Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[cascardo/linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
144
145 #include "net-sysfs.h"
146
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;       /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161                                          struct net_device *dev,
162                                          struct netdev_notifier_info *info);
163
164 /*
165  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166  * semaphore.
167  *
168  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169  *
170  * Writers must hold the rtnl semaphore while they loop through the
171  * dev_base_head list, and hold dev_base_lock for writing when they do the
172  * actual updates.  This allows pure readers to access the list even
173  * while a writer is preparing to update it.
174  *
175  * To put it another way, dev_base_lock is held for writing only to
176  * protect against pure readers; the rtnl semaphore provides the
177  * protection against other writers.
178  *
179  * See, for example usages, register_netdevice() and
180  * unregister_netdevice(), which must be called with the rtnl
181  * semaphore held.
182  */
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
185
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
188
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191
192 static seqcount_t devnet_rename_seq;
193
194 static inline void dev_base_seq_inc(struct net *net)
195 {
196         while (++net->dev_base_seq == 0);
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214         spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228         struct net *net = dev_net(dev);
229
230         ASSERT_RTNL();
231
232         write_lock_bh(&dev_base_lock);
233         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235         hlist_add_head_rcu(&dev->index_hlist,
236                            dev_index_hash(net, dev->ifindex));
237         write_unlock_bh(&dev_base_lock);
238
239         dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247         ASSERT_RTNL();
248
249         /* Unlink dev from the device chain */
250         write_lock_bh(&dev_base_lock);
251         list_del_rcu(&dev->dev_list);
252         hlist_del_rcu(&dev->name_hlist);
253         hlist_del_rcu(&dev->index_hlist);
254         write_unlock_bh(&dev_base_lock);
255
256         dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260  *      Our notifier list
261  */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266  *      Device drivers call our routines to queue packets here. We empty the
267  *      queue in the local softnet handler.
268  */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276  * according to dev->type
277  */
278 static const unsigned short netdev_lock_type[] =
279         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317         int i;
318
319         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320                 if (netdev_lock_type[i] == dev_type)
321                         return i;
322         /* the last key is used by default */
323         return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327                                                  unsigned short dev_type)
328 {
329         int i;
330
331         i = netdev_lock_pos(dev_type);
332         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333                                    netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338         int i;
339
340         i = netdev_lock_pos(dev->type);
341         lockdep_set_class_and_name(&dev->addr_list_lock,
342                                    &netdev_addr_lock_key[i],
343                                    netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347                                                  unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357                 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362  *      Add a protocol ID to the list. Now that the input handler is
363  *      smarter we can dispense with all the messy stuff that used to be
364  *      here.
365  *
366  *      BEWARE!!! Protocol handlers, mangling input packets,
367  *      MUST BE last in hash buckets and checking protocol handlers
368  *      MUST start from promiscuous ptype_all chain in net_bh.
369  *      It is true now, do not change it.
370  *      Explanation follows: if protocol handler, mangling packet, will
371  *      be the first on list, it is not able to sense, that packet
372  *      is cloned and should be copied-on-write, so that it will
373  *      change it and subsequent readers will get broken packet.
374  *                                                      --ANK (980803)
375  */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379         if (pt->type == htons(ETH_P_ALL))
380                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381         else
382                 return pt->dev ? &pt->dev->ptype_specific :
383                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387  *      dev_add_pack - add packet handler
388  *      @pt: packet type declaration
389  *
390  *      Add a protocol handler to the networking stack. The passed &packet_type
391  *      is linked into kernel lists and may not be freed until it has been
392  *      removed from the kernel lists.
393  *
394  *      This call does not sleep therefore it can not
395  *      guarantee all CPU's that are in middle of receiving packets
396  *      will see the new packet type (until the next received packet).
397  */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401         struct list_head *head = ptype_head(pt);
402
403         spin_lock(&ptype_lock);
404         list_add_rcu(&pt->list, head);
405         spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410  *      __dev_remove_pack        - remove packet handler
411  *      @pt: packet type declaration
412  *
413  *      Remove a protocol handler that was previously added to the kernel
414  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
415  *      from the kernel lists and can be freed or reused once this function
416  *      returns.
417  *
418  *      The packet type might still be in use by receivers
419  *      and must not be freed until after all the CPU's have gone
420  *      through a quiescent state.
421  */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424         struct list_head *head = ptype_head(pt);
425         struct packet_type *pt1;
426
427         spin_lock(&ptype_lock);
428
429         list_for_each_entry(pt1, head, list) {
430                 if (pt == pt1) {
431                         list_del_rcu(&pt->list);
432                         goto out;
433                 }
434         }
435
436         pr_warn("dev_remove_pack: %p not found\n", pt);
437 out:
438         spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443  *      dev_remove_pack  - remove packet handler
444  *      @pt: packet type declaration
445  *
446  *      Remove a protocol handler that was previously added to the kernel
447  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
448  *      from the kernel lists and can be freed or reused once this function
449  *      returns.
450  *
451  *      This call sleeps to guarantee that no CPU is looking at the packet
452  *      type after return.
453  */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456         __dev_remove_pack(pt);
457
458         synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462
463 /**
464  *      dev_add_offload - register offload handlers
465  *      @po: protocol offload declaration
466  *
467  *      Add protocol offload handlers to the networking stack. The passed
468  *      &proto_offload is linked into kernel lists and may not be freed until
469  *      it has been removed from the kernel lists.
470  *
471  *      This call does not sleep therefore it can not
472  *      guarantee all CPU's that are in middle of receiving packets
473  *      will see the new offload handlers (until the next received packet).
474  */
475 void dev_add_offload(struct packet_offload *po)
476 {
477         struct packet_offload *elem;
478
479         spin_lock(&offload_lock);
480         list_for_each_entry(elem, &offload_base, list) {
481                 if (po->priority < elem->priority)
482                         break;
483         }
484         list_add_rcu(&po->list, elem->list.prev);
485         spin_unlock(&offload_lock);
486 }
487 EXPORT_SYMBOL(dev_add_offload);
488
489 /**
490  *      __dev_remove_offload     - remove offload handler
491  *      @po: packet offload declaration
492  *
493  *      Remove a protocol offload handler that was previously added to the
494  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
495  *      is removed from the kernel lists and can be freed or reused once this
496  *      function returns.
497  *
498  *      The packet type might still be in use by receivers
499  *      and must not be freed until after all the CPU's have gone
500  *      through a quiescent state.
501  */
502 static void __dev_remove_offload(struct packet_offload *po)
503 {
504         struct list_head *head = &offload_base;
505         struct packet_offload *po1;
506
507         spin_lock(&offload_lock);
508
509         list_for_each_entry(po1, head, list) {
510                 if (po == po1) {
511                         list_del_rcu(&po->list);
512                         goto out;
513                 }
514         }
515
516         pr_warn("dev_remove_offload: %p not found\n", po);
517 out:
518         spin_unlock(&offload_lock);
519 }
520
521 /**
522  *      dev_remove_offload       - remove packet offload handler
523  *      @po: packet offload declaration
524  *
525  *      Remove a packet offload handler that was previously added to the kernel
526  *      offload handlers by dev_add_offload(). The passed &offload_type is
527  *      removed from the kernel lists and can be freed or reused once this
528  *      function returns.
529  *
530  *      This call sleeps to guarantee that no CPU is looking at the packet
531  *      type after return.
532  */
533 void dev_remove_offload(struct packet_offload *po)
534 {
535         __dev_remove_offload(po);
536
537         synchronize_net();
538 }
539 EXPORT_SYMBOL(dev_remove_offload);
540
541 /******************************************************************************
542
543                       Device Boot-time Settings Routines
544
545 *******************************************************************************/
546
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550 /**
551  *      netdev_boot_setup_add   - add new setup entry
552  *      @name: name of the device
553  *      @map: configured settings for the device
554  *
555  *      Adds new setup entry to the dev_boot_setup list.  The function
556  *      returns 0 on error and 1 on success.  This is a generic routine to
557  *      all netdevices.
558  */
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 {
561         struct netdev_boot_setup *s;
562         int i;
563
564         s = dev_boot_setup;
565         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567                         memset(s[i].name, 0, sizeof(s[i].name));
568                         strlcpy(s[i].name, name, IFNAMSIZ);
569                         memcpy(&s[i].map, map, sizeof(s[i].map));
570                         break;
571                 }
572         }
573
574         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575 }
576
577 /**
578  *      netdev_boot_setup_check - check boot time settings
579  *      @dev: the netdevice
580  *
581  *      Check boot time settings for the device.
582  *      The found settings are set for the device to be used
583  *      later in the device probing.
584  *      Returns 0 if no settings found, 1 if they are.
585  */
586 int netdev_boot_setup_check(struct net_device *dev)
587 {
588         struct netdev_boot_setup *s = dev_boot_setup;
589         int i;
590
591         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593                     !strcmp(dev->name, s[i].name)) {
594                         dev->irq        = s[i].map.irq;
595                         dev->base_addr  = s[i].map.base_addr;
596                         dev->mem_start  = s[i].map.mem_start;
597                         dev->mem_end    = s[i].map.mem_end;
598                         return 1;
599                 }
600         }
601         return 0;
602 }
603 EXPORT_SYMBOL(netdev_boot_setup_check);
604
605
606 /**
607  *      netdev_boot_base        - get address from boot time settings
608  *      @prefix: prefix for network device
609  *      @unit: id for network device
610  *
611  *      Check boot time settings for the base address of device.
612  *      The found settings are set for the device to be used
613  *      later in the device probing.
614  *      Returns 0 if no settings found.
615  */
616 unsigned long netdev_boot_base(const char *prefix, int unit)
617 {
618         const struct netdev_boot_setup *s = dev_boot_setup;
619         char name[IFNAMSIZ];
620         int i;
621
622         sprintf(name, "%s%d", prefix, unit);
623
624         /*
625          * If device already registered then return base of 1
626          * to indicate not to probe for this interface
627          */
628         if (__dev_get_by_name(&init_net, name))
629                 return 1;
630
631         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632                 if (!strcmp(name, s[i].name))
633                         return s[i].map.base_addr;
634         return 0;
635 }
636
637 /*
638  * Saves at boot time configured settings for any netdevice.
639  */
640 int __init netdev_boot_setup(char *str)
641 {
642         int ints[5];
643         struct ifmap map;
644
645         str = get_options(str, ARRAY_SIZE(ints), ints);
646         if (!str || !*str)
647                 return 0;
648
649         /* Save settings */
650         memset(&map, 0, sizeof(map));
651         if (ints[0] > 0)
652                 map.irq = ints[1];
653         if (ints[0] > 1)
654                 map.base_addr = ints[2];
655         if (ints[0] > 2)
656                 map.mem_start = ints[3];
657         if (ints[0] > 3)
658                 map.mem_end = ints[4];
659
660         /* Add new entry to the list */
661         return netdev_boot_setup_add(str, &map);
662 }
663
664 __setup("netdev=", netdev_boot_setup);
665
666 /*******************************************************************************
667
668                             Device Interface Subroutines
669
670 *******************************************************************************/
671
672 /**
673  *      dev_get_iflink  - get 'iflink' value of a interface
674  *      @dev: targeted interface
675  *
676  *      Indicates the ifindex the interface is linked to.
677  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
678  */
679
680 int dev_get_iflink(const struct net_device *dev)
681 {
682         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683                 return dev->netdev_ops->ndo_get_iflink(dev);
684
685         return dev->ifindex;
686 }
687 EXPORT_SYMBOL(dev_get_iflink);
688
689 /**
690  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
691  *      @dev: targeted interface
692  *      @skb: The packet.
693  *
694  *      For better visibility of tunnel traffic OVS needs to retrieve
695  *      egress tunnel information for a packet. Following API allows
696  *      user to get this info.
697  */
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 {
700         struct ip_tunnel_info *info;
701
702         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
703                 return -EINVAL;
704
705         info = skb_tunnel_info_unclone(skb);
706         if (!info)
707                 return -ENOMEM;
708         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709                 return -EINVAL;
710
711         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 }
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
715 /**
716  *      __dev_get_by_name       - find a device by its name
717  *      @net: the applicable net namespace
718  *      @name: name to find
719  *
720  *      Find an interface by name. Must be called under RTNL semaphore
721  *      or @dev_base_lock. If the name is found a pointer to the device
722  *      is returned. If the name is not found then %NULL is returned. The
723  *      reference counters are not incremented so the caller must be
724  *      careful with locks.
725  */
726
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 {
729         struct net_device *dev;
730         struct hlist_head *head = dev_name_hash(net, name);
731
732         hlist_for_each_entry(dev, head, name_hlist)
733                 if (!strncmp(dev->name, name, IFNAMSIZ))
734                         return dev;
735
736         return NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739
740 /**
741  *      dev_get_by_name_rcu     - find a device by its name
742  *      @net: the applicable net namespace
743  *      @name: name to find
744  *
745  *      Find an interface by name.
746  *      If the name is found a pointer to the device is returned.
747  *      If the name is not found then %NULL is returned.
748  *      The reference counters are not incremented so the caller must be
749  *      careful with locks. The caller must hold RCU lock.
750  */
751
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754         struct net_device *dev;
755         struct hlist_head *head = dev_name_hash(net, name);
756
757         hlist_for_each_entry_rcu(dev, head, name_hlist)
758                 if (!strncmp(dev->name, name, IFNAMSIZ))
759                         return dev;
760
761         return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
764
765 /**
766  *      dev_get_by_name         - find a device by its name
767  *      @net: the applicable net namespace
768  *      @name: name to find
769  *
770  *      Find an interface by name. This can be called from any
771  *      context and does its own locking. The returned handle has
772  *      the usage count incremented and the caller must use dev_put() to
773  *      release it when it is no longer needed. %NULL is returned if no
774  *      matching device is found.
775  */
776
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 {
779         struct net_device *dev;
780
781         rcu_read_lock();
782         dev = dev_get_by_name_rcu(net, name);
783         if (dev)
784                 dev_hold(dev);
785         rcu_read_unlock();
786         return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_name);
789
790 /**
791  *      __dev_get_by_index - find a device by its ifindex
792  *      @net: the applicable net namespace
793  *      @ifindex: index of device
794  *
795  *      Search for an interface by index. Returns %NULL if the device
796  *      is not found or a pointer to the device. The device has not
797  *      had its reference counter increased so the caller must be careful
798  *      about locking. The caller must hold either the RTNL semaphore
799  *      or @dev_base_lock.
800  */
801
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 {
804         struct net_device *dev;
805         struct hlist_head *head = dev_index_hash(net, ifindex);
806
807         hlist_for_each_entry(dev, head, index_hlist)
808                 if (dev->ifindex == ifindex)
809                         return dev;
810
811         return NULL;
812 }
813 EXPORT_SYMBOL(__dev_get_by_index);
814
815 /**
816  *      dev_get_by_index_rcu - find a device by its ifindex
817  *      @net: the applicable net namespace
818  *      @ifindex: index of device
819  *
820  *      Search for an interface by index. Returns %NULL if the device
821  *      is not found or a pointer to the device. The device has not
822  *      had its reference counter increased so the caller must be careful
823  *      about locking. The caller must hold RCU lock.
824  */
825
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 {
828         struct net_device *dev;
829         struct hlist_head *head = dev_index_hash(net, ifindex);
830
831         hlist_for_each_entry_rcu(dev, head, index_hlist)
832                 if (dev->ifindex == ifindex)
833                         return dev;
834
835         return NULL;
836 }
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
838
839
840 /**
841  *      dev_get_by_index - find a device by its ifindex
842  *      @net: the applicable net namespace
843  *      @ifindex: index of device
844  *
845  *      Search for an interface by index. Returns NULL if the device
846  *      is not found or a pointer to the device. The device returned has
847  *      had a reference added and the pointer is safe until the user calls
848  *      dev_put to indicate they have finished with it.
849  */
850
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 {
853         struct net_device *dev;
854
855         rcu_read_lock();
856         dev = dev_get_by_index_rcu(net, ifindex);
857         if (dev)
858                 dev_hold(dev);
859         rcu_read_unlock();
860         return dev;
861 }
862 EXPORT_SYMBOL(dev_get_by_index);
863
864 /**
865  *      netdev_get_name - get a netdevice name, knowing its ifindex.
866  *      @net: network namespace
867  *      @name: a pointer to the buffer where the name will be stored.
868  *      @ifindex: the ifindex of the interface to get the name from.
869  *
870  *      The use of raw_seqcount_begin() and cond_resched() before
871  *      retrying is required as we want to give the writers a chance
872  *      to complete when CONFIG_PREEMPT is not set.
873  */
874 int netdev_get_name(struct net *net, char *name, int ifindex)
875 {
876         struct net_device *dev;
877         unsigned int seq;
878
879 retry:
880         seq = raw_seqcount_begin(&devnet_rename_seq);
881         rcu_read_lock();
882         dev = dev_get_by_index_rcu(net, ifindex);
883         if (!dev) {
884                 rcu_read_unlock();
885                 return -ENODEV;
886         }
887
888         strcpy(name, dev->name);
889         rcu_read_unlock();
890         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891                 cond_resched();
892                 goto retry;
893         }
894
895         return 0;
896 }
897
898 /**
899  *      dev_getbyhwaddr_rcu - find a device by its hardware address
900  *      @net: the applicable net namespace
901  *      @type: media type of device
902  *      @ha: hardware address
903  *
904  *      Search for an interface by MAC address. Returns NULL if the device
905  *      is not found or a pointer to the device.
906  *      The caller must hold RCU or RTNL.
907  *      The returned device has not had its ref count increased
908  *      and the caller must therefore be careful about locking
909  *
910  */
911
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913                                        const char *ha)
914 {
915         struct net_device *dev;
916
917         for_each_netdev_rcu(net, dev)
918                 if (dev->type == type &&
919                     !memcmp(dev->dev_addr, ha, dev->addr_len))
920                         return dev;
921
922         return NULL;
923 }
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 {
928         struct net_device *dev;
929
930         ASSERT_RTNL();
931         for_each_netdev(net, dev)
932                 if (dev->type == type)
933                         return dev;
934
935         return NULL;
936 }
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941         struct net_device *dev, *ret = NULL;
942
943         rcu_read_lock();
944         for_each_netdev_rcu(net, dev)
945                 if (dev->type == type) {
946                         dev_hold(dev);
947                         ret = dev;
948                         break;
949                 }
950         rcu_read_unlock();
951         return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955 /**
956  *      __dev_get_by_flags - find any device with given flags
957  *      @net: the applicable net namespace
958  *      @if_flags: IFF_* values
959  *      @mask: bitmask of bits in if_flags to check
960  *
961  *      Search for any interface with the given flags. Returns NULL if a device
962  *      is not found or a pointer to the device. Must be called inside
963  *      rtnl_lock(), and result refcount is unchanged.
964  */
965
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967                                       unsigned short mask)
968 {
969         struct net_device *dev, *ret;
970
971         ASSERT_RTNL();
972
973         ret = NULL;
974         for_each_netdev(net, dev) {
975                 if (((dev->flags ^ if_flags) & mask) == 0) {
976                         ret = dev;
977                         break;
978                 }
979         }
980         return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983
984 /**
985  *      dev_valid_name - check if name is okay for network device
986  *      @name: name string
987  *
988  *      Network device names need to be valid file names to
989  *      to allow sysfs to work.  We also disallow any kind of
990  *      whitespace.
991  */
992 bool dev_valid_name(const char *name)
993 {
994         if (*name == '\0')
995                 return false;
996         if (strlen(name) >= IFNAMSIZ)
997                 return false;
998         if (!strcmp(name, ".") || !strcmp(name, ".."))
999                 return false;
1000
1001         while (*name) {
1002                 if (*name == '/' || *name == ':' || isspace(*name))
1003                         return false;
1004                 name++;
1005         }
1006         return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009
1010 /**
1011  *      __dev_alloc_name - allocate a name for a device
1012  *      @net: network namespace to allocate the device name in
1013  *      @name: name format string
1014  *      @buf:  scratch buffer and result name string
1015  *
1016  *      Passed a format string - eg "lt%d" it will try and find a suitable
1017  *      id. It scans list of devices to build up a free map, then chooses
1018  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1019  *      while allocating the name and adding the device in order to avoid
1020  *      duplicates.
1021  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022  *      Returns the number of the unit assigned or a negative errno code.
1023  */
1024
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027         int i = 0;
1028         const char *p;
1029         const int max_netdevices = 8*PAGE_SIZE;
1030         unsigned long *inuse;
1031         struct net_device *d;
1032
1033         p = strnchr(name, IFNAMSIZ-1, '%');
1034         if (p) {
1035                 /*
1036                  * Verify the string as this thing may have come from
1037                  * the user.  There must be either one "%d" and no other "%"
1038                  * characters.
1039                  */
1040                 if (p[1] != 'd' || strchr(p + 2, '%'))
1041                         return -EINVAL;
1042
1043                 /* Use one page as a bit array of possible slots */
1044                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1045                 if (!inuse)
1046                         return -ENOMEM;
1047
1048                 for_each_netdev(net, d) {
1049                         if (!sscanf(d->name, name, &i))
1050                                 continue;
1051                         if (i < 0 || i >= max_netdevices)
1052                                 continue;
1053
1054                         /*  avoid cases where sscanf is not exact inverse of printf */
1055                         snprintf(buf, IFNAMSIZ, name, i);
1056                         if (!strncmp(buf, d->name, IFNAMSIZ))
1057                                 set_bit(i, inuse);
1058                 }
1059
1060                 i = find_first_zero_bit(inuse, max_netdevices);
1061                 free_page((unsigned long) inuse);
1062         }
1063
1064         if (buf != name)
1065                 snprintf(buf, IFNAMSIZ, name, i);
1066         if (!__dev_get_by_name(net, buf))
1067                 return i;
1068
1069         /* It is possible to run out of possible slots
1070          * when the name is long and there isn't enough space left
1071          * for the digits, or if all bits are used.
1072          */
1073         return -ENFILE;
1074 }
1075
1076 /**
1077  *      dev_alloc_name - allocate a name for a device
1078  *      @dev: device
1079  *      @name: name format string
1080  *
1081  *      Passed a format string - eg "lt%d" it will try and find a suitable
1082  *      id. It scans list of devices to build up a free map, then chooses
1083  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1084  *      while allocating the name and adding the device in order to avoid
1085  *      duplicates.
1086  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087  *      Returns the number of the unit assigned or a negative errno code.
1088  */
1089
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1091 {
1092         char buf[IFNAMSIZ];
1093         struct net *net;
1094         int ret;
1095
1096         BUG_ON(!dev_net(dev));
1097         net = dev_net(dev);
1098         ret = __dev_alloc_name(net, name, buf);
1099         if (ret >= 0)
1100                 strlcpy(dev->name, buf, IFNAMSIZ);
1101         return ret;
1102 }
1103 EXPORT_SYMBOL(dev_alloc_name);
1104
1105 static int dev_alloc_name_ns(struct net *net,
1106                              struct net_device *dev,
1107                              const char *name)
1108 {
1109         char buf[IFNAMSIZ];
1110         int ret;
1111
1112         ret = __dev_alloc_name(net, name, buf);
1113         if (ret >= 0)
1114                 strlcpy(dev->name, buf, IFNAMSIZ);
1115         return ret;
1116 }
1117
1118 static int dev_get_valid_name(struct net *net,
1119                               struct net_device *dev,
1120                               const char *name)
1121 {
1122         BUG_ON(!net);
1123
1124         if (!dev_valid_name(name))
1125                 return -EINVAL;
1126
1127         if (strchr(name, '%'))
1128                 return dev_alloc_name_ns(net, dev, name);
1129         else if (__dev_get_by_name(net, name))
1130                 return -EEXIST;
1131         else if (dev->name != name)
1132                 strlcpy(dev->name, name, IFNAMSIZ);
1133
1134         return 0;
1135 }
1136
1137 /**
1138  *      dev_change_name - change name of a device
1139  *      @dev: device
1140  *      @newname: name (or format string) must be at least IFNAMSIZ
1141  *
1142  *      Change name of a device, can pass format strings "eth%d".
1143  *      for wildcarding.
1144  */
1145 int dev_change_name(struct net_device *dev, const char *newname)
1146 {
1147         unsigned char old_assign_type;
1148         char oldname[IFNAMSIZ];
1149         int err = 0;
1150         int ret;
1151         struct net *net;
1152
1153         ASSERT_RTNL();
1154         BUG_ON(!dev_net(dev));
1155
1156         net = dev_net(dev);
1157         if (dev->flags & IFF_UP)
1158                 return -EBUSY;
1159
1160         write_seqcount_begin(&devnet_rename_seq);
1161
1162         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163                 write_seqcount_end(&devnet_rename_seq);
1164                 return 0;
1165         }
1166
1167         memcpy(oldname, dev->name, IFNAMSIZ);
1168
1169         err = dev_get_valid_name(net, dev, newname);
1170         if (err < 0) {
1171                 write_seqcount_end(&devnet_rename_seq);
1172                 return err;
1173         }
1174
1175         if (oldname[0] && !strchr(oldname, '%'))
1176                 netdev_info(dev, "renamed from %s\n", oldname);
1177
1178         old_assign_type = dev->name_assign_type;
1179         dev->name_assign_type = NET_NAME_RENAMED;
1180
1181 rollback:
1182         ret = device_rename(&dev->dev, dev->name);
1183         if (ret) {
1184                 memcpy(dev->name, oldname, IFNAMSIZ);
1185                 dev->name_assign_type = old_assign_type;
1186                 write_seqcount_end(&devnet_rename_seq);
1187                 return ret;
1188         }
1189
1190         write_seqcount_end(&devnet_rename_seq);
1191
1192         netdev_adjacent_rename_links(dev, oldname);
1193
1194         write_lock_bh(&dev_base_lock);
1195         hlist_del_rcu(&dev->name_hlist);
1196         write_unlock_bh(&dev_base_lock);
1197
1198         synchronize_rcu();
1199
1200         write_lock_bh(&dev_base_lock);
1201         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202         write_unlock_bh(&dev_base_lock);
1203
1204         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205         ret = notifier_to_errno(ret);
1206
1207         if (ret) {
1208                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209                 if (err >= 0) {
1210                         err = ret;
1211                         write_seqcount_begin(&devnet_rename_seq);
1212                         memcpy(dev->name, oldname, IFNAMSIZ);
1213                         memcpy(oldname, newname, IFNAMSIZ);
1214                         dev->name_assign_type = old_assign_type;
1215                         old_assign_type = NET_NAME_RENAMED;
1216                         goto rollback;
1217                 } else {
1218                         pr_err("%s: name change rollback failed: %d\n",
1219                                dev->name, ret);
1220                 }
1221         }
1222
1223         return err;
1224 }
1225
1226 /**
1227  *      dev_set_alias - change ifalias of a device
1228  *      @dev: device
1229  *      @alias: name up to IFALIASZ
1230  *      @len: limit of bytes to copy from info
1231  *
1232  *      Set ifalias for a device,
1233  */
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 {
1236         char *new_ifalias;
1237
1238         ASSERT_RTNL();
1239
1240         if (len >= IFALIASZ)
1241                 return -EINVAL;
1242
1243         if (!len) {
1244                 kfree(dev->ifalias);
1245                 dev->ifalias = NULL;
1246                 return 0;
1247         }
1248
1249         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250         if (!new_ifalias)
1251                 return -ENOMEM;
1252         dev->ifalias = new_ifalias;
1253
1254         strlcpy(dev->ifalias, alias, len+1);
1255         return len;
1256 }
1257
1258
1259 /**
1260  *      netdev_features_change - device changes features
1261  *      @dev: device to cause notification
1262  *
1263  *      Called to indicate a device has changed features.
1264  */
1265 void netdev_features_change(struct net_device *dev)
1266 {
1267         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 }
1269 EXPORT_SYMBOL(netdev_features_change);
1270
1271 /**
1272  *      netdev_state_change - device changes state
1273  *      @dev: device to cause notification
1274  *
1275  *      Called to indicate a device has changed state. This function calls
1276  *      the notifier chains for netdev_chain and sends a NEWLINK message
1277  *      to the routing socket.
1278  */
1279 void netdev_state_change(struct net_device *dev)
1280 {
1281         if (dev->flags & IFF_UP) {
1282                 struct netdev_notifier_change_info change_info;
1283
1284                 change_info.flags_changed = 0;
1285                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286                                               &change_info.info);
1287                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288         }
1289 }
1290 EXPORT_SYMBOL(netdev_state_change);
1291
1292 /**
1293  *      netdev_notify_peers - notify network peers about existence of @dev
1294  *      @dev: network device
1295  *
1296  * Generate traffic such that interested network peers are aware of
1297  * @dev, such as by generating a gratuitous ARP. This may be used when
1298  * a device wants to inform the rest of the network about some sort of
1299  * reconfiguration such as a failover event or virtual machine
1300  * migration.
1301  */
1302 void netdev_notify_peers(struct net_device *dev)
1303 {
1304         rtnl_lock();
1305         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306         rtnl_unlock();
1307 }
1308 EXPORT_SYMBOL(netdev_notify_peers);
1309
1310 static int __dev_open(struct net_device *dev)
1311 {
1312         const struct net_device_ops *ops = dev->netdev_ops;
1313         int ret;
1314
1315         ASSERT_RTNL();
1316
1317         if (!netif_device_present(dev))
1318                 return -ENODEV;
1319
1320         /* Block netpoll from trying to do any rx path servicing.
