f411c28d0a66805661db0a409b140d02e8ca4041
[cascardo/linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly;       /* Taps */
151 static struct list_head offload_base __read_mostly;
152
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155                                          struct net_device *dev,
156                                          struct netdev_notifier_info *info);
157
158 /*
159  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160  * semaphore.
161  *
162  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163  *
164  * Writers must hold the rtnl semaphore while they loop through the
165  * dev_base_head list, and hold dev_base_lock for writing when they do the
166  * actual updates.  This allows pure readers to access the list even
167  * while a writer is preparing to update it.
168  *
169  * To put it another way, dev_base_lock is held for writing only to
170  * protect against pure readers; the rtnl semaphore provides the
171  * protection against other writers.
172  *
173  * See, for example usages, register_netdevice() and
174  * unregister_netdevice(), which must be called with the rtnl
175  * semaphore held.
176  */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185
186 static seqcount_t devnet_rename_seq;
187
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190         while (++net->dev_base_seq == 0);
191 }
192
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
197         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208         spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215         spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222         struct net *net = dev_net(dev);
223
224         ASSERT_RTNL();
225
226         write_lock_bh(&dev_base_lock);
227         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229         hlist_add_head_rcu(&dev->index_hlist,
230                            dev_index_hash(net, dev->ifindex));
231         write_unlock_bh(&dev_base_lock);
232
233         dev_base_seq_inc(net);
234 }
235
236 /* Device list removal
237  * caller must respect a RCU grace period before freeing/reusing dev
238  */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241         ASSERT_RTNL();
242
243         /* Unlink dev from the device chain */
244         write_lock_bh(&dev_base_lock);
245         list_del_rcu(&dev->dev_list);
246         hlist_del_rcu(&dev->name_hlist);
247         hlist_del_rcu(&dev->index_hlist);
248         write_unlock_bh(&dev_base_lock);
249
250         dev_base_seq_inc(dev_net(dev));
251 }
252
253 /*
254  *      Our notifier list
255  */
256
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258
259 /*
260  *      Device drivers call our routines to queue packets here. We empty the
261  *      queue in the local softnet handler.
262  */
263
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266
267 #ifdef CONFIG_LOCKDEP
268 /*
269  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270  * according to dev->type
271  */
272 static const unsigned short netdev_lock_type[] =
273         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288
289 static const char *const netdev_lock_name[] =
290         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311         int i;
312
313         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314                 if (netdev_lock_type[i] == dev_type)
315                         return i;
316         /* the last key is used by default */
317         return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321                                                  unsigned short dev_type)
322 {
323         int i;
324
325         i = netdev_lock_pos(dev_type);
326         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327                                    netdev_lock_name[i]);
328 }
329
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332         int i;
333
334         i = netdev_lock_pos(dev->type);
335         lockdep_set_class_and_name(&dev->addr_list_lock,
336                                    &netdev_addr_lock_key[i],
337                                    netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341                                                  unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348
349 /*******************************************************************************
350
351                 Protocol management and registration routines
352
353 *******************************************************************************/
354
355 /*
356  *      Add a protocol ID to the list. Now that the input handler is
357  *      smarter we can dispense with all the messy stuff that used to be
358  *      here.
359  *
360  *      BEWARE!!! Protocol handlers, mangling input packets,
361  *      MUST BE last in hash buckets and checking protocol handlers
362  *      MUST start from promiscuous ptype_all chain in net_bh.
363  *      It is true now, do not change it.
364  *      Explanation follows: if protocol handler, mangling packet, will
365  *      be the first on list, it is not able to sense, that packet
366  *      is cloned and should be copied-on-write, so that it will
367  *      change it and subsequent readers will get broken packet.
368  *                                                      --ANK (980803)
369  */
370
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373         if (pt->type == htons(ETH_P_ALL))
374                 return &ptype_all;
375         else
376                 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
377 }
378
379 /**
380  *      dev_add_pack - add packet handler
381  *      @pt: packet type declaration
382  *
383  *      Add a protocol handler to the networking stack. The passed &packet_type
384  *      is linked into kernel lists and may not be freed until it has been
385  *      removed from the kernel lists.
386  *
387  *      This call does not sleep therefore it can not
388  *      guarantee all CPU's that are in middle of receiving packets
389  *      will see the new packet type (until the next received packet).
390  */
391
392 void dev_add_pack(struct packet_type *pt)
393 {
394         struct list_head *head = ptype_head(pt);
395
396         spin_lock(&ptype_lock);
397         list_add_rcu(&pt->list, head);
398         spin_unlock(&ptype_lock);
399 }
400 EXPORT_SYMBOL(dev_add_pack);
401
402 /**
403  *      __dev_remove_pack        - remove packet handler
404  *      @pt: packet type declaration
405  *
406  *      Remove a protocol handler that was previously added to the kernel
407  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
408  *      from the kernel lists and can be freed or reused once this function
409  *      returns.
410  *
411  *      The packet type might still be in use by receivers
412  *      and must not be freed until after all the CPU's have gone
413  *      through a quiescent state.
414  */
415 void __dev_remove_pack(struct packet_type *pt)
416 {
417         struct list_head *head = ptype_head(pt);
418         struct packet_type *pt1;
419
420         spin_lock(&ptype_lock);
421
422         list_for_each_entry(pt1, head, list) {
423                 if (pt == pt1) {
424                         list_del_rcu(&pt->list);
425                         goto out;
426                 }
427         }
428
429         pr_warn("dev_remove_pack: %p not found\n", pt);
430 out:
431         spin_unlock(&ptype_lock);
432 }
433 EXPORT_SYMBOL(__dev_remove_pack);
434
435 /**
436  *      dev_remove_pack  - remove packet handler
437  *      @pt: packet type declaration
438  *
439  *      Remove a protocol handler that was previously added to the kernel
440  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
441  *      from the kernel lists and can be freed or reused once this function
442  *      returns.
443  *
444  *      This call sleeps to guarantee that no CPU is looking at the packet
445  *      type after return.
446  */
447 void dev_remove_pack(struct packet_type *pt)
448 {
449         __dev_remove_pack(pt);
450
451         synchronize_net();
452 }
453 EXPORT_SYMBOL(dev_remove_pack);
454
455
456 /**
457  *      dev_add_offload - register offload handlers
458  *      @po: protocol offload declaration
459  *
460  *      Add protocol offload handlers to the networking stack. The passed
461  *      &proto_offload is linked into kernel lists and may not be freed until
462  *      it has been removed from the kernel lists.
463  *
464  *      This call does not sleep therefore it can not
465  *      guarantee all CPU's that are in middle of receiving packets
466  *      will see the new offload handlers (until the next received packet).
467  */
468 void dev_add_offload(struct packet_offload *po)
469 {
470         struct list_head *head = &offload_base;
471
472         spin_lock(&offload_lock);
473         list_add_rcu(&po->list, head);
474         spin_unlock(&offload_lock);
475 }
476 EXPORT_SYMBOL(dev_add_offload);
477
478 /**
479  *      __dev_remove_offload     - remove offload handler
480  *      @po: packet offload declaration
481  *
482  *      Remove a protocol offload handler that was previously added to the
483  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
484  *      is removed from the kernel lists and can be freed or reused once this
485  *      function returns.
486  *
487  *      The packet type might still be in use by receivers
488  *      and must not be freed until after all the CPU's have gone
489  *      through a quiescent state.
490  */
491 static void __dev_remove_offload(struct packet_offload *po)
492 {
493         struct list_head *head = &offload_base;
494         struct packet_offload *po1;
495
496         spin_lock(&offload_lock);
497
498         list_for_each_entry(po1, head, list) {
499                 if (po == po1) {
500                         list_del_rcu(&po->list);
501                         goto out;
502                 }
503         }
504
505         pr_warn("dev_remove_offload: %p not found\n", po);
506 out:
507         spin_unlock(&offload_lock);
508 }
509
510 /**
511  *      dev_remove_offload       - remove packet offload handler
512  *      @po: packet offload declaration
513  *
514  *      Remove a packet offload handler that was previously added to the kernel
515  *      offload handlers by dev_add_offload(). The passed &offload_type is
516  *      removed from the kernel lists and can be freed or reused once this
517  *      function returns.
518  *
519  *      This call sleeps to guarantee that no CPU is looking at the packet
520  *      type after return.
521  */
522 void dev_remove_offload(struct packet_offload *po)
523 {
524         __dev_remove_offload(po);
525
526         synchronize_net();
527 }
528 EXPORT_SYMBOL(dev_remove_offload);
529
530 /******************************************************************************
531
532                       Device Boot-time Settings Routines
533
534 *******************************************************************************/
535
536 /* Boot time configuration table */
537 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
538
539 /**
540  *      netdev_boot_setup_add   - add new setup entry
541  *      @name: name of the device
542  *      @map: configured settings for the device
543  *
544  *      Adds new setup entry to the dev_boot_setup list.  The function
545  *      returns 0 on error and 1 on success.  This is a generic routine to
546  *      all netdevices.
547  */
548 static int netdev_boot_setup_add(char *name, struct ifmap *map)
549 {
550         struct netdev_boot_setup *s;
551         int i;
552
553         s = dev_boot_setup;
554         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
555                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
556                         memset(s[i].name, 0, sizeof(s[i].name));
557                         strlcpy(s[i].name, name, IFNAMSIZ);
558                         memcpy(&s[i].map, map, sizeof(s[i].map));
559                         break;
560                 }
561         }
562
563         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
564 }
565
566 /**
567  *      netdev_boot_setup_check - check boot time settings
568  *      @dev: the netdevice
569  *
570  *      Check boot time settings for the device.
571  *      The found settings are set for the device to be used
572  *      later in the device probing.
573  *      Returns 0 if no settings found, 1 if they are.
574  */
575 int netdev_boot_setup_check(struct net_device *dev)
576 {
577         struct netdev_boot_setup *s = dev_boot_setup;
578         int i;
579
580         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
581                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
582                     !strcmp(dev->name, s[i].name)) {
583                         dev->irq        = s[i].map.irq;
584                         dev->base_addr  = s[i].map.base_addr;
585                         dev->mem_start  = s[i].map.mem_start;
586                         dev->mem_end    = s[i].map.mem_end;
587                         return 1;
588                 }
589         }
590         return 0;
591 }
592 EXPORT_SYMBOL(netdev_boot_setup_check);
593
594
595 /**
596  *      netdev_boot_base        - get address from boot time settings
597  *      @prefix: prefix for network device
598  *      @unit: id for network device
599  *
600  *      Check boot time settings for the base address of device.
601  *      The found settings are set for the device to be used
602  *      later in the device probing.
603  *      Returns 0 if no settings found.
604  */
605 unsigned long netdev_boot_base(const char *prefix, int unit)
606 {
607         const struct netdev_boot_setup *s = dev_boot_setup;
608         char name[IFNAMSIZ];
609         int i;
610
611         sprintf(name, "%s%d", prefix, unit);
612
613         /*
614          * If device already registered then return base of 1
615          * to indicate not to probe for this interface
616          */
617         if (__dev_get_by_name(&init_net, name))
618                 return 1;
619
620         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
621                 if (!strcmp(name, s[i].name))
622                         return s[i].map.base_addr;
623         return 0;
624 }
625
626 /*
627  * Saves at boot time configured settings for any netdevice.
628  */
629 int __init netdev_boot_setup(char *str)
630 {
631         int ints[5];
632         struct ifmap map;
633
634         str = get_options(str, ARRAY_SIZE(ints), ints);
635         if (!str || !*str)
636                 return 0;
637
638         /* Save settings */
639         memset(&map, 0, sizeof(map));
640         if (ints[0] > 0)
641                 map.irq = ints[1];
642         if (ints[0] > 1)
643                 map.base_addr = ints[2];
644         if (ints[0] > 2)
645                 map.mem_start = ints[3];
646         if (ints[0] > 3)
647                 map.mem_end = ints[4];
648
649         /* Add new entry to the list */
650         return netdev_boot_setup_add(str, &map);
651 }
652
653 __setup("netdev=", netdev_boot_setup);
654
655 /*******************************************************************************
656
657                             Device Interface Subroutines
658
659 *******************************************************************************/
660
661 /**
662  *      __dev_get_by_name       - find a device by its name
663  *      @net: the applicable net namespace
664  *      @name: name to find
665  *
666  *      Find an interface by name. Must be called under RTNL semaphore
667  *      or @dev_base_lock. If the name is found a pointer to the device
668  *      is returned. If the name is not found then %NULL is returned. The
669  *      reference counters are not incremented so the caller must be
670  *      careful with locks.
671  */
672
673 struct net_device *__dev_get_by_name(struct net *net, const char *name)
674 {
675         struct net_device *dev;
676         struct hlist_head *head = dev_name_hash(net, name);
677
678         hlist_for_each_entry(dev, head, name_hlist)
679                 if (!strncmp(dev->name, name, IFNAMSIZ))
680                         return dev;
681
682         return NULL;
683 }
684 EXPORT_SYMBOL(__dev_get_by_name);
685
686 /**
687  *      dev_get_by_name_rcu     - find a device by its name
688  *      @net: the applicable net namespace
689  *      @name: name to find
690  *
691  *      Find an interface by name.
692  *      If the name is found a pointer to the device is returned.
693  *      If the name is not found then %NULL is returned.
694  *      The reference counters are not incremented so the caller must be
695  *      careful with locks. The caller must hold RCU lock.
696  */
697
698 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
699 {
700         struct net_device *dev;
701         struct hlist_head *head = dev_name_hash(net, name);
702
703         hlist_for_each_entry_rcu(dev, head, name_hlist)
704                 if (!strncmp(dev->name, name, IFNAMSIZ))
705                         return dev;
706
707         return NULL;
708 }
709 EXPORT_SYMBOL(dev_get_by_name_rcu);
710
711 /**
712  *      dev_get_by_name         - find a device by its name
713  *      @net: the applicable net namespace
714  *      @name: name to find
715  *
716  *      Find an interface by name. This can be called from any
717  *      context and does its own locking. The returned handle has
718  *      the usage count incremented and the caller must use dev_put() to
719  *      release it when it is no longer needed. %NULL is returned if no
720  *      matching device is found.
721  */
722
723 struct net_device *dev_get_by_name(struct net *net, const char *name)
724 {
725         struct net_device *dev;
726
727         rcu_read_lock();
728         dev = dev_get_by_name_rcu(net, name);
729         if (dev)
730                 dev_hold(dev);
731         rcu_read_unlock();
732         return dev;
733 }
734 EXPORT_SYMBOL(dev_get_by_name);
735
736 /**
737  *      __dev_get_by_index - find a device by its ifindex
738  *      @net: the applicable net namespace
739  *      @ifindex: index of device
740  *
741  *      Search for an interface by index. Returns %NULL if the device
742  *      is not found or a pointer to the device. The device has not
743  *      had its reference counter increased so the caller must be careful
744  *      about locking. The caller must hold either the RTNL semaphore
745  *      or @dev_base_lock.
746  */
747
748 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
749 {
750         struct net_device *dev;
751         struct hlist_head *head = dev_index_hash(net, ifindex);
752
753         hlist_for_each_entry(dev, head, index_hlist)
754                 if (dev->ifindex == ifindex)
755                         return dev;
756
757         return NULL;
758 }
759 EXPORT_SYMBOL(__dev_get_by_index);
760
761 /**
762  *      dev_get_by_index_rcu - find a device by its ifindex
763  *      @net: the applicable net namespace
764  *      @ifindex: index of device
765  *
766  *      Search for an interface by index. Returns %NULL if the device
767  *      is not found or a pointer to the device. The device has not
768  *      had its reference counter increased so the caller must be careful
769  *      about locking. The caller must hold RCU lock.
770  */
771
772 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
773 {
774         struct net_device *dev;
775         struct hlist_head *head = dev_index_hash(net, ifindex);
776
777         hlist_for_each_entry_rcu(dev, head, index_hlist)
778                 if (dev->ifindex == ifindex)
779                         return dev;
780
781         return NULL;
782 }
783 EXPORT_SYMBOL(dev_get_by_index_rcu);
784
785
786 /**
787  *      dev_get_by_index - find a device by its ifindex
788  *      @net: the applicable net namespace
789  *      @ifindex: index of device
790  *
791  *      Search for an interface by index. Returns NULL if the device
792  *      is not found or a pointer to the device. The device returned has
793  *      had a reference added and the pointer is safe until the user calls
794  *      dev_put to indicate they have finished with it.
795  */
796
797 struct net_device *dev_get_by_index(struct net *net, int ifindex)
798 {
799         struct net_device *dev;
800
801         rcu_read_lock();
802         dev = dev_get_by_index_rcu(net, ifindex);
803         if (dev)
804                 dev_hold(dev);
805         rcu_read_unlock();
806         return dev;
807 }
808 EXPORT_SYMBOL(dev_get_by_index);
809
810 /**
811  *      netdev_get_name - get a netdevice name, knowing its ifindex.
812  *      @net: network namespace
813  *      @name: a pointer to the buffer where the name will be stored.
814  *      @ifindex: the ifindex of the interface to get the name from.
815  *
816  *      The use of raw_seqcount_begin() and cond_resched() before
817  *      retrying is required as we want to give the writers a chance
818  *      to complete when CONFIG_PREEMPT is not set.
819  */
820 int netdev_get_name(struct net *net, char *name, int ifindex)
821 {
822         struct net_device *dev;
823         unsigned int seq;
824
825 retry:
826         seq = raw_seqcount_begin(&devnet_rename_seq);
827         rcu_read_lock();
828         dev = dev_get_by_index_rcu(net, ifindex);
829         if (!dev) {
830                 rcu_read_unlock();
831                 return -ENODEV;
832         }
833
834         strcpy(name, dev->name);
835         rcu_read_unlock();
836         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
837                 cond_resched();
838                 goto retry;
839         }
840
841         return 0;
842 }
843
844 /**
845  *      dev_getbyhwaddr_rcu - find a device by its hardware address
846  *      @net: the applicable net namespace
847  *      @type: media type of device
848  *      @ha: hardware address
849  *
850  *      Search for an interface by MAC address. Returns NULL if the device
851  *      is not found or a pointer to the device.
852  *      The caller must hold RCU or RTNL.
853  *      The returned device has not had its ref count increased
854  *      and the caller must therefore be careful about locking
855  *
856  */
857
858 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
859                                        const char *ha)
860 {
861         struct net_device *dev;
862
863         for_each_netdev_rcu(net, dev)
864                 if (dev->type == type &&
865                     !memcmp(dev->dev_addr, ha, dev->addr_len))
866                         return dev;
867
868         return NULL;
869 }
870 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
871
872 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
873 {
874         struct net_device *dev;
875
876         ASSERT_RTNL();
877         for_each_netdev(net, dev)
878                 if (dev->type == type)
879                         return dev;
880
881         return NULL;
882 }
883 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
884
885 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
886 {
887         struct net_device *dev, *ret = NULL;
888
889         rcu_read_lock();
890         for_each_netdev_rcu(net, dev)
891                 if (dev->type == type) {
892                         dev_hold(dev);
893                         ret = dev;
894                         break;
895                 }
896         rcu_read_unlock();
897         return ret;
898 }
899 EXPORT_SYMBOL(dev_getfirstbyhwtype);
900
901 /**
902  *      __dev_get_by_flags - find any device with given flags
903  *      @net: the applicable net namespace
904  *      @if_flags: IFF_* values
905  *      @mask: bitmask of bits in if_flags to check
906  *
907  *      Search for any interface with the given flags. Returns NULL if a device
908  *      is not found or a pointer to the device. Must be called inside
909  *      rtnl_lock(), and result refcount is unchanged.
910  */
911
912 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
913                                       unsigned short mask)
914 {
915         struct net_device *dev, *ret;
916
917         ASSERT_RTNL();
918
919         ret = NULL;
920         for_each_netdev(net, dev) {
921                 if (((dev->flags ^ if_flags) & mask) == 0) {
922                         ret = dev;
923                         break;
924                 }
925         }
926         return ret;
927 }
928 EXPORT_SYMBOL(__dev_get_by_flags);
929
930 /**
931  *      dev_valid_name - check if name is okay for network device
932  *      @name: name string
933  *
934  *      Network device names need to be valid file names to
935  *      to allow sysfs to work.  We also disallow any kind of
936  *      whitespace.
937  */
938 bool dev_valid_name(const char *name)
939 {
940         if (*name == '\0')
941                 return false;
942         if (strlen(name) >= IFNAMSIZ)
943                 return false;
944         if (!strcmp(name, ".") || !strcmp(name, ".."))
945                 return false;
946
947         while (*name) {
948                 if (*name == '/' || isspace(*name))
949                         return false;
950                 name++;
951         }
952         return true;
953 }
954 EXPORT_SYMBOL(dev_valid_name);
955
956 /**
957  *      __dev_alloc_name - allocate a name for a device
958  *      @net: network namespace to allocate the device name in
959  *      @name: name format string
960  *      @buf:  scratch buffer and result name string
961  *
962  *      Passed a format string - eg "lt%d" it will try and find a suitable
963  *      id. It scans list of devices to build up a free map, then chooses
964  *      the first empty slot. The caller must hold the dev_base or rtnl lock
965  *      while allocating the name and adding the device in order to avoid
966  *      duplicates.
967  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
968  *      Returns the number of the unit assigned or a negative errno code.
969  */
970
971 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
972 {
973         int i = 0;
974         const char *p;
975         const int max_netdevices = 8*PAGE_SIZE;
976         unsigned long *inuse;
977         struct net_device *d;
978
979         p = strnchr(name, IFNAMSIZ-1, '%');
980         if (p) {
981                 /*
982                  * Verify the string as this thing may have come from
983                  * the user.  There must be either one "%d" and no other "%"
984                  * characters.
985                  */
986                 if (p[1] != 'd' || strchr(p + 2, '%'))
987                         return -EINVAL;
988
989                 /* Use one page as a bit array of possible slots */
990                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
991                 if (!inuse)
992                         return -ENOMEM;
993
994                 for_each_netdev(net, d) {
995                         if (!sscanf(d->name, name, &i))
996                                 continue;
997                         if (i < 0 || i >= max_netdevices)
998                                 continue;
999
1000                         /*  avoid cases where sscanf is not exact inverse of printf */
1001                         snprintf(buf, IFNAMSIZ, name, i);
1002                         if (!strncmp(buf, d->name, IFNAMSIZ))
1003                                 set_bit(i, inuse);
1004                 }
1005
1006                 i = find_first_zero_bit(inuse, max_netdevices);
1007                 free_page((unsigned long) inuse);
1008         }
1009
1010         if (buf != name)
1011                 snprintf(buf, IFNAMSIZ, name, i);
1012         if (!__dev_get_by_name(net, buf))
1013                 return i;
1014
1015         /* It is possible to run out of possible slots
1016          * when the name is long and there isn't enough space left
1017          * for the digits, or if all bits are used.
1018          */
1019         return -ENFILE;
1020 }
1021
1022 /**
1023  *      dev_alloc_name - allocate a name for a device
1024  *      @dev: device
1025  *      @name: name format string
1026  *
1027  *      Passed a format string - eg "lt%d" it will try and find a suitable
1028  *      id. It scans list of devices to build up a free map, then chooses
1029  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1030  *      while allocating the name and adding the device in order to avoid
1031  *      duplicates.
1032  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1033  *      Returns the number of the unit assigned or a negative errno code.
1034  */
1035
1036 int dev_alloc_name(struct net_device *dev, const char *name)
1037 {
1038         char buf[IFNAMSIZ];
1039         struct net *net;
1040         int ret;
1041
1042         BUG_ON(!dev_net(dev));
1043         net = dev_net(dev);
1044         ret = __dev_alloc_name(net, name, buf);
1045         if (ret >= 0)
1046                 strlcpy(dev->name, buf, IFNAMSIZ);
1047         return ret;
1048 }
1049 EXPORT_SYMBOL(dev_alloc_name);
1050
1051 static int dev_alloc_name_ns(struct net *net,
1052                              struct net_device *dev,
1053                              const char *name)
1054 {
1055         char buf[IFNAMSIZ];
1056         int ret;
1057
1058         ret = __dev_alloc_name(net, name, buf);
1059         if (ret >= 0)
1060                 strlcpy(dev->name, buf, IFNAMSIZ);
1061         return ret;
1062 }
1063
1064 static int dev_get_valid_name(struct net *net,
1065                               struct net_device *dev,
1066                               const char *name)
1067 {
1068         BUG_ON(!net);
1069
1070         if (!dev_valid_name(name))
1071                 return -EINVAL;
1072
1073         if (strchr(name, '%'))
1074                 return dev_alloc_name_ns(net, dev, name);
1075         else if (__dev_get_by_name(net, name))
1076                 return -EEXIST;
1077         else if (dev->name != name)
1078                 strlcpy(dev->name, name, IFNAMSIZ);
1079
1080         return 0;
1081 }
1082
1083 /**
1084  *      dev_change_name - change name of a device
1085  *      @dev: device
1086  *      @newname: name (or format string) must be at least IFNAMSIZ
1087  *
1088  *      Change name of a device, can pass format strings "eth%d".
1089  *      for wildcarding.
