i;
1986         bool active = false;
1987
1988         mutex_lock(&xps_map_mutex);
1989         dev_maps = xmap_dereference(dev->xps_maps);
1990
1991         if (!dev_maps)
1992                 goto out_no_maps;
1993
1994         for_each_possible_cpu(cpu) {
1995                 for (i = index; i < dev->num_tx_queues; i++) {
1996                         if (!remove_xps_queue(dev_maps, cpu, i))
1997                                 break;
1998                 }
1999                 if (i == dev->num_tx_queues)
2000                         active = true;
2001         }
2002
2003         if (!active) {
2004                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005                 kfree_rcu(dev_maps, rcu);
2006         }
2007
2008         for (i = index; i < dev->num_tx_queues; i++)
2009                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010                                              NUMA_NO_NODE);
2011
2012 out_no_maps:
2013         mutex_unlock(&xps_map_mutex);
2014 }
2015
2016 static struct xps_map *expand_xps_map(struct xps_map *map,
2017                                       int cpu, u16 index)
2018 {
2019         struct xps_map *new_map;
2020         int alloc_len = XPS_MIN_MAP_ALLOC;
2021         int i, pos;
2022
2023         for (pos = 0; map && pos < map->len; pos++) {
2024                 if (map->queues[pos] != index)
2025                         continue;
2026                 return map;
2027         }
2028
2029         /* Need to add queue to this CPU's existing map */
2030         if (map) {
2031                 if (pos < map->alloc_len)
2032                         return map;
2033
2034                 alloc_len = map->alloc_len * 2;
2035         }
2036
2037         /* Need to allocate new map to store queue on this CPU's map */
2038         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039                                cpu_to_node(cpu));
2040         if (!new_map)
2041                 return NULL;
2042
2043         for (i = 0; i < pos; i++)
2044                 new_map->queues[i] = map->queues[i];
2045         new_map->alloc_len = alloc_len;
2046         new_map->len = pos;
2047
2048         return new_map;
2049 }
2050
2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052                         u16 index)
2053 {
2054         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2055         struct xps_map *map, *new_map;
2056         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2057         int cpu, numa_node_id = -2;
2058         bool active = false;
2059
2060         mutex_lock(&xps_map_mutex);
2061
2062         dev_maps = xmap_dereference(dev->xps_maps);
2063
2064         /* allocate memory for queue storage */
2065         for_each_online_cpu(cpu) {
2066                 if (!cpumask_test_cpu(cpu, mask))
2067                         continue;
2068
2069                 if (!new_dev_maps)
2070                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2071                 if (!new_dev_maps) {
2072                         mutex_unlock(&xps_map_mutex);
2073                         return -ENOMEM;
2074                 }
2075
2076                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077                                  NULL;
2078
2079                 map = expand_xps_map(map, cpu, index);
2080                 if (!map)
2081                         goto error;
2082
2083                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084         }
2085
2086         if (!new_dev_maps)
2087                 goto out_no_new_maps;
2088
2089         for_each_possible_cpu(cpu) {
2090                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091                         /* add queue to CPU maps */
2092                         int pos = 0;
2093
2094                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095                         while ((pos < map->len) && (map->queues[pos] != index))
2096                                 pos++;
2097
2098                         if (pos == map->len)
2099                                 map->queues[map->len++] = index;
2100 #ifdef CONFIG_NUMA
2101                         if (numa_node_id == -2)
2102                                 numa_node_id = cpu_to_node(cpu);
2103                         else if (numa_node_id != cpu_to_node(cpu))
2104                                 numa_node_id = -1;
2105 #endif
2106                 } else if (dev_maps) {
2107                         /* fill in the new device map from the old device map */
2108                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2110                 }
2111
2112         }
2113
2114         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115
2116         /* Cleanup old maps */
2117         if (dev_maps) {
2118                 for_each_possible_cpu(cpu) {
2119                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121                         if (map && map != new_map)
2122                                 kfree_rcu(map, rcu);
2123                 }
2124
2125                 kfree_rcu(dev_maps, rcu);
2126         }
2127
2128         dev_maps = new_dev_maps;
2129         active = true;
2130
2131 out_no_new_maps:
2132         /* update Tx queue numa node */
2133         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134                                      (numa_node_id >= 0) ? numa_node_id :
2135                                      NUMA_NO_NODE);
2136
2137         if (!dev_maps)
2138                 goto out_no_maps;
2139
2140         /* removes queue from unused CPUs */
2141         for_each_possible_cpu(cpu) {
2142                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143                         continue;
2144
2145                 if (remove_xps_queue(dev_maps, cpu, index))
2146                         active = true;
2147         }
2148
2149         /* free map if not active */
2150         if (!active) {
2151                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152                 kfree_rcu(dev_maps, rcu);
2153         }
2154
2155 out_no_maps:
2156         mutex_unlock(&xps_map_mutex);
2157
2158         return 0;
2159 error:
2160         /* remove any maps that we added */
2161         for_each_possible_cpu(cpu) {
2162                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164                                  NULL;
2165                 if (new_map && new_map != map)
2166                         kfree(new_map);
2167         }
2168
2169         mutex_unlock(&xps_map_mutex);
2170
2171         kfree(new_dev_maps);
2172         return -ENOMEM;
2173 }
2174 EXPORT_SYMBOL(netif_set_xps_queue);
2175
2176 #endif
2177 /*
2178  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180  */
2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2182 {
2183         int rc;
2184
2185         if (txq < 1 || txq > dev->num_tx_queues)
2186                 return -EINVAL;
2187
2188         if (dev->reg_state == NETREG_REGISTERED ||
2189             dev->reg_state == NETREG_UNREGISTERING) {
2190                 ASSERT_RTNL();
2191
2192                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193                                                   txq);
2194                 if (rc)
2195                         return rc;
2196
2197                 if (dev->num_tc)
2198                         netif_setup_tc(dev, txq);
2199
2200                 if (txq < dev->real_num_tx_queues) {
2201                         qdisc_reset_all_tx_gt(dev, txq);
2202 #ifdef CONFIG_XPS
2203                         netif_reset_xps_queues_gt(dev, txq);
2204 #endif
2205                 }
2206         }
2207
2208         dev->real_num_tx_queues = txq;
2209         return 0;
2210 }
2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2212
2213 #ifdef CONFIG_SYSFS
2214 /**
2215  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2216  *      @dev: Network device
2217  *      @rxq: Actual number of RX queues
2218  *
2219  *      This must be called either with the rtnl_lock held or before
2220  *      registration of the net device.  Returns 0 on success, or a
2221  *      negative error code.  If called before registration, it always
2222  *      succeeds.
2223  */
2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225 {
2226         int rc;
2227
2228         if (rxq < 1 || rxq > dev->num_rx_queues)
2229                 return -EINVAL;
2230
2231         if (dev->reg_state == NETREG_REGISTERED) {
2232                 ASSERT_RTNL();
2233
2234                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235                                                   rxq);
2236                 if (rc)
2237                         return rc;
2238         }
2239
2240         dev->real_num_rx_queues = rxq;
2241         return 0;
2242 }
2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244 #endif
2245
2246 /**
2247  * netif_get_num_default_rss_queues - default number of RSS queues
2248  *
2249  * This routine should set an upper limit on the number of RSS queues
2250  * used by default by multiqueue devices.
2251  */
2252 int netif_get_num_default_rss_queues(void)
2253 {
2254         return is_kdump_kernel() ?
2255                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2256 }
2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
2259 static void __netif_reschedule(struct Qdisc *q)
2260 {
2261         struct softnet_data *sd;
2262         unsigned long flags;
2263
2264         local_irq_save(flags);
2265         sd = this_cpu_ptr(&softnet_data);
2266         q->next_sched = NULL;
2267         *sd->output_queue_tailp = q;
2268         sd->output_queue_tailp = &q->next_sched;
2269         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270         local_irq_restore(flags);
2271 }
2272
2273 void __netif_schedule(struct Qdisc *q)
2274 {
2275         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276                 __netif_reschedule(q);
2277 }
2278 EXPORT_SYMBOL(__netif_schedule);
2279
2280 struct dev_kfree_skb_cb {
2281         enum skb_free_reason reason;
2282 };
2283
2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2285 {
2286         return (struct dev_kfree_skb_cb *)skb->cb;
2287 }
2288
2289 void netif_schedule_queue(struct netdev_queue *txq)
2290 {
2291         rcu_read_lock();
2292         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295                 __netif_schedule(q);
2296         }
2297         rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL(netif_schedule_queue);
2300
2301 /**
2302  *      netif_wake_subqueue - allow sending packets on subqueue
2303  *      @dev: network device
2304  *      @queue_index: sub queue index
2305  *
2306  * Resume individual transmit queue of a device with multiple transmit queues.
2307  */
2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313                 struct Qdisc *q;
2314
2315                 rcu_read_lock();
2316                 q = rcu_dereference(txq->qdisc);
2317                 __netif_schedule(q);
2318                 rcu_read_unlock();
2319         }
2320 }
2321 EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324 {
2325         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326                 struct Qdisc *q;
2327
2328                 rcu_read_lock();
2329                 q = rcu_dereference(dev_queue->qdisc);
2330                 __netif_schedule(q);
2331                 rcu_read_unlock();
2332         }
2333 }
2334 EXPORT_SYMBOL(netif_tx_wake_queue);
2335
2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2337 {
2338         unsigned long flags;
2339
2340         if (likely(atomic_read(&skb->users) == 1)) {
2341                 smp_rmb();
2342                 atomic_set(&skb->users, 0);
2343         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344                 return;
2345         }
2346         get_kfree_skb_cb(skb)->reason = reason;
2347         local_irq_save(flags);
2348         skb->next = __this_cpu_read(softnet_data.completion_queue);
2349         __this_cpu_write(softnet_data.completion_queue, skb);
2350         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351         local_irq_restore(flags);
2352 }
2353 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2354
2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2356 {
2357         if (in_irq() || irqs_disabled())
2358                 __dev_kfree_skb_irq(skb, reason);
2359         else
2360                 dev_kfree_skb(skb);
2361 }
2362 EXPORT_SYMBOL(__dev_kfree_skb_any);
2363
2364
2365 /**
2366  * netif_device_detach - mark device as removed
2367  * @dev: network device
2368  *
2369  * Mark device as removed from system and therefore no longer available.
2370  */
2371 void netif_device_detach(struct net_device *dev)
2372 {
2373         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374             netif_running(dev)) {
2375                 netif_tx_stop_all_queues(dev);
2376         }
2377 }
2378 EXPORT_SYMBOL(netif_device_detach);
2379
2380 /**
2381  * netif_device_attach - mark device as attached
2382  * @dev: network device
2383  *
2384  * Mark device as attached from system and restart if needed.
2385  */
2386 void netif_device_attach(struct net_device *dev)
2387 {
2388         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389             netif_running(dev)) {
2390                 netif_tx_wake_all_queues(dev);
2391                 __netdev_watchdog_up(dev);
2392         }
2393 }
2394 EXPORT_SYMBOL(netif_device_attach);
2395
2396 /*
2397  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398  * to be used as a distribution range.
2399  */
2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401                   unsigned int num_tx_queues)
2402 {
2403         u32 hash;
2404         u16 qoffset = 0;
2405         u16 qcount = num_tx_queues;
2406
2407         if (skb_rx_queue_recorded(skb)) {
2408                 hash = skb_get_rx_queue(skb);
2409                 while (unlikely(hash >= num_tx_queues))
2410                         hash -= num_tx_queues;
2411                 return hash;
2412         }
2413
2414         if (dev->num_tc) {
2415                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416                 qoffset = dev->tc_to_txq[tc].offset;
2417                 qcount = dev->tc_to_txq[tc].count;
2418         }
2419
2420         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421 }
2422 EXPORT_SYMBOL(__skb_tx_hash);
2423
2424 static void skb_warn_bad_offload(const struct sk_buff *skb)
2425 {
2426         static const netdev_features_t null_features;
2427         struct net_device *dev = skb->dev;
2428         const char *name = "";
2429
2430         if (!net_ratelimit())
2431                 return;
2432
2433         if (dev) {
2434                 if (dev->dev.parent)
2435                         name = dev_driver_string(dev->dev.parent);
2436                 else
2437                         name = netdev_name(dev);
2438         }
2439         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440              "gso_type=%d ip_summed=%d\n",
2441              name, dev ? &dev->features : &null_features,
2442              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2443              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444              skb_shinfo(skb)->gso_type, skb->ip_summed);
2445 }
2446
2447 /*
2448  * Invalidate hardware checksum when packet is to be mangled, and
2449  * complete checksum manually on outgoing path.
2450  */
2451 int skb_checksum_help(struct sk_buff *skb)
2452 {
2453         __wsum csum;
2454         int ret = 0, offset;
2455
2456         if (skb->ip_summed == CHECKSUM_COMPLETE)
2457                 goto out_set_summed;
2458
2459         if (unlikely(skb_shinfo(skb)->gso_size)) {
2460                 skb_warn_bad_offload(skb);
2461                 return -EINVAL;
2462         }
2463
2464         /* Before computing a checksum, we should make sure no frag could
2465          * be modified by an external entity : checksum could be wrong.
2466          */
2467         if (skb_has_shared_frag(skb)) {
2468                 ret = __skb_linearize(skb);
2469                 if (ret)
2470                         goto out;
2471         }
2472
2473         offset = skb_checksum_start_offset(skb);
2474         BUG_ON(offset >= skb_headlen(skb));
2475         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477         offset += skb->csum_offset;
2478         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480         if (skb_cloned(skb) &&
2481             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2482                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483                 if (ret)
2484                         goto out;
2485         }
2486
2487         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2488 out_set_summed:
2489         skb->ip_summed = CHECKSUM_NONE;
2490 out:
2491         return ret;
2492 }
2493 EXPORT_SYMBOL(skb_checksum_help);
2494
2495 /* skb_csum_offload_check - Driver helper function to determine if a device
2496  * with limited checksum offload capabilities is able to offload the checksum
2497  * for a given packet.
2498  *
2499  * Arguments:
2500  *   skb - sk_buff for the packet in question
2501  *   spec - contains the description of what device can offload
2502  *   csum_encapped - returns true if the checksum being offloaded is
2503  *            encpasulated. That is it is checksum for the transport header
2504  *            in the inner headers.
2505  *   checksum_help - when set indicates that helper function should
2506  *            call skb_checksum_help if offload checks fail
2507  *
2508  * Returns:
2509  *   true: Packet has passed the checksum checks and should be offloadable to
2510  *         the device (a driver may still need to check for additional
2511  *         restrictions of its device)
2512  *   false: Checksum is not offloadable. If checksum_help was set then
2513  *         skb_checksum_help was called to resolve checksum for non-GSO
2514  *         packets and when IP protocol is not SCTP
2515  */
2516 bool __skb_csum_offload_chk(struct sk_buff *skb,
2517                             const struct skb_csum_offl_spec *spec,
2518                             bool *csum_encapped,
2519                             bool csum_help)
2520 {
2521         struct iphdr *iph;
2522         struct ipv6hdr *ipv6;
2523         void *nhdr;
2524         int protocol;
2525         u8 ip_proto;
2526
2527         if (skb->protocol == htons(ETH_P_8021Q) ||
2528             skb->protocol == htons(ETH_P_8021AD)) {
2529                 if (!spec->vlan_okay)
2530                         goto need_help;
2531         }
2532
2533         /* We check whether the checksum refers to a transport layer checksum in
2534          * the outermost header or an encapsulated transport layer checksum that
2535          * corresponds to the inner headers of the skb. If the checksum is for
2536          * something else in the packet we need help.
2537          */
2538         if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539                 /* Non-encapsulated checksum */
2540                 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541                 nhdr = skb_network_header(skb);
2542                 *csum_encapped = false;
2543                 if (spec->no_not_encapped)
2544                         goto need_help;
2545         } else if (skb->encapsulation && spec->encap_okay &&
2546                    skb_checksum_start_offset(skb) ==
2547                    skb_inner_transport_offset(skb)) {
2548                 /* Encapsulated checksum */
2549                 *csum_encapped = true;
2550                 switch (skb->inner_protocol_type) {
2551                 case ENCAP_TYPE_ETHER:
2552                         protocol = eproto_to_ipproto(skb->inner_protocol);
2553                         break;
2554                 case ENCAP_TYPE_IPPROTO:
2555                         protocol = skb->inner_protocol;
2556                         break;
2557                 }
2558                 nhdr = skb_inner_network_header(skb);
2559         } else {
2560                 goto need_help;
2561         }
2562
2563         switch (protocol) {
2564         case IPPROTO_IP:
2565                 if (!spec->ipv4_okay)
2566                         goto need_help;
2567                 iph = nhdr;
2568                 ip_proto = iph->protocol;
2569                 if (iph->ihl != 5 && !spec->ip_options_okay)
2570                         goto need_help;
2571                 break;
2572         case IPPROTO_IPV6:
2573                 if (!spec->ipv6_okay)
2574                         goto need_help;
2575                 if (spec->no_encapped_ipv6 && *csum_encapped)
2576                         goto need_help;
2577                 ipv6 = nhdr;
2578                 nhdr += sizeof(*ipv6);
2579                 ip_proto = ipv6->nexthdr;
2580                 break;
2581         default:
2582                 goto need_help;
2583         }
2584
2585 ip_proto_again:
2586         switch (ip_proto) {
2587         case IPPROTO_TCP:
2588                 if (!spec->tcp_okay ||
2589                     skb->csum_offset != offsetof(struct tcphdr, check))
2590                         goto need_help;
2591                 break;
2592         case IPPROTO_UDP:
2593                 if (!spec->udp_okay ||
2594                     skb->csum_offset != offsetof(struct udphdr, check))
2595                         goto need_help;
2596                 break;
2597         case IPPROTO_SCTP:
2598                 if (!spec->sctp_okay ||
2599                     skb->csum_offset != offsetof(struct sctphdr, checksum))
2600                         goto cant_help;
2601                 break;
2602         case NEXTHDR_HOP:
2603         case NEXTHDR_ROUTING:
2604         case NEXTHDR_DEST: {
2605                 u8 *opthdr = nhdr;
2606
2607                 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608                         goto need_help;
2609
2610                 ip_proto = opthdr[0];
2611                 nhdr += (opthdr[1] + 1) << 3;
2612
2613                 goto ip_proto_again;
2614         }
2615         default:
2616                 goto need_help;
2617         }
2618
2619         /* Passed the tests for offloading checksum */
2620         return true;
2621
2622 need_help:
2623         if (csum_help && !skb_shinfo(skb)->gso_size)
2624                 skb_checksum_help(skb);
2625 cant_help:
2626         return false;
2627 }
2628 EXPORT_SYMBOL(__skb_csum_offload_chk);
2629
2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2631 {
2632         __be16 type = skb->protocol;
2633
2634         /* Tunnel gso handlers can set protocol to ethernet. */
2635         if (type == htons(ETH_P_TEB)) {
2636                 struct ethhdr *eth;
2637
2638                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639                         return 0;
2640
2641                 eth = (struct ethhdr *)skb_mac_header(skb);
2642                 type = eth->h_proto;
2643         }
2644
2645         return __vlan_get_protocol(skb, type, depth);
2646 }
2647
2648 /**
2649  *      skb_mac_gso_segment - mac layer segmentation handler.
2650  *      @skb: buffer to segment
2651  *      @features: features for the output path (see dev->features)
2652  */
2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654                                     netdev_features_t features)
2655 {
2656         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657         struct packet_offload *ptype;
2658         int vlan_depth = skb->mac_len;
2659         __be16 type = skb_network_protocol(skb, &vlan_depth);
2660
2661         if (unlikely(!type))
2662                 return ERR_PTR(-EINVAL);
2663
2664         __skb_pull(skb, vlan_depth);
2665
2666         rcu_read_lock();
2667         list_for_each_entry_rcu(ptype, &offload_base, list) {
2668                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2669                         segs = ptype->callbacks.gso_segment(skb, features);
2670                         break;
2671                 }
2672         }
2673         rcu_read_unlock();
2674
2675         __skb_push(skb, skb->data - skb_mac_header(skb));
2676
2677         return segs;
2678 }
2679 EXPORT_SYMBOL(skb_mac_gso_segment);
2680
2681
2682 /* openvswitch calls this on rx path, so we need a different check.
2683  */
2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685 {
2686         if (tx_path)
2687                 return skb->ip_summed != CHECKSUM_PARTIAL;
2688         else
2689                 return skb->ip_summed == CHECKSUM_NONE;
2690 }
2691
2692 /**
2693  *      __skb_gso_segment - Perform segmentation on skb.
2694  *      @skb: buffer to segment
2695  *      @features: features for the output path (see dev->features)
2696  *      @tx_path: whether it is called in TX path
2697  *
2698  *      This function segments the given skb and returns a list of segments.
2699  *
2700  *      It may return NULL if the skb requires no segmentation.  This is
2701  *      only possible when GSO is used for verifying header integrity.
2702  *
2703  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2704  */
2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706                                   netdev_features_t features, bool tx_path)
2707 {
2708         if (unlikely(skb_needs_check(skb, tx_path))) {
2709                 int err;
2710
2711                 skb_warn_bad_offload(skb);
2712
2713                 err = skb_cow_head(skb, 0);
2714                 if (err < 0)
2715                         return ERR_PTR(err);
2716         }
2717
2718         /* Only report GSO partial support if it will enable us to
2719          * support segmentation on this frame without needing additional
2720          * work.
2721          */
2722         if (features & NETIF_F_GSO_PARTIAL) {
2723                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724                 struct net_device *dev = skb->dev;
2725
2726                 partial_features |= dev->features & dev->gso_partial_features;
2727                 if (!skb_gso_ok(skb, features | partial_features))
2728                         features &= ~NETIF_F_GSO_PARTIAL;
2729         }
2730
2731         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733
2734         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2735         SKB_GSO_CB(skb)->encap_level = 0;
2736
2737         skb_reset_mac_header(skb);
2738         skb_reset_mac_len(skb);
2739
2740         return skb_mac_gso_segment(skb, features);
2741 }
2742 EXPORT_SYMBOL(__skb_gso_segment);
2743
2744 /* Take action when hardware reception checksum errors are detected. */
2745 #ifdef CONFIG_BUG
2746 void netdev_rx_csum_fault(struct net_device *dev)
2747 {
2748         if (net_ratelimit()) {
2749                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2750                 dump_stack();
2751         }
2752 }
2753 EXPORT_SYMBOL(netdev_rx_csum_fault);
2754 #endif
2755
2756 /* Actually, we should eliminate this check as soon as we know, that:
2757  * 1. IOMMU is present and allows to map all the memory.
2758  * 2. No high memory really exists on this machine.
2759  */
2760
2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2762 {
2763 #ifdef CONFIG_HIGHMEM
2764         int i;
2765         if (!(dev->features & NETIF_F_HIGHDMA)) {
2766                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768                         if (PageHighMem(skb_frag_page(frag)))
2769                                 return 1;
2770                 }
2771         }
2772
2773         if (PCI_DMA_BUS_IS_PHYS) {
2774                 struct device *pdev = dev->dev.parent;
2775
2776                 if (!pdev)
2777                         return 0;
2778                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2781                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782                                 return 1;
2783                 }
2784         }
2785 #endif
2786         return 0;
2787 }
2788
2789 /* If MPLS offload request, verify we are testing hardware MPLS features
2790  * instead of standard features for the netdev.