1321          * If we don't do this there is a chance ndo_poll_controller
1322          * or ndo_poll may be running while we open the device
1323          */
1324         netpoll_poll_disable(dev);
1325
1326         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327         ret = notifier_to_errno(ret);
1328         if (ret)
1329                 return ret;
1330
1331         set_bit(__LINK_STATE_START, &dev->state);
1332
1333         if (ops->ndo_validate_addr)
1334                 ret = ops->ndo_validate_addr(dev);
1335
1336         if (!ret && ops->ndo_open)
1337                 ret = ops->ndo_open(dev);
1338
1339         netpoll_poll_enable(dev);
1340
1341         if (ret)
1342                 clear_bit(__LINK_STATE_START, &dev->state);
1343         else {
1344                 dev->flags |= IFF_UP;
1345                 dev_set_rx_mode(dev);
1346                 dev_activate(dev);
1347                 add_device_randomness(dev->dev_addr, dev->addr_len);
1348         }
1349
1350         return ret;
1351 }
1352
1353 /**
1354  *      dev_open        - prepare an interface for use.
1355  *      @dev:   device to open
1356  *
1357  *      Takes a device from down to up state. The device's private open
1358  *      function is invoked and then the multicast lists are loaded. Finally
1359  *      the device is moved into the up state and a %NETDEV_UP message is
1360  *      sent to the netdev notifier chain.
1361  *
1362  *      Calling this function on an active interface is a nop. On a failure
1363  *      a negative errno code is returned.
1364  */
1365 int dev_open(struct net_device *dev)
1366 {
1367         int ret;
1368
1369         if (dev->flags & IFF_UP)
1370                 return 0;
1371
1372         ret = __dev_open(dev);
1373         if (ret < 0)
1374                 return ret;
1375
1376         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377         call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379         return ret;
1380 }
1381 EXPORT_SYMBOL(dev_open);
1382
1383 static int __dev_close_many(struct list_head *head)
1384 {
1385         struct net_device *dev;
1386
1387         ASSERT_RTNL();
1388         might_sleep();
1389
1390         list_for_each_entry(dev, head, close_list) {
1391                 /* Temporarily disable netpoll until the interface is down */
1392                 netpoll_poll_disable(dev);
1393
1394                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395
1396                 clear_bit(__LINK_STATE_START, &dev->state);
1397
1398                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399                  * can be even on different cpu. So just clear netif_running().
1400                  *
1401                  * dev->stop() will invoke napi_disable() on all of it's
1402                  * napi_struct instances on this device.
1403                  */
1404                 smp_mb__after_atomic(); /* Commit netif_running(). */
1405         }
1406
1407         dev_deactivate_many(head);
1408
1409         list_for_each_entry(dev, head, close_list) {
1410                 const struct net_device_ops *ops = dev->netdev_ops;
1411
1412                 /*
1413                  *      Call the device specific close. This cannot fail.
1414                  *      Only if device is UP
1415                  *
1416                  *      We allow it to be called even after a DETACH hot-plug
1417                  *      event.
1418                  */
1419                 if (ops->ndo_stop)
1420                         ops->ndo_stop(dev);
1421
1422                 dev->flags &= ~IFF_UP;
1423                 netpoll_poll_enable(dev);
1424         }
1425
1426         return 0;
1427 }
1428
1429 static int __dev_close(struct net_device *dev)
1430 {
1431         int retval;
1432         LIST_HEAD(single);
1433
1434         list_add(&dev->close_list, &single);
1435         retval = __dev_close_many(&single);
1436         list_del(&single);
1437
1438         return retval;
1439 }
1440
1441 int dev_close_many(struct list_head *head, bool unlink)
1442 {
1443         struct net_device *dev, *tmp;
1444
1445         /* Remove the devices that don't need to be closed */
1446         list_for_each_entry_safe(dev, tmp, head, close_list)
1447                 if (!(dev->flags & IFF_UP))
1448                         list_del_init(&dev->close_list);
1449
1450         __dev_close_many(head);
1451
1452         list_for_each_entry_safe(dev, tmp, head, close_list) {
1453                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1455                 if (unlink)
1456                         list_del_init(&dev->close_list);
1457         }
1458
1459         return 0;
1460 }
1461 EXPORT_SYMBOL(dev_close_many);
1462
1463 /**
1464  *      dev_close - shutdown an interface.
1465  *      @dev: device to shutdown
1466  *
1467  *      This function moves an active device into down state. A
1468  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470  *      chain.
1471  */
1472 int dev_close(struct net_device *dev)
1473 {
1474         if (dev->flags & IFF_UP) {
1475                 LIST_HEAD(single);
1476
1477                 list_add(&dev->close_list, &single);
1478                 dev_close_many(&single, true);
1479                 list_del(&single);
1480         }
1481         return 0;
1482 }
1483 EXPORT_SYMBOL(dev_close);
1484
1485
1486 /**
1487  *      dev_disable_lro - disable Large Receive Offload on a device
1488  *      @dev: device
1489  *
1490  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1491  *      called under RTNL.  This is needed if received packets may be
1492  *      forwarded to another interface.
1493  */
1494 void dev_disable_lro(struct net_device *dev)
1495 {
1496         struct net_device *lower_dev;
1497         struct list_head *iter;
1498
1499         dev->wanted_features &= ~NETIF_F_LRO;
1500         netdev_update_features(dev);
1501
1502         if (unlikely(dev->features & NETIF_F_LRO))
1503                 netdev_WARN(dev, "failed to disable LRO!\n");
1504
1505         netdev_for_each_lower_dev(dev, lower_dev, iter)
1506                 dev_disable_lro(lower_dev);
1507 }
1508 EXPORT_SYMBOL(dev_disable_lro);
1509
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511                                    struct net_device *dev)
1512 {
1513         struct netdev_notifier_info info;
1514
1515         netdev_notifier_info_init(&info, dev);
1516         return nb->notifier_call(nb, val, &info);
1517 }
1518
1519 static int dev_boot_phase = 1;
1520
1521 /**
1522  *      register_netdevice_notifier - register a network notifier block
1523  *      @nb: notifier
1524  *
1525  *      Register a notifier to be called when network device events occur.
1526  *      The notifier passed is linked into the kernel structures and must
1527  *      not be reused until it has been unregistered. A negative errno code
1528  *      is returned on a failure.
1529  *
1530  *      When registered all registration and up events are replayed
1531  *      to the new notifier to allow device to have a race free
1532  *      view of the network device list.
1533  */
1534
1535 int register_netdevice_notifier(struct notifier_block *nb)
1536 {
1537         struct net_device *dev;
1538         struct net_device *last;
1539         struct net *net;
1540         int err;
1541
1542         rtnl_lock();
1543         err = raw_notifier_chain_register(&netdev_chain, nb);
1544         if (err)
1545                 goto unlock;
1546         if (dev_boot_phase)
1547                 goto unlock;
1548         for_each_net(net) {
1549                 for_each_netdev(net, dev) {
1550                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551                         err = notifier_to_errno(err);
1552                         if (err)
1553                                 goto rollback;
1554
1555                         if (!(dev->flags & IFF_UP))
1556                                 continue;
1557
1558                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1559                 }
1560         }
1561
1562 unlock:
1563         rtnl_unlock();
1564         return err;
1565
1566 rollback:
1567         last = dev;
1568         for_each_net(net) {
1569                 for_each_netdev(net, dev) {
1570                         if (dev == last)
1571                                 goto outroll;
1572
1573                         if (dev->flags & IFF_UP) {
1574                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575                                                         dev);
1576                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577                         }
1578                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1579                 }
1580         }
1581
1582 outroll:
1583         raw_notifier_chain_unregister(&netdev_chain, nb);
1584         goto unlock;
1585 }
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1587
1588 /**
1589  *      unregister_netdevice_notifier - unregister a network notifier block
1590  *      @nb: notifier
1591  *
1592  *      Unregister a notifier previously registered by
1593  *      register_netdevice_notifier(). The notifier is unlinked into the
1594  *      kernel structures and may then be reused. A negative errno code
1595  *      is returned on a failure.
1596  *
1597  *      After unregistering unregister and down device events are synthesized
1598  *      for all devices on the device list to the removed notifier to remove
1599  *      the need for special case cleanup code.
1600  */
1601
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 {
1604         struct net_device *dev;
1605         struct net *net;
1606         int err;
1607
1608         rtnl_lock();
1609         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1610         if (err)
1611                 goto unlock;
1612
1613         for_each_net(net) {
1614                 for_each_netdev(net, dev) {
1615                         if (dev->flags & IFF_UP) {
1616                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617                                                         dev);
1618                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619                         }
1620                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621                 }
1622         }
1623 unlock:
1624         rtnl_unlock();
1625         return err;
1626 }
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628
1629 /**
1630  *      call_netdevice_notifiers_info - call all network notifier blocks
1631  *      @val: value passed unmodified to notifier function
1632  *      @dev: net_device pointer passed unmodified to notifier function
1633  *      @info: notifier information data
1634  *
1635  *      Call all network notifier blocks.  Parameters and return value
1636  *      are as for raw_notifier_call_chain().
1637  */
1638
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640                                          struct net_device *dev,
1641                                          struct netdev_notifier_info *info)
1642 {
1643         ASSERT_RTNL();
1644         netdev_notifier_info_init(info, dev);
1645         return raw_notifier_call_chain(&netdev_chain, val, info);
1646 }
1647
1648 /**
1649  *      call_netdevice_notifiers - call all network notifier blocks
1650  *      @val: value passed unmodified to notifier function
1651  *      @dev: net_device pointer passed unmodified to notifier function
1652  *
1653  *      Call all network notifier blocks.  Parameters and return value
1654  *      are as for raw_notifier_call_chain().
1655  */
1656
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 {
1659         struct netdev_notifier_info info;
1660
1661         return call_netdevice_notifiers_info(val, dev, &info);
1662 }
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1664
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1667
1668 void net_inc_ingress_queue(void)
1669 {
1670         static_key_slow_inc(&ingress_needed);
1671 }
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674 void net_dec_ingress_queue(void)
1675 {
1676         static_key_slow_dec(&ingress_needed);
1677 }
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #endif
1680
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1683
1684 void net_inc_egress_queue(void)
1685 {
1686         static_key_slow_inc(&egress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690 void net_dec_egress_queue(void)
1691 {
1692         static_key_slow_dec(&egress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 #endif
1696
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700  * If net_disable_timestamp() is called from irq context, defer the
1701  * static_key_slow_dec() calls.
1702  */
1703 static atomic_t netstamp_needed_deferred;
1704 #endif
1705
1706 void net_enable_timestamp(void)
1707 {
1708 #ifdef HAVE_JUMP_LABEL
1709         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711         if (deferred) {
1712                 while (--deferred)
1713                         static_key_slow_dec(&netstamp_needed);
1714                 return;
1715         }
1716 #endif
1717         static_key_slow_inc(&netstamp_needed);
1718 }
1719 EXPORT_SYMBOL(net_enable_timestamp);
1720
1721 void net_disable_timestamp(void)
1722 {
1723 #ifdef HAVE_JUMP_LABEL
1724         if (in_interrupt()) {
1725                 atomic_inc(&netstamp_needed_deferred);
1726                 return;
1727         }
1728 #endif
1729         static_key_slow_dec(&netstamp_needed);
1730 }
1731 EXPORT_SYMBOL(net_disable_timestamp);
1732
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1734 {
1735         skb->tstamp.tv64 = 0;
1736         if (static_key_false(&netstamp_needed))
1737                 __net_timestamp(skb);
1738 }
1739
1740 #define net_timestamp_check(COND, SKB)                  \
1741         if (static_key_false(&netstamp_needed)) {               \
1742                 if ((COND) && !(SKB)->tstamp.tv64)      \
1743                         __net_timestamp(SKB);           \
1744         }                                               \
1745
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 {
1748         unsigned int len;
1749
1750         if (!(dev->flags & IFF_UP))
1751                 return false;
1752
1753         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754         if (skb->len <= len)
1755                 return true;
1756
1757         /* if TSO is enabled, we don't care about the length as the packet
1758          * could be forwarded without being segmented before
1759          */
1760         if (skb_is_gso(skb))
1761                 return true;
1762
1763         return false;
1764 }
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770             unlikely(!is_skb_forwardable(dev, skb))) {
1771                 atomic_long_inc(&dev->rx_dropped);
1772                 kfree_skb(skb);
1773                 return NET_RX_DROP;
1774         }
1775
1776         skb_scrub_packet(skb, true);
1777         skb->priority = 0;
1778         skb->protocol = eth_type_trans(skb, dev);
1779         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1780
1781         return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784
1785 /**
1786  * dev_forward_skb - loopback an skb to another netif
1787  *
1788  * @dev: destination network device
1789  * @skb: buffer to forward
1790  *
1791  * return values:
1792  *      NET_RX_SUCCESS  (no congestion)
1793  *      NET_RX_DROP     (packet was dropped, but freed)
1794  *
1795  * dev_forward_skb can be used for injecting an skb from the
1796  * start_xmit function of one device into the receive queue
1797  * of another device.
1798  *
1799  * The receiving device may be in another namespace, so
1800  * we have to clear all information in the skb that could
1801  * impact namespace isolation.
1802  */
1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804 {
1805         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1806 }
1807 EXPORT_SYMBOL_GPL(dev_forward_skb);
1808
1809 static inline int deliver_skb(struct sk_buff *skb,
1810                               struct packet_type *pt_prev,
1811                               struct net_device *orig_dev)
1812 {
1813         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814                 return -ENOMEM;
1815         atomic_inc(&skb->users);
1816         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817 }
1818
1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820                                           struct packet_type **pt,
1821                                           struct net_device *orig_dev,
1822                                           __be16 type,
1823                                           struct list_head *ptype_list)
1824 {
1825         struct packet_type *ptype, *pt_prev = *pt;
1826
1827         list_for_each_entry_rcu(ptype, ptype_list, list) {
1828                 if (ptype->type != type)
1829                         continue;
1830                 if (pt_prev)
1831                         deliver_skb(skb, pt_prev, orig_dev);
1832                 pt_prev = ptype;
1833         }
1834         *pt = pt_prev;
1835 }
1836
1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838 {
1839         if (!ptype->af_packet_priv || !skb->sk)
1840                 return false;
1841
1842         if (ptype->id_match)
1843                 return ptype->id_match(ptype, skb->sk);
1844         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845                 return true;
1846
1847         return false;
1848 }
1849
1850 /*
1851  *      Support routine. Sends outgoing frames to any network
1852  *      taps currently in use.
1853  */
1854
1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1856 {
1857         struct packet_type *ptype;
1858         struct sk_buff *skb2 = NULL;
1859         struct packet_type *pt_prev = NULL;
1860         struct list_head *ptype_list = &ptype_all;
1861
1862         rcu_read_lock();
1863 again:
1864         list_for_each_entry_rcu(ptype, ptype_list, list) {
1865                 /* Never send packets back to the socket
1866                  * they originated from - MvS (miquels@drinkel.ow.org)
1867                  */
1868                 if (skb_loop_sk(ptype, skb))
1869                         continue;
1870
1871                 if (pt_prev) {
1872                         deliver_skb(skb2, pt_prev, skb->dev);
1873                         pt_prev = ptype;
1874                         continue;
1875                 }
1876
1877                 /* need to clone skb, done only once */
1878                 skb2 = skb_clone(skb, GFP_ATOMIC);
1879                 if (!skb2)
1880                         goto out_unlock;
1881
1882                 net_timestamp_set(skb2);
1883
1884                 /* skb->nh should be correctly
1885                  * set by sender, so that the second statement is
1886                  * just protection against buggy protocols.
1887                  */
1888                 skb_reset_mac_header(skb2);
1889
1890                 if (skb_network_header(skb2) < skb2->data ||
1891                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893                                              ntohs(skb2->protocol),
1894                                              dev->name);
1895                         skb_reset_network_header(skb2);
1896                 }
1897
1898                 skb2->transport_header = skb2->network_header;
1899                 skb2->pkt_type = PACKET_OUTGOING;
1900                 pt_prev = ptype;
1901         }
1902
1903         if (ptype_list == &ptype_all) {
1904                 ptype_list = &dev->ptype_all;
1905                 goto again;
1906         }
1907 out_unlock:
1908         if (pt_prev)
1909                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1910         rcu_read_unlock();
1911 }
1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1913
1914 /**
1915  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1916  * @dev: Network device
1917  * @txq: number of queues available
1918  *
1919  * If real_num_tx_queues is changed the tc mappings may no longer be
1920  * valid. To resolve this verify the tc mapping remains valid and if
1921  * not NULL the mapping. With no priorities mapping to this
1922  * offset/count pair it will no longer be used. In the worst case TC0
1923  * is invalid nothing can be done so disable priority mappings. If is
1924  * expected that drivers will fix this mapping if they can before
1925  * calling netif_set_real_num_tx_queues.
1926  */
1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1928 {
1929         int i;
1930         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931
1932         /* If TC0 is invalidated disable TC mapping */
1933         if (tc->offset + tc->count > txq) {
1934                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1935                 dev->num_tc = 0;
1936                 return;
1937         }
1938
1939         /* Invalidated prio to tc mappings set to TC0 */
1940         for (i = 1; i < TC_BITMASK + 1; i++) {
1941                 int q = netdev_get_prio_tc_map(dev, i);
1942
1943                 tc = &dev->tc_to_txq[q];
1944                 if (tc->offset + tc->count > txq) {
1945                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946                                 i, q);
1947                         netdev_set_prio_tc_map(dev, i, 0);
1948                 }
1949         }
1950 }
1951
1952 #ifdef CONFIG_XPS
1953 static DEFINE_MUTEX(xps_map_mutex);
1954 #define xmap_dereference(P)             \
1955         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956
1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958                                         int cpu, u16 index)
1959 {
1960         struct xps_map *map = NULL;
1961         int pos;
1962
1963         if (dev_maps)
1964                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1965
1966         for (pos = 0; map && pos < map->len; pos++) {
1967                 if (map->queues[pos] == index) {
1968                         if (map->len > 1) {
1969                                 map->queues[pos] = map->queues[--map->len];
1970                         } else {
1971                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1972                                 kfree_rcu(map, rcu);
1973                                 map = NULL;
1974                         }
1975                         break;
1976                 }
1977         }
1978
1979         return map;
1980 }
1981
1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1983 {
1984         struct xps_dev_maps *dev_maps;
1985         int cpu, i;
1986         bool active = false;
1987
1988         mutex_lock(&xps_map_mutex);
1989         dev_maps = xmap_dereference(dev->xps_maps);
1990
1991         if (!dev_maps)
1992                 goto out_no_maps;
1993
1994         for_each_possible_cpu(cpu) {
1995                 for (i = index; i < dev->num_tx_queues; i++) {
1996                         if (!remove_xps_queue(dev_maps, cpu, i))
1997                                 break;
1998                 }
1999                 if (i == dev->num_tx_queues)
2000                         active = true;
2001         }
2002
2003         if (!active) {
2004                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005                 kfree_rcu(dev_maps, rcu);
2006         }
2007
2008         for (i = index; i < dev->num_tx_queues; i++)
2009                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010                                              NUMA_NO_NODE);
2011
2012 out_no_maps:
2013         mutex_unlock(&xps_map_mutex);
2014 }
2015
2016 static struct xps_map *expand_xps_map(struct xps_map *map,
2017                                       int cpu, u16 index)
2018 {
2019         struct xps_map *new_map;
2020         int alloc_len = XPS_MIN_MAP_ALLOC;
2021         int i, pos;
2022
2023         for (pos = 0; map && pos < map->len; pos++) {
2024                 if (map->queues[pos] != index)
2025                         continue;
2026                 return map;
2027         }
2028
2029         /* Need to add queue to this CPU's existing map */
2030         if (map) {
2031                 if (pos < map->alloc_len)
2032                         return map;
2033
2034                 alloc_len = map->alloc_len * 2;
2035         }
2036
2037         /* Need to allocate new map to store queue on this CPU's map */
2038         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039                                cpu_to_node(cpu));
2040         if (!new_map)
2041                 return NULL;
2042
2043         for (i = 0; i < pos; i++)
2044                 new_map->queues[i] = map->queues[i];
2045         new_map->alloc_len = alloc_len;
2046         new_map->len = pos;
2047
2048         return new_map;
2049 }
2050
2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052                         u16 index)
2053 {
2054         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2055         struct xps_map *map, *new_map;
2056         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2057         int cpu, numa_node_id = -2;
2058         bool active = false;
2059
2060         mutex_lock(&xps_map_mutex);
2061
2062         dev_maps = xmap_dereference(dev->xps_maps);
2063
2064         /* allocate memory for queue storage */
2065         for_each_online_cpu(cpu) {
2066                 if (!cpumask_test_cpu(cpu, mask))
2067                         continue;
2068
2069                 if (!new_dev_maps)
2070                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2071                 if (!new_dev_maps) {
2072                         mutex_unlock(&xps_map_mutex);
2073                         return -ENOMEM;
2074                 }
2075
2076                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077                                  NULL;
2078
2079                 map = expand_xps_map(map, cpu, index);
2080                 if (!map)
2081                         goto error;
2082
2083                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084         }
2085
2086         if (!new_dev_maps)
2087                 goto out_no_new_maps;
2088
2089         for_each_possible_cpu(cpu) {
2090                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091                         /* add queue to CPU maps */
2092                         int pos = 0;
2093
2094                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095                         while ((pos < map->len) && (map->queues[pos] != index))
2096                                 pos++;
2097
2098                         if (pos == map->len)
2099                                 map->queues[map->len++] = index;
2100 #ifdef CONFIG_NUMA
2101                         if (numa_node_id == -2)
2102                                 numa_node_id = cpu_to_node(cpu);
2103                         else if (numa_node_id != cpu_to_node(cpu))
2104                                 numa_node_id = -1;
2105 #endif
2106                 } else if (dev_maps) {
2107                         /* fill in the new device map from the old device map */
2108                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2110                 }
2111
2112         }
2113
2114         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115
2116         /* Cleanup old maps */
2117         if (dev_maps) {
2118                 for_each_possible_cpu(cpu) {
2119                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121                         if (map && map != new_map)
2122                                 kfree_rcu(map, rcu);
2123                 }
2124
2125                 kfree_rcu(dev_maps, rcu);
2126         }
2127
2128         dev_maps = new_dev_maps;
2129         active = true;
2130
2131 out_no_new_maps:
2132         /* update Tx queue numa node */
2133         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134                                      (numa_node_id >= 0) ? numa_node_id :
2135                                      NUMA_NO_NODE);
2136
2137         if (!dev_maps)
2138                 goto out_no_maps;
2139
2140         /* removes queue from unused CPUs */
2141         for_each_possible_cpu(cpu) {
2142                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143                         continue;
2144
2145                 if (remove_xps_queue(dev_maps, cpu, index))
2146                         active = true;
2147         }
2148
2149         /* free map if not active */
2150         if (!active) {
2151                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152                 kfree_rcu(dev_maps, rcu);
2153         }
2154
2155 out_no_maps:
2156         mutex_unlock(&xps_map_mutex);
2157
2158         return 0;
2159 error:
2160         /* remove any maps that we added */
2161         for_each_possible_cpu(cpu) {
2162                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164                                  NULL;
2165                 if (new_map && new_map != map)
2166                         kfree(new_map);
2167         }
2168
2169         mutex_unlock(&xps_map_mutex);
2170
2171         kfree(new_dev_maps);
2172         return -ENOMEM;
2173 }
2174 EXPORT_SYMBOL(netif_set_xps_queue);
2175
2176 #endif
2177 /*
2178  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180  */
2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2182 {
2183         int rc;
2184
2185         if (txq < 1 || txq > dev->num_tx_queues)
2186                 return -EINVAL;
2187
2188         if (dev->reg_state == NETREG_REGISTERED ||
2189             dev->reg_state == NETREG_UNREGISTERING) {
2190                 ASSERT_RTNL();
2191
2192                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193                                                   txq);
2194                 if (rc)
2195                         return rc;
2196
2197                 if (dev->num_tc)
2198                         netif_setup_tc(dev, txq);
2199
2200                 if (txq < dev->real_num_tx_queues) {
2201                         qdisc_reset_all_tx_gt(dev, txq);
2202 #ifdef CONFIG_XPS
2203                         netif_reset_xps_queues_gt(dev, txq);
2204 #endif
2205                 }
2206         }
2207
2208         dev->real_num_tx_queues = txq;
2209         return 0;
2210 }
2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2212
2213 #ifdef CONFIG_SYSFS
2214 /**
2215  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2216  *      @dev: Network device
2217  *      @rxq: Actual number of RX queues
2218  *
2219  *      This must be called either with the rtnl_lock held or before
2220  *      registration of the net device.  Returns 0 on success, or a
2221  *      negative error code.  If called before registration, it always
2222  *      succeeds.
2223  */
2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225 {
2226         int rc;
2227
2228         if (rxq < 1 || rxq > dev->num_rx_queues)
2229                 return -EINVAL;
2230
2231         if (dev->reg_state == NETREG_REGISTERED) {
2232                 ASSERT_RTNL();
2233
2234                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235                                                   rxq);
2236                 if (rc)
2237                         return rc;
2238         }
2239
2240         dev->real_num_rx_queues = rxq;
2241         return 0;
2242 }
2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244 #endif
2245
2246 /**
2247  * netif_get_num_default_rss_queues - default number of RSS queues
2248  *
2249  * This routine should set an upper limit on the number of RSS queues
2250  * used by default by multiqueue devices.
2251  */
2252 int netif_get_num_default_rss_queues(void)
2253 {
2254         return is_kdump_kernel() ?
2255                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2256 }
2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
2259 static void __netif_reschedule(struct Qdisc *q)
2260 {
2261         struct softnet_data *sd;
2262         unsigned long flags;
2263
2264         local_irq_save(flags);
2265         sd = this_cpu_ptr(&softnet_data);
2266         q->next_sched = NULL;
2267         *sd->output_queue_tailp = q;
2268         sd->output_queue_tailp = &q->next_sched;
2269         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270         local_irq_restore(flags);
2271 }
2272
2273 void __netif_schedule(struct Qdisc *q)
2274 {
2275         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276                 __netif_reschedule(q);
2277 }
2278 EXPORT_SYMBOL(__netif_schedule);
2279
2280 struct dev_kfree_skb_cb {
2281         enum skb_free_reason reason;
2282 };
2283
2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2285 {
2286         return (struct dev_kfree_skb_cb *)skb->cb;
2287 }
2288
2289 void netif_schedule_queue(struct netdev_queue *txq)
2290 {
2291         rcu_read_lock();
2292         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295                 __netif_schedule(q);
2296         }
2297         rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL(netif_schedule_queue);
2300
2301 /**
2302  *      netif_wake_subqueue - allow sending packets on subqueue
2303  *      @dev: network device
2304  *      @queue_index: sub queue index
2305  *
2306  * Resume individual transmit queue of a device with multiple transmit queues.
2307  */
2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313                 struct Qdisc *q;
2314
2315                 rcu_read_lock();
2316                 q = rcu_dereference(txq->qdisc);
2317                 __netif_schedule(q);
2318                 rcu_read_unlock();
2319         }
2320 }
2321 EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324 {
2325         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326                 struct Qdisc *q;
2327
2328                 rcu_read_lock();
2329                 q = rcu_dereference(dev_queue->qdisc);
2330                 __netif_schedule(q);
2331                 rcu_read_unlock();
2332         }
2333 }
2334 EXPORT_SYMBOL(netif_tx_wake_queue);
2335
2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2337 {
2338         unsigned long flags;
2339
2340         if (likely(atomic_read(&skb->users) == 1)) {
2341                 smp_rmb();
2342                 atomic_set(&skb->users, 0);
2343         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344                 return;
2345         }
2346         get_kfree_skb_cb(skb)->reason = reason;
2347         local_irq_save(flags);
2348         skb->next = __this_cpu_read(softnet_data.completion_queue);
2349         __this_cpu_write(softnet_data.completion_queue, skb);
2350         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351         local_irq_restore(flags);
2352 }
2353 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2354
2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2356 {
2357         if (in_irq() || irqs_disabled())
2358                 __dev_kfree_skb_irq(skb, reason);
2359         else
2360                 dev_kfree_skb(skb);
2361 }
2362 EXPORT_SYMBOL(__dev_kfree_skb_any);
2363
2364
2365 /**
2366  * netif_device_detach - mark device as removed
2367  * @dev: network device
2368  *
2369  * Mark device as removed from system and therefore no longer available.
2370  */
2371 void netif_device_detach(struct net_device *dev)
2372 {
2373         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374             netif_running(dev)) {
2375                 netif_tx_stop_all_queues(dev);
2376         }
2377 }
2378 EXPORT_SYMBOL(netif_device_detach);
2379
2380 /**
2381  * netif_device_attach - mark device as attached
2382  * @dev: network device
2383  *
2384  * Mark device as attached from system and restart if needed.
2385  */
2386 void netif_device_attach(struct net_device *dev)
2387 {
2388         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389             netif_running(dev)) {
2390                 netif_tx_wake_all_queues(dev);
2391                 __netdev_watchdog_up(dev);
2392         }
2393 }
2394 EXPORT_SYMBOL(netif_device_attach);
2395
2396 /*
2397  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398  * to be used as a distribution range.