1090  */
1091 int dev_change_name(struct net_device *dev, const char *newname)
1092 {
1093         unsigned char old_assign_type;
1094         char oldname[IFNAMSIZ];
1095         int err = 0;
1096         int ret;
1097         struct net *net;
1098
1099         ASSERT_RTNL();
1100         BUG_ON(!dev_net(dev));
1101
1102         net = dev_net(dev);
1103         if (dev->flags & IFF_UP)
1104                 return -EBUSY;
1105
1106         write_seqcount_begin(&devnet_rename_seq);
1107
1108         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1109                 write_seqcount_end(&devnet_rename_seq);
1110                 return 0;
1111         }
1112
1113         memcpy(oldname, dev->name, IFNAMSIZ);
1114
1115         err = dev_get_valid_name(net, dev, newname);
1116         if (err < 0) {
1117                 write_seqcount_end(&devnet_rename_seq);
1118                 return err;
1119         }
1120
1121         if (oldname[0] && !strchr(oldname, '%'))
1122                 netdev_info(dev, "renamed from %s\n", oldname);
1123
1124         old_assign_type = dev->name_assign_type;
1125         dev->name_assign_type = NET_NAME_RENAMED;
1126
1127 rollback:
1128         ret = device_rename(&dev->dev, dev->name);
1129         if (ret) {
1130                 memcpy(dev->name, oldname, IFNAMSIZ);
1131                 dev->name_assign_type = old_assign_type;
1132                 write_seqcount_end(&devnet_rename_seq);
1133                 return ret;
1134         }
1135
1136         write_seqcount_end(&devnet_rename_seq);
1137
1138         netdev_adjacent_rename_links(dev, oldname);
1139
1140         write_lock_bh(&dev_base_lock);
1141         hlist_del_rcu(&dev->name_hlist);
1142         write_unlock_bh(&dev_base_lock);
1143
1144         synchronize_rcu();
1145
1146         write_lock_bh(&dev_base_lock);
1147         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1148         write_unlock_bh(&dev_base_lock);
1149
1150         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1151         ret = notifier_to_errno(ret);
1152
1153         if (ret) {
1154                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1155                 if (err >= 0) {
1156                         err = ret;
1157                         write_seqcount_begin(&devnet_rename_seq);
1158                         memcpy(dev->name, oldname, IFNAMSIZ);
1159                         memcpy(oldname, newname, IFNAMSIZ);
1160                         dev->name_assign_type = old_assign_type;
1161                         old_assign_type = NET_NAME_RENAMED;
1162                         goto rollback;
1163                 } else {
1164                         pr_err("%s: name change rollback failed: %d\n",
1165                                dev->name, ret);
1166                 }
1167         }
1168
1169         return err;
1170 }
1171
1172 /**
1173  *      dev_set_alias - change ifalias of a device
1174  *      @dev: device
1175  *      @alias: name up to IFALIASZ
1176  *      @len: limit of bytes to copy from info
1177  *
1178  *      Set ifalias for a device,
1179  */
1180 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1181 {
1182         char *new_ifalias;
1183
1184         ASSERT_RTNL();
1185
1186         if (len >= IFALIASZ)
1187                 return -EINVAL;
1188
1189         if (!len) {
1190                 kfree(dev->ifalias);
1191                 dev->ifalias = NULL;
1192                 return 0;
1193         }
1194
1195         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1196         if (!new_ifalias)
1197                 return -ENOMEM;
1198         dev->ifalias = new_ifalias;
1199
1200         strlcpy(dev->ifalias, alias, len+1);
1201         return len;
1202 }
1203
1204
1205 /**
1206  *      netdev_features_change - device changes features
1207  *      @dev: device to cause notification
1208  *
1209  *      Called to indicate a device has changed features.
1210  */
1211 void netdev_features_change(struct net_device *dev)
1212 {
1213         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1214 }
1215 EXPORT_SYMBOL(netdev_features_change);
1216
1217 /**
1218  *      netdev_state_change - device changes state
1219  *      @dev: device to cause notification
1220  *
1221  *      Called to indicate a device has changed state. This function calls
1222  *      the notifier chains for netdev_chain and sends a NEWLINK message
1223  *      to the routing socket.
1224  */
1225 void netdev_state_change(struct net_device *dev)
1226 {
1227         if (dev->flags & IFF_UP) {
1228                 struct netdev_notifier_change_info change_info;
1229
1230                 change_info.flags_changed = 0;
1231                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1232                                               &change_info.info);
1233                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1234         }
1235 }
1236 EXPORT_SYMBOL(netdev_state_change);
1237
1238 /**
1239  *      netdev_notify_peers - notify network peers about existence of @dev
1240  *      @dev: network device
1241  *
1242  * Generate traffic such that interested network peers are aware of
1243  * @dev, such as by generating a gratuitous ARP. This may be used when
1244  * a device wants to inform the rest of the network about some sort of
1245  * reconfiguration such as a failover event or virtual machine
1246  * migration.
1247  */
1248 void netdev_notify_peers(struct net_device *dev)
1249 {
1250         rtnl_lock();
1251         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1252         rtnl_unlock();
1253 }
1254 EXPORT_SYMBOL(netdev_notify_peers);
1255
1256 static int __dev_open(struct net_device *dev)
1257 {
1258         const struct net_device_ops *ops = dev->netdev_ops;
1259         int ret;
1260
1261         ASSERT_RTNL();
1262
1263         if (!netif_device_present(dev))
1264                 return -ENODEV;
1265
1266         /* Block netpoll from trying to do any rx path servicing.
1267          * If we don't do this there is a chance ndo_poll_controller
1268          * or ndo_poll may be running while we open the device
1269          */
1270         netpoll_poll_disable(dev);
1271
1272         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1273         ret = notifier_to_errno(ret);
1274         if (ret)
1275                 return ret;
1276
1277         set_bit(__LINK_STATE_START, &dev->state);
1278
1279         if (ops->ndo_validate_addr)
1280                 ret = ops->ndo_validate_addr(dev);
1281
1282         if (!ret && ops->ndo_open)
1283                 ret = ops->ndo_open(dev);
1284
1285         netpoll_poll_enable(dev);
1286
1287         if (ret)
1288                 clear_bit(__LINK_STATE_START, &dev->state);
1289         else {
1290                 dev->flags |= IFF_UP;
1291                 dev_set_rx_mode(dev);
1292                 dev_activate(dev);
1293                 add_device_randomness(dev->dev_addr, dev->addr_len);
1294         }
1295
1296         return ret;
1297 }
1298
1299 /**
1300  *      dev_open        - prepare an interface for use.
1301  *      @dev:   device to open
1302  *
1303  *      Takes a device from down to up state. The device's private open
1304  *      function is invoked and then the multicast lists are loaded. Finally
1305  *      the device is moved into the up state and a %NETDEV_UP message is
1306  *      sent to the netdev notifier chain.
1307  *
1308  *      Calling this function on an active interface is a nop. On a failure
1309  *      a negative errno code is returned.
1310  */
1311 int dev_open(struct net_device *dev)
1312 {
1313         int ret;
1314
1315         if (dev->flags & IFF_UP)
1316                 return 0;
1317
1318         ret = __dev_open(dev);
1319         if (ret < 0)
1320                 return ret;
1321
1322         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1323         call_netdevice_notifiers(NETDEV_UP, dev);
1324
1325         return ret;
1326 }
1327 EXPORT_SYMBOL(dev_open);
1328
1329 static int __dev_close_many(struct list_head *head)
1330 {
1331         struct net_device *dev;
1332
1333         ASSERT_RTNL();
1334         might_sleep();
1335
1336         list_for_each_entry(dev, head, close_list) {
1337                 /* Temporarily disable netpoll until the interface is down */
1338                 netpoll_poll_disable(dev);
1339
1340                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1341
1342                 clear_bit(__LINK_STATE_START, &dev->state);
1343
1344                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1345                  * can be even on different cpu. So just clear netif_running().
1346                  *
1347                  * dev->stop() will invoke napi_disable() on all of it's
1348                  * napi_struct instances on this device.
1349                  */
1350                 smp_mb__after_atomic(); /* Commit netif_running(). */
1351         }
1352
1353         dev_deactivate_many(head);
1354
1355         list_for_each_entry(dev, head, close_list) {
1356                 const struct net_device_ops *ops = dev->netdev_ops;
1357
1358                 /*
1359                  *      Call the device specific close. This cannot fail.
1360                  *      Only if device is UP
1361                  *
1362                  *      We allow it to be called even after a DETACH hot-plug
1363                  *      event.
1364                  */
1365                 if (ops->ndo_stop)
1366                         ops->ndo_stop(dev);
1367
1368                 dev->flags &= ~IFF_UP;
1369                 netpoll_poll_enable(dev);
1370         }
1371
1372         return 0;
1373 }
1374
1375 static int __dev_close(struct net_device *dev)
1376 {
1377         int retval;
1378         LIST_HEAD(single);
1379
1380         list_add(&dev->close_list, &single);
1381         retval = __dev_close_many(&single);
1382         list_del(&single);
1383
1384         return retval;
1385 }
1386
1387 static int dev_close_many(struct list_head *head)
1388 {
1389         struct net_device *dev, *tmp;
1390
1391         /* Remove the devices that don't need to be closed */
1392         list_for_each_entry_safe(dev, tmp, head, close_list)
1393                 if (!(dev->flags & IFF_UP))
1394                         list_del_init(&dev->close_list);
1395
1396         __dev_close_many(head);
1397
1398         list_for_each_entry_safe(dev, tmp, head, close_list) {
1399                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1400                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1401                 list_del_init(&dev->close_list);
1402         }
1403
1404         return 0;
1405 }
1406
1407 /**
1408  *      dev_close - shutdown an interface.
1409  *      @dev: device to shutdown
1410  *
1411  *      This function moves an active device into down state. A
1412  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1413  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1414  *      chain.
1415  */
1416 int dev_close(struct net_device *dev)
1417 {
1418         if (dev->flags & IFF_UP) {
1419                 LIST_HEAD(single);
1420
1421                 list_add(&dev->close_list, &single);
1422                 dev_close_many(&single);
1423                 list_del(&single);
1424         }
1425         return 0;
1426 }
1427 EXPORT_SYMBOL(dev_close);
1428
1429
1430 /**
1431  *      dev_disable_lro - disable Large Receive Offload on a device
1432  *      @dev: device
1433  *
1434  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1435  *      called under RTNL.  This is needed if received packets may be
1436  *      forwarded to another interface.
1437  */
1438 void dev_disable_lro(struct net_device *dev)
1439 {
1440         struct net_device *lower_dev;
1441         struct list_head *iter;
1442
1443         dev->wanted_features &= ~NETIF_F_LRO;
1444         netdev_update_features(dev);
1445
1446         if (unlikely(dev->features & NETIF_F_LRO))
1447                 netdev_WARN(dev, "failed to disable LRO!\n");
1448
1449         netdev_for_each_lower_dev(dev, lower_dev, iter)
1450                 dev_disable_lro(lower_dev);
1451 }
1452 EXPORT_SYMBOL(dev_disable_lro);
1453
1454 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1455                                    struct net_device *dev)
1456 {
1457         struct netdev_notifier_info info;
1458
1459         netdev_notifier_info_init(&info, dev);
1460         return nb->notifier_call(nb, val, &info);
1461 }
1462
1463 static int dev_boot_phase = 1;
1464
1465 /**
1466  *      register_netdevice_notifier - register a network notifier block
1467  *      @nb: notifier
1468  *
1469  *      Register a notifier to be called when network device events occur.
1470  *      The notifier passed is linked into the kernel structures and must
1471  *      not be reused until it has been unregistered. A negative errno code
1472  *      is returned on a failure.
1473  *
1474  *      When registered all registration and up events are replayed
1475  *      to the new notifier to allow device to have a race free
1476  *      view of the network device list.
1477  */
1478
1479 int register_netdevice_notifier(struct notifier_block *nb)
1480 {
1481         struct net_device *dev;
1482         struct net_device *last;
1483         struct net *net;
1484         int err;
1485
1486         rtnl_lock();
1487         err = raw_notifier_chain_register(&netdev_chain, nb);
1488         if (err)
1489                 goto unlock;
1490         if (dev_boot_phase)
1491                 goto unlock;
1492         for_each_net(net) {
1493                 for_each_netdev(net, dev) {
1494                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1495                         err = notifier_to_errno(err);
1496                         if (err)
1497                                 goto rollback;
1498
1499                         if (!(dev->flags & IFF_UP))
1500                                 continue;
1501
1502                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1503                 }
1504         }
1505
1506 unlock:
1507         rtnl_unlock();
1508         return err;
1509
1510 rollback:
1511         last = dev;
1512         for_each_net(net) {
1513                 for_each_netdev(net, dev) {
1514                         if (dev == last)
1515                                 goto outroll;
1516
1517                         if (dev->flags & IFF_UP) {
1518                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1519                                                         dev);
1520                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1521                         }
1522                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1523                 }
1524         }
1525
1526 outroll:
1527         raw_notifier_chain_unregister(&netdev_chain, nb);
1528         goto unlock;
1529 }
1530 EXPORT_SYMBOL(register_netdevice_notifier);
1531
1532 /**
1533  *      unregister_netdevice_notifier - unregister a network notifier block
1534  *      @nb: notifier
1535  *
1536  *      Unregister a notifier previously registered by
1537  *      register_netdevice_notifier(). The notifier is unlinked into the
1538  *      kernel structures and may then be reused. A negative errno code
1539  *      is returned on a failure.
1540  *
1541  *      After unregistering unregister and down device events are synthesized
1542  *      for all devices on the device list to the removed notifier to remove
1543  *      the need for special case cleanup code.
1544  */
1545
1546 int unregister_netdevice_notifier(struct notifier_block *nb)
1547 {
1548         struct net_device *dev;
1549         struct net *net;
1550         int err;
1551
1552         rtnl_lock();
1553         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1554         if (err)
1555                 goto unlock;
1556
1557         for_each_net(net) {
1558                 for_each_netdev(net, dev) {
1559                         if (dev->flags & IFF_UP) {
1560                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1561                                                         dev);
1562                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1563                         }
1564                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1565                 }
1566         }
1567 unlock:
1568         rtnl_unlock();
1569         return err;
1570 }
1571 EXPORT_SYMBOL(unregister_netdevice_notifier);
1572
1573 /**
1574  *      call_netdevice_notifiers_info - call all network notifier blocks
1575  *      @val: value passed unmodified to notifier function
1576  *      @dev: net_device pointer passed unmodified to notifier function
1577  *      @info: notifier information data
1578  *
1579  *      Call all network notifier blocks.  Parameters and return value
1580  *      are as for raw_notifier_call_chain().
1581  */
1582
1583 static int call_netdevice_notifiers_info(unsigned long val,
1584                                          struct net_device *dev,
1585                                          struct netdev_notifier_info *info)
1586 {
1587         ASSERT_RTNL();
1588         netdev_notifier_info_init(info, dev);
1589         return raw_notifier_call_chain(&netdev_chain, val, info);
1590 }
1591
1592 /**
1593  *      call_netdevice_notifiers - call all network notifier blocks
1594  *      @val: value passed unmodified to notifier function
1595  *      @dev: net_device pointer passed unmodified to notifier function
1596  *
1597  *      Call all network notifier blocks.  Parameters and return value
1598  *      are as for raw_notifier_call_chain().
1599  */
1600
1601 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1602 {
1603         struct netdev_notifier_info info;
1604
1605         return call_netdevice_notifiers_info(val, dev, &info);
1606 }
1607 EXPORT_SYMBOL(call_netdevice_notifiers);
1608
1609 static struct static_key netstamp_needed __read_mostly;
1610 #ifdef HAVE_JUMP_LABEL
1611 /* We are not allowed to call static_key_slow_dec() from irq context
1612  * If net_disable_timestamp() is called from irq context, defer the
1613  * static_key_slow_dec() calls.
1614  */
1615 static atomic_t netstamp_needed_deferred;
1616 #endif
1617
1618 void net_enable_timestamp(void)
1619 {
1620 #ifdef HAVE_JUMP_LABEL
1621         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1622
1623         if (deferred) {
1624                 while (--deferred)
1625                         static_key_slow_dec(&netstamp_needed);
1626                 return;
1627         }
1628 #endif
1629         static_key_slow_inc(&netstamp_needed);
1630 }
1631 EXPORT_SYMBOL(net_enable_timestamp);
1632
1633 void net_disable_timestamp(void)
1634 {
1635 #ifdef HAVE_JUMP_LABEL
1636         if (in_interrupt()) {
1637                 atomic_inc(&netstamp_needed_deferred);
1638                 return;
1639         }
1640 #endif
1641         static_key_slow_dec(&netstamp_needed);
1642 }
1643 EXPORT_SYMBOL(net_disable_timestamp);
1644
1645 static inline void net_timestamp_set(struct sk_buff *skb)
1646 {
1647         skb->tstamp.tv64 = 0;
1648         if (static_key_false(&netstamp_needed))
1649                 __net_timestamp(skb);
1650 }
1651
1652 #define net_timestamp_check(COND, SKB)                  \
1653         if (static_key_false(&netstamp_needed)) {               \
1654                 if ((COND) && !(SKB)->tstamp.tv64)      \
1655                         __net_timestamp(SKB);           \
1656         }                                               \
1657
1658 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1659 {
1660         unsigned int len;
1661
1662         if (!(dev->flags & IFF_UP))
1663                 return false;
1664
1665         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1666         if (skb->len <= len)
1667                 return true;
1668
1669         /* if TSO is enabled, we don't care about the length as the packet
1670          * could be forwarded without being segmented before
1671          */
1672         if (skb_is_gso(skb))
1673                 return true;
1674
1675         return false;
1676 }
1677 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1678
1679 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1680 {
1681         if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1682                 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1683                         atomic_long_inc(&dev->rx_dropped);
1684                         kfree_skb(skb);
1685                         return NET_RX_DROP;
1686                 }
1687         }
1688
1689         if (unlikely(!is_skb_forwardable(dev, skb))) {
1690                 atomic_long_inc(&dev->rx_dropped);
1691                 kfree_skb(skb);
1692                 return NET_RX_DROP;
1693         }
1694
1695         skb_scrub_packet(skb, true);
1696         skb->protocol = eth_type_trans(skb, dev);
1697
1698         return 0;
1699 }
1700 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1701
1702 /**
1703  * dev_forward_skb - loopback an skb to another netif
1704  *
1705  * @dev: destination network device
1706  * @skb: buffer to forward
1707  *
1708  * return values:
1709  *      NET_RX_SUCCESS  (no congestion)
1710  *      NET_RX_DROP     (packet was dropped, but freed)
1711  *
1712  * dev_forward_skb can be used for injecting an skb from the
1713  * start_xmit function of one device into the receive queue
1714  * of another device.
1715  *
1716  * The receiving device may be in another namespace, so
1717  * we have to clear all information in the skb that could
1718  * impact namespace isolation.
1719  */
1720 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721 {
1722         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1723 }
1724 EXPORT_SYMBOL_GPL(dev_forward_skb);
1725
1726 static inline int deliver_skb(struct sk_buff *skb,
1727                               struct packet_type *pt_prev,
1728                               struct net_device *orig_dev)
1729 {
1730         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1731                 return -ENOMEM;
1732         atomic_inc(&skb->users);
1733         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1734 }
1735
1736 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1737 {
1738         if (!ptype->af_packet_priv || !skb->sk)
1739                 return false;
1740
1741         if (ptype->id_match)
1742                 return ptype->id_match(ptype, skb->sk);
1743         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1744                 return true;
1745
1746         return false;
1747 }
1748
1749 /*
1750  *      Support routine. Sends outgoing frames to any network
1751  *      taps currently in use.
1752  */
1753
1754 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1755 {
1756         struct packet_type *ptype;
1757         struct sk_buff *skb2 = NULL;
1758         struct packet_type *pt_prev = NULL;
1759
1760         rcu_read_lock();
1761         list_for_each_entry_rcu(ptype, &ptype_all, list) {
1762                 /* Never send packets back to the socket
1763                  * they originated from - MvS (miquels@drinkel.ow.org)
1764                  */
1765                 if ((ptype->dev == dev || !ptype->dev) &&
1766                     (!skb_loop_sk(ptype, skb))) {
1767                         if (pt_prev) {
1768                                 deliver_skb(skb2, pt_prev, skb->dev);
1769                                 pt_prev = ptype;
1770                                 continue;
1771                         }
1772
1773                         skb2 = skb_clone(skb, GFP_ATOMIC);
1774                         if (!skb2)
1775                                 break;
1776
1777                         net_timestamp_set(skb2);
1778
1779                         /* skb->nh should be correctly
1780                            set by sender, so that the second statement is
1781                            just protection against buggy protocols.
1782                          */
1783                         skb_reset_mac_header(skb2);
1784
1785                         if (skb_network_header(skb2) < skb2->data ||
1786                             skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1787                                 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1788                                                      ntohs(skb2->protocol),
1789                                                      dev->name);
1790                                 skb_reset_network_header(skb2);
1791                         }
1792
1793                         skb2->transport_header = skb2->network_header;
1794                         skb2->pkt_type = PACKET_OUTGOING;
1795                         pt_prev = ptype;
1796                 }
1797         }
1798         if (pt_prev)
1799                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1800         rcu_read_unlock();
1801 }
1802
1803 /**
1804  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1805  * @dev: Network device
1806  * @txq: number of queues available
1807  *
1808  * If real_num_tx_queues is changed the tc mappings may no longer be
1809  * valid. To resolve this verify the tc mapping remains valid and if
1810  * not NULL the mapping. With no priorities mapping to this
1811  * offset/count pair it will no longer be used. In the worst case TC0
1812  * is invalid nothing can be done so disable priority mappings. If is
1813  * expected that drivers will fix this mapping if they can before
1814  * calling netif_set_real_num_tx_queues.
1815  */
1816 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1817 {
1818         int i;
1819         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1820
1821         /* If TC0 is invalidated disable TC mapping */
1822         if (tc->offset + tc->count > txq) {
1823                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1824                 dev->num_tc = 0;
1825                 return;
1826         }
1827
1828         /* Invalidated prio to tc mappings set to TC0 */
1829         for (i = 1; i < TC_BITMASK + 1; i++) {
1830                 int q = netdev_get_prio_tc_map(dev, i);
1831
1832                 tc = &dev->tc_to_txq[q];
1833                 if (tc->offset + tc->count > txq) {
1834                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1835                                 i, q);
1836                         netdev_set_prio_tc_map(dev, i, 0);
1837                 }
1838         }
1839 }
1840
1841 #ifdef CONFIG_XPS
1842 static DEFINE_MUTEX(xps_map_mutex);
1843 #define xmap_dereference(P)             \
1844         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1845
1846 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1847                                         int cpu, u16 index)
1848 {
1849         struct xps_map *map = NULL;
1850         int pos;
1851
1852         if (dev_maps)
1853                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1854
1855         for (pos = 0; map && pos < map->len; pos++) {
1856                 if (map->queues[pos] == index) {
1857                         if (map->len > 1) {
1858                                 map->queues[pos] = map->queues[--map->len];
1859                         } else {
1860                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1861                                 kfree_rcu(map, rcu);
1862                                 map = NULL;
1863                         }
1864                         break;
1865                 }
1866         }
1867
1868         return map;
1869 }
1870
1871 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1872 {
1873         struct xps_dev_maps *dev_maps;
1874         int cpu, i;
1875         bool active = false;
1876
1877         mutex_lock(&xps_map_mutex);
1878         dev_maps = xmap_dereference(dev->xps_maps);
1879
1880         if (!dev_maps)
1881                 goto out_no_maps;
1882
1883         for_each_possible_cpu(cpu) {
1884                 for (i = index; i < dev->num_tx_queues; i++) {
1885                         if (!remove_xps_queue(dev_maps, cpu, i))
1886                                 break;
1887                 }
1888                 if (i == dev->num_tx_queues)
1889                         active = true;
1890         }
1891
1892         if (!active) {
1893                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1894                 kfree_rcu(dev_maps, rcu);
1895         }
1896
1897         for (i = index; i < dev->num_tx_queues; i++)
1898                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1899                                              NUMA_NO_NODE);
1900
1901 out_no_maps:
1902         mutex_unlock(&xps_map_mutex);
1903 }
1904
1905 static struct xps_map *expand_xps_map(struct xps_map *map,
1906                                       int cpu, u16 index)
1907 {
1908         struct xps_map *new_map;
1909         int alloc_len = XPS_MIN_MAP_ALLOC;
1910         int i, pos;
1911
1912         for (pos = 0; map && pos < map->len; pos++) {
1913                 if (map->queues[pos] != index)
1914                         continue;
1915                 return map;
1916         }
1917
1918         /* Need to add queue to this CPU's existing map */
1919         if (map) {
1920                 if (pos < map->alloc_len)
1921                         return map;
1922
1923                 alloc_len = map->alloc_len * 2;
1924         }
1925
1926         /* Need to allocate new map to store queue on this CPU's map */
1927         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1928                                cpu_to_node(cpu));
1929         if (!new_map)
1930                 return NULL;
1931
1932         for (i = 0; i < pos; i++)
1933                 new_map->queues[i] = map->queues[i];
1934         new_map->alloc_len = alloc_len;
1935         new_map->len = pos;
1936
1937         return new_map;
1938 }
1939
1940 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1941                         u16 index)
1942 {
1943         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1944         struct xps_map *map, *new_map;
1945         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1946         int cpu, numa_node_id = -2;
1947         bool active = false;
1948
1949         mutex_lock(&xps_map_mutex);
1950
1951         dev_maps = xmap_dereference(dev->xps_maps);
1952
1953         /* allocate memory for queue storage */
1954         for_each_online_cpu(cpu) {
1955                 if (!cpumask_test_cpu(cpu, mask))
1956                         continue;
1957
1958                 if (!new_dev_maps)
1959                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1960                 if (!new_dev_maps) {
1961                         mutex_unlock(&xps_map_mutex);
1962                         return -ENOMEM;
1963                 }
1964
1965                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1966                                  NULL;
1967
1968                 map = expand_xps_map(map, cpu, index);
1969                 if (!map)
1970                         goto error;
1971
1972                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1973         }
1974
1975         if (!new_dev_maps)
1976                 goto out_no_new_maps;
1977
1978         for_each_possible_cpu(cpu) {
1979                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1980                         /* add queue to CPU maps */
1981                         int pos = 0;
1982
1983                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1984                         while ((pos < map->len) && (map->queues[pos] != index))
1985                                 pos++;
1986
1987                         if (pos == map->len)
1988                                 map->queues[map->len++] = index;
1989 #ifdef CONFIG_NUMA
1990                         if (numa_node_id == -2)
1991                                 numa_node_id = cpu_to_node(cpu);
1992                         else if (numa_node_id != cpu_to_node(cpu))
1993                                 numa_node_id = -1;
1994 #endif
1995                 } else if (dev_maps) {
1996                         /* fill in the new device map from the old device map */
1997                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
1998                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1999                 }
2000
2001         }
2002
2003         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2004
2005         /* Cleanup old maps */
2006         if (dev_maps) {
2007                 for_each_possible_cpu(cpu) {
2008                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2009                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2010                         if (map && map != new_map)
2011                                 kfree_rcu(map, rcu);
2012                 }
2013
2014                 kfree_rcu(dev_maps, rcu);
2015         }
2016
2017         dev_maps = new_dev_maps;
2018         active = true;
2019
2020 out_no_new_maps:
2021         /* update Tx queue numa node */
2022         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2023                                      (numa_node_id >= 0) ? numa_node_id :
2024                                      NUMA_NO_NODE);
2025
2026         if (!dev_maps)
2027                 goto out_no_maps;
2028
2029         /* removes queue from unused CPUs */
2030         for_each_possible_cpu(cpu) {
2031                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2032                         continue;
2033
2034                 if (remove_xps_queue(dev_maps, cpu, index))
2035                         active = true;
2036         }
2037
2038         /* free map if not active */
2039         if (!active) {
2040                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2041                 kfree_rcu(dev_maps, rcu);
2042         }
2043
2044 out_no_maps:
2045         mutex_unlock(&xps_map_mutex);
2046
2047         return 0;
2048 error:
2049         /* remove any maps that we added */
2050         for_each_possible_cpu(cpu) {
2051                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2052                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2053                                  NULL;
2054                 if (new_map && new_map != map)
2055                         kfree(new_map);
2056         }
2057
2058         mutex_unlock(&xps_map_mutex);
2059
2060         kfree(new_dev_maps);
2061         return -ENOMEM;
2062 }
2063 EXPORT_SYMBOL(netif_set_xps_queue);
2064
2065 #endif
2066 /*
2067  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2068  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2069  */
2070 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2071 {
2072         int rc;
2073
2074         if (txq < 1 || txq > dev->num_tx_queues)
2075                 return -EINVAL;
2076
2077         if (dev->reg_state == NETREG_REGISTERED ||
2078             dev->reg_state == NETREG_UNREGISTERING) {
2079                 ASSERT_RTNL();
2080
2081                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2082                                                   txq);
2083                 if (rc)
2084                         return rc;
2085
2086                 if (dev->num_tc)
2087                         netif_setup_tc(dev, txq);
2088
2089                 if (txq < dev->real_num_tx_queues) {
2090                         qdisc_reset_all_tx_gt(dev, txq);
2091 #ifdef CONFIG_XPS
2092                         netif_reset_xps_queues_gt(dev, txq);
2093 #endif
2094                 }
2095         }
2096
2097         dev->real_num_tx_queues = txq;
2098         return 0;
2099 }
2100 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2101
2102 #ifdef CONFIG_SYSFS
2103 /**
2104  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2105  *      @dev: Network device
2106  *      @rxq: Actual number of RX queues
2107  *
2108  *      This must be called either with the rtnl_lock held or before
2109  *      registration of the net device.  Returns 0 on success, or a
2110  *      negative error code.  If called before registration, it always
2111  *      succeeds.