2791  */
2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2793 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794                                            netdev_features_t features,
2795                                            __be16 type)
2796 {
2797         if (eth_p_mpls(type))
2798                 features &= skb->dev->mpls_features;
2799
2800         return features;
2801 }
2802 #else
2803 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804                                            netdev_features_t features,
2805                                            __be16 type)
2806 {
2807         return features;
2808 }
2809 #endif
2810
2811 static netdev_features_t harmonize_features(struct sk_buff *skb,
2812         netdev_features_t features)
2813 {
2814         int tmp;
2815         __be16 type;
2816
2817         type = skb_network_protocol(skb, &tmp);
2818         features = net_mpls_features(skb, features, type);
2819
2820         if (skb->ip_summed != CHECKSUM_NONE &&
2821             !can_checksum_protocol(features, type)) {
2822                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2823         } else if (illegal_highdma(skb->dev, skb)) {
2824                 features &= ~NETIF_F_SG;
2825         }
2826
2827         return features;
2828 }
2829
2830 netdev_features_t passthru_features_check(struct sk_buff *skb,
2831                                           struct net_device *dev,
2832                                           netdev_features_t features)
2833 {
2834         return features;
2835 }
2836 EXPORT_SYMBOL(passthru_features_check);
2837
2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839                                              struct net_device *dev,
2840                                              netdev_features_t features)
2841 {
2842         return vlan_features_check(skb, features);
2843 }
2844
2845 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846                                             struct net_device *dev,
2847                                             netdev_features_t features)
2848 {
2849         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850
2851         if (gso_segs > dev->gso_max_segs)
2852                 return features & ~NETIF_F_GSO_MASK;
2853
2854         /* Support for GSO partial features requires software
2855          * intervention before we can actually process the packets
2856          * so we need to strip support for any partial features now
2857          * and we can pull them back in after we have partially
2858          * segmented the frame.
2859          */
2860         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861                 features &= ~dev->gso_partial_features;
2862
2863         /* Make sure to clear the IPv4 ID mangling feature if the
2864          * IPv4 header has the potential to be fragmented.
2865          */
2866         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867                 struct iphdr *iph = skb->encapsulation ?
2868                                     inner_ip_hdr(skb) : ip_hdr(skb);
2869
2870                 if (!(iph->frag_off & htons(IP_DF)))
2871                         features &= ~NETIF_F_TSO_MANGLEID;
2872         }
2873
2874         return features;
2875 }
2876
2877 netdev_features_t netif_skb_features(struct sk_buff *skb)
2878 {
2879         struct net_device *dev = skb->dev;
2880         netdev_features_t features = dev->features;
2881
2882         if (skb_is_gso(skb))
2883                 features = gso_features_check(skb, dev, features);
2884
2885         /* If encapsulation offload request, verify we are testing
2886          * hardware encapsulation features instead of standard
2887          * features for the netdev
2888          */
2889         if (skb->encapsulation)
2890                 features &= dev->hw_enc_features;
2891
2892         if (skb_vlan_tagged(skb))
2893                 features = netdev_intersect_features(features,
2894                                                      dev->vlan_features |
2895                                                      NETIF_F_HW_VLAN_CTAG_TX |
2896                                                      NETIF_F_HW_VLAN_STAG_TX);
2897
2898         if (dev->netdev_ops->ndo_features_check)
2899                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900                                                                 features);
2901         else
2902                 features &= dflt_features_check(skb, dev, features);
2903
2904         return harmonize_features(skb, features);
2905 }
2906 EXPORT_SYMBOL(netif_skb_features);
2907
2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2909                     struct netdev_queue *txq, bool more)
2910 {
2911         unsigned int len;
2912         int rc;
2913
2914         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2915                 dev_queue_xmit_nit(skb, dev);
2916
2917         len = skb->len;
2918         trace_net_dev_start_xmit(skb, dev);
2919         rc = netdev_start_xmit(skb, dev, txq, more);
2920         trace_net_dev_xmit(skb, rc, dev, len);
2921
2922         return rc;
2923 }
2924
2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926                                     struct netdev_queue *txq, int *ret)
2927 {
2928         struct sk_buff *skb = first;
2929         int rc = NETDEV_TX_OK;
2930
2931         while (skb) {
2932                 struct sk_buff *next = skb->next;
2933
2934                 skb->next = NULL;
2935                 rc = xmit_one(skb, dev, txq, next != NULL);
2936                 if (unlikely(!dev_xmit_complete(rc))) {
2937                         skb->next = next;
2938                         goto out;
2939                 }
2940
2941                 skb = next;
2942                 if (netif_xmit_stopped(txq) && skb) {
2943                         rc = NETDEV_TX_BUSY;
2944                         break;
2945                 }
2946         }
2947
2948 out:
2949         *ret = rc;
2950         return skb;
2951 }
2952
2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954                                           netdev_features_t features)
2955 {
2956         if (skb_vlan_tag_present(skb) &&
2957             !vlan_hw_offload_capable(features, skb->vlan_proto))
2958                 skb = __vlan_hwaccel_push_inside(skb);
2959         return skb;
2960 }
2961
2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2963 {
2964         netdev_features_t features;
2965
2966         features = netif_skb_features(skb);
2967         skb = validate_xmit_vlan(skb, features);
2968         if (unlikely(!skb))
2969                 goto out_null;
2970
2971         if (netif_needs_gso(skb, features)) {
2972                 struct sk_buff *segs;
2973
2974                 segs = skb_gso_segment(skb, features);
2975                 if (IS_ERR(segs)) {
2976                         goto out_kfree_skb;
2977                 } else if (segs) {
2978                         consume_skb(skb);
2979                         skb = segs;
2980                 }
2981         } else {
2982                 if (skb_needs_linearize(skb, features) &&
2983                     __skb_linearize(skb))
2984                         goto out_kfree_skb;
2985
2986                 /* If packet is not checksummed and device does not
2987                  * support checksumming for this protocol, complete
2988                  * checksumming here.
2989                  */
2990                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991                         if (skb->encapsulation)
2992                                 skb_set_inner_transport_header(skb,
2993                                                                skb_checksum_start_offset(skb));
2994                         else
2995                                 skb_set_transport_header(skb,
2996                                                          skb_checksum_start_offset(skb));
2997                         if (!(features & NETIF_F_CSUM_MASK) &&
2998                             skb_checksum_help(skb))
2999                                 goto out_kfree_skb;
3000                 }
3001         }
3002
3003         return skb;
3004
3005 out_kfree_skb:
3006         kfree_skb(skb);
3007 out_null:
3008         atomic_long_inc(&dev->tx_dropped);
3009         return NULL;
3010 }
3011
3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013 {
3014         struct sk_buff *next, *head = NULL, *tail;
3015
3016         for (; skb != NULL; skb = next) {
3017                 next = skb->next;
3018                 skb->next = NULL;
3019
3020                 /* in case skb wont be segmented, point to itself */
3021                 skb->prev = skb;
3022
3023                 skb = validate_xmit_skb(skb, dev);
3024                 if (!skb)
3025                         continue;
3026
3027                 if (!head)
3028                         head = skb;
3029                 else
3030                         tail->next = skb;
3031                 /* If skb was segmented, skb->prev points to
3032                  * the last segment. If not, it still contains skb.
3033                  */
3034                 tail = skb->prev;
3035         }
3036         return head;
3037 }
3038
3039 static void qdisc_pkt_len_init(struct sk_buff *skb)
3040 {
3041         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042
3043         qdisc_skb_cb(skb)->pkt_len = skb->len;
3044
3045         /* To get more precise estimation of bytes sent on wire,
3046          * we add to pkt_len the headers size of all segments
3047          */
3048         if (shinfo->gso_size)  {
3049                 unsigned int hdr_len;
3050                 u16 gso_segs = shinfo->gso_segs;
3051
3052                 /* mac layer + network layer */
3053                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054
3055                 /* + transport layer */
3056                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057                         hdr_len += tcp_hdrlen(skb);
3058                 else
3059                         hdr_len += sizeof(struct udphdr);
3060
3061                 if (shinfo->gso_type & SKB_GSO_DODGY)
3062                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063                                                 shinfo->gso_size);
3064
3065                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3066         }
3067 }
3068
3069 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070                                  struct net_device *dev,
3071                                  struct netdev_queue *txq)
3072 {
3073         spinlock_t *root_lock = qdisc_lock(q);
3074         struct sk_buff *to_free = NULL;
3075         bool contended;
3076         int rc;
3077
3078         qdisc_calculate_pkt_len(skb, q);
3079         /*
3080          * Heuristic to force contended enqueues to serialize on a
3081          * separate lock before trying to get qdisc main lock.
3082          * This permits qdisc->running owner to get the lock more
3083          * often and dequeue packets faster.
3084          */
3085         contended = qdisc_is_running(q);
3086         if (unlikely(contended))
3087                 spin_lock(&q->busylock);
3088
3089         spin_lock(root_lock);
3090         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3091                 __qdisc_drop(skb, &to_free);
3092                 rc = NET_XMIT_DROP;
3093         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3094                    qdisc_run_begin(q)) {
3095                 /*
3096                  * This is a work-conserving queue; there are no old skbs
3097                  * waiting to be sent out; and the qdisc is not running -
3098                  * xmit the skb directly.
3099                  */
3100
3101                 qdisc_bstats_update(q, skb);
3102
3103                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3104                         if (unlikely(contended)) {
3105                                 spin_unlock(&q->busylock);
3106                                 contended = false;
3107                         }
3108                         __qdisc_run(q);
3109                 } else
3110                         qdisc_run_end(q);
3111
3112                 rc = NET_XMIT_SUCCESS;
3113         } else {
3114                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3115                 if (qdisc_run_begin(q)) {
3116                         if (unlikely(contended)) {
3117                                 spin_unlock(&q->busylock);
3118                                 contended = false;
3119                         }
3120                         __qdisc_run(q);
3121                 }
3122         }
3123         spin_unlock(root_lock);
3124         if (unlikely(to_free))
3125                 kfree_skb_list(to_free);
3126         if (unlikely(contended))
3127                 spin_unlock(&q->busylock);
3128         return rc;
3129 }
3130
3131 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3132 static void skb_update_prio(struct sk_buff *skb)
3133 {
3134         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3135
3136         if (!skb->priority && skb->sk && map) {
3137                 unsigned int prioidx =
3138                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3139
3140                 if (prioidx < map->priomap_len)
3141                         skb->priority = map->priomap[prioidx];
3142         }
3143 }
3144 #else
3145 #define skb_update_prio(skb)
3146 #endif
3147
3148 DEFINE_PER_CPU(int, xmit_recursion);
3149 EXPORT_SYMBOL(xmit_recursion);
3150
3151 /**
3152  *      dev_loopback_xmit - loop back @skb
3153  *      @net: network namespace this loopback is happening in
3154  *      @sk:  sk needed to be a netfilter okfn
3155  *      @skb: buffer to transmit
3156  */
3157 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3158 {
3159         skb_reset_mac_header(skb);
3160         __skb_pull(skb, skb_network_offset(skb));
3161         skb->pkt_type = PACKET_LOOPBACK;
3162         skb->ip_summed = CHECKSUM_UNNECESSARY;
3163         WARN_ON(!skb_dst(skb));
3164         skb_dst_force(skb);
3165         netif_rx_ni(skb);
3166         return 0;
3167 }
3168 EXPORT_SYMBOL(dev_loopback_xmit);
3169
3170 #ifdef CONFIG_NET_EGRESS
3171 static struct sk_buff *
3172 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173 {
3174         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175         struct tcf_result cl_res;
3176
3177         if (!cl)
3178                 return skb;
3179
3180         /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181          * earlier by the caller.
3182          */
3183         qdisc_bstats_cpu_update(cl->q, skb);
3184
3185         switch (tc_classify(skb, cl, &cl_res, false)) {
3186         case TC_ACT_OK:
3187         case TC_ACT_RECLASSIFY:
3188                 skb->tc_index = TC_H_MIN(cl_res.classid);
3189                 break;
3190         case TC_ACT_SHOT:
3191                 qdisc_qstats_cpu_drop(cl->q);
3192                 *ret = NET_XMIT_DROP;
3193                 kfree_skb(skb);
3194                 return NULL;
3195         case TC_ACT_STOLEN:
3196         case TC_ACT_QUEUED:
3197                 *ret = NET_XMIT_SUCCESS;
3198                 consume_skb(skb);
3199                 return NULL;
3200         case TC_ACT_REDIRECT:
3201                 /* No need to push/pop skb's mac_header here on egress! */
3202                 skb_do_redirect(skb);
3203                 *ret = NET_XMIT_SUCCESS;
3204                 return NULL;
3205         default:
3206                 break;
3207         }
3208
3209         return skb;
3210 }
3211 #endif /* CONFIG_NET_EGRESS */
3212
3213 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3214 {
3215 #ifdef CONFIG_XPS
3216         struct xps_dev_maps *dev_maps;
3217         struct xps_map *map;
3218         int queue_index = -1;
3219
3220         rcu_read_lock();
3221         dev_maps = rcu_dereference(dev->xps_maps);
3222         if (dev_maps) {
3223                 map = rcu_dereference(
3224                     dev_maps->cpu_map[skb->sender_cpu - 1]);
3225                 if (map) {
3226                         if (map->len == 1)
3227                                 queue_index = map->queues[0];
3228                         else
3229                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3230                                                                            map->len)];
3231                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3232                                 queue_index = -1;
3233                 }
3234         }
3235         rcu_read_unlock();
3236
3237         return queue_index;
3238 #else
3239         return -1;
3240 #endif
3241 }
3242
3243 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3244 {
3245         struct sock *sk = skb->sk;
3246         int queue_index = sk_tx_queue_get(sk);
3247
3248         if (queue_index < 0 || skb->ooo_okay ||
3249             queue_index >= dev->real_num_tx_queues) {
3250                 int new_index = get_xps_queue(dev, skb);
3251                 if (new_index < 0)
3252                         new_index = skb_tx_hash(dev, skb);
3253
3254                 if (queue_index != new_index && sk &&
3255                     sk_fullsock(sk) &&
3256                     rcu_access_pointer(sk->sk_dst_cache))
3257                         sk_tx_queue_set(sk, new_index);
3258
3259                 queue_index = new_index;
3260         }
3261
3262         return queue_index;
3263 }
3264
3265 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266                                     struct sk_buff *skb,
3267                                     void *accel_priv)
3268 {
3269         int queue_index = 0;
3270
3271 #ifdef CONFIG_XPS
3272         u32 sender_cpu = skb->sender_cpu - 1;
3273
3274         if (sender_cpu >= (u32)NR_CPUS)
3275                 skb->sender_cpu = raw_smp_processor_id() + 1;
3276 #endif
3277
3278         if (dev->real_num_tx_queues != 1) {
3279                 const struct net_device_ops *ops = dev->netdev_ops;
3280                 if (ops->ndo_select_queue)
3281                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3282                                                             __netdev_pick_tx);
3283                 else
3284                         queue_index = __netdev_pick_tx(dev, skb);
3285
3286                 if (!accel_priv)
3287                         queue_index = netdev_cap_txqueue(dev, queue_index);
3288         }
3289
3290         skb_set_queue_mapping(skb, queue_index);
3291         return netdev_get_tx_queue(dev, queue_index);
3292 }
3293
3294 /**
3295  *      __dev_queue_xmit - transmit a buffer
3296  *      @skb: buffer to transmit
3297  *      @accel_priv: private data used for L2 forwarding offload
3298  *
3299  *      Queue a buffer for transmission to a network device. The caller must
3300  *      have set the device and priority and built the buffer before calling
3301  *      this function. The function can be called from an interrupt.
3302  *
3303  *      A negative errno code is returned on a failure. A success does not
3304  *      guarantee the frame will be transmitted as it may be dropped due
3305  *      to congestion or traffic shaping.
3306  *
3307  * -----------------------------------------------------------------------------------
3308  *      I notice this method can also return errors from the queue disciplines,
3309  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3310  *      be positive.
3311  *
3312  *      Regardless of the return value, the skb is consumed, so it is currently
3313  *      difficult to retry a send to this method.  (You can bump the ref count
3314  *      before sending to hold a reference for retry if you are careful.)
3315  *
3316  *      When calling this method, interrupts MUST be enabled.  This is because
3317  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3318  *          --BLG
3319  */
3320 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3321 {
3322         struct net_device *dev = skb->dev;
3323         struct netdev_queue *txq;
3324         struct Qdisc *q;
3325         int rc = -ENOMEM;
3326
3327         skb_reset_mac_header(skb);
3328
3329         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3331
3332         /* Disable soft irqs for various locks below. Also
3333          * stops preemption for RCU.
3334          */
3335         rcu_read_lock_bh();
3336
3337         skb_update_prio(skb);
3338
3339         qdisc_pkt_len_init(skb);
3340 #ifdef CONFIG_NET_CLS_ACT
3341         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342 # ifdef CONFIG_NET_EGRESS
3343         if (static_key_false(&egress_needed)) {
3344                 skb = sch_handle_egress(skb, &rc, dev);
3345                 if (!skb)
3346                         goto out;
3347         }
3348 # endif
3349 #endif
3350         /* If device/qdisc don't need skb->dst, release it right now while
3351          * its hot in this cpu cache.
3352          */
3353         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354                 skb_dst_drop(skb);
3355         else
3356                 skb_dst_force(skb);
3357
3358 #ifdef CONFIG_NET_SWITCHDEV
3359         /* Don't forward if offload device already forwarded */
3360         if (skb->offload_fwd_mark &&
3361             skb->offload_fwd_mark == dev->offload_fwd_mark) {
3362                 consume_skb(skb);
3363                 rc = NET_XMIT_SUCCESS;
3364                 goto out;
3365         }
3366 #endif
3367
3368         txq = netdev_pick_tx(dev, skb, accel_priv);
3369         q = rcu_dereference_bh(txq->qdisc);
3370
3371         trace_net_dev_queue(skb);
3372         if (q->enqueue) {
3373                 rc = __dev_xmit_skb(skb, q, dev, txq);
3374                 goto out;
3375         }
3376
3377         /* The device has no queue. Common case for software devices:
3378            loopback, all the sorts of tunnels...
3379
3380            Really, it is unlikely that netif_tx_lock protection is necessary
3381            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3382            counters.)
3383            However, it is possible, that they rely on protection
3384            made by us here.
3385
3386            Check this and shot the lock. It is not prone from deadlocks.
3387            Either shot noqueue qdisc, it is even simpler 8)
3388          */
3389         if (dev->flags & IFF_UP) {
3390                 int cpu = smp_processor_id(); /* ok because BHs are off */
3391
3392                 if (txq->xmit_lock_owner != cpu) {
3393                         if (unlikely(__this_cpu_read(xmit_recursion) >
3394                                      XMIT_RECURSION_LIMIT))
3395                                 goto recursion_alert;
3396
3397                         skb = validate_xmit_skb(skb, dev);
3398                         if (!skb)
3399                                 goto out;
3400
3401                         HARD_TX_LOCK(dev, txq, cpu);
3402
3403                         if (!netif_xmit_stopped(txq)) {
3404                                 __this_cpu_inc(xmit_recursion);
3405                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3406                                 __this_cpu_dec(xmit_recursion);
3407                                 if (dev_xmit_complete(rc)) {
3408                                         HARD_TX_UNLOCK(dev, txq);
3409                                         goto out;
3410                                 }
3411                         }
3412                         HARD_TX_UNLOCK(dev, txq);
3413                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3414                                              dev->name);
3415                 } else {
3416                         /* Recursion is detected! It is possible,
3417                          * unfortunately
3418                          */
3419 recursion_alert:
3420                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3421                                              dev->name);
3422                 }
3423         }
3424
3425         rc = -ENETDOWN;
3426         rcu_read_unlock_bh();
3427
3428         atomic_long_inc(&dev->tx_dropped);
3429         kfree_skb_list(skb);
3430         return rc;
3431 out:
3432         rcu_read_unlock_bh();
3433         return rc;
3434 }
3435
3436 int dev_queue_xmit(struct sk_buff *skb)
3437 {
3438         return __dev_queue_xmit(skb, NULL);
3439 }
3440 EXPORT_SYMBOL(dev_queue_xmit);
3441
3442 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3443 {
3444         return __dev_queue_xmit(skb, accel_priv);
3445 }
3446 EXPORT_SYMBOL(dev_queue_xmit_accel);
3447
3448
3449 /*=======================================================================
3450                         Receiver routines
3451   =======================================================================*/
3452
3453 int netdev_max_backlog __read_mostly = 1000;
3454 EXPORT_SYMBOL(netdev_max_backlog);
3455
3456 int netdev_tstamp_prequeue __read_mostly = 1;
3457 int netdev_budget __read_mostly = 300;
3458 int weight_p __read_mostly = 64;            /* old backlog weight */
3459
3460 /* Called with irq disabled */
3461 static inline void ____napi_schedule(struct softnet_data *sd,
3462                                      struct napi_struct *napi)
3463 {
3464         list_add_tail(&napi->poll_list, &sd->poll_list);
3465         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3466 }
3467
3468 #ifdef CONFIG_RPS
3469
3470 /* One global table that all flow-based protocols share. */
3471 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3472 EXPORT_SYMBOL(rps_sock_flow_table);
3473 u32 rps_cpu_mask __read_mostly;
3474 EXPORT_SYMBOL(rps_cpu_mask);
3475
3476 struct static_key rps_needed __read_mostly;
3477 EXPORT_SYMBOL(rps_needed);
3478
3479 static struct rps_dev_flow *
3480 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3481             struct rps_dev_flow *rflow, u16 next_cpu)
3482 {
3483         if (next_cpu < nr_cpu_ids) {
3484 #ifdef CONFIG_RFS_ACCEL
3485                 struct netdev_rx_queue *rxqueue;
3486                 struct rps_dev_flow_table *flow_table;
3487                 struct rps_dev_flow *old_rflow;
3488                 u32 flow_id;
3489                 u16 rxq_index;
3490                 int rc;
3491
3492                 /* Should we steer this flow to a different hardware queue? */
3493                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3494                     !(dev->features & NETIF_F_NTUPLE))
3495                         goto out;
3496                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3497                 if (rxq_index == skb_get_rx_queue(skb))
3498                         goto out;
3499
3500                 rxqueue = dev->_rx + rxq_index;
3501                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3502                 if (!flow_table)
3503                         goto out;
3504                 flow_id = skb_get_hash(skb) & flow_table->mask;
3505                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3506                                                         rxq_index, flow_id);
3507                 if (rc < 0)
3508                         goto out;
3509                 old_rflow = rflow;
3510                 rflow = &flow_table->flows[flow_id];
3511                 rflow->filter = rc;
3512                 if (old_rflow->filter == rflow->filter)
3513                         old_rflow->filter = RPS_NO_FILTER;
3514         out:
3515 #endif
3516                 rflow->last_qtail =
3517                         per_cpu(softnet_data, next_cpu).input_queue_head;
3518         }
3519
3520         rflow->cpu = next_cpu;
3521         return rflow;
3522 }
3523
3524 /*
3525  * get_rps_cpu is called from netif_receive_skb and returns the target
3526  * CPU from the RPS map of the receiving queue for a given skb.
3527  * rcu_read_lock must be held on entry.