2399  */
2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401                   unsigned int num_tx_queues)
2402 {
2403         u32 hash;
2404         u16 qoffset = 0;
2405         u16 qcount = num_tx_queues;
2406
2407         if (skb_rx_queue_recorded(skb)) {
2408                 hash = skb_get_rx_queue(skb);
2409                 while (unlikely(hash >= num_tx_queues))
2410                         hash -= num_tx_queues;
2411                 return hash;
2412         }
2413
2414         if (dev->num_tc) {
2415                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416                 qoffset = dev->tc_to_txq[tc].offset;
2417                 qcount = dev->tc_to_txq[tc].count;
2418         }
2419
2420         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421 }
2422 EXPORT_SYMBOL(__skb_tx_hash);
2423
2424 static void skb_warn_bad_offload(const struct sk_buff *skb)
2425 {
2426         static const netdev_features_t null_features;
2427         struct net_device *dev = skb->dev;
2428         const char *name = "";
2429
2430         if (!net_ratelimit())
2431                 return;
2432
2433         if (dev) {
2434                 if (dev->dev.parent)
2435                         name = dev_driver_string(dev->dev.parent);
2436                 else
2437                         name = netdev_name(dev);
2438         }
2439         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440              "gso_type=%d ip_summed=%d\n",
2441              name, dev ? &dev->features : &null_features,
2442              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2443              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444              skb_shinfo(skb)->gso_type, skb->ip_summed);
2445 }
2446
2447 /*
2448  * Invalidate hardware checksum when packet is to be mangled, and
2449  * complete checksum manually on outgoing path.
2450  */
2451 int skb_checksum_help(struct sk_buff *skb)
2452 {
2453         __wsum csum;
2454         int ret = 0, offset;
2455
2456         if (skb->ip_summed == CHECKSUM_COMPLETE)
2457                 goto out_set_summed;
2458
2459         if (unlikely(skb_shinfo(skb)->gso_size)) {
2460                 skb_warn_bad_offload(skb);
2461                 return -EINVAL;
2462         }
2463
2464         /* Before computing a checksum, we should make sure no frag could
2465          * be modified by an external entity : checksum could be wrong.
2466          */
2467         if (skb_has_shared_frag(skb)) {
2468                 ret = __skb_linearize(skb);
2469                 if (ret)
2470                         goto out;
2471         }
2472
2473         offset = skb_checksum_start_offset(skb);
2474         BUG_ON(offset >= skb_headlen(skb));
2475         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477         offset += skb->csum_offset;
2478         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480         if (skb_cloned(skb) &&
2481             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2482                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483                 if (ret)
2484                         goto out;
2485         }
2486
2487         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2488 out_set_summed:
2489         skb->ip_summed = CHECKSUM_NONE;
2490 out:
2491         return ret;
2492 }
2493 EXPORT_SYMBOL(skb_checksum_help);
2494
2495 /* skb_csum_offload_check - Driver helper function to determine if a device
2496  * with limited checksum offload capabilities is able to offload the checksum
2497  * for a given packet.
2498  *
2499  * Arguments:
2500  *   skb - sk_buff for the packet in question
2501  *   spec - contains the description of what device can offload
2502  *   csum_encapped - returns true if the checksum being offloaded is
2503  *            encpasulated. That is it is checksum for the transport header
2504  *            in the inner headers.
2505  *   checksum_help - when set indicates that helper function should
2506  *            call skb_checksum_help if offload checks fail
2507  *
2508  * Returns:
2509  *   true: Packet has passed the checksum checks and should be offloadable to
2510  *         the device (a driver may still need to check for additional
2511  *         restrictions of its device)
2512  *   false: Checksum is not offloadable. If checksum_help was set then
2513  *         skb_checksum_help was called to resolve checksum for non-GSO
2514  *         packets and when IP protocol is not SCTP
2515  */
2516 bool __skb_csum_offload_chk(struct sk_buff *skb,
2517                             const struct skb_csum_offl_spec *spec,
2518                             bool *csum_encapped,
2519                             bool csum_help)
2520 {
2521         struct iphdr *iph;
2522         struct ipv6hdr *ipv6;
2523         void *nhdr;
2524         int protocol;
2525         u8 ip_proto;
2526
2527         if (skb->protocol == htons(ETH_P_8021Q) ||
2528             skb->protocol == htons(ETH_P_8021AD)) {
2529                 if (!spec->vlan_okay)
2530                         goto need_help;
2531         }
2532
2533         /* We check whether the checksum refers to a transport layer checksum in
2534          * the outermost header or an encapsulated transport layer checksum that
2535          * corresponds to the inner headers of the skb. If the checksum is for
2536          * something else in the packet we need help.
2537          */
2538         if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539                 /* Non-encapsulated checksum */
2540                 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541                 nhdr = skb_network_header(skb);
2542                 *csum_encapped = false;
2543                 if (spec->no_not_encapped)
2544                         goto need_help;
2545         } else if (skb->encapsulation && spec->encap_okay &&
2546                    skb_checksum_start_offset(skb) ==
2547                    skb_inner_transport_offset(skb)) {
2548                 /* Encapsulated checksum */
2549                 *csum_encapped = true;
2550                 switch (skb->inner_protocol_type) {
2551                 case ENCAP_TYPE_ETHER:
2552                         protocol = eproto_to_ipproto(skb->inner_protocol);
2553                         break;
2554                 case ENCAP_TYPE_IPPROTO:
2555                         protocol = skb->inner_protocol;
2556                         break;
2557                 }
2558                 nhdr = skb_inner_network_header(skb);
2559         } else {
2560                 goto need_help;
2561         }
2562
2563         switch (protocol) {
2564         case IPPROTO_IP:
2565                 if (!spec->ipv4_okay)
2566                         goto need_help;
2567                 iph = nhdr;
2568                 ip_proto = iph->protocol;
2569                 if (iph->ihl != 5 && !spec->ip_options_okay)
2570                         goto need_help;
2571                 break;
2572         case IPPROTO_IPV6:
2573                 if (!spec->ipv6_okay)
2574                         goto need_help;
2575                 if (spec->no_encapped_ipv6 && *csum_encapped)
2576                         goto need_help;
2577                 ipv6 = nhdr;
2578                 nhdr += sizeof(*ipv6);
2579                 ip_proto = ipv6->nexthdr;
2580                 break;
2581         default:
2582                 goto need_help;
2583         }
2584
2585 ip_proto_again:
2586         switch (ip_proto) {
2587         case IPPROTO_TCP:
2588                 if (!spec->tcp_okay ||
2589                     skb->csum_offset != offsetof(struct tcphdr, check))
2590                         goto need_help;
2591                 break;
2592         case IPPROTO_UDP:
2593                 if (!spec->udp_okay ||
2594                     skb->csum_offset != offsetof(struct udphdr, check))
2595                         goto need_help;
2596                 break;
2597         case IPPROTO_SCTP:
2598                 if (!spec->sctp_okay ||
2599                     skb->csum_offset != offsetof(struct sctphdr, checksum))
2600                         goto cant_help;
2601                 break;
2602         case NEXTHDR_HOP:
2603         case NEXTHDR_ROUTING:
2604         case NEXTHDR_DEST: {
2605                 u8 *opthdr = nhdr;
2606
2607                 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608                         goto need_help;
2609
2610                 ip_proto = opthdr[0];
2611                 nhdr += (opthdr[1] + 1) << 3;
2612
2613                 goto ip_proto_again;
2614         }
2615         default:
2616                 goto need_help;
2617         }
2618
2619         /* Passed the tests for offloading checksum */
2620         return true;
2621
2622 need_help:
2623         if (csum_help && !skb_shinfo(skb)->gso_size)
2624                 skb_checksum_help(skb);
2625 cant_help:
2626         return false;
2627 }
2628 EXPORT_SYMBOL(__skb_csum_offload_chk);
2629
2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2631 {
2632         __be16 type = skb->protocol;
2633
2634         /* Tunnel gso handlers can set protocol to ethernet. */
2635         if (type == htons(ETH_P_TEB)) {
2636                 struct ethhdr *eth;
2637
2638                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639                         return 0;
2640
2641                 eth = (struct ethhdr *)skb_mac_header(skb);
2642                 type = eth->h_proto;
2643         }
2644
2645         return __vlan_get_protocol(skb, type, depth);
2646 }
2647
2648 /**
2649  *      skb_mac_gso_segment - mac layer segmentation handler.
2650  *      @skb: buffer to segment
2651  *      @features: features for the output path (see dev->features)
2652  */
2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654                                     netdev_features_t features)
2655 {
2656         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657         struct packet_offload *ptype;
2658         int vlan_depth = skb->mac_len;
2659         __be16 type = skb_network_protocol(skb, &vlan_depth);
2660
2661         if (unlikely(!type))
2662                 return ERR_PTR(-EINVAL);
2663
2664         __skb_pull(skb, vlan_depth);
2665
2666         rcu_read_lock();
2667         list_for_each_entry_rcu(ptype, &offload_base, list) {
2668                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2669                         segs = ptype->callbacks.gso_segment(skb, features);
2670                         break;
2671                 }
2672         }
2673         rcu_read_unlock();
2674
2675         __skb_push(skb, skb->data - skb_mac_header(skb));
2676
2677         return segs;
2678 }
2679 EXPORT_SYMBOL(skb_mac_gso_segment);
2680
2681
2682 /* openvswitch calls this on rx path, so we need a different check.
2683  */
2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685 {
2686         if (tx_path)
2687                 return skb->ip_summed != CHECKSUM_PARTIAL;
2688         else
2689                 return skb->ip_summed == CHECKSUM_NONE;
2690 }
2691
2692 /**
2693  *      __skb_gso_segment - Perform segmentation on skb.
2694  *      @skb: buffer to segment
2695  *      @features: features for the output path (see dev->features)
2696  *      @tx_path: whether it is called in TX path
2697  *
2698  *      This function segments the given skb and returns a list of segments.
2699  *
2700  *      It may return NULL if the skb requires no segmentation.  This is
2701  *      only possible when GSO is used for verifying header integrity.
2702  *
2703  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2704  */
2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706                                   netdev_features_t features, bool tx_path)
2707 {
2708         if (unlikely(skb_needs_check(skb, tx_path))) {
2709                 int err;
2710
2711                 skb_warn_bad_offload(skb);
2712
2713                 err = skb_cow_head(skb, 0);
2714                 if (err < 0)
2715                         return ERR_PTR(err);
2716         }
2717
2718         /* Only report GSO partial support if it will enable us to
2719          * support segmentation on this frame without needing additional
2720          * work.
2721          */
2722         if (features & NETIF_F_GSO_PARTIAL) {
2723                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724                 struct net_device *dev = skb->dev;
2725
2726                 partial_features |= dev->features & dev->gso_partial_features;
2727                 if (!skb_gso_ok(skb, features | partial_features))
2728                         features &= ~NETIF_F_GSO_PARTIAL;
2729         }
2730
2731         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733
2734         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2735         SKB_GSO_CB(skb)->encap_level = 0;
2736
2737         skb_reset_mac_header(skb);
2738         skb_reset_mac_len(skb);
2739
2740         return skb_mac_gso_segment(skb, features);
2741 }
2742 EXPORT_SYMBOL(__skb_gso_segment);
2743
2744 /* Take action when hardware reception checksum errors are detected. */
2745 #ifdef CONFIG_BUG
2746 void netdev_rx_csum_fault(struct net_device *dev)
2747 {
2748         if (net_ratelimit()) {
2749                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2750                 dump_stack();
2751         }
2752 }
2753 EXPORT_SYMBOL(netdev_rx_csum_fault);
2754 #endif
2755
2756 /* Actually, we should eliminate this check as soon as we know, that:
2757  * 1. IOMMU is present and allows to map all the memory.
2758  * 2. No high memory really exists on this machine.
2759  */
2760
2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2762 {
2763 #ifdef CONFIG_HIGHMEM
2764         int i;
2765         if (!(dev->features & NETIF_F_HIGHDMA)) {
2766                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768                         if (PageHighMem(skb_frag_page(frag)))
2769                                 return 1;
2770                 }
2771         }
2772
2773         if (PCI_DMA_BUS_IS_PHYS) {
2774                 struct device *pdev = dev->dev.parent;
2775
2776                 if (!pdev)
2777                         return 0;
2778                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2781                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782                                 return 1;
2783                 }
2784         }
2785 #endif
2786         return 0;
2787 }
2788
2789 /* If MPLS offload request, verify we are testing hardware MPLS features
2790  * instead of standard features for the netdev.
2791  */
2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2793 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794                                            netdev_features_t features,
2795                                            __be16 type)
2796 {
2797         if (eth_p_mpls(type))
2798                 features &= skb->dev->mpls_features;
2799
2800         return features;
2801 }
2802 #else
2803 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804                                            netdev_features_t features,
2805                                            __be16 type)
2806 {
2807         return features;
2808 }
2809 #endif
2810
2811 static netdev_features_t harmonize_features(struct sk_buff *skb,
2812         netdev_features_t features)
2813 {
2814         int tmp;
2815         __be16 type;
2816
2817         type = skb_network_protocol(skb, &tmp);
2818         features = net_mpls_features(skb, features, type);
2819
2820         if (skb->ip_summed != CHECKSUM_NONE &&
2821             !can_checksum_protocol(features, type)) {
2822                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2823         } else if (illegal_highdma(skb->dev, skb)) {
2824                 features &= ~NETIF_F_SG;
2825         }
2826
2827         return features;
2828 }
2829
2830 netdev_features_t passthru_features_check(struct sk_buff *skb,
2831                                           struct net_device *dev,
2832                                           netdev_features_t features)
2833 {
2834         return features;
2835 }
2836 EXPORT_SYMBOL(passthru_features_check);
2837
2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839                                              struct net_device *dev,
2840                                              netdev_features_t features)
2841 {
2842         return vlan_features_check(skb, features);
2843 }
2844
2845 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846                                             struct net_device *dev,
2847                                             netdev_features_t features)
2848 {
2849         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850
2851         if (gso_segs > dev->gso_max_segs)
2852                 return features & ~NETIF_F_GSO_MASK;
2853
2854         /* Support for GSO partial features requires software
2855          * intervention before we can actually process the packets
2856          * so we need to strip support for any partial features now
2857          * and we can pull them back in after we have partially
2858          * segmented the frame.
2859          */
2860         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861                 features &= ~dev->gso_partial_features;
2862
2863         /* Make sure to clear the IPv4 ID mangling feature if the
2864          * IPv4 header has the potential to be fragmented.
2865          */
2866         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867                 struct iphdr *iph = skb->encapsulation ?
2868                                     inner_ip_hdr(skb) : ip_hdr(skb);
2869
2870                 if (!(iph->frag_off & htons(IP_DF)))
2871                         features &= ~NETIF_F_TSO_MANGLEID;
2872         }
2873
2874         return features;
2875 }
2876
2877 netdev_features_t netif_skb_features(struct sk_buff *skb)
2878 {
2879         struct net_device *dev = skb->dev;
2880         netdev_features_t features = dev->features;
2881
2882         if (skb_is_gso(skb))
2883                 features = gso_features_check(skb, dev, features);
2884
2885         /* If encapsulation offload request, verify we are testing
2886          * hardware encapsulation features instead of standard
2887          * features for the netdev
2888          */
2889         if (skb->encapsulation)
2890                 features &= dev->hw_enc_features;
2891
2892         if (skb_vlan_tagged(skb))
2893                 features = netdev_intersect_features(features,
2894                                                      dev->vlan_features |
2895                                                      NETIF_F_HW_VLAN_CTAG_TX |
2896                                                      NETIF_F_HW_VLAN_STAG_TX);
2897
2898         if (dev->netdev_ops->ndo_features_check)
2899                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900                                                                 features);
2901         else
2902                 features &= dflt_features_check(skb, dev, features);
2903
2904         return harmonize_features(skb, features);
2905 }
2906 EXPORT_SYMBOL(netif_skb_features);
2907
2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2909                     struct netdev_queue *txq, bool more)
2910 {
2911         unsigned int len;
2912         int rc;
2913
2914         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2915                 dev_queue_xmit_nit(skb, dev);
2916
2917         len = skb->len;
2918         trace_net_dev_start_xmit(skb, dev);
2919         rc = netdev_start_xmit(skb, dev, txq, more);
2920         trace_net_dev_xmit(skb, rc, dev, len);
2921
2922         return rc;
2923 }
2924
2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926                                     struct netdev_queue *txq, int *ret)
2927 {
2928         struct sk_buff *skb = first;
2929         int rc = NETDEV_TX_OK;
2930
2931         while (skb) {
2932                 struct sk_buff *next = skb->next;
2933
2934                 skb->next = NULL;
2935                 rc = xmit_one(skb, dev, txq, next != NULL);
2936                 if (unlikely(!dev_xmit_complete(rc))) {
2937                         skb->next = next;
2938                         goto out;
2939                 }
2940
2941                 skb = next;
2942                 if (netif_xmit_stopped(txq) && skb) {
2943                         rc = NETDEV_TX_BUSY;
2944                         break;
2945                 }
2946         }
2947
2948 out:
2949         *ret = rc;
2950         return skb;
2951 }
2952
2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954                                           netdev_features_t features)
2955 {
2956         if (skb_vlan_tag_present(skb) &&
2957             !vlan_hw_offload_capable(features, skb->vlan_proto))
2958                 skb = __vlan_hwaccel_push_inside(skb);
2959         return skb;
2960 }
2961
2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2963 {
2964         netdev_features_t features;
2965
2966         features = netif_skb_features(skb);
2967         skb = validate_xmit_vlan(skb, features);
2968         if (unlikely(!skb))
2969                 goto out_null;
2970
2971         if (netif_needs_gso(skb, features)) {
2972                 struct sk_buff *segs;
2973
2974                 segs = skb_gso_segment(skb, features);
2975                 if (IS_ERR(segs)) {
2976                         goto out_kfree_skb;
2977                 } else if (segs) {
2978                         consume_skb(skb);
2979                         skb = segs;
2980                 }
2981         } else {
2982                 if (skb_needs_linearize(skb, features) &&
2983                     __skb_linearize(skb))
2984                         goto out_kfree_skb;
2985
2986                 /* If packet is not checksummed and device does not
2987                  * support checksumming for this protocol, complete
2988                  * checksumming here.
2989                  */
2990                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991                         if (skb->encapsulation)
2992                                 skb_set_inner_transport_header(skb,
2993                                                                skb_checksum_start_offset(skb));
2994                         else
2995                                 skb_set_transport_header(skb,
2996                                                          skb_checksum_start_offset(skb));
2997                         if (!(features & NETIF_F_CSUM_MASK) &&
2998                             skb_checksum_help(skb))
2999                                 goto out_kfree_skb;
3000                 }
3001         }
3002
3003         return skb;
3004
3005 out_kfree_skb:
3006         kfree_skb(skb);
3007 out_null:
3008         atomic_long_inc(&dev->tx_dropped);
3009         return NULL;
3010 }
3011
3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013 {
3014         struct sk_buff *next, *head = NULL, *tail;
3015
3016         for (; skb != NULL; skb = next) {
3017                 next = skb->next;
3018                 skb->next = NULL;
3019
3020                 /* in case skb wont be segmented, point to itself */
3021                 skb->prev = skb;
3022
3023                 skb = validate_xmit_skb(skb, dev);
3024                 if (!skb)
3025                         continue;
3026
3027                 if (!head)
3028                         head = skb;
3029                 else
3030                         tail->next = skb;
3031                 /* If skb was segmented, skb->prev points to
3032                  * the last segment. If not, it still contains skb.
3033                  */
3034                 tail = skb->prev;
3035         }
3036         return head;
3037 }
3038
3039 static void qdisc_pkt_len_init(struct sk_buff *skb)
3040 {
3041         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042
3043         qdisc_skb_cb(skb)->pkt_len = skb->len;
3044
3045         /* To get more precise estimation of bytes sent on wire,
3046          * we add to pkt_len the headers size of all segments
3047          */
3048         if (shinfo->gso_size)  {
3049                 unsigned int hdr_len;
3050                 u16 gso_segs = shinfo->gso_segs;
3051
3052                 /* mac layer + network layer */
3053                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054
3055                 /* + transport layer */
3056                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057                         hdr_len += tcp_hdrlen(skb);
3058                 else
3059                         hdr_len += sizeof(struct udphdr);
3060
3061                 if (shinfo->gso_type & SKB_GSO_DODGY)
3062                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063                                                 shinfo->gso_size);
3064
3065                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3066         }
3067 }
3068
3069 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070                                  struct net_device *dev,
3071                                  struct netdev_queue *txq)
3072 {
3073         spinlock_t *root_lock = qdisc_lock(q);
3074         struct sk_buff *to_free = NULL;
3075         bool contended;
3076         int rc;
3077
3078         qdisc_calculate_pkt_len(skb, q);
3079         /*
3080          * Heuristic to force contended enqueues to serialize on a
3081          * separate lock before trying to get qdisc main lock.
3082          * This permits qdisc->running owner to get the lock more
3083          * often and dequeue packets faster.
3084          */
3085         contended = qdisc_is_running(q);
3086         if (unlikely(contended))
3087                 spin_lock(&q->busylock);
3088
3089         spin_lock(root_lock);
3090         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3091                 __qdisc_drop(skb, &to_free);
3092                 rc = NET_XMIT_DROP;
3093         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3094                    qdisc_run_begin(q)) {
3095                 /*
3096                  * This is a work-conserving queue; there are no old skbs
3097                  * waiting to be sent out; and the qdisc is not running -
3098                  * xmit the skb directly.
3099                  */
3100
3101                 qdisc_bstats_update(q, skb);
3102
3103                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3104                         if (unlikely(contended)) {
3105                                 spin_unlock(&q->busylock);
3106                                 contended = false;
3107                         }
3108                         __qdisc_run(q);
3109                 } else
3110                         qdisc_run_end(q);
3111
3112                 rc = NET_XMIT_SUCCESS;
3113         } else {
3114                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3115                 if (qdisc_run_begin(q)) {
3116                         if (unlikely(contended)) {
3117                                 spin_unlock(&q->busylock);
3118                                 contended = false;
3119                         }
3120                         __qdisc_run(q);
3121                 }
3122         }
3123         spin_unlock(root_lock);
3124         if (unlikely(to_free))
3125                 kfree_skb_list(to_free);
3126         if (unlikely(contended))
3127                 spin_unlock(&q->busylock);
3128         return rc;
3129 }
3130
3131 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3132 static void skb_update_prio(struct sk_buff *skb)
3133 {
3134         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3135
3136         if (!skb->priority && skb->sk && map) {
3137                 unsigned int prioidx =
3138                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3139
3140                 if (prioidx < map->priomap_len)
3141                         skb->priority = map->priomap[prioidx];
3142         }
3143 }
3144 #else
3145 #define skb_update_prio(skb)
3146 #endif
3147
3148 DEFINE_PER_CPU(int, xmit_recursion);
3149 EXPORT_SYMBOL(xmit_recursion);
3150
3151 /**
3152  *      dev_loopback_xmit - loop back @skb
3153  *      @net: network namespace this loopback is happening in
3154  *      @sk:  sk needed to be a netfilter okfn
3155  *      @skb: buffer to transmit
3156  */
3157 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3158 {
3159         skb_reset_mac_header(skb);
3160         __skb_pull(skb, skb_network_offset(skb));
3161         skb->pkt_type = PACKET_LOOPBACK;
3162         skb->ip_summed = CHECKSUM_UNNECESSARY;
3163         WARN_ON(!skb_dst(skb));
3164         skb_dst_force(skb);
3165         netif_rx_ni(skb);
3166         return 0;
3167 }
3168 EXPORT_SYMBOL(dev_loopback_xmit);
3169
3170 #ifdef CONFIG_NET_EGRESS
3171 static struct sk_buff *
3172 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173 {
3174         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175         struct tcf_result cl_res;
3176
3177         if (!cl)
3178                 return skb;
3179
3180         /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181          * earlier by the caller.
3182          */
3183         qdisc_bstats_cpu_update(cl->q, skb);
3184
3185         switch (tc_classify(skb, cl, &cl_res, false)) {
3186         case TC_ACT_OK:
3187         case TC_ACT_RECLASSIFY:
3188                 skb->tc_index = TC_H_MIN(cl_res.classid);
3189                 break;
3190         case TC_ACT_SHOT:
3191                 qdisc_qstats_cpu_drop(cl->q);
3192                 *ret = NET_XMIT_DROP;
3193                 kfree_skb(skb);
3194                 return NULL;
3195         case TC_ACT_STOLEN:
3196         case TC_ACT_QUEUED:
3197                 *ret = NET_XMIT_SUCCESS;
3198                 consume_skb(skb);
3199                 return NULL;
3200         case TC_ACT_REDIRECT:
3201                 /* No need to push/pop skb's mac_header here on egress! */
3202                 skb_do_redirect(skb);
3203                 *ret = NET_XMIT_SUCCESS;
3204                 return NULL;
3205         default:
3206                 break;
3207         }
3208
3209         return skb;
3210 }
3211 #endif /* CONFIG_NET_EGRESS */
3212
3213 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3214 {
3215 #ifdef CONFIG_XPS
3216         struct xps_dev_maps *dev_maps;
3217         struct xps_map *map;
3218         int queue_index = -1;
3219
3220         rcu_read_lock();
3221         dev_maps = rcu_dereference(dev->xps_maps);
3222         if (dev_maps) {
3223                 map = rcu_dereference(
3224                     dev_maps->cpu_map[skb->sender_cpu - 1]);
3225                 if (map) {
3226                         if (map->len == 1)
3227                                 queue_index = map->queues[0];
3228                         else
3229                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3230                                                                            map->len)];
3231                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3232                                 queue_index = -1;
3233                 }
3234         }
3235         rcu_read_unlock();
3236
3237         return queue_index;
3238 #else
3239         return -1;
3240 #endif
3241 }
3242
3243 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3244 {
3245         struct sock *sk = skb->sk;
3246         int queue_index = sk_tx_queue_get(sk);
3247
3248         if (queue_index < 0 || skb->ooo_okay ||
3249             queue_index >= dev->real_num_tx_queues) {
3250                 int new_index = get_xps_queue(dev, skb);
3251                 if (new_index < 0)
3252                         new_index = skb_tx_hash(dev, skb);
3253
3254                 if (queue_index != new_index && sk &&
3255                     sk_fullsock(sk) &&
3256                     rcu_access_pointer(sk->sk_dst_cache))
3257                         sk_tx_queue_set(sk, new_index);
3258
3259                 queue_index = new_index;
3260         }
3261
3262         return queue_index;
3263 }
3264
3265 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266                                     struct sk_buff *skb,
3267                                     void *accel_priv)
3268 {
3269         int queue_index = 0;
3270
3271 #ifdef CONFIG_XPS
3272         u32 sender_cpu = skb->sender_cpu - 1;
3273
3274         if (sender_cpu >= (u32)NR_CPUS)
3275                 skb->sender_cpu = raw_smp_processor_id() + 1;
3276 #endif
3277
3278         if (dev->real_num_tx_queues != 1) {
3279                 const struct net_device_ops *ops = dev->netdev_ops;
3280                 if (ops->ndo_select_queue)
3281                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3282                                                             __netdev_pick_tx);
3283                 else
3284                         queue_index = __netdev_pick_tx(dev, skb);
3285
3286                 if (!accel_priv)
3287                         queue_index = netdev_cap_txqueue(dev, queue_index);
3288         }
3289
3290         skb_set_queue_mapping(skb, queue_index);
3291         return netdev_get_tx_queue(dev, queue_index);
3292 }
3293
3294 /**
3295  *      __dev_queue_xmit - transmit a buffer
3296  *      @skb: buffer to transmit
3297  *      @accel_priv: private data used for L2 forwarding offload
3298  *
3299  *      Queue a buffer for transmission to a network device. The caller must
3300  *      have set the device and priority and built the buffer before calling
3301  *      this function. The function can be called from an interrupt.
3302  *
3303  *      A negative errno code is returned on a failure. A success does not
3304  *      guarantee the frame will be transmitted as it may be dropped due
3305  *      to congestion or traffic shaping.
3306  *
3307  * -----------------------------------------------------------------------------------
3308  *      I notice this method can also return errors from the queue disciplines,
3309  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3310  *      be positive.
3311  *
3312  *      Regardless of the return value, the skb is consumed, so it is currently
3313  *      difficult to retry a send to this method.  (You can bump the ref count
3314  *      before sending to hold a reference for retry if you are careful.)
3315  *
3316  *      When calling this method, interrupts MUST be enabled.  This is because
3317  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3318  *          --BLG
3319  */
3320 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3321 {
3322         struct net_device *dev = skb->dev;
3323         struct netdev_queue *txq;
3324         struct Qdisc *q;
3325         int rc = -ENOMEM;
3326
3327         skb_reset_mac_header(skb);
3328
3329         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3331
3332         /* Disable soft irqs for various locks below. Also
3333          * stops preemption for RCU.
3334          */
3335         rcu_read_lock_bh();
3336
3337         skb_update_prio(skb);
3338
3339         qdisc_pkt_len_init(skb);
3340 #ifdef CONFIG_NET_CLS_ACT
3341         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342 # ifdef CONFIG_NET_EGRESS
3343         if (static_key_false(&egress_needed)) {
3344                 skb = sch_handle_egress(skb, &rc, dev);
3345                 if (!skb)
3346                         goto out;
3347         }
3348 # endif
3349 #endif
3350         /* If device/qdisc don't need skb->dst, release it right now while
3351          * its hot in this cpu cache.
3352          */
3353         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354                 skb_dst_drop(skb);
3355         else
3356                 skb_dst_force(skb);
3357
3358         txq = netdev_pick_tx(dev, skb, accel_priv);
3359         q = rcu_dereference_bh(txq->qdisc);
3360
3361         trace_net_dev_queue(skb);
3362         if (q->enqueue) {
3363                 rc = __dev_xmit_skb(skb, q, dev, txq);
3364                 goto out;
3365         }
3366
3367         /* The device has no queue. Common case for software devices:
3368            loopback, all the sorts of tunnels...
3369
3370            Really, it is unlikely that netif_tx_lock protection is necessary
3371            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3372            counters.)
3373            However, it is possible, that they rely on protection
3374            made by us here.