2112  */
2113 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2114 {
2115         int rc;
2116
2117         if (rxq < 1 || rxq > dev->num_rx_queues)
2118                 return -EINVAL;
2119
2120         if (dev->reg_state == NETREG_REGISTERED) {
2121                 ASSERT_RTNL();
2122
2123                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2124                                                   rxq);
2125                 if (rc)
2126                         return rc;
2127         }
2128
2129         dev->real_num_rx_queues = rxq;
2130         return 0;
2131 }
2132 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2133 #endif
2134
2135 /**
2136  * netif_get_num_default_rss_queues - default number of RSS queues
2137  *
2138  * This routine should set an upper limit on the number of RSS queues
2139  * used by default by multiqueue devices.
2140  */
2141 int netif_get_num_default_rss_queues(void)
2142 {
2143         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2144 }
2145 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2146
2147 static inline void __netif_reschedule(struct Qdisc *q)
2148 {
2149         struct softnet_data *sd;
2150         unsigned long flags;
2151
2152         local_irq_save(flags);
2153         sd = this_cpu_ptr(&softnet_data);
2154         q->next_sched = NULL;
2155         *sd->output_queue_tailp = q;
2156         sd->output_queue_tailp = &q->next_sched;
2157         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2158         local_irq_restore(flags);
2159 }
2160
2161 void __netif_schedule(struct Qdisc *q)
2162 {
2163         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2164                 __netif_reschedule(q);
2165 }
2166 EXPORT_SYMBOL(__netif_schedule);
2167
2168 struct dev_kfree_skb_cb {
2169         enum skb_free_reason reason;
2170 };
2171
2172 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2173 {
2174         return (struct dev_kfree_skb_cb *)skb->cb;
2175 }
2176
2177 void netif_schedule_queue(struct netdev_queue *txq)
2178 {
2179         rcu_read_lock();
2180         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2181                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2182
2183                 __netif_schedule(q);
2184         }
2185         rcu_read_unlock();
2186 }
2187 EXPORT_SYMBOL(netif_schedule_queue);
2188
2189 /**
2190  *      netif_wake_subqueue - allow sending packets on subqueue
2191  *      @dev: network device
2192  *      @queue_index: sub queue index
2193  *
2194  * Resume individual transmit queue of a device with multiple transmit queues.
2195  */
2196 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2197 {
2198         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2199
2200         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2201                 struct Qdisc *q;
2202
2203                 rcu_read_lock();
2204                 q = rcu_dereference(txq->qdisc);
2205                 __netif_schedule(q);
2206                 rcu_read_unlock();
2207         }
2208 }
2209 EXPORT_SYMBOL(netif_wake_subqueue);
2210
2211 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2212 {
2213         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2214                 struct Qdisc *q;
2215
2216                 rcu_read_lock();
2217                 q = rcu_dereference(dev_queue->qdisc);
2218                 __netif_schedule(q);
2219                 rcu_read_unlock();
2220         }
2221 }
2222 EXPORT_SYMBOL(netif_tx_wake_queue);
2223
2224 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2225 {
2226         unsigned long flags;
2227
2228         if (likely(atomic_read(&skb->users) == 1)) {
2229                 smp_rmb();
2230                 atomic_set(&skb->users, 0);
2231         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2232                 return;
2233         }
2234         get_kfree_skb_cb(skb)->reason = reason;
2235         local_irq_save(flags);
2236         skb->next = __this_cpu_read(softnet_data.completion_queue);
2237         __this_cpu_write(softnet_data.completion_queue, skb);
2238         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2239         local_irq_restore(flags);
2240 }
2241 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2242
2243 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2244 {
2245         if (in_irq() || irqs_disabled())
2246                 __dev_kfree_skb_irq(skb, reason);
2247         else
2248                 dev_kfree_skb(skb);
2249 }
2250 EXPORT_SYMBOL(__dev_kfree_skb_any);
2251
2252
2253 /**
2254  * netif_device_detach - mark device as removed
2255  * @dev: network device
2256  *
2257  * Mark device as removed from system and therefore no longer available.
2258  */
2259 void netif_device_detach(struct net_device *dev)
2260 {
2261         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2262             netif_running(dev)) {
2263                 netif_tx_stop_all_queues(dev);
2264         }
2265 }
2266 EXPORT_SYMBOL(netif_device_detach);
2267
2268 /**
2269  * netif_device_attach - mark device as attached
2270  * @dev: network device
2271  *
2272  * Mark device as attached from system and restart if needed.
2273  */
2274 void netif_device_attach(struct net_device *dev)
2275 {
2276         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2277             netif_running(dev)) {
2278                 netif_tx_wake_all_queues(dev);
2279                 __netdev_watchdog_up(dev);
2280         }
2281 }
2282 EXPORT_SYMBOL(netif_device_attach);
2283
2284 static void skb_warn_bad_offload(const struct sk_buff *skb)
2285 {
2286         static const netdev_features_t null_features = 0;
2287         struct net_device *dev = skb->dev;
2288         const char *driver = "";
2289
2290         if (!net_ratelimit())
2291                 return;
2292
2293         if (dev && dev->dev.parent)
2294                 driver = dev_driver_string(dev->dev.parent);
2295
2296         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2297              "gso_type=%d ip_summed=%d\n",
2298              driver, dev ? &dev->features : &null_features,
2299              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2300              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2301              skb_shinfo(skb)->gso_type, skb->ip_summed);
2302 }
2303
2304 /*
2305  * Invalidate hardware checksum when packet is to be mangled, and
2306  * complete checksum manually on outgoing path.
2307  */
2308 int skb_checksum_help(struct sk_buff *skb)
2309 {
2310         __wsum csum;
2311         int ret = 0, offset;
2312
2313         if (skb->ip_summed == CHECKSUM_COMPLETE)
2314                 goto out_set_summed;
2315
2316         if (unlikely(skb_shinfo(skb)->gso_size)) {
2317                 skb_warn_bad_offload(skb);
2318                 return -EINVAL;
2319         }
2320
2321         /* Before computing a checksum, we should make sure no frag could
2322          * be modified by an external entity : checksum could be wrong.
2323          */
2324         if (skb_has_shared_frag(skb)) {
2325                 ret = __skb_linearize(skb);
2326                 if (ret)
2327                         goto out;
2328         }
2329
2330         offset = skb_checksum_start_offset(skb);
2331         BUG_ON(offset >= skb_headlen(skb));
2332         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2333
2334         offset += skb->csum_offset;
2335         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2336
2337         if (skb_cloned(skb) &&
2338             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2339                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2340                 if (ret)
2341                         goto out;
2342         }
2343
2344         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2345 out_set_summed:
2346         skb->ip_summed = CHECKSUM_NONE;
2347 out:
2348         return ret;
2349 }
2350 EXPORT_SYMBOL(skb_checksum_help);
2351
2352 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2353 {
2354         unsigned int vlan_depth = skb->mac_len;
2355         __be16 type = skb->protocol;
2356
2357         /* Tunnel gso handlers can set protocol to ethernet. */
2358         if (type == htons(ETH_P_TEB)) {
2359                 struct ethhdr *eth;
2360
2361                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2362                         return 0;
2363
2364                 eth = (struct ethhdr *)skb_mac_header(skb);
2365                 type = eth->h_proto;
2366         }
2367
2368         /* if skb->protocol is 802.1Q/AD then the header should already be
2369          * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2370          * ETH_HLEN otherwise
2371          */
2372         if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2373                 if (vlan_depth) {
2374                         if (WARN_ON(vlan_depth < VLAN_HLEN))
2375                                 return 0;
2376                         vlan_depth -= VLAN_HLEN;
2377                 } else {
2378                         vlan_depth = ETH_HLEN;
2379                 }
2380                 do {
2381                         struct vlan_hdr *vh;
2382
2383                         if (unlikely(!pskb_may_pull(skb,
2384                                                     vlan_depth + VLAN_HLEN)))
2385                                 return 0;
2386
2387                         vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2388                         type = vh->h_vlan_encapsulated_proto;
2389                         vlan_depth += VLAN_HLEN;
2390                 } while (type == htons(ETH_P_8021Q) ||
2391                          type == htons(ETH_P_8021AD));
2392         }
2393
2394         *depth = vlan_depth;
2395
2396         return type;
2397 }
2398
2399 /**
2400  *      skb_mac_gso_segment - mac layer segmentation handler.
2401  *      @skb: buffer to segment
2402  *      @features: features for the output path (see dev->features)
2403  */
2404 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2405                                     netdev_features_t features)
2406 {
2407         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2408         struct packet_offload *ptype;
2409         int vlan_depth = skb->mac_len;
2410         __be16 type = skb_network_protocol(skb, &vlan_depth);
2411
2412         if (unlikely(!type))
2413                 return ERR_PTR(-EINVAL);
2414
2415         __skb_pull(skb, vlan_depth);
2416
2417         rcu_read_lock();
2418         list_for_each_entry_rcu(ptype, &offload_base, list) {
2419                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2420                         segs = ptype->callbacks.gso_segment(skb, features);
2421                         break;
2422                 }
2423         }
2424         rcu_read_unlock();
2425
2426         __skb_push(skb, skb->data - skb_mac_header(skb));
2427
2428         return segs;
2429 }
2430 EXPORT_SYMBOL(skb_mac_gso_segment);
2431
2432
2433 /* openvswitch calls this on rx path, so we need a different check.
2434  */
2435 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2436 {
2437         if (tx_path)
2438                 return skb->ip_summed != CHECKSUM_PARTIAL;
2439         else
2440                 return skb->ip_summed == CHECKSUM_NONE;
2441 }
2442
2443 /**
2444  *      __skb_gso_segment - Perform segmentation on skb.
2445  *      @skb: buffer to segment
2446  *      @features: features for the output path (see dev->features)
2447  *      @tx_path: whether it is called in TX path
2448  *
2449  *      This function segments the given skb and returns a list of segments.
2450  *
2451  *      It may return NULL if the skb requires no segmentation.  This is
2452  *      only possible when GSO is used for verifying header integrity.
2453  */
2454 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2455                                   netdev_features_t features, bool tx_path)
2456 {
2457         if (unlikely(skb_needs_check(skb, tx_path))) {
2458                 int err;
2459
2460                 skb_warn_bad_offload(skb);
2461
2462                 err = skb_cow_head(skb, 0);
2463                 if (err < 0)
2464                         return ERR_PTR(err);
2465         }
2466
2467         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2468         SKB_GSO_CB(skb)->encap_level = 0;
2469
2470         skb_reset_mac_header(skb);
2471         skb_reset_mac_len(skb);
2472
2473         return skb_mac_gso_segment(skb, features);
2474 }
2475 EXPORT_SYMBOL(__skb_gso_segment);
2476
2477 /* Take action when hardware reception checksum errors are detected. */
2478 #ifdef CONFIG_BUG
2479 void netdev_rx_csum_fault(struct net_device *dev)
2480 {
2481         if (net_ratelimit()) {
2482                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2483                 dump_stack();
2484         }
2485 }
2486 EXPORT_SYMBOL(netdev_rx_csum_fault);
2487 #endif
2488
2489 /* Actually, we should eliminate this check as soon as we know, that:
2490  * 1. IOMMU is present and allows to map all the memory.
2491  * 2. No high memory really exists on this machine.
2492  */
2493
2494 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2495 {
2496 #ifdef CONFIG_HIGHMEM
2497         int i;
2498         if (!(dev->features & NETIF_F_HIGHDMA)) {
2499                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2500                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2501                         if (PageHighMem(skb_frag_page(frag)))
2502                                 return 1;
2503                 }
2504         }
2505
2506         if (PCI_DMA_BUS_IS_PHYS) {
2507                 struct device *pdev = dev->dev.parent;
2508
2509                 if (!pdev)
2510                         return 0;
2511                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2512                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2513                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2514                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2515                                 return 1;
2516                 }
2517         }
2518 #endif
2519         return 0;
2520 }
2521
2522 /* If MPLS offload request, verify we are testing hardware MPLS features
2523  * instead of standard features for the netdev.
2524  */
2525 #ifdef CONFIG_NET_MPLS_GSO
2526 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2527                                            netdev_features_t features,
2528                                            __be16 type)
2529 {
2530         if (eth_p_mpls(type))
2531                 features &= skb->dev->mpls_features;
2532
2533         return features;
2534 }
2535 #else
2536 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2537                                            netdev_features_t features,
2538                                            __be16 type)
2539 {
2540         return features;
2541 }
2542 #endif
2543
2544 static netdev_features_t harmonize_features(struct sk_buff *skb,
2545         netdev_features_t features)
2546 {
2547         int tmp;
2548         __be16 type;
2549
2550         type = skb_network_protocol(skb, &tmp);
2551         features = net_mpls_features(skb, features, type);
2552
2553         if (skb->ip_summed != CHECKSUM_NONE &&
2554             !can_checksum_protocol(features, type)) {
2555                 features &= ~NETIF_F_ALL_CSUM;
2556         } else if (illegal_highdma(skb->dev, skb)) {
2557                 features &= ~NETIF_F_SG;
2558         }
2559
2560         return features;
2561 }
2562
2563 netdev_features_t netif_skb_features(struct sk_buff *skb)
2564 {
2565         const struct net_device *dev = skb->dev;
2566         netdev_features_t features = dev->features;
2567         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2568         __be16 protocol = skb->protocol;
2569
2570         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2571                 features &= ~NETIF_F_GSO_MASK;
2572
2573         if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2574                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2575                 protocol = veh->h_vlan_encapsulated_proto;
2576         } else if (!vlan_tx_tag_present(skb)) {
2577                 return harmonize_features(skb, features);
2578         }
2579
2580         features = netdev_intersect_features(features,
2581                                              dev->vlan_features |
2582                                              NETIF_F_HW_VLAN_CTAG_TX |
2583                                              NETIF_F_HW_VLAN_STAG_TX);
2584
2585         if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2586                 features = netdev_intersect_features(features,
2587                                                      NETIF_F_SG |
2588                                                      NETIF_F_HIGHDMA |
2589                                                      NETIF_F_FRAGLIST |
2590                                                      NETIF_F_GEN_CSUM |
2591                                                      NETIF_F_HW_VLAN_CTAG_TX |
2592                                                      NETIF_F_HW_VLAN_STAG_TX);
2593
2594         return harmonize_features(skb, features);
2595 }
2596 EXPORT_SYMBOL(netif_skb_features);
2597
2598 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2599                     struct netdev_queue *txq, bool more)
2600 {
2601         unsigned int len;
2602         int rc;
2603
2604         if (!list_empty(&ptype_all))
2605                 dev_queue_xmit_nit(skb, dev);
2606
2607         len = skb->len;
2608         trace_net_dev_start_xmit(skb, dev);
2609         rc = netdev_start_xmit(skb, dev, txq, more);
2610         trace_net_dev_xmit(skb, rc, dev, len);
2611
2612         return rc;
2613 }
2614
2615 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2616                                     struct netdev_queue *txq, int *ret)
2617 {
2618         struct sk_buff *skb = first;
2619         int rc = NETDEV_TX_OK;
2620
2621         while (skb) {
2622                 struct sk_buff *next = skb->next;
2623
2624                 skb->next = NULL;
2625                 rc = xmit_one(skb, dev, txq, next != NULL);
2626                 if (unlikely(!dev_xmit_complete(rc))) {
2627                         skb->next = next;
2628                         goto out;
2629                 }
2630
2631                 skb = next;
2632                 if (netif_xmit_stopped(txq) && skb) {
2633                         rc = NETDEV_TX_BUSY;
2634                         break;
2635                 }
2636         }
2637
2638 out:
2639         *ret = rc;
2640         return skb;
2641 }
2642
2643 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2644                                           netdev_features_t features)
2645 {
2646         if (vlan_tx_tag_present(skb) &&
2647             !vlan_hw_offload_capable(features, skb->vlan_proto))
2648                 skb = __vlan_hwaccel_push_inside(skb);
2649         return skb;
2650 }
2651
2652 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2653 {
2654         netdev_features_t features;
2655
2656         if (skb->next)
2657                 return skb;
2658
2659         features = netif_skb_features(skb);
2660         skb = validate_xmit_vlan(skb, features);
2661         if (unlikely(!skb))
2662                 goto out_null;
2663
2664         /* If encapsulation offload request, verify we are testing
2665          * hardware encapsulation features instead of standard
2666          * features for the netdev
2667          */
2668         if (skb->encapsulation)
2669                 features &= dev->hw_enc_features;
2670
2671         if (netif_needs_gso(dev, skb, features)) {
2672                 struct sk_buff *segs;
2673
2674                 segs = skb_gso_segment(skb, features);
2675                 if (IS_ERR(segs)) {
2676                         segs = NULL;
2677                 } else if (segs) {
2678                         consume_skb(skb);
2679                         skb = segs;
2680                 }
2681         } else {
2682                 if (skb_needs_linearize(skb, features) &&
2683                     __skb_linearize(skb))
2684                         goto out_kfree_skb;
2685
2686                 /* If packet is not checksummed and device does not
2687                  * support checksumming for this protocol, complete
2688                  * checksumming here.
2689                  */
2690                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2691                         if (skb->encapsulation)
2692                                 skb_set_inner_transport_header(skb,
2693                                                                skb_checksum_start_offset(skb));
2694                         else
2695                                 skb_set_transport_header(skb,
2696                                                          skb_checksum_start_offset(skb));
2697                         if (!(features & NETIF_F_ALL_CSUM) &&
2698                             skb_checksum_help(skb))
2699                                 goto out_kfree_skb;
2700                 }
2701         }
2702
2703         return skb;
2704
2705 out_kfree_skb:
2706         kfree_skb(skb);
2707 out_null:
2708         return NULL;
2709 }
2710
2711 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2712 {
2713         struct sk_buff *next, *head = NULL, *tail;
2714
2715         for (; skb != NULL; skb = next) {
2716                 next = skb->next;
2717                 skb->next = NULL;
2718
2719                 /* in case skb wont be segmented, point to itself */
2720                 skb->prev = skb;
2721
2722                 skb = validate_xmit_skb(skb, dev);
2723                 if (!skb)
2724                         continue;
2725
2726                 if (!head)
2727                         head = skb;
2728                 else
2729                         tail->next = skb;
2730                 /* If skb was segmented, skb->prev points to
2731                  * the last segment. If not, it still contains skb.
2732                  */
2733                 tail = skb->prev;
2734         }
2735         return head;
2736 }
2737
2738 static void qdisc_pkt_len_init(struct sk_buff *skb)
2739 {
2740         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2741
2742         qdisc_skb_cb(skb)->pkt_len = skb->len;
2743
2744         /* To get more precise estimation of bytes sent on wire,
2745          * we add to pkt_len the headers size of all segments
2746          */
2747         if (shinfo->gso_size)  {
2748                 unsigned int hdr_len;
2749                 u16 gso_segs = shinfo->gso_segs;
2750
2751                 /* mac layer + network layer */
2752                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2753
2754                 /* + transport layer */
2755                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2756                         hdr_len += tcp_hdrlen(skb);
2757                 else
2758                         hdr_len += sizeof(struct udphdr);
2759
2760                 if (shinfo->gso_type & SKB_GSO_DODGY)
2761                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2762                                                 shinfo->gso_size);
2763
2764                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2765         }
2766 }
2767
2768 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2769                                  struct net_device *dev,
2770                                  struct netdev_queue *txq)
2771 {
2772         spinlock_t *root_lock = qdisc_lock(q);
2773         bool contended;
2774         int rc;
2775
2776         qdisc_pkt_len_init(skb);
2777         qdisc_calculate_pkt_len(skb, q);
2778         /*
2779          * Heuristic to force contended enqueues to serialize on a
2780          * separate lock before trying to get qdisc main lock.
2781          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2782          * often and dequeue packets faster.
2783          */
2784         contended = qdisc_is_running(q);
2785         if (unlikely(contended))
2786                 spin_lock(&q->busylock);
2787
2788         spin_lock(root_lock);
2789         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2790                 kfree_skb(skb);
2791                 rc = NET_XMIT_DROP;
2792         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2793                    qdisc_run_begin(q)) {
2794                 /*
2795                  * This is a work-conserving queue; there are no old skbs
2796                  * waiting to be sent out; and the qdisc is not running -
2797                  * xmit the skb directly.
2798                  */
2799
2800                 qdisc_bstats_update(q, skb);
2801
2802                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2803                         if (unlikely(contended)) {
2804                                 spin_unlock(&q->busylock);
2805                                 contended = false;
2806                         }
2807                         __qdisc_run(q);
2808                 } else
2809                         qdisc_run_end(q);
2810
2811                 rc = NET_XMIT_SUCCESS;
2812         } else {
2813                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2814                 if (qdisc_run_begin(q)) {
2815                         if (unlikely(contended)) {
2816                                 spin_unlock(&q->busylock);
2817                                 contended = false;
2818                         }
2819                         __qdisc_run(q);
2820                 }
2821         }
2822         spin_unlock(root_lock);
2823         if (unlikely(contended))
2824                 spin_unlock(&q->busylock);
2825         return rc;
2826 }
2827
2828 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2829 static void skb_update_prio(struct sk_buff *skb)
2830 {
2831         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2832
2833         if (!skb->priority && skb->sk && map) {
2834                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2835
2836                 if (prioidx < map->priomap_len)
2837                         skb->priority = map->priomap[prioidx];
2838         }
2839 }
2840 #else
2841 #define skb_update_prio(skb)
2842 #endif
2843
2844 static DEFINE_PER_CPU(int, xmit_recursion);
2845 #define RECURSION_LIMIT 10
2846
2847 /**
2848  *      dev_loopback_xmit - loop back @skb
2849  *      @skb: buffer to transmit
2850  */
2851 int dev_loopback_xmit(struct sk_buff *skb)
2852 {
2853         skb_reset_mac_header(skb);
2854         __skb_pull(skb, skb_network_offset(skb));
2855         skb->pkt_type = PACKET_LOOPBACK;
2856         skb->ip_summed = CHECKSUM_UNNECESSARY;
2857         WARN_ON(!skb_dst(skb));
2858         skb_dst_force(skb);
2859         netif_rx_ni(skb);
2860         return 0;
2861 }
2862 EXPORT_SYMBOL(dev_loopback_xmit);
2863
2864 /**
2865  *      __dev_queue_xmit - transmit a buffer
2866  *      @skb: buffer to transmit
2867  *      @accel_priv: private data used for L2 forwarding offload
2868  *
2869  *      Queue a buffer for transmission to a network device. The caller must
2870  *      have set the device and priority and built the buffer before calling
2871  *      this function. The function can be called from an interrupt.
2872  *
2873  *      A negative errno code is returned on a failure. A success does not
2874  *      guarantee the frame will be transmitted as it may be dropped due
2875  *      to congestion or traffic shaping.
2876  *
2877  * -----------------------------------------------------------------------------------
2878  *      I notice this method can also return errors from the queue disciplines,
2879  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2880  *      be positive.
2881  *
2882  *      Regardless of the return value, the skb is consumed, so it is currently
2883  *      difficult to retry a send to this method.  (You can bump the ref count
2884  *      before sending to hold a reference for retry if you are careful.)
2885  *
2886  *      When calling this method, interrupts MUST be enabled.  This is because
2887  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2888  *          --BLG
2889  */
2890 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2891 {
2892         struct net_device *dev = skb->dev;
2893         struct netdev_queue *txq;
2894         struct Qdisc *q;
2895         int rc = -ENOMEM;
2896
2897         skb_reset_mac_header(skb);
2898
2899         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2900                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2901
2902         /* Disable soft irqs for various locks below. Also
2903          * stops preemption for RCU.
2904          */
2905         rcu_read_lock_bh();
2906
2907         skb_update_prio(skb);
2908
2909         /* If device/qdisc don't need skb->dst, release it right now while
2910          * its hot in this cpu cache.
2911          */
2912         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2913                 skb_dst_drop(skb);
2914         else
2915                 skb_dst_force(skb);
2916
2917         txq = netdev_pick_tx(dev, skb, accel_priv);
2918         q = rcu_dereference_bh(txq->qdisc);
2919
2920 #ifdef CONFIG_NET_CLS_ACT
2921         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2922 #endif
2923         trace_net_dev_queue(skb);
2924         if (q->enqueue) {
2925                 rc = __dev_xmit_skb(skb, q, dev, txq);
2926                 goto out;
2927         }
2928
2929         /* The device has no queue. Common case for software devices:
2930            loopback, all the sorts of tunnels...
2931
2932            Really, it is unlikely that netif_tx_lock protection is necessary
2933            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2934            counters.)
2935            However, it is possible, that they rely on protection
2936            made by us here.