3528  */
3529 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3530                        struct rps_dev_flow **rflowp)
3531 {
3532         const struct rps_sock_flow_table *sock_flow_table;
3533         struct netdev_rx_queue *rxqueue = dev->_rx;
3534         struct rps_dev_flow_table *flow_table;
3535         struct rps_map *map;
3536         int cpu = -1;
3537         u32 tcpu;
3538         u32 hash;
3539
3540         if (skb_rx_queue_recorded(skb)) {
3541                 u16 index = skb_get_rx_queue(skb);
3542
3543                 if (unlikely(index >= dev->real_num_rx_queues)) {
3544                         WARN_ONCE(dev->real_num_rx_queues > 1,
3545                                   "%s received packet on queue %u, but number "
3546                                   "of RX queues is %u\n",
3547                                   dev->name, index, dev->real_num_rx_queues);
3548                         goto done;
3549                 }
3550                 rxqueue += index;
3551         }
3552
3553         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3554
3555         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3556         map = rcu_dereference(rxqueue->rps_map);
3557         if (!flow_table && !map)
3558                 goto done;
3559
3560         skb_reset_network_header(skb);
3561         hash = skb_get_hash(skb);
3562         if (!hash)
3563                 goto done;
3564
3565         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3566         if (flow_table && sock_flow_table) {
3567                 struct rps_dev_flow *rflow;
3568                 u32 next_cpu;
3569                 u32 ident;
3570
3571                 /* First check into global flow table if there is a match */
3572                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3573                 if ((ident ^ hash) & ~rps_cpu_mask)
3574                         goto try_rps;
3575
3576                 next_cpu = ident & rps_cpu_mask;
3577
3578                 /* OK, now we know there is a match,
3579                  * we can look at the local (per receive queue) flow table
3580                  */
3581                 rflow = &flow_table->flows[hash & flow_table->mask];
3582                 tcpu = rflow->cpu;
3583
3584                 /*
3585                  * If the desired CPU (where last recvmsg was done) is
3586                  * different from current CPU (one in the rx-queue flow
3587                  * table entry), switch if one of the following holds:
3588                  *   - Current CPU is unset (>= nr_cpu_ids).
3589                  *   - Current CPU is offline.
3590                  *   - The current CPU's queue tail has advanced beyond the
3591                  *     last packet that was enqueued using this table entry.
3592                  *     This guarantees that all previous packets for the flow
3593                  *     have been dequeued, thus preserving in order delivery.
3594                  */
3595                 if (unlikely(tcpu != next_cpu) &&
3596                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3597                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3598                       rflow->last_qtail)) >= 0)) {
3599                         tcpu = next_cpu;
3600                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3601                 }
3602
3603                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3604                         *rflowp = rflow;
3605                         cpu = tcpu;
3606                         goto done;
3607                 }
3608         }
3609
3610 try_rps:
3611
3612         if (map) {
3613                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3614                 if (cpu_online(tcpu)) {
3615                         cpu = tcpu;
3616                         goto done;
3617                 }
3618         }
3619
3620 done:
3621         return cpu;
3622 }
3623
3624 #ifdef CONFIG_RFS_ACCEL
3625
3626 /**
3627  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3628  * @dev: Device on which the filter was set
3629  * @rxq_index: RX queue index
3630  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3631  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3632  *
3633  * Drivers that implement ndo_rx_flow_steer() should periodically call
3634  * this function for each installed filter and remove the filters for
3635  * which it returns %true.
3636  */
3637 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3638                          u32 flow_id, u16 filter_id)
3639 {
3640         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3641         struct rps_dev_flow_table *flow_table;
3642         struct rps_dev_flow *rflow;
3643         bool expire = true;
3644         unsigned int cpu;
3645
3646         rcu_read_lock();
3647         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3648         if (flow_table && flow_id <= flow_table->mask) {
3649                 rflow = &flow_table->flows[flow_id];
3650                 cpu = ACCESS_ONCE(rflow->cpu);
3651                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3652                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3653                            rflow->last_qtail) <
3654                      (int)(10 * flow_table->mask)))
3655                         expire = false;
3656         }
3657         rcu_read_unlock();
3658         return expire;
3659 }
3660 EXPORT_SYMBOL(rps_may_expire_flow);
3661
3662 #endif /* CONFIG_RFS_ACCEL */
3663
3664 /* Called from hardirq (IPI) context */
3665 static void rps_trigger_softirq(void *data)
3666 {
3667         struct softnet_data *sd = data;
3668
3669         ____napi_schedule(sd, &sd->backlog);
3670         sd->received_rps++;
3671 }
3672
3673 #endif /* CONFIG_RPS */
3674
3675 /*
3676  * Check if this softnet_data structure is another cpu one
3677  * If yes, queue it to our IPI list and return 1
3678  * If no, return 0
3679  */
3680 static int rps_ipi_queued(struct softnet_data *sd)
3681 {
3682 #ifdef CONFIG_RPS
3683         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3684
3685         if (sd != mysd) {
3686                 sd->rps_ipi_next = mysd->rps_ipi_list;
3687                 mysd->rps_ipi_list = sd;
3688
3689                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3690                 return 1;
3691         }
3692 #endif /* CONFIG_RPS */
3693         return 0;
3694 }
3695
3696 #ifdef CONFIG_NET_FLOW_LIMIT
3697 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3698 #endif
3699
3700 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3701 {
3702 #ifdef CONFIG_NET_FLOW_LIMIT
3703         struct sd_flow_limit *fl;
3704         struct softnet_data *sd;
3705         unsigned int old_flow, new_flow;
3706
3707         if (qlen < (netdev_max_backlog >> 1))
3708                 return false;
3709
3710         sd = this_cpu_ptr(&softnet_data);
3711
3712         rcu_read_lock();
3713         fl = rcu_dereference(sd->flow_limit);
3714         if (fl) {
3715                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3716                 old_flow = fl->history[fl->history_head];
3717                 fl->history[fl->history_head] = new_flow;
3718
3719                 fl->history_head++;
3720                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3721
3722                 if (likely(fl->buckets[old_flow]))
3723                         fl->buckets[old_flow]--;
3724
3725                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3726                         fl->count++;
3727                         rcu_read_unlock();
3728                         return true;
3729                 }
3730         }
3731         rcu_read_unlock();
3732 #endif
3733         return false;
3734 }
3735
3736 /*
3737  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3738  * queue (may be a remote CPU queue).
3739  */
3740 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3741                               unsigned int *qtail)
3742 {
3743         struct softnet_data *sd;
3744         unsigned long flags;
3745         unsigned int qlen;
3746
3747         sd = &per_cpu(softnet_data, cpu);
3748
3749         local_irq_save(flags);
3750
3751         rps_lock(sd);
3752         if (!netif_running(skb->dev))
3753                 goto drop;
3754         qlen = skb_queue_len(&sd->input_pkt_queue);
3755         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3756                 if (qlen) {
3757 enqueue:
3758                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3759                         input_queue_tail_incr_save(sd, qtail);
3760                         rps_unlock(sd);
3761                         local_irq_restore(flags);
3762                         return NET_RX_SUCCESS;
3763                 }
3764
3765                 /* Schedule NAPI for backlog device
3766                  * We can use non atomic operation since we own the queue lock
3767                  */
3768                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3769                         if (!rps_ipi_queued(sd))
3770                                 ____napi_schedule(sd, &sd->backlog);
3771                 }
3772                 goto enqueue;
3773         }
3774
3775 drop:
3776         sd->dropped++;
3777         rps_unlock(sd);
3778
3779         local_irq_restore(flags);
3780
3781         atomic_long_inc(&skb->dev->rx_dropped);
3782         kfree_skb(skb);
3783         return NET_RX_DROP;
3784 }
3785
3786 static int netif_rx_internal(struct sk_buff *skb)
3787 {
3788         int ret;
3789
3790         net_timestamp_check(netdev_tstamp_prequeue, skb);
3791
3792         trace_netif_rx(skb);
3793 #ifdef CONFIG_RPS
3794         if (static_key_false(&rps_needed)) {
3795                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3796                 int cpu;
3797
3798                 preempt_disable();
3799                 rcu_read_lock();
3800
3801                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3802                 if (cpu < 0)
3803                         cpu = smp_processor_id();
3804
3805                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3806
3807                 rcu_read_unlock();
3808                 preempt_enable();
3809         } else
3810 #endif
3811         {
3812                 unsigned int qtail;
3813                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3814                 put_cpu();
3815         }
3816         return ret;
3817 }
3818
3819 /**
3820  *      netif_rx        -       post buffer to the network code
3821  *      @skb: buffer to post
3822  *
3823  *      This function receives a packet from a device driver and queues it for
3824  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3825  *      may be dropped during processing for congestion control or by the
3826  *      protocol layers.
3827  *
3828  *      return values:
3829  *      NET_RX_SUCCESS  (no congestion)
3830  *      NET_RX_DROP     (packet was dropped)
3831  *
3832  */
3833
3834 int netif_rx(struct sk_buff *skb)
3835 {
3836         trace_netif_rx_entry(skb);
3837
3838         return netif_rx_internal(skb);
3839 }
3840 EXPORT_SYMBOL(netif_rx);
3841
3842 int netif_rx_ni(struct sk_buff *skb)
3843 {
3844         int err;
3845
3846         trace_netif_rx_ni_entry(skb);
3847
3848         preempt_disable();
3849         err = netif_rx_internal(skb);
3850         if (local_softirq_pending())
3851                 do_softirq();
3852         preempt_enable();
3853
3854         return err;
3855 }
3856 EXPORT_SYMBOL(netif_rx_ni);
3857
3858 static void net_tx_action(struct softirq_action *h)
3859 {
3860         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3861
3862         if (sd->completion_queue) {
3863                 struct sk_buff *clist;
3864
3865                 local_irq_disable();
3866                 clist = sd->completion_queue;
3867                 sd->completion_queue = NULL;
3868                 local_irq_enable();
3869
3870                 while (clist) {
3871                         struct sk_buff *skb = clist;
3872                         clist = clist->next;
3873
3874                         WARN_ON(atomic_read(&skb->users));
3875                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3876                                 trace_consume_skb(skb);
3877                         else
3878                                 trace_kfree_skb(skb, net_tx_action);
3879
3880                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3881                                 __kfree_skb(skb);
3882                         else
3883                                 __kfree_skb_defer(skb);
3884                 }
3885
3886                 __kfree_skb_flush();
3887         }
3888
3889         if (sd->output_queue) {
3890                 struct Qdisc *head;
3891
3892                 local_irq_disable();
3893                 head = sd->output_queue;
3894                 sd->output_queue = NULL;
3895                 sd->output_queue_tailp = &sd->output_queue;
3896                 local_irq_enable();
3897
3898                 while (head) {
3899                         struct Qdisc *q = head;
3900                         spinlock_t *root_lock;
3901
3902                         head = head->next_sched;
3903
3904                         root_lock = qdisc_lock(q);
3905                         spin_lock(root_lock);
3906                         /* We need to make sure head->next_sched is read
3907                          * before clearing __QDISC_STATE_SCHED
3908                          */
3909                         smp_mb__before_atomic();
3910                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3911                         qdisc_run(q);
3912                         spin_unlock(root_lock);
3913                 }
3914         }
3915 }
3916
3917 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3918     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3919 /* This hook is defined here for ATM LANE */
3920 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3921                              unsigned char *addr) __read_mostly;
3922 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3923 #endif
3924
3925 static inline struct sk_buff *
3926 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3927                    struct net_device *orig_dev)
3928 {
3929 #ifdef CONFIG_NET_CLS_ACT
3930         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3931         struct tcf_result cl_res;
3932
3933         /* If there's at least one ingress present somewhere (so
3934          * we get here via enabled static key), remaining devices
3935          * that are not configured with an ingress qdisc will bail
3936          * out here.
3937          */
3938         if (!cl)
3939                 return skb;
3940         if (*pt_prev) {
3941                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3942                 *pt_prev = NULL;
3943         }
3944
3945         qdisc_skb_cb(skb)->pkt_len = skb->len;
3946         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3947         qdisc_bstats_cpu_update(cl->q, skb);
3948
3949         switch (tc_classify(skb, cl, &cl_res, false)) {
3950         case TC_ACT_OK:
3951         case TC_ACT_RECLASSIFY:
3952                 skb->tc_index = TC_H_MIN(cl_res.classid);
3953                 break;
3954         case TC_ACT_SHOT:
3955                 qdisc_qstats_cpu_drop(cl->q);
3956                 kfree_skb(skb);
3957                 return NULL;
3958         case TC_ACT_STOLEN:
3959         case TC_ACT_QUEUED:
3960                 consume_skb(skb);
3961                 return NULL;
3962         case TC_ACT_REDIRECT:
3963                 /* skb_mac_header check was done by cls/act_bpf, so
3964                  * we can safely push the L2 header back before
3965                  * redirecting to another netdev
3966                  */
3967                 __skb_push(skb, skb->mac_len);
3968                 skb_do_redirect(skb);
3969                 return NULL;
3970         default:
3971                 break;
3972         }
3973 #endif /* CONFIG_NET_CLS_ACT */
3974         return skb;
3975 }
3976
3977 /**
3978  *      netdev_rx_handler_register - register receive handler
3979  *      @dev: device to register a handler for
3980  *      @rx_handler: receive handler to register
3981  *      @rx_handler_data: data pointer that is used by rx handler
3982  *
3983  *      Register a receive handler for a device. This handler will then be
3984  *      called from __netif_receive_skb. A negative errno code is returned
3985  *      on a failure.
3986  *
3987  *      The caller must hold the rtnl_mutex.
3988  *
3989  *      For a general description of rx_handler, see enum rx_handler_result.
3990  */
3991 int netdev_rx_handler_register(struct net_device *dev,
3992                                rx_handler_func_t *rx_handler,
3993                                void *rx_handler_data)
3994 {
3995         ASSERT_RTNL();
3996
3997         if (dev->rx_handler)
3998                 return -EBUSY;
3999
4000         /* Note: rx_handler_data must be set before rx_handler */
4001         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4002         rcu_assign_pointer(dev->rx_handler, rx_handler);
4003
4004         return 0;
4005 }
4006 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4007
4008 /**
4009  *      netdev_rx_handler_unregister - unregister receive handler
4010  *      @dev: device to unregister a handler from
4011  *
4012  *      Unregister a receive handler from a device.
4013  *
4014  *      The caller must hold the rtnl_mutex.
4015  */
4016 void netdev_rx_handler_unregister(struct net_device *dev)
4017 {
4018
4019         ASSERT_RTNL();
4020         RCU_INIT_POINTER(dev->rx_handler, NULL);
4021         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4022          * section has a guarantee to see a non NULL rx_handler_data
4023          * as well.
4024          */
4025         synchronize_net();
4026         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4027 }
4028 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4029
4030 /*
4031  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4032  * the special handling of PFMEMALLOC skbs.
4033  */
4034 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4035 {
4036         switch (skb->protocol) {
4037         case htons(ETH_P_ARP):
4038         case htons(ETH_P_IP):
4039         case htons(ETH_P_IPV6):
4040         case htons(ETH_P_8021Q):
4041         case htons(ETH_P_8021AD):
4042                 return true;
4043         default:
4044                 return false;
4045         }
4046 }
4047
4048 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4049                              int *ret, struct net_device *orig_dev)
4050 {
4051 #ifdef CONFIG_NETFILTER_INGRESS
4052         if (nf_hook_ingress_active(skb)) {
4053                 if (*pt_prev) {
4054                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4055                         *pt_prev = NULL;
4056                 }
4057
4058                 return nf_hook_ingress(skb);
4059         }
4060 #endif /* CONFIG_NETFILTER_INGRESS */
4061         return 0;
4062 }
4063
4064 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4065 {
4066         struct packet_type *ptype, *pt_prev;
4067         rx_handler_func_t *rx_handler;
4068         struct net_device *orig_dev;
4069         bool deliver_exact = false;
4070         int ret = NET_RX_DROP;
4071         __be16 type;
4072
4073         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4074
4075         trace_netif_receive_skb(skb);
4076
4077         orig_dev = skb->dev;
4078
4079         skb_reset_network_header(skb);
4080         if (!skb_transport_header_was_set(skb))
4081                 skb_reset_transport_header(skb);
4082         skb_reset_mac_len(skb);
4083
4084         pt_prev = NULL;
4085
4086 another_round:
4087         skb->skb_iif = skb->dev->ifindex;
4088
4089         __this_cpu_inc(softnet_data.processed);
4090
4091         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4092             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4093                 skb = skb_vlan_untag(skb);
4094                 if (unlikely(!skb))
4095                         goto out;
4096         }
4097
4098 #ifdef CONFIG_NET_CLS_ACT
4099         if (skb->tc_verd & TC_NCLS) {
4100                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4101                 goto ncls;
4102         }
4103 #endif
4104
4105         if (pfmemalloc)
4106                 goto skip_taps;
4107
4108         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4109                 if (pt_prev)
4110                         ret = deliver_skb(skb, pt_prev, orig_dev);
4111                 pt_prev = ptype;
4112         }
4113
4114         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4115                 if (pt_prev)
4116                         ret = deliver_skb(skb, pt_prev, orig_dev);
4117                 pt_prev = ptype;
4118         }
4119
4120 skip_taps:
4121 #ifdef CONFIG_NET_INGRESS
4122         if (static_key_false(&ingress_needed)) {
4123                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4124                 if (!skb)
4125                         goto out;
4126
4127                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4128                         goto out;
4129         }
4130 #endif
4131 #ifdef CONFIG_NET_CLS_ACT
4132         skb->tc_verd = 0;
4133 ncls:
4134 #endif
4135         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4136                 goto drop;
4137
4138         if (skb_vlan_tag_present(skb)) {
4139                 if (pt_prev) {
4140                         ret = deliver_skb(skb, pt_prev, orig_dev);
4141                         pt_prev = NULL;
4142                 }
4143                 if (vlan_do_receive(&skb))
4144                         goto another_round;
4145                 else if (unlikely(!skb))
4146                         goto out;
4147         }
4148
4149         rx_handler = rcu_dereference(skb->dev->rx_handler);
4150         if (rx_handler) {
4151                 if (pt_prev) {
4152                         ret = deliver_skb(skb, pt_prev, orig_dev);
4153                         pt_prev = NULL;
4154                 }
4155                 switch (rx_handler(&skb)) {
4156                 case RX_HANDLER_CONSUMED:
4157                         ret = NET_RX_SUCCESS;
4158                         goto out;
4159                 case RX_HANDLER_ANOTHER:
4160                         goto another_round;
4161                 case RX_HANDLER_EXACT:
4162                         deliver_exact = true;
4163                 case RX_HANDLER_PASS:
4164                         break;
4165                 default:
4166                         BUG();
4167                 }
4168         }
4169
4170         if (unlikely(skb_vlan_tag_present(skb))) {
4171                 if (skb_vlan_tag_get_id(skb))
4172                         skb->pkt_type = PACKET_OTHERHOST;
4173                 /* Note: we might in the future use prio bits
4174                  * and set skb->priority like in vlan_do_receive()
4175                  * For the time being, just ignore Priority Code Point
4176                  */
4177                 skb->vlan_tci = 0;
4178         }
4179
4180         type = skb->protocol;
4181
4182         /* deliver only exact match when indicated */
4183         if (likely(!deliver_exact)) {
4184                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4185                                        &ptype_base[ntohs(type) &
4186                                                    PTYPE_HASH_MASK]);
4187         }
4188
4189         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4190                                &orig_dev->ptype_specific);
4191
4192         if (unlikely(skb->dev != orig_dev)) {
4193                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4194                                        &skb->dev->ptype_specific);
4195         }
4196
4197         if (pt_prev) {
4198                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4199                         goto drop;
4200                 else
4201                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4202         } else {
4203 drop:
4204                 if (!deliver_exact)
4205                         atomic_long_inc(&skb->dev->rx_dropped);
4206                 else
4207                         atomic_long_inc(&skb->dev->rx_nohandler);
4208                 kfree_skb(skb);
4209                 /* Jamal, now you will not able to escape explaining
4210                  * me how you were going to use this. :-)
4211                  */
4212                 ret = NET_RX_DROP;
4213         }
4214
4215 out:
4216         return ret;
4217 }
4218
4219 static int __netif_receive_skb(struct sk_buff *skb)
4220 {
4221         int ret;
4222
4223         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4224                 unsigned long pflags = current->flags;
4225
4226                 /*
4227                  * PFMEMALLOC skbs are special, they should
4228                  * - be delivered to SOCK_MEMALLOC sockets only
4229                  * - stay away from userspace
4230                  * - have bounded memory usage
4231                  *
4232                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4233                  * context down to all allocation sites.
4234                  */
4235                 current->flags |= PF_MEMALLOC;
4236                 ret = __netif_receive_skb_core(skb, true);
4237                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4238         } else
4239                 ret = __netif_receive_skb_core(skb, false);
4240
4241         return ret;
4242 }
4243
4244 static int netif_receive_skb_internal(struct sk_buff *skb)
4245 {
4246         int ret;
4247
4248         net_timestamp_check(netdev_tstamp_prequeue, skb);
4249
4250         if (skb_defer_rx_timestamp(skb))
4251                 return NET_RX_SUCCESS;
4252
4253         rcu_read_lock();
4254
4255 #ifdef CONFIG_RPS
4256         if (static_key_false(&rps_needed)) {
4257                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4258                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4259
4260                 if (cpu >= 0) {
4261                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4262                         rcu_read_unlock();
4263                         return ret;
4264                 }
4265         }
4266 #endif
4267         ret = __netif_receive_skb(skb);
4268         rcu_read_unlock();
4269         return ret;
4270 }
4271
4272 /**
4273  *      netif_receive_skb - process receive buffer from network
4274  *      @skb: buffer to process
4275  *
4276  *      netif_receive_skb() is the main receive data processing function.
4277  *      It always succeeds. The buffer may be dropped during processing
4278  *      for congestion control or by the protocol layers.
4279  *
4280  *      This function may only be called from softirq context and interrupts
4281  *      should be enabled.
4282  *
4283  *      Return values (usually ignored):
4284  *      NET_RX_SUCCESS: no congestion
4285  *      NET_RX_DROP: packet was dropped
4286  */
4287 int netif_receive_skb(struct sk_buff *skb)
4288 {
4289         trace_netif_receive_skb_entry(skb);
4290
4291         return netif_receive_skb_internal(skb);
4292 }
4293 EXPORT_SYMBOL(netif_receive_skb);
4294
4295 /* Network device is going away, flush any packets still pending
4296  * Called with irqs disabled.
4297  */
4298 static void flush_backlog(void *arg)
4299 {
4300         struct net_device *dev = arg;
4301         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4302         struct sk_buff *skb, *tmp;
4303
4304         rps_lock(sd);
4305         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4306                 if (skb->dev == dev) {
4307                         __skb_unlink(skb, &sd->input_pkt_queue);
4308                         kfree_skb(skb);
4309                         input_queue_head_incr(sd);
4310                 }
4311         }
4312         rps_unlock(sd);
4313
4314         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4315                 if (skb->dev == dev) {
4316                         __skb_unlink(skb, &sd->process_queue);
4317                         kfree_skb(skb);
4318                         input_queue_head_incr(sd);
4319                 }
4320         }
4321 }
4322
4323 static int napi_gro_complete(struct sk_buff *skb)
4324 {
4325         struct packet_offload *ptype;
4326         __be16 type = skb->protocol;
4327         struct list_head *head = &offload_base;
4328         int err = -ENOENT;
4329
4330         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4331
4332         if (NAPI_GRO_CB(skb)->count == 1) {
4333                 skb_shinfo(skb)->gso_size = 0;
4334                 goto out;
4335         }
4336
4337         rcu_read_lock();
4338         list_for_each_entry_rcu(ptype, head, list) {
4339                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4340                         continue;
4341
4342                 err = ptype->callbacks.gro_complete(skb, 0);
4343                 break;
4344         }
4345         rcu_read_unlock();
4346
4347         if (err) {
4348                 WARN_ON(&ptype->list == head);
4349                 kfree_skb(skb);
4350                 return NET_RX_SUCCESS;
4351         }
4352
4353 out:
4354         return netif_receive_skb_internal(skb);
4355 }
4356
4357 /* napi->gro_list contains packets ordered by age.