3375
3376            Check this and shot the lock. It is not prone from deadlocks.
3377            Either shot noqueue qdisc, it is even simpler 8)
3378          */
3379         if (dev->flags & IFF_UP) {
3380                 int cpu = smp_processor_id(); /* ok because BHs are off */
3381
3382                 if (txq->xmit_lock_owner != cpu) {
3383                         if (unlikely(__this_cpu_read(xmit_recursion) >
3384                                      XMIT_RECURSION_LIMIT))
3385                                 goto recursion_alert;
3386
3387                         skb = validate_xmit_skb(skb, dev);
3388                         if (!skb)
3389                                 goto out;
3390
3391                         HARD_TX_LOCK(dev, txq, cpu);
3392
3393                         if (!netif_xmit_stopped(txq)) {
3394                                 __this_cpu_inc(xmit_recursion);
3395                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3396                                 __this_cpu_dec(xmit_recursion);
3397                                 if (dev_xmit_complete(rc)) {
3398                                         HARD_TX_UNLOCK(dev, txq);
3399                                         goto out;
3400                                 }
3401                         }
3402                         HARD_TX_UNLOCK(dev, txq);
3403                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3404                                              dev->name);
3405                 } else {
3406                         /* Recursion is detected! It is possible,
3407                          * unfortunately
3408                          */
3409 recursion_alert:
3410                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3411                                              dev->name);
3412                 }
3413         }
3414
3415         rc = -ENETDOWN;
3416         rcu_read_unlock_bh();
3417
3418         atomic_long_inc(&dev->tx_dropped);
3419         kfree_skb_list(skb);
3420         return rc;
3421 out:
3422         rcu_read_unlock_bh();
3423         return rc;
3424 }
3425
3426 int dev_queue_xmit(struct sk_buff *skb)
3427 {
3428         return __dev_queue_xmit(skb, NULL);
3429 }
3430 EXPORT_SYMBOL(dev_queue_xmit);
3431
3432 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3433 {
3434         return __dev_queue_xmit(skb, accel_priv);
3435 }
3436 EXPORT_SYMBOL(dev_queue_xmit_accel);
3437
3438
3439 /*=======================================================================
3440                         Receiver routines
3441   =======================================================================*/
3442
3443 int netdev_max_backlog __read_mostly = 1000;
3444 EXPORT_SYMBOL(netdev_max_backlog);
3445
3446 int netdev_tstamp_prequeue __read_mostly = 1;
3447 int netdev_budget __read_mostly = 300;
3448 int weight_p __read_mostly = 64;            /* old backlog weight */
3449
3450 /* Called with irq disabled */
3451 static inline void ____napi_schedule(struct softnet_data *sd,
3452                                      struct napi_struct *napi)
3453 {
3454         list_add_tail(&napi->poll_list, &sd->poll_list);
3455         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3456 }
3457
3458 #ifdef CONFIG_RPS
3459
3460 /* One global table that all flow-based protocols share. */
3461 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3462 EXPORT_SYMBOL(rps_sock_flow_table);
3463 u32 rps_cpu_mask __read_mostly;
3464 EXPORT_SYMBOL(rps_cpu_mask);
3465
3466 struct static_key rps_needed __read_mostly;
3467 EXPORT_SYMBOL(rps_needed);
3468
3469 static struct rps_dev_flow *
3470 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3471             struct rps_dev_flow *rflow, u16 next_cpu)
3472 {
3473         if (next_cpu < nr_cpu_ids) {
3474 #ifdef CONFIG_RFS_ACCEL
3475                 struct netdev_rx_queue *rxqueue;
3476                 struct rps_dev_flow_table *flow_table;
3477                 struct rps_dev_flow *old_rflow;
3478                 u32 flow_id;
3479                 u16 rxq_index;
3480                 int rc;
3481
3482                 /* Should we steer this flow to a different hardware queue? */
3483                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3484                     !(dev->features & NETIF_F_NTUPLE))
3485                         goto out;
3486                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3487                 if (rxq_index == skb_get_rx_queue(skb))
3488                         goto out;
3489
3490                 rxqueue = dev->_rx + rxq_index;
3491                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3492                 if (!flow_table)
3493                         goto out;
3494                 flow_id = skb_get_hash(skb) & flow_table->mask;
3495                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3496                                                         rxq_index, flow_id);
3497                 if (rc < 0)
3498                         goto out;
3499                 old_rflow = rflow;
3500                 rflow = &flow_table->flows[flow_id];
3501                 rflow->filter = rc;
3502                 if (old_rflow->filter == rflow->filter)
3503                         old_rflow->filter = RPS_NO_FILTER;
3504         out:
3505 #endif
3506                 rflow->last_qtail =
3507                         per_cpu(softnet_data, next_cpu).input_queue_head;
3508         }
3509
3510         rflow->cpu = next_cpu;
3511         return rflow;
3512 }
3513
3514 /*
3515  * get_rps_cpu is called from netif_receive_skb and returns the target
3516  * CPU from the RPS map of the receiving queue for a given skb.
3517  * rcu_read_lock must be held on entry.
3518  */
3519 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3520                        struct rps_dev_flow **rflowp)
3521 {
3522         const struct rps_sock_flow_table *sock_flow_table;
3523         struct netdev_rx_queue *rxqueue = dev->_rx;
3524         struct rps_dev_flow_table *flow_table;
3525         struct rps_map *map;
3526         int cpu = -1;
3527         u32 tcpu;
3528         u32 hash;
3529
3530         if (skb_rx_queue_recorded(skb)) {
3531                 u16 index = skb_get_rx_queue(skb);
3532
3533                 if (unlikely(index >= dev->real_num_rx_queues)) {
3534                         WARN_ONCE(dev->real_num_rx_queues > 1,
3535                                   "%s received packet on queue %u, but number "
3536                                   "of RX queues is %u\n",
3537                                   dev->name, index, dev->real_num_rx_queues);
3538                         goto done;
3539                 }
3540                 rxqueue += index;
3541         }
3542
3543         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3544
3545         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3546         map = rcu_dereference(rxqueue->rps_map);
3547         if (!flow_table && !map)
3548                 goto done;
3549
3550         skb_reset_network_header(skb);
3551         hash = skb_get_hash(skb);
3552         if (!hash)
3553                 goto done;
3554
3555         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3556         if (flow_table && sock_flow_table) {
3557                 struct rps_dev_flow *rflow;
3558                 u32 next_cpu;
3559                 u32 ident;
3560
3561                 /* First check into global flow table if there is a match */
3562                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3563                 if ((ident ^ hash) & ~rps_cpu_mask)
3564                         goto try_rps;
3565
3566                 next_cpu = ident & rps_cpu_mask;
3567
3568                 /* OK, now we know there is a match,
3569                  * we can look at the local (per receive queue) flow table
3570                  */
3571                 rflow = &flow_table->flows[hash & flow_table->mask];
3572                 tcpu = rflow->cpu;
3573
3574                 /*
3575                  * If the desired CPU (where last recvmsg was done) is
3576                  * different from current CPU (one in the rx-queue flow
3577                  * table entry), switch if one of the following holds:
3578                  *   - Current CPU is unset (>= nr_cpu_ids).
3579                  *   - Current CPU is offline.
3580                  *   - The current CPU's queue tail has advanced beyond the
3581                  *     last packet that was enqueued using this table entry.
3582                  *     This guarantees that all previous packets for the flow
3583                  *     have been dequeued, thus preserving in order delivery.
3584                  */
3585                 if (unlikely(tcpu != next_cpu) &&
3586                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3587                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3588                       rflow->last_qtail)) >= 0)) {
3589                         tcpu = next_cpu;
3590                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3591                 }
3592
3593                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3594                         *rflowp = rflow;
3595                         cpu = tcpu;
3596                         goto done;
3597                 }
3598         }
3599
3600 try_rps:
3601
3602         if (map) {
3603                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3604                 if (cpu_online(tcpu)) {
3605                         cpu = tcpu;
3606                         goto done;
3607                 }
3608         }
3609
3610 done:
3611         return cpu;
3612 }
3613
3614 #ifdef CONFIG_RFS_ACCEL
3615
3616 /**
3617  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3618  * @dev: Device on which the filter was set
3619  * @rxq_index: RX queue index
3620  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3621  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3622  *
3623  * Drivers that implement ndo_rx_flow_steer() should periodically call
3624  * this function for each installed filter and remove the filters for
3625  * which it returns %true.
3626  */
3627 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3628                          u32 flow_id, u16 filter_id)
3629 {
3630         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3631         struct rps_dev_flow_table *flow_table;
3632         struct rps_dev_flow *rflow;
3633         bool expire = true;
3634         unsigned int cpu;
3635
3636         rcu_read_lock();
3637         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3638         if (flow_table && flow_id <= flow_table->mask) {
3639                 rflow = &flow_table->flows[flow_id];
3640                 cpu = ACCESS_ONCE(rflow->cpu);
3641                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3642                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3643                            rflow->last_qtail) <
3644                      (int)(10 * flow_table->mask)))
3645                         expire = false;
3646         }
3647         rcu_read_unlock();
3648         return expire;
3649 }
3650 EXPORT_SYMBOL(rps_may_expire_flow);
3651
3652 #endif /* CONFIG_RFS_ACCEL */
3653
3654 /* Called from hardirq (IPI) context */
3655 static void rps_trigger_softirq(void *data)
3656 {
3657         struct softnet_data *sd = data;
3658
3659         ____napi_schedule(sd, &sd->backlog);
3660         sd->received_rps++;
3661 }
3662
3663 #endif /* CONFIG_RPS */
3664
3665 /*
3666  * Check if this softnet_data structure is another cpu one
3667  * If yes, queue it to our IPI list and return 1
3668  * If no, return 0
3669  */
3670 static int rps_ipi_queued(struct softnet_data *sd)
3671 {
3672 #ifdef CONFIG_RPS
3673         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3674
3675         if (sd != mysd) {
3676                 sd->rps_ipi_next = mysd->rps_ipi_list;
3677                 mysd->rps_ipi_list = sd;
3678
3679                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3680                 return 1;
3681         }
3682 #endif /* CONFIG_RPS */
3683         return 0;
3684 }
3685
3686 #ifdef CONFIG_NET_FLOW_LIMIT
3687 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3688 #endif
3689
3690 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3691 {
3692 #ifdef CONFIG_NET_FLOW_LIMIT
3693         struct sd_flow_limit *fl;
3694         struct softnet_data *sd;
3695         unsigned int old_flow, new_flow;
3696
3697         if (qlen < (netdev_max_backlog >> 1))
3698                 return false;
3699
3700         sd = this_cpu_ptr(&softnet_data);
3701
3702         rcu_read_lock();
3703         fl = rcu_dereference(sd->flow_limit);
3704         if (fl) {
3705                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3706                 old_flow = fl->history[fl->history_head];
3707                 fl->history[fl->history_head] = new_flow;
3708
3709                 fl->history_head++;
3710                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3711
3712                 if (likely(fl->buckets[old_flow]))
3713                         fl->buckets[old_flow]--;
3714
3715                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3716                         fl->count++;
3717                         rcu_read_unlock();
3718                         return true;
3719                 }
3720         }
3721         rcu_read_unlock();
3722 #endif
3723         return false;
3724 }
3725
3726 /*
3727  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3728  * queue (may be a remote CPU queue).
3729  */
3730 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3731                               unsigned int *qtail)
3732 {
3733         struct softnet_data *sd;
3734         unsigned long flags;
3735         unsigned int qlen;
3736
3737         sd = &per_cpu(softnet_data, cpu);
3738
3739         local_irq_save(flags);
3740
3741         rps_lock(sd);
3742         if (!netif_running(skb->dev))
3743                 goto drop;
3744         qlen = skb_queue_len(&sd->input_pkt_queue);
3745         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3746                 if (qlen) {
3747 enqueue:
3748                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3749                         input_queue_tail_incr_save(sd, qtail);
3750                         rps_unlock(sd);
3751                         local_irq_restore(flags);
3752                         return NET_RX_SUCCESS;
3753                 }
3754
3755                 /* Schedule NAPI for backlog device
3756                  * We can use non atomic operation since we own the queue lock
3757                  */
3758                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3759                         if (!rps_ipi_queued(sd))
3760                                 ____napi_schedule(sd, &sd->backlog);
3761                 }
3762                 goto enqueue;
3763         }
3764
3765 drop:
3766         sd->dropped++;
3767         rps_unlock(sd);
3768
3769         local_irq_restore(flags);
3770
3771         atomic_long_inc(&skb->dev->rx_dropped);
3772         kfree_skb(skb);
3773         return NET_RX_DROP;
3774 }
3775
3776 static int netif_rx_internal(struct sk_buff *skb)
3777 {
3778         int ret;
3779
3780         net_timestamp_check(netdev_tstamp_prequeue, skb);
3781
3782         trace_netif_rx(skb);
3783 #ifdef CONFIG_RPS
3784         if (static_key_false(&rps_needed)) {
3785                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3786                 int cpu;
3787
3788                 preempt_disable();
3789                 rcu_read_lock();
3790
3791                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3792                 if (cpu < 0)
3793                         cpu = smp_processor_id();
3794
3795                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3796
3797                 rcu_read_unlock();
3798                 preempt_enable();
3799         } else
3800 #endif
3801         {
3802                 unsigned int qtail;
3803                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3804                 put_cpu();
3805         }
3806         return ret;
3807 }
3808
3809 /**
3810  *      netif_rx        -       post buffer to the network code
3811  *      @skb: buffer to post
3812  *
3813  *      This function receives a packet from a device driver and queues it for
3814  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3815  *      may be dropped during processing for congestion control or by the
3816  *      protocol layers.
3817  *
3818  *      return values:
3819  *      NET_RX_SUCCESS  (no congestion)
3820  *      NET_RX_DROP     (packet was dropped)
3821  *
3822  */
3823
3824 int netif_rx(struct sk_buff *skb)
3825 {
3826         trace_netif_rx_entry(skb);
3827
3828         return netif_rx_internal(skb);
3829 }
3830 EXPORT_SYMBOL(netif_rx);
3831
3832 int netif_rx_ni(struct sk_buff *skb)
3833 {
3834         int err;
3835
3836         trace_netif_rx_ni_entry(skb);
3837
3838         preempt_disable();
3839         err = netif_rx_internal(skb);
3840         if (local_softirq_pending())
3841                 do_softirq();
3842         preempt_enable();
3843
3844         return err;
3845 }
3846 EXPORT_SYMBOL(netif_rx_ni);
3847
3848 static void net_tx_action(struct softirq_action *h)
3849 {
3850         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3851
3852         if (sd->completion_queue) {
3853                 struct sk_buff *clist;
3854
3855                 local_irq_disable();
3856                 clist = sd->completion_queue;
3857                 sd->completion_queue = NULL;
3858                 local_irq_enable();
3859
3860                 while (clist) {
3861                         struct sk_buff *skb = clist;
3862                         clist = clist->next;
3863
3864                         WARN_ON(atomic_read(&skb->users));
3865                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3866                                 trace_consume_skb(skb);
3867                         else
3868                                 trace_kfree_skb(skb, net_tx_action);
3869
3870                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3871                                 __kfree_skb(skb);
3872                         else
3873                                 __kfree_skb_defer(skb);
3874                 }
3875
3876                 __kfree_skb_flush();
3877         }
3878
3879         if (sd->output_queue) {
3880                 struct Qdisc *head;
3881
3882                 local_irq_disable();
3883                 head = sd->output_queue;
3884                 sd->output_queue = NULL;
3885                 sd->output_queue_tailp = &sd->output_queue;
3886                 local_irq_enable();
3887
3888                 while (head) {
3889                         struct Qdisc *q = head;
3890                         spinlock_t *root_lock;
3891
3892                         head = head->next_sched;
3893
3894                         root_lock = qdisc_lock(q);
3895                         spin_lock(root_lock);
3896                         /* We need to make sure head->next_sched is read
3897                          * before clearing __QDISC_STATE_SCHED
3898                          */
3899                         smp_mb__before_atomic();
3900                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3901                         qdisc_run(q);
3902                         spin_unlock(root_lock);
3903                 }
3904         }
3905 }
3906
3907 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3908 /* This hook is defined here for ATM LANE */
3909 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3910                              unsigned char *addr) __read_mostly;
3911 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3912 #endif
3913
3914 static inline struct sk_buff *
3915 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3916                    struct net_device *orig_dev)
3917 {
3918 #ifdef CONFIG_NET_CLS_ACT
3919         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3920         struct tcf_result cl_res;
3921
3922         /* If there's at least one ingress present somewhere (so
3923          * we get here via enabled static key), remaining devices
3924          * that are not configured with an ingress qdisc will bail
3925          * out here.
3926          */
3927         if (!cl)
3928                 return skb;
3929         if (*pt_prev) {
3930                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3931                 *pt_prev = NULL;
3932         }
3933
3934         qdisc_skb_cb(skb)->pkt_len = skb->len;
3935         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3936         qdisc_bstats_cpu_update(cl->q, skb);
3937
3938         switch (tc_classify(skb, cl, &cl_res, false)) {
3939         case TC_ACT_OK:
3940         case TC_ACT_RECLASSIFY:
3941                 skb->tc_index = TC_H_MIN(cl_res.classid);
3942                 break;
3943         case TC_ACT_SHOT:
3944                 qdisc_qstats_cpu_drop(cl->q);
3945                 kfree_skb(skb);
3946                 return NULL;
3947         case TC_ACT_STOLEN:
3948         case TC_ACT_QUEUED:
3949                 consume_skb(skb);
3950                 return NULL;
3951         case TC_ACT_REDIRECT:
3952                 /* skb_mac_header check was done by cls/act_bpf, so
3953                  * we can safely push the L2 header back before
3954                  * redirecting to another netdev
3955                  */
3956                 __skb_push(skb, skb->mac_len);
3957                 skb_do_redirect(skb);
3958                 return NULL;
3959         default:
3960                 break;
3961         }
3962 #endif /* CONFIG_NET_CLS_ACT */
3963         return skb;
3964 }
3965
3966 /**
3967  *      netdev_is_rx_handler_busy - check if receive handler is registered
3968  *      @dev: device to check
3969  *
3970  *      Check if a receive handler is already registered for a given device.
3971  *      Return true if there one.
3972  *
3973  *      The caller must hold the rtnl_mutex.
3974  */
3975 bool netdev_is_rx_handler_busy(struct net_device *dev)
3976 {
3977         ASSERT_RTNL();
3978         return dev && rtnl_dereference(dev->rx_handler);
3979 }
3980 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3981
3982 /**
3983  *      netdev_rx_handler_register - register receive handler
3984  *      @dev: device to register a handler for
3985  *      @rx_handler: receive handler to register
3986  *      @rx_handler_data: data pointer that is used by rx handler
3987  *
3988  *      Register a receive handler for a device. This handler will then be
3989  *      called from __netif_receive_skb. A negative errno code is returned
3990  *      on a failure.
3991  *
3992  *      The caller must hold the rtnl_mutex.
3993  *
3994  *      For a general description of rx_handler, see enum rx_handler_result.
3995  */
3996 int netdev_rx_handler_register(struct net_device *dev,
3997                                rx_handler_func_t *rx_handler,
3998                                void *rx_handler_data)
3999 {
4000         ASSERT_RTNL();
4001
4002         if (dev->rx_handler)
4003                 return -EBUSY;
4004
4005         /* Note: rx_handler_data must be set before rx_handler */
4006         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4007         rcu_assign_pointer(dev->rx_handler, rx_handler);
4008
4009         return 0;
4010 }
4011 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4012
4013 /**
4014  *      netdev_rx_handler_unregister - unregister receive handler
4015  *      @dev: device to unregister a handler from
4016  *
4017  *      Unregister a receive handler from a device.
4018  *
4019  *      The caller must hold the rtnl_mutex.
4020  */
4021 void netdev_rx_handler_unregister(struct net_device *dev)
4022 {
4023
4024         ASSERT_RTNL();
4025         RCU_INIT_POINTER(dev->rx_handler, NULL);
4026         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4027          * section has a guarantee to see a non NULL rx_handler_data
4028          * as well.
4029          */
4030         synchronize_net();
4031         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4032 }
4033 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4034
4035 /*
4036  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4037  * the special handling of PFMEMALLOC skbs.
4038  */
4039 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4040 {
4041         switch (skb->protocol) {
4042         case htons(ETH_P_ARP):
4043         case htons(ETH_P_IP):
4044         case htons(ETH_P_IPV6):
4045         case htons(ETH_P_8021Q):
4046         case htons(ETH_P_8021AD):
4047                 return true;
4048         default:
4049                 return false;
4050         }
4051 }
4052
4053 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4054                              int *ret, struct net_device *orig_dev)
4055 {
4056 #ifdef CONFIG_NETFILTER_INGRESS
4057         if (nf_hook_ingress_active(skb)) {
4058                 int ingress_retval;
4059
4060                 if (*pt_prev) {
4061                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4062                         *pt_prev = NULL;
4063                 }
4064
4065                 rcu_read_lock();
4066                 ingress_retval = nf_hook_ingress(skb);
4067                 rcu_read_unlock();
4068                 return ingress_retval;
4069         }
4070 #endif /* CONFIG_NETFILTER_INGRESS */
4071         return 0;
4072 }
4073
4074 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4075 {
4076         struct packet_type *ptype, *pt_prev;
4077         rx_handler_func_t *rx_handler;
4078         struct net_device *orig_dev;
4079         bool deliver_exact = false;
4080         int ret = NET_RX_DROP;
4081         __be16 type;
4082
4083         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4084
4085         trace_netif_receive_skb(skb);
4086
4087         orig_dev = skb->dev;
4088
4089         skb_reset_network_header(skb);
4090         if (!skb_transport_header_was_set(skb))
4091                 skb_reset_transport_header(skb);
4092         skb_reset_mac_len(skb);
4093
4094         pt_prev = NULL;
4095
4096 another_round:
4097         skb->skb_iif = skb->dev->ifindex;
4098
4099         __this_cpu_inc(softnet_data.processed);
4100
4101         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4102             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4103                 skb = skb_vlan_untag(skb);
4104                 if (unlikely(!skb))
4105                         goto out;
4106         }
4107
4108 #ifdef CONFIG_NET_CLS_ACT
4109         if (skb->tc_verd & TC_NCLS) {
4110                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4111                 goto ncls;
4112         }
4113 #endif
4114
4115         if (pfmemalloc)
4116                 goto skip_taps;
4117
4118         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4119                 if (pt_prev)
4120                         ret = deliver_skb(skb, pt_prev, orig_dev);
4121                 pt_prev = ptype;
4122         }
4123
4124         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4125                 if (pt_prev)
4126                         ret = deliver_skb(skb, pt_prev, orig_dev);
4127                 pt_prev = ptype;
4128         }
4129
4130 skip_taps:
4131 #ifdef CONFIG_NET_INGRESS
4132         if (static_key_false(&ingress_needed)) {
4133                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4134                 if (!skb)
4135                         goto out;
4136
4137                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4138                         goto out;
4139         }
4140 #endif
4141 #ifdef CONFIG_NET_CLS_ACT
4142         skb->tc_verd = 0;
4143 ncls:
4144 #endif
4145         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4146                 goto drop;
4147
4148         if (skb_vlan_tag_present(skb)) {
4149                 if (pt_prev) {
4150                         ret = deliver_skb(skb, pt_prev, orig_dev);
4151                         pt_prev = NULL;
4152                 }
4153                 if (vlan_do_receive(&skb))
4154                         goto another_round;
4155                 else if (unlikely(!skb))
4156                         goto out;
4157         }
4158
4159         rx_handler = rcu_dereference(skb->dev->rx_handler);
4160         if (rx_handler) {
4161                 if (pt_prev) {
4162                         ret = deliver_skb(skb, pt_prev, orig_dev);
4163                         pt_prev = NULL;
4164                 }
4165                 switch (rx_handler(&skb)) {
4166                 case RX_HANDLER_CONSUMED:
4167                         ret = NET_RX_SUCCESS;
4168                         goto out;
4169                 case RX_HANDLER_ANOTHER:
4170                         goto another_round;
4171                 case RX_HANDLER_EXACT:
4172                         deliver_exact = true;
4173                 case RX_HANDLER_PASS:
4174                         break;
4175                 default:
4176                         BUG();
4177                 }
4178         }
4179
4180         if (unlikely(skb_vlan_tag_present(skb))) {
4181                 if (skb_vlan_tag_get_id(skb))
4182                         skb->pkt_type = PACKET_OTHERHOST;
4183                 /* Note: we might in the future use prio bits
4184                  * and set skb->priority like in vlan_do_receive()
4185                  * For the time being, just ignore Priority Code Point
4186                  */
4187                 skb->vlan_tci = 0;
4188         }
4189
4190         type = skb->protocol;
4191
4192         /* deliver only exact match when indicated */
4193         if (likely(!deliver_exact)) {
4194                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4195                                        &ptype_base[ntohs(type) &
4196                                                    PTYPE_HASH_MASK]);
4197         }
4198
4199         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4200                                &orig_dev->ptype_specific);
4201
4202         if (unlikely(skb->dev != orig_dev)) {
4203                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4204                                        &skb->dev->ptype_specific);
4205         }
4206
4207         if (pt_prev) {
4208                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4209                         goto drop;
4210                 else
4211                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4212         } else {
4213 drop:
4214                 if (!deliver_exact)
4215                         atomic_long_inc(&skb->dev->rx_dropped);
4216                 else
4217                         atomic_long_inc(&skb->dev->rx_nohandler);
4218                 kfree_skb(skb);
4219                 /* Jamal, now you will not able to escape explaining
4220                  * me how you were going to use this. :-)
4221                  */
4222                 ret = NET_RX_DROP;
4223         }
4224
4225 out:
4226         return ret;
4227 }
4228
4229 static int __netif_receive_skb(struct sk_buff *skb)
4230 {
4231         int ret;
4232
4233         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4234                 unsigned long pflags = current->flags;
4235
4236                 /*
4237                  * PFMEMALLOC skbs are special, they should
4238                  * - be delivered to SOCK_MEMALLOC sockets only
4239                  * - stay away from userspace
4240                  * - have bounded memory usage
4241                  *
4242                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4243                  * context down to all allocation sites.
4244                  */
4245                 current->flags |= PF_MEMALLOC;
4246                 ret = __netif_receive_skb_core(skb, true);
4247                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4248         } else
4249                 ret = __netif_receive_skb_core(skb, false);
4250
4251         return ret;
4252 }
4253
4254 static int netif_receive_skb_internal(struct sk_buff *skb)
4255 {
4256         int ret;
4257
4258         net_timestamp_check(netdev_tstamp_prequeue, skb);
4259
4260         if (skb_defer_rx_timestamp(skb))
4261                 return NET_RX_SUCCESS;
4262
4263         rcu_read_lock();
4264
4265 #ifdef CONFIG_RPS
4266         if (static_key_false(&rps_needed)) {
4267                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4268                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4269
4270                 if (cpu >= 0) {
4271                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4272                         rcu_read_unlock();
4273                         return ret;
4274                 }
4275         }
4276 #endif
4277         ret = __netif_receive_skb(skb);
4278         rcu_read_unlock();
4279         return ret;
4280 }
4281
4282 /**
4283  *      netif_receive_skb - process receive buffer from network
4284  *      @skb: buffer to process
4285  *
4286  *      netif_receive_skb() is the main receive data processing function.
4287  *      It always succeeds. The buffer may be dropped during processing
4288  *      for congestion control or by the protocol layers.
4289  *
4290  *      This function may only be called from softirq context and interrupts
4291  *      should be enabled.
4292  *
4293  *      Return values (usually ignored):
4294  *      NET_RX_SUCCESS: no congestion
4295  *      NET_RX_DROP: packet was dropped
4296  */
4297 int netif_receive_skb(struct sk_buff *skb)
4298 {
4299         trace_netif_receive_skb_entry(skb);
4300
4301         return netif_receive_skb_internal(skb);
4302 }
4303 EXPORT_SYMBOL(netif_receive_skb);
4304
4305 DEFINE_PER_CPU(struct work_struct, flush_works);
4306
4307 /* Network device is going away, flush any packets still pending */
4308 static void flush_backlog(struct work_struct *work)
4309 {
4310         struct sk_buff *skb, *tmp;
4311         struct softnet_data *sd;
4312
4313         local_bh_disable();
4314         sd = this_cpu_ptr(&softnet_data);
4315
4316         local_irq_disable();
4317         rps_lock(sd);
4318         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4319                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4320                         __skb_unlink(skb, &sd->input_pkt_queue);
4321                         kfree_skb(skb);
4322                         input_queue_head_incr(sd);
4323                 }
4324         }
4325         rps_unlock(sd);
4326         local_irq_enable();
4327
4328         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4329                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4330                         __skb_unlink(skb, &sd->process_queue);
4331                         kfree_skb(skb);
4332                         input_queue_head_incr(sd);
4333                 }
4334         }
4335         local_bh_enable();
4336 }
4337
4338 static void flush_all_backlogs(void)
4339 {
4340         unsigned int cpu;
4341
4342         get_online_cpus();
4343
4344         for_each_online_cpu(cpu)
4345                 queue_work_on(cpu, system_highpri_wq,
4346                               per_cpu_ptr(&flush_works, cpu));
4347
4348         for_each_online_cpu(cpu)
4349                 flush_work(per_cpu_ptr(&flush_works, cpu));
4350
4351         put_online_cpus();
4352 }
4353
4354 static int napi_gro_complete(struct sk_buff *skb)
4355 {
4356         struct packet_offload *ptype;
4357         __be16 type = skb->protocol;
4358         struct list_head *head = &offload_base;
4359         int err = -ENOENT;
4360
4361         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4362
4363         if (NAPI_GRO_CB(skb)->count == 1) {
4364                 skb_shinfo(skb)->gso_size = 0;
4365                 goto out;
4366         }
4367
4368         rcu_read_lock();
4369         list_for_each_entry_rcu(ptype, head, list) {
4370                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4371                         continue;
4372
4373                 err = ptype->callbacks.gro_complete(skb, 0);
4374                 break;
4375         }
4376         rcu_read_unlock();
4377
4378         if (err) {
4379                 WARN_ON(&ptype->list == head);
4380                 kfree_skb(skb);
4381                 return NET_RX_SUCCESS;
4382         }
4383
4384 out:
4385         return netif_receive_skb_internal(skb);
4386 }
4387
4388 /* napi->gro_list contains packets ordered by age.