2937
2938            Check this and shot the lock. It is not prone from deadlocks.
2939            Either shot noqueue qdisc, it is even simpler 8)
2940          */
2941         if (dev->flags & IFF_UP) {
2942                 int cpu = smp_processor_id(); /* ok because BHs are off */
2943
2944                 if (txq->xmit_lock_owner != cpu) {
2945
2946                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2947                                 goto recursion_alert;
2948
2949                         skb = validate_xmit_skb(skb, dev);
2950                         if (!skb)
2951                                 goto drop;
2952
2953                         HARD_TX_LOCK(dev, txq, cpu);
2954
2955                         if (!netif_xmit_stopped(txq)) {
2956                                 __this_cpu_inc(xmit_recursion);
2957                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2958                                 __this_cpu_dec(xmit_recursion);
2959                                 if (dev_xmit_complete(rc)) {
2960                                         HARD_TX_UNLOCK(dev, txq);
2961                                         goto out;
2962                                 }
2963                         }
2964                         HARD_TX_UNLOCK(dev, txq);
2965                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2966                                              dev->name);
2967                 } else {
2968                         /* Recursion is detected! It is possible,
2969                          * unfortunately
2970                          */
2971 recursion_alert:
2972                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2973                                              dev->name);
2974                 }
2975         }
2976
2977         rc = -ENETDOWN;
2978 drop:
2979         rcu_read_unlock_bh();
2980
2981         atomic_long_inc(&dev->tx_dropped);
2982         kfree_skb_list(skb);
2983         return rc;
2984 out:
2985         rcu_read_unlock_bh();
2986         return rc;
2987 }
2988
2989 int dev_queue_xmit(struct sk_buff *skb)
2990 {
2991         return __dev_queue_xmit(skb, NULL);
2992 }
2993 EXPORT_SYMBOL(dev_queue_xmit);
2994
2995 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2996 {
2997         return __dev_queue_xmit(skb, accel_priv);
2998 }
2999 EXPORT_SYMBOL(dev_queue_xmit_accel);
3000
3001
3002 /*=======================================================================
3003                         Receiver routines
3004   =======================================================================*/
3005
3006 int netdev_max_backlog __read_mostly = 1000;
3007 EXPORT_SYMBOL(netdev_max_backlog);
3008
3009 int netdev_tstamp_prequeue __read_mostly = 1;
3010 int netdev_budget __read_mostly = 300;
3011 int weight_p __read_mostly = 64;            /* old backlog weight */
3012
3013 /* Called with irq disabled */
3014 static inline void ____napi_schedule(struct softnet_data *sd,
3015                                      struct napi_struct *napi)
3016 {
3017         list_add_tail(&napi->poll_list, &sd->poll_list);
3018         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3019 }
3020
3021 #ifdef CONFIG_RPS
3022
3023 /* One global table that all flow-based protocols share. */
3024 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3025 EXPORT_SYMBOL(rps_sock_flow_table);
3026
3027 struct static_key rps_needed __read_mostly;
3028
3029 static struct rps_dev_flow *
3030 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3031             struct rps_dev_flow *rflow, u16 next_cpu)
3032 {
3033         if (next_cpu != RPS_NO_CPU) {
3034 #ifdef CONFIG_RFS_ACCEL
3035                 struct netdev_rx_queue *rxqueue;
3036                 struct rps_dev_flow_table *flow_table;
3037                 struct rps_dev_flow *old_rflow;
3038                 u32 flow_id;
3039                 u16 rxq_index;
3040                 int rc;
3041
3042                 /* Should we steer this flow to a different hardware queue? */
3043                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3044                     !(dev->features & NETIF_F_NTUPLE))
3045                         goto out;
3046                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3047                 if (rxq_index == skb_get_rx_queue(skb))
3048                         goto out;
3049
3050                 rxqueue = dev->_rx + rxq_index;
3051                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3052                 if (!flow_table)
3053                         goto out;
3054                 flow_id = skb_get_hash(skb) & flow_table->mask;
3055                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3056                                                         rxq_index, flow_id);
3057                 if (rc < 0)
3058                         goto out;
3059                 old_rflow = rflow;
3060                 rflow = &flow_table->flows[flow_id];
3061                 rflow->filter = rc;
3062                 if (old_rflow->filter == rflow->filter)
3063                         old_rflow->filter = RPS_NO_FILTER;
3064         out:
3065 #endif
3066                 rflow->last_qtail =
3067                         per_cpu(softnet_data, next_cpu).input_queue_head;
3068         }
3069
3070         rflow->cpu = next_cpu;
3071         return rflow;
3072 }
3073
3074 /*
3075  * get_rps_cpu is called from netif_receive_skb and returns the target
3076  * CPU from the RPS map of the receiving queue for a given skb.
3077  * rcu_read_lock must be held on entry.
3078  */
3079 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3080                        struct rps_dev_flow **rflowp)
3081 {
3082         struct netdev_rx_queue *rxqueue;
3083         struct rps_map *map;
3084         struct rps_dev_flow_table *flow_table;
3085         struct rps_sock_flow_table *sock_flow_table;
3086         int cpu = -1;
3087         u16 tcpu;
3088         u32 hash;
3089
3090         if (skb_rx_queue_recorded(skb)) {
3091                 u16 index = skb_get_rx_queue(skb);
3092                 if (unlikely(index >= dev->real_num_rx_queues)) {
3093                         WARN_ONCE(dev->real_num_rx_queues > 1,
3094                                   "%s received packet on queue %u, but number "
3095                                   "of RX queues is %u\n",
3096                                   dev->name, index, dev->real_num_rx_queues);
3097                         goto done;
3098                 }
3099                 rxqueue = dev->_rx + index;
3100         } else
3101                 rxqueue = dev->_rx;
3102
3103         map = rcu_dereference(rxqueue->rps_map);
3104         if (map) {
3105                 if (map->len == 1 &&
3106                     !rcu_access_pointer(rxqueue->rps_flow_table)) {
3107                         tcpu = map->cpus[0];
3108                         if (cpu_online(tcpu))
3109                                 cpu = tcpu;
3110                         goto done;
3111                 }
3112         } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3113                 goto done;
3114         }
3115
3116         skb_reset_network_header(skb);
3117         hash = skb_get_hash(skb);
3118         if (!hash)
3119                 goto done;
3120
3121         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3122         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3123         if (flow_table && sock_flow_table) {
3124                 u16 next_cpu;
3125                 struct rps_dev_flow *rflow;
3126
3127                 rflow = &flow_table->flows[hash & flow_table->mask];
3128                 tcpu = rflow->cpu;
3129
3130                 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3131
3132                 /*
3133                  * If the desired CPU (where last recvmsg was done) is
3134                  * different from current CPU (one in the rx-queue flow
3135                  * table entry), switch if one of the following holds:
3136                  *   - Current CPU is unset (equal to RPS_NO_CPU).
3137                  *   - Current CPU is offline.
3138                  *   - The current CPU's queue tail has advanced beyond the
3139                  *     last packet that was enqueued using this table entry.
3140                  *     This guarantees that all previous packets for the flow
3141                  *     have been dequeued, thus preserving in order delivery.
3142                  */
3143                 if (unlikely(tcpu != next_cpu) &&
3144                     (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3145                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3146                       rflow->last_qtail)) >= 0)) {
3147                         tcpu = next_cpu;
3148                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3149                 }
3150
3151                 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3152                         *rflowp = rflow;
3153                         cpu = tcpu;
3154                         goto done;
3155                 }
3156         }
3157
3158         if (map) {
3159                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3160                 if (cpu_online(tcpu)) {
3161                         cpu = tcpu;
3162                         goto done;
3163                 }
3164         }
3165
3166 done:
3167         return cpu;
3168 }
3169
3170 #ifdef CONFIG_RFS_ACCEL
3171
3172 /**
3173  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3174  * @dev: Device on which the filter was set
3175  * @rxq_index: RX queue index
3176  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3177  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3178  *
3179  * Drivers that implement ndo_rx_flow_steer() should periodically call
3180  * this function for each installed filter and remove the filters for
3181  * which it returns %true.
3182  */
3183 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3184                          u32 flow_id, u16 filter_id)
3185 {
3186         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3187         struct rps_dev_flow_table *flow_table;
3188         struct rps_dev_flow *rflow;
3189         bool expire = true;
3190         int cpu;
3191
3192         rcu_read_lock();
3193         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3194         if (flow_table && flow_id <= flow_table->mask) {
3195                 rflow = &flow_table->flows[flow_id];
3196                 cpu = ACCESS_ONCE(rflow->cpu);
3197                 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3198                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3199                            rflow->last_qtail) <
3200                      (int)(10 * flow_table->mask)))
3201                         expire = false;
3202         }
3203         rcu_read_unlock();
3204         return expire;
3205 }
3206 EXPORT_SYMBOL(rps_may_expire_flow);
3207
3208 #endif /* CONFIG_RFS_ACCEL */
3209
3210 /* Called from hardirq (IPI) context */
3211 static void rps_trigger_softirq(void *data)
3212 {
3213         struct softnet_data *sd = data;
3214
3215         ____napi_schedule(sd, &sd->backlog);
3216         sd->received_rps++;
3217 }
3218
3219 #endif /* CONFIG_RPS */
3220
3221 /*
3222  * Check if this softnet_data structure is another cpu one
3223  * If yes, queue it to our IPI list and return 1
3224  * If no, return 0
3225  */
3226 static int rps_ipi_queued(struct softnet_data *sd)
3227 {
3228 #ifdef CONFIG_RPS
3229         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3230
3231         if (sd != mysd) {
3232                 sd->rps_ipi_next = mysd->rps_ipi_list;
3233                 mysd->rps_ipi_list = sd;
3234
3235                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3236                 return 1;
3237         }
3238 #endif /* CONFIG_RPS */
3239         return 0;
3240 }
3241
3242 #ifdef CONFIG_NET_FLOW_LIMIT
3243 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3244 #endif
3245
3246 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3247 {
3248 #ifdef CONFIG_NET_FLOW_LIMIT
3249         struct sd_flow_limit *fl;
3250         struct softnet_data *sd;
3251         unsigned int old_flow, new_flow;
3252
3253         if (qlen < (netdev_max_backlog >> 1))
3254                 return false;
3255
3256         sd = this_cpu_ptr(&softnet_data);
3257
3258         rcu_read_lock();
3259         fl = rcu_dereference(sd->flow_limit);
3260         if (fl) {
3261                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3262                 old_flow = fl->history[fl->history_head];
3263                 fl->history[fl->history_head] = new_flow;
3264
3265                 fl->history_head++;
3266                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3267
3268                 if (likely(fl->buckets[old_flow]))
3269                         fl->buckets[old_flow]--;
3270
3271                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3272                         fl->count++;
3273                         rcu_read_unlock();
3274                         return true;
3275                 }
3276         }
3277         rcu_read_unlock();
3278 #endif
3279         return false;
3280 }
3281
3282 /*
3283  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3284  * queue (may be a remote CPU queue).
3285  */
3286 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3287                               unsigned int *qtail)
3288 {
3289         struct softnet_data *sd;
3290         unsigned long flags;
3291         unsigned int qlen;
3292
3293         sd = &per_cpu(softnet_data, cpu);
3294
3295         local_irq_save(flags);
3296
3297         rps_lock(sd);
3298         qlen = skb_queue_len(&sd->input_pkt_queue);
3299         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3300                 if (qlen) {
3301 enqueue:
3302                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3303                         input_queue_tail_incr_save(sd, qtail);
3304                         rps_unlock(sd);
3305                         local_irq_restore(flags);
3306                         return NET_RX_SUCCESS;
3307                 }
3308
3309                 /* Schedule NAPI for backlog device
3310                  * We can use non atomic operation since we own the queue lock
3311                  */
3312                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3313                         if (!rps_ipi_queued(sd))
3314                                 ____napi_schedule(sd, &sd->backlog);
3315                 }
3316                 goto enqueue;
3317         }
3318
3319         sd->dropped++;
3320         rps_unlock(sd);
3321
3322         local_irq_restore(flags);
3323
3324         atomic_long_inc(&skb->dev->rx_dropped);
3325         kfree_skb(skb);
3326         return NET_RX_DROP;
3327 }
3328
3329 static int netif_rx_internal(struct sk_buff *skb)
3330 {
3331         int ret;
3332
3333         net_timestamp_check(netdev_tstamp_prequeue, skb);
3334
3335         trace_netif_rx(skb);
3336 #ifdef CONFIG_RPS
3337         if (static_key_false(&rps_needed)) {
3338                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3339                 int cpu;
3340
3341                 preempt_disable();
3342                 rcu_read_lock();
3343
3344                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3345                 if (cpu < 0)
3346                         cpu = smp_processor_id();
3347
3348                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3349
3350                 rcu_read_unlock();
3351                 preempt_enable();
3352         } else
3353 #endif
3354         {
3355                 unsigned int qtail;
3356                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3357                 put_cpu();
3358         }
3359         return ret;
3360 }
3361
3362 /**
3363  *      netif_rx        -       post buffer to the network code
3364  *      @skb: buffer to post
3365  *
3366  *      This function receives a packet from a device driver and queues it for
3367  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3368  *      may be dropped during processing for congestion control or by the
3369  *      protocol layers.
3370  *
3371  *      return values:
3372  *      NET_RX_SUCCESS  (no congestion)
3373  *      NET_RX_DROP     (packet was dropped)
3374  *
3375  */
3376
3377 int netif_rx(struct sk_buff *skb)
3378 {
3379         trace_netif_rx_entry(skb);
3380
3381         return netif_rx_internal(skb);
3382 }
3383 EXPORT_SYMBOL(netif_rx);
3384
3385 int netif_rx_ni(struct sk_buff *skb)
3386 {
3387         int err;
3388
3389         trace_netif_rx_ni_entry(skb);
3390
3391         preempt_disable();
3392         err = netif_rx_internal(skb);
3393         if (local_softirq_pending())
3394                 do_softirq();
3395         preempt_enable();
3396
3397         return err;
3398 }
3399 EXPORT_SYMBOL(netif_rx_ni);
3400
3401 static void net_tx_action(struct softirq_action *h)
3402 {
3403         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3404
3405         if (sd->completion_queue) {
3406                 struct sk_buff *clist;
3407
3408                 local_irq_disable();
3409                 clist = sd->completion_queue;
3410                 sd->completion_queue = NULL;
3411                 local_irq_enable();
3412
3413                 while (clist) {
3414                         struct sk_buff *skb = clist;
3415                         clist = clist->next;
3416
3417                         WARN_ON(atomic_read(&skb->users));
3418                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3419                                 trace_consume_skb(skb);
3420                         else
3421                                 trace_kfree_skb(skb, net_tx_action);
3422                         __kfree_skb(skb);
3423                 }
3424         }
3425
3426         if (sd->output_queue) {
3427                 struct Qdisc *head;
3428
3429                 local_irq_disable();
3430                 head = sd->output_queue;
3431                 sd->output_queue = NULL;
3432                 sd->output_queue_tailp = &sd->output_queue;
3433                 local_irq_enable();
3434
3435                 while (head) {
3436                         struct Qdisc *q = head;
3437                         spinlock_t *root_lock;
3438
3439                         head = head->next_sched;
3440
3441                         root_lock = qdisc_lock(q);
3442                         if (spin_trylock(root_lock)) {
3443                                 smp_mb__before_atomic();
3444                                 clear_bit(__QDISC_STATE_SCHED,
3445                                           &q->state);
3446                                 qdisc_run(q);
3447                                 spin_unlock(root_lock);
3448                         } else {
3449                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3450                                               &q->state)) {
3451                                         __netif_reschedule(q);
3452                                 } else {
3453                                         smp_mb__before_atomic();
3454                                         clear_bit(__QDISC_STATE_SCHED,
3455                                                   &q->state);
3456                                 }
3457                         }
3458                 }
3459         }
3460 }
3461
3462 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3463     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3464 /* This hook is defined here for ATM LANE */
3465 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3466                              unsigned char *addr) __read_mostly;
3467 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3468 #endif
3469
3470 #ifdef CONFIG_NET_CLS_ACT
3471 /* TODO: Maybe we should just force sch_ingress to be compiled in
3472  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3473  * a compare and 2 stores extra right now if we dont have it on
3474  * but have CONFIG_NET_CLS_ACT
3475  * NOTE: This doesn't stop any functionality; if you dont have
3476  * the ingress scheduler, you just can't add policies on ingress.
3477  *
3478  */
3479 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3480 {
3481         struct net_device *dev = skb->dev;
3482         u32 ttl = G_TC_RTTL(skb->tc_verd);
3483         int result = TC_ACT_OK;
3484         struct Qdisc *q;
3485
3486         if (unlikely(MAX_RED_LOOP < ttl++)) {
3487                 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3488                                      skb->skb_iif, dev->ifindex);
3489                 return TC_ACT_SHOT;
3490         }
3491
3492         skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3493         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3494
3495         q = rcu_dereference(rxq->qdisc);
3496         if (q != &noop_qdisc) {
3497                 spin_lock(qdisc_lock(q));
3498                 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3499                         result = qdisc_enqueue_root(skb, q);
3500                 spin_unlock(qdisc_lock(q));
3501         }
3502
3503         return result;
3504 }
3505
3506 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3507                                          struct packet_type **pt_prev,
3508                                          int *ret, struct net_device *orig_dev)
3509 {
3510         struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3511
3512         if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3513                 goto out;
3514
3515         if (*pt_prev) {
3516                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3517                 *pt_prev = NULL;
3518         }
3519
3520         switch (ing_filter(skb, rxq)) {
3521         case TC_ACT_SHOT:
3522         case TC_ACT_STOLEN:
3523                 kfree_skb(skb);
3524                 return NULL;
3525         }
3526
3527 out:
3528         skb->tc_verd = 0;
3529         return skb;
3530 }
3531 #endif
3532
3533 /**
3534  *      netdev_rx_handler_register - register receive handler
3535  *      @dev: device to register a handler for
3536  *      @rx_handler: receive handler to register
3537  *      @rx_handler_data: data pointer that is used by rx handler
3538  *
3539  *      Register a receive handler for a device. This handler will then be
3540  *      called from __netif_receive_skb. A negative errno code is returned
3541  *      on a failure.
3542  *
3543  *      The caller must hold the rtnl_mutex.
3544  *
3545  *      For a general description of rx_handler, see enum rx_handler_result.
3546  */
3547 int netdev_rx_handler_register(struct net_device *dev,
3548                                rx_handler_func_t *rx_handler,
3549                                void *rx_handler_data)
3550 {
3551         ASSERT_RTNL();
3552
3553         if (dev->rx_handler)
3554                 return -EBUSY;
3555
3556         /* Note: rx_handler_data must be set before rx_handler */
3557         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3558         rcu_assign_pointer(dev->rx_handler, rx_handler);
3559
3560         return 0;
3561 }
3562 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3563
3564 /**
3565  *      netdev_rx_handler_unregister - unregister receive handler
3566  *      @dev: device to unregister a handler from
3567  *
3568  *      Unregister a receive handler from a device.
3569  *
3570  *      The caller must hold the rtnl_mutex.
3571  */
3572 void netdev_rx_handler_unregister(struct net_device *dev)
3573 {
3574
3575         ASSERT_RTNL();
3576         RCU_INIT_POINTER(dev->rx_handler, NULL);
3577         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3578          * section has a guarantee to see a non NULL rx_handler_data
3579          * as well.
3580          */
3581         synchronize_net();
3582         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3583 }
3584 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3585
3586 /*
3587  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3588  * the special handling of PFMEMALLOC skbs.
3589  */
3590 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3591 {
3592         switch (skb->protocol) {
3593         case htons(ETH_P_ARP):
3594         case htons(ETH_P_IP):
3595         case htons(ETH_P_IPV6):
3596         case htons(ETH_P_8021Q):
3597         case htons(ETH_P_8021AD):
3598                 return true;
3599         default:
3600                 return false;
3601         }
3602 }
3603
3604 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3605 {
3606         struct packet_type *ptype, *pt_prev;
3607         rx_handler_func_t *rx_handler;
3608         struct net_device *orig_dev;
3609         struct net_device *null_or_dev;
3610         bool deliver_exact = false;
3611         int ret = NET_RX_DROP;
3612         __be16 type;
3613
3614         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3615
3616         trace_netif_receive_skb(skb);
3617
3618         orig_dev = skb->dev;
3619
3620         skb_reset_network_header(skb);
3621         if (!skb_transport_header_was_set(skb))
3622                 skb_reset_transport_header(skb);
3623         skb_reset_mac_len(skb);
3624
3625         pt_prev = NULL;
3626
3627         rcu_read_lock();
3628
3629 another_round:
3630         skb->skb_iif = skb->dev->ifindex;
3631
3632         __this_cpu_inc(softnet_data.processed);
3633
3634         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3635             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3636                 skb = skb_vlan_untag(skb);
3637                 if (unlikely(!skb))
3638                         goto unlock;
3639         }
3640
3641 #ifdef CONFIG_NET_CLS_ACT
3642         if (skb->tc_verd & TC_NCLS) {
3643                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3644                 goto ncls;
3645         }
3646 #endif
3647
3648         if (pfmemalloc)
3649                 goto skip_taps;
3650
3651         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3652                 if (!ptype->dev || ptype->dev == skb->dev) {
3653                         if (pt_prev)
3654                                 ret = deliver_skb(skb, pt_prev, orig_dev);
3655                         pt_prev = ptype;
3656                 }
3657         }
3658
3659 skip_taps:
3660 #ifdef CONFIG_NET_CLS_ACT
3661         skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3662         if (!skb)
3663                 goto unlock;
3664 ncls:
3665 #endif
3666
3667         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3668                 goto drop;
3669
3670         if (vlan_tx_tag_present(skb)) {
3671                 if (pt_prev) {
3672                         ret = deliver_skb(skb, pt_prev, orig_dev);
3673                         pt_prev = NULL;
3674                 }
3675                 if (vlan_do_receive(&skb))
3676                         goto another_round;
3677                 else if (unlikely(!skb))
3678                         goto unlock;
3679         }
3680
3681         rx_handler = rcu_dereference(skb->dev->rx_handler);
3682         if (rx_handler) {
3683                 if (pt_prev) {
3684                         ret = deliver_skb(skb, pt_prev, orig_dev);
3685                         pt_prev = NULL;
3686                 }
3687                 switch (rx_handler(&skb)) {
3688                 case RX_HANDLER_CONSUMED:
3689                         ret = NET_RX_SUCCESS;
3690                         goto unlock;
3691                 case RX_HANDLER_ANOTHER:
3692                         goto another_round;
3693                 case RX_HANDLER_EXACT:
3694                         deliver_exact = true;
3695                 case RX_HANDLER_PASS:
3696                         break;
3697                 default:
3698                         BUG();
3699                 }
3700         }
3701
3702         if (unlikely(vlan_tx_tag_present(skb))) {
3703                 if (vlan_tx_tag_get_id(skb))
3704                         skb->pkt_type = PACKET_OTHERHOST;
3705                 /* Note: we might in the future use prio bits
3706                  * and set skb->priority like in vlan_do_receive()
3707                  * For the time being, just ignore Priority Code Point
3708                  */
3709                 skb->vlan_tci = 0;
3710         }
3711
3712         /* deliver only exact match when indicated */
3713         null_or_dev = deliver_exact ? skb->dev : NULL;
3714
3715         type = skb->protocol;
3716         list_for_each_entry_rcu(ptype,
3717                         &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3718                 if (ptype->type == type &&
3719                     (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3720                      ptype->dev == orig_dev)) {
3721                         if (pt_prev)
3722                                 ret = deliver_skb(skb, pt_prev, orig_dev);
3723                         pt_prev = ptype;
3724                 }
3725         }
3726
3727         if (pt_prev) {
3728                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3729                         goto drop;
3730                 else
3731                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3732         } else {
3733 drop:
3734                 atomic_long_inc(&skb->dev->rx_dropped);
3735                 kfree_skb(skb);
3736                 /* Jamal, now you will not able to escape explaining
3737                  * me how you were going to use this. :-)
3738                  */
3739                 ret = NET_RX_DROP;
3740         }
3741
3742 unlock:
3743         rcu_read_unlock();
3744         return ret;
3745 }
3746
3747 static int __netif_receive_skb(struct sk_buff *skb)
3748 {
3749         int ret;
3750
3751         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3752                 unsigned long pflags = current->flags;
3753
3754                 /*
3755                  * PFMEMALLOC skbs are special, they should
3756                  * - be delivered to SOCK_MEMALLOC sockets only
3757                  * - stay away from userspace
3758                  * - have bounded memory usage
3759                  *
3760                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3761                  * context down to all allocation sites.
3762                  */
3763                 current->flags |= PF_MEMALLOC;
3764                 ret = __netif_receive_skb_core(skb, true);
3765                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3766         } else
3767                 ret = __netif_receive_skb_core(skb, false);
3768
3769         return ret;
3770 }
3771
3772 static int netif_receive_skb_internal(struct sk_buff *skb)
3773 {
3774         net_timestamp_check(netdev_tstamp_prequeue, skb);
3775
3776         if (skb_defer_rx_timestamp(skb))
3777                 return NET_RX_SUCCESS;
3778
3779 #ifdef CONFIG_RPS
3780         if (static_key_false(&rps_needed)) {
3781                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3782                 int cpu, ret;
3783
3784                 rcu_read_lock();
3785
3786                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3787
3788                 if (cpu >= 0) {
3789                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3790                         rcu_read_unlock();
3791                         return ret;
3792                 }
3793                 rcu_read_unlock();
3794         }
3795 #endif
3796         return __netif_receive_skb(skb);
3797 }
3798
3799 /**
3800  *      netif_receive_skb - process receive buffer from network
3801  *      @skb: buffer to process
3802  *
3803  *      netif_receive_skb() is the main receive data processing function.
3804  *      It always succeeds. The buffer may be dropped during processing
3805  *      for congestion control or by the protocol layers.
3806  *
3807  *      This function may only be called from softirq context and interrupts
3808  *      should be enabled.
3809  *
3810  *      Return values (usually ignored):
3811  *      NET_RX_SUCCESS: no congestion
3812  *      NET_RX_DROP: packet was dropped
3813  */
3814 int netif_receive_skb(struct sk_buff *skb)
3815 {
3816         trace_netif_receive_skb_entry(skb);
3817
3818         return netif_receive_skb_internal(skb);
3819 }
3820 EXPORT_SYMBOL(netif_receive_skb);
3821
3822 /* Network device is going away, flush any packets still pending
3823  * Called with irqs disabled.