4358  * youngest packets at the head of it.
4359  * Complete skbs in reverse order to reduce latencies.
4360  */
4361 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4362 {
4363         struct sk_buff *skb, *prev = NULL;
4364
4365         /* scan list and build reverse chain */
4366         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4367                 skb->prev = prev;
4368                 prev = skb;
4369         }
4370
4371         for (skb = prev; skb; skb = prev) {
4372                 skb->next = NULL;
4373
4374                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4375                         return;
4376
4377                 prev = skb->prev;
4378                 napi_gro_complete(skb);
4379                 napi->gro_count--;
4380         }
4381
4382         napi->gro_list = NULL;
4383 }
4384 EXPORT_SYMBOL(napi_gro_flush);
4385
4386 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4387 {
4388         struct sk_buff *p;
4389         unsigned int maclen = skb->dev->hard_header_len;
4390         u32 hash = skb_get_hash_raw(skb);
4391
4392         for (p = napi->gro_list; p; p = p->next) {
4393                 unsigned long diffs;
4394
4395                 NAPI_GRO_CB(p)->flush = 0;
4396
4397                 if (hash != skb_get_hash_raw(p)) {
4398                         NAPI_GRO_CB(p)->same_flow = 0;
4399                         continue;
4400                 }
4401
4402                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4403                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4404                 diffs |= skb_metadata_dst_cmp(p, skb);
4405                 if (maclen == ETH_HLEN)
4406                         diffs |= compare_ether_header(skb_mac_header(p),
4407                                                       skb_mac_header(skb));
4408                 else if (!diffs)
4409                         diffs = memcmp(skb_mac_header(p),
4410                                        skb_mac_header(skb),
4411                                        maclen);
4412                 NAPI_GRO_CB(p)->same_flow = !diffs;
4413         }
4414 }
4415
4416 static void skb_gro_reset_offset(struct sk_buff *skb)
4417 {
4418         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4419         const skb_frag_t *frag0 = &pinfo->frags[0];
4420
4421         NAPI_GRO_CB(skb)->data_offset = 0;
4422         NAPI_GRO_CB(skb)->frag0 = NULL;
4423         NAPI_GRO_CB(skb)->frag0_len = 0;
4424
4425         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4426             pinfo->nr_frags &&
4427             !PageHighMem(skb_frag_page(frag0))) {
4428                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4429                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4430         }
4431 }
4432
4433 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4434 {
4435         struct skb_shared_info *pinfo = skb_shinfo(skb);
4436
4437         BUG_ON(skb->end - skb->tail < grow);
4438
4439         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4440
4441         skb->data_len -= grow;
4442         skb->tail += grow;
4443
4444         pinfo->frags[0].page_offset += grow;
4445         skb_frag_size_sub(&pinfo->frags[0], grow);
4446
4447         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4448                 skb_frag_unref(skb, 0);
4449                 memmove(pinfo->frags, pinfo->frags + 1,
4450                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4451         }
4452 }
4453
4454 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4455 {
4456         struct sk_buff **pp = NULL;
4457         struct packet_offload *ptype;
4458         __be16 type = skb->protocol;
4459         struct list_head *head = &offload_base;
4460         int same_flow;
4461         enum gro_result ret;
4462         int grow;
4463
4464         if (!(skb->dev->features & NETIF_F_GRO))
4465                 goto normal;
4466
4467         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4468                 goto normal;
4469
4470         gro_list_prepare(napi, skb);
4471
4472         rcu_read_lock();
4473         list_for_each_entry_rcu(ptype, head, list) {
4474                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4475                         continue;
4476
4477                 skb_set_network_header(skb, skb_gro_offset(skb));
4478                 skb_reset_mac_len(skb);
4479                 NAPI_GRO_CB(skb)->same_flow = 0;
4480                 NAPI_GRO_CB(skb)->flush = 0;
4481                 NAPI_GRO_CB(skb)->free = 0;
4482                 NAPI_GRO_CB(skb)->encap_mark = 0;
4483                 NAPI_GRO_CB(skb)->is_fou = 0;
4484                 NAPI_GRO_CB(skb)->is_atomic = 1;
4485                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4486
4487                 /* Setup for GRO checksum validation */
4488                 switch (skb->ip_summed) {
4489                 case CHECKSUM_COMPLETE:
4490                         NAPI_GRO_CB(skb)->csum = skb->csum;
4491                         NAPI_GRO_CB(skb)->csum_valid = 1;
4492                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4493                         break;
4494                 case CHECKSUM_UNNECESSARY:
4495                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4496                         NAPI_GRO_CB(skb)->csum_valid = 0;
4497                         break;
4498                 default:
4499                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4500                         NAPI_GRO_CB(skb)->csum_valid = 0;
4501                 }
4502
4503                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4504                 break;
4505         }
4506         rcu_read_unlock();
4507
4508         if (&ptype->list == head)
4509                 goto normal;
4510
4511         same_flow = NAPI_GRO_CB(skb)->same_flow;
4512         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4513
4514         if (pp) {
4515                 struct sk_buff *nskb = *pp;
4516
4517                 *pp = nskb->next;
4518                 nskb->next = NULL;
4519                 napi_gro_complete(nskb);
4520                 napi->gro_count--;
4521         }
4522
4523         if (same_flow)
4524                 goto ok;
4525
4526         if (NAPI_GRO_CB(skb)->flush)
4527                 goto normal;
4528
4529         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4530                 struct sk_buff *nskb = napi->gro_list;
4531
4532                 /* locate the end of the list to select the 'oldest' flow */
4533                 while (nskb->next) {
4534                         pp = &nskb->next;
4535                         nskb = *pp;
4536                 }
4537                 *pp = NULL;
4538                 nskb->next = NULL;
4539                 napi_gro_complete(nskb);
4540         } else {
4541                 napi->gro_count++;
4542         }
4543         NAPI_GRO_CB(skb)->count = 1;
4544         NAPI_GRO_CB(skb)->age = jiffies;
4545         NAPI_GRO_CB(skb)->last = skb;
4546         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4547         skb->next = napi->gro_list;
4548         napi->gro_list = skb;
4549         ret = GRO_HELD;
4550
4551 pull:
4552         grow = skb_gro_offset(skb) - skb_headlen(skb);
4553         if (grow > 0)
4554                 gro_pull_from_frag0(skb, grow);
4555 ok:
4556         return ret;
4557
4558 normal:
4559         ret = GRO_NORMAL;
4560         goto pull;
4561 }
4562
4563 struct packet_offload *gro_find_receive_by_type(__be16 type)
4564 {
4565         struct list_head *offload_head = &offload_base;
4566         struct packet_offload *ptype;
4567
4568         list_for_each_entry_rcu(ptype, offload_head, list) {
4569                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4570                         continue;
4571                 return ptype;
4572         }
4573         return NULL;
4574 }
4575 EXPORT_SYMBOL(gro_find_receive_by_type);
4576
4577 struct packet_offload *gro_find_complete_by_type(__be16 type)
4578 {
4579         struct list_head *offload_head = &offload_base;
4580         struct packet_offload *ptype;
4581
4582         list_for_each_entry_rcu(ptype, offload_head, list) {
4583                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4584                         continue;
4585                 return ptype;
4586         }
4587         return NULL;
4588 }
4589 EXPORT_SYMBOL(gro_find_complete_by_type);
4590
4591 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4592 {
4593         switch (ret) {
4594         case GRO_NORMAL:
4595                 if (netif_receive_skb_internal(skb))
4596                         ret = GRO_DROP;
4597                 break;
4598
4599         case GRO_DROP:
4600                 kfree_skb(skb);
4601                 break;
4602
4603         case GRO_MERGED_FREE:
4604                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4605                         skb_dst_drop(skb);
4606                         kmem_cache_free(skbuff_head_cache, skb);
4607                 } else {
4608                         __kfree_skb(skb);
4609                 }
4610                 break;
4611
4612         case GRO_HELD:
4613         case GRO_MERGED:
4614                 break;
4615         }
4616
4617         return ret;
4618 }
4619
4620 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4621 {
4622         skb_mark_napi_id(skb, napi);
4623         trace_napi_gro_receive_entry(skb);
4624
4625         skb_gro_reset_offset(skb);
4626
4627         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4628 }
4629 EXPORT_SYMBOL(napi_gro_receive);
4630
4631 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4632 {
4633         if (unlikely(skb->pfmemalloc)) {
4634                 consume_skb(skb);
4635                 return;
4636         }
4637         __skb_pull(skb, skb_headlen(skb));
4638         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4639         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4640         skb->vlan_tci = 0;
4641         skb->dev = napi->dev;
4642         skb->skb_iif = 0;
4643         skb->encapsulation = 0;
4644         skb_shinfo(skb)->gso_type = 0;
4645         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4646
4647         napi->skb = skb;
4648 }
4649
4650 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4651 {
4652         struct sk_buff *skb = napi->skb;
4653
4654         if (!skb) {
4655                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4656                 if (skb) {
4657                         napi->skb = skb;
4658                         skb_mark_napi_id(skb, napi);
4659                 }
4660         }
4661         return skb;
4662 }
4663 EXPORT_SYMBOL(napi_get_frags);
4664
4665 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4666                                       struct sk_buff *skb,
4667                                       gro_result_t ret)
4668 {
4669         switch (ret) {
4670         case GRO_NORMAL:
4671         case GRO_HELD:
4672                 __skb_push(skb, ETH_HLEN);
4673                 skb->protocol = eth_type_trans(skb, skb->dev);
4674                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4675                         ret = GRO_DROP;
4676                 break;
4677
4678         case GRO_DROP:
4679         case GRO_MERGED_FREE:
4680                 napi_reuse_skb(napi, skb);
4681                 break;
4682
4683         case GRO_MERGED:
4684                 break;
4685         }
4686
4687         return ret;
4688 }
4689
4690 /* Upper GRO stack assumes network header starts at gro_offset=0
4691  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4692  * We copy ethernet header into skb->data to have a common layout.
4693  */
4694 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4695 {
4696         struct sk_buff *skb = napi->skb;
4697         const struct ethhdr *eth;
4698         unsigned int hlen = sizeof(*eth);
4699
4700         napi->skb = NULL;
4701
4702         skb_reset_mac_header(skb);
4703         skb_gro_reset_offset(skb);
4704
4705         eth = skb_gro_header_fast(skb, 0);
4706         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4707                 eth = skb_gro_header_slow(skb, hlen, 0);
4708                 if (unlikely(!eth)) {
4709                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4710                                              __func__, napi->dev->name);
4711                         napi_reuse_skb(napi, skb);
4712                         return NULL;
4713                 }
4714         } else {
4715                 gro_pull_from_frag0(skb, hlen);
4716                 NAPI_GRO_CB(skb)->frag0 += hlen;
4717                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4718         }
4719         __skb_pull(skb, hlen);
4720
4721         /*
4722          * This works because the only protocols we care about don't require
4723          * special handling.
4724          * We'll fix it up properly in napi_frags_finish()
4725          */
4726         skb->protocol = eth->h_proto;
4727
4728         return skb;
4729 }
4730
4731 gro_result_t napi_gro_frags(struct napi_struct *napi)
4732 {
4733         struct sk_buff *skb = napi_frags_skb(napi);
4734
4735         if (!skb)
4736                 return GRO_DROP;
4737
4738         trace_napi_gro_frags_entry(skb);
4739
4740         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4741 }
4742 EXPORT_SYMBOL(napi_gro_frags);
4743
4744 /* Compute the checksum from gro_offset and return the folded value
4745  * after adding in any pseudo checksum.
4746  */
4747 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4748 {
4749         __wsum wsum;
4750         __sum16 sum;
4751
4752         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4753
4754         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4755         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4756         if (likely(!sum)) {
4757                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4758                     !skb->csum_complete_sw)
4759                         netdev_rx_csum_fault(skb->dev);
4760         }
4761
4762         NAPI_GRO_CB(skb)->csum = wsum;
4763         NAPI_GRO_CB(skb)->csum_valid = 1;
4764
4765         return sum;
4766 }
4767 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4768
4769 /*
4770  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4771  * Note: called with local irq disabled, but exits with local irq enabled.
4772  */
4773 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4774 {
4775 #ifdef CONFIG_RPS
4776         struct softnet_data *remsd = sd->rps_ipi_list;
4777
4778         if (remsd) {
4779                 sd->rps_ipi_list = NULL;
4780
4781                 local_irq_enable();
4782
4783                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4784                 while (remsd) {
4785                         struct softnet_data *next = remsd->rps_ipi_next;
4786
4787                         if (cpu_online(remsd->cpu))
4788                                 smp_call_function_single_async(remsd->cpu,
4789                                                            &remsd->csd);
4790                         remsd = next;
4791                 }
4792         } else
4793 #endif
4794                 local_irq_enable();
4795 }
4796
4797 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4798 {
4799 #ifdef CONFIG_RPS
4800         return sd->rps_ipi_list != NULL;
4801 #else
4802         return false;
4803 #endif
4804 }
4805
4806 static int process_backlog(struct napi_struct *napi, int quota)
4807 {
4808         int work = 0;
4809         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4810
4811         /* Check if we have pending ipi, its better to send them now,
4812          * not waiting net_rx_action() end.
4813          */
4814         if (sd_has_rps_ipi_waiting(sd)) {
4815                 local_irq_disable();
4816                 net_rps_action_and_irq_enable(sd);
4817         }
4818
4819         napi->weight = weight_p;
4820         local_irq_disable();
4821         while (1) {
4822                 struct sk_buff *skb;
4823
4824                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4825                         rcu_read_lock();
4826                         local_irq_enable();
4827                         __netif_receive_skb(skb);
4828                         rcu_read_unlock();
4829                         local_irq_disable();
4830                         input_queue_head_incr(sd);
4831                         if (++work >= quota) {
4832                                 local_irq_enable();
4833                                 return work;
4834                         }
4835                 }
4836
4837                 rps_lock(sd);
4838                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4839                         /*
4840                          * Inline a custom version of __napi_complete().
4841                          * only current cpu owns and manipulates this napi,
4842                          * and NAPI_STATE_SCHED is the only possible flag set
4843                          * on backlog.
4844                          * We can use a plain write instead of clear_bit(),
4845                          * and we dont need an smp_mb() memory barrier.
4846                          */
4847                         napi->state = 0;
4848                         rps_unlock(sd);
4849
4850                         break;
4851                 }
4852
4853                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4854                                            &sd->process_queue);
4855                 rps_unlock(sd);
4856         }
4857         local_irq_enable();
4858
4859         return work;
4860 }
4861
4862 /**
4863  * __napi_schedule - schedule for receive
4864  * @n: entry to schedule
4865  *
4866  * The entry's receive function will be scheduled to run.
4867  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4868  */
4869 void __napi_schedule(struct napi_struct *n)
4870 {
4871         unsigned long flags;
4872
4873         local_irq_save(flags);
4874         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4875         local_irq_restore(flags);
4876 }
4877 EXPORT_SYMBOL(__napi_schedule);
4878
4879 /**
4880  * __napi_schedule_irqoff - schedule for receive
4881  * @n: entry to schedule
4882  *
4883  * Variant of __napi_schedule() assuming hard irqs are masked
4884  */
4885 void __napi_schedule_irqoff(struct napi_struct *n)
4886 {
4887         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4888 }
4889 EXPORT_SYMBOL(__napi_schedule_irqoff);
4890
4891 void __napi_complete(struct napi_struct *n)
4892 {
4893         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4894
4895         list_del_init(&n->poll_list);
4896         smp_mb__before_atomic();
4897         clear_bit(NAPI_STATE_SCHED, &n->state);
4898 }
4899 EXPORT_SYMBOL(__napi_complete);
4900
4901 void napi_complete_done(struct napi_struct *n, int work_done)
4902 {
4903         unsigned long flags;
4904
4905         /*
4906          * don't let napi dequeue from the cpu poll list
4907          * just in case its running on a different cpu
4908          */
4909         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4910                 return;
4911
4912         if (n->gro_list) {
4913                 unsigned long timeout = 0;
4914
4915                 if (work_done)
4916                         timeout = n->dev->gro_flush_timeout;
4917
4918                 if (timeout)
4919                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4920                                       HRTIMER_MODE_REL_PINNED);
4921                 else
4922                         napi_gro_flush(n, false);
4923         }
4924         if (likely(list_empty(&n->poll_list))) {
4925                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4926         } else {
4927                 /* If n->poll_list is not empty, we need to mask irqs */
4928                 local_irq_save(flags);
4929                 __napi_complete(n);
4930                 local_irq_restore(flags);
4931         }
4932 }
4933 EXPORT_SYMBOL(napi_complete_done);
4934
4935 /* must be called under rcu_read_lock(), as we dont take a reference */
4936 static struct napi_struct *napi_by_id(unsigned int napi_id)
4937 {
4938         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4939         struct napi_struct *napi;
4940
4941         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4942                 if (napi->napi_id == napi_id)
4943                         return napi;
4944
4945         return NULL;
4946 }
4947
4948 #if defined(CONFIG_NET_RX_BUSY_POLL)
4949 #define BUSY_POLL_BUDGET 8
4950 bool sk_busy_loop(struct sock *sk, int nonblock)
4951 {
4952         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4953         int (*busy_poll)(struct napi_struct *dev);
4954         struct napi_struct *napi;
4955         int rc = false;
4956
4957         rcu_read_lock();
4958
4959         napi = napi_by_id(sk->sk_napi_id);
4960         if (!napi)
4961                 goto out;
4962
4963         /* Note: ndo_busy_poll method is optional in linux-4.5 */
4964         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4965
4966         do {
4967                 rc = 0;
4968                 local_bh_disable();
4969                 if (busy_poll) {
4970                         rc = busy_poll(napi);
4971                 } else if (napi_schedule_prep(napi)) {
4972                         void *have = netpoll_poll_lock(napi);
4973
4974                         if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4975                                 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4976                                 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
4977                                 if (rc == BUSY_POLL_BUDGET) {
4978                                         napi_complete_done(napi, rc);
4979                                         napi_schedule(napi);
4980                                 }
4981                         }
4982                         netpoll_poll_unlock(have);
4983                 }
4984                 if (rc > 0)
4985                         __NET_ADD_STATS(sock_net(sk),
4986                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4987                 local_bh_enable();
4988
4989                 if (rc == LL_FLUSH_FAILED)
4990                         break; /* permanent failure */
4991
4992                 cpu_relax();
4993         } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4994                  !need_resched() && !busy_loop_timeout(end_time));
4995
4996         rc = !skb_queue_empty(&sk->sk_receive_queue);
4997 out:
4998         rcu_read_unlock();
4999         return rc;
5000 }
5001 EXPORT_SYMBOL(sk_busy_loop);
5002
5003 #endif /* CONFIG_NET_RX_BUSY_POLL */
5004
5005 void napi_hash_add(struct napi_struct *napi)
5006 {
5007         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5008             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5009                 return;
5010
5011         spin_lock(&napi_hash_lock);
5012
5013         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5014         do {
5015                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5016                         napi_gen_id = NR_CPUS + 1;
5017         } while (napi_by_id(napi_gen_id));
5018         napi->napi_id = napi_gen_id;
5019
5020         hlist_add_head_rcu(&napi->napi_hash_node,
5021                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5022
5023         spin_unlock(&napi_hash_lock);
5024 }
5025 EXPORT_SYMBOL_GPL(napi_hash_add);
5026
5027 /* Warning : caller is responsible to make sure rcu grace period
5028  * is respected before freeing memory containing @napi
5029  */
5030 bool napi_hash_del(struct napi_struct *napi)
5031 {
5032         bool rcu_sync_needed = false;
5033
5034         spin_lock(&napi_hash_lock);
5035
5036         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5037                 rcu_sync_needed = true;
5038                 hlist_del_rcu(&napi->napi_hash_node);
5039         }
5040         spin_unlock(&napi_hash_lock);
5041         return rcu_sync_needed;
5042 }
5043 EXPORT_SYMBOL_GPL(napi_hash_del);
5044
5045 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5046 {
5047         struct napi_struct *napi;
5048
5049         napi = container_of(timer, struct napi_struct, timer);
5050         if (napi->gro_list)
5051                 napi_schedule(napi);
5052
5053         return HRTIMER_NORESTART;
5054 }
5055
5056 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5057                     int (*poll)(struct napi_struct *, int), int weight)
5058 {
5059         INIT_LIST_HEAD(&napi->poll_list);
5060         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5061         napi->timer.function = napi_watchdog;
5062         napi->gro_count = 0;
5063         napi->gro_list = NULL;
5064         napi->skb = NULL;
5065         napi->poll = poll;
5066         if (weight > NAPI_POLL_WEIGHT)
5067                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5068                             weight, dev->name);
5069         napi->weight = weight;
5070         list_add(&napi->dev_list, &dev->napi_list);
5071         napi->dev = dev;
5072 #ifdef CONFIG_NETPOLL
5073         spin_lock_init(&napi->poll_lock);
5074         napi->poll_owner = -1;
5075 #endif
5076         set_bit(NAPI_STATE_SCHED, &napi->state);
5077         napi_hash_add(napi);
5078 }
5079 EXPORT_SYMBOL(netif_napi_add);
5080
5081 void napi_disable(struct napi_struct *n)
5082 {
5083         might_sleep();
5084         set_bit(NAPI_STATE_DISABLE, &n->state);
5085
5086         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5087                 msleep(1);
5088         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5089                 msleep(1);
5090
5091         hrtimer_cancel(&n->timer);
5092
5093         clear_bit(NAPI_STATE_DISABLE, &n->state);
5094 }
5095 EXPORT_SYMBOL(napi_disable);
5096
5097 /* Must be called in process context */
5098 void netif_napi_del(struct napi_struct *napi)
5099 {
5100         might_sleep();
5101         if (napi_hash_del(napi))
5102                 synchronize_net();
5103         list_del_init(&napi->dev_list);
5104         napi_free_frags(napi);
5105
5106         kfree_skb_list(napi->gro_list);
5107         napi->gro_list = NULL;
5108         napi->gro_count = 0;
5109 }
5110 EXPORT_SYMBOL(netif_napi_del);
5111
5112 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5113 {
5114         void *have;
5115         int work, weight;
5116
5117         list_del_init(&n->poll_list);
5118
5119         have = netpoll_poll_lock(n);
5120
5121         weight = n->weight;
5122
5123         /* This NAPI_STATE_SCHED test is for avoiding a race
5124          * with netpoll's poll_napi().  Only the entity which
5125          * obtains the lock and sees NAPI_STATE_SCHED set will
5126          * actually make the ->poll() call.  Therefore we avoid
5127          * accidentally calling ->poll() when NAPI is not scheduled.
5128          */
5129         work = 0;
5130         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5131                 work = n->poll(n, weight);
5132                 trace_napi_poll(n, work, weight);
5133         }
5134
5135         WARN_ON_ONCE(work > weight);
5136
5137         if (likely(work < weight))
5138                 goto out_unlock;
5139
5140         /* Drivers must not modify the NAPI state if they
5141          * consume the entire weight.  In such cases this code
5142          * still "owns" the NAPI instance and therefore can
5143          * move the instance around on the list at-will.
5144          */
5145         if (unlikely(napi_disable_pending(n))) {
5146                 napi_complete(n);
5147                 goto out_unlock;
5148         }
5149
5150         if (n->gro_list) {
5151                 /* flush too old packets
5152                  * If HZ < 1000, flush all packets.