4389  * youngest packets at the head of it.
4390  * Complete skbs in reverse order to reduce latencies.
4391  */
4392 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4393 {
4394         struct sk_buff *skb, *prev = NULL;
4395
4396         /* scan list and build reverse chain */
4397         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4398                 skb->prev = prev;
4399                 prev = skb;
4400         }
4401
4402         for (skb = prev; skb; skb = prev) {
4403                 skb->next = NULL;
4404
4405                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4406                         return;
4407
4408                 prev = skb->prev;
4409                 napi_gro_complete(skb);
4410                 napi->gro_count--;
4411         }
4412
4413         napi->gro_list = NULL;
4414 }
4415 EXPORT_SYMBOL(napi_gro_flush);
4416
4417 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4418 {
4419         struct sk_buff *p;
4420         unsigned int maclen = skb->dev->hard_header_len;
4421         u32 hash = skb_get_hash_raw(skb);
4422
4423         for (p = napi->gro_list; p; p = p->next) {
4424                 unsigned long diffs;
4425
4426                 NAPI_GRO_CB(p)->flush = 0;
4427
4428                 if (hash != skb_get_hash_raw(p)) {
4429                         NAPI_GRO_CB(p)->same_flow = 0;
4430                         continue;
4431                 }
4432
4433                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4434                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4435                 diffs |= skb_metadata_dst_cmp(p, skb);
4436                 if (maclen == ETH_HLEN)
4437                         diffs |= compare_ether_header(skb_mac_header(p),
4438                                                       skb_mac_header(skb));
4439                 else if (!diffs)
4440                         diffs = memcmp(skb_mac_header(p),
4441                                        skb_mac_header(skb),
4442                                        maclen);
4443                 NAPI_GRO_CB(p)->same_flow = !diffs;
4444         }
4445 }
4446
4447 static void skb_gro_reset_offset(struct sk_buff *skb)
4448 {
4449         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4450         const skb_frag_t *frag0 = &pinfo->frags[0];
4451
4452         NAPI_GRO_CB(skb)->data_offset = 0;
4453         NAPI_GRO_CB(skb)->frag0 = NULL;
4454         NAPI_GRO_CB(skb)->frag0_len = 0;
4455
4456         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4457             pinfo->nr_frags &&
4458             !PageHighMem(skb_frag_page(frag0))) {
4459                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4460                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4461         }
4462 }
4463
4464 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4465 {
4466         struct skb_shared_info *pinfo = skb_shinfo(skb);
4467
4468         BUG_ON(skb->end - skb->tail < grow);
4469
4470         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4471
4472         skb->data_len -= grow;
4473         skb->tail += grow;
4474
4475         pinfo->frags[0].page_offset += grow;
4476         skb_frag_size_sub(&pinfo->frags[0], grow);
4477
4478         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4479                 skb_frag_unref(skb, 0);
4480                 memmove(pinfo->frags, pinfo->frags + 1,
4481                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4482         }
4483 }
4484
4485 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4486 {
4487         struct sk_buff **pp = NULL;
4488         struct packet_offload *ptype;
4489         __be16 type = skb->protocol;
4490         struct list_head *head = &offload_base;
4491         int same_flow;
4492         enum gro_result ret;
4493         int grow;
4494
4495         if (!(skb->dev->features & NETIF_F_GRO))
4496                 goto normal;
4497
4498         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4499                 goto normal;
4500
4501         gro_list_prepare(napi, skb);
4502
4503         rcu_read_lock();
4504         list_for_each_entry_rcu(ptype, head, list) {
4505                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4506                         continue;
4507
4508                 skb_set_network_header(skb, skb_gro_offset(skb));
4509                 skb_reset_mac_len(skb);
4510                 NAPI_GRO_CB(skb)->same_flow = 0;
4511                 NAPI_GRO_CB(skb)->flush = 0;
4512                 NAPI_GRO_CB(skb)->free = 0;
4513                 NAPI_GRO_CB(skb)->encap_mark = 0;
4514                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4515                 NAPI_GRO_CB(skb)->is_fou = 0;
4516                 NAPI_GRO_CB(skb)->is_atomic = 1;
4517                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4518
4519                 /* Setup for GRO checksum validation */
4520                 switch (skb->ip_summed) {
4521                 case CHECKSUM_COMPLETE:
4522                         NAPI_GRO_CB(skb)->csum = skb->csum;
4523                         NAPI_GRO_CB(skb)->csum_valid = 1;
4524                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4525                         break;
4526                 case CHECKSUM_UNNECESSARY:
4527                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4528                         NAPI_GRO_CB(skb)->csum_valid = 0;
4529                         break;
4530                 default:
4531                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4532                         NAPI_GRO_CB(skb)->csum_valid = 0;
4533                 }
4534
4535                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4536                 break;
4537         }
4538         rcu_read_unlock();
4539
4540         if (&ptype->list == head)
4541                 goto normal;
4542
4543         same_flow = NAPI_GRO_CB(skb)->same_flow;
4544         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4545
4546         if (pp) {
4547                 struct sk_buff *nskb = *pp;
4548
4549                 *pp = nskb->next;
4550                 nskb->next = NULL;
4551                 napi_gro_complete(nskb);
4552                 napi->gro_count--;
4553         }
4554
4555         if (same_flow)
4556                 goto ok;
4557
4558         if (NAPI_GRO_CB(skb)->flush)
4559                 goto normal;
4560
4561         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4562                 struct sk_buff *nskb = napi->gro_list;
4563
4564                 /* locate the end of the list to select the 'oldest' flow */
4565                 while (nskb->next) {
4566                         pp = &nskb->next;
4567                         nskb = *pp;
4568                 }
4569                 *pp = NULL;
4570                 nskb->next = NULL;
4571                 napi_gro_complete(nskb);
4572         } else {
4573                 napi->gro_count++;
4574         }
4575         NAPI_GRO_CB(skb)->count = 1;
4576         NAPI_GRO_CB(skb)->age = jiffies;
4577         NAPI_GRO_CB(skb)->last = skb;
4578         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4579         skb->next = napi->gro_list;
4580         napi->gro_list = skb;
4581         ret = GRO_HELD;
4582
4583 pull:
4584         grow = skb_gro_offset(skb) - skb_headlen(skb);
4585         if (grow > 0)
4586                 gro_pull_from_frag0(skb, grow);
4587 ok:
4588         return ret;
4589
4590 normal:
4591         ret = GRO_NORMAL;
4592         goto pull;
4593 }
4594
4595 struct packet_offload *gro_find_receive_by_type(__be16 type)
4596 {
4597         struct list_head *offload_head = &offload_base;
4598         struct packet_offload *ptype;
4599
4600         list_for_each_entry_rcu(ptype, offload_head, list) {
4601                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4602                         continue;
4603                 return ptype;
4604         }
4605         return NULL;
4606 }
4607 EXPORT_SYMBOL(gro_find_receive_by_type);
4608
4609 struct packet_offload *gro_find_complete_by_type(__be16 type)
4610 {
4611         struct list_head *offload_head = &offload_base;
4612         struct packet_offload *ptype;
4613
4614         list_for_each_entry_rcu(ptype, offload_head, list) {
4615                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4616                         continue;
4617                 return ptype;
4618         }
4619         return NULL;
4620 }
4621 EXPORT_SYMBOL(gro_find_complete_by_type);
4622
4623 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4624 {
4625         switch (ret) {
4626         case GRO_NORMAL:
4627                 if (netif_receive_skb_internal(skb))
4628                         ret = GRO_DROP;
4629                 break;
4630
4631         case GRO_DROP:
4632                 kfree_skb(skb);
4633                 break;
4634
4635         case GRO_MERGED_FREE:
4636                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4637                         skb_dst_drop(skb);
4638                         kmem_cache_free(skbuff_head_cache, skb);
4639                 } else {
4640                         __kfree_skb(skb);
4641                 }
4642                 break;
4643
4644         case GRO_HELD:
4645         case GRO_MERGED:
4646                 break;
4647         }
4648
4649         return ret;
4650 }
4651
4652 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4653 {
4654         skb_mark_napi_id(skb, napi);
4655         trace_napi_gro_receive_entry(skb);
4656
4657         skb_gro_reset_offset(skb);
4658
4659         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4660 }
4661 EXPORT_SYMBOL(napi_gro_receive);
4662
4663 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4664 {
4665         if (unlikely(skb->pfmemalloc)) {
4666                 consume_skb(skb);
4667                 return;
4668         }
4669         __skb_pull(skb, skb_headlen(skb));
4670         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4671         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4672         skb->vlan_tci = 0;
4673         skb->dev = napi->dev;
4674         skb->skb_iif = 0;
4675         skb->encapsulation = 0;
4676         skb_shinfo(skb)->gso_type = 0;
4677         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4678
4679         napi->skb = skb;
4680 }
4681
4682 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4683 {
4684         struct sk_buff *skb = napi->skb;
4685
4686         if (!skb) {
4687                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4688                 if (skb) {
4689                         napi->skb = skb;
4690                         skb_mark_napi_id(skb, napi);
4691                 }
4692         }
4693         return skb;
4694 }
4695 EXPORT_SYMBOL(napi_get_frags);
4696
4697 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4698                                       struct sk_buff *skb,
4699                                       gro_result_t ret)
4700 {
4701         switch (ret) {
4702         case GRO_NORMAL:
4703         case GRO_HELD:
4704                 __skb_push(skb, ETH_HLEN);
4705                 skb->protocol = eth_type_trans(skb, skb->dev);
4706                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4707                         ret = GRO_DROP;
4708                 break;
4709
4710         case GRO_DROP:
4711         case GRO_MERGED_FREE:
4712                 napi_reuse_skb(napi, skb);
4713                 break;
4714
4715         case GRO_MERGED:
4716                 break;
4717         }
4718
4719         return ret;
4720 }
4721
4722 /* Upper GRO stack assumes network header starts at gro_offset=0
4723  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4724  * We copy ethernet header into skb->data to have a common layout.
4725  */
4726 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4727 {
4728         struct sk_buff *skb = napi->skb;
4729         const struct ethhdr *eth;
4730         unsigned int hlen = sizeof(*eth);
4731
4732         napi->skb = NULL;
4733
4734         skb_reset_mac_header(skb);
4735         skb_gro_reset_offset(skb);
4736
4737         eth = skb_gro_header_fast(skb, 0);
4738         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4739                 eth = skb_gro_header_slow(skb, hlen, 0);
4740                 if (unlikely(!eth)) {
4741                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4742                                              __func__, napi->dev->name);
4743                         napi_reuse_skb(napi, skb);
4744                         return NULL;
4745                 }
4746         } else {
4747                 gro_pull_from_frag0(skb, hlen);
4748                 NAPI_GRO_CB(skb)->frag0 += hlen;
4749                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4750         }
4751         __skb_pull(skb, hlen);
4752
4753         /*
4754          * This works because the only protocols we care about don't require
4755          * special handling.
4756          * We'll fix it up properly in napi_frags_finish()
4757          */
4758         skb->protocol = eth->h_proto;
4759
4760         return skb;
4761 }
4762
4763 gro_result_t napi_gro_frags(struct napi_struct *napi)
4764 {
4765         struct sk_buff *skb = napi_frags_skb(napi);
4766
4767         if (!skb)
4768                 return GRO_DROP;
4769
4770         trace_napi_gro_frags_entry(skb);
4771
4772         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4773 }
4774 EXPORT_SYMBOL(napi_gro_frags);
4775
4776 /* Compute the checksum from gro_offset and return the folded value
4777  * after adding in any pseudo checksum.
4778  */
4779 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4780 {
4781         __wsum wsum;
4782         __sum16 sum;
4783
4784         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4785
4786         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4787         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4788         if (likely(!sum)) {
4789                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4790                     !skb->csum_complete_sw)
4791                         netdev_rx_csum_fault(skb->dev);
4792         }
4793
4794         NAPI_GRO_CB(skb)->csum = wsum;
4795         NAPI_GRO_CB(skb)->csum_valid = 1;
4796
4797         return sum;
4798 }
4799 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4800
4801 /*
4802  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4803  * Note: called with local irq disabled, but exits with local irq enabled.
4804  */
4805 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4806 {
4807 #ifdef CONFIG_RPS
4808         struct softnet_data *remsd = sd->rps_ipi_list;
4809
4810         if (remsd) {
4811                 sd->rps_ipi_list = NULL;
4812
4813                 local_irq_enable();
4814
4815                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4816                 while (remsd) {
4817                         struct softnet_data *next = remsd->rps_ipi_next;
4818
4819                         if (cpu_online(remsd->cpu))
4820                                 smp_call_function_single_async(remsd->cpu,
4821                                                            &remsd->csd);
4822                         remsd = next;
4823                 }
4824         } else
4825 #endif
4826                 local_irq_enable();
4827 }
4828
4829 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4830 {
4831 #ifdef CONFIG_RPS
4832         return sd->rps_ipi_list != NULL;
4833 #else
4834         return false;
4835 #endif
4836 }
4837
4838 static int process_backlog(struct napi_struct *napi, int quota)
4839 {
4840         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4841         bool again = true;
4842         int work = 0;
4843
4844         /* Check if we have pending ipi, its better to send them now,
4845          * not waiting net_rx_action() end.
4846          */
4847         if (sd_has_rps_ipi_waiting(sd)) {
4848                 local_irq_disable();
4849                 net_rps_action_and_irq_enable(sd);
4850         }
4851
4852         napi->weight = weight_p;
4853         while (again) {
4854                 struct sk_buff *skb;
4855
4856                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4857                         rcu_read_lock();
4858                         __netif_receive_skb(skb);
4859                         rcu_read_unlock();
4860                         input_queue_head_incr(sd);
4861                         if (++work >= quota)
4862                                 return work;
4863
4864                 }
4865
4866                 local_irq_disable();
4867                 rps_lock(sd);
4868                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4869                         /*
4870                          * Inline a custom version of __napi_complete().
4871                          * only current cpu owns and manipulates this napi,
4872                          * and NAPI_STATE_SCHED is the only possible flag set
4873                          * on backlog.
4874                          * We can use a plain write instead of clear_bit(),
4875                          * and we dont need an smp_mb() memory barrier.
4876                          */
4877                         napi->state = 0;
4878                         again = false;
4879                 } else {
4880                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
4881                                                    &sd->process_queue);
4882                 }
4883                 rps_unlock(sd);
4884                 local_irq_enable();
4885         }
4886
4887         return work;
4888 }
4889
4890 /**
4891  * __napi_schedule - schedule for receive
4892  * @n: entry to schedule
4893  *
4894  * The entry's receive function will be scheduled to run.
4895  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4896  */
4897 void __napi_schedule(struct napi_struct *n)
4898 {
4899         unsigned long flags;
4900
4901         local_irq_save(flags);
4902         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4903         local_irq_restore(flags);
4904 }
4905 EXPORT_SYMBOL(__napi_schedule);
4906
4907 /**
4908  * __napi_schedule_irqoff - schedule for receive
4909  * @n: entry to schedule
4910  *
4911  * Variant of __napi_schedule() assuming hard irqs are masked
4912  */
4913 void __napi_schedule_irqoff(struct napi_struct *n)
4914 {
4915         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4916 }
4917 EXPORT_SYMBOL(__napi_schedule_irqoff);
4918
4919 void __napi_complete(struct napi_struct *n)
4920 {
4921         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4922
4923         list_del_init(&n->poll_list);
4924         smp_mb__before_atomic();
4925         clear_bit(NAPI_STATE_SCHED, &n->state);
4926 }
4927 EXPORT_SYMBOL(__napi_complete);
4928
4929 void napi_complete_done(struct napi_struct *n, int work_done)
4930 {
4931         unsigned long flags;
4932
4933         /*
4934          * don't let napi dequeue from the cpu poll list
4935          * just in case its running on a different cpu
4936          */
4937         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4938                 return;
4939
4940         if (n->gro_list) {
4941                 unsigned long timeout = 0;
4942
4943                 if (work_done)
4944                         timeout = n->dev->gro_flush_timeout;
4945
4946                 if (timeout)
4947                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4948                                       HRTIMER_MODE_REL_PINNED);
4949                 else
4950                         napi_gro_flush(n, false);
4951         }
4952         if (likely(list_empty(&n->poll_list))) {
4953                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4954         } else {
4955                 /* If n->poll_list is not empty, we need to mask irqs */
4956                 local_irq_save(flags);
4957                 __napi_complete(n);
4958                 local_irq_restore(flags);
4959         }
4960 }
4961 EXPORT_SYMBOL(napi_complete_done);
4962
4963 /* must be called under rcu_read_lock(), as we dont take a reference */
4964 static struct napi_struct *napi_by_id(unsigned int napi_id)
4965 {
4966         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4967         struct napi_struct *napi;
4968
4969         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4970                 if (napi->napi_id == napi_id)
4971                         return napi;
4972
4973         return NULL;
4974 }
4975
4976 #if defined(CONFIG_NET_RX_BUSY_POLL)
4977 #define BUSY_POLL_BUDGET 8
4978 bool sk_busy_loop(struct sock *sk, int nonblock)
4979 {
4980         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4981         int (*busy_poll)(struct napi_struct *dev);
4982         struct napi_struct *napi;
4983         int rc = false;
4984
4985         rcu_read_lock();
4986
4987         napi = napi_by_id(sk->sk_napi_id);
4988         if (!napi)
4989                 goto out;
4990
4991         /* Note: ndo_busy_poll method is optional in linux-4.5 */
4992         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4993
4994         do {
4995                 rc = 0;
4996                 local_bh_disable();
4997                 if (busy_poll) {
4998                         rc = busy_poll(napi);
4999                 } else if (napi_schedule_prep(napi)) {
5000                         void *have = netpoll_poll_lock(napi);
5001
5002                         if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
5003                                 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5004                                 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5005                                 if (rc == BUSY_POLL_BUDGET) {
5006                                         napi_complete_done(napi, rc);
5007                                         napi_schedule(napi);
5008                                 }
5009                         }
5010                         netpoll_poll_unlock(have);
5011                 }
5012                 if (rc > 0)
5013                         __NET_ADD_STATS(sock_net(sk),
5014                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5015                 local_bh_enable();
5016
5017                 if (rc == LL_FLUSH_FAILED)
5018                         break; /* permanent failure */
5019
5020                 cpu_relax();
5021         } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5022                  !need_resched() && !busy_loop_timeout(end_time));
5023
5024         rc = !skb_queue_empty(&sk->sk_receive_queue);
5025 out:
5026         rcu_read_unlock();
5027         return rc;
5028 }
5029 EXPORT_SYMBOL(sk_busy_loop);
5030
5031 #endif /* CONFIG_NET_RX_BUSY_POLL */
5032
5033 void napi_hash_add(struct napi_struct *napi)
5034 {
5035         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5036             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5037                 return;
5038
5039         spin_lock(&napi_hash_lock);
5040
5041         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5042         do {
5043                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5044                         napi_gen_id = NR_CPUS + 1;
5045         } while (napi_by_id(napi_gen_id));
5046         napi->napi_id = napi_gen_id;
5047
5048         hlist_add_head_rcu(&napi->napi_hash_node,
5049                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5050
5051         spin_unlock(&napi_hash_lock);
5052 }
5053 EXPORT_SYMBOL_GPL(napi_hash_add);
5054
5055 /* Warning : caller is responsible to make sure rcu grace period
5056  * is respected before freeing memory containing @napi
5057  */
5058 bool napi_hash_del(struct napi_struct *napi)
5059 {
5060         bool rcu_sync_needed = false;
5061
5062         spin_lock(&napi_hash_lock);
5063
5064         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5065                 rcu_sync_needed = true;
5066                 hlist_del_rcu(&napi->napi_hash_node);
5067         }
5068         spin_unlock(&napi_hash_lock);
5069         return rcu_sync_needed;
5070 }
5071 EXPORT_SYMBOL_GPL(napi_hash_del);
5072
5073 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5074 {
5075         struct napi_struct *napi;
5076
5077         napi = container_of(timer, struct napi_struct, timer);
5078         if (napi->gro_list)
5079                 napi_schedule(napi);
5080
5081         return HRTIMER_NORESTART;
5082 }
5083
5084 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5085                     int (*poll)(struct napi_struct *, int), int weight)
5086 {
5087         INIT_LIST_HEAD(&napi->poll_list);
5088         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5089         napi->timer.function = napi_watchdog;
5090         napi->gro_count = 0;
5091         napi->gro_list = NULL;
5092         napi->skb = NULL;
5093         napi->poll = poll;
5094         if (weight > NAPI_POLL_WEIGHT)
5095                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5096                             weight, dev->name);
5097         napi->weight = weight;
5098         list_add(&napi->dev_list, &dev->napi_list);
5099         napi->dev = dev;
5100 #ifdef CONFIG_NETPOLL
5101         spin_lock_init(&napi->poll_lock);
5102         napi->poll_owner = -1;
5103 #endif
5104         set_bit(NAPI_STATE_SCHED, &napi->state);
5105         napi_hash_add(napi);
5106 }
5107 EXPORT_SYMBOL(netif_napi_add);
5108
5109 void napi_disable(struct napi_struct *n)
5110 {
5111         might_sleep();
5112         set_bit(NAPI_STATE_DISABLE, &n->state);
5113
5114         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5115                 msleep(1);
5116         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5117                 msleep(1);
5118
5119         hrtimer_cancel(&n->timer);
5120
5121         clear_bit(NAPI_STATE_DISABLE, &n->state);
5122 }
5123 EXPORT_SYMBOL(napi_disable);
5124
5125 /* Must be called in process context */
5126 void netif_napi_del(struct napi_struct *napi)
5127 {
5128         might_sleep();
5129         if (napi_hash_del(napi))
5130                 synchronize_net();
5131         list_del_init(&napi->dev_list);
5132         napi_free_frags(napi);
5133
5134         kfree_skb_list(napi->gro_list);
5135         napi->gro_list = NULL;
5136         napi->gro_count = 0;
5137 }
5138 EXPORT_SYMBOL(netif_napi_del);
5139
5140 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5141 {
5142         void *have;
5143         int work, weight;
5144
5145         list_del_init(&n->poll_list);
5146
5147         have = netpoll_poll_lock(n);
5148
5149         weight = n->weight;
5150
5151         /* This NAPI_STATE_SCHED test is for avoiding a race
5152          * with netpoll's poll_napi().  Only the entity which
5153          * obtains the lock and sees NAPI_STATE_SCHED set will
5154          * actually make the ->poll() call.  Therefore we avoid
5155          * accidentally calling ->poll() when NAPI is not scheduled.
5156          */
5157         work = 0;
5158         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5159                 work = n->poll(n, weight);
5160                 trace_napi_poll(n, work, weight);
5161         }
5162
5163         WARN_ON_ONCE(work > weight);
5164
5165         if (likely(work < weight))
5166                 goto out_unlock;
5167
5168         /* Drivers must not modify the NAPI state if they
5169          * consume the entire weight.  In such cases this code
5170          * still "owns" the NAPI instance and therefore can
5171          * move the instance around on the list at-will.
5172          */
5173         if (unlikely(napi_disable_pending(n))) {
5174                 napi_complete(n);
5175                 goto out_unlock;
5176         }
5177
5178         if (n->gro_list) {
5179                 /* flush too old packets
5180                  * If HZ < 1000, flush all packets.
5181                  */
5182                 napi_gro_flush(n, HZ >= 1000);
5183         }
5184
5185         /* Some drivers may have called napi_schedule
5186          * prior to exhausting their budget.
5187          */
5188         if (unlikely(!list_empty(&n->poll_list))) {
5189                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5190                              n->dev ? n->dev->name : "backlog");
5191                 goto out_unlock;
5192         }
5193
5194         list_add_tail(&n->poll_list, repoll);
5195
5196 out_unlock:
5197         netpoll_poll_unlock(have);
5198
5199         return work;
5200 }
5201
5202 static void net_rx_action(struct softirq_action *h)
5203 {
5204         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5205         unsigned long time_limit = jiffies + 2;
5206         int budget = netdev_budget;
5207         LIST_HEAD(list);
5208         LIST_HEAD(repoll);
5209
5210         local_irq_disable();
5211         list_splice_init(&sd->poll_list, &list);
5212         local_irq_enable();
5213
5214         for (;;) {
5215                 struct napi_struct *n;
5216
5217                 if (list_empty(&list)) {
5218                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5219                                 return;
5220                         break;
5221                 }
5222
5223                 n = list_first_entry(&list, struct napi_struct, poll_list);
5224                 budget -= napi_poll(n, &repoll);
5225
5226                 /* If softirq window is exhausted then punt.
5227                  * Allow this to run for 2 jiffies since which will allow
5228                  * an average latency of 1.5/HZ.
5229                  */
5230                 if (unlikely(budget <= 0 ||
5231                              time_after_eq(jiffies, time_limit))) {
5232                         sd->time_squeeze++;
5233                         break;
5234                 }
5235         }
5236
5237         __kfree_skb_flush();
5238         local_irq_disable();
5239
5240         list_splice_tail_init(&sd->poll_list, &list);
5241         list_splice_tail(&repoll, &list);
5242         list_splice(&list, &sd->poll_list);
5243         if (!list_empty(&sd->poll_list))
5244                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5245
5246         net_rps_action_and_irq_enable(sd);
5247 }
5248
5249 struct netdev_adjacent {
5250         struct net_device *dev;
5251
5252         /* upper master flag, there can only be one master device per list */
5253         bool master;
5254
5255         /* counter for the number of times this device was added to us */
5256         u16 ref_nr;
5257
5258         /* private field for the users */
5259         void *private;
5260
5261         struct list_head list;
5262         struct rcu_head rcu;
5263 };
5264
5265 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5266                                                  struct list_head *adj_list)
5267 {
5268         struct netdev_adjacent *adj;
5269
5270         list_for_each_entry(adj, adj_list, list) {
5271                 if (adj->dev == adj_dev)
5272                         return adj;
5273         }
5274         return NULL;
5275 }
5276
5277 /**
5278  * netdev_has_upper_dev - Check if device is linked to an upper device
5279  * @dev: device
5280  * @upper_dev: upper device to check
5281  *
5282  * Find out if a device is linked to specified upper device and return true
5283  * in case it is. Note that this checks only immediate upper device,
5284  * not through a complete stack of devices. The caller must hold the RTNL lock.
5285  */
5286 bool netdev_has_upper_dev(struct net_device *dev,
5287                           struct net_device *upper_dev)
5288 {
5289         ASSERT_RTNL();
5290
5291         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5292 }
5293 EXPORT_SYMBOL(netdev_has_upper_dev);
5294
5295 /**
5296  * netdev_has_any_upper_dev - Check if device is linked to some device
5297  * @dev: device
5298  *
5299  * Find out if a device is linked to an upper device and return true in case
5300  * it is. The caller must hold the RTNL lock.
5301  */
5302 static bool netdev_has_any_upper_dev(struct net_device *dev)
5303 {
5304         ASSERT_RTNL();
5305
5306         return !list_empty(&dev->all_adj_list.upper);
5307 }
5308
5309 /**
5310  * netdev_master_upper_dev_get - Get master upper device
5311  * @dev: device
5312  *
5313  * Find a master upper device and return pointer to it or NULL in case
5314  * it's not there. The caller must hold the RTNL lock.
5315  */
5316 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5317 {
5318         struct netdev_adjacent *upper;
5319
5320         ASSERT_RTNL();
5321
5322         if (list_empty(&dev->adj_list.upper))
5323                 return NULL;
5324
5325         upper = list_first_entry(&dev->adj_list.upper,
5326                                  struct netdev_adjacent, list);
5327         if (likely(upper->master))
5328                 return upper->dev;
5329         return NULL;
5330 }
5331 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5332
5333 void *netdev_adjacent_get_private(struct list_head *adj_list)
5334 {
5335         struct netdev_adjacent *adj;
5336
5337         adj = list_entry(adj_list, struct netdev_adjacent, list);
5338
5339         return adj->private;
5340 }
5341 EXPORT_SYMBOL(netdev_adjacent_get_private);
5342
5343 /**
5344  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5345  * @dev: device
5346  * @iter: list_head ** of the current position
5347  *
5348  * Gets the next device from the dev's upper list, starting from iter
5349  * position. The caller must hold RCU read lock.
5350  */
5351 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5352                                                  struct list_head **iter)
5353 {
5354         struct netdev_adjacent *upper;
5355
5356         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5357
5358         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5359
5360         if (&upper->list == &dev->adj_list.upper)
5361                 return NULL;
5362
5363         *iter = &upper->list;
5364
5365         return upper->dev;
5366 }
5367 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5368
5369 /**
5370  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5371  * @dev: device
5372  * @iter: list_head ** of the current position
5373  *
5374  * Gets the next device from the dev's upper list, starting from iter
5375  * position. The caller must hold RCU read lock.