3824  */
3825 static void flush_backlog(void *arg)
3826 {
3827         struct net_device *dev = arg;
3828         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3829         struct sk_buff *skb, *tmp;
3830
3831         rps_lock(sd);
3832         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3833                 if (skb->dev == dev) {
3834                         __skb_unlink(skb, &sd->input_pkt_queue);
3835                         kfree_skb(skb);
3836                         input_queue_head_incr(sd);
3837                 }
3838         }
3839         rps_unlock(sd);
3840
3841         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3842                 if (skb->dev == dev) {
3843                         __skb_unlink(skb, &sd->process_queue);
3844                         kfree_skb(skb);
3845                         input_queue_head_incr(sd);
3846                 }
3847         }
3848 }
3849
3850 static int napi_gro_complete(struct sk_buff *skb)
3851 {
3852         struct packet_offload *ptype;
3853         __be16 type = skb->protocol;
3854         struct list_head *head = &offload_base;
3855         int err = -ENOENT;
3856
3857         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3858
3859         if (NAPI_GRO_CB(skb)->count == 1) {
3860                 skb_shinfo(skb)->gso_size = 0;
3861                 goto out;
3862         }
3863
3864         rcu_read_lock();
3865         list_for_each_entry_rcu(ptype, head, list) {
3866                 if (ptype->type != type || !ptype->callbacks.gro_complete)
3867                         continue;
3868
3869                 err = ptype->callbacks.gro_complete(skb, 0);
3870                 break;
3871         }
3872         rcu_read_unlock();
3873
3874         if (err) {
3875                 WARN_ON(&ptype->list == head);
3876                 kfree_skb(skb);
3877                 return NET_RX_SUCCESS;
3878         }
3879
3880 out:
3881         return netif_receive_skb_internal(skb);
3882 }
3883
3884 /* napi->gro_list contains packets ordered by age.
3885  * youngest packets at the head of it.
3886  * Complete skbs in reverse order to reduce latencies.
3887  */
3888 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3889 {
3890         struct sk_buff *skb, *prev = NULL;
3891
3892         /* scan list and build reverse chain */
3893         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3894                 skb->prev = prev;
3895                 prev = skb;
3896         }
3897
3898         for (skb = prev; skb; skb = prev) {
3899                 skb->next = NULL;
3900
3901                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3902                         return;
3903
3904                 prev = skb->prev;
3905                 napi_gro_complete(skb);
3906                 napi->gro_count--;
3907         }
3908
3909         napi->gro_list = NULL;
3910 }
3911 EXPORT_SYMBOL(napi_gro_flush);
3912
3913 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3914 {
3915         struct sk_buff *p;
3916         unsigned int maclen = skb->dev->hard_header_len;
3917         u32 hash = skb_get_hash_raw(skb);
3918
3919         for (p = napi->gro_list; p; p = p->next) {
3920                 unsigned long diffs;
3921
3922                 NAPI_GRO_CB(p)->flush = 0;
3923
3924                 if (hash != skb_get_hash_raw(p)) {
3925                         NAPI_GRO_CB(p)->same_flow = 0;
3926                         continue;
3927                 }
3928
3929                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3930                 diffs |= p->vlan_tci ^ skb->vlan_tci;
3931                 if (maclen == ETH_HLEN)
3932                         diffs |= compare_ether_header(skb_mac_header(p),
3933                                                       skb_mac_header(skb));
3934                 else if (!diffs)
3935                         diffs = memcmp(skb_mac_header(p),
3936                                        skb_mac_header(skb),
3937                                        maclen);
3938                 NAPI_GRO_CB(p)->same_flow = !diffs;
3939         }
3940 }
3941
3942 static void skb_gro_reset_offset(struct sk_buff *skb)
3943 {
3944         const struct skb_shared_info *pinfo = skb_shinfo(skb);
3945         const skb_frag_t *frag0 = &pinfo->frags[0];
3946
3947         NAPI_GRO_CB(skb)->data_offset = 0;
3948         NAPI_GRO_CB(skb)->frag0 = NULL;
3949         NAPI_GRO_CB(skb)->frag0_len = 0;
3950
3951         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3952             pinfo->nr_frags &&
3953             !PageHighMem(skb_frag_page(frag0))) {
3954                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3955                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3956         }
3957 }
3958
3959 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3960 {
3961         struct skb_shared_info *pinfo = skb_shinfo(skb);
3962
3963         BUG_ON(skb->end - skb->tail < grow);
3964
3965         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3966
3967         skb->data_len -= grow;
3968         skb->tail += grow;
3969
3970         pinfo->frags[0].page_offset += grow;
3971         skb_frag_size_sub(&pinfo->frags[0], grow);
3972
3973         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3974                 skb_frag_unref(skb, 0);
3975                 memmove(pinfo->frags, pinfo->frags + 1,
3976                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3977         }
3978 }
3979
3980 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3981 {
3982         struct sk_buff **pp = NULL;
3983         struct packet_offload *ptype;
3984         __be16 type = skb->protocol;
3985         struct list_head *head = &offload_base;
3986         int same_flow;
3987         enum gro_result ret;
3988         int grow;
3989
3990         if (!(skb->dev->features & NETIF_F_GRO))
3991                 goto normal;
3992
3993         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
3994                 goto normal;
3995
3996         gro_list_prepare(napi, skb);
3997
3998         rcu_read_lock();
3999         list_for_each_entry_rcu(ptype, head, list) {
4000                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4001                         continue;
4002
4003                 skb_set_network_header(skb, skb_gro_offset(skb));
4004                 skb_reset_mac_len(skb);
4005                 NAPI_GRO_CB(skb)->same_flow = 0;
4006                 NAPI_GRO_CB(skb)->flush = 0;
4007                 NAPI_GRO_CB(skb)->free = 0;
4008                 NAPI_GRO_CB(skb)->udp_mark = 0;
4009
4010                 /* Setup for GRO checksum validation */
4011                 switch (skb->ip_summed) {
4012                 case CHECKSUM_COMPLETE:
4013                         NAPI_GRO_CB(skb)->csum = skb->csum;
4014                         NAPI_GRO_CB(skb)->csum_valid = 1;
4015                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4016                         break;
4017                 case CHECKSUM_UNNECESSARY:
4018                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4019                         NAPI_GRO_CB(skb)->csum_valid = 0;
4020                         break;
4021                 default:
4022                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4023                         NAPI_GRO_CB(skb)->csum_valid = 0;
4024                 }
4025
4026                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4027                 break;
4028         }
4029         rcu_read_unlock();
4030
4031         if (&ptype->list == head)
4032                 goto normal;
4033
4034         same_flow = NAPI_GRO_CB(skb)->same_flow;
4035         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4036
4037         if (pp) {
4038                 struct sk_buff *nskb = *pp;
4039
4040                 *pp = nskb->next;
4041                 nskb->next = NULL;
4042                 napi_gro_complete(nskb);
4043                 napi->gro_count--;
4044         }
4045
4046         if (same_flow)
4047                 goto ok;
4048
4049         if (NAPI_GRO_CB(skb)->flush)
4050                 goto normal;
4051
4052         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4053                 struct sk_buff *nskb = napi->gro_list;
4054
4055                 /* locate the end of the list to select the 'oldest' flow */
4056                 while (nskb->next) {
4057                         pp = &nskb->next;
4058                         nskb = *pp;
4059                 }
4060                 *pp = NULL;
4061                 nskb->next = NULL;
4062                 napi_gro_complete(nskb);
4063         } else {
4064                 napi->gro_count++;
4065         }
4066         NAPI_GRO_CB(skb)->count = 1;
4067         NAPI_GRO_CB(skb)->age = jiffies;
4068         NAPI_GRO_CB(skb)->last = skb;
4069         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4070         skb->next = napi->gro_list;
4071         napi->gro_list = skb;
4072         ret = GRO_HELD;
4073
4074 pull:
4075         grow = skb_gro_offset(skb) - skb_headlen(skb);
4076         if (grow > 0)
4077                 gro_pull_from_frag0(skb, grow);
4078 ok:
4079         return ret;
4080
4081 normal:
4082         ret = GRO_NORMAL;
4083         goto pull;
4084 }
4085
4086 struct packet_offload *gro_find_receive_by_type(__be16 type)
4087 {
4088         struct list_head *offload_head = &offload_base;
4089         struct packet_offload *ptype;
4090
4091         list_for_each_entry_rcu(ptype, offload_head, list) {
4092                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4093                         continue;
4094                 return ptype;
4095         }
4096         return NULL;
4097 }
4098 EXPORT_SYMBOL(gro_find_receive_by_type);
4099
4100 struct packet_offload *gro_find_complete_by_type(__be16 type)
4101 {
4102         struct list_head *offload_head = &offload_base;
4103         struct packet_offload *ptype;
4104
4105         list_for_each_entry_rcu(ptype, offload_head, list) {
4106                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4107                         continue;
4108                 return ptype;
4109         }
4110         return NULL;
4111 }
4112 EXPORT_SYMBOL(gro_find_complete_by_type);
4113
4114 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4115 {
4116         switch (ret) {
4117         case GRO_NORMAL:
4118                 if (netif_receive_skb_internal(skb))
4119                         ret = GRO_DROP;
4120                 break;
4121
4122         case GRO_DROP:
4123                 kfree_skb(skb);
4124                 break;
4125
4126         case GRO_MERGED_FREE:
4127                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4128                         kmem_cache_free(skbuff_head_cache, skb);
4129                 else
4130                         __kfree_skb(skb);
4131                 break;
4132
4133         case GRO_HELD:
4134         case GRO_MERGED:
4135                 break;
4136         }
4137
4138         return ret;
4139 }
4140
4141 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4142 {
4143         trace_napi_gro_receive_entry(skb);
4144
4145         skb_gro_reset_offset(skb);
4146
4147         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4148 }
4149 EXPORT_SYMBOL(napi_gro_receive);
4150
4151 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4152 {
4153         if (unlikely(skb->pfmemalloc)) {
4154                 consume_skb(skb);
4155                 return;
4156         }
4157         __skb_pull(skb, skb_headlen(skb));
4158         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4159         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4160         skb->vlan_tci = 0;
4161         skb->dev = napi->dev;
4162         skb->skb_iif = 0;
4163         skb->encapsulation = 0;
4164         skb_shinfo(skb)->gso_type = 0;
4165         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4166
4167         napi->skb = skb;
4168 }
4169
4170 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4171 {
4172         struct sk_buff *skb = napi->skb;
4173
4174         if (!skb) {
4175                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4176                 napi->skb = skb;
4177         }
4178         return skb;
4179 }
4180 EXPORT_SYMBOL(napi_get_frags);
4181
4182 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4183                                       struct sk_buff *skb,
4184                                       gro_result_t ret)
4185 {
4186         switch (ret) {
4187         case GRO_NORMAL:
4188         case GRO_HELD:
4189                 __skb_push(skb, ETH_HLEN);
4190                 skb->protocol = eth_type_trans(skb, skb->dev);
4191                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4192                         ret = GRO_DROP;
4193                 break;
4194
4195         case GRO_DROP:
4196         case GRO_MERGED_FREE:
4197                 napi_reuse_skb(napi, skb);
4198                 break;
4199
4200         case GRO_MERGED:
4201                 break;
4202         }
4203
4204         return ret;
4205 }
4206
4207 /* Upper GRO stack assumes network header starts at gro_offset=0
4208  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4209  * We copy ethernet header into skb->data to have a common layout.
4210  */
4211 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4212 {
4213         struct sk_buff *skb = napi->skb;
4214         const struct ethhdr *eth;
4215         unsigned int hlen = sizeof(*eth);
4216
4217         napi->skb = NULL;
4218
4219         skb_reset_mac_header(skb);
4220         skb_gro_reset_offset(skb);
4221
4222         eth = skb_gro_header_fast(skb, 0);
4223         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4224                 eth = skb_gro_header_slow(skb, hlen, 0);
4225                 if (unlikely(!eth)) {
4226                         napi_reuse_skb(napi, skb);
4227                         return NULL;
4228                 }
4229         } else {
4230                 gro_pull_from_frag0(skb, hlen);
4231                 NAPI_GRO_CB(skb)->frag0 += hlen;
4232                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4233         }
4234         __skb_pull(skb, hlen);
4235
4236         /*
4237          * This works because the only protocols we care about don't require
4238          * special handling.
4239          * We'll fix it up properly in napi_frags_finish()
4240          */
4241         skb->protocol = eth->h_proto;
4242
4243         return skb;
4244 }
4245
4246 gro_result_t napi_gro_frags(struct napi_struct *napi)
4247 {
4248         struct sk_buff *skb = napi_frags_skb(napi);
4249
4250         if (!skb)
4251                 return GRO_DROP;
4252
4253         trace_napi_gro_frags_entry(skb);
4254
4255         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4256 }
4257 EXPORT_SYMBOL(napi_gro_frags);
4258
4259 /* Compute the checksum from gro_offset and return the folded value
4260  * after adding in any pseudo checksum.
4261  */
4262 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4263 {
4264         __wsum wsum;
4265         __sum16 sum;
4266
4267         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4268
4269         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4270         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4271         if (likely(!sum)) {
4272                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4273                     !skb->csum_complete_sw)
4274                         netdev_rx_csum_fault(skb->dev);
4275         }
4276
4277         NAPI_GRO_CB(skb)->csum = wsum;
4278         NAPI_GRO_CB(skb)->csum_valid = 1;
4279
4280         return sum;
4281 }
4282 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4283
4284 /*
4285  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4286  * Note: called with local irq disabled, but exits with local irq enabled.
4287  */
4288 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4289 {
4290 #ifdef CONFIG_RPS
4291         struct softnet_data *remsd = sd->rps_ipi_list;
4292
4293         if (remsd) {
4294                 sd->rps_ipi_list = NULL;
4295
4296                 local_irq_enable();
4297
4298                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4299                 while (remsd) {
4300                         struct softnet_data *next = remsd->rps_ipi_next;
4301
4302                         if (cpu_online(remsd->cpu))
4303                                 smp_call_function_single_async(remsd->cpu,
4304                                                            &remsd->csd);
4305                         remsd = next;
4306                 }
4307         } else
4308 #endif
4309                 local_irq_enable();
4310 }
4311
4312 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4313 {
4314 #ifdef CONFIG_RPS
4315         return sd->rps_ipi_list != NULL;
4316 #else
4317         return false;
4318 #endif
4319 }
4320
4321 static int process_backlog(struct napi_struct *napi, int quota)
4322 {
4323         int work = 0;
4324         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4325
4326         /* Check if we have pending ipi, its better to send them now,
4327          * not waiting net_rx_action() end.
4328          */
4329         if (sd_has_rps_ipi_waiting(sd)) {
4330                 local_irq_disable();
4331                 net_rps_action_and_irq_enable(sd);
4332         }
4333
4334         napi->weight = weight_p;
4335         local_irq_disable();
4336         while (1) {
4337                 struct sk_buff *skb;
4338
4339                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4340                         local_irq_enable();
4341                         __netif_receive_skb(skb);
4342                         local_irq_disable();
4343                         input_queue_head_incr(sd);
4344                         if (++work >= quota) {
4345                                 local_irq_enable();
4346                                 return work;
4347                         }
4348                 }
4349
4350                 rps_lock(sd);
4351                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4352                         /*
4353                          * Inline a custom version of __napi_complete().
4354                          * only current cpu owns and manipulates this napi,
4355                          * and NAPI_STATE_SCHED is the only possible flag set
4356                          * on backlog.
4357                          * We can use a plain write instead of clear_bit(),
4358                          * and we dont need an smp_mb() memory barrier.
4359                          */
4360                         napi->state = 0;
4361                         rps_unlock(sd);
4362
4363                         break;
4364                 }
4365
4366                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4367                                            &sd->process_queue);
4368                 rps_unlock(sd);
4369         }
4370         local_irq_enable();
4371
4372         return work;
4373 }
4374
4375 /**
4376  * __napi_schedule - schedule for receive
4377  * @n: entry to schedule
4378  *
4379  * The entry's receive function will be scheduled to run.
4380  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4381  */
4382 void __napi_schedule(struct napi_struct *n)
4383 {
4384         unsigned long flags;
4385
4386         local_irq_save(flags);
4387         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4388         local_irq_restore(flags);
4389 }
4390 EXPORT_SYMBOL(__napi_schedule);
4391
4392 /**
4393  * __napi_schedule_irqoff - schedule for receive
4394  * @n: entry to schedule
4395  *
4396  * Variant of __napi_schedule() assuming hard irqs are masked
4397  */
4398 void __napi_schedule_irqoff(struct napi_struct *n)
4399 {
4400         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4401 }
4402 EXPORT_SYMBOL(__napi_schedule_irqoff);
4403
4404 void __napi_complete(struct napi_struct *n)
4405 {
4406         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4407
4408         list_del_init(&n->poll_list);
4409         smp_mb__before_atomic();
4410         clear_bit(NAPI_STATE_SCHED, &n->state);
4411 }
4412 EXPORT_SYMBOL(__napi_complete);
4413
4414 void napi_complete_done(struct napi_struct *n, int work_done)
4415 {
4416         unsigned long flags;
4417
4418         /*
4419          * don't let napi dequeue from the cpu poll list
4420          * just in case its running on a different cpu
4421          */
4422         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4423                 return;
4424
4425         if (n->gro_list) {
4426                 unsigned long timeout = 0;
4427
4428                 if (work_done)
4429                         timeout = n->dev->gro_flush_timeout;
4430
4431                 if (timeout)
4432                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4433                                       HRTIMER_MODE_REL_PINNED);
4434                 else
4435                         napi_gro_flush(n, false);
4436         }
4437         if (likely(list_empty(&n->poll_list))) {
4438                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4439         } else {
4440                 /* If n->poll_list is not empty, we need to mask irqs */
4441                 local_irq_save(flags);
4442                 __napi_complete(n);
4443                 local_irq_restore(flags);
4444         }
4445 }
4446 EXPORT_SYMBOL(napi_complete_done);
4447
4448 /* must be called under rcu_read_lock(), as we dont take a reference */
4449 struct napi_struct *napi_by_id(unsigned int napi_id)
4450 {
4451         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4452         struct napi_struct *napi;
4453
4454         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4455                 if (napi->napi_id == napi_id)
4456                         return napi;
4457
4458         return NULL;
4459 }
4460 EXPORT_SYMBOL_GPL(napi_by_id);
4461
4462 void napi_hash_add(struct napi_struct *napi)
4463 {
4464         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4465
4466                 spin_lock(&napi_hash_lock);
4467
4468                 /* 0 is not a valid id, we also skip an id that is taken
4469                  * we expect both events to be extremely rare
4470                  */
4471                 napi->napi_id = 0;
4472                 while (!napi->napi_id) {
4473                         napi->napi_id = ++napi_gen_id;
4474                         if (napi_by_id(napi->napi_id))
4475                                 napi->napi_id = 0;
4476                 }
4477
4478                 hlist_add_head_rcu(&napi->napi_hash_node,
4479                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4480
4481                 spin_unlock(&napi_hash_lock);
4482         }
4483 }
4484 EXPORT_SYMBOL_GPL(napi_hash_add);
4485
4486 /* Warning : caller is responsible to make sure rcu grace period
4487  * is respected before freeing memory containing @napi
4488  */
4489 void napi_hash_del(struct napi_struct *napi)
4490 {
4491         spin_lock(&napi_hash_lock);
4492
4493         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4494                 hlist_del_rcu(&napi->napi_hash_node);
4495
4496         spin_unlock(&napi_hash_lock);
4497 }
4498 EXPORT_SYMBOL_GPL(napi_hash_del);
4499
4500 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4501 {
4502         struct napi_struct *napi;
4503
4504         napi = container_of(timer, struct napi_struct, timer);
4505         if (napi->gro_list)
4506                 napi_schedule(napi);
4507
4508         return HRTIMER_NORESTART;
4509 }
4510
4511 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4512                     int (*poll)(struct napi_struct *, int), int weight)
4513 {
4514         INIT_LIST_HEAD(&napi->poll_list);
4515         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4516         napi->timer.function = napi_watchdog;
4517         napi->gro_count = 0;
4518         napi->gro_list = NULL;
4519         napi->skb = NULL;
4520         napi->poll = poll;
4521         if (weight > NAPI_POLL_WEIGHT)
4522                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4523                             weight, dev->name);
4524         napi->weight = weight;
4525         list_add(&napi->dev_list, &dev->napi_list);
4526         napi->dev = dev;
4527 #ifdef CONFIG_NETPOLL
4528         spin_lock_init(&napi->poll_lock);
4529         napi->poll_owner = -1;
4530 #endif
4531         set_bit(NAPI_STATE_SCHED, &napi->state);
4532 }
4533 EXPORT_SYMBOL(netif_napi_add);
4534
4535 void napi_disable(struct napi_struct *n)
4536 {
4537         might_sleep();
4538         set_bit(NAPI_STATE_DISABLE, &n->state);
4539
4540         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4541                 msleep(1);
4542
4543         hrtimer_cancel(&n->timer);
4544
4545         clear_bit(NAPI_STATE_DISABLE, &n->state);
4546 }
4547 EXPORT_SYMBOL(napi_disable);
4548
4549 void netif_napi_del(struct napi_struct *napi)
4550 {
4551         list_del_init(&napi->dev_list);
4552         napi_free_frags(napi);
4553
4554         kfree_skb_list(napi->gro_list);
4555         napi->gro_list = NULL;
4556         napi->gro_count = 0;
4557 }
4558 EXPORT_SYMBOL(netif_napi_del);
4559
4560 static void net_rx_action(struct softirq_action *h)
4561 {
4562         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4563         unsigned long time_limit = jiffies + 2;
4564         int budget = netdev_budget;
4565         LIST_HEAD(list);
4566         LIST_HEAD(repoll);
4567         void *have;
4568
4569         local_irq_disable();
4570         list_splice_init(&sd->poll_list, &list);
4571         local_irq_enable();
4572
4573         while (!list_empty(&list)) {
4574                 struct napi_struct *n;
4575                 int work, weight;
4576
4577                 /* If softirq window is exhausted then punt.
4578                  * Allow this to run for 2 jiffies since which will allow
4579                  * an average latency of 1.5/HZ.
4580                  */
4581                 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4582                         goto softnet_break;
4583
4584
4585                 n = list_first_entry(&list, struct napi_struct, poll_list);
4586                 list_del_init(&n->poll_list);
4587
4588                 have = netpoll_poll_lock(n);
4589
4590                 weight = n->weight;
4591
4592                 /* This NAPI_STATE_SCHED test is for avoiding a race
4593                  * with netpoll's poll_napi().  Only the entity which
4594                  * obtains the lock and sees NAPI_STATE_SCHED set will
4595                  * actually make the ->poll() call.  Therefore we avoid
4596                  * accidentally calling ->poll() when NAPI is not scheduled.
4597                  */
4598                 work = 0;
4599                 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4600                         work = n->poll(n, weight);
4601                         trace_napi_poll(n);
4602                 }
4603
4604                 WARN_ON_ONCE(work > weight);
4605
4606                 budget -= work;
4607
4608                 /* Drivers must not modify the NAPI state if they
4609                  * consume the entire weight.  In such cases this code
4610                  * still "owns" the NAPI instance and therefore can
4611                  * move the instance around on the list at-will.
4612                  */
4613                 if (unlikely(work == weight)) {
4614                         if (unlikely(napi_disable_pending(n))) {
4615                                 napi_complete(n);
4616                         } else {
4617                                 if (n->gro_list) {
4618                                         /* flush too old packets
4619                                          * If HZ < 1000, flush all packets.
4620                                          */
4621                                         napi_gro_flush(n, HZ >= 1000);
4622                                 }
4623                                 list_add_tail(&n->poll_list, &repoll);
4624                         }
4625                 }
4626
4627                 netpoll_poll_unlock(have);
4628         }
4629
4630         if (!sd_has_rps_ipi_waiting(sd) &&
4631             list_empty(&list) &&
4632             list_empty(&repoll))
4633                 return;
4634 out:
4635         local_irq_disable();
4636
4637         list_splice_tail_init(&sd->poll_list, &list);
4638         list_splice_tail(&repoll, &list);
4639         list_splice(&list, &sd->poll_list);
4640         if (!list_empty(&sd->poll_list))
4641                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4642
4643         net_rps_action_and_irq_enable(sd);
4644
4645         return;
4646
4647 softnet_break:
4648         sd->time_squeeze++;
4649         goto out;
4650 }
4651
4652 struct netdev_adjacent {
4653         struct net_device *dev;
4654
4655         /* upper master flag, there can only be one master device per list */
4656         bool master;
4657
4658         /* counter for the number of times this device was added to us */
4659         u16 ref_nr;
4660
4661         /* private field for the users */
4662         void *private;
4663
4664         struct list_head list;
4665         struct rcu_head rcu;
4666 };
4667
4668 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4669                                                  struct net_device *adj_dev,
4670                                                  struct list_head *adj_list)
4671 {
4672         struct netdev_adjacent *adj;
4673
4674         list_for_each_entry(adj, adj_list, list) {
4675                 if (adj->dev == adj_dev)
4676                         return adj;
4677         }
4678         return NULL;
4679 }
4680
4681 /**
4682  * netdev_has_upper_dev - Check if device is linked to an upper device
4683  * @dev: device
4684  * @upper_dev: upper device to check
4685  *
4686  * Find out if a device is linked to specified upper device and return true
4687  * in case it is. Note that this checks only immediate upper device,
4688  * not through a complete stack of devices. The caller must hold the RTNL lock.
4689  */
4690 bool netdev_has_upper_dev(struct net_device *dev,
4691                           struct net_device *upper_dev)
4692 {
4693         ASSERT_RTNL();
4694
4695         return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4696 }
4697 EXPORT_SYMBOL(netdev_has_upper_dev);
4698
4699 /**
4700  * netdev_has_any_upper_dev - Check if device is linked to some device
4701  * @dev: device
4702  *
4703  * Find out if a device is linked to an upper device and return true in case
4704  * it is. The caller must hold the RTNL lock.
4705  */
4706 static bool netdev_has_any_upper_dev(struct net_device *dev)
4707 {
4708         ASSERT_RTNL();
4709
4710         return !list_empty(&dev->all_adj_list.upper);
4711 }
4712
4713 /**
4714  * netdev_master_upper_dev_get - Get master upper device
4715  * @dev: device
4716  *
4717  * Find a master upper device and return pointer to it or NULL in case
4718  * it's not there. The caller must hold the RTNL lock.