5153                  */
5154                 napi_gro_flush(n, HZ >= 1000);
5155         }
5156
5157         /* Some drivers may have called napi_schedule
5158          * prior to exhausting their budget.
5159          */
5160         if (unlikely(!list_empty(&n->poll_list))) {
5161                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5162                              n->dev ? n->dev->name : "backlog");
5163                 goto out_unlock;
5164         }
5165
5166         list_add_tail(&n->poll_list, repoll);
5167
5168 out_unlock:
5169         netpoll_poll_unlock(have);
5170
5171         return work;
5172 }
5173
5174 static void net_rx_action(struct softirq_action *h)
5175 {
5176         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5177         unsigned long time_limit = jiffies + 2;
5178         int budget = netdev_budget;
5179         LIST_HEAD(list);
5180         LIST_HEAD(repoll);
5181
5182         local_irq_disable();
5183         list_splice_init(&sd->poll_list, &list);
5184         local_irq_enable();
5185
5186         for (;;) {
5187                 struct napi_struct *n;
5188
5189                 if (list_empty(&list)) {
5190                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5191                                 return;
5192                         break;
5193                 }
5194
5195                 n = list_first_entry(&list, struct napi_struct, poll_list);
5196                 budget -= napi_poll(n, &repoll);
5197
5198                 /* If softirq window is exhausted then punt.
5199                  * Allow this to run for 2 jiffies since which will allow
5200                  * an average latency of 1.5/HZ.
5201                  */
5202                 if (unlikely(budget <= 0 ||
5203                              time_after_eq(jiffies, time_limit))) {
5204                         sd->time_squeeze++;
5205                         break;
5206                 }
5207         }
5208
5209         __kfree_skb_flush();
5210         local_irq_disable();
5211
5212         list_splice_tail_init(&sd->poll_list, &list);
5213         list_splice_tail(&repoll, &list);
5214         list_splice(&list, &sd->poll_list);
5215         if (!list_empty(&sd->poll_list))
5216                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5217
5218         net_rps_action_and_irq_enable(sd);
5219 }
5220
5221 struct netdev_adjacent {
5222         struct net_device *dev;
5223
5224         /* upper master flag, there can only be one master device per list */
5225         bool master;
5226
5227         /* counter for the number of times this device was added to us */
5228         u16 ref_nr;
5229
5230         /* private field for the users */
5231         void *private;
5232
5233         struct list_head list;
5234         struct rcu_head rcu;
5235 };
5236
5237 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5238                                                  struct list_head *adj_list)
5239 {
5240         struct netdev_adjacent *adj;
5241
5242         list_for_each_entry(adj, adj_list, list) {
5243                 if (adj->dev == adj_dev)
5244                         return adj;
5245         }
5246         return NULL;
5247 }
5248
5249 /**
5250  * netdev_has_upper_dev - Check if device is linked to an upper device
5251  * @dev: device
5252  * @upper_dev: upper device to check
5253  *
5254  * Find out if a device is linked to specified upper device and return true
5255  * in case it is. Note that this checks only immediate upper device,
5256  * not through a complete stack of devices. The caller must hold the RTNL lock.
5257  */
5258 bool netdev_has_upper_dev(struct net_device *dev,
5259                           struct net_device *upper_dev)
5260 {
5261         ASSERT_RTNL();
5262
5263         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5264 }
5265 EXPORT_SYMBOL(netdev_has_upper_dev);
5266
5267 /**
5268  * netdev_has_any_upper_dev - Check if device is linked to some device
5269  * @dev: device
5270  *
5271  * Find out if a device is linked to an upper device and return true in case
5272  * it is. The caller must hold the RTNL lock.
5273  */
5274 static bool netdev_has_any_upper_dev(struct net_device *dev)
5275 {
5276         ASSERT_RTNL();
5277
5278         return !list_empty(&dev->all_adj_list.upper);
5279 }
5280
5281 /**
5282  * netdev_master_upper_dev_get - Get master upper device
5283  * @dev: device
5284  *
5285  * Find a master upper device and return pointer to it or NULL in case
5286  * it's not there. The caller must hold the RTNL lock.
5287  */
5288 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5289 {
5290         struct netdev_adjacent *upper;
5291
5292         ASSERT_RTNL();
5293
5294         if (list_empty(&dev->adj_list.upper))
5295                 return NULL;
5296
5297         upper = list_first_entry(&dev->adj_list.upper,
5298                                  struct netdev_adjacent, list);
5299         if (likely(upper->master))
5300                 return upper->dev;
5301         return NULL;
5302 }
5303 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5304
5305 void *netdev_adjacent_get_private(struct list_head *adj_list)
5306 {
5307         struct netdev_adjacent *adj;
5308
5309         adj = list_entry(adj_list, struct netdev_adjacent, list);
5310
5311         return adj->private;
5312 }
5313 EXPORT_SYMBOL(netdev_adjacent_get_private);
5314
5315 /**
5316  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5317  * @dev: device
5318  * @iter: list_head ** of the current position
5319  *
5320  * Gets the next device from the dev's upper list, starting from iter
5321  * position. The caller must hold RCU read lock.
5322  */
5323 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5324                                                  struct list_head **iter)
5325 {
5326         struct netdev_adjacent *upper;
5327
5328         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5329
5330         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5331
5332         if (&upper->list == &dev->adj_list.upper)
5333                 return NULL;
5334
5335         *iter = &upper->list;
5336
5337         return upper->dev;
5338 }
5339 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5340
5341 /**
5342  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5343  * @dev: device
5344  * @iter: list_head ** of the current position
5345  *
5346  * Gets the next device from the dev's upper list, starting from iter
5347  * position. The caller must hold RCU read lock.
5348  */
5349 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5350                                                      struct list_head **iter)
5351 {
5352         struct netdev_adjacent *upper;
5353
5354         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5355
5356         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5357
5358         if (&upper->list == &dev->all_adj_list.upper)
5359                 return NULL;
5360
5361         *iter = &upper->list;
5362
5363         return upper->dev;
5364 }
5365 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5366
5367 /**
5368  * netdev_lower_get_next_private - Get the next ->private from the
5369  *                                 lower neighbour list
5370  * @dev: device
5371  * @iter: list_head ** of the current position
5372  *
5373  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5374  * list, starting from iter position. The caller must hold either hold the
5375  * RTNL lock or its own locking that guarantees that the neighbour lower
5376  * list will remain unchanged.
5377  */
5378 void *netdev_lower_get_next_private(struct net_device *dev,
5379                                     struct list_head **iter)
5380 {
5381         struct netdev_adjacent *lower;
5382
5383         lower = list_entry(*iter, struct netdev_adjacent, list);
5384
5385         if (&lower->list == &dev->adj_list.lower)
5386                 return NULL;
5387
5388         *iter = lower->list.next;
5389
5390         return lower->private;
5391 }
5392 EXPORT_SYMBOL(netdev_lower_get_next_private);
5393
5394 /**
5395  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5396  *                                     lower neighbour list, RCU
5397  *                                     variant
5398  * @dev: device
5399  * @iter: list_head ** of the current position
5400  *
5401  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5402  * list, starting from iter position. The caller must hold RCU read lock.
5403  */
5404 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5405                                         struct list_head **iter)
5406 {
5407         struct netdev_adjacent *lower;
5408
5409         WARN_ON_ONCE(!rcu_read_lock_held());
5410
5411         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5412
5413         if (&lower->list == &dev->adj_list.lower)
5414                 return NULL;
5415
5416         *iter = &lower->list;
5417
5418         return lower->private;
5419 }
5420 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5421
5422 /**
5423  * netdev_lower_get_next - Get the next device from the lower neighbour
5424  *                         list
5425  * @dev: device
5426  * @iter: list_head ** of the current position
5427  *
5428  * Gets the next netdev_adjacent from the dev's lower neighbour
5429  * list, starting from iter position. The caller must hold RTNL lock or
5430  * its own locking that guarantees that the neighbour lower
5431  * list will remain unchanged.
5432  */
5433 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5434 {
5435         struct netdev_adjacent *lower;
5436
5437         lower = list_entry(*iter, struct netdev_adjacent, list);
5438
5439         if (&lower->list == &dev->adj_list.lower)
5440                 return NULL;
5441
5442         *iter = lower->list.next;
5443
5444         return lower->dev;
5445 }
5446 EXPORT_SYMBOL(netdev_lower_get_next);
5447
5448 /**
5449  * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5450  * @dev: device
5451  * @iter: list_head ** of the current position
5452  *
5453  * Gets the next netdev_adjacent from the dev's all lower neighbour
5454  * list, starting from iter position. The caller must hold RTNL lock or
5455  * its own locking that guarantees that the neighbour all lower
5456  * list will remain unchanged.
5457  */
5458 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5459 {
5460         struct netdev_adjacent *lower;
5461
5462         lower = list_entry(*iter, struct netdev_adjacent, list);
5463
5464         if (&lower->list == &dev->all_adj_list.lower)
5465                 return NULL;
5466
5467         *iter = lower->list.next;
5468
5469         return lower->dev;
5470 }
5471 EXPORT_SYMBOL(netdev_all_lower_get_next);
5472
5473 /**
5474  * netdev_all_lower_get_next_rcu - Get the next device from all
5475  *                                 lower neighbour list, RCU variant
5476  * @dev: device
5477  * @iter: list_head ** of the current position
5478  *
5479  * Gets the next netdev_adjacent from the dev's all lower neighbour
5480  * list, starting from iter position. The caller must hold RCU read lock.
5481  */
5482 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5483                                                  struct list_head **iter)
5484 {
5485         struct netdev_adjacent *lower;
5486
5487         lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5488                                        struct netdev_adjacent, list);
5489
5490         return lower ? lower->dev : NULL;
5491 }
5492 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5493
5494 /**
5495  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5496  *                                     lower neighbour list, RCU
5497  *                                     variant
5498  * @dev: device
5499  *
5500  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5501  * list. The caller must hold RCU read lock.
5502  */
5503 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5504 {
5505         struct netdev_adjacent *lower;
5506
5507         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5508                         struct netdev_adjacent, list);
5509         if (lower)
5510                 return lower->private;
5511         return NULL;
5512 }
5513 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5514
5515 /**
5516  * netdev_master_upper_dev_get_rcu - Get master upper device
5517  * @dev: device
5518  *
5519  * Find a master upper device and return pointer to it or NULL in case
5520  * it's not there. The caller must hold the RCU read lock.
5521  */
5522 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5523 {
5524         struct netdev_adjacent *upper;
5525
5526         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5527                                        struct netdev_adjacent, list);
5528         if (upper && likely(upper->master))
5529                 return upper->dev;
5530         return NULL;
5531 }
5532 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5533
5534 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5535                               struct net_device *adj_dev,
5536                               struct list_head *dev_list)
5537 {
5538         char linkname[IFNAMSIZ+7];
5539         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5540                 "upper_%s" : "lower_%s", adj_dev->name);
5541         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5542                                  linkname);
5543 }
5544 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5545                                char *name,
5546                                struct list_head *dev_list)
5547 {
5548         char linkname[IFNAMSIZ+7];
5549         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5550                 "upper_%s" : "lower_%s", name);
5551         sysfs_remove_link(&(dev->dev.kobj), linkname);
5552 }
5553
5554 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5555                                                  struct net_device *adj_dev,
5556                                                  struct list_head *dev_list)
5557 {
5558         return (dev_list == &dev->adj_list.upper ||
5559                 dev_list == &dev->adj_list.lower) &&
5560                 net_eq(dev_net(dev), dev_net(adj_dev));
5561 }
5562
5563 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5564                                         struct net_device *adj_dev,
5565                                         struct list_head *dev_list,
5566                                         void *private, bool master)
5567 {
5568         struct netdev_adjacent *adj;
5569         int ret;
5570
5571         adj = __netdev_find_adj(adj_dev, dev_list);
5572
5573         if (adj) {
5574                 adj->ref_nr++;
5575                 return 0;
5576         }
5577
5578         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5579         if (!adj)
5580                 return -ENOMEM;
5581
5582         adj->dev = adj_dev;
5583         adj->master = master;
5584         adj->ref_nr = 1;
5585         adj->private = private;
5586         dev_hold(adj_dev);
5587
5588         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5589                  adj_dev->name, dev->name, adj_dev->name);
5590
5591         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5592                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5593                 if (ret)
5594                         goto free_adj;
5595         }
5596
5597         /* Ensure that master link is always the first item in list. */
5598         if (master) {
5599                 ret = sysfs_create_link(&(dev->dev.kobj),
5600                                         &(adj_dev->dev.kobj), "master");
5601                 if (ret)
5602                         goto remove_symlinks;
5603
5604                 list_add_rcu(&adj->list, dev_list);
5605         } else {
5606                 list_add_tail_rcu(&adj->list, dev_list);
5607         }
5608
5609         return 0;
5610
5611 remove_symlinks:
5612         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5613                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5614 free_adj:
5615         kfree(adj);
5616         dev_put(adj_dev);
5617
5618         return ret;
5619 }
5620
5621 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5622                                          struct net_device *adj_dev,
5623                                          struct list_head *dev_list)
5624 {
5625         struct netdev_adjacent *adj;
5626
5627         adj = __netdev_find_adj(adj_dev, dev_list);
5628
5629         if (!adj) {
5630                 pr_err("tried to remove device %s from %s\n",
5631                        dev->name, adj_dev->name);
5632                 BUG();
5633         }
5634
5635         if (adj->ref_nr > 1) {
5636                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5637                          adj->ref_nr-1);
5638                 adj->ref_nr--;
5639                 return;
5640         }
5641
5642         if (adj->master)
5643                 sysfs_remove_link(&(dev->dev.kobj), "master");
5644
5645         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5646                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5647
5648         list_del_rcu(&adj->list);
5649         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5650                  adj_dev->name, dev->name, adj_dev->name);
5651         dev_put(adj_dev);
5652         kfree_rcu(adj, rcu);
5653 }
5654
5655 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5656                                             struct net_device *upper_dev,
5657                                             struct list_head *up_list,
5658                                             struct list_head *down_list,
5659                                             void *private, bool master)
5660 {
5661         int ret;
5662
5663         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5664                                            master);
5665         if (ret)
5666                 return ret;
5667
5668         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5669                                            false);
5670         if (ret) {
5671                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5672                 return ret;
5673         }
5674
5675         return 0;
5676 }
5677
5678 static int __netdev_adjacent_dev_link(struct net_device *dev,
5679                                       struct net_device *upper_dev)
5680 {
5681         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5682                                                 &dev->all_adj_list.upper,
5683                                                 &upper_dev->all_adj_list.lower,
5684                                                 NULL, false);
5685 }
5686
5687 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5688                                                struct net_device *upper_dev,
5689                                                struct list_head *up_list,
5690                                                struct list_head *down_list)
5691 {
5692         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5693         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5694 }
5695
5696 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5697                                          struct net_device *upper_dev)
5698 {
5699         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5700                                            &dev->all_adj_list.upper,
5701                                            &upper_dev->all_adj_list.lower);
5702 }
5703
5704 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5705                                                 struct net_device *upper_dev,
5706                                                 void *private, bool master)
5707 {
5708         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5709
5710         if (ret)
5711                 return ret;
5712
5713         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5714                                                &dev->adj_list.upper,
5715                                                &upper_dev->adj_list.lower,
5716                                                private, master);
5717         if (ret) {
5718                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5719                 return ret;
5720         }
5721
5722         return 0;
5723 }
5724
5725 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5726                                                    struct net_device *upper_dev)
5727 {
5728         __netdev_adjacent_dev_unlink(dev, upper_dev);
5729         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5730                                            &dev->adj_list.upper,
5731                                            &upper_dev->adj_list.lower);
5732 }
5733
5734 static int __netdev_upper_dev_link(struct net_device *dev,
5735                                    struct net_device *upper_dev, bool master,
5736                                    void *upper_priv, void *upper_info)
5737 {
5738         struct netdev_notifier_changeupper_info changeupper_info;
5739         struct netdev_adjacent *i, *j, *to_i, *to_j;
5740         int ret = 0;
5741
5742         ASSERT_RTNL();
5743
5744         if (dev == upper_dev)
5745                 return -EBUSY;
5746
5747         /* To prevent loops, check if dev is not upper device to upper_dev. */
5748         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5749                 return -EBUSY;
5750
5751         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5752                 return -EEXIST;
5753
5754         if (master && netdev_master_upper_dev_get(dev))
5755                 return -EBUSY;
5756
5757         changeupper_info.upper_dev = upper_dev;
5758         changeupper_info.master = master;
5759         changeupper_info.linking = true;
5760         changeupper_info.upper_info = upper_info;
5761
5762         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5763                                             &changeupper_info.info);
5764         ret = notifier_to_errno(ret);
5765         if (ret)
5766                 return ret;
5767
5768         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5769                                                    master);
5770         if (ret)
5771                 return ret;
5772
5773         /* Now that we linked these devs, make all the upper_dev's
5774          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5775          * versa, and don't forget the devices itself. All of these
5776          * links are non-neighbours.
5777          */
5778         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5779                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5780                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5781                                  i->dev->name, j->dev->name);
5782                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5783                         if (ret)
5784                                 goto rollback_mesh;
5785                 }
5786         }
5787
5788         /* add dev to every upper_dev's upper device */
5789         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5790                 pr_debug("linking %s's upper device %s with %s\n",
5791                          upper_dev->name, i->dev->name, dev->name);
5792                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5793                 if (ret)
5794                         goto rollback_upper_mesh;
5795         }
5796
5797         /* add upper_dev to every dev's lower device */
5798         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5799                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5800                          i->dev->name, upper_dev->name);
5801                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5802                 if (ret)
5803                         goto rollback_lower_mesh;
5804         }
5805
5806         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5807                                             &changeupper_info.info);
5808         ret = notifier_to_errno(ret);
5809         if (ret)
5810                 goto rollback_lower_mesh;
5811
5812         return 0;
5813
5814 rollback_lower_mesh:
5815         to_i = i;
5816         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5817                 if (i == to_i)
5818                         break;
5819                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5820         }
5821
5822         i = NULL;
5823
5824 rollback_upper_mesh:
5825         to_i = i;
5826         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5827                 if (i == to_i)
5828                         break;
5829                 __netdev_adjacent_dev_unlink(dev, i->dev);
5830         }
5831
5832         i = j = NULL;
5833
5834 rollback_mesh:
5835         to_i = i;
5836         to_j = j;
5837         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5838                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5839                         if (i == to_i && j == to_j)
5840                                 break;
5841                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5842                 }
5843                 if (i == to_i)
5844                         break;
5845         }
5846
5847         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5848
5849         return ret;
5850 }
5851
5852 /**
5853  * netdev_upper_dev_link - Add a link to the upper device
5854  * @dev: device
5855  * @upper_dev: new upper device
5856  *
5857  * Adds a link to device which is upper to this one. The caller must hold
5858  * the RTNL lock. On a failure a negative errno code is returned.
5859  * On success the reference counts are adjusted and the function
5860  * returns zero.
5861  */
5862 int netdev_upper_dev_link(struct net_device *dev,
5863                           struct net_device *upper_dev)
5864 {
5865         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5866 }
5867 EXPORT_SYMBOL(netdev_upper_dev_link);
5868
5869 /**
5870  * netdev_master_upper_dev_link - Add a master link to the upper device
5871  * @dev: device
5872  * @upper_dev: new upper device
5873  * @upper_priv: upper device private
5874  * @upper_info: upper info to be passed down via notifier
5875  *
5876  * Adds a link to device which is upper to this one. In this case, only
5877  * one master upper device can be linked, although other non-master devices
5878  * might be linked as well. The caller must hold the RTNL lock.
5879  * On a failure a negative errno code is returned. On success the reference
5880  * counts are adjusted and the function returns zero.
5881  */
5882 int netdev_master_upper_dev_link(struct net_device *dev,
5883                                  struct net_device *upper_dev,
5884                                  void *upper_priv, void *upper_info)
5885 {
5886         return __netdev_upper_dev_link(dev, upper_dev, true,
5887                                        upper_priv, upper_info);
5888 }
5889 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5890
5891 /**
5892  * netdev_upper_dev_unlink - Removes a link to upper device
5893  * @dev: device
5894  * @upper_dev: new upper device
5895  *
5896  * Removes a link to device which is upper to this one. The caller must hold
5897  * the RTNL lock.
5898  */
5899 void netdev_upper_dev_unlink(struct net_device *dev,
5900                              struct net_device *upper_dev)
5901 {
5902         struct netdev_notifier_changeupper_info changeupper_info;
5903         struct netdev_adjacent *i, *j;
5904         ASSERT_RTNL();
5905
5906         changeupper_info.upper_dev = upper_dev;
5907         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5908         changeupper_info.linking = false;
5909
5910         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5911                                       &changeupper_info.info);
5912
5913         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5914
5915         /* Here is the tricky part. We must remove all dev's lower
5916          * devices from all upper_dev's upper devices and vice
5917          * versa, to maintain the graph relationship.
5918          */
5919         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5920                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5921                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5922
5923         /* remove also the devices itself from lower/upper device
5924          * list
5925          */
5926         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5927                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5928
5929         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5930                 __netdev_adjacent_dev_unlink(dev, i->dev);
5931
5932         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5933                                       &changeupper_info.info);
5934 }
5935 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5936
5937 /**
5938  * netdev_bonding_info_change - Dispatch event about slave change
5939  * @dev: device
5940  * @bonding_info: info to dispatch
5941  *
5942  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5943  * The caller must hold the RTNL lock.
5944  */
5945 void netdev_bonding_info_change(struct net_device *dev,
5946                                 struct netdev_bonding_info *bonding_info)
5947 {
5948         struct netdev_notifier_bonding_info     info;
5949
5950         memcpy(&info.bonding_info, bonding_info,
5951                sizeof(struct netdev_bonding_info));
5952         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5953                                       &info.info);
5954 }
5955 EXPORT_SYMBOL(netdev_bonding_info_change);
5956
5957 static void netdev_adjacent_add_links(struct net_device *dev)
5958 {
5959         struct netdev_adjacent *iter;
5960
5961         struct net *net = dev_net(dev);
5962
5963         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5964                 if (!net_eq(net, dev_net(iter->dev)))
5965                         continue;
5966                 netdev_adjacent_sysfs_add(iter->dev, dev,
5967                                           &iter->dev->adj_list.lower);
5968                 netdev_adjacent_sysfs_add(dev, iter->dev,
5969                                           &dev->adj_list.upper);
5970         }
5971
5972         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5973                 if (!net_eq(net, dev_net(iter->dev)))
5974                         continue;
5975                 netdev_adjacent_sysfs_add(iter->dev, dev,
5976                                           &iter->dev->adj_list.upper);
5977                 netdev_adjacent_sysfs_add(dev, iter->dev,
5978                                           &dev->adj_list.lower);
5979         }
5980 }
5981
5982 static void netdev_adjacent_del_links(struct net_device *dev)
5983 {
5984         struct netdev_adjacent *iter;
5985
5986         struct net *net = dev_net(dev);
5987
5988         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5989                 if (!net_eq(net, dev_net(iter->dev)))
5990                         continue;
5991                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5992                                           &iter->dev->adj_list.lower);
5993                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5994                                           &dev->adj_list.upper);
5995         }
5996
5997         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5998                 if (!net_eq(net, dev_net(iter->dev)))
5999                         continue;
6000                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6001                                           &iter->dev->adj_list.upper);
6002                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6003                                           &dev->adj_list.lower);
6004         }
6005 }
6006
6007 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6008 {
6009         struct netdev_adjacent *iter;
6010
6011         struct net *net = dev_net(dev);
6012
6013         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6014                 if (!net_eq(net, dev_net(iter->dev)))
6015                         continue;
6016                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6017                                           &iter->dev->adj_list.lower);
6018                 netdev_adjacent_sysfs_add(iter->dev, dev,
6019                                           &iter->dev->adj_list.lower);
6020         }
6021
6022         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6023                 if (!net_eq(net, dev_net(iter->dev)))
6024                         continue;
6025                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6026                                           &iter->dev->adj_list.upper);
6027                 netdev_adjacent_sysfs_add(iter->dev, dev,
6028                                           &iter->dev->adj_list.upper);
6029         }
6030 }
6031
6032 void *netdev_lower_dev_get_private(struct net_device *dev,
6033                                    struct net_device *lower_dev)
6034 {
6035         struct netdev_adjacent *lower;
6036
6037         if (!lower_dev)
6038                 return NULL;
6039         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6040         if (!lower)
6041                 return NULL;
6042
6043         return lower->private;
6044 }
6045 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6046
6047
6048 int dev_get_nest_level(struct net_device *dev)
6049 {
6050         struct net_device *lower = NULL;
6051         struct list_head *iter;
6052         int max_nest = -1;
6053         int nest;
6054
6055         ASSERT_RTNL();
6056
6057         netdev_for_each_lower_dev(dev, lower, iter) {
6058                 nest = dev_get_nest_level(lower);
6059                 if (max_nest < nest)
6060                         max_nest = nest;
6061         }
6062
6063         return max_nest + 1;
6064 }
6065 EXPORT_SYMBOL(dev_get_nest_level);
6066
6067 /**
6068  * netdev_lower_change - Dispatch event about lower device state change
6069  * @lower_dev: device
6070  * @lower_state_info: state to dispatch
6071  *
6072  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6073  * The caller must hold the RTNL lock.