5376  */
5377 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5378                                                      struct list_head **iter)
5379 {
5380         struct netdev_adjacent *upper;
5381
5382         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5383
5384         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5385
5386         if (&upper->list == &dev->all_adj_list.upper)
5387                 return NULL;
5388
5389         *iter = &upper->list;
5390
5391         return upper->dev;
5392 }
5393 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5394
5395 /**
5396  * netdev_lower_get_next_private - Get the next ->private from the
5397  *                                 lower neighbour list
5398  * @dev: device
5399  * @iter: list_head ** of the current position
5400  *
5401  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5402  * list, starting from iter position. The caller must hold either hold the
5403  * RTNL lock or its own locking that guarantees that the neighbour lower
5404  * list will remain unchanged.
5405  */
5406 void *netdev_lower_get_next_private(struct net_device *dev,
5407                                     struct list_head **iter)
5408 {
5409         struct netdev_adjacent *lower;
5410
5411         lower = list_entry(*iter, struct netdev_adjacent, list);
5412
5413         if (&lower->list == &dev->adj_list.lower)
5414                 return NULL;
5415
5416         *iter = lower->list.next;
5417
5418         return lower->private;
5419 }
5420 EXPORT_SYMBOL(netdev_lower_get_next_private);
5421
5422 /**
5423  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5424  *                                     lower neighbour list, RCU
5425  *                                     variant
5426  * @dev: device
5427  * @iter: list_head ** of the current position
5428  *
5429  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5430  * list, starting from iter position. The caller must hold RCU read lock.
5431  */
5432 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5433                                         struct list_head **iter)
5434 {
5435         struct netdev_adjacent *lower;
5436
5437         WARN_ON_ONCE(!rcu_read_lock_held());
5438
5439         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5440
5441         if (&lower->list == &dev->adj_list.lower)
5442                 return NULL;
5443
5444         *iter = &lower->list;
5445
5446         return lower->private;
5447 }
5448 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5449
5450 /**
5451  * netdev_lower_get_next - Get the next device from the lower neighbour
5452  *                         list
5453  * @dev: device
5454  * @iter: list_head ** of the current position
5455  *
5456  * Gets the next netdev_adjacent from the dev's lower neighbour
5457  * list, starting from iter position. The caller must hold RTNL lock or
5458  * its own locking that guarantees that the neighbour lower
5459  * list will remain unchanged.
5460  */
5461 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5462 {
5463         struct netdev_adjacent *lower;
5464
5465         lower = list_entry(*iter, struct netdev_adjacent, list);
5466
5467         if (&lower->list == &dev->adj_list.lower)
5468                 return NULL;
5469
5470         *iter = lower->list.next;
5471
5472         return lower->dev;
5473 }
5474 EXPORT_SYMBOL(netdev_lower_get_next);
5475
5476 /**
5477  * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5478  * @dev: device
5479  * @iter: list_head ** of the current position
5480  *
5481  * Gets the next netdev_adjacent from the dev's all lower neighbour
5482  * list, starting from iter position. The caller must hold RTNL lock or
5483  * its own locking that guarantees that the neighbour all lower
5484  * list will remain unchanged.
5485  */
5486 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5487 {
5488         struct netdev_adjacent *lower;
5489
5490         lower = list_entry(*iter, struct netdev_adjacent, list);
5491
5492         if (&lower->list == &dev->all_adj_list.lower)
5493                 return NULL;
5494
5495         *iter = lower->list.next;
5496
5497         return lower->dev;
5498 }
5499 EXPORT_SYMBOL(netdev_all_lower_get_next);
5500
5501 /**
5502  * netdev_all_lower_get_next_rcu - Get the next device from all
5503  *                                 lower neighbour list, RCU variant
5504  * @dev: device
5505  * @iter: list_head ** of the current position
5506  *
5507  * Gets the next netdev_adjacent from the dev's all lower neighbour
5508  * list, starting from iter position. The caller must hold RCU read lock.
5509  */
5510 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5511                                                  struct list_head **iter)
5512 {
5513         struct netdev_adjacent *lower;
5514
5515         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5516
5517         if (&lower->list == &dev->all_adj_list.lower)
5518                 return NULL;
5519
5520         *iter = &lower->list;
5521
5522         return lower->dev;
5523 }
5524 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5525
5526 /**
5527  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5528  *                                     lower neighbour list, RCU
5529  *                                     variant
5530  * @dev: device
5531  *
5532  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5533  * list. The caller must hold RCU read lock.
5534  */
5535 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5536 {
5537         struct netdev_adjacent *lower;
5538
5539         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5540                         struct netdev_adjacent, list);
5541         if (lower)
5542                 return lower->private;
5543         return NULL;
5544 }
5545 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5546
5547 /**
5548  * netdev_master_upper_dev_get_rcu - Get master upper device
5549  * @dev: device
5550  *
5551  * Find a master upper device and return pointer to it or NULL in case
5552  * it's not there. The caller must hold the RCU read lock.
5553  */
5554 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5555 {
5556         struct netdev_adjacent *upper;
5557
5558         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5559                                        struct netdev_adjacent, list);
5560         if (upper && likely(upper->master))
5561                 return upper->dev;
5562         return NULL;
5563 }
5564 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5565
5566 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5567                               struct net_device *adj_dev,
5568                               struct list_head *dev_list)
5569 {
5570         char linkname[IFNAMSIZ+7];
5571         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5572                 "upper_%s" : "lower_%s", adj_dev->name);
5573         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5574                                  linkname);
5575 }
5576 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5577                                char *name,
5578                                struct list_head *dev_list)
5579 {
5580         char linkname[IFNAMSIZ+7];
5581         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5582                 "upper_%s" : "lower_%s", name);
5583         sysfs_remove_link(&(dev->dev.kobj), linkname);
5584 }
5585
5586 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5587                                                  struct net_device *adj_dev,
5588                                                  struct list_head *dev_list)
5589 {
5590         return (dev_list == &dev->adj_list.upper ||
5591                 dev_list == &dev->adj_list.lower) &&
5592                 net_eq(dev_net(dev), dev_net(adj_dev));
5593 }
5594
5595 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5596                                         struct net_device *adj_dev,
5597                                         u16 ref_nr,
5598                                         struct list_head *dev_list,
5599                                         void *private, bool master)
5600 {
5601         struct netdev_adjacent *adj;
5602         int ret;
5603
5604         adj = __netdev_find_adj(adj_dev, dev_list);
5605
5606         if (adj) {
5607                 adj->ref_nr += ref_nr;
5608                 return 0;
5609         }
5610
5611         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5612         if (!adj)
5613                 return -ENOMEM;
5614
5615         adj->dev = adj_dev;
5616         adj->master = master;
5617         adj->ref_nr = ref_nr;
5618         adj->private = private;
5619         dev_hold(adj_dev);
5620
5621         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5622                  adj_dev->name, dev->name, adj_dev->name);
5623
5624         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5625                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5626                 if (ret)
5627                         goto free_adj;
5628         }
5629
5630         /* Ensure that master link is always the first item in list. */
5631         if (master) {
5632                 ret = sysfs_create_link(&(dev->dev.kobj),
5633                                         &(adj_dev->dev.kobj), "master");
5634                 if (ret)
5635                         goto remove_symlinks;
5636
5637                 list_add_rcu(&adj->list, dev_list);
5638         } else {
5639                 list_add_tail_rcu(&adj->list, dev_list);
5640         }
5641
5642         return 0;
5643
5644 remove_symlinks:
5645         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5646                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5647 free_adj:
5648         kfree(adj);
5649         dev_put(adj_dev);
5650
5651         return ret;
5652 }
5653
5654 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5655                                          struct net_device *adj_dev,
5656                                          u16 ref_nr,
5657                                          struct list_head *dev_list)
5658 {
5659         struct netdev_adjacent *adj;
5660
5661         adj = __netdev_find_adj(adj_dev, dev_list);
5662
5663         if (!adj) {
5664                 pr_err("tried to remove device %s from %s\n",
5665                        dev->name, adj_dev->name);
5666                 BUG();
5667         }
5668
5669         if (adj->ref_nr > ref_nr) {
5670                 pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5671                          ref_nr, adj->ref_nr-ref_nr);
5672                 adj->ref_nr -= ref_nr;
5673                 return;
5674         }
5675
5676         if (adj->master)
5677                 sysfs_remove_link(&(dev->dev.kobj), "master");
5678
5679         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5680                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5681
5682         list_del_rcu(&adj->list);
5683         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5684                  adj_dev->name, dev->name, adj_dev->name);
5685         dev_put(adj_dev);
5686         kfree_rcu(adj, rcu);
5687 }
5688
5689 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5690                                             struct net_device *upper_dev,
5691                                             u16 ref_nr,
5692                                             struct list_head *up_list,
5693                                             struct list_head *down_list,
5694                                             void *private, bool master)
5695 {
5696         int ret;
5697
5698         ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5699                                            private, master);
5700         if (ret)
5701                 return ret;
5702
5703         ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5704                                            private, false);
5705         if (ret) {
5706                 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5707                 return ret;
5708         }
5709
5710         return 0;
5711 }
5712
5713 static int __netdev_adjacent_dev_link(struct net_device *dev,
5714                                       struct net_device *upper_dev,
5715                                       u16 ref_nr)
5716 {
5717         return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
5718                                                 &dev->all_adj_list.upper,
5719                                                 &upper_dev->all_adj_list.lower,
5720                                                 NULL, false);
5721 }
5722
5723 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5724                                                struct net_device *upper_dev,
5725                                                u16 ref_nr,
5726                                                struct list_head *up_list,
5727                                                struct list_head *down_list)
5728 {
5729         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5730         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5731 }
5732
5733 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5734                                          struct net_device *upper_dev,
5735                                          u16 ref_nr)
5736 {
5737         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
5738                                            &dev->all_adj_list.upper,
5739                                            &upper_dev->all_adj_list.lower);
5740 }
5741
5742 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5743                                                 struct net_device *upper_dev,
5744                                                 void *private, bool master)
5745 {
5746         int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
5747
5748         if (ret)
5749                 return ret;
5750
5751         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
5752                                                &dev->adj_list.upper,
5753                                                &upper_dev->adj_list.lower,
5754                                                private, master);
5755         if (ret) {
5756                 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5757                 return ret;
5758         }
5759
5760         return 0;
5761 }
5762
5763 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5764                                                    struct net_device *upper_dev)
5765 {
5766         __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5767         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5768                                            &dev->adj_list.upper,
5769                                            &upper_dev->adj_list.lower);
5770 }
5771
5772 static int __netdev_upper_dev_link(struct net_device *dev,
5773                                    struct net_device *upper_dev, bool master,
5774                                    void *upper_priv, void *upper_info)
5775 {
5776         struct netdev_notifier_changeupper_info changeupper_info;
5777         struct netdev_adjacent *i, *j, *to_i, *to_j;
5778         int ret = 0;
5779
5780         ASSERT_RTNL();
5781
5782         if (dev == upper_dev)
5783                 return -EBUSY;
5784
5785         /* To prevent loops, check if dev is not upper device to upper_dev. */
5786         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5787                 return -EBUSY;
5788
5789         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5790                 return -EEXIST;
5791
5792         if (master && netdev_master_upper_dev_get(dev))
5793                 return -EBUSY;
5794
5795         changeupper_info.upper_dev = upper_dev;
5796         changeupper_info.master = master;
5797         changeupper_info.linking = true;
5798         changeupper_info.upper_info = upper_info;
5799
5800         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5801                                             &changeupper_info.info);
5802         ret = notifier_to_errno(ret);
5803         if (ret)
5804                 return ret;
5805
5806         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5807                                                    master);
5808         if (ret)
5809                 return ret;
5810
5811         /* Now that we linked these devs, make all the upper_dev's
5812          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5813          * versa, and don't forget the devices itself. All of these
5814          * links are non-neighbours.
5815          */
5816         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5817                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5818                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5819                                  i->dev->name, j->dev->name);
5820                         ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5821                         if (ret)
5822                                 goto rollback_mesh;
5823                 }
5824         }
5825
5826         /* add dev to every upper_dev's upper device */
5827         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5828                 pr_debug("linking %s's upper device %s with %s\n",
5829                          upper_dev->name, i->dev->name, dev->name);
5830                 ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5831                 if (ret)
5832                         goto rollback_upper_mesh;
5833         }
5834
5835         /* add upper_dev to every dev's lower device */
5836         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5837                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5838                          i->dev->name, upper_dev->name);
5839                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5840                 if (ret)
5841                         goto rollback_lower_mesh;
5842         }
5843
5844         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5845                                             &changeupper_info.info);
5846         ret = notifier_to_errno(ret);
5847         if (ret)
5848                 goto rollback_lower_mesh;
5849
5850         return 0;
5851
5852 rollback_lower_mesh:
5853         to_i = i;
5854         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5855                 if (i == to_i)
5856                         break;
5857                 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5858         }
5859
5860         i = NULL;
5861
5862 rollback_upper_mesh:
5863         to_i = i;
5864         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5865                 if (i == to_i)
5866                         break;
5867                 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5868         }
5869
5870         i = j = NULL;
5871
5872 rollback_mesh:
5873         to_i = i;
5874         to_j = j;
5875         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5876                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5877                         if (i == to_i && j == to_j)
5878                                 break;
5879                         __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5880                 }
5881                 if (i == to_i)
5882                         break;
5883         }
5884
5885         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5886
5887         return ret;
5888 }
5889
5890 /**
5891  * netdev_upper_dev_link - Add a link to the upper device
5892  * @dev: device
5893  * @upper_dev: new upper device
5894  *
5895  * Adds a link to device which is upper to this one. The caller must hold
5896  * the RTNL lock. On a failure a negative errno code is returned.
5897  * On success the reference counts are adjusted and the function
5898  * returns zero.
5899  */
5900 int netdev_upper_dev_link(struct net_device *dev,
5901                           struct net_device *upper_dev)
5902 {
5903         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5904 }
5905 EXPORT_SYMBOL(netdev_upper_dev_link);
5906
5907 /**
5908  * netdev_master_upper_dev_link - Add a master link to the upper device
5909  * @dev: device
5910  * @upper_dev: new upper device
5911  * @upper_priv: upper device private
5912  * @upper_info: upper info to be passed down via notifier
5913  *
5914  * Adds a link to device which is upper to this one. In this case, only
5915  * one master upper device can be linked, although other non-master devices
5916  * might be linked as well. The caller must hold the RTNL lock.
5917  * On a failure a negative errno code is returned. On success the reference
5918  * counts are adjusted and the function returns zero.
5919  */
5920 int netdev_master_upper_dev_link(struct net_device *dev,
5921                                  struct net_device *upper_dev,
5922                                  void *upper_priv, void *upper_info)
5923 {
5924         return __netdev_upper_dev_link(dev, upper_dev, true,
5925                                        upper_priv, upper_info);
5926 }
5927 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5928
5929 /**
5930  * netdev_upper_dev_unlink - Removes a link to upper device
5931  * @dev: device
5932  * @upper_dev: new upper device
5933  *
5934  * Removes a link to device which is upper to this one. The caller must hold
5935  * the RTNL lock.
5936  */
5937 void netdev_upper_dev_unlink(struct net_device *dev,
5938                              struct net_device *upper_dev)
5939 {
5940         struct netdev_notifier_changeupper_info changeupper_info;
5941         struct netdev_adjacent *i, *j;
5942         ASSERT_RTNL();
5943
5944         changeupper_info.upper_dev = upper_dev;
5945         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5946         changeupper_info.linking = false;
5947
5948         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5949                                       &changeupper_info.info);
5950
5951         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5952
5953         /* Here is the tricky part. We must remove all dev's lower
5954          * devices from all upper_dev's upper devices and vice
5955          * versa, to maintain the graph relationship.
5956          */
5957         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5958                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5959                         __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5960
5961         /* remove also the devices itself from lower/upper device
5962          * list
5963          */
5964         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5965                 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5966
5967         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5968                 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5969
5970         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5971                                       &changeupper_info.info);
5972 }
5973 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5974
5975 /**
5976  * netdev_bonding_info_change - Dispatch event about slave change
5977  * @dev: device
5978  * @bonding_info: info to dispatch
5979  *
5980  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5981  * The caller must hold the RTNL lock.
5982  */
5983 void netdev_bonding_info_change(struct net_device *dev,
5984                                 struct netdev_bonding_info *bonding_info)
5985 {
5986         struct netdev_notifier_bonding_info     info;
5987
5988         memcpy(&info.bonding_info, bonding_info,
5989                sizeof(struct netdev_bonding_info));
5990         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5991                                       &info.info);
5992 }
5993 EXPORT_SYMBOL(netdev_bonding_info_change);
5994
5995 static void netdev_adjacent_add_links(struct net_device *dev)
5996 {
5997         struct netdev_adjacent *iter;
5998
5999         struct net *net = dev_net(dev);
6000
6001         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6002                 if (!net_eq(net, dev_net(iter->dev)))
6003                         continue;
6004                 netdev_adjacent_sysfs_add(iter->dev, dev,
6005                                           &iter->dev->adj_list.lower);
6006                 netdev_adjacent_sysfs_add(dev, iter->dev,
6007                                           &dev->adj_list.upper);
6008         }
6009
6010         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6011                 if (!net_eq(net, dev_net(iter->dev)))
6012                         continue;
6013                 netdev_adjacent_sysfs_add(iter->dev, dev,
6014                                           &iter->dev->adj_list.upper);
6015                 netdev_adjacent_sysfs_add(dev, iter->dev,
6016                                           &dev->adj_list.lower);
6017         }
6018 }
6019
6020 static void netdev_adjacent_del_links(struct net_device *dev)
6021 {
6022         struct netdev_adjacent *iter;
6023
6024         struct net *net = dev_net(dev);
6025
6026         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6027                 if (!net_eq(net, dev_net(iter->dev)))
6028                         continue;
6029                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6030                                           &iter->dev->adj_list.lower);
6031                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6032                                           &dev->adj_list.upper);
6033         }
6034
6035         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6036                 if (!net_eq(net, dev_net(iter->dev)))
6037                         continue;
6038                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6039                                           &iter->dev->adj_list.upper);
6040                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6041                                           &dev->adj_list.lower);
6042         }
6043 }
6044
6045 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6046 {
6047         struct netdev_adjacent *iter;
6048
6049         struct net *net = dev_net(dev);
6050
6051         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6052                 if (!net_eq(net, dev_net(iter->dev)))
6053                         continue;
6054                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6055                                           &iter->dev->adj_list.lower);
6056                 netdev_adjacent_sysfs_add(iter->dev, dev,
6057                                           &iter->dev->adj_list.lower);
6058         }
6059
6060         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6061                 if (!net_eq(net, dev_net(iter->dev)))
6062                         continue;
6063                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6064                                           &iter->dev->adj_list.upper);
6065                 netdev_adjacent_sysfs_add(iter->dev, dev,
6066                                           &iter->dev->adj_list.upper);
6067         }
6068 }
6069
6070 void *netdev_lower_dev_get_private(struct net_device *dev,
6071                                    struct net_device *lower_dev)
6072 {
6073         struct netdev_adjacent *lower;
6074
6075         if (!lower_dev)
6076                 return NULL;
6077         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6078         if (!lower)
6079                 return NULL;
6080
6081         return lower->private;
6082 }
6083 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6084
6085
6086 int dev_get_nest_level(struct net_device *dev)
6087 {
6088         struct net_device *lower = NULL;
6089         struct list_head *iter;
6090         int max_nest = -1;
6091         int nest;
6092
6093         ASSERT_RTNL();
6094
6095         netdev_for_each_lower_dev(dev, lower, iter) {
6096                 nest = dev_get_nest_level(lower);
6097                 if (max_nest < nest)
6098                         max_nest = nest;
6099         }
6100
6101         return max_nest + 1;
6102 }
6103 EXPORT_SYMBOL(dev_get_nest_level);
6104
6105 /**
6106  * netdev_lower_change - Dispatch event about lower device state change
6107  * @lower_dev: device
6108  * @lower_state_info: state to dispatch
6109  *
6110  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6111  * The caller must hold the RTNL lock.
6112  */
6113 void netdev_lower_state_changed(struct net_device *lower_dev,
6114                                 void *lower_state_info)
6115 {
6116         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6117
6118         ASSERT_RTNL();
6119         changelowerstate_info.lower_state_info = lower_state_info;
6120         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6121                                       &changelowerstate_info.info);
6122 }
6123 EXPORT_SYMBOL(netdev_lower_state_changed);
6124
6125 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6126                                            struct neighbour *n)
6127 {
6128         struct net_device *lower_dev, *stop_dev;
6129         struct list_head *iter;
6130         int err;
6131
6132         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6133                 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6134                         continue;
6135                 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6136                 if (err) {
6137                         stop_dev = lower_dev;
6138                         goto rollback;
6139                 }
6140         }
6141         return 0;
6142
6143 rollback:
6144         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6145                 if (lower_dev == stop_dev)
6146                         break;
6147                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6148                         continue;
6149                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6150         }
6151         return err;
6152 }
6153 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6154
6155 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6156                                           struct neighbour *n)
6157 {
6158         struct net_device *lower_dev;
6159         struct list_head *iter;
6160
6161         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6162                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6163                         continue;
6164                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6165         }
6166 }
6167 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6168
6169 static void dev_change_rx_flags(struct net_device *dev, int flags)
6170 {
6171         const struct net_device_ops *ops = dev->netdev_ops;
6172
6173         if (ops->ndo_change_rx_flags)
6174                 ops->ndo_change_rx_flags(dev, flags);
6175 }
6176
6177 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6178 {
6179         unsigned int old_flags = dev->flags;
6180         kuid_t uid;
6181         kgid_t gid;
6182
6183         ASSERT_RTNL();
6184
6185         dev->flags |= IFF_PROMISC;
6186         dev->promiscuity += inc;
6187         if (dev->promiscuity == 0) {
6188                 /*
6189                  * Avoid overflow.
6190                  * If inc causes overflow, untouch promisc and return error.
6191                  */
6192                 if (inc < 0)
6193                         dev->flags &= ~IFF_PROMISC;
6194                 else {
6195                         dev->promiscuity -= inc;
6196                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6197                                 dev->name);
6198                         return -EOVERFLOW;
6199                 }
6200         }
6201         if (dev->flags != old_flags) {
6202                 pr_info("device %s %s promiscuous mode\n",
6203                         dev->name,
6204                         dev->flags & IFF_PROMISC ? "entered" : "left");
6205                 if (audit_enabled) {
6206                         current_uid_gid(&uid, &gid);
6207                         audit_log(current->audit_context, GFP_ATOMIC,
6208                                 AUDIT_ANOM_PROMISCUOUS,
6209                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6210                                 dev->name, (dev->flags & IFF_PROMISC),
6211                                 (old_flags & IFF_PROMISC),
6212                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6213                                 from_kuid(&init_user_ns, uid),
6214                                 from_kgid(&init_user_ns, gid),
6215                                 audit_get_sessionid(current));
6216                 }
6217
6218                 dev_change_rx_flags(dev, IFF_PROMISC);
6219         }
6220         if (notify)
6221                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6222         return 0;
6223 }
6224
6225 /**
6226  *      dev_set_promiscuity     - update promiscuity count on a device
6227  *      @dev: device
6228  *      @inc: modifier
6229  *
6230  *      Add or remove promiscuity from a device. While the count in the device
6231  *      remains above zero the interface remains promiscuous. Once it hits zero
6232  *      the device reverts back to normal filtering operation. A negative inc
6233  *      value is used to drop promiscuity on the device.
6234  *      Return 0 if successful or a negative errno code on error.
6235  */
6236 int dev_set_promiscuity(struct net_device *dev, int inc)
6237 {
6238         unsigned int old_flags = dev->flags;
6239         int err;
6240
6241         err = __dev_set_promiscuity(dev, inc, true);
6242         if (err < 0)
6243                 return err;
6244         if (dev->flags != old_flags)
6245                 dev_set_rx_mode(dev);
6246         return err;
6247 }
6248 EXPORT_SYMBOL(dev_set_promiscuity);
6249
6250 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6251 {
6252         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6253
6254         ASSERT_RTNL();
6255
6256         dev->flags |= IFF_ALLMULTI;
6257         dev->allmulti += inc;
6258         if (dev->allmulti == 0) {
6259                 /*
6260                  * Avoid overflow.
6261                  * If inc causes overflow, untouch allmulti and return error.
6262                  */
6263                 if (inc < 0)
6264                         dev->flags &= ~IFF_ALLMULTI;
6265                 else {
6266                         dev->allmulti -= inc;
6267                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6268                                 dev->name);
6269                         return -EOVERFLOW;
6270                 }
6271         }
6272         if (dev->flags ^ old_flags) {
6273                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6274                 dev_set_rx_mode(dev);
6275                 if (notify)
6276                         __dev_notify_flags(dev, old_flags,
6277                                            dev->gflags ^ old_gflags);
6278         }
6279         return 0;
6280 }
6281
6282 /**
6283  *      dev_set_allmulti        - update allmulti count on a device
6284  *      @dev: device
6285  *      @inc: modifier
6286  *
6287  *      Add or remove reception of all multicast frames to a device. While the
6288  *      count in the device remains above zero the interface remains listening
6289  *      to all interfaces. Once it hits zero the device reverts back to normal
6290  *      filtering operation. A negative @inc value is used to drop the counter
6291  *      when releasing a resource needing all multicasts.
6292  *      Return 0 if successful or a negative errno code on error.
6293  */
6294
6295 int dev_set_allmulti(struct net_device *dev, int inc)
6296 {
6297         return __dev_set_allmulti(dev, inc, true);
6298 }
6299 EXPORT_SYMBOL(dev_set_allmulti);
6300
6301 /*
6302  *      Upload unicast and multicast address lists to device and
6303  *      configure RX filtering. When the device doesn't support unicast
6304  *      filtering it is put in promiscuous mode while unicast addresses
6305  *      are present.
6306  */
6307 void __dev_set_rx_mode(struct net_device *dev)
6308 {
6309         const struct net_device_ops *ops = dev->netdev_ops;
6310
6311         /* dev_open will call this function so the list will stay sane. */
6312         if (!(dev->flags&IFF_UP))
6313                 return;
6314
6315         if (!netif_device_present(dev))
6316                 return;
6317
6318         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6319                 /* Unicast addresses changes may only happen under the rtnl,
6320                  * therefore calling __dev_set_promiscuity here is safe.
6321                  */
6322                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6323                         __dev_set_promiscuity(dev, 1, false);
6324                         dev->uc_promisc = true;
6325                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6326                         __dev_set_promiscuity(dev, -1, false);
6327                         dev->uc_promisc = false;
6328                 }
6329         }
6330
6331         if (ops->ndo_set_rx_mode)
6332                 ops->ndo_set_rx_mode(dev);
6333 }
6334
6335 void dev_set_rx_mode(struct net_device *dev)
6336 {
6337         netif_addr_lock_bh(dev);
6338         __dev_set_rx_mode(dev);
6339         netif_addr_unlock_bh(dev);
6340 }
6341
6342 /**
6343  *      dev_get_flags - get flags reported to userspace
6344  *      @dev: device
6345  *
6346  *      Get the combination of flag bits exported through APIs to userspace.
6347  */
6348 unsigned int dev_get_flags(const struct net_device *dev)
6349 {
6350         unsigned int flags;
6351
6352         flags = (dev->flags & ~(IFF_PROMISC |
6353                                 IFF_ALLMULTI |
6354                                 IFF_RUNNING |
6355                                 IFF_LOWER_UP |
6356                                 IFF_DORMANT)) |
6357                 (dev->gflags & (IFF_PROMISC |
6358                                 IFF_ALLMULTI));
6359
6360         if (netif_running(dev)) {
6361                 if (netif_oper_up(dev))
6362                         flags |= IFF_RUNNING;
6363                 if (netif_carrier_ok(dev))
6364                         flags |= IFF_LOWER_UP;
6365                 if (netif_dormant(dev))
6366                         flags |= IFF_DORMANT;
6367         }
6368
6369         return flags;
6370 }
6371 EXPORT_SYMBOL(dev_get_flags);
6372
6373 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6374 {
6375         unsigned int old_flags = dev->flags;
6376         int ret;
6377
6378         ASSERT_RTNL();
6379
6380         /*
6381          *      Set the flags on our device.
6382          */
6383
6384         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6385                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6386                                IFF_AUTOMEDIA)) |
6387                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6388                                     IFF_ALLMULTI));
6389
6390         /*
6391          *      Load in the correct multicast list now the flags have changed.
6392          */
6393
6394         if ((old_flags ^ flags) & IFF_MULTICAST)
6395                 dev_change_rx_flags(dev, IFF_MULTICAST);
6396
6397         dev_set_rx_mode(dev);
6398
6399         /*
6400          *      Have we downed the interface. We handle IFF_UP ourselves
6401          *      according to user attempts to set it, rather than blindly
6402          *      setting it.
6403          */
6404
6405         ret = 0;
6406         if ((old_flags ^ flags) & IFF_UP)
6407                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6408
6409         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6410                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6411                 unsigned int old_flags = dev->flags;
6412
6413                 dev->gflags ^= IFF_PROMISC;
6414
6415                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6416                         if (dev->flags != old_flags)
6417                                 dev_set_rx_mode(dev);
6418         }
6419
6420         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6421            is important. Some (broken) drivers set IFF_PROMISC, when
6422            IFF_ALLMULTI is requested not asking us and not reporting.
6423          */
6424         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6425                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6426
6427                 dev->gflags ^= IFF_ALLMULTI;
6428                 __dev_set_allmulti(dev, inc, false);
6429         }
6430
6431         return ret;
6432 }
6433
6434 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6435                         unsigned int gchanges)
6436 {
6437         unsigned int changes = dev->flags ^ old_flags;
6438
6439         if (gchanges)
6440                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6441
6442         if (changes & IFF_UP) {
6443                 if (dev->flags & IFF_UP)
6444                         call_netdevice_notifiers(NETDEV_UP, dev);
6445                 else
6446                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6447         }
6448
6449         if (dev->flags & IFF_UP &&
6450             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6451                 struct netdev_notifier_change_info change_info;
6452
6453                 change_info.flags_changed = changes;
6454                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6455                                               &change_info.info);
6456         }
6457 }
6458
6459 /**
6460  *      dev_change_flags - change device settings
6461  *      @dev: device
6462  *      @flags: device state flags
6463  *
6464  *      Change settings on device based state flags. The flags are
6465  *      in the userspace exported format.