4719  */
4720 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4721 {
4722         struct netdev_adjacent *upper;
4723
4724         ASSERT_RTNL();
4725
4726         if (list_empty(&dev->adj_list.upper))
4727                 return NULL;
4728
4729         upper = list_first_entry(&dev->adj_list.upper,
4730                                  struct netdev_adjacent, list);
4731         if (likely(upper->master))
4732                 return upper->dev;
4733         return NULL;
4734 }
4735 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4736
4737 void *netdev_adjacent_get_private(struct list_head *adj_list)
4738 {
4739         struct netdev_adjacent *adj;
4740
4741         adj = list_entry(adj_list, struct netdev_adjacent, list);
4742
4743         return adj->private;
4744 }
4745 EXPORT_SYMBOL(netdev_adjacent_get_private);
4746
4747 /**
4748  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4749  * @dev: device
4750  * @iter: list_head ** of the current position
4751  *
4752  * Gets the next device from the dev's upper list, starting from iter
4753  * position. The caller must hold RCU read lock.
4754  */
4755 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4756                                                  struct list_head **iter)
4757 {
4758         struct netdev_adjacent *upper;
4759
4760         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4761
4762         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4763
4764         if (&upper->list == &dev->adj_list.upper)
4765                 return NULL;
4766
4767         *iter = &upper->list;
4768
4769         return upper->dev;
4770 }
4771 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4772
4773 /**
4774  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4775  * @dev: device
4776  * @iter: list_head ** of the current position
4777  *
4778  * Gets the next device from the dev's upper list, starting from iter
4779  * position. The caller must hold RCU read lock.
4780  */
4781 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4782                                                      struct list_head **iter)
4783 {
4784         struct netdev_adjacent *upper;
4785
4786         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4787
4788         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4789
4790         if (&upper->list == &dev->all_adj_list.upper)
4791                 return NULL;
4792
4793         *iter = &upper->list;
4794
4795         return upper->dev;
4796 }
4797 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4798
4799 /**
4800  * netdev_lower_get_next_private - Get the next ->private from the
4801  *                                 lower neighbour list
4802  * @dev: device
4803  * @iter: list_head ** of the current position
4804  *
4805  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4806  * list, starting from iter position. The caller must hold either hold the
4807  * RTNL lock or its own locking that guarantees that the neighbour lower
4808  * list will remain unchainged.
4809  */
4810 void *netdev_lower_get_next_private(struct net_device *dev,
4811                                     struct list_head **iter)
4812 {
4813         struct netdev_adjacent *lower;
4814
4815         lower = list_entry(*iter, struct netdev_adjacent, list);
4816
4817         if (&lower->list == &dev->adj_list.lower)
4818                 return NULL;
4819
4820         *iter = lower->list.next;
4821
4822         return lower->private;
4823 }
4824 EXPORT_SYMBOL(netdev_lower_get_next_private);
4825
4826 /**
4827  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4828  *                                     lower neighbour list, RCU
4829  *                                     variant
4830  * @dev: device
4831  * @iter: list_head ** of the current position
4832  *
4833  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4834  * list, starting from iter position. The caller must hold RCU read lock.
4835  */
4836 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4837                                         struct list_head **iter)
4838 {
4839         struct netdev_adjacent *lower;
4840
4841         WARN_ON_ONCE(!rcu_read_lock_held());
4842
4843         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4844
4845         if (&lower->list == &dev->adj_list.lower)
4846                 return NULL;
4847
4848         *iter = &lower->list;
4849
4850         return lower->private;
4851 }
4852 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4853
4854 /**
4855  * netdev_lower_get_next - Get the next device from the lower neighbour
4856  *                         list
4857  * @dev: device
4858  * @iter: list_head ** of the current position
4859  *
4860  * Gets the next netdev_adjacent from the dev's lower neighbour
4861  * list, starting from iter position. The caller must hold RTNL lock or
4862  * its own locking that guarantees that the neighbour lower
4863  * list will remain unchainged.
4864  */
4865 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4866 {
4867         struct netdev_adjacent *lower;
4868
4869         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4870
4871         if (&lower->list == &dev->adj_list.lower)
4872                 return NULL;
4873
4874         *iter = &lower->list;
4875
4876         return lower->dev;
4877 }
4878 EXPORT_SYMBOL(netdev_lower_get_next);
4879
4880 /**
4881  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4882  *                                     lower neighbour list, RCU
4883  *                                     variant
4884  * @dev: device
4885  *
4886  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4887  * list. The caller must hold RCU read lock.
4888  */
4889 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4890 {
4891         struct netdev_adjacent *lower;
4892
4893         lower = list_first_or_null_rcu(&dev->adj_list.lower,
4894                         struct netdev_adjacent, list);
4895         if (lower)
4896                 return lower->private;
4897         return NULL;
4898 }
4899 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4900
4901 /**
4902  * netdev_master_upper_dev_get_rcu - Get master upper device
4903  * @dev: device
4904  *
4905  * Find a master upper device and return pointer to it or NULL in case
4906  * it's not there. The caller must hold the RCU read lock.
4907  */
4908 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4909 {
4910         struct netdev_adjacent *upper;
4911
4912         upper = list_first_or_null_rcu(&dev->adj_list.upper,
4913                                        struct netdev_adjacent, list);
4914         if (upper && likely(upper->master))
4915                 return upper->dev;
4916         return NULL;
4917 }
4918 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4919
4920 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4921                               struct net_device *adj_dev,
4922                               struct list_head *dev_list)
4923 {
4924         char linkname[IFNAMSIZ+7];
4925         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4926                 "upper_%s" : "lower_%s", adj_dev->name);
4927         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4928                                  linkname);
4929 }
4930 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4931                                char *name,
4932                                struct list_head *dev_list)
4933 {
4934         char linkname[IFNAMSIZ+7];
4935         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4936                 "upper_%s" : "lower_%s", name);
4937         sysfs_remove_link(&(dev->dev.kobj), linkname);
4938 }
4939
4940 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4941                                                  struct net_device *adj_dev,
4942                                                  struct list_head *dev_list)
4943 {
4944         return (dev_list == &dev->adj_list.upper ||
4945                 dev_list == &dev->adj_list.lower) &&
4946                 net_eq(dev_net(dev), dev_net(adj_dev));
4947 }
4948
4949 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4950                                         struct net_device *adj_dev,
4951                                         struct list_head *dev_list,
4952                                         void *private, bool master)
4953 {
4954         struct netdev_adjacent *adj;
4955         int ret;
4956
4957         adj = __netdev_find_adj(dev, adj_dev, dev_list);
4958
4959         if (adj) {
4960                 adj->ref_nr++;
4961                 return 0;
4962         }
4963
4964         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4965         if (!adj)
4966                 return -ENOMEM;
4967
4968         adj->dev = adj_dev;
4969         adj->master = master;
4970         adj->ref_nr = 1;
4971         adj->private = private;
4972         dev_hold(adj_dev);
4973
4974         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4975                  adj_dev->name, dev->name, adj_dev->name);
4976
4977         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
4978                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4979                 if (ret)
4980                         goto free_adj;
4981         }
4982
4983         /* Ensure that master link is always the first item in list. */
4984         if (master) {
4985                 ret = sysfs_create_link(&(dev->dev.kobj),
4986                                         &(adj_dev->dev.kobj), "master");
4987                 if (ret)
4988                         goto remove_symlinks;
4989
4990                 list_add_rcu(&adj->list, dev_list);
4991         } else {
4992                 list_add_tail_rcu(&adj->list, dev_list);
4993         }
4994
4995         return 0;
4996
4997 remove_symlinks:
4998         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4999                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5000 free_adj:
5001         kfree(adj);
5002         dev_put(adj_dev);
5003
5004         return ret;
5005 }
5006
5007 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5008                                          struct net_device *adj_dev,
5009                                          struct list_head *dev_list)
5010 {
5011         struct netdev_adjacent *adj;
5012
5013         adj = __netdev_find_adj(dev, adj_dev, dev_list);
5014
5015         if (!adj) {
5016                 pr_err("tried to remove device %s from %s\n",
5017                        dev->name, adj_dev->name);
5018                 BUG();
5019         }
5020
5021         if (adj->ref_nr > 1) {
5022                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5023                          adj->ref_nr-1);
5024                 adj->ref_nr--;
5025                 return;
5026         }
5027
5028         if (adj->master)
5029                 sysfs_remove_link(&(dev->dev.kobj), "master");
5030
5031         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5032                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5033
5034         list_del_rcu(&adj->list);
5035         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5036                  adj_dev->name, dev->name, adj_dev->name);
5037         dev_put(adj_dev);
5038         kfree_rcu(adj, rcu);
5039 }
5040
5041 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5042                                             struct net_device *upper_dev,
5043                                             struct list_head *up_list,
5044                                             struct list_head *down_list,
5045                                             void *private, bool master)
5046 {
5047         int ret;
5048
5049         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5050                                            master);
5051         if (ret)
5052                 return ret;
5053
5054         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5055                                            false);
5056         if (ret) {
5057                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5058                 return ret;
5059         }
5060
5061         return 0;
5062 }
5063
5064 static int __netdev_adjacent_dev_link(struct net_device *dev,
5065                                       struct net_device *upper_dev)
5066 {
5067         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5068                                                 &dev->all_adj_list.upper,
5069                                                 &upper_dev->all_adj_list.lower,
5070                                                 NULL, false);
5071 }
5072
5073 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5074                                                struct net_device *upper_dev,
5075                                                struct list_head *up_list,
5076                                                struct list_head *down_list)
5077 {
5078         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5079         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5080 }
5081
5082 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5083                                          struct net_device *upper_dev)
5084 {
5085         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5086                                            &dev->all_adj_list.upper,
5087                                            &upper_dev->all_adj_list.lower);
5088 }
5089
5090 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5091                                                 struct net_device *upper_dev,
5092                                                 void *private, bool master)
5093 {
5094         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5095
5096         if (ret)
5097                 return ret;
5098
5099         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5100                                                &dev->adj_list.upper,
5101                                                &upper_dev->adj_list.lower,
5102                                                private, master);
5103         if (ret) {
5104                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5105                 return ret;
5106         }
5107
5108         return 0;
5109 }
5110
5111 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5112                                                    struct net_device *upper_dev)
5113 {
5114         __netdev_adjacent_dev_unlink(dev, upper_dev);
5115         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5116                                            &dev->adj_list.upper,
5117                                            &upper_dev->adj_list.lower);
5118 }
5119
5120 static int __netdev_upper_dev_link(struct net_device *dev,
5121                                    struct net_device *upper_dev, bool master,
5122                                    void *private)
5123 {
5124         struct netdev_adjacent *i, *j, *to_i, *to_j;
5125         int ret = 0;
5126
5127         ASSERT_RTNL();
5128
5129         if (dev == upper_dev)
5130                 return -EBUSY;
5131
5132         /* To prevent loops, check if dev is not upper device to upper_dev. */
5133         if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5134                 return -EBUSY;
5135
5136         if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5137                 return -EEXIST;
5138
5139         if (master && netdev_master_upper_dev_get(dev))
5140                 return -EBUSY;
5141
5142         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5143                                                    master);
5144         if (ret)
5145                 return ret;
5146
5147         /* Now that we linked these devs, make all the upper_dev's
5148          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5149          * versa, and don't forget the devices itself. All of these
5150          * links are non-neighbours.
5151          */
5152         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5153                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5154                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5155                                  i->dev->name, j->dev->name);
5156                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5157                         if (ret)
5158                                 goto rollback_mesh;
5159                 }
5160         }
5161
5162         /* add dev to every upper_dev's upper device */
5163         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5164                 pr_debug("linking %s's upper device %s with %s\n",
5165                          upper_dev->name, i->dev->name, dev->name);
5166                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5167                 if (ret)
5168                         goto rollback_upper_mesh;
5169         }
5170
5171         /* add upper_dev to every dev's lower device */
5172         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5173                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5174                          i->dev->name, upper_dev->name);
5175                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5176                 if (ret)
5177                         goto rollback_lower_mesh;
5178         }
5179
5180         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5181         return 0;
5182
5183 rollback_lower_mesh:
5184         to_i = i;
5185         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5186                 if (i == to_i)
5187                         break;
5188                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5189         }
5190
5191         i = NULL;
5192
5193 rollback_upper_mesh:
5194         to_i = i;
5195         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5196                 if (i == to_i)
5197                         break;
5198                 __netdev_adjacent_dev_unlink(dev, i->dev);
5199         }
5200
5201         i = j = NULL;
5202
5203 rollback_mesh:
5204         to_i = i;
5205         to_j = j;
5206         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5207                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5208                         if (i == to_i && j == to_j)
5209                                 break;
5210                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5211                 }
5212                 if (i == to_i)
5213                         break;
5214         }
5215
5216         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5217
5218         return ret;
5219 }
5220
5221 /**
5222  * netdev_upper_dev_link - Add a link to the upper device
5223  * @dev: device
5224  * @upper_dev: new upper device
5225  *
5226  * Adds a link to device which is upper to this one. The caller must hold
5227  * the RTNL lock. On a failure a negative errno code is returned.
5228  * On success the reference counts are adjusted and the function
5229  * returns zero.
5230  */
5231 int netdev_upper_dev_link(struct net_device *dev,
5232                           struct net_device *upper_dev)
5233 {
5234         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5235 }
5236 EXPORT_SYMBOL(netdev_upper_dev_link);
5237
5238 /**
5239  * netdev_master_upper_dev_link - Add a master link to the upper device
5240  * @dev: device
5241  * @upper_dev: new upper device
5242  *
5243  * Adds a link to device which is upper to this one. In this case, only
5244  * one master upper device can be linked, although other non-master devices
5245  * might be linked as well. The caller must hold the RTNL lock.
5246  * On a failure a negative errno code is returned. On success the reference
5247  * counts are adjusted and the function returns zero.
5248  */
5249 int netdev_master_upper_dev_link(struct net_device *dev,
5250                                  struct net_device *upper_dev)
5251 {
5252         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5253 }
5254 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5255
5256 int netdev_master_upper_dev_link_private(struct net_device *dev,
5257                                          struct net_device *upper_dev,
5258                                          void *private)
5259 {
5260         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5261 }
5262 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5263
5264 /**
5265  * netdev_upper_dev_unlink - Removes a link to upper device
5266  * @dev: device
5267  * @upper_dev: new upper device
5268  *
5269  * Removes a link to device which is upper to this one. The caller must hold
5270  * the RTNL lock.
5271  */
5272 void netdev_upper_dev_unlink(struct net_device *dev,
5273                              struct net_device *upper_dev)
5274 {
5275         struct netdev_adjacent *i, *j;
5276         ASSERT_RTNL();
5277
5278         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5279
5280         /* Here is the tricky part. We must remove all dev's lower
5281          * devices from all upper_dev's upper devices and vice
5282          * versa, to maintain the graph relationship.
5283          */
5284         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5285                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5286                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5287
5288         /* remove also the devices itself from lower/upper device
5289          * list
5290          */
5291         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5292                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5293
5294         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5295                 __netdev_adjacent_dev_unlink(dev, i->dev);
5296
5297         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5298 }
5299 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5300
5301 void netdev_adjacent_add_links(struct net_device *dev)
5302 {
5303         struct netdev_adjacent *iter;
5304
5305         struct net *net = dev_net(dev);
5306
5307         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5308                 if (!net_eq(net,dev_net(iter->dev)))
5309                         continue;
5310                 netdev_adjacent_sysfs_add(iter->dev, dev,
5311                                           &iter->dev->adj_list.lower);
5312                 netdev_adjacent_sysfs_add(dev, iter->dev,
5313                                           &dev->adj_list.upper);
5314         }
5315
5316         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5317                 if (!net_eq(net,dev_net(iter->dev)))
5318                         continue;
5319                 netdev_adjacent_sysfs_add(iter->dev, dev,
5320                                           &iter->dev->adj_list.upper);
5321                 netdev_adjacent_sysfs_add(dev, iter->dev,
5322                                           &dev->adj_list.lower);
5323         }
5324 }
5325
5326 void netdev_adjacent_del_links(struct net_device *dev)
5327 {
5328         struct netdev_adjacent *iter;
5329
5330         struct net *net = dev_net(dev);
5331
5332         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5333                 if (!net_eq(net,dev_net(iter->dev)))
5334                         continue;
5335                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5336                                           &iter->dev->adj_list.lower);
5337                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5338                                           &dev->adj_list.upper);
5339         }
5340
5341         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5342                 if (!net_eq(net,dev_net(iter->dev)))
5343                         continue;
5344                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5345                                           &iter->dev->adj_list.upper);
5346                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5347                                           &dev->adj_list.lower);
5348         }
5349 }
5350
5351 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5352 {
5353         struct netdev_adjacent *iter;
5354
5355         struct net *net = dev_net(dev);
5356
5357         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5358                 if (!net_eq(net,dev_net(iter->dev)))
5359                         continue;
5360                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5361                                           &iter->dev->adj_list.lower);
5362                 netdev_adjacent_sysfs_add(iter->dev, dev,
5363                                           &iter->dev->adj_list.lower);
5364         }
5365
5366         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5367                 if (!net_eq(net,dev_net(iter->dev)))
5368                         continue;
5369                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5370                                           &iter->dev->adj_list.upper);
5371                 netdev_adjacent_sysfs_add(iter->dev, dev,
5372                                           &iter->dev->adj_list.upper);
5373         }
5374 }
5375
5376 void *netdev_lower_dev_get_private(struct net_device *dev,
5377                                    struct net_device *lower_dev)
5378 {
5379         struct netdev_adjacent *lower;
5380
5381         if (!lower_dev)
5382                 return NULL;
5383         lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5384         if (!lower)
5385                 return NULL;
5386
5387         return lower->private;
5388 }
5389 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5390
5391
5392 int dev_get_nest_level(struct net_device *dev,
5393                        bool (*type_check)(struct net_device *dev))
5394 {
5395         struct net_device *lower = NULL;
5396         struct list_head *iter;
5397         int max_nest = -1;
5398         int nest;
5399
5400         ASSERT_RTNL();
5401
5402         netdev_for_each_lower_dev(dev, lower, iter) {
5403                 nest = dev_get_nest_level(lower, type_check);
5404                 if (max_nest < nest)
5405                         max_nest = nest;
5406         }
5407
5408         if (type_check(dev))
5409                 max_nest++;
5410
5411         return max_nest;
5412 }
5413 EXPORT_SYMBOL(dev_get_nest_level);
5414
5415 static void dev_change_rx_flags(struct net_device *dev, int flags)
5416 {
5417         const struct net_device_ops *ops = dev->netdev_ops;
5418
5419         if (ops->ndo_change_rx_flags)
5420                 ops->ndo_change_rx_flags(dev, flags);
5421 }
5422
5423 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5424 {
5425         unsigned int old_flags = dev->flags;
5426         kuid_t uid;
5427         kgid_t gid;
5428
5429         ASSERT_RTNL();
5430
5431         dev->flags |= IFF_PROMISC;
5432         dev->promiscuity += inc;
5433         if (dev->promiscuity == 0) {
5434                 /*
5435                  * Avoid overflow.
5436                  * If inc causes overflow, untouch promisc and return error.
5437                  */
5438                 if (inc < 0)
5439                         dev->flags &= ~IFF_PROMISC;
5440                 else {
5441                         dev->promiscuity -= inc;
5442                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5443                                 dev->name);
5444                         return -EOVERFLOW;
5445                 }
5446         }
5447         if (dev->flags != old_flags) {
5448                 pr_info("device %s %s promiscuous mode\n",
5449                         dev->name,
5450                         dev->flags & IFF_PROMISC ? "entered" : "left");
5451                 if (audit_enabled) {
5452                         current_uid_gid(&uid, &gid);
5453                         audit_log(current->audit_context, GFP_ATOMIC,
5454                                 AUDIT_ANOM_PROMISCUOUS,
5455                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5456                                 dev->name, (dev->flags & IFF_PROMISC),
5457                                 (old_flags & IFF_PROMISC),
5458                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5459                                 from_kuid(&init_user_ns, uid),
5460                                 from_kgid(&init_user_ns, gid),
5461                                 audit_get_sessionid(current));
5462                 }
5463
5464                 dev_change_rx_flags(dev, IFF_PROMISC);
5465         }
5466         if (notify)
5467                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5468         return 0;
5469 }
5470
5471 /**
5472  *      dev_set_promiscuity     - update promiscuity count on a device
5473  *      @dev: device
5474  *      @inc: modifier
5475  *
5476  *      Add or remove promiscuity from a device. While the count in the device
5477  *      remains above zero the interface remains promiscuous. Once it hits zero
5478  *      the device reverts back to normal filtering operation. A negative inc
5479  *      value is used to drop promiscuity on the device.
5480  *      Return 0 if successful or a negative errno code on error.
5481  */
5482 int dev_set_promiscuity(struct net_device *dev, int inc)
5483 {
5484         unsigned int old_flags = dev->flags;
5485         int err;
5486
5487         err = __dev_set_promiscuity(dev, inc, true);
5488         if (err < 0)
5489                 return err;
5490         if (dev->flags != old_flags)
5491                 dev_set_rx_mode(dev);
5492         return err;
5493 }
5494 EXPORT_SYMBOL(dev_set_promiscuity);
5495
5496 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5497 {
5498         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5499
5500         ASSERT_RTNL();
5501
5502         dev->flags |= IFF_ALLMULTI;
5503         dev->allmulti += inc;
5504         if (dev->allmulti == 0) {
5505                 /*
5506                  * Avoid overflow.
5507                  * If inc causes overflow, untouch allmulti and return error.
5508                  */
5509                 if (inc < 0)
5510                         dev->flags &= ~IFF_ALLMULTI;
5511                 else {
5512                         dev->allmulti -= inc;
5513                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5514                                 dev->name);
5515                         return -EOVERFLOW;
5516                 }
5517         }
5518         if (dev->flags ^ old_flags) {
5519                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5520                 dev_set_rx_mode(dev);
5521                 if (notify)
5522                         __dev_notify_flags(dev, old_flags,
5523                                            dev->gflags ^ old_gflags);
5524         }
5525         return 0;
5526 }
5527
5528 /**
5529  *      dev_set_allmulti        - update allmulti count on a device
5530  *      @dev: device
5531  *      @inc: modifier
5532  *
5533  *      Add or remove reception of all multicast frames to a device. While the
5534  *      count in the device remains above zero the interface remains listening
5535  *      to all interfaces. Once it hits zero the device reverts back to normal
5536  *      filtering operation. A negative @inc value is used to drop the counter
5537  *      when releasing a resource needing all multicasts.
5538  *      Return 0 if successful or a negative errno code on error.
5539  */
5540
5541 int dev_set_allmulti(struct net_device *dev, int inc)
5542 {
5543         return __dev_set_allmulti(dev, inc, true);
5544 }
5545 EXPORT_SYMBOL(dev_set_allmulti);
5546
5547 /*
5548  *      Upload unicast and multicast address lists to device and
5549  *      configure RX filtering. When the device doesn't support unicast
5550  *      filtering it is put in promiscuous mode while unicast addresses
5551  *      are present.
5552  */
5553 void __dev_set_rx_mode(struct net_device *dev)
5554 {
5555         const struct net_device_ops *ops = dev->netdev_ops;
5556
5557         /* dev_open will call this function so the list will stay sane. */
5558         if (!(dev->flags&IFF_UP))
5559                 return;
5560
5561         if (!netif_device_present(dev))
5562                 return;
5563
5564         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5565                 /* Unicast addresses changes may only happen under the rtnl,
5566                  * therefore calling __dev_set_promiscuity here is safe.
5567                  */
5568                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5569                         __dev_set_promiscuity(dev, 1, false);
5570                         dev->uc_promisc = true;
5571                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5572                         __dev_set_promiscuity(dev, -1, false);
5573                         dev->uc_promisc = false;
5574                 }
5575         }
5576
5577         if (ops->ndo_set_rx_mode)
5578                 ops->ndo_set_rx_mode(dev);
5579 }
5580
5581 void dev_set_rx_mode(struct net_device *dev)
5582 {
5583         netif_addr_lock_bh(dev);
5584         __dev_set_rx_mode(dev);
5585         netif_addr_unlock_bh(dev);
5586 }
5587
5588 /**
5589  *      dev_get_flags - get flags reported to userspace
5590  *      @dev: device
5591  *
5592  *      Get the combination of flag bits exported through APIs to userspace.
5593  */
5594 unsigned int dev_get_flags(const struct net_device *dev)
5595 {
5596         unsigned int flags;
5597
5598         flags = (dev->flags & ~(IFF_PROMISC |
5599                                 IFF_ALLMULTI |
5600                                 IFF_RUNNING |
5601                                 IFF_LOWER_UP |
5602                                 IFF_DORMANT)) |
5603                 (dev->gflags & (IFF_PROMISC |
5604                                 IFF_ALLMULTI));
5605
5606         if (netif_running(dev)) {
5607                 if (netif_oper_up(dev))
5608                         flags |= IFF_RUNNING;
5609                 if (netif_carrier_ok(dev))
5610                         flags |= IFF_LOWER_UP;
5611                 if (netif_dormant(dev))
5612                         flags |= IFF_DORMANT;
5613         }
5614
5615         return flags;
5616 }
5617 EXPORT_SYMBOL(dev_get_flags);
5618
5619 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5620 {
5621         unsigned int old_flags = dev->flags;
5622         int ret;
5623
5624         ASSERT_RTNL();
5625
5626         /*
5627          *      Set the flags on our device.
5628          */
5629
5630         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5631                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5632                                IFF_AUTOMEDIA)) |
5633                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5634                                     IFF_ALLMULTI));
5635
5636         /*
5637          *      Load in the correct multicast list now the flags have changed.
5638          */
5639
5640         if ((old_flags ^ flags) & IFF_MULTICAST)
5641                 dev_change_rx_flags(dev, IFF_MULTICAST);
5642
5643         dev_set_rx_mode(dev);
5644
5645         /*
5646          *      Have we downed the interface. We handle IFF_UP ourselves
5647          *      according to user attempts to set it, rather than blindly
5648          *      setting it.