6074  */
6075 void netdev_lower_state_changed(struct net_device *lower_dev,
6076                                 void *lower_state_info)
6077 {
6078         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6079
6080         ASSERT_RTNL();
6081         changelowerstate_info.lower_state_info = lower_state_info;
6082         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6083                                       &changelowerstate_info.info);
6084 }
6085 EXPORT_SYMBOL(netdev_lower_state_changed);
6086
6087 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6088                                            struct neighbour *n)
6089 {
6090         struct net_device *lower_dev, *stop_dev;
6091         struct list_head *iter;
6092         int err;
6093
6094         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6095                 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6096                         continue;
6097                 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6098                 if (err) {
6099                         stop_dev = lower_dev;
6100                         goto rollback;
6101                 }
6102         }
6103         return 0;
6104
6105 rollback:
6106         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6107                 if (lower_dev == stop_dev)
6108                         break;
6109                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6110                         continue;
6111                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6112         }
6113         return err;
6114 }
6115 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6116
6117 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6118                                           struct neighbour *n)
6119 {
6120         struct net_device *lower_dev;
6121         struct list_head *iter;
6122
6123         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6124                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6125                         continue;
6126                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6127         }
6128 }
6129 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6130
6131 static void dev_change_rx_flags(struct net_device *dev, int flags)
6132 {
6133         const struct net_device_ops *ops = dev->netdev_ops;
6134
6135         if (ops->ndo_change_rx_flags)
6136                 ops->ndo_change_rx_flags(dev, flags);
6137 }
6138
6139 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6140 {
6141         unsigned int old_flags = dev->flags;
6142         kuid_t uid;
6143         kgid_t gid;
6144
6145         ASSERT_RTNL();
6146
6147         dev->flags |= IFF_PROMISC;
6148         dev->promiscuity += inc;
6149         if (dev->promiscuity == 0) {
6150                 /*
6151                  * Avoid overflow.
6152                  * If inc causes overflow, untouch promisc and return error.
6153                  */
6154                 if (inc < 0)
6155                         dev->flags &= ~IFF_PROMISC;
6156                 else {
6157                         dev->promiscuity -= inc;
6158                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6159                                 dev->name);
6160                         return -EOVERFLOW;
6161                 }
6162         }
6163         if (dev->flags != old_flags) {
6164                 pr_info("device %s %s promiscuous mode\n",
6165                         dev->name,
6166                         dev->flags & IFF_PROMISC ? "entered" : "left");
6167                 if (audit_enabled) {
6168                         current_uid_gid(&uid, &gid);
6169                         audit_log(current->audit_context, GFP_ATOMIC,
6170                                 AUDIT_ANOM_PROMISCUOUS,
6171                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6172                                 dev->name, (dev->flags & IFF_PROMISC),
6173                                 (old_flags & IFF_PROMISC),
6174                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6175                                 from_kuid(&init_user_ns, uid),
6176                                 from_kgid(&init_user_ns, gid),
6177                                 audit_get_sessionid(current));
6178                 }
6179
6180                 dev_change_rx_flags(dev, IFF_PROMISC);
6181         }
6182         if (notify)
6183                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6184         return 0;
6185 }
6186
6187 /**
6188  *      dev_set_promiscuity     - update promiscuity count on a device
6189  *      @dev: device
6190  *      @inc: modifier
6191  *
6192  *      Add or remove promiscuity from a device. While the count in the device
6193  *      remains above zero the interface remains promiscuous. Once it hits zero
6194  *      the device reverts back to normal filtering operation. A negative inc
6195  *      value is used to drop promiscuity on the device.
6196  *      Return 0 if successful or a negative errno code on error.
6197  */
6198 int dev_set_promiscuity(struct net_device *dev, int inc)
6199 {
6200         unsigned int old_flags = dev->flags;
6201         int err;
6202
6203         err = __dev_set_promiscuity(dev, inc, true);
6204         if (err < 0)
6205                 return err;
6206         if (dev->flags != old_flags)
6207                 dev_set_rx_mode(dev);
6208         return err;
6209 }
6210 EXPORT_SYMBOL(dev_set_promiscuity);
6211
6212 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6213 {
6214         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6215
6216         ASSERT_RTNL();
6217
6218         dev->flags |= IFF_ALLMULTI;
6219         dev->allmulti += inc;
6220         if (dev->allmulti == 0) {
6221                 /*
6222                  * Avoid overflow.
6223                  * If inc causes overflow, untouch allmulti and return error.
6224                  */
6225                 if (inc < 0)
6226                         dev->flags &= ~IFF_ALLMULTI;
6227                 else {
6228                         dev->allmulti -= inc;
6229                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6230                                 dev->name);
6231                         return -EOVERFLOW;
6232                 }
6233         }
6234         if (dev->flags ^ old_flags) {
6235                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6236                 dev_set_rx_mode(dev);
6237                 if (notify)
6238                         __dev_notify_flags(dev, old_flags,
6239                                            dev->gflags ^ old_gflags);
6240         }
6241         return 0;
6242 }
6243
6244 /**
6245  *      dev_set_allmulti        - update allmulti count on a device
6246  *      @dev: device
6247  *      @inc: modifier
6248  *
6249  *      Add or remove reception of all multicast frames to a device. While the
6250  *      count in the device remains above zero the interface remains listening
6251  *      to all interfaces. Once it hits zero the device reverts back to normal
6252  *      filtering operation. A negative @inc value is used to drop the counter
6253  *      when releasing a resource needing all multicasts.
6254  *      Return 0 if successful or a negative errno code on error.
6255  */
6256
6257 int dev_set_allmulti(struct net_device *dev, int inc)
6258 {
6259         return __dev_set_allmulti(dev, inc, true);
6260 }
6261 EXPORT_SYMBOL(dev_set_allmulti);
6262
6263 /*
6264  *      Upload unicast and multicast address lists to device and
6265  *      configure RX filtering. When the device doesn't support unicast
6266  *      filtering it is put in promiscuous mode while unicast addresses
6267  *      are present.
6268  */
6269 void __dev_set_rx_mode(struct net_device *dev)
6270 {
6271         const struct net_device_ops *ops = dev->netdev_ops;
6272
6273         /* dev_open will call this function so the list will stay sane. */
6274         if (!(dev->flags&IFF_UP))
6275                 return;
6276
6277         if (!netif_device_present(dev))
6278                 return;
6279
6280         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6281                 /* Unicast addresses changes may only happen under the rtnl,
6282                  * therefore calling __dev_set_promiscuity here is safe.
6283                  */
6284                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6285                         __dev_set_promiscuity(dev, 1, false);
6286                         dev->uc_promisc = true;
6287                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6288                         __dev_set_promiscuity(dev, -1, false);
6289                         dev->uc_promisc = false;
6290                 }
6291         }
6292
6293         if (ops->ndo_set_rx_mode)
6294                 ops->ndo_set_rx_mode(dev);
6295 }
6296
6297 void dev_set_rx_mode(struct net_device *dev)
6298 {
6299         netif_addr_lock_bh(dev);
6300         __dev_set_rx_mode(dev);
6301         netif_addr_unlock_bh(dev);
6302 }
6303
6304 /**
6305  *      dev_get_flags - get flags reported to userspace
6306  *      @dev: device
6307  *
6308  *      Get the combination of flag bits exported through APIs to userspace.
6309  */
6310 unsigned int dev_get_flags(const struct net_device *dev)
6311 {
6312         unsigned int flags;
6313
6314         flags = (dev->flags & ~(IFF_PROMISC |
6315                                 IFF_ALLMULTI |
6316                                 IFF_RUNNING |
6317                                 IFF_LOWER_UP |
6318                                 IFF_DORMANT)) |
6319                 (dev->gflags & (IFF_PROMISC |
6320                                 IFF_ALLMULTI));
6321
6322         if (netif_running(dev)) {
6323                 if (netif_oper_up(dev))
6324                         flags |= IFF_RUNNING;
6325                 if (netif_carrier_ok(dev))
6326                         flags |= IFF_LOWER_UP;
6327                 if (netif_dormant(dev))
6328                         flags |= IFF_DORMANT;
6329         }
6330
6331         return flags;
6332 }
6333 EXPORT_SYMBOL(dev_get_flags);
6334
6335 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6336 {
6337         unsigned int old_flags = dev->flags;
6338         int ret;
6339
6340         ASSERT_RTNL();
6341
6342         /*
6343          *      Set the flags on our device.
6344          */
6345
6346         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6347                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6348                                IFF_AUTOMEDIA)) |
6349                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6350                                     IFF_ALLMULTI));
6351
6352         /*
6353          *      Load in the correct multicast list now the flags have changed.
6354          */
6355
6356         if ((old_flags ^ flags) & IFF_MULTICAST)
6357                 dev_change_rx_flags(dev, IFF_MULTICAST);
6358
6359         dev_set_rx_mode(dev);
6360
6361         /*
6362          *      Have we downed the interface. We handle IFF_UP ourselves
6363          *      according to user attempts to set it, rather than blindly
6364          *      setting it.
6365          */
6366
6367         ret = 0;
6368         if ((old_flags ^ flags) & IFF_UP)
6369                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6370
6371         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6372                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6373                 unsigned int old_flags = dev->flags;
6374
6375                 dev->gflags ^= IFF_PROMISC;
6376
6377                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6378                         if (dev->flags != old_flags)
6379                                 dev_set_rx_mode(dev);
6380         }
6381
6382         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6383            is important. Some (broken) drivers set IFF_PROMISC, when
6384            IFF_ALLMULTI is requested not asking us and not reporting.
6385          */
6386         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6387                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6388
6389                 dev->gflags ^= IFF_ALLMULTI;
6390                 __dev_set_allmulti(dev, inc, false);
6391         }
6392
6393         return ret;
6394 }
6395
6396 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6397                         unsigned int gchanges)
6398 {
6399         unsigned int changes = dev->flags ^ old_flags;
6400
6401         if (gchanges)
6402                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6403
6404         if (changes & IFF_UP) {
6405                 if (dev->flags & IFF_UP)
6406                         call_netdevice_notifiers(NETDEV_UP, dev);
6407                 else
6408                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6409         }
6410
6411         if (dev->flags & IFF_UP &&
6412             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6413                 struct netdev_notifier_change_info change_info;
6414
6415                 change_info.flags_changed = changes;
6416                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6417                                               &change_info.info);
6418         }
6419 }
6420
6421 /**
6422  *      dev_change_flags - change device settings
6423  *      @dev: device
6424  *      @flags: device state flags
6425  *
6426  *      Change settings on device based state flags. The flags are
6427  *      in the userspace exported format.
6428  */
6429 int dev_change_flags(struct net_device *dev, unsigned int flags)
6430 {
6431         int ret;
6432         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6433
6434         ret = __dev_change_flags(dev, flags);
6435         if (ret < 0)
6436                 return ret;
6437
6438         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6439         __dev_notify_flags(dev, old_flags, changes);
6440         return ret;
6441 }
6442 EXPORT_SYMBOL(dev_change_flags);
6443
6444 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6445 {
6446         const struct net_device_ops *ops = dev->netdev_ops;
6447
6448         if (ops->ndo_change_mtu)
6449                 return ops->ndo_change_mtu(dev, new_mtu);
6450
6451         dev->mtu = new_mtu;
6452         return 0;
6453 }
6454
6455 /**
6456  *      dev_set_mtu - Change maximum transfer unit
6457  *      @dev: device
6458  *      @new_mtu: new transfer unit
6459  *
6460  *      Change the maximum transfer size of the network device.
6461  */
6462 int dev_set_mtu(struct net_device *dev, int new_mtu)
6463 {
6464         int err, orig_mtu;
6465
6466         if (new_mtu == dev->mtu)
6467                 return 0;
6468
6469         /*      MTU must be positive.    */
6470         if (new_mtu < 0)
6471                 return -EINVAL;
6472
6473         if (!netif_device_present(dev))
6474                 return -ENODEV;
6475
6476         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6477         err = notifier_to_errno(err);
6478         if (err)
6479                 return err;
6480
6481         orig_mtu = dev->mtu;
6482         err = __dev_set_mtu(dev, new_mtu);
6483
6484         if (!err) {
6485                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6486                 err = notifier_to_errno(err);
6487                 if (err) {
6488                         /* setting mtu back and notifying everyone again,
6489                          * so that they have a chance to revert changes.
6490                          */
6491                         __dev_set_mtu(dev, orig_mtu);
6492                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6493                 }
6494         }
6495         return err;
6496 }
6497 EXPORT_SYMBOL(dev_set_mtu);
6498
6499 /**
6500  *      dev_set_group - Change group this device belongs to
6501  *      @dev: device
6502  *      @new_group: group this device should belong to
6503  */
6504 void dev_set_group(struct net_device *dev, int new_group)
6505 {
6506         dev->group = new_group;
6507 }
6508 EXPORT_SYMBOL(dev_set_group);
6509
6510 /**
6511  *      dev_set_mac_address - Change Media Access Control Address
6512  *      @dev: device
6513  *      @sa: new address
6514  *
6515  *      Change the hardware (MAC) address of the device
6516  */
6517 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6518 {
6519         const struct net_device_ops *ops = dev->netdev_ops;
6520         int err;
6521
6522         if (!ops->ndo_set_mac_address)
6523                 return -EOPNOTSUPP;
6524         if (sa->sa_family != dev->type)
6525                 return -EINVAL;
6526         if (!netif_device_present(dev))
6527                 return -ENODEV;
6528         err = ops->ndo_set_mac_address(dev, sa);
6529         if (err)
6530                 return err;
6531         dev->addr_assign_type = NET_ADDR_SET;
6532         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6533         add_device_randomness(dev->dev_addr, dev->addr_len);
6534         return 0;
6535 }
6536 EXPORT_SYMBOL(dev_set_mac_address);
6537
6538 /**
6539  *      dev_change_carrier - Change device carrier
6540  *      @dev: device
6541  *      @new_carrier: new value
6542  *
6543  *      Change device carrier
6544  */
6545 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6546 {
6547         const struct net_device_ops *ops = dev->netdev_ops;
6548
6549         if (!ops->ndo_change_carrier)
6550                 return -EOPNOTSUPP;
6551         if (!netif_device_present(dev))
6552                 return -ENODEV;
6553         return ops->ndo_change_carrier(dev, new_carrier);
6554 }
6555 EXPORT_SYMBOL(dev_change_carrier);
6556
6557 /**
6558  *      dev_get_phys_port_id - Get device physical port ID
6559  *      @dev: device
6560  *      @ppid: port ID
6561  *
6562  *      Get device physical port ID
6563  */
6564 int dev_get_phys_port_id(struct net_device *dev,
6565                          struct netdev_phys_item_id *ppid)
6566 {
6567         const struct net_device_ops *ops = dev->netdev_ops;
6568
6569         if (!ops->ndo_get_phys_port_id)
6570                 return -EOPNOTSUPP;
6571         return ops->ndo_get_phys_port_id(dev, ppid);
6572 }
6573 EXPORT_SYMBOL(dev_get_phys_port_id);
6574
6575 /**
6576  *      dev_get_phys_port_name - Get device physical port name
6577  *      @dev: device
6578  *      @name: port name
6579  *      @len: limit of bytes to copy to name
6580  *
6581  *      Get device physical port name
6582  */
6583 int dev_get_phys_port_name(struct net_device *dev,
6584                            char *name, size_t len)
6585 {
6586         const struct net_device_ops *ops = dev->netdev_ops;
6587
6588         if (!ops->ndo_get_phys_port_name)
6589                 return -EOPNOTSUPP;
6590         return ops->ndo_get_phys_port_name(dev, name, len);
6591 }
6592 EXPORT_SYMBOL(dev_get_phys_port_name);
6593
6594 /**
6595  *      dev_change_proto_down - update protocol port state information
6596  *      @dev: device
6597  *      @proto_down: new value
6598  *
6599  *      This info can be used by switch drivers to set the phys state of the
6600  *      port.
6601  */
6602 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6603 {
6604         const struct net_device_ops *ops = dev->netdev_ops;
6605
6606         if (!ops->ndo_change_proto_down)
6607                 return -EOPNOTSUPP;
6608         if (!netif_device_present(dev))
6609                 return -ENODEV;
6610         return ops->ndo_change_proto_down(dev, proto_down);
6611 }
6612 EXPORT_SYMBOL(dev_change_proto_down);
6613
6614 /**
6615  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6616  *      @dev: device
6617  *      @fd: new program fd or negative value to clear
6618  *
6619  *      Set or clear a bpf program for a device
6620  */
6621 int dev_change_xdp_fd(struct net_device *dev, int fd)
6622 {
6623         const struct net_device_ops *ops = dev->netdev_ops;
6624         struct bpf_prog *prog = NULL;
6625         struct netdev_xdp xdp = {};
6626         int err;
6627
6628         if (!ops->ndo_xdp)
6629                 return -EOPNOTSUPP;
6630         if (fd >= 0) {
6631                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6632                 if (IS_ERR(prog))
6633                         return PTR_ERR(prog);
6634         }
6635
6636         xdp.command = XDP_SETUP_PROG;
6637         xdp.prog = prog;
6638         err = ops->ndo_xdp(dev, &xdp);
6639         if (err < 0 && prog)
6640                 bpf_prog_put(prog);
6641
6642         return err;
6643 }
6644 EXPORT_SYMBOL(dev_change_xdp_fd);
6645
6646 /**
6647  *      dev_new_index   -       allocate an ifindex
6648  *      @net: the applicable net namespace
6649  *
6650  *      Returns a suitable unique value for a new device interface
6651  *      number.  The caller must hold the rtnl semaphore or the
6652  *      dev_base_lock to be sure it remains unique.
6653  */
6654 static int dev_new_index(struct net *net)
6655 {
6656         int ifindex = net->ifindex;
6657         for (;;) {
6658                 if (++ifindex <= 0)
6659                         ifindex = 1;
6660                 if (!__dev_get_by_index(net, ifindex))
6661                         return net->ifindex = ifindex;
6662         }
6663 }
6664
6665 /* Delayed registration/unregisteration */
6666 static LIST_HEAD(net_todo_list);
6667 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6668
6669 static void net_set_todo(struct net_device *dev)
6670 {
6671         list_add_tail(&dev->todo_list, &net_todo_list);
6672         dev_net(dev)->dev_unreg_count++;
6673 }
6674
6675 static void rollback_registered_many(struct list_head *head)
6676 {
6677         struct net_device *dev, *tmp;
6678         LIST_HEAD(close_head);
6679
6680         BUG_ON(dev_boot_phase);
6681         ASSERT_RTNL();
6682
6683         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6684                 /* Some devices call without registering
6685                  * for initialization unwind. Remove those
6686                  * devices and proceed with the remaining.
6687                  */
6688                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6689                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6690                                  dev->name, dev);
6691
6692                         WARN_ON(1);
6693                         list_del(&dev->unreg_list);
6694                         continue;
6695                 }
6696                 dev->dismantle = true;
6697                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6698         }
6699
6700         /* If device is running, close it first. */
6701         list_for_each_entry(dev, head, unreg_list)
6702                 list_add_tail(&dev->close_list, &close_head);
6703         dev_close_many(&close_head, true);
6704
6705         list_for_each_entry(dev, head, unreg_list) {
6706                 /* And unlink it from device chain. */
6707                 unlist_netdevice(dev);
6708
6709                 dev->reg_state = NETREG_UNREGISTERING;
6710                 on_each_cpu(flush_backlog, dev, 1);
6711         }
6712
6713         synchronize_net();
6714
6715         list_for_each_entry(dev, head, unreg_list) {
6716                 struct sk_buff *skb = NULL;
6717
6718                 /* Shutdown queueing discipline. */
6719                 dev_shutdown(dev);
6720
6721
6722                 /* Notify protocols, that we are about to destroy
6723                    this device. They should clean all the things.