6466  */
6467 int dev_change_flags(struct net_device *dev, unsigned int flags)
6468 {
6469         int ret;
6470         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6471
6472         ret = __dev_change_flags(dev, flags);
6473         if (ret < 0)
6474                 return ret;
6475
6476         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6477         __dev_notify_flags(dev, old_flags, changes);
6478         return ret;
6479 }
6480 EXPORT_SYMBOL(dev_change_flags);
6481
6482 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6483 {
6484         const struct net_device_ops *ops = dev->netdev_ops;
6485
6486         if (ops->ndo_change_mtu)
6487                 return ops->ndo_change_mtu(dev, new_mtu);
6488
6489         dev->mtu = new_mtu;
6490         return 0;
6491 }
6492
6493 /**
6494  *      dev_set_mtu - Change maximum transfer unit
6495  *      @dev: device
6496  *      @new_mtu: new transfer unit
6497  *
6498  *      Change the maximum transfer size of the network device.
6499  */
6500 int dev_set_mtu(struct net_device *dev, int new_mtu)
6501 {
6502         int err, orig_mtu;
6503
6504         if (new_mtu == dev->mtu)
6505                 return 0;
6506
6507         /*      MTU must be positive.    */
6508         if (new_mtu < 0)
6509                 return -EINVAL;
6510
6511         if (!netif_device_present(dev))
6512                 return -ENODEV;
6513
6514         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6515         err = notifier_to_errno(err);
6516         if (err)
6517                 return err;
6518
6519         orig_mtu = dev->mtu;
6520         err = __dev_set_mtu(dev, new_mtu);
6521
6522         if (!err) {
6523                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6524                 err = notifier_to_errno(err);
6525                 if (err) {
6526                         /* setting mtu back and notifying everyone again,
6527                          * so that they have a chance to revert changes.
6528                          */
6529                         __dev_set_mtu(dev, orig_mtu);
6530                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6531                 }
6532         }
6533         return err;
6534 }
6535 EXPORT_SYMBOL(dev_set_mtu);
6536
6537 /**
6538  *      dev_set_group - Change group this device belongs to
6539  *      @dev: device
6540  *      @new_group: group this device should belong to
6541  */
6542 void dev_set_group(struct net_device *dev, int new_group)
6543 {
6544         dev->group = new_group;
6545 }
6546 EXPORT_SYMBOL(dev_set_group);
6547
6548 /**
6549  *      dev_set_mac_address - Change Media Access Control Address
6550  *      @dev: device
6551  *      @sa: new address
6552  *
6553  *      Change the hardware (MAC) address of the device
6554  */
6555 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6556 {
6557         const struct net_device_ops *ops = dev->netdev_ops;
6558         int err;
6559
6560         if (!ops->ndo_set_mac_address)
6561                 return -EOPNOTSUPP;
6562         if (sa->sa_family != dev->type)
6563                 return -EINVAL;
6564         if (!netif_device_present(dev))
6565                 return -ENODEV;
6566         err = ops->ndo_set_mac_address(dev, sa);
6567         if (err)
6568                 return err;
6569         dev->addr_assign_type = NET_ADDR_SET;
6570         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6571         add_device_randomness(dev->dev_addr, dev->addr_len);
6572         return 0;
6573 }
6574 EXPORT_SYMBOL(dev_set_mac_address);
6575
6576 /**
6577  *      dev_change_carrier - Change device carrier
6578  *      @dev: device
6579  *      @new_carrier: new value
6580  *
6581  *      Change device carrier
6582  */
6583 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6584 {
6585         const struct net_device_ops *ops = dev->netdev_ops;
6586
6587         if (!ops->ndo_change_carrier)
6588                 return -EOPNOTSUPP;
6589         if (!netif_device_present(dev))
6590                 return -ENODEV;
6591         return ops->ndo_change_carrier(dev, new_carrier);
6592 }
6593 EXPORT_SYMBOL(dev_change_carrier);
6594
6595 /**
6596  *      dev_get_phys_port_id - Get device physical port ID
6597  *      @dev: device
6598  *      @ppid: port ID
6599  *
6600  *      Get device physical port ID
6601  */
6602 int dev_get_phys_port_id(struct net_device *dev,
6603                          struct netdev_phys_item_id *ppid)
6604 {
6605         const struct net_device_ops *ops = dev->netdev_ops;
6606
6607         if (!ops->ndo_get_phys_port_id)
6608                 return -EOPNOTSUPP;
6609         return ops->ndo_get_phys_port_id(dev, ppid);
6610 }
6611 EXPORT_SYMBOL(dev_get_phys_port_id);
6612
6613 /**
6614  *      dev_get_phys_port_name - Get device physical port name
6615  *      @dev: device
6616  *      @name: port name
6617  *      @len: limit of bytes to copy to name
6618  *
6619  *      Get device physical port name
6620  */
6621 int dev_get_phys_port_name(struct net_device *dev,
6622                            char *name, size_t len)
6623 {
6624         const struct net_device_ops *ops = dev->netdev_ops;
6625
6626         if (!ops->ndo_get_phys_port_name)
6627                 return -EOPNOTSUPP;
6628         return ops->ndo_get_phys_port_name(dev, name, len);
6629 }
6630 EXPORT_SYMBOL(dev_get_phys_port_name);
6631
6632 /**
6633  *      dev_change_proto_down - update protocol port state information
6634  *      @dev: device
6635  *      @proto_down: new value
6636  *
6637  *      This info can be used by switch drivers to set the phys state of the
6638  *      port.
6639  */
6640 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6641 {
6642         const struct net_device_ops *ops = dev->netdev_ops;
6643
6644         if (!ops->ndo_change_proto_down)
6645                 return -EOPNOTSUPP;
6646         if (!netif_device_present(dev))
6647                 return -ENODEV;
6648         return ops->ndo_change_proto_down(dev, proto_down);
6649 }
6650 EXPORT_SYMBOL(dev_change_proto_down);
6651
6652 /**
6653  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6654  *      @dev: device
6655  *      @fd: new program fd or negative value to clear
6656  *
6657  *      Set or clear a bpf program for a device
6658  */
6659 int dev_change_xdp_fd(struct net_device *dev, int fd)
6660 {
6661         const struct net_device_ops *ops = dev->netdev_ops;
6662         struct bpf_prog *prog = NULL;
6663         struct netdev_xdp xdp = {};
6664         int err;
6665
6666         if (!ops->ndo_xdp)
6667                 return -EOPNOTSUPP;
6668         if (fd >= 0) {
6669                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6670                 if (IS_ERR(prog))
6671                         return PTR_ERR(prog);
6672         }
6673
6674         xdp.command = XDP_SETUP_PROG;
6675         xdp.prog = prog;
6676         err = ops->ndo_xdp(dev, &xdp);
6677         if (err < 0 && prog)
6678                 bpf_prog_put(prog);
6679
6680         return err;
6681 }
6682 EXPORT_SYMBOL(dev_change_xdp_fd);
6683
6684 /**
6685  *      dev_new_index   -       allocate an ifindex
6686  *      @net: the applicable net namespace
6687  *
6688  *      Returns a suitable unique value for a new device interface
6689  *      number.  The caller must hold the rtnl semaphore or the
6690  *      dev_base_lock to be sure it remains unique.
6691  */
6692 static int dev_new_index(struct net *net)
6693 {
6694         int ifindex = net->ifindex;
6695         for (;;) {
6696                 if (++ifindex <= 0)
6697                         ifindex = 1;
6698                 if (!__dev_get_by_index(net, ifindex))
6699                         return net->ifindex = ifindex;
6700         }
6701 }
6702
6703 /* Delayed registration/unregisteration */
6704 static LIST_HEAD(net_todo_list);
6705 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6706
6707 static void net_set_todo(struct net_device *dev)
6708 {
6709         list_add_tail(&dev->todo_list, &net_todo_list);
6710         dev_net(dev)->dev_unreg_count++;
6711 }
6712
6713 static void rollback_registered_many(struct list_head *head)
6714 {
6715         struct net_device *dev, *tmp;
6716         LIST_HEAD(close_head);
6717
6718         BUG_ON(dev_boot_phase);
6719         ASSERT_RTNL();
6720
6721         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6722                 /* Some devices call without registering
6723                  * for initialization unwind. Remove those
6724                  * devices and proceed with the remaining.
6725                  */
6726                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6727                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6728                                  dev->name, dev);
6729
6730                         WARN_ON(1);
6731                         list_del(&dev->unreg_list);
6732                         continue;
6733                 }
6734                 dev->dismantle = true;
6735                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6736         }
6737
6738         /* If device is running, close it first. */
6739         list_for_each_entry(dev, head, unreg_list)
6740                 list_add_tail(&dev->close_list, &close_head);
6741         dev_close_many(&close_head, true);
6742
6743         list_for_each_entry(dev, head, unreg_list) {
6744                 /* And unlink it from device chain. */
6745                 unlist_netdevice(dev);
6746
6747                 dev->reg_state = NETREG_UNREGISTERING;
6748         }
6749         flush_all_backlogs();
6750
6751         synchronize_net();
6752
6753         list_for_each_entry(dev, head, unreg_list) {
6754                 struct sk_buff *skb = NULL;
6755
6756                 /* Shutdown queueing discipline. */
6757                 dev_shutdown(dev);
6758
6759
6760                 /* Notify protocols, that we are about to destroy
6761                    this device. They should clean all the things.
6762                 */
6763                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6764
6765                 if (!dev->rtnl_link_ops ||
6766                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6767                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6768                                                      GFP_KERNEL);
6769
6770                 /*
6771                  *      Flush the unicast and multicast chains
6772                  */
6773                 dev_uc_flush(dev);
6774                 dev_mc_flush(dev);
6775
6776                 if (dev->netdev_ops->ndo_uninit)
6777                         dev->netdev_ops->ndo_uninit(dev);
6778
6779                 if (skb)
6780                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6781
6782                 /* Notifier chain MUST detach us all upper devices. */
6783                 WARN_ON(netdev_has_any_upper_dev(dev));
6784
6785                 /* Remove entries from kobject tree */
6786                 netdev_unregister_kobject(dev);
6787 #ifdef CONFIG_XPS
6788                 /* Remove XPS queueing entries */
6789                 netif_reset_xps_queues_gt(dev, 0);
6790 #endif
6791         }
6792
6793         synchronize_net();
6794
6795         list_for_each_entry(dev, head, unreg_list)
6796                 dev_put(dev);
6797 }
6798
6799 static void rollback_registered(struct net_device *dev)
6800 {
6801         LIST_HEAD(single);
6802
6803         list_add(&dev->unreg_list, &single);
6804         rollback_registered_many(&single);
6805         list_del(&single);
6806 }
6807
6808 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6809         struct net_device *upper, netdev_features_t features)
6810 {
6811         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6812         netdev_features_t feature;
6813         int feature_bit;
6814
6815         for_each_netdev_feature(&upper_disables, feature_bit) {
6816                 feature = __NETIF_F_BIT(feature_bit);
6817                 if (!(upper->wanted_features & feature)
6818                     && (features & feature)) {
6819                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6820                                    &feature, upper->name);
6821                         features &= ~feature;
6822                 }
6823         }
6824
6825         return features;
6826 }
6827
6828 static void netdev_sync_lower_features(struct net_device *upper,
6829         struct net_device *lower, netdev_features_t features)
6830 {
6831         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6832         netdev_features_t feature;
6833         int feature_bit;
6834
6835         for_each_netdev_feature(&upper_disables, feature_bit) {
6836                 feature = __NETIF_F_BIT(feature_bit);
6837                 if (!(features & feature) && (lower->features & feature)) {
6838                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6839                                    &feature, lower->name);
6840                         lower->wanted_features &= ~feature;
6841                         netdev_update_features(lower);
6842
6843                         if (unlikely(lower->features & feature))
6844                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6845                                             &feature, lower->name);
6846                 }
6847         }
6848 }
6849
6850 static netdev_features_t netdev_fix_features(struct net_device *dev,
6851         netdev_features_t features)
6852 {
6853         /* Fix illegal checksum combinations */
6854         if ((features & NETIF_F_HW_CSUM) &&
6855             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6856                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6857                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6858         }
6859
6860         /* TSO requires that SG is present as well. */
6861         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6862                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6863                 features &= ~NETIF_F_ALL_TSO;
6864         }
6865
6866         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6867                                         !(features & NETIF_F_IP_CSUM)) {
6868                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6869                 features &= ~NETIF_F_TSO;
6870                 features &= ~NETIF_F_TSO_ECN;
6871         }
6872
6873         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6874                                          !(features & NETIF_F_IPV6_CSUM)) {
6875                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6876                 features &= ~NETIF_F_TSO6;
6877         }
6878
6879         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6880         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6881                 features &= ~NETIF_F_TSO_MANGLEID;
6882
6883         /* TSO ECN requires that TSO is present as well. */
6884         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6885                 features &= ~NETIF_F_TSO_ECN;
6886
6887         /* Software GSO depends on SG. */
6888         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6889                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6890                 features &= ~NETIF_F_GSO;
6891         }
6892
6893         /* UFO needs SG and checksumming */
6894         if (features & NETIF_F_UFO) {
6895                 /* maybe split UFO into V4 and V6? */
6896                 if (!(features & NETIF_F_HW_CSUM) &&
6897                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6898                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6899                         netdev_dbg(dev,
6900                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6901                         features &= ~NETIF_F_UFO;
6902                 }
6903
6904                 if (!(features & NETIF_F_SG)) {
6905                         netdev_dbg(dev,
6906                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6907                         features &= ~NETIF_F_UFO;
6908                 }
6909         }
6910
6911         /* GSO partial features require GSO partial be set */
6912         if ((features & dev->gso_partial_features) &&
6913             !(features & NETIF_F_GSO_PARTIAL)) {
6914                 netdev_dbg(dev,
6915                            "Dropping partially supported GSO features since no GSO partial.\n");
6916                 features &= ~dev->gso_partial_features;
6917         }
6918
6919 #ifdef CONFIG_NET_RX_BUSY_POLL
6920         if (dev->netdev_ops->ndo_busy_poll)
6921                 features |= NETIF_F_BUSY_POLL;
6922         else
6923 #endif
6924                 features &= ~NETIF_F_BUSY_POLL;
6925
6926         return features;
6927 }
6928
6929 int __netdev_update_features(struct net_device *dev)
6930 {
6931         struct net_device *upper, *lower;
6932         netdev_features_t features;
6933         struct list_head *iter;
6934         int err = -1;
6935
6936         ASSERT_RTNL();
6937
6938         features = netdev_get_wanted_features(dev);
6939
6940         if (dev->netdev_ops->ndo_fix_features)
6941                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6942
6943         /* driver might be less strict about feature dependencies */
6944         features = netdev_fix_features(dev, features);
6945
6946         /* some features can't be enabled if they're off an an upper device */
6947         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6948                 features = netdev_sync_upper_features(dev, upper, features);
6949
6950         if (dev->features == features)
6951                 goto sync_lower;
6952
6953         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6954                 &dev->features, &features);
6955
6956         if (dev->netdev_ops->ndo_set_features)
6957                 err = dev->netdev_ops->ndo_set_features(dev, features);
6958         else
6959                 err = 0;
6960
6961         if (unlikely(err < 0)) {
6962                 netdev_err(dev,
6963                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6964                         err, &features, &dev->features);
6965                 /* return non-0 since some features might have changed and
6966                  * it's better to fire a spurious notification than miss it
6967                  */
6968                 return -1;
6969         }
6970
6971 sync_lower:
6972         /* some features must be disabled on lower devices when disabled
6973          * on an upper device (think: bonding master or bridge)
6974          */
6975         netdev_for_each_lower_dev(dev, lower, iter)
6976                 netdev_sync_lower_features(dev, lower, features);
6977
6978         if (!err)
6979                 dev->features = features;
6980
6981         return err < 0 ? 0 : 1;
6982 }
6983
6984 /**
6985  *      netdev_update_features - recalculate device features
6986  *      @dev: the device to check
6987  *
6988  *      Recalculate dev->features set and send notifications if it
6989  *      has changed. Should be called after driver or hardware dependent
6990  *      conditions might have changed that influence the features.
6991  */
6992 void netdev_update_features(struct net_device *dev)
6993 {
6994         if (__netdev_update_features(dev))
6995                 netdev_features_change(dev);
6996 }
6997 EXPORT_SYMBOL(netdev_update_features);
6998
6999 /**
7000  *      netdev_change_features - recalculate device features
7001  *      @dev: the device to check
7002  *
7003  *      Recalculate dev->features set and send notifications even
7004  *      if they have not changed. Should be called instead of
7005  *      netdev_update_features() if also dev->vlan_features might
7006  *      have changed to allow the changes to be propagated to stacked
7007  *      VLAN devices.
7008  */
7009 void netdev_change_features(struct net_device *dev)
7010 {
7011         __netdev_update_features(dev);
7012         netdev_features_change(dev);
7013 }
7014 EXPORT_SYMBOL(netdev_change_features);
7015
7016 /**
7017  *      netif_stacked_transfer_operstate -      transfer operstate
7018  *      @rootdev: the root or lower level device to transfer state from
7019  *      @dev: the device to transfer operstate to
7020  *
7021  *      Transfer operational state from root to device. This is normally
7022  *      called when a stacking relationship exists between the root
7023  *      device and the device(a leaf device).
7024  */
7025 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7026                                         struct net_device *dev)
7027 {
7028         if (rootdev->operstate == IF_OPER_DORMANT)
7029                 netif_dormant_on(dev);
7030         else
7031                 netif_dormant_off(dev);
7032
7033         if (netif_carrier_ok(rootdev)) {
7034                 if (!netif_carrier_ok(dev))
7035                         netif_carrier_on(dev);
7036         } else {
7037                 if (netif_carrier_ok(dev))
7038                         netif_carrier_off(dev);
7039         }
7040 }
7041 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7042
7043 #ifdef CONFIG_SYSFS
7044 static int netif_alloc_rx_queues(struct net_device *dev)
7045 {
7046         unsigned int i, count = dev->num_rx_queues;
7047         struct netdev_rx_queue *rx;
7048         size_t sz = count * sizeof(*rx);
7049
7050         BUG_ON(count < 1);
7051
7052         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7053         if (!rx) {
7054                 rx = vzalloc(sz);
7055                 if (!rx)
7056                         return -ENOMEM;
7057         }
7058         dev->_rx = rx;
7059
7060         for (i = 0; i < count; i++)
7061                 rx[i].dev = dev;
7062         return 0;
7063 }
7064 #endif
7065
7066 static void netdev_init_one_queue(struct net_device *dev,
7067                                   struct netdev_queue *queue, void *_unused)
7068 {
7069         /* Initialize queue lock */
7070         spin_lock_init(&queue->_xmit_lock);
7071         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7072         queue->xmit_lock_owner = -1;
7073         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7074         queue->dev = dev;
7075 #ifdef CONFIG_BQL
7076         dql_init(&queue->dql, HZ);
7077 #endif
7078 }
7079
7080 static void netif_free_tx_queues(struct net_device *dev)
7081 {
7082         kvfree(dev->_tx);
7083 }
7084
7085 static int netif_alloc_netdev_queues(struct net_device *dev)
7086 {
7087         unsigned int count = dev->num_tx_queues;
7088         struct netdev_queue *tx;
7089         size_t sz = count * sizeof(*tx);
7090
7091         if (count < 1 || count > 0xffff)
7092                 return -EINVAL;
7093
7094         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7095         if (!tx) {
7096                 tx = vzalloc(sz);
7097                 if (!tx)
7098                         return -ENOMEM;
7099         }
7100         dev->_tx = tx;
7101
7102         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7103         spin_lock_init(&dev->tx_global_lock);
7104
7105         return 0;
7106 }
7107
7108 void netif_tx_stop_all_queues(struct net_device *dev)
7109 {
7110         unsigned int i;
7111
7112         for (i = 0; i < dev->num_tx_queues; i++) {
7113                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7114                 netif_tx_stop_queue(txq);
7115         }
7116 }
7117 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7118
7119 /**
7120  *      register_netdevice      - register a network device
7121  *      @dev: device to register
7122  *
7123  *      Take a completed network device structure and add it to the kernel
7124  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7125  *      chain. 0 is returned on success. A negative errno code is returned
7126  *      on a failure to set up the device, or if the name is a duplicate.
7127  *
7128  *      Callers must hold the rtnl semaphore. You may want
7129  *      register_netdev() instead of this.
7130  *
7131  *      BUGS:
7132  *      The locking appears insufficient to guarantee two parallel registers
7133  *      will not get the same name.
7134  */
7135
7136 int register_netdevice(struct net_device *dev)
7137 {
7138         int ret;
7139         struct net *net = dev_net(dev);
7140
7141         BUG_ON(dev_boot_phase);
7142         ASSERT_RTNL();
7143
7144         might_sleep();
7145
7146         /* When net_device's are persistent, this will be fatal. */
7147         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7148         BUG_ON(!net);
7149
7150         spin_lock_init(&dev->addr_list_lock);
7151         netdev_set_addr_lockdep_class(dev);
7152
7153         ret = dev_get_valid_name(net, dev, dev->name);
7154         if (ret < 0)
7155                 goto out;
7156
7157         /* Init, if this function is available */
7158         if (dev->netdev_ops->ndo_init) {
7159                 ret = dev->netdev_ops->ndo_init(dev);
7160                 if (ret) {
7161                         if (ret > 0)
7162                                 ret = -EIO;
7163                         goto out;
7164                 }
7165         }
7166
7167         if (((dev->hw_features | dev->features) &
7168              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7169             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7170              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7171                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7172                 ret = -EINVAL;
7173                 goto err_uninit;
7174         }
7175
7176         ret = -EBUSY;
7177         if (!dev->ifindex)
7178                 dev->ifindex = dev_new_index(net);
7179         else if (__dev_get_by_index(net, dev->ifindex))
7180                 goto err_uninit;
7181
7182         /* Transfer changeable features to wanted_features and enable
7183          * software offloads (GSO and GRO).
7184          */
7185         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7186         dev->features |= NETIF_F_SOFT_FEATURES;
7187         dev->wanted_features = dev->features & dev->hw_features;
7188
7189         if (!(dev->flags & IFF_LOOPBACK))
7190                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7191
7192         /* If IPv4 TCP segmentation offload is supported we should also
7193          * allow the device to enable segmenting the frame with the option
7194          * of ignoring a static IP ID value.  This doesn't enable the
7195          * feature itself but allows the user to enable it later.
7196          */
7197         if (dev->hw_features & NETIF_F_TSO)
7198                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7199         if (dev->vlan_features & NETIF_F_TSO)
7200                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7201         if (dev->mpls_features & NETIF_F_TSO)
7202                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7203         if (dev->hw_enc_features & NETIF_F_TSO)
7204                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7205
7206         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7207          */
7208         dev->vlan_features |= NETIF_F_HIGHDMA;
7209
7210         /* Make NETIF_F_SG inheritable to tunnel devices.
7211          */
7212         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7213
7214         /* Make NETIF_F_SG inheritable to MPLS.
7215          */
7216         dev->mpls_features |= NETIF_F_SG;
7217
7218         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7219         ret = notifier_to_errno(ret);
7220         if (ret)
7221                 goto err_uninit;
7222
7223         ret = netdev_register_kobject(dev);
7224         if (ret)
7225                 goto err_uninit;
7226         dev->reg_state = NETREG_REGISTERED;
7227
7228         __netdev_update_features(dev);
7229
7230         /*
7231          *      Default initial state at registry is that the
7232          *      device is present.
7233          */
7234
7235         set_bit(__LINK_STATE_PRESENT, &dev->state);
7236
7237         linkwatch_init_dev(dev);
7238
7239         dev_init_scheduler(dev);
7240         dev_hold(dev);
7241         list_netdevice(dev);
7242         add_device_randomness(dev->dev_addr, dev->addr_len);
7243
7244         /* If the device has permanent device address, driver should
7245          * set dev_addr and also addr_assign_type should be set to
7246          * NET_ADDR_PERM (default value).
7247          */
7248         if (dev->addr_assign_type == NET_ADDR_PERM)
7249                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7250
7251         /* Notify protocols, that a new device appeared. */
7252         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7253         ret = notifier_to_errno(ret);
7254         if (ret) {
7255                 rollback_registered(dev);
7256                 dev->reg_state = NETREG_UNREGISTERED;
7257         }
7258         /*
7259          *      Prevent userspace races by waiting until the network
7260          *      device is fully setup before sending notifications.
7261          */
7262         if (!dev->rtnl_link_ops ||
7263             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7264                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7265
7266 out:
7267         return ret;
7268
7269 err_uninit:
7270         if (dev->netdev_ops->ndo_uninit)
7271                 dev->netdev_ops->ndo_uninit(dev);
7272         goto out;
7273 }
7274 EXPORT_SYMBOL(register_netdevice);
7275
7276 /**
7277  *      init_dummy_netdev       - init a dummy network device for NAPI
7278  *      @dev: device to init
7279  *
7280  *      This takes a network device structure and initialize the minimum
7281  *      amount of fields so it can be used to schedule NAPI polls without
7282  *      registering a full blown interface. This is to be used by drivers
7283  *      that need to tie several hardware interfaces to a single NAPI
7284  *      poll scheduler due to HW limitations.
7285  */
7286 int init_dummy_netdev(struct net_device *dev)
7287 {
7288         /* Clear everything. Note we don't initialize spinlocks
7289          * are they aren't supposed to be taken by any of the
7290          * NAPI code and this dummy netdev is supposed to be
7291          * only ever used for NAPI polls
7292          */
7293         memset(dev, 0, sizeof(struct net_device));
7294
7295         /* make sure we BUG if trying to hit standard
7296          * register/unregister code path
7297          */
7298         dev->reg_state = NETREG_DUMMY;
7299
7300         /* NAPI wants this */
7301         INIT_LIST_HEAD(&dev->napi_list);
7302
7303         /* a dummy interface is started by default */
7304         set_bit(__LINK_STATE_PRESENT, &dev->state);
7305         set_bit(__LINK_STATE_START, &dev->state);
7306
7307         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7308          * because users of this 'device' dont need to change
7309          * its refcount.
7310          */
7311
7312         return 0;
7313 }
7314 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7315
7316
7317 /**
7318  *      register_netdev - register a network device
7319  *      @dev: device to register
7320  *
7321  *      Take a completed network device structure and add it to the kernel
7322  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7323  *      chain. 0 is returned on success. A negative errno code is returned
7324  *      on a failure to set up the device, or if the name is a duplicate.
7325  *
7326  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7327  *      and expands the device name if you passed a format string to
7328  *      alloc_netdev.
7329  */
7330 int register_netdev(struct net_device *dev)
7331 {
7332         int err;
7333
7334         rtnl_lock();
7335         err = register_netdevice(dev);
7336         rtnl_unlock();
7337         return err;
7338 }
7339 EXPORT_SYMBOL(register_netdev);
7340
7341 int netdev_refcnt_read(const struct net_device *dev)
7342 {
7343         int i, refcnt = 0;
7344
7345         for_each_possible_cpu(i)
7346                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7347         return refcnt;
7348 }
7349 EXPORT_SYMBOL(netdev_refcnt_read);
7350
7351 /**
7352  * netdev_wait_allrefs - wait until all references are gone.
7353  * @dev: target net_device
7354  *
7355  * This is called when unregistering network devices.
7356  *
7357  * Any protocol or device that holds a reference should register
7358  * for netdevice notification, and cleanup and put back the
7359  * reference if they receive an UNREGISTER event.
7360  * We can get stuck here if buggy protocols don't correctly
7361  * call dev_put.
7362  */
7363 static void netdev_wait_allrefs(struct net_device *dev)
7364 {
7365         unsigned long rebroadcast_time, warning_time;
7366         int refcnt;
7367
7368         linkwatch_forget_dev(dev);
7369
7370         rebroadcast_time = warning_time = jiffies;
7371         refcnt = netdev_refcnt_read(dev);
7372
7373         while (refcnt != 0) {
7374                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7375                         rtnl_lock();
7376
7377                         /* Rebroadcast unregister notification */
7378                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7379
7380                         __rtnl_unlock();
7381                         rcu_barrier();
7382                         rtnl_lock();
7383
7384                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7385                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7386                                      &dev->state)) {
7387                                 /* We must not have linkwatch events
7388                                  * pending on unregister. If this
7389                                  * happens, we simply run the queue
7390                                  * unscheduled, resulting in a noop
7391                                  * for this device.
7392                                  */
7393                                 linkwatch_run_queue();
7394                         }
7395
7396                         __rtnl_unlock();
7397
7398                         rebroadcast_time = jiffies;
7399                 }
7400
7401                 msleep(250);
7402
7403                 refcnt = netdev_refcnt_read(dev);
7404
7405                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7406                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7407                                  dev->name, refcnt);
7408                         warning_time = jiffies;
7409                 }
7410         }
7411 }
7412
7413 /* The sequence is:
7414  *
7415  *      rtnl_lock();
7416  *      ...