5649          */
5650
5651         ret = 0;
5652         if ((old_flags ^ flags) & IFF_UP)
5653                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5654
5655         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5656                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5657                 unsigned int old_flags = dev->flags;
5658
5659                 dev->gflags ^= IFF_PROMISC;
5660
5661                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5662                         if (dev->flags != old_flags)
5663                                 dev_set_rx_mode(dev);
5664         }
5665
5666         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5667            is important. Some (broken) drivers set IFF_PROMISC, when
5668            IFF_ALLMULTI is requested not asking us and not reporting.
5669          */
5670         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5671                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5672
5673                 dev->gflags ^= IFF_ALLMULTI;
5674                 __dev_set_allmulti(dev, inc, false);
5675         }
5676
5677         return ret;
5678 }
5679
5680 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5681                         unsigned int gchanges)
5682 {
5683         unsigned int changes = dev->flags ^ old_flags;
5684
5685         if (gchanges)
5686                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5687
5688         if (changes & IFF_UP) {
5689                 if (dev->flags & IFF_UP)
5690                         call_netdevice_notifiers(NETDEV_UP, dev);
5691                 else
5692                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5693         }
5694
5695         if (dev->flags & IFF_UP &&
5696             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5697                 struct netdev_notifier_change_info change_info;
5698
5699                 change_info.flags_changed = changes;
5700                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5701                                               &change_info.info);
5702         }
5703 }
5704
5705 /**
5706  *      dev_change_flags - change device settings
5707  *      @dev: device
5708  *      @flags: device state flags
5709  *
5710  *      Change settings on device based state flags. The flags are
5711  *      in the userspace exported format.
5712  */
5713 int dev_change_flags(struct net_device *dev, unsigned int flags)
5714 {
5715         int ret;
5716         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5717
5718         ret = __dev_change_flags(dev, flags);
5719         if (ret < 0)
5720                 return ret;
5721
5722         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5723         __dev_notify_flags(dev, old_flags, changes);
5724         return ret;
5725 }
5726 EXPORT_SYMBOL(dev_change_flags);
5727
5728 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5729 {
5730         const struct net_device_ops *ops = dev->netdev_ops;
5731
5732         if (ops->ndo_change_mtu)
5733                 return ops->ndo_change_mtu(dev, new_mtu);
5734
5735         dev->mtu = new_mtu;
5736         return 0;
5737 }
5738
5739 /**
5740  *      dev_set_mtu - Change maximum transfer unit
5741  *      @dev: device
5742  *      @new_mtu: new transfer unit
5743  *
5744  *      Change the maximum transfer size of the network device.
5745  */
5746 int dev_set_mtu(struct net_device *dev, int new_mtu)
5747 {
5748         int err, orig_mtu;
5749
5750         if (new_mtu == dev->mtu)
5751                 return 0;
5752
5753         /*      MTU must be positive.    */
5754         if (new_mtu < 0)
5755                 return -EINVAL;
5756
5757         if (!netif_device_present(dev))
5758                 return -ENODEV;
5759
5760         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5761         err = notifier_to_errno(err);
5762         if (err)
5763                 return err;
5764
5765         orig_mtu = dev->mtu;
5766         err = __dev_set_mtu(dev, new_mtu);
5767
5768         if (!err) {
5769                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5770                 err = notifier_to_errno(err);
5771                 if (err) {
5772                         /* setting mtu back and notifying everyone again,
5773                          * so that they have a chance to revert changes.
5774                          */
5775                         __dev_set_mtu(dev, orig_mtu);
5776                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5777                 }
5778         }
5779         return err;
5780 }
5781 EXPORT_SYMBOL(dev_set_mtu);
5782
5783 /**
5784  *      dev_set_group - Change group this device belongs to
5785  *      @dev: device
5786  *      @new_group: group this device should belong to
5787  */
5788 void dev_set_group(struct net_device *dev, int new_group)
5789 {
5790         dev->group = new_group;
5791 }
5792 EXPORT_SYMBOL(dev_set_group);
5793
5794 /**
5795  *      dev_set_mac_address - Change Media Access Control Address
5796  *      @dev: device
5797  *      @sa: new address
5798  *
5799  *      Change the hardware (MAC) address of the device
5800  */
5801 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5802 {
5803         const struct net_device_ops *ops = dev->netdev_ops;
5804         int err;
5805
5806         if (!ops->ndo_set_mac_address)
5807                 return -EOPNOTSUPP;
5808         if (sa->sa_family != dev->type)
5809                 return -EINVAL;
5810         if (!netif_device_present(dev))
5811                 return -ENODEV;
5812         err = ops->ndo_set_mac_address(dev, sa);
5813         if (err)
5814                 return err;
5815         dev->addr_assign_type = NET_ADDR_SET;
5816         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5817         add_device_randomness(dev->dev_addr, dev->addr_len);
5818         return 0;
5819 }
5820 EXPORT_SYMBOL(dev_set_mac_address);
5821
5822 /**
5823  *      dev_change_carrier - Change device carrier
5824  *      @dev: device
5825  *      @new_carrier: new value
5826  *
5827  *      Change device carrier
5828  */
5829 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5830 {
5831         const struct net_device_ops *ops = dev->netdev_ops;
5832
5833         if (!ops->ndo_change_carrier)
5834                 return -EOPNOTSUPP;
5835         if (!netif_device_present(dev))
5836                 return -ENODEV;
5837         return ops->ndo_change_carrier(dev, new_carrier);
5838 }
5839 EXPORT_SYMBOL(dev_change_carrier);
5840
5841 /**
5842  *      dev_get_phys_port_id - Get device physical port ID
5843  *      @dev: device
5844  *      @ppid: port ID
5845  *
5846  *      Get device physical port ID
5847  */
5848 int dev_get_phys_port_id(struct net_device *dev,
5849                          struct netdev_phys_item_id *ppid)
5850 {
5851         const struct net_device_ops *ops = dev->netdev_ops;
5852
5853         if (!ops->ndo_get_phys_port_id)
5854                 return -EOPNOTSUPP;
5855         return ops->ndo_get_phys_port_id(dev, ppid);
5856 }
5857 EXPORT_SYMBOL(dev_get_phys_port_id);
5858
5859 /**
5860  *      dev_new_index   -       allocate an ifindex
5861  *      @net: the applicable net namespace
5862  *
5863  *      Returns a suitable unique value for a new device interface
5864  *      number.  The caller must hold the rtnl semaphore or the
5865  *      dev_base_lock to be sure it remains unique.
5866  */
5867 static int dev_new_index(struct net *net)
5868 {
5869         int ifindex = net->ifindex;
5870         for (;;) {
5871                 if (++ifindex <= 0)
5872                         ifindex = 1;
5873                 if (!__dev_get_by_index(net, ifindex))
5874                         return net->ifindex = ifindex;
5875         }
5876 }
5877
5878 /* Delayed registration/unregisteration */
5879 static LIST_HEAD(net_todo_list);
5880 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5881
5882 static void net_set_todo(struct net_device *dev)
5883 {
5884         list_add_tail(&dev->todo_list, &net_todo_list);
5885         dev_net(dev)->dev_unreg_count++;
5886 }
5887
5888 static void rollback_registered_many(struct list_head *head)
5889 {
5890         struct net_device *dev, *tmp;
5891         LIST_HEAD(close_head);
5892
5893         BUG_ON(dev_boot_phase);
5894         ASSERT_RTNL();
5895
5896         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5897                 /* Some devices call without registering
5898                  * for initialization unwind. Remove those
5899                  * devices and proceed with the remaining.
5900                  */
5901                 if (dev->reg_state == NETREG_UNINITIALIZED) {
5902                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5903                                  dev->name, dev);
5904
5905                         WARN_ON(1);
5906                         list_del(&dev->unreg_list);
5907                         continue;
5908                 }
5909                 dev->dismantle = true;
5910                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5911         }
5912
5913         /* If device is running, close it first. */
5914         list_for_each_entry(dev, head, unreg_list)
5915                 list_add_tail(&dev->close_list, &close_head);
5916         dev_close_many(&close_head);
5917
5918         list_for_each_entry(dev, head, unreg_list) {
5919                 /* And unlink it from device chain. */
5920                 unlist_netdevice(dev);
5921
5922                 dev->reg_state = NETREG_UNREGISTERING;
5923         }
5924
5925         synchronize_net();
5926
5927         list_for_each_entry(dev, head, unreg_list) {
5928                 struct sk_buff *skb = NULL;
5929
5930                 /* Shutdown queueing discipline. */
5931                 dev_shutdown(dev);
5932
5933
5934                 /* Notify protocols, that we are about to destroy
5935                    this device. They should clean all the things.
5936                 */
5937                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5938
5939                 if (!dev->rtnl_link_ops ||
5940                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5941                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
5942                                                      GFP_KERNEL);
5943
5944                 /*
5945                  *      Flush the unicast and multicast chains
5946                  */
5947                 dev_uc_flush(dev);
5948                 dev_mc_flush(dev);
5949
5950                 if (dev->netdev_ops->ndo_uninit)
5951                         dev->netdev_ops->ndo_uninit(dev);
5952
5953                 if (skb)
5954                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
5955
5956                 /* Notifier chain MUST detach us all upper devices. */
5957                 WARN_ON(netdev_has_any_upper_dev(dev));
5958
5959                 /* Remove entries from kobject tree */
5960                 netdev_unregister_kobject(dev);
5961 #ifdef CONFIG_XPS
5962                 /* Remove XPS queueing entries */
5963                 netif_reset_xps_queues_gt(dev, 0);
5964 #endif
5965         }
5966
5967         synchronize_net();
5968
5969         list_for_each_entry(dev, head, unreg_list)
5970                 dev_put(dev);
5971 }
5972
5973 static void rollback_registered(struct net_device *dev)
5974 {
5975         LIST_HEAD(single);
5976
5977         list_add(&dev->unreg_list, &single);
5978         rollback_registered_many(&single);
5979         list_del(&single);
5980 }
5981
5982 static netdev_features_t netdev_fix_features(struct net_device *dev,
5983         netdev_features_t features)
5984 {
5985         /* Fix illegal checksum combinations */
5986         if ((features & NETIF_F_HW_CSUM) &&
5987             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5988                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5989                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5990         }
5991
5992         /* TSO requires that SG is present as well. */
5993         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5994                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5995                 features &= ~NETIF_F_ALL_TSO;
5996         }
5997
5998         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5999                                         !(features & NETIF_F_IP_CSUM)) {
6000                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6001                 features &= ~NETIF_F_TSO;
6002                 features &= ~NETIF_F_TSO_ECN;
6003         }
6004
6005         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6006                                          !(features & NETIF_F_IPV6_CSUM)) {
6007                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6008                 features &= ~NETIF_F_TSO6;
6009         }
6010
6011         /* TSO ECN requires that TSO is present as well. */
6012         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6013                 features &= ~NETIF_F_TSO_ECN;
6014
6015         /* Software GSO depends on SG. */
6016         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6017                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6018                 features &= ~NETIF_F_GSO;
6019         }
6020
6021         /* UFO needs SG and checksumming */
6022         if (features & NETIF_F_UFO) {
6023                 /* maybe split UFO into V4 and V6? */
6024                 if (!((features & NETIF_F_GEN_CSUM) ||
6025                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6026                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6027                         netdev_dbg(dev,
6028                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6029                         features &= ~NETIF_F_UFO;
6030                 }
6031
6032                 if (!(features & NETIF_F_SG)) {
6033                         netdev_dbg(dev,
6034                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6035                         features &= ~NETIF_F_UFO;
6036                 }
6037         }
6038
6039 #ifdef CONFIG_NET_RX_BUSY_POLL
6040         if (dev->netdev_ops->ndo_busy_poll)
6041                 features |= NETIF_F_BUSY_POLL;
6042         else
6043 #endif
6044                 features &= ~NETIF_F_BUSY_POLL;
6045
6046         return features;
6047 }
6048
6049 int __netdev_update_features(struct net_device *dev)
6050 {
6051         netdev_features_t features;
6052         int err = 0;
6053
6054         ASSERT_RTNL();
6055
6056         features = netdev_get_wanted_features(dev);
6057
6058         if (dev->netdev_ops->ndo_fix_features)
6059                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6060
6061         /* driver might be less strict about feature dependencies */
6062         features = netdev_fix_features(dev, features);
6063
6064         if (dev->features == features)
6065                 return 0;
6066
6067         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6068                 &dev->features, &features);
6069
6070         if (dev->netdev_ops->ndo_set_features)
6071                 err = dev->netdev_ops->ndo_set_features(dev, features);
6072
6073         if (unlikely(err < 0)) {
6074                 netdev_err(dev,
6075                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6076                         err, &features, &dev->features);
6077                 return -1;
6078         }
6079
6080         if (!err)
6081                 dev->features = features;
6082
6083         return 1;
6084 }
6085
6086 /**
6087  *      netdev_update_features - recalculate device features
6088  *      @dev: the device to check
6089  *
6090  *      Recalculate dev->features set and send notifications if it
6091  *      has changed. Should be called after driver or hardware dependent
6092  *      conditions might have changed that influence the features.
6093  */
6094 void netdev_update_features(struct net_device *dev)
6095 {
6096         if (__netdev_update_features(dev))
6097                 netdev_features_change(dev);
6098 }
6099 EXPORT_SYMBOL(netdev_update_features);
6100
6101 /**
6102  *      netdev_change_features - recalculate device features
6103  *      @dev: the device to check
6104  *
6105  *      Recalculate dev->features set and send notifications even
6106  *      if they have not changed. Should be called instead of
6107  *      netdev_update_features() if also dev->vlan_features might
6108  *      have changed to allow the changes to be propagated to stacked
6109  *      VLAN devices.
6110  */
6111 void netdev_change_features(struct net_device *dev)
6112 {
6113         __netdev_update_features(dev);
6114         netdev_features_change(dev);
6115 }
6116 EXPORT_SYMBOL(netdev_change_features);
6117
6118 /**
6119  *      netif_stacked_transfer_operstate -      transfer operstate
6120  *      @rootdev: the root or lower level device to transfer state from
6121  *      @dev: the device to transfer operstate to
6122  *
6123  *      Transfer operational state from root to device. This is normally
6124  *      called when a stacking relationship exists between the root
6125  *      device and the device(a leaf device).
6126  */
6127 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6128                                         struct net_device *dev)
6129 {
6130         if (rootdev->operstate == IF_OPER_DORMANT)
6131                 netif_dormant_on(dev);
6132         else
6133                 netif_dormant_off(dev);
6134
6135         if (netif_carrier_ok(rootdev)) {
6136                 if (!netif_carrier_ok(dev))
6137                         netif_carrier_on(dev);
6138         } else {
6139                 if (netif_carrier_ok(dev))
6140                         netif_carrier_off(dev);
6141         }
6142 }
6143 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6144
6145 #ifdef CONFIG_SYSFS
6146 static int netif_alloc_rx_queues(struct net_device *dev)
6147 {
6148         unsigned int i, count = dev->num_rx_queues;
6149         struct netdev_rx_queue *rx;
6150
6151         BUG_ON(count < 1);
6152
6153         rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6154         if (!rx)
6155                 return -ENOMEM;
6156
6157         dev->_rx = rx;
6158
6159         for (i = 0; i < count; i++)
6160                 rx[i].dev = dev;
6161         return 0;
6162 }
6163 #endif
6164
6165 static void netdev_init_one_queue(struct net_device *dev,
6166                                   struct netdev_queue *queue, void *_unused)
6167 {
6168         /* Initialize queue lock */
6169         spin_lock_init(&queue->_xmit_lock);
6170         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6171         queue->xmit_lock_owner = -1;
6172         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6173         queue->dev = dev;
6174 #ifdef CONFIG_BQL
6175         dql_init(&queue->dql, HZ);
6176 #endif
6177 }
6178
6179 static void netif_free_tx_queues(struct net_device *dev)
6180 {
6181         kvfree(dev->_tx);
6182 }
6183
6184 static int netif_alloc_netdev_queues(struct net_device *dev)
6185 {
6186         unsigned int count = dev->num_tx_queues;
6187         struct netdev_queue *tx;
6188         size_t sz = count * sizeof(*tx);
6189
6190         BUG_ON(count < 1 || count > 0xffff);
6191
6192         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6193         if (!tx) {
6194                 tx = vzalloc(sz);
6195                 if (!tx)
6196                         return -ENOMEM;
6197         }
6198         dev->_tx = tx;
6199
6200         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6201         spin_lock_init(&dev->tx_global_lock);
6202
6203         return 0;
6204 }
6205
6206 /**
6207  *      register_netdevice      - register a network device
6208  *      @dev: device to register
6209  *
6210  *      Take a completed network device structure and add it to the kernel
6211  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6212  *      chain. 0 is returned on success. A negative errno code is returned
6213  *      on a failure to set up the device, or if the name is a duplicate.
6214  *
6215  *      Callers must hold the rtnl semaphore. You may want
6216  *      register_netdev() instead of this.
6217  *
6218  *      BUGS:
6219  *      The locking appears insufficient to guarantee two parallel registers
6220  *      will not get the same name.
6221  */
6222
6223 int register_netdevice(struct net_device *dev)
6224 {
6225         int ret;
6226         struct net *net = dev_net(dev);
6227
6228         BUG_ON(dev_boot_phase);
6229         ASSERT_RTNL();
6230
6231         might_sleep();
6232
6233         /* When net_device's are persistent, this will be fatal. */
6234         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6235         BUG_ON(!net);
6236
6237         spin_lock_init(&dev->addr_list_lock);
6238         netdev_set_addr_lockdep_class(dev);
6239
6240         dev->iflink = -1;
6241
6242         ret = dev_get_valid_name(net, dev, dev->name);
6243         if (ret < 0)
6244                 goto out;
6245
6246         /* Init, if this function is available */
6247         if (dev->netdev_ops->ndo_init) {
6248                 ret = dev->netdev_ops->ndo_init(dev);
6249                 if (ret) {
6250                         if (ret > 0)
6251                                 ret = -EIO;
6252                         goto out;
6253                 }
6254         }
6255
6256         if (((dev->hw_features | dev->features) &
6257              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6258             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6259              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6260                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6261                 ret = -EINVAL;
6262                 goto err_uninit;
6263         }
6264
6265         ret = -EBUSY;
6266         if (!dev->ifindex)
6267                 dev->ifindex = dev_new_index(net);
6268         else if (__dev_get_by_index(net, dev->ifindex))
6269                 goto err_uninit;
6270
6271         if (dev->iflink == -1)
6272                 dev->iflink = dev->ifindex;
6273
6274         /* Transfer changeable features to wanted_features and enable
6275          * software offloads (GSO and GRO).
6276          */
6277         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6278         dev->features |= NETIF_F_SOFT_FEATURES;
6279         dev->wanted_features = dev->features & dev->hw_features;
6280
6281         if (!(dev->flags & IFF_LOOPBACK)) {
6282                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6283         }
6284
6285         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6286          */
6287         dev->vlan_features |= NETIF_F_HIGHDMA;
6288
6289         /* Make NETIF_F_SG inheritable to tunnel devices.
6290          */
6291         dev->hw_enc_features |= NETIF_F_SG;
6292
6293         /* Make NETIF_F_SG inheritable to MPLS.
6294          */
6295         dev->mpls_features |= NETIF_F_SG;
6296
6297         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6298         ret = notifier_to_errno(ret);
6299         if (ret)
6300                 goto err_uninit;
6301
6302         ret = netdev_register_kobject(dev);
6303         if (ret)
6304                 goto err_uninit;
6305         dev->reg_state = NETREG_REGISTERED;
6306
6307         __netdev_update_features(dev);
6308
6309         /*
6310          *      Default initial state at registry is that the
6311          *      device is present.
6312          */
6313
6314         set_bit(__LINK_STATE_PRESENT, &dev->state);
6315
6316         linkwatch_init_dev(dev);
6317
6318         dev_init_scheduler(dev);
6319         dev_hold(dev);
6320         list_netdevice(dev);
6321         add_device_randomness(dev->dev_addr, dev->addr_len);
6322
6323         /* If the device has permanent device address, driver should
6324          * set dev_addr and also addr_assign_type should be set to
6325          * NET_ADDR_PERM (default value).
6326          */
6327         if (dev->addr_assign_type == NET_ADDR_PERM)
6328                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6329
6330         /* Notify protocols, that a new device appeared. */
6331         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6332         ret = notifier_to_errno(ret);
6333         if (ret) {
6334                 rollback_registered(dev);
6335                 dev->reg_state = NETREG_UNREGISTERED;
6336         }
6337         /*
6338          *      Prevent userspace races by waiting until the network
6339          *      device is fully setup before sending notifications.
6340          */
6341         if (!dev->rtnl_link_ops ||
6342             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6343                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6344
6345 out:
6346         return ret;
6347
6348 err_uninit:
6349         if (dev->netdev_ops->ndo_uninit)
6350                 dev->netdev_ops->ndo_uninit(dev);
6351         goto out;
6352 }
6353 EXPORT_SYMBOL(register_netdevice);
6354
6355 /**
6356  *      init_dummy_netdev       - init a dummy network device for NAPI
6357  *      @dev: device to init
6358  *
6359  *      This takes a network device structure and initialize the minimum
6360  *      amount of fields so it can be used to schedule NAPI polls without
6361  *      registering a full blown interface. This is to be used by drivers
6362  *      that need to tie several hardware interfaces to a single NAPI
6363  *      poll scheduler due to HW limitations.
6364  */
6365 int init_dummy_netdev(struct net_device *dev)
6366 {
6367         /* Clear everything. Note we don't initialize spinlocks
6368          * are they aren't supposed to be taken by any of the
6369          * NAPI code and this dummy netdev is supposed to be
6370          * only ever used for NAPI polls
6371          */
6372         memset(dev, 0, sizeof(struct net_device));
6373
6374         /* make sure we BUG if trying to hit standard
6375          * register/unregister code path
6376          */
6377         dev->reg_state = NETREG_DUMMY;
6378
6379         /* NAPI wants this */
6380         INIT_LIST_HEAD(&dev->napi_list);
6381
6382         /* a dummy interface is started by default */
6383         set_bit(__LINK_STATE_PRESENT, &dev->state);
6384         set_bit(__LINK_STATE_START, &dev->state);
6385
6386         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6387          * because users of this 'device' dont need to change
6388          * its refcount.
6389          */
6390
6391         return 0;
6392 }
6393 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6394
6395
6396 /**
6397  *      register_netdev - register a network device
6398  *      @dev: device to register
6399  *
6400  *      Take a completed network device structure and add it to the kernel
6401  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6402  *      chain. 0 is returned on success. A negative errno code is returned
6403  *      on a failure to set up the device, or if the name is a duplicate.
6404  *
6405  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6406  *      and expands the device name if you passed a format string to
6407  *      alloc_netdev.
6408  */
6409 int register_netdev(struct net_device *dev)
6410 {
6411         int err;
6412
6413         rtnl_lock();
6414         err = register_netdevice(dev);
6415         rtnl_unlock();
6416         return err;
6417 }
6418 EXPORT_SYMBOL(register_netdev);
6419
6420 int netdev_refcnt_read(const struct net_device *dev)
6421 {
6422         int i, refcnt = 0;
6423
6424         for_each_possible_cpu(i)
6425                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6426         return refcnt;
6427 }
6428 EXPORT_SYMBOL(netdev_refcnt_read);
6429
6430 /**
6431  * netdev_wait_allrefs - wait until all references are gone.
6432  * @dev: target net_device
6433  *
6434  * This is called when unregistering network devices.
6435  *
6436  * Any protocol or device that holds a reference should register
6437  * for netdevice notification, and cleanup and put back the
6438  * reference if they receive an UNREGISTER event.
6439  * We can get stuck here if buggy protocols don't correctly
6440  * call dev_put.
6441  */
6442 static void netdev_wait_allrefs(struct net_device *dev)
6443 {
6444         unsigned long rebroadcast_time, warning_time;
6445         int refcnt;
6446
6447         linkwatch_forget_dev(dev);
6448
6449         rebroadcast_time = warning_time = jiffies;
6450         refcnt = netdev_refcnt_read(dev);
6451
6452         while (refcnt != 0) {
6453                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6454                         rtnl_lock();
6455
6456                         /* Rebroadcast unregister notification */
6457                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6458
6459                         __rtnl_unlock();
6460                         rcu_barrier();
6461                         rtnl_lock();
6462
6463                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6464                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6465                                      &dev->state)) {
6466                                 /* We must not have linkwatch events
6467                                  * pending on unregister. If this
6468                                  * happens, we simply run the queue
6469                                  * unscheduled, resulting in a noop
6470                                  * for this device.
6471                                  */
6472                                 linkwatch_run_queue();
6473                         }
6474
6475                         __rtnl_unlock();
6476
6477                         rebroadcast_time = jiffies;
6478                 }
6479
6480                 msleep(250);
6481
6482                 refcnt = netdev_refcnt_read(dev);
6483
6484                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6485                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6486                                  dev->name, refcnt);
6487                         warning_time = jiffies;
6488                 }
6489         }
6490 }
6491
6492 /* The sequence is:
6493  *
6494  *      rtnl_lock();
6495  *      ...
6496  *      register_netdevice(x1);
6497  *      register_netdevice(x2);
6498  *      ...
6499  *      unregister_netdevice(y1);
6500  *      unregister_netdevice(y2);
6501  *      ...
6502  *      rtnl_unlock();
6503  *      free_netdev(y1);
6504  *      free_netdev(y2);
6505  *
6506  * We are invoked by rtnl_unlock().
6507  * This allows us to deal with problems:
6508  * 1) We can delete sysfs objects which invoke hotplug
6509  *    without deadlocking with linkwatch via keventd.
6510  * 2) Since we run with the RTNL semaphore not held, we can sleep
6511  *    safely in order to wait for the netdev refcnt to drop to zero.
6512  *
6513  * We must not return until all unregister events added during
6514  * the interval the lock was held have been completed.
6515  */
6516 void netdev_run_todo(void)
6517 {
6518         struct list_head list;
6519
6520         /* Snapshot list, allow later requests */
6521         list_replace_init(&net_todo_list, &list);
6522
6523         __rtnl_unlock();
6524
6525
6526         /* Wait for rcu callbacks to finish before next phase */
6527         if (!list_empty(&list))
6528                 rcu_barrier();
6529
6530         while (!list_empty(&list)) {
6531                 struct net_device *dev
6532                         = list_first_entry(&list, struct net_device, todo_list);
6533                 list_del(&dev->todo_list);
6534
6535                 rtnl_lock();
6536                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6537                 __rtnl_unlock();
6538
6539                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6540                         pr_err("network todo '%s' but state %d\n",
6541                                dev->name, dev->reg_state);
6542                         dump_stack();
6543                         continue;
6544                 }
6545
6546                 dev->reg_state = NETREG_UNREGISTERED;
6547
6548                 on_each_cpu(flush_backlog, dev, 1);
6549
6550                 netdev_wait_allrefs(dev);
6551
6552                 /* paranoia */
6553                 BUG_ON(netdev_refcnt_read(dev));
6554                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6555                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6556                 WARN_ON(dev->dn_ptr);
6557
6558                 if (dev->destructor)
6559                         dev->destructor(dev);
6560
6561                 /* Report a network device has been unregistered */
6562                 rtnl_lock();
6563                 dev_net(dev)->dev_unreg_count--;
6564                 __rtnl_unlock();
6565                 wake_up(&netdev_unregistering_wq);
6566
6567                 /* Free network device */
6568                 kobject_put(&dev->dev.kobj);
6569         }
6570 }
6571
6572 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6573  * fields in the same order, with only the type differing.