6724                 */
6725                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6726
6727                 if (!dev->rtnl_link_ops ||
6728                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6729                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6730                                                      GFP_KERNEL);
6731
6732                 /*
6733                  *      Flush the unicast and multicast chains
6734                  */
6735                 dev_uc_flush(dev);
6736                 dev_mc_flush(dev);
6737
6738                 if (dev->netdev_ops->ndo_uninit)
6739                         dev->netdev_ops->ndo_uninit(dev);
6740
6741                 if (skb)
6742                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6743
6744                 /* Notifier chain MUST detach us all upper devices. */
6745                 WARN_ON(netdev_has_any_upper_dev(dev));
6746
6747                 /* Remove entries from kobject tree */
6748                 netdev_unregister_kobject(dev);
6749 #ifdef CONFIG_XPS
6750                 /* Remove XPS queueing entries */
6751                 netif_reset_xps_queues_gt(dev, 0);
6752 #endif
6753         }
6754
6755         synchronize_net();
6756
6757         list_for_each_entry(dev, head, unreg_list)
6758                 dev_put(dev);
6759 }
6760
6761 static void rollback_registered(struct net_device *dev)
6762 {
6763         LIST_HEAD(single);
6764
6765         list_add(&dev->unreg_list, &single);
6766         rollback_registered_many(&single);
6767         list_del(&single);
6768 }
6769
6770 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6771         struct net_device *upper, netdev_features_t features)
6772 {
6773         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6774         netdev_features_t feature;
6775         int feature_bit;
6776
6777         for_each_netdev_feature(&upper_disables, feature_bit) {
6778                 feature = __NETIF_F_BIT(feature_bit);
6779                 if (!(upper->wanted_features & feature)
6780                     && (features & feature)) {
6781                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6782                                    &feature, upper->name);
6783                         features &= ~feature;
6784                 }
6785         }
6786
6787         return features;
6788 }
6789
6790 static void netdev_sync_lower_features(struct net_device *upper,
6791         struct net_device *lower, netdev_features_t features)
6792 {
6793         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6794         netdev_features_t feature;
6795         int feature_bit;
6796
6797         for_each_netdev_feature(&upper_disables, feature_bit) {
6798                 feature = __NETIF_F_BIT(feature_bit);
6799                 if (!(features & feature) && (lower->features & feature)) {
6800                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6801                                    &feature, lower->name);
6802                         lower->wanted_features &= ~feature;
6803                         netdev_update_features(lower);
6804
6805                         if (unlikely(lower->features & feature))
6806                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6807                                             &feature, lower->name);
6808                 }
6809         }
6810 }
6811
6812 static netdev_features_t netdev_fix_features(struct net_device *dev,
6813         netdev_features_t features)
6814 {
6815         /* Fix illegal checksum combinations */
6816         if ((features & NETIF_F_HW_CSUM) &&
6817             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6818                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6819                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6820         }
6821
6822         /* TSO requires that SG is present as well. */
6823         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6824                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6825                 features &= ~NETIF_F_ALL_TSO;
6826         }
6827
6828         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6829                                         !(features & NETIF_F_IP_CSUM)) {
6830                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6831                 features &= ~NETIF_F_TSO;
6832                 features &= ~NETIF_F_TSO_ECN;
6833         }
6834
6835         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6836                                          !(features & NETIF_F_IPV6_CSUM)) {
6837                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6838                 features &= ~NETIF_F_TSO6;
6839         }
6840
6841         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6842         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6843                 features &= ~NETIF_F_TSO_MANGLEID;
6844
6845         /* TSO ECN requires that TSO is present as well. */
6846         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6847                 features &= ~NETIF_F_TSO_ECN;
6848
6849         /* Software GSO depends on SG. */
6850         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6851                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6852                 features &= ~NETIF_F_GSO;
6853         }
6854
6855         /* UFO needs SG and checksumming */
6856         if (features & NETIF_F_UFO) {
6857                 /* maybe split UFO into V4 and V6? */
6858                 if (!(features & NETIF_F_HW_CSUM) &&
6859                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6860                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6861                         netdev_dbg(dev,
6862                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6863                         features &= ~NETIF_F_UFO;
6864                 }
6865
6866                 if (!(features & NETIF_F_SG)) {
6867                         netdev_dbg(dev,
6868                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6869                         features &= ~NETIF_F_UFO;
6870                 }
6871         }
6872
6873         /* GSO partial features require GSO partial be set */
6874         if ((features & dev->gso_partial_features) &&
6875             !(features & NETIF_F_GSO_PARTIAL)) {
6876                 netdev_dbg(dev,
6877                            "Dropping partially supported GSO features since no GSO partial.\n");
6878                 features &= ~dev->gso_partial_features;
6879         }
6880
6881 #ifdef CONFIG_NET_RX_BUSY_POLL
6882         if (dev->netdev_ops->ndo_busy_poll)
6883                 features |= NETIF_F_BUSY_POLL;
6884         else
6885 #endif
6886                 features &= ~NETIF_F_BUSY_POLL;
6887
6888         return features;
6889 }
6890
6891 int __netdev_update_features(struct net_device *dev)
6892 {
6893         struct net_device *upper, *lower;
6894         netdev_features_t features;
6895         struct list_head *iter;
6896         int err = -1;
6897
6898         ASSERT_RTNL();
6899
6900         features = netdev_get_wanted_features(dev);
6901
6902         if (dev->netdev_ops->ndo_fix_features)
6903                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6904
6905         /* driver might be less strict about feature dependencies */
6906         features = netdev_fix_features(dev, features);
6907
6908         /* some features can't be enabled if they're off an an upper device */
6909         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6910                 features = netdev_sync_upper_features(dev, upper, features);
6911
6912         if (dev->features == features)
6913                 goto sync_lower;
6914
6915         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6916                 &dev->features, &features);
6917
6918         if (dev->netdev_ops->ndo_set_features)
6919                 err = dev->netdev_ops->ndo_set_features(dev, features);
6920         else
6921                 err = 0;
6922
6923         if (unlikely(err < 0)) {
6924                 netdev_err(dev,
6925                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6926                         err, &features, &dev->features);
6927                 /* return non-0 since some features might have changed and
6928                  * it's better to fire a spurious notification than miss it
6929                  */
6930                 return -1;
6931         }
6932
6933 sync_lower:
6934         /* some features must be disabled on lower devices when disabled
6935          * on an upper device (think: bonding master or bridge)
6936          */
6937         netdev_for_each_lower_dev(dev, lower, iter)
6938                 netdev_sync_lower_features(dev, lower, features);
6939
6940         if (!err)
6941                 dev->features = features;
6942
6943         return err < 0 ? 0 : 1;
6944 }
6945
6946 /**
6947  *      netdev_update_features - recalculate device features
6948  *      @dev: the device to check
6949  *
6950  *      Recalculate dev->features set and send notifications if it
6951  *      has changed. Should be called after driver or hardware dependent
6952  *      conditions might have changed that influence the features.
6953  */
6954 void netdev_update_features(struct net_device *dev)
6955 {
6956         if (__netdev_update_features(dev))
6957                 netdev_features_change(dev);
6958 }
6959 EXPORT_SYMBOL(netdev_update_features);
6960
6961 /**
6962  *      netdev_change_features - recalculate device features
6963  *      @dev: the device to check
6964  *
6965  *      Recalculate dev->features set and send notifications even
6966  *      if they have not changed. Should be called instead of
6967  *      netdev_update_features() if also dev->vlan_features might
6968  *      have changed to allow the changes to be propagated to stacked
6969  *      VLAN devices.
6970  */
6971 void netdev_change_features(struct net_device *dev)
6972 {
6973         __netdev_update_features(dev);
6974         netdev_features_change(dev);
6975 }
6976 EXPORT_SYMBOL(netdev_change_features);
6977
6978 /**
6979  *      netif_stacked_transfer_operstate -      transfer operstate
6980  *      @rootdev: the root or lower level device to transfer state from
6981  *      @dev: the device to transfer operstate to
6982  *
6983  *      Transfer operational state from root to device. This is normally
6984  *      called when a stacking relationship exists between the root
6985  *      device and the device(a leaf device).
6986  */
6987 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6988                                         struct net_device *dev)
6989 {
6990         if (rootdev->operstate == IF_OPER_DORMANT)
6991                 netif_dormant_on(dev);
6992         else
6993                 netif_dormant_off(dev);
6994
6995         if (netif_carrier_ok(rootdev)) {
6996                 if (!netif_carrier_ok(dev))
6997                         netif_carrier_on(dev);
6998         } else {
6999                 if (netif_carrier_ok(dev))
7000                         netif_carrier_off(dev);
7001         }
7002 }
7003 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7004
7005 #ifdef CONFIG_SYSFS
7006 static int netif_alloc_rx_queues(struct net_device *dev)
7007 {
7008         unsigned int i, count = dev->num_rx_queues;
7009         struct netdev_rx_queue *rx;
7010         size_t sz = count * sizeof(*rx);
7011
7012         BUG_ON(count < 1);
7013
7014         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7015         if (!rx) {
7016                 rx = vzalloc(sz);
7017                 if (!rx)
7018                         return -ENOMEM;
7019         }
7020         dev->_rx = rx;
7021
7022         for (i = 0; i < count; i++)
7023                 rx[i].dev = dev;
7024         return 0;
7025 }
7026 #endif
7027
7028 static void netdev_init_one_queue(struct net_device *dev,
7029                                   struct netdev_queue *queue, void *_unused)
7030 {
7031         /* Initialize queue lock */
7032         spin_lock_init(&queue->_xmit_lock);
7033         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7034         queue->xmit_lock_owner = -1;
7035         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7036         queue->dev = dev;
7037 #ifdef CONFIG_BQL
7038         dql_init(&queue->dql, HZ);
7039 #endif
7040 }
7041
7042 static void netif_free_tx_queues(struct net_device *dev)
7043 {
7044         kvfree(dev->_tx);
7045 }
7046
7047 static int netif_alloc_netdev_queues(struct net_device *dev)
7048 {
7049         unsigned int count = dev->num_tx_queues;
7050         struct netdev_queue *tx;
7051         size_t sz = count * sizeof(*tx);
7052
7053         if (count < 1 || count > 0xffff)
7054                 return -EINVAL;
7055
7056         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7057         if (!tx) {
7058                 tx = vzalloc(sz);
7059                 if (!tx)
7060                         return -ENOMEM;
7061         }
7062         dev->_tx = tx;
7063
7064         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7065         spin_lock_init(&dev->tx_global_lock);
7066
7067         return 0;
7068 }
7069
7070 void netif_tx_stop_all_queues(struct net_device *dev)
7071 {
7072         unsigned int i;
7073
7074         for (i = 0; i < dev->num_tx_queues; i++) {
7075                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7076                 netif_tx_stop_queue(txq);
7077         }
7078 }
7079 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7080
7081 /**
7082  *      register_netdevice      - register a network device
7083  *      @dev: device to register
7084  *
7085  *      Take a completed network device structure and add it to the kernel
7086  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7087  *      chain. 0 is returned on success. A negative errno code is returned
7088  *      on a failure to set up the device, or if the name is a duplicate.
7089  *
7090  *      Callers must hold the rtnl semaphore. You may want
7091  *      register_netdev() instead of this.
7092  *
7093  *      BUGS:
7094  *      The locking appears insufficient to guarantee two parallel registers
7095  *      will not get the same name.
7096  */
7097
7098 int register_netdevice(struct net_device *dev)
7099 {
7100         int ret;
7101         struct net *net = dev_net(dev);
7102
7103         BUG_ON(dev_boot_phase);
7104         ASSERT_RTNL();
7105
7106         might_sleep();
7107
7108         /* When net_device's are persistent, this will be fatal. */
7109         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7110         BUG_ON(!net);
7111
7112         spin_lock_init(&dev->addr_list_lock);
7113         netdev_set_addr_lockdep_class(dev);
7114
7115         ret = dev_get_valid_name(net, dev, dev->name);
7116         if (ret < 0)
7117                 goto out;
7118
7119         /* Init, if this function is available */
7120         if (dev->netdev_ops->ndo_init) {
7121                 ret = dev->netdev_ops->ndo_init(dev);
7122                 if (ret) {
7123                         if (ret > 0)
7124                                 ret = -EIO;
7125                         goto out;
7126                 }
7127         }
7128
7129         if (((dev->hw_features | dev->features) &
7130              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7131             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7132              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7133                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7134                 ret = -EINVAL;
7135                 goto err_uninit;
7136         }
7137
7138         ret = -EBUSY;
7139         if (!dev->ifindex)
7140                 dev->ifindex = dev_new_index(net);
7141         else if (__dev_get_by_index(net, dev->ifindex))
7142                 goto err_uninit;
7143
7144         /* Transfer changeable features to wanted_features and enable
7145          * software offloads (GSO and GRO).
7146          */
7147         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7148         dev->features |= NETIF_F_SOFT_FEATURES;
7149         dev->wanted_features = dev->features & dev->hw_features;
7150
7151         if (!(dev->flags & IFF_LOOPBACK))
7152                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7153
7154         /* If IPv4 TCP segmentation offload is supported we should also
7155          * allow the device to enable segmenting the frame with the option
7156          * of ignoring a static IP ID value.  This doesn't enable the
7157          * feature itself but allows the user to enable it later.
7158          */
7159         if (dev->hw_features & NETIF_F_TSO)
7160                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7161         if (dev->vlan_features & NETIF_F_TSO)
7162                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7163         if (dev->mpls_features & NETIF_F_TSO)
7164                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7165         if (dev->hw_enc_features & NETIF_F_TSO)
7166                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7167
7168         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7169          */
7170         dev->vlan_features |= NETIF_F_HIGHDMA;
7171
7172         /* Make NETIF_F_SG inheritable to tunnel devices.
7173          */
7174         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7175
7176         /* Make NETIF_F_SG inheritable to MPLS.
7177          */
7178         dev->mpls_features |= NETIF_F_SG;
7179
7180         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7181         ret = notifier_to_errno(ret);
7182         if (ret)
7183                 goto err_uninit;
7184
7185         ret = netdev_register_kobject(dev);
7186         if (ret)
7187                 goto err_uninit;
7188         dev->reg_state = NETREG_REGISTERED;
7189
7190         __netdev_update_features(dev);
7191
7192         /*
7193          *      Default initial state at registry is that the
7194          *      device is present.
7195          */
7196
7197         set_bit(__LINK_STATE_PRESENT, &dev->state);
7198
7199         linkwatch_init_dev(dev);
7200
7201         dev_init_scheduler(dev);
7202         dev_hold(dev);
7203         list_netdevice(dev);
7204         add_device_randomness(dev->dev_addr, dev->addr_len);
7205
7206         /* If the device has permanent device address, driver should
7207          * set dev_addr and also addr_assign_type should be set to
7208          * NET_ADDR_PERM (default value).
7209          */
7210         if (dev->addr_assign_type == NET_ADDR_PERM)
7211                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7212
7213         /* Notify protocols, that a new device appeared. */
7214         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7215         ret = notifier_to_errno(ret);
7216         if (ret) {
7217                 rollback_registered(dev);
7218                 dev->reg_state = NETREG_UNREGISTERED;
7219         }
7220         /*
7221          *      Prevent userspace races by waiting until the network
7222          *      device is fully setup before sending notifications.
7223          */
7224         if (!dev->rtnl_link_ops ||
7225             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7226                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7227
7228 out:
7229         return ret;
7230
7231 err_uninit:
7232         if (dev->netdev_ops->ndo_uninit)
7233                 dev->netdev_ops->ndo_uninit(dev);
7234         goto out;
7235 }
7236 EXPORT_SYMBOL(register_netdevice);
7237
7238 /**
7239  *      init_dummy_netdev       - init a dummy network device for NAPI
7240  *      @dev: device to init
7241  *
7242  *      This takes a network device structure and initialize the minimum
7243  *      amount of fields so it can be used to schedule NAPI polls without
7244  *      registering a full blown interface. This is to be used by drivers
7245  *      that need to tie several hardware interfaces to a single NAPI
7246  *      poll scheduler due to HW limitations.
7247  */
7248 int init_dummy_netdev(struct net_device *dev)
7249 {
7250         /* Clear everything. Note we don't initialize spinlocks
7251          * are they aren't supposed to be taken by any of the
7252          * NAPI code and this dummy netdev is supposed to be
7253          * only ever used for NAPI polls
7254          */
7255         memset(dev, 0, sizeof(struct net_device));
7256
7257         /* make sure we BUG if trying to hit standard
7258          * register/unregister code path
7259          */
7260         dev->reg_state = NETREG_DUMMY;
7261
7262         /* NAPI wants this */
7263         INIT_LIST_HEAD(&dev->napi_list);
7264
7265         /* a dummy interface is started by default */
7266         set_bit(__LINK_STATE_PRESENT, &dev->state);
7267         set_bit(__LINK_STATE_START, &dev->state);
7268
7269         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7270          * because users of this 'device' dont need to change
7271          * its refcount.
7272          */
7273
7274         return 0;
7275 }
7276 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7277
7278
7279 /**
7280  *      register_netdev - register a network device
7281  *      @dev: device to register
7282  *
7283  *      Take a completed network device structure and add it to the kernel
7284  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7285  *      chain. 0 is returned on success. A negative errno code is returned
7286  *      on a failure to set up the device, or if the name is a duplicate.
7287  *
7288  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7289  *      and expands the device name if you passed a format string to
7290  *      alloc_netdev.
7291  */
7292 int register_netdev(struct net_device *dev)
7293 {
7294         int err;
7295
7296         rtnl_lock();
7297         err = register_netdevice(dev);
7298         rtnl_unlock();
7299         return err;
7300 }
7301 EXPORT_SYMBOL(register_netdev);
7302
7303 int netdev_refcnt_read(const struct net_device *dev)
7304 {
7305         int i, refcnt = 0;
7306
7307         for_each_possible_cpu(i)
7308                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7309         return refcnt;
7310 }
7311 EXPORT_SYMBOL(netdev_refcnt_read);
7312
7313 /**
7314  * netdev_wait_allrefs - wait until all references are gone.
7315  * @dev: target net_device
7316  *
7317  * This is called when unregistering network devices.
7318  *
7319  * Any protocol or device that holds a reference should register
7320  * for netdevice notification, and cleanup and put back the
7321  * reference if they receive an UNREGISTER event.
7322  * We can get stuck here if buggy protocols don't correctly
7323  * call dev_put.
7324  */
7325 static void netdev_wait_allrefs(struct net_device *dev)
7326 {
7327         unsigned long rebroadcast_time, warning_time;
7328         int refcnt;
7329
7330         linkwatch_forget_dev(dev);
7331
7332         rebroadcast_time = warning_time = jiffies;
7333         refcnt = netdev_refcnt_read(dev);
7334
7335         while (refcnt != 0) {
7336                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7337                         rtnl_lock();
7338
7339                         /* Rebroadcast unregister notification */
7340                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7341
7342                         __rtnl_unlock();
7343                         rcu_barrier();
7344                         rtnl_lock();
7345
7346                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7347                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7348                                      &dev->state)) {
7349                                 /* We must not have linkwatch events
7350                                  * pending on unregister. If this
7351                                  * happens, we simply run the queue
7352                                  * unscheduled, resulting in a noop
7353                                  * for this device.
7354                                  */
7355                                 linkwatch_run_queue();
7356                         }
7357
7358                         __rtnl_unlock();
7359
7360                         rebroadcast_time = jiffies;
7361                 }
7362
7363                 msleep(250);
7364
7365                 refcnt = netdev_refcnt_read(dev);
7366
7367                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7368                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7369                                  dev->name, refcnt);
7370                         warning_time = jiffies;
7371                 }
7372         }
7373 }
7374
7375 /* The sequence is:
7376  *
7377  *      rtnl_lock();
7378  *      ...
7379  *      register_netdevice(x1);
7380  *      register_netdevice(x2);
7381  *      ...
7382  *      unregister_netdevice(y1);
7383  *      unregister_netdevice(y2);
7384  *      ...
7385  *      rtnl_unlock();
7386  *      free_netdev(y1);
7387  *      free_netdev(y2);
7388  *
7389  * We are invoked by rtnl_unlock().
7390  * This allows us to deal with problems:
7391  * 1) We can delete sysfs objects which invoke hotplug
7392  *    without deadlocking with linkwatch via keventd.
7393  * 2) Since we run with the RTNL semaphore not held, we can sleep
7394  *    safely in order to wait for the netdev refcnt to drop to zero.
7395  *
7396  * We must not return until all unregister events added during
7397  * the interval the lock was held have been completed.
7398  */
7399 void netdev_run_todo(void)
7400 {
7401         struct list_head list;
7402
7403         /* Snapshot list, allow later requests */
7404         list_replace_init(&net_todo_list, &list);
7405
7406         __rtnl_unlock();
7407
7408
7409         /* Wait for rcu callbacks to finish before next phase */
7410         if (!list_empty(&list))
7411                 rcu_barrier();
7412
7413         while (!list_empty(&list)) {
7414                 struct net_device *dev
7415                         = list_first_entry(&list, struct net_device, todo_list);
7416                 list_del(&dev->todo_list);
7417
7418                 rtnl_lock();
7419                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7420                 __rtnl_unlock();
7421
7422                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7423                         pr_err("network todo '%s' but state %d\n",
7424                                dev->name, dev->reg_state);
7425                         dump_stack();
7426                         continue;
7427                 }
7428
7429                 dev->reg_state = NETREG_UNREGISTERED;
7430
7431                 netdev_wait_allrefs(dev);
7432
7433                 /* paranoia */
7434                 BUG_ON(netdev_refcnt_read(dev));
7435                 BUG_ON(!list_empty(&dev->ptype_all));
7436                 BUG_ON(!list_empty(&dev->ptype_specific));
7437                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7438                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7439                 WARN_ON(dev->dn_ptr);
7440
7441                 if (dev->destructor)
7442                         dev->destructor(dev);
7443
7444                 /* Report a network device has been unregistered */
7445                 rtnl_lock();
7446                 dev_net(dev)->dev_unreg_count--;
7447                 __rtnl_unlock();
7448                 wake_up(&netdev_unregistering_wq);
7449
7450                 /* Free network device */
7451                 kobject_put(&dev->dev.kobj);
7452         }
7453 }
7454
7455 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7456  * all the same fields in the same order as net_device_stats, with only
7457  * the type differing, but rtnl_link_stats64 may have additional fields
7458  * at the end for newer counters.
7459  */
7460 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7461                              const struct net_device_stats *netdev_stats)
7462 {
7463 #if BITS_PER_LONG == 64
7464         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7465         memcpy(stats64, netdev_stats, sizeof(*stats64));
7466         /* zero out counters that only exist in rtnl_link_stats64 */
7467         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7468                sizeof(*stats64) - sizeof(*netdev_stats));
7469 #else
7470         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7471         const unsigned long *src = (const unsigned long *)netdev_stats;
7472         u64 *dst = (u64 *)stats64;
7473
7474         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7475         for (i = 0; i < n; i++)
7476                 dst[i] = src[i];
7477         /* zero out counters that only exist in rtnl_link_stats64 */
7478         memset((char *)stats64 + n * sizeof(u64), 0,
7479                sizeof(*stats64) - n * sizeof(u64));
7480 #endif
7481 }
7482 EXPORT_SYMBOL(netdev_stats_to_stats64);
7483
7484 /**
7485  *      dev_get_stats   - get network device statistics
7486  *      @dev: device to get statistics from
7487  *      @storage: place to store stats
7488  *
7489  *      Get network statistics from device. Return @storage.
7490  *      The device driver may provide its own method by setting
7491  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7492  *      otherwise the internal statistics structure is used.
7493  */
7494 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7495                                         struct rtnl_link_stats64 *storage)
7496 {
7497         const struct net_device_ops *ops = dev->netdev_ops;
7498
7499         if (ops->ndo_get_stats64) {
7500                 memset(storage, 0, sizeof(*storage));
7501                 ops->ndo_get_stats64(dev, storage);
7502         } else if (ops->ndo_get_stats) {
7503                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7504         } else {
7505                 netdev_stats_to_stats64(storage, &dev->stats);
7506         }
7507         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7508         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7509         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7510         return storage;
7511 }
7512 EXPORT_SYMBOL(dev_get_stats);
7513
7514 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7515 {
7516         struct netdev_queue *queue = dev_ingress_queue(dev);
7517
7518 #ifdef CONFIG_NET_CLS_ACT
7519         if (queue)
7520                 return queue;
7521         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7522         if (!queue)
7523                 return NULL;
7524         netdev_init_one_queue(dev, queue, NULL);
7525         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7526         queue->qdisc_sleeping = &noop_qdisc;
7527         rcu_assign_pointer(dev->ingress_queue, queue);
7528 #endif
7529         return queue;
7530 }
7531
7532 static const struct ethtool_ops default_ethtool_ops;
7533
7534 void netdev_set_default_ethtool_ops(struct net_device *dev,
7535                                     const struct ethtool_ops *ops)
7536 {
7537         if (dev->ethtool_ops == &default_ethtool_ops)
7538                 dev->ethtool_ops = ops;
7539 }
7540 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7541
7542 void netdev_freemem(struct net_device *dev)
7543 {
7544         char *addr = (char *)dev - dev->padded;
7545
7546         kvfree(addr);
7547 }
7548
7549 /**
7550  *      alloc_netdev_mqs - allocate network device
7551  *      @sizeof_priv:           size of private data to allocate space for
7552  *      @name:                  device name format string
7553  *      @name_assign_type:      origin of device name
7554  *      @setup:                 callback to initialize device
7555  *      @txqs:                  the number of TX subqueues to allocate
7556  *      @rxqs:                  the number of RX subqueues to allocate
7557  *
7558  *      Allocates a struct net_device with private data area for driver use
7559  *      and performs basic initialization.  Also allocates subqueue structs
7560  *      for each queue on the device.