6574  */
6575 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6576                              const struct net_device_stats *netdev_stats)
6577 {
6578 #if BITS_PER_LONG == 64
6579         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6580         memcpy(stats64, netdev_stats, sizeof(*stats64));
6581 #else
6582         size_t i, n = sizeof(*stats64) / sizeof(u64);
6583         const unsigned long *src = (const unsigned long *)netdev_stats;
6584         u64 *dst = (u64 *)stats64;
6585
6586         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6587                      sizeof(*stats64) / sizeof(u64));
6588         for (i = 0; i < n; i++)
6589                 dst[i] = src[i];
6590 #endif
6591 }
6592 EXPORT_SYMBOL(netdev_stats_to_stats64);
6593
6594 /**
6595  *      dev_get_stats   - get network device statistics
6596  *      @dev: device to get statistics from
6597  *      @storage: place to store stats
6598  *
6599  *      Get network statistics from device. Return @storage.
6600  *      The device driver may provide its own method by setting
6601  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6602  *      otherwise the internal statistics structure is used.
6603  */
6604 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6605                                         struct rtnl_link_stats64 *storage)
6606 {
6607         const struct net_device_ops *ops = dev->netdev_ops;
6608
6609         if (ops->ndo_get_stats64) {
6610                 memset(storage, 0, sizeof(*storage));
6611                 ops->ndo_get_stats64(dev, storage);
6612         } else if (ops->ndo_get_stats) {
6613                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6614         } else {
6615                 netdev_stats_to_stats64(storage, &dev->stats);
6616         }
6617         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6618         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6619         return storage;
6620 }
6621 EXPORT_SYMBOL(dev_get_stats);
6622
6623 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6624 {
6625         struct netdev_queue *queue = dev_ingress_queue(dev);
6626
6627 #ifdef CONFIG_NET_CLS_ACT
6628         if (queue)
6629                 return queue;
6630         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6631         if (!queue)
6632                 return NULL;
6633         netdev_init_one_queue(dev, queue, NULL);
6634         queue->qdisc = &noop_qdisc;
6635         queue->qdisc_sleeping = &noop_qdisc;
6636         rcu_assign_pointer(dev->ingress_queue, queue);
6637 #endif
6638         return queue;
6639 }
6640
6641 static const struct ethtool_ops default_ethtool_ops;
6642
6643 void netdev_set_default_ethtool_ops(struct net_device *dev,
6644                                     const struct ethtool_ops *ops)
6645 {
6646         if (dev->ethtool_ops == &default_ethtool_ops)
6647                 dev->ethtool_ops = ops;
6648 }
6649 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6650
6651 void netdev_freemem(struct net_device *dev)
6652 {
6653         char *addr = (char *)dev - dev->padded;
6654
6655         kvfree(addr);
6656 }
6657
6658 /**
6659  *      alloc_netdev_mqs - allocate network device
6660  *      @sizeof_priv:           size of private data to allocate space for
6661  *      @name:                  device name format string
6662  *      @name_assign_type:      origin of device name
6663  *      @setup:                 callback to initialize device
6664  *      @txqs:                  the number of TX subqueues to allocate
6665  *      @rxqs:                  the number of RX subqueues to allocate
6666  *
6667  *      Allocates a struct net_device with private data area for driver use
6668  *      and performs basic initialization.  Also allocates subqueue structs
6669  *      for each queue on the device.
6670  */
6671 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6672                 unsigned char name_assign_type,
6673                 void (*setup)(struct net_device *),
6674                 unsigned int txqs, unsigned int rxqs)
6675 {
6676         struct net_device *dev;
6677         size_t alloc_size;
6678         struct net_device *p;
6679
6680         BUG_ON(strlen(name) >= sizeof(dev->name));
6681
6682         if (txqs < 1) {
6683                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6684                 return NULL;
6685         }
6686
6687 #ifdef CONFIG_SYSFS
6688         if (rxqs < 1) {
6689                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6690                 return NULL;
6691         }
6692 #endif
6693
6694         alloc_size = sizeof(struct net_device);
6695         if (sizeof_priv) {
6696                 /* ensure 32-byte alignment of private area */
6697                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6698                 alloc_size += sizeof_priv;
6699         }
6700         /* ensure 32-byte alignment of whole construct */
6701         alloc_size += NETDEV_ALIGN - 1;
6702
6703         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6704         if (!p)
6705                 p = vzalloc(alloc_size);
6706         if (!p)
6707                 return NULL;
6708
6709         dev = PTR_ALIGN(p, NETDEV_ALIGN);
6710         dev->padded = (char *)dev - (char *)p;
6711
6712         dev->pcpu_refcnt = alloc_percpu(int);
6713         if (!dev->pcpu_refcnt)
6714                 goto free_dev;
6715
6716         if (dev_addr_init(dev))
6717                 goto free_pcpu;
6718
6719         dev_mc_init(dev);
6720         dev_uc_init(dev);
6721
6722         dev_net_set(dev, &init_net);
6723
6724         dev->gso_max_size = GSO_MAX_SIZE;
6725         dev->gso_max_segs = GSO_MAX_SEGS;
6726         dev->gso_min_segs = 0;
6727
6728         INIT_LIST_HEAD(&dev->napi_list);
6729         INIT_LIST_HEAD(&dev->unreg_list);
6730         INIT_LIST_HEAD(&dev->close_list);
6731         INIT_LIST_HEAD(&dev->link_watch_list);
6732         INIT_LIST_HEAD(&dev->adj_list.upper);
6733         INIT_LIST_HEAD(&dev->adj_list.lower);
6734         INIT_LIST_HEAD(&dev->all_adj_list.upper);
6735         INIT_LIST_HEAD(&dev->all_adj_list.lower);
6736         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6737         setup(dev);
6738
6739         dev->num_tx_queues = txqs;
6740         dev->real_num_tx_queues = txqs;
6741         if (netif_alloc_netdev_queues(dev))
6742                 goto free_all;
6743
6744 #ifdef CONFIG_SYSFS
6745         dev->num_rx_queues = rxqs;
6746         dev->real_num_rx_queues = rxqs;
6747         if (netif_alloc_rx_queues(dev))
6748                 goto free_all;
6749 #endif
6750
6751         strcpy(dev->name, name);
6752         dev->name_assign_type = name_assign_type;
6753         dev->group = INIT_NETDEV_GROUP;
6754         if (!dev->ethtool_ops)
6755                 dev->ethtool_ops = &default_ethtool_ops;
6756         return dev;
6757
6758 free_all:
6759         free_netdev(dev);
6760         return NULL;
6761
6762 free_pcpu:
6763         free_percpu(dev->pcpu_refcnt);
6764 free_dev:
6765         netdev_freemem(dev);
6766         return NULL;
6767 }
6768 EXPORT_SYMBOL(alloc_netdev_mqs);
6769
6770 /**
6771  *      free_netdev - free network device
6772  *      @dev: device
6773  *
6774  *      This function does the last stage of destroying an allocated device
6775  *      interface. The reference to the device object is released.
6776  *      If this is the last reference then it will be freed.
6777  */
6778 void free_netdev(struct net_device *dev)
6779 {
6780         struct napi_struct *p, *n;
6781
6782         release_net(dev_net(dev));
6783
6784         netif_free_tx_queues(dev);
6785 #ifdef CONFIG_SYSFS
6786         kfree(dev->_rx);
6787 #endif
6788
6789         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6790
6791         /* Flush device addresses */
6792         dev_addr_flush(dev);
6793
6794         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6795                 netif_napi_del(p);
6796
6797         free_percpu(dev->pcpu_refcnt);
6798         dev->pcpu_refcnt = NULL;
6799
6800         /*  Compatibility with error handling in drivers */
6801         if (dev->reg_state == NETREG_UNINITIALIZED) {
6802                 netdev_freemem(dev);
6803                 return;
6804         }
6805
6806         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6807         dev->reg_state = NETREG_RELEASED;
6808
6809         /* will free via device release */
6810         put_device(&dev->dev);
6811 }
6812 EXPORT_SYMBOL(free_netdev);
6813
6814 /**
6815  *      synchronize_net -  Synchronize with packet receive processing
6816  *
6817  *      Wait for packets currently being received to be done.
6818  *      Does not block later packets from starting.
6819  */
6820 void synchronize_net(void)
6821 {
6822         might_sleep();
6823         if (rtnl_is_locked())
6824                 synchronize_rcu_expedited();
6825         else
6826                 synchronize_rcu();
6827 }
6828 EXPORT_SYMBOL(synchronize_net);
6829
6830 /**
6831  *      unregister_netdevice_queue - remove device from the kernel
6832  *      @dev: device
6833  *      @head: list
6834  *
6835  *      This function shuts down a device interface and removes it
6836  *      from the kernel tables.
6837  *      If head not NULL, device is queued to be unregistered later.
6838  *
6839  *      Callers must hold the rtnl semaphore.  You may want
6840  *      unregister_netdev() instead of this.
6841  */
6842
6843 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6844 {
6845         ASSERT_RTNL();
6846
6847         if (head) {
6848                 list_move_tail(&dev->unreg_list, head);
6849         } else {
6850                 rollback_registered(dev);
6851                 /* Finish processing unregister after unlock */
6852                 net_set_todo(dev);
6853         }
6854 }
6855 EXPORT_SYMBOL(unregister_netdevice_queue);
6856
6857 /**
6858  *      unregister_netdevice_many - unregister many devices
6859  *      @head: list of devices
6860  *
6861  *  Note: As most callers use a stack allocated list_head,
6862  *  we force a list_del() to make sure stack wont be corrupted later.
6863  */
6864 void unregister_netdevice_many(struct list_head *head)
6865 {
6866         struct net_device *dev;
6867
6868         if (!list_empty(head)) {
6869                 rollback_registered_many(head);
6870                 list_for_each_entry(dev, head, unreg_list)
6871                         net_set_todo(dev);
6872                 list_del(head);
6873         }
6874 }
6875 EXPORT_SYMBOL(unregister_netdevice_many);
6876
6877 /**
6878  *      unregister_netdev - remove device from the kernel
6879  *      @dev: device
6880  *
6881  *      This function shuts down a device interface and removes it
6882  *      from the kernel tables.
6883  *
6884  *      This is just a wrapper for unregister_netdevice that takes
6885  *      the rtnl semaphore.  In general you want to use this and not
6886  *      unregister_netdevice.
6887  */
6888 void unregister_netdev(struct net_device *dev)
6889 {
6890         rtnl_lock();
6891         unregister_netdevice(dev);
6892         rtnl_unlock();
6893 }
6894 EXPORT_SYMBOL(unregister_netdev);
6895
6896 /**
6897  *      dev_change_net_namespace - move device to different nethost namespace
6898  *      @dev: device
6899  *      @net: network namespace
6900  *      @pat: If not NULL name pattern to try if the current device name
6901  *            is already taken in the destination network namespace.
6902  *
6903  *      This function shuts down a device interface and moves it
6904  *      to a new network namespace. On success 0 is returned, on
6905  *      a failure a netagive errno code is returned.
6906  *
6907  *      Callers must hold the rtnl semaphore.
6908  */
6909
6910 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6911 {
6912         int err;
6913
6914         ASSERT_RTNL();
6915
6916         /* Don't allow namespace local devices to be moved. */
6917         err = -EINVAL;
6918         if (dev->features & NETIF_F_NETNS_LOCAL)
6919                 goto out;
6920
6921         /* Ensure the device has been registrered */
6922         if (dev->reg_state != NETREG_REGISTERED)
6923                 goto out;
6924
6925         /* Get out if there is nothing todo */
6926         err = 0;
6927         if (net_eq(dev_net(dev), net))
6928                 goto out;
6929
6930         /* Pick the destination device name, and ensure
6931          * we can use it in the destination network namespace.
6932          */
6933         err = -EEXIST;
6934         if (__dev_get_by_name(net, dev->name)) {
6935                 /* We get here if we can't use the current device name */
6936                 if (!pat)
6937                         goto out;
6938                 if (dev_get_valid_name(net, dev, pat) < 0)
6939                         goto out;
6940         }
6941
6942         /*
6943          * And now a mini version of register_netdevice unregister_netdevice.
6944          */
6945
6946         /* If device is running close it first. */
6947         dev_close(dev);
6948
6949         /* And unlink it from device chain */
6950         err = -ENODEV;
6951         unlist_netdevice(dev);
6952
6953         synchronize_net();
6954
6955         /* Shutdown queueing discipline. */
6956         dev_shutdown(dev);
6957
6958         /* Notify protocols, that we are about to destroy
6959            this device. They should clean all the things.
6960
6961            Note that dev->reg_state stays at NETREG_REGISTERED.
6962            This is wanted because this way 8021q and macvlan know
6963            the device is just moving and can keep their slaves up.
6964         */
6965         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6966         rcu_barrier();
6967         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6968         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6969
6970         /*
6971          *      Flush the unicast and multicast chains
6972          */
6973         dev_uc_flush(dev);
6974         dev_mc_flush(dev);
6975
6976         /* Send a netdev-removed uevent to the old namespace */
6977         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6978         netdev_adjacent_del_links(dev);
6979
6980         /* Actually switch the network namespace */
6981         dev_net_set(dev, net);
6982
6983         /* If there is an ifindex conflict assign a new one */
6984         if (__dev_get_by_index(net, dev->ifindex)) {
6985                 int iflink = (dev->iflink == dev->ifindex);
6986                 dev->ifindex = dev_new_index(net);
6987                 if (iflink)
6988                         dev->iflink = dev->ifindex;
6989         }
6990
6991         /* Send a netdev-add uevent to the new namespace */
6992         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6993         netdev_adjacent_add_links(dev);
6994
6995         /* Fixup kobjects */
6996         err = device_rename(&dev->dev, dev->name);
6997         WARN_ON(err);
6998
6999         /* Add the device back in the hashes */
7000         list_netdevice(dev);
7001
7002         /* Notify protocols, that a new device appeared. */
7003         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7004
7005         /*
7006          *      Prevent userspace races by waiting until the network
7007          *      device is fully setup before sending notifications.
7008          */
7009         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7010
7011         synchronize_net();
7012         err = 0;
7013 out:
7014         return err;
7015 }
7016 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7017
7018 static int dev_cpu_callback(struct notifier_block *nfb,
7019                             unsigned long action,
7020                             void *ocpu)
7021 {
7022         struct sk_buff **list_skb;
7023         struct sk_buff *skb;
7024         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7025         struct softnet_data *sd, *oldsd;
7026
7027         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7028                 return NOTIFY_OK;
7029
7030         local_irq_disable();
7031         cpu = smp_processor_id();
7032         sd = &per_cpu(softnet_data, cpu);
7033         oldsd = &per_cpu(softnet_data, oldcpu);
7034
7035         /* Find end of our completion_queue. */
7036         list_skb = &sd->completion_queue;
7037         while (*list_skb)
7038                 list_skb = &(*list_skb)->next;
7039         /* Append completion queue from offline CPU. */
7040         *list_skb = oldsd->completion_queue;
7041         oldsd->completion_queue = NULL;
7042
7043         /* Append output queue from offline CPU. */
7044         if (oldsd->output_queue) {
7045                 *sd->output_queue_tailp = oldsd->output_queue;
7046                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7047                 oldsd->output_queue = NULL;
7048                 oldsd->output_queue_tailp = &oldsd->output_queue;
7049         }
7050         /* Append NAPI poll list from offline CPU. */
7051         if (!list_empty(&oldsd->poll_list)) {
7052                 list_splice_init(&oldsd->poll_list, &sd->poll_list);
7053                 raise_softirq_irqoff(NET_RX_SOFTIRQ);
7054         }
7055
7056         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7057         local_irq_enable();
7058
7059         /* Process offline CPU's input_pkt_queue */
7060         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7061                 netif_rx_internal(skb);
7062                 input_queue_head_incr(oldsd);
7063         }
7064         while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
7065                 netif_rx_internal(skb);
7066                 input_queue_head_incr(oldsd);
7067         }
7068
7069         return NOTIFY_OK;
7070 }
7071
7072
7073 /**
7074  *      netdev_increment_features - increment feature set by one
7075  *      @all: current feature set
7076  *      @one: new feature set
7077  *      @mask: mask feature set
7078  *
7079  *      Computes a new feature set after adding a device with feature set
7080  *      @one to the master device with current feature set @all.  Will not
7081  *      enable anything that is off in @mask. Returns the new feature set.
7082  */
7083 netdev_features_t netdev_increment_features(netdev_features_t all,
7084         netdev_features_t one, netdev_features_t mask)
7085 {
7086         if (mask & NETIF_F_GEN_CSUM)
7087                 mask |= NETIF_F_ALL_CSUM;
7088         mask |= NETIF_F_VLAN_CHALLENGED;
7089
7090         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7091         all &= one | ~NETIF_F_ALL_FOR_ALL;
7092
7093         /* If one device supports hw checksumming, set for all. */
7094         if (all & NETIF_F_GEN_CSUM)
7095                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7096
7097         return all;
7098 }
7099 EXPORT_SYMBOL(netdev_increment_features);
7100
7101 static struct hlist_head * __net_init netdev_create_hash(void)
7102 {
7103         int i;
7104         struct hlist_head *hash;
7105
7106         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7107         if (hash != NULL)
7108                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7109                         INIT_HLIST_HEAD(&hash[i]);
7110
7111         return hash;
7112 }
7113
7114 /* Initialize per network namespace state */
7115 static int __net_init netdev_init(struct net *net)
7116 {
7117         if (net != &init_net)
7118                 INIT_LIST_HEAD(&net->dev_base_head);
7119
7120         net->dev_name_head = netdev_create_hash();
7121         if (net->dev_name_head == NULL)
7122                 goto err_name;
7123
7124         net->dev_index_head = netdev_create_hash();
7125         if (net->dev_index_head == NULL)
7126                 goto err_idx;
7127
7128         return 0;
7129
7130 err_idx:
7131         kfree(net->dev_name_head);
7132 err_name:
7133         return -ENOMEM;
7134 }
7135
7136 /**
7137  *      netdev_drivername - network driver for the device
7138  *      @dev: network device
7139  *
7140  *      Determine network driver for device.
7141  */
7142 const char *netdev_drivername(const struct net_device *dev)
7143 {
7144         const struct device_driver *driver;
7145         const struct device *parent;
7146         const char *empty = "";
7147
7148         parent = dev->dev.parent;
7149         if (!parent)
7150                 return empty;
7151
7152         driver = parent->driver;
7153         if (driver && driver->name)
7154                 return driver->name;
7155         return empty;
7156 }
7157
7158 static void __netdev_printk(const char *level, const struct net_device *dev,
7159                             struct va_format *vaf)
7160 {
7161         if (dev && dev->dev.parent) {
7162                 dev_printk_emit(level[1] - '0',
7163                                 dev->dev.parent,
7164                                 "%s %s %s%s: %pV",
7165                                 dev_driver_string(dev->dev.parent),
7166                                 dev_name(dev->dev.parent),
7167                                 netdev_name(dev), netdev_reg_state(dev),
7168                                 vaf);
7169         } else if (dev) {
7170                 printk("%s%s%s: %pV",
7171                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7172         } else {
7173                 printk("%s(NULL net_device): %pV", level, vaf);
7174         }
7175 }
7176
7177 void netdev_printk(const char *level, const struct net_device *dev,
7178                    const char *format, ...)
7179 {
7180         struct va_format vaf;
7181         va_list args;
7182
7183         va_start(args, format);
7184
7185         vaf.fmt = format;
7186         vaf.va = &args;
7187
7188         __netdev_printk(level, dev, &vaf);
7189
7190         va_end(args);
7191 }
7192 EXPORT_SYMBOL(netdev_printk);
7193
7194 #define define_netdev_printk_level(func, level)                 \
7195 void func(const struct net_device *dev, const char *fmt, ...)   \
7196 {                                                               \
7197         struct va_format vaf;                                   \
7198         va_list args;                                           \
7199                                                                 \
7200         va_start(args, fmt);                                    \
7201                                                                 \
7202         vaf.fmt = fmt;                                          \
7203         vaf.va = &args;                                         \
7204                                                                 \
7205         __netdev_printk(level, dev, &vaf);                      \
7206                                                                 \
7207         va_end(args);                                           \
7208 }                                                               \
7209 EXPORT_SYMBOL(func);
7210
7211 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7212 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7213 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7214 define_netdev_printk_level(netdev_err, KERN_ERR);
7215 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7216 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7217 define_netdev_printk_level(netdev_info, KERN_INFO);
7218
7219 static void __net_exit netdev_exit(struct net *net)
7220 {
7221         kfree(net->dev_name_head);
7222         kfree(net->dev_index_head);
7223 }
7224
7225 static struct pernet_operations __net_initdata netdev_net_ops = {
7226         .init = netdev_init,
7227         .exit = netdev_exit,
7228 };
7229
7230 static void __net_exit default_device_exit(struct net *net)
7231 {
7232         struct net_device *dev, *aux;
7233         /*
7234          * Push all migratable network devices back to the
7235          * initial network namespace
7236          */
7237         rtnl_lock();
7238         for_each_netdev_safe(net, dev, aux) {
7239                 int err;
7240                 char fb_name[IFNAMSIZ];
7241
7242                 /* Ignore unmoveable devices (i.e. loopback) */
7243                 if (dev->features & NETIF_F_NETNS_LOCAL)
7244                         continue;
7245
7246                 /* Leave virtual devices for the generic cleanup */
7247                 if (dev->rtnl_link_ops)
7248                         continue;
7249
7250                 /* Push remaining network devices to init_net */
7251                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7252                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7253                 if (err) {
7254                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7255                                  __func__, dev->name, err);
7256                         BUG();
7257                 }
7258         }
7259         rtnl_unlock();
7260 }
7261
7262 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7263 {
7264         /* Return with the rtnl_lock held when there are no network
7265          * devices unregistering in any network namespace in net_list.
7266          */
7267         struct net *net;
7268         bool unregistering;
7269         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7270
7271         add_wait_queue(&netdev_unregistering_wq, &wait);
7272         for (;;) {
7273                 unregistering = false;
7274                 rtnl_lock();
7275                 list_for_each_entry(net, net_list, exit_list) {
7276                         if (net->dev_unreg_count > 0) {
7277                                 unregistering = true;
7278                                 break;
7279                         }
7280                 }
7281                 if (!unregistering)
7282                         break;
7283                 __rtnl_unlock();
7284
7285                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7286         }
7287         remove_wait_queue(&netdev_unregistering_wq, &wait);
7288 }
7289
7290 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7291 {
7292         /* At exit all network devices most be removed from a network
7293          * namespace.  Do this in the reverse order of registration.
7294          * Do this across as many network namespaces as possible to
7295          * improve batching efficiency.
7296          */
7297         struct net_device *dev;
7298         struct net *net;
7299         LIST_HEAD(dev_kill_list);
7300
7301         /* To prevent network device cleanup code from dereferencing
7302          * loopback devices or network devices that have been freed
7303          * wait here for all pending unregistrations to complete,
7304          * before unregistring the loopback device and allowing the
7305          * network namespace be freed.
7306          *
7307          * The netdev todo list containing all network devices
7308          * unregistrations that happen in default_device_exit_batch
7309          * will run in the rtnl_unlock() at the end of
7310          * default_device_exit_batch.
7311          */
7312         rtnl_lock_unregistering(net_list);
7313         list_for_each_entry(net, net_list, exit_list) {
7314                 for_each_netdev_reverse(net, dev) {
7315                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7316                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7317                         else
7318                                 unregister_netdevice_queue(dev, &dev_kill_list);
7319                 }
7320         }
7321         unregister_netdevice_many(&dev_kill_list);
7322         rtnl_unlock();
7323 }
7324
7325 static struct pernet_operations __net_initdata default_device_ops = {
7326         .exit = default_device_exit,
7327         .exit_batch = default_device_exit_batch,
7328 };
7329
7330 /*
7331  *      Initialize the DEV module. At boot time this walks the device list and
7332  *      unhooks any devices that fail to initialise (normally hardware not
7333  *      present) and leaves us with a valid list of present and active devices.
7334  *
7335  */
7336
7337 /*
7338  *       This is called single threaded during boot, so no need
7339  *       to take the rtnl semaphore.
7340  */
7341 static int __init net_dev_init(void)
7342 {
7343         int i, rc = -ENOMEM;
7344
7345         BUG_ON(!dev_boot_phase);
7346
7347         if (dev_proc_init())
7348                 goto out;
7349
7350         if (netdev_kobject_init())
7351                 goto out;
7352
7353         INIT_LIST_HEAD(&ptype_all);
7354         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7355                 INIT_LIST_HEAD(&ptype_base[i]);
7356
7357         INIT_LIST_HEAD(&offload_base);
7358
7359         if (register_pernet_subsys(&netdev_net_ops))
7360                 goto out;
7361
7362         /*
7363          *      Initialise the packet receive queues.
7364          */
7365
7366         for_each_possible_cpu(i) {
7367                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7368
7369                 skb_queue_head_init(&sd->input_pkt_queue);
7370                 skb_queue_head_init(&sd->process_queue);
7371                 INIT_LIST_HEAD(&sd->poll_list);
7372                 sd->output_queue_tailp = &sd->output_queue;
7373 #ifdef CONFIG_RPS
7374                 sd->csd.func = rps_trigger_softirq;
7375                 sd->csd.info = sd;
7376                 sd->cpu = i;
7377 #endif
7378
7379                 sd->backlog.poll = process_backlog;
7380                 sd->backlog.weight = weight_p;
7381         }
7382
7383         dev_boot_phase = 0;
7384
7385         /* The loopback device is special if any other network devices
7386          * is present in a network namespace the loopback device must
7387          * be present. Since we now dynamically allocate and free the
7388          * loopback device ensure this invariant is maintained by
7389          * keeping the loopback device as the first device on the
7390          * list of network devices.  Ensuring the loopback devices
7391          * is the first device that appears and the last network device
7392          * that disappears.
7393          */
7394         if (register_pernet_device(&loopback_net_ops))
7395                 goto out;
7396
7397         if (register_pernet_device(&default_device_ops))
7398                 goto out;
7399
7400         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7401         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7402
7403         hotcpu_notifier(dev_cpu_callback, 0);
7404         dst_init();
7405         rc = 0;
7406 out:
7407         return rc;
7408 }
7409
7410 subsys_initcall(net_dev_init);