7561  */
7562 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7563                 unsigned char name_assign_type,
7564                 void (*setup)(struct net_device *),
7565                 unsigned int txqs, unsigned int rxqs)
7566 {
7567         struct net_device *dev;
7568         size_t alloc_size;
7569         struct net_device *p;
7570
7571         BUG_ON(strlen(name) >= sizeof(dev->name));
7572
7573         if (txqs < 1) {
7574                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7575                 return NULL;
7576         }
7577
7578 #ifdef CONFIG_SYSFS
7579         if (rxqs < 1) {
7580                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7581                 return NULL;
7582         }
7583 #endif
7584
7585         alloc_size = sizeof(struct net_device);
7586         if (sizeof_priv) {
7587                 /* ensure 32-byte alignment of private area */
7588                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7589                 alloc_size += sizeof_priv;
7590         }
7591         /* ensure 32-byte alignment of whole construct */
7592         alloc_size += NETDEV_ALIGN - 1;
7593
7594         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7595         if (!p)
7596                 p = vzalloc(alloc_size);
7597         if (!p)
7598                 return NULL;
7599
7600         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7601         dev->padded = (char *)dev - (char *)p;
7602
7603         dev->pcpu_refcnt = alloc_percpu(int);
7604         if (!dev->pcpu_refcnt)
7605                 goto free_dev;
7606
7607         if (dev_addr_init(dev))
7608                 goto free_pcpu;
7609
7610         dev_mc_init(dev);
7611         dev_uc_init(dev);
7612
7613         dev_net_set(dev, &init_net);
7614
7615         dev->gso_max_size = GSO_MAX_SIZE;
7616         dev->gso_max_segs = GSO_MAX_SEGS;
7617
7618         INIT_LIST_HEAD(&dev->napi_list);
7619         INIT_LIST_HEAD(&dev->unreg_list);
7620         INIT_LIST_HEAD(&dev->close_list);
7621         INIT_LIST_HEAD(&dev->link_watch_list);
7622         INIT_LIST_HEAD(&dev->adj_list.upper);
7623         INIT_LIST_HEAD(&dev->adj_list.lower);
7624         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7625         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7626         INIT_LIST_HEAD(&dev->ptype_all);
7627         INIT_LIST_HEAD(&dev->ptype_specific);
7628         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7629         setup(dev);
7630
7631         if (!dev->tx_queue_len) {
7632                 dev->priv_flags |= IFF_NO_QUEUE;
7633                 dev->tx_queue_len = 1;
7634         }
7635
7636         dev->num_tx_queues = txqs;
7637         dev->real_num_tx_queues = txqs;
7638         if (netif_alloc_netdev_queues(dev))
7639                 goto free_all;
7640
7641 #ifdef CONFIG_SYSFS
7642         dev->num_rx_queues = rxqs;
7643         dev->real_num_rx_queues = rxqs;
7644         if (netif_alloc_rx_queues(dev))
7645                 goto free_all;
7646 #endif
7647
7648         strcpy(dev->name, name);
7649         dev->name_assign_type = name_assign_type;
7650         dev->group = INIT_NETDEV_GROUP;
7651         if (!dev->ethtool_ops)
7652                 dev->ethtool_ops = &default_ethtool_ops;
7653
7654         nf_hook_ingress_init(dev);
7655
7656         return dev;
7657
7658 free_all:
7659         free_netdev(dev);
7660         return NULL;
7661
7662 free_pcpu:
7663         free_percpu(dev->pcpu_refcnt);
7664 free_dev:
7665         netdev_freemem(dev);
7666         return NULL;
7667 }
7668 EXPORT_SYMBOL(alloc_netdev_mqs);
7669
7670 /**
7671  *      free_netdev - free network device
7672  *      @dev: device
7673  *
7674  *      This function does the last stage of destroying an allocated device
7675  *      interface. The reference to the device object is released.
7676  *      If this is the last reference then it will be freed.
7677  *      Must be called in process context.
7678  */
7679 void free_netdev(struct net_device *dev)
7680 {
7681         struct napi_struct *p, *n;
7682
7683         might_sleep();
7684         netif_free_tx_queues(dev);
7685 #ifdef CONFIG_SYSFS
7686         kvfree(dev->_rx);
7687 #endif
7688
7689         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7690
7691         /* Flush device addresses */
7692         dev_addr_flush(dev);
7693
7694         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7695                 netif_napi_del(p);
7696
7697         free_percpu(dev->pcpu_refcnt);
7698         dev->pcpu_refcnt = NULL;
7699
7700         /*  Compatibility with error handling in drivers */
7701         if (dev->reg_state == NETREG_UNINITIALIZED) {
7702                 netdev_freemem(dev);
7703                 return;
7704         }
7705
7706         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7707         dev->reg_state = NETREG_RELEASED;
7708
7709         /* will free via device release */
7710         put_device(&dev->dev);
7711 }
7712 EXPORT_SYMBOL(free_netdev);
7713
7714 /**
7715  *      synchronize_net -  Synchronize with packet receive processing
7716  *
7717  *      Wait for packets currently being received to be done.
7718  *      Does not block later packets from starting.
7719  */
7720 void synchronize_net(void)
7721 {
7722         might_sleep();
7723         if (rtnl_is_locked())
7724                 synchronize_rcu_expedited();
7725         else
7726                 synchronize_rcu();
7727 }
7728 EXPORT_SYMBOL(synchronize_net);
7729
7730 /**
7731  *      unregister_netdevice_queue - remove device from the kernel
7732  *      @dev: device
7733  *      @head: list
7734  *
7735  *      This function shuts down a device interface and removes it
7736  *      from the kernel tables.
7737  *      If head not NULL, device is queued to be unregistered later.
7738  *
7739  *      Callers must hold the rtnl semaphore.  You may want
7740  *      unregister_netdev() instead of this.
7741  */
7742
7743 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7744 {
7745         ASSERT_RTNL();
7746
7747         if (head) {
7748                 list_move_tail(&dev->unreg_list, head);
7749         } else {
7750                 rollback_registered(dev);
7751                 /* Finish processing unregister after unlock */
7752                 net_set_todo(dev);
7753         }
7754 }
7755 EXPORT_SYMBOL(unregister_netdevice_queue);
7756
7757 /**
7758  *      unregister_netdevice_many - unregister many devices
7759  *      @head: list of devices
7760  *
7761  *  Note: As most callers use a stack allocated list_head,
7762  *  we force a list_del() to make sure stack wont be corrupted later.
7763  */
7764 void unregister_netdevice_many(struct list_head *head)
7765 {
7766         struct net_device *dev;
7767
7768         if (!list_empty(head)) {
7769                 rollback_registered_many(head);
7770                 list_for_each_entry(dev, head, unreg_list)
7771                         net_set_todo(dev);
7772                 list_del(head);
7773         }
7774 }
7775 EXPORT_SYMBOL(unregister_netdevice_many);
7776
7777 /**
7778  *      unregister_netdev - remove device from the kernel
7779  *      @dev: device
7780  *
7781  *      This function shuts down a device interface and removes it
7782  *      from the kernel tables.
7783  *
7784  *      This is just a wrapper for unregister_netdevice that takes
7785  *      the rtnl semaphore.  In general you want to use this and not
7786  *      unregister_netdevice.
7787  */
7788 void unregister_netdev(struct net_device *dev)
7789 {
7790         rtnl_lock();
7791         unregister_netdevice(dev);
7792         rtnl_unlock();
7793 }
7794 EXPORT_SYMBOL(unregister_netdev);
7795
7796 /**
7797  *      dev_change_net_namespace - move device to different nethost namespace
7798  *      @dev: device
7799  *      @net: network namespace
7800  *      @pat: If not NULL name pattern to try if the current device name
7801  *            is already taken in the destination network namespace.
7802  *
7803  *      This function shuts down a device interface and moves it
7804  *      to a new network namespace. On success 0 is returned, on
7805  *      a failure a netagive errno code is returned.
7806  *
7807  *      Callers must hold the rtnl semaphore.
7808  */
7809
7810 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7811 {
7812         int err;
7813
7814         ASSERT_RTNL();
7815
7816         /* Don't allow namespace local devices to be moved. */
7817         err = -EINVAL;
7818         if (dev->features & NETIF_F_NETNS_LOCAL)
7819                 goto out;
7820
7821         /* Ensure the device has been registrered */
7822         if (dev->reg_state != NETREG_REGISTERED)
7823                 goto out;
7824
7825         /* Get out if there is nothing todo */
7826         err = 0;
7827         if (net_eq(dev_net(dev), net))
7828                 goto out;
7829
7830         /* Pick the destination device name, and ensure
7831          * we can use it in the destination network namespace.
7832          */
7833         err = -EEXIST;
7834         if (__dev_get_by_name(net, dev->name)) {
7835                 /* We get here if we can't use the current device name */
7836                 if (!pat)
7837                         goto out;
7838                 if (dev_get_valid_name(net, dev, pat) < 0)
7839                         goto out;
7840         }
7841
7842         /*
7843          * And now a mini version of register_netdevice unregister_netdevice.
7844          */
7845
7846         /* If device is running close it first. */
7847         dev_close(dev);
7848
7849         /* And unlink it from device chain */
7850         err = -ENODEV;
7851         unlist_netdevice(dev);
7852
7853         synchronize_net();
7854
7855         /* Shutdown queueing discipline. */
7856         dev_shutdown(dev);
7857
7858         /* Notify protocols, that we are about to destroy
7859            this device. They should clean all the things.
7860
7861            Note that dev->reg_state stays at NETREG_REGISTERED.
7862            This is wanted because this way 8021q and macvlan know
7863            the device is just moving and can keep their slaves up.
7864         */
7865         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7866         rcu_barrier();
7867         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7868         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7869
7870         /*
7871          *      Flush the unicast and multicast chains
7872          */
7873         dev_uc_flush(dev);
7874         dev_mc_flush(dev);
7875
7876         /* Send a netdev-removed uevent to the old namespace */
7877         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7878         netdev_adjacent_del_links(dev);
7879
7880         /* Actually switch the network namespace */
7881         dev_net_set(dev, net);
7882
7883         /* If there is an ifindex conflict assign a new one */
7884         if (__dev_get_by_index(net, dev->ifindex))
7885                 dev->ifindex = dev_new_index(net);
7886
7887         /* Send a netdev-add uevent to the new namespace */
7888         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7889         netdev_adjacent_add_links(dev);
7890
7891         /* Fixup kobjects */
7892         err = device_rename(&dev->dev, dev->name);
7893         WARN_ON(err);
7894
7895         /* Add the device back in the hashes */
7896         list_netdevice(dev);
7897
7898         /* Notify protocols, that a new device appeared. */
7899         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7900
7901         /*
7902          *      Prevent userspace races by waiting until the network
7903          *      device is fully setup before sending notifications.
7904          */
7905         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7906
7907         synchronize_net();
7908         err = 0;
7909 out:
7910         return err;
7911 }
7912 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7913
7914 static int dev_cpu_callback(struct notifier_block *nfb,
7915                             unsigned long action,
7916                             void *ocpu)
7917 {
7918         struct sk_buff **list_skb;
7919         struct sk_buff *skb;
7920         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7921         struct softnet_data *sd, *oldsd;
7922
7923         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7924                 return NOTIFY_OK;
7925
7926         local_irq_disable();
7927         cpu = smp_processor_id();
7928         sd = &per_cpu(softnet_data, cpu);
7929         oldsd = &per_cpu(softnet_data, oldcpu);
7930
7931         /* Find end of our completion_queue. */
7932         list_skb = &sd->completion_queue;
7933         while (*list_skb)
7934                 list_skb = &(*list_skb)->next;
7935         /* Append completion queue from offline CPU. */
7936         *list_skb = oldsd->completion_queue;
7937         oldsd->completion_queue = NULL;
7938
7939         /* Append output queue from offline CPU. */
7940         if (oldsd->output_queue) {
7941                 *sd->output_queue_tailp = oldsd->output_queue;
7942                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7943                 oldsd->output_queue = NULL;
7944                 oldsd->output_queue_tailp = &oldsd->output_queue;
7945         }
7946         /* Append NAPI poll list from offline CPU, with one exception :
7947          * process_backlog() must be called by cpu owning percpu backlog.
7948          * We properly handle process_queue & input_pkt_queue later.
7949          */
7950         while (!list_empty(&oldsd->poll_list)) {
7951                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7952                                                             struct napi_struct,
7953                                                             poll_list);
7954
7955                 list_del_init(&napi->poll_list);
7956                 if (napi->poll == process_backlog)
7957                         napi->state = 0;
7958                 else
7959                         ____napi_schedule(sd, napi);
7960         }
7961
7962         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7963         local_irq_enable();
7964
7965         /* Process offline CPU's input_pkt_queue */
7966         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7967                 netif_rx_ni(skb);
7968                 input_queue_head_incr(oldsd);
7969         }
7970         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7971                 netif_rx_ni(skb);
7972                 input_queue_head_incr(oldsd);
7973         }
7974
7975         return NOTIFY_OK;
7976 }
7977
7978
7979 /**
7980  *      netdev_increment_features - increment feature set by one
7981  *      @all: current feature set
7982  *      @one: new feature set
7983  *      @mask: mask feature set
7984  *
7985  *      Computes a new feature set after adding a device with feature set
7986  *      @one to the master device with current feature set @all.  Will not
7987  *      enable anything that is off in @mask. Returns the new feature set.
7988  */
7989 netdev_features_t netdev_increment_features(netdev_features_t all,
7990         netdev_features_t one, netdev_features_t mask)
7991 {
7992         if (mask & NETIF_F_HW_CSUM)
7993                 mask |= NETIF_F_CSUM_MASK;
7994         mask |= NETIF_F_VLAN_CHALLENGED;
7995
7996         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7997         all &= one | ~NETIF_F_ALL_FOR_ALL;
7998
7999         /* If one device supports hw checksumming, set for all. */
8000         if (all & NETIF_F_HW_CSUM)
8001                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8002
8003         return all;
8004 }
8005 EXPORT_SYMBOL(netdev_increment_features);
8006
8007 static struct hlist_head * __net_init netdev_create_hash(void)
8008 {
8009         int i;
8010         struct hlist_head *hash;
8011
8012         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8013         if (hash != NULL)
8014                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8015                         INIT_HLIST_HEAD(&hash[i]);
8016
8017         return hash;
8018 }
8019
8020 /* Initialize per network namespace state */
8021 static int __net_init netdev_init(struct net *net)
8022 {
8023         if (net != &init_net)
8024                 INIT_LIST_HEAD(&net->dev_base_head);
8025
8026         net->dev_name_head = netdev_create_hash();
8027         if (net->dev_name_head == NULL)
8028                 goto err_name;
8029
8030         net->dev_index_head = netdev_create_hash();
8031         if (net->dev_index_head == NULL)
8032                 goto err_idx;
8033
8034         return 0;
8035
8036 err_idx:
8037         kfree(net->dev_name_head);
8038 err_name:
8039         return -ENOMEM;
8040 }
8041
8042 /**
8043  *      netdev_drivername - network driver for the device
8044  *      @dev: network device
8045  *
8046  *      Determine network driver for device.
8047  */
8048 const char *netdev_drivername(const struct net_device *dev)
8049 {
8050         const struct device_driver *driver;
8051         const struct device *parent;
8052         const char *empty = "";
8053
8054         parent = dev->dev.parent;
8055         if (!parent)
8056                 return empty;
8057
8058         driver = parent->driver;
8059         if (driver && driver->name)
8060                 return driver->name;
8061         return empty;
8062 }
8063
8064 static void __netdev_printk(const char *level, const struct net_device *dev,
8065                             struct va_format *vaf)
8066 {
8067         if (dev && dev->dev.parent) {
8068                 dev_printk_emit(level[1] - '0',
8069                                 dev->dev.parent,
8070                                 "%s %s %s%s: %pV",
8071                                 dev_driver_string(dev->dev.parent),
8072                                 dev_name(dev->dev.parent),
8073                                 netdev_name(dev), netdev_reg_state(dev),
8074                                 vaf);
8075         } else if (dev) {
8076                 printk("%s%s%s: %pV",
8077                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8078         } else {
8079                 printk("%s(NULL net_device): %pV", level, vaf);
8080         }
8081 }
8082
8083 void netdev_printk(const char *level, const struct net_device *dev,
8084                    const char *format, ...)
8085 {
8086         struct va_format vaf;
8087         va_list args;
8088
8089         va_start(args, format);
8090
8091         vaf.fmt = format;
8092         vaf.va = &args;
8093
8094         __netdev_printk(level, dev, &vaf);
8095
8096         va_end(args);
8097 }
8098 EXPORT_SYMBOL(netdev_printk);
8099
8100 #define define_netdev_printk_level(func, level)                 \
8101 void func(const struct net_device *dev, const char *fmt, ...)   \
8102 {                                                               \
8103         struct va_format vaf;                                   \
8104         va_list args;                                           \
8105                                                                 \
8106         va_start(args, fmt);                                    \
8107                                                                 \
8108         vaf.fmt = fmt;                                          \
8109         vaf.va = &args;                                         \
8110                                                                 \
8111         __netdev_printk(level, dev, &vaf);                      \
8112                                                                 \
8113         va_end(args);                                           \
8114 }                                                               \
8115 EXPORT_SYMBOL(func);
8116
8117 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8118 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8119 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8120 define_netdev_printk_level(netdev_err, KERN_ERR);
8121 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8122 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8123 define_netdev_printk_level(netdev_info, KERN_INFO);
8124
8125 static void __net_exit netdev_exit(struct net *net)
8126 {
8127         kfree(net->dev_name_head);
8128         kfree(net->dev_index_head);
8129 }
8130
8131 static struct pernet_operations __net_initdata netdev_net_ops = {
8132         .init = netdev_init,
8133         .exit = netdev_exit,
8134 };
8135
8136 static void __net_exit default_device_exit(struct net *net)
8137 {
8138         struct net_device *dev, *aux;
8139         /*
8140          * Push all migratable network devices back to the
8141          * initial network namespace
8142          */
8143         rtnl_lock();
8144         for_each_netdev_safe(net, dev, aux) {
8145                 int err;
8146                 char fb_name[IFNAMSIZ];
8147
8148                 /* Ignore unmoveable devices (i.e. loopback) */
8149                 if (dev->features & NETIF_F_NETNS_LOCAL)
8150                         continue;
8151
8152                 /* Leave virtual devices for the generic cleanup */
8153                 if (dev->rtnl_link_ops)
8154                         continue;
8155
8156                 /* Push remaining network devices to init_net */
8157                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8158                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8159                 if (err) {
8160                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8161                                  __func__, dev->name, err);
8162                         BUG();
8163                 }
8164         }
8165         rtnl_unlock();
8166 }
8167
8168 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8169 {
8170         /* Return with the rtnl_lock held when there are no network
8171          * devices unregistering in any network namespace in net_list.
8172          */
8173         struct net *net;
8174         bool unregistering;
8175         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8176
8177         add_wait_queue(&netdev_unregistering_wq, &wait);
8178         for (;;) {
8179                 unregistering = false;
8180                 rtnl_lock();
8181                 list_for_each_entry(net, net_list, exit_list) {
8182                         if (net->dev_unreg_count > 0) {
8183                                 unregistering = true;
8184                                 break;
8185                         }
8186                 }
8187                 if (!unregistering)
8188                         break;
8189                 __rtnl_unlock();
8190
8191                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8192         }
8193         remove_wait_queue(&netdev_unregistering_wq, &wait);
8194 }
8195
8196 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8197 {
8198         /* At exit all network devices most be removed from a network
8199          * namespace.  Do this in the reverse order of registration.
8200          * Do this across as many network namespaces as possible to
8201          * improve batching efficiency.
8202          */
8203         struct net_device *dev;
8204         struct net *net;
8205         LIST_HEAD(dev_kill_list);
8206
8207         /* To prevent network device cleanup code from dereferencing
8208          * loopback devices or network devices that have been freed
8209          * wait here for all pending unregistrations to complete,
8210          * before unregistring the loopback device and allowing the
8211          * network namespace be freed.
8212          *
8213          * The netdev todo list containing all network devices
8214          * unregistrations that happen in default_device_exit_batch
8215          * will run in the rtnl_unlock() at the end of
8216          * default_device_exit_batch.
8217          */
8218         rtnl_lock_unregistering(net_list);
8219         list_for_each_entry(net, net_list, exit_list) {
8220                 for_each_netdev_reverse(net, dev) {
8221                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8222                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8223                         else
8224                                 unregister_netdevice_queue(dev, &dev_kill_list);
8225                 }
8226         }
8227         unregister_netdevice_many(&dev_kill_list);
8228         rtnl_unlock();
8229 }
8230
8231 static struct pernet_operations __net_initdata default_device_ops = {
8232         .exit = default_device_exit,
8233         .exit_batch = default_device_exit_batch,
8234 };
8235
8236 /*
8237  *      Initialize the DEV module. At boot time this walks the device list and
8238  *      unhooks any devices that fail to initialise (normally hardware not
8239  *      present) and leaves us with a valid list of present and active devices.
8240  *
8241  */
8242
8243 /*
8244  *       This is called single threaded during boot, so no need
8245  *       to take the rtnl semaphore.
8246  */
8247 static int __init net_dev_init(void)
8248 {
8249         int i, rc = -ENOMEM;
8250
8251         BUG_ON(!dev_boot_phase);
8252
8253         if (dev_proc_init())
8254                 goto out;
8255
8256         if (netdev_kobject_init())
8257                 goto out;
8258
8259         INIT_LIST_HEAD(&ptype_all);
8260         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8261                 INIT_LIST_HEAD(&ptype_base[i]);
8262
8263         INIT_LIST_HEAD(&offload_base);
8264
8265         if (register_pernet_subsys(&netdev_net_ops))
8266                 goto out;
8267
8268         /*
8269          *      Initialise the packet receive queues.
8270          */
8271
8272         for_each_possible_cpu(i) {
8273                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8274
8275                 skb_queue_head_init(&sd->input_pkt_queue);
8276                 skb_queue_head_init(&sd->process_queue);
8277                 INIT_LIST_HEAD(&sd->poll_list);
8278                 sd->output_queue_tailp = &sd->output_queue;
8279 #ifdef CONFIG_RPS
8280                 sd->csd.func = rps_trigger_softirq;
8281                 sd->csd.info = sd;
8282                 sd->cpu = i;
8283 #endif
8284
8285                 sd->backlog.poll = process_backlog;
8286                 sd->backlog.weight = weight_p;
8287         }
8288
8289         dev_boot_phase = 0;
8290
8291         /* The loopback device is special if any other network devices
8292          * is present in a network namespace the loopback device must
8293          * be present. Since we now dynamically allocate and free the
8294          * loopback device ensure this invariant is maintained by
8295          * keeping the loopback device as the first device on the
8296          * list of network devices.  Ensuring the loopback devices
8297          * is the first device that appears and the last network device
8298          * that disappears.
8299          */
8300         if (register_pernet_device(&loopback_net_ops))
8301                 goto out;
8302
8303         if (register_pernet_device(&default_device_ops))
8304                 goto out;
8305
8306         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8307         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8308
8309         hotcpu_notifier(dev_cpu_callback, 0);
8310         dst_subsys_init();
8311         rc = 0;
8312 out:
8313         return rc;
8314 }
8315
8316 subsys_initcall(net_dev_init);