7417  *      register_netdevice(x1);
7418  *      register_netdevice(x2);
7419  *      ...
7420  *      unregister_netdevice(y1);
7421  *      unregister_netdevice(y2);
7422  *      ...
7423  *      rtnl_unlock();
7424  *      free_netdev(y1);
7425  *      free_netdev(y2);
7426  *
7427  * We are invoked by rtnl_unlock().
7428  * This allows us to deal with problems:
7429  * 1) We can delete sysfs objects which invoke hotplug
7430  *    without deadlocking with linkwatch via keventd.
7431  * 2) Since we run with the RTNL semaphore not held, we can sleep
7432  *    safely in order to wait for the netdev refcnt to drop to zero.
7433  *
7434  * We must not return until all unregister events added during
7435  * the interval the lock was held have been completed.
7436  */
7437 void netdev_run_todo(void)
7438 {
7439         struct list_head list;
7440
7441         /* Snapshot list, allow later requests */
7442         list_replace_init(&net_todo_list, &list);
7443
7444         __rtnl_unlock();
7445
7446
7447         /* Wait for rcu callbacks to finish before next phase */
7448         if (!list_empty(&list))
7449                 rcu_barrier();
7450
7451         while (!list_empty(&list)) {
7452                 struct net_device *dev
7453                         = list_first_entry(&list, struct net_device, todo_list);
7454                 list_del(&dev->todo_list);
7455
7456                 rtnl_lock();
7457                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7458                 __rtnl_unlock();
7459
7460                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7461                         pr_err("network todo '%s' but state %d\n",
7462                                dev->name, dev->reg_state);
7463                         dump_stack();
7464                         continue;
7465                 }
7466
7467                 dev->reg_state = NETREG_UNREGISTERED;
7468
7469                 netdev_wait_allrefs(dev);
7470
7471                 /* paranoia */
7472                 BUG_ON(netdev_refcnt_read(dev));
7473                 BUG_ON(!list_empty(&dev->ptype_all));
7474                 BUG_ON(!list_empty(&dev->ptype_specific));
7475                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7476                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7477                 WARN_ON(dev->dn_ptr);
7478
7479                 if (dev->destructor)
7480                         dev->destructor(dev);
7481
7482                 /* Report a network device has been unregistered */
7483                 rtnl_lock();
7484                 dev_net(dev)->dev_unreg_count--;
7485                 __rtnl_unlock();
7486                 wake_up(&netdev_unregistering_wq);
7487
7488                 /* Free network device */
7489                 kobject_put(&dev->dev.kobj);
7490         }
7491 }
7492
7493 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7494  * all the same fields in the same order as net_device_stats, with only
7495  * the type differing, but rtnl_link_stats64 may have additional fields
7496  * at the end for newer counters.
7497  */
7498 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7499                              const struct net_device_stats *netdev_stats)
7500 {
7501 #if BITS_PER_LONG == 64
7502         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7503         memcpy(stats64, netdev_stats, sizeof(*stats64));
7504         /* zero out counters that only exist in rtnl_link_stats64 */
7505         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7506                sizeof(*stats64) - sizeof(*netdev_stats));
7507 #else
7508         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7509         const unsigned long *src = (const unsigned long *)netdev_stats;
7510         u64 *dst = (u64 *)stats64;
7511
7512         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7513         for (i = 0; i < n; i++)
7514                 dst[i] = src[i];
7515         /* zero out counters that only exist in rtnl_link_stats64 */
7516         memset((char *)stats64 + n * sizeof(u64), 0,
7517                sizeof(*stats64) - n * sizeof(u64));
7518 #endif
7519 }
7520 EXPORT_SYMBOL(netdev_stats_to_stats64);
7521
7522 /**
7523  *      dev_get_stats   - get network device statistics
7524  *      @dev: device to get statistics from
7525  *      @storage: place to store stats
7526  *
7527  *      Get network statistics from device. Return @storage.
7528  *      The device driver may provide its own method by setting
7529  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7530  *      otherwise the internal statistics structure is used.
7531  */
7532 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7533                                         struct rtnl_link_stats64 *storage)
7534 {
7535         const struct net_device_ops *ops = dev->netdev_ops;
7536
7537         if (ops->ndo_get_stats64) {
7538                 memset(storage, 0, sizeof(*storage));
7539                 ops->ndo_get_stats64(dev, storage);
7540         } else if (ops->ndo_get_stats) {
7541                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7542         } else {
7543                 netdev_stats_to_stats64(storage, &dev->stats);
7544         }
7545         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7546         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7547         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7548         return storage;
7549 }
7550 EXPORT_SYMBOL(dev_get_stats);
7551
7552 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7553 {
7554         struct netdev_queue *queue = dev_ingress_queue(dev);
7555
7556 #ifdef CONFIG_NET_CLS_ACT
7557         if (queue)
7558                 return queue;
7559         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7560         if (!queue)
7561                 return NULL;
7562         netdev_init_one_queue(dev, queue, NULL);
7563         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7564         queue->qdisc_sleeping = &noop_qdisc;
7565         rcu_assign_pointer(dev->ingress_queue, queue);
7566 #endif
7567         return queue;
7568 }
7569
7570 static const struct ethtool_ops default_ethtool_ops;
7571
7572 void netdev_set_default_ethtool_ops(struct net_device *dev,
7573                                     const struct ethtool_ops *ops)
7574 {
7575         if (dev->ethtool_ops == &default_ethtool_ops)
7576                 dev->ethtool_ops = ops;
7577 }
7578 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7579
7580 void netdev_freemem(struct net_device *dev)
7581 {
7582         char *addr = (char *)dev - dev->padded;
7583
7584         kvfree(addr);
7585 }
7586
7587 /**
7588  *      alloc_netdev_mqs - allocate network device
7589  *      @sizeof_priv:           size of private data to allocate space for
7590  *      @name:                  device name format string
7591  *      @name_assign_type:      origin of device name
7592  *      @setup:                 callback to initialize device
7593  *      @txqs:                  the number of TX subqueues to allocate
7594  *      @rxqs:                  the number of RX subqueues to allocate
7595  *
7596  *      Allocates a struct net_device with private data area for driver use
7597  *      and performs basic initialization.  Also allocates subqueue structs
7598  *      for each queue on the device.
7599  */
7600 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7601                 unsigned char name_assign_type,
7602                 void (*setup)(struct net_device *),
7603                 unsigned int txqs, unsigned int rxqs)
7604 {
7605         struct net_device *dev;
7606         size_t alloc_size;
7607         struct net_device *p;
7608
7609         BUG_ON(strlen(name) >= sizeof(dev->name));
7610
7611         if (txqs < 1) {
7612                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7613                 return NULL;
7614         }
7615
7616 #ifdef CONFIG_SYSFS
7617         if (rxqs < 1) {
7618                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7619                 return NULL;
7620         }
7621 #endif
7622
7623         alloc_size = sizeof(struct net_device);
7624         if (sizeof_priv) {
7625                 /* ensure 32-byte alignment of private area */
7626                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7627                 alloc_size += sizeof_priv;
7628         }
7629         /* ensure 32-byte alignment of whole construct */
7630         alloc_size += NETDEV_ALIGN - 1;
7631
7632         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7633         if (!p)
7634                 p = vzalloc(alloc_size);
7635         if (!p)
7636                 return NULL;
7637
7638         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7639         dev->padded = (char *)dev - (char *)p;
7640
7641         dev->pcpu_refcnt = alloc_percpu(int);
7642         if (!dev->pcpu_refcnt)
7643                 goto free_dev;
7644
7645         if (dev_addr_init(dev))
7646                 goto free_pcpu;
7647
7648         dev_mc_init(dev);
7649         dev_uc_init(dev);
7650
7651         dev_net_set(dev, &init_net);
7652
7653         dev->gso_max_size = GSO_MAX_SIZE;
7654         dev->gso_max_segs = GSO_MAX_SEGS;
7655
7656         INIT_LIST_HEAD(&dev->napi_list);
7657         INIT_LIST_HEAD(&dev->unreg_list);
7658         INIT_LIST_HEAD(&dev->close_list);
7659         INIT_LIST_HEAD(&dev->link_watch_list);
7660         INIT_LIST_HEAD(&dev->adj_list.upper);
7661         INIT_LIST_HEAD(&dev->adj_list.lower);
7662         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7663         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7664         INIT_LIST_HEAD(&dev->ptype_all);
7665         INIT_LIST_HEAD(&dev->ptype_specific);
7666 #ifdef CONFIG_NET_SCHED
7667         hash_init(dev->qdisc_hash);
7668 #endif
7669         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7670         setup(dev);
7671
7672         if (!dev->tx_queue_len) {
7673                 dev->priv_flags |= IFF_NO_QUEUE;
7674                 dev->tx_queue_len = 1;
7675         }
7676
7677         dev->num_tx_queues = txqs;
7678         dev->real_num_tx_queues = txqs;
7679         if (netif_alloc_netdev_queues(dev))
7680                 goto free_all;
7681
7682 #ifdef CONFIG_SYSFS
7683         dev->num_rx_queues = rxqs;
7684         dev->real_num_rx_queues = rxqs;
7685         if (netif_alloc_rx_queues(dev))
7686                 goto free_all;
7687 #endif
7688
7689         strcpy(dev->name, name);
7690         dev->name_assign_type = name_assign_type;
7691         dev->group = INIT_NETDEV_GROUP;
7692         if (!dev->ethtool_ops)
7693                 dev->ethtool_ops = &default_ethtool_ops;
7694
7695         nf_hook_ingress_init(dev);
7696
7697         return dev;
7698
7699 free_all:
7700         free_netdev(dev);
7701         return NULL;
7702
7703 free_pcpu:
7704         free_percpu(dev->pcpu_refcnt);
7705 free_dev:
7706         netdev_freemem(dev);
7707         return NULL;
7708 }
7709 EXPORT_SYMBOL(alloc_netdev_mqs);
7710
7711 /**
7712  *      free_netdev - free network device
7713  *      @dev: device
7714  *
7715  *      This function does the last stage of destroying an allocated device
7716  *      interface. The reference to the device object is released.
7717  *      If this is the last reference then it will be freed.
7718  *      Must be called in process context.
7719  */
7720 void free_netdev(struct net_device *dev)
7721 {
7722         struct napi_struct *p, *n;
7723
7724         might_sleep();
7725         netif_free_tx_queues(dev);
7726 #ifdef CONFIG_SYSFS
7727         kvfree(dev->_rx);
7728 #endif
7729
7730         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7731
7732         /* Flush device addresses */
7733         dev_addr_flush(dev);
7734
7735         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7736                 netif_napi_del(p);
7737
7738         free_percpu(dev->pcpu_refcnt);
7739         dev->pcpu_refcnt = NULL;
7740
7741         /*  Compatibility with error handling in drivers */
7742         if (dev->reg_state == NETREG_UNINITIALIZED) {
7743                 netdev_freemem(dev);
7744                 return;
7745         }
7746
7747         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7748         dev->reg_state = NETREG_RELEASED;
7749
7750         /* will free via device release */
7751         put_device(&dev->dev);
7752 }
7753 EXPORT_SYMBOL(free_netdev);
7754
7755 /**
7756  *      synchronize_net -  Synchronize with packet receive processing
7757  *
7758  *      Wait for packets currently being received to be done.
7759  *      Does not block later packets from starting.
7760  */
7761 void synchronize_net(void)
7762 {
7763         might_sleep();
7764         if (rtnl_is_locked())
7765                 synchronize_rcu_expedited();
7766         else
7767                 synchronize_rcu();
7768 }
7769 EXPORT_SYMBOL(synchronize_net);
7770
7771 /**
7772  *      unregister_netdevice_queue - remove device from the kernel
7773  *      @dev: device
7774  *      @head: list
7775  *
7776  *      This function shuts down a device interface and removes it
7777  *      from the kernel tables.
7778  *      If head not NULL, device is queued to be unregistered later.
7779  *
7780  *      Callers must hold the rtnl semaphore.  You may want
7781  *      unregister_netdev() instead of this.
7782  */
7783
7784 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7785 {
7786         ASSERT_RTNL();
7787
7788         if (head) {
7789                 list_move_tail(&dev->unreg_list, head);
7790         } else {
7791                 rollback_registered(dev);
7792                 /* Finish processing unregister after unlock */
7793                 net_set_todo(dev);
7794         }
7795 }
7796 EXPORT_SYMBOL(unregister_netdevice_queue);
7797
7798 /**
7799  *      unregister_netdevice_many - unregister many devices
7800  *      @head: list of devices
7801  *
7802  *  Note: As most callers use a stack allocated list_head,
7803  *  we force a list_del() to make sure stack wont be corrupted later.
7804  */
7805 void unregister_netdevice_many(struct list_head *head)
7806 {
7807         struct net_device *dev;
7808
7809         if (!list_empty(head)) {
7810                 rollback_registered_many(head);
7811                 list_for_each_entry(dev, head, unreg_list)
7812                         net_set_todo(dev);
7813                 list_del(head);
7814         }
7815 }
7816 EXPORT_SYMBOL(unregister_netdevice_many);
7817
7818 /**
7819  *      unregister_netdev - remove device from the kernel
7820  *      @dev: device
7821  *
7822  *      This function shuts down a device interface and removes it
7823  *      from the kernel tables.
7824  *
7825  *      This is just a wrapper for unregister_netdevice that takes
7826  *      the rtnl semaphore.  In general you want to use this and not
7827  *      unregister_netdevice.
7828  */
7829 void unregister_netdev(struct net_device *dev)
7830 {
7831         rtnl_lock();
7832         unregister_netdevice(dev);
7833         rtnl_unlock();
7834 }
7835 EXPORT_SYMBOL(unregister_netdev);
7836
7837 /**
7838  *      dev_change_net_namespace - move device to different nethost namespace
7839  *      @dev: device
7840  *      @net: network namespace
7841  *      @pat: If not NULL name pattern to try if the current device name
7842  *            is already taken in the destination network namespace.
7843  *
7844  *      This function shuts down a device interface and moves it
7845  *      to a new network namespace. On success 0 is returned, on
7846  *      a failure a netagive errno code is returned.
7847  *
7848  *      Callers must hold the rtnl semaphore.
7849  */
7850
7851 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7852 {
7853         int err;
7854
7855         ASSERT_RTNL();
7856
7857         /* Don't allow namespace local devices to be moved. */
7858         err = -EINVAL;
7859         if (dev->features & NETIF_F_NETNS_LOCAL)
7860                 goto out;
7861
7862         /* Ensure the device has been registrered */
7863         if (dev->reg_state != NETREG_REGISTERED)
7864                 goto out;
7865
7866         /* Get out if there is nothing todo */
7867         err = 0;
7868         if (net_eq(dev_net(dev), net))
7869                 goto out;
7870
7871         /* Pick the destination device name, and ensure
7872          * we can use it in the destination network namespace.
7873          */
7874         err = -EEXIST;
7875         if (__dev_get_by_name(net, dev->name)) {
7876                 /* We get here if we can't use the current device name */
7877                 if (!pat)
7878                         goto out;
7879                 if (dev_get_valid_name(net, dev, pat) < 0)
7880                         goto out;
7881         }
7882
7883         /*
7884          * And now a mini version of register_netdevice unregister_netdevice.
7885          */
7886
7887         /* If device is running close it first. */
7888         dev_close(dev);
7889
7890         /* And unlink it from device chain */
7891         err = -ENODEV;
7892         unlist_netdevice(dev);
7893
7894         synchronize_net();
7895
7896         /* Shutdown queueing discipline. */
7897         dev_shutdown(dev);
7898
7899         /* Notify protocols, that we are about to destroy
7900            this device. They should clean all the things.
7901
7902            Note that dev->reg_state stays at NETREG_REGISTERED.
7903            This is wanted because this way 8021q and macvlan know
7904            the device is just moving and can keep their slaves up.
7905         */
7906         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7907         rcu_barrier();
7908         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7909         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7910
7911         /*
7912          *      Flush the unicast and multicast chains
7913          */
7914         dev_uc_flush(dev);
7915         dev_mc_flush(dev);
7916
7917         /* Send a netdev-removed uevent to the old namespace */
7918         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7919         netdev_adjacent_del_links(dev);
7920
7921         /* Actually switch the network namespace */
7922         dev_net_set(dev, net);
7923
7924         /* If there is an ifindex conflict assign a new one */
7925         if (__dev_get_by_index(net, dev->ifindex))
7926                 dev->ifindex = dev_new_index(net);
7927
7928         /* Send a netdev-add uevent to the new namespace */
7929         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7930         netdev_adjacent_add_links(dev);
7931
7932         /* Fixup kobjects */
7933         err = device_rename(&dev->dev, dev->name);
7934         WARN_ON(err);
7935
7936         /* Add the device back in the hashes */
7937         list_netdevice(dev);
7938
7939         /* Notify protocols, that a new device appeared. */
7940         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7941
7942         /*
7943          *      Prevent userspace races by waiting until the network
7944          *      device is fully setup before sending notifications.
7945          */
7946         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7947
7948         synchronize_net();
7949         err = 0;
7950 out:
7951         return err;
7952 }
7953 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7954
7955 static int dev_cpu_callback(struct notifier_block *nfb,
7956                             unsigned long action,
7957                             void *ocpu)
7958 {
7959         struct sk_buff **list_skb;
7960         struct sk_buff *skb;
7961         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7962         struct softnet_data *sd, *oldsd;
7963
7964         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7965                 return NOTIFY_OK;
7966
7967         local_irq_disable();
7968         cpu = smp_processor_id();
7969         sd = &per_cpu(softnet_data, cpu);
7970         oldsd = &per_cpu(softnet_data, oldcpu);
7971
7972         /* Find end of our completion_queue. */
7973         list_skb = &sd->completion_queue;
7974         while (*list_skb)
7975                 list_skb = &(*list_skb)->next;
7976         /* Append completion queue from offline CPU. */
7977         *list_skb = oldsd->completion_queue;
7978         oldsd->completion_queue = NULL;
7979
7980         /* Append output queue from offline CPU. */
7981         if (oldsd->output_queue) {
7982                 *sd->output_queue_tailp = oldsd->output_queue;
7983                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7984                 oldsd->output_queue = NULL;
7985                 oldsd->output_queue_tailp = &oldsd->output_queue;
7986         }
7987         /* Append NAPI poll list from offline CPU, with one exception :
7988          * process_backlog() must be called by cpu owning percpu backlog.
7989          * We properly handle process_queue & input_pkt_queue later.
7990          */
7991         while (!list_empty(&oldsd->poll_list)) {
7992                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7993                                                             struct napi_struct,
7994                                                             poll_list);
7995
7996                 list_del_init(&napi->poll_list);
7997                 if (napi->poll == process_backlog)
7998                         napi->state = 0;
7999                 else
8000                         ____napi_schedule(sd, napi);
8001         }
8002
8003         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8004         local_irq_enable();
8005
8006         /* Process offline CPU's input_pkt_queue */
8007         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8008                 netif_rx_ni(skb);
8009                 input_queue_head_incr(oldsd);
8010         }
8011         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8012                 netif_rx_ni(skb);
8013                 input_queue_head_incr(oldsd);
8014         }
8015
8016         return NOTIFY_OK;
8017 }
8018
8019
8020 /**
8021  *      netdev_increment_features - increment feature set by one
8022  *      @all: current feature set
8023  *      @one: new feature set
8024  *      @mask: mask feature set
8025  *
8026  *      Computes a new feature set after adding a device with feature set
8027  *      @one to the master device with current feature set @all.  Will not
8028  *      enable anything that is off in @mask. Returns the new feature set.
8029  */
8030 netdev_features_t netdev_increment_features(netdev_features_t all,
8031         netdev_features_t one, netdev_features_t mask)
8032 {
8033         if (mask & NETIF_F_HW_CSUM)
8034                 mask |= NETIF_F_CSUM_MASK;
8035         mask |= NETIF_F_VLAN_CHALLENGED;
8036
8037         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8038         all &= one | ~NETIF_F_ALL_FOR_ALL;
8039
8040         /* If one device supports hw checksumming, set for all. */
8041         if (all & NETIF_F_HW_CSUM)
8042                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8043
8044         return all;
8045 }
8046 EXPORT_SYMBOL(netdev_increment_features);
8047
8048 static struct hlist_head * __net_init netdev_create_hash(void)
8049 {
8050         int i;
8051         struct hlist_head *hash;
8052
8053         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8054         if (hash != NULL)
8055                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8056                         INIT_HLIST_HEAD(&hash[i]);
8057
8058         return hash;
8059 }
8060
8061 /* Initialize per network namespace state */
8062 static int __net_init netdev_init(struct net *net)
8063 {
8064         if (net != &init_net)
8065                 INIT_LIST_HEAD(&net->dev_base_head);
8066
8067         net->dev_name_head = netdev_create_hash();
8068         if (net->dev_name_head == NULL)
8069                 goto err_name;
8070
8071         net->dev_index_head = netdev_create_hash();
8072         if (net->dev_index_head == NULL)
8073                 goto err_idx;
8074
8075         return 0;
8076
8077 err_idx:
8078         kfree(net->dev_name_head);
8079 err_name:
8080         return -ENOMEM;
8081 }
8082
8083 /**
8084  *      netdev_drivername - network driver for the device
8085  *      @dev: network device
8086  *
8087  *      Determine network driver for device.
8088  */
8089 const char *netdev_drivername(const struct net_device *dev)
8090 {
8091         const struct device_driver *driver;
8092         const struct device *parent;
8093         const char *empty = "";
8094
8095         parent = dev->dev.parent;
8096         if (!parent)
8097                 return empty;
8098
8099         driver = parent->driver;
8100         if (driver && driver->name)
8101                 return driver->name;
8102         return empty;
8103 }
8104
8105 static void __netdev_printk(const char *level, const struct net_device *dev,
8106                             struct va_format *vaf)
8107 {
8108         if (dev && dev->dev.parent) {
8109                 dev_printk_emit(level[1] - '0',
8110                                 dev->dev.parent,
8111                                 "%s %s %s%s: %pV",
8112                                 dev_driver_string(dev->dev.parent),
8113                                 dev_name(dev->dev.parent),
8114                                 netdev_name(dev), netdev_reg_state(dev),
8115                                 vaf);
8116         } else if (dev) {
8117                 printk("%s%s%s: %pV",
8118                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8119         } else {
8120                 printk("%s(NULL net_device): %pV", level, vaf);
8121         }
8122 }
8123
8124 void netdev_printk(const char *level, const struct net_device *dev,
8125                    const char *format, ...)
8126 {
8127         struct va_format vaf;
8128         va_list args;
8129
8130         va_start(args, format);
8131
8132         vaf.fmt = format;
8133         vaf.va = &args;
8134
8135         __netdev_printk(level, dev, &vaf);
8136
8137         va_end(args);
8138 }
8139 EXPORT_SYMBOL(netdev_printk);
8140
8141 #define define_netdev_printk_level(func, level)                 \
8142 void func(const struct net_device *dev, const char *fmt, ...)   \
8143 {                                                               \
8144         struct va_format vaf;                                   \
8145         va_list args;                                           \
8146                                                                 \
8147         va_start(args, fmt);                                    \
8148                                                                 \
8149         vaf.fmt = fmt;                                          \
8150         vaf.va = &args;                                         \
8151                                                                 \
8152         __netdev_printk(level, dev, &vaf);                      \
8153                                                                 \
8154         va_end(args);                                           \
8155 }                                                               \
8156 EXPORT_SYMBOL(func);
8157
8158 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8159 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8160 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8161 define_netdev_printk_level(netdev_err, KERN_ERR);
8162 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8163 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8164 define_netdev_printk_level(netdev_info, KERN_INFO);
8165
8166 static void __net_exit netdev_exit(struct net *net)
8167 {
8168         kfree(net->dev_name_head);
8169         kfree(net->dev_index_head);
8170 }
8171
8172 static struct pernet_operations __net_initdata netdev_net_ops = {
8173         .init = netdev_init,
8174         .exit = netdev_exit,
8175 };
8176
8177 static void __net_exit default_device_exit(struct net *net)
8178 {
8179         struct net_device *dev, *aux;
8180         /*
8181          * Push all migratable network devices back to the
8182          * initial network namespace
8183          */
8184         rtnl_lock();
8185         for_each_netdev_safe(net, dev, aux) {
8186                 int err;
8187                 char fb_name[IFNAMSIZ];
8188
8189                 /* Ignore unmoveable devices (i.e. loopback) */
8190                 if (dev->features & NETIF_F_NETNS_LOCAL)
8191                         continue;
8192
8193                 /* Leave virtual devices for the generic cleanup */
8194                 if (dev->rtnl_link_ops)
8195                         continue;
8196
8197                 /* Push remaining network devices to init_net */
8198                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8199                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8200                 if (err) {
8201                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8202                                  __func__, dev->name, err);
8203                         BUG();
8204                 }
8205         }
8206         rtnl_unlock();
8207 }
8208
8209 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8210 {
8211         /* Return with the rtnl_lock held when there are no network
8212          * devices unregistering in any network namespace in net_list.
8213          */
8214         struct net *net;
8215         bool unregistering;
8216         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8217
8218         add_wait_queue(&netdev_unregistering_wq, &wait);
8219         for (;;) {
8220                 unregistering = false;
8221                 rtnl_lock();
8222                 list_for_each_entry(net, net_list, exit_list) {
8223                         if (net->dev_unreg_count > 0) {
8224                                 unregistering = true;
8225                                 break;
8226                         }
8227                 }
8228                 if (!unregistering)
8229                         break;
8230                 __rtnl_unlock();
8231
8232                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8233         }
8234         remove_wait_queue(&netdev_unregistering_wq, &wait);
8235 }
8236
8237 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8238 {
8239         /* At exit all network devices most be removed from a network
8240          * namespace.  Do this in the reverse order of registration.
8241          * Do this across as many network namespaces as possible to
8242          * improve batching efficiency.
8243          */
8244         struct net_device *dev;
8245         struct net *net;
8246         LIST_HEAD(dev_kill_list);
8247
8248         /* To prevent network device cleanup code from dereferencing
8249          * loopback devices or network devices that have been freed
8250          * wait here for all pending unregistrations to complete,
8251          * before unregistring the loopback device and allowing the
8252          * network namespace be freed.
8253          *
8254          * The netdev todo list containing all network devices
8255          * unregistrations that happen in default_device_exit_batch
8256          * will run in the rtnl_unlock() at the end of
8257          * default_device_exit_batch.
8258          */
8259         rtnl_lock_unregistering(net_list);
8260         list_for_each_entry(net, net_list, exit_list) {
8261                 for_each_netdev_reverse(net, dev) {
8262                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8263                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8264                         else
8265                                 unregister_netdevice_queue(dev, &dev_kill_list);
8266                 }
8267         }
8268         unregister_netdevice_many(&dev_kill_list);
8269         rtnl_unlock();
8270 }
8271
8272 static struct pernet_operations __net_initdata default_device_ops = {
8273         .exit = default_device_exit,
8274         .exit_batch = default_device_exit_batch,
8275 };
8276
8277 /*
8278  *      Initialize the DEV module. At boot time this walks the device list and
8279  *      unhooks any devices that fail to initialise (normally hardware not
8280  *      present) and leaves us with a valid list of present and active devices.
8281  *
8282  */
8283
8284 /*
8285  *       This is called single threaded during boot, so no need
8286  *       to take the rtnl semaphore.
8287  */
8288 static int __init net_dev_init(void)
8289 {
8290         int i, rc = -ENOMEM;
8291
8292         BUG_ON(!dev_boot_phase);
8293
8294         if (dev_proc_init())
8295                 goto out;
8296
8297         if (netdev_kobject_init())
8298                 goto out;
8299
8300         INIT_LIST_HEAD(&ptype_all);
8301         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8302                 INIT_LIST_HEAD(&ptype_base[i]);
8303
8304         INIT_LIST_HEAD(&offload_base);
8305
8306         if (register_pernet_subsys(&netdev_net_ops))
8307                 goto out;
8308
8309         /*
8310          *      Initialise the packet receive queues.
8311          */
8312
8313         for_each_possible_cpu(i) {
8314                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8315                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8316
8317                 INIT_WORK(flush, flush_backlog);
8318
8319                 skb_queue_head_init(&sd->input_pkt_queue);
8320                 skb_queue_head_init(&sd->process_queue);
8321                 INIT_LIST_HEAD(&sd->poll_list);
8322                 sd->output_queue_tailp = &sd->output_queue;
8323 #ifdef CONFIG_RPS
8324                 sd->csd.func = rps_trigger_softirq;
8325                 sd->csd.info = sd;
8326                 sd->cpu = i;
8327 #endif
8328
8329                 sd->backlog.poll = process_backlog;
8330                 sd->backlog.weight = weight_p;
8331         }
8332
8333         dev_boot_phase = 0;
8334
8335         /* The loopback device is special if any other network devices
8336          * is present in a network namespace the loopback device must
8337          * be present. Since we now dynamically allocate and free the
8338          * loopback device ensure this invariant is maintained by
8339          * keeping the loopback device as the first device on the
8340          * list of network devices.  Ensuring the loopback devices
8341          * is the first device that appears and the last network device
8342          * that disappears.
8343          */
8344         if (register_pernet_device(&loopback_net_ops))
8345                 goto out;
8346
8347         if (register_pernet_device(&default_device_ops))
8348                 goto out;
8349
8350         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8351         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8352
8353         hotcpu_notifier(dev_cpu_callback, 0);
8354         dst_subsys_init();
8355         rc = 0;
8356 out:
8357         return rc;
8358 }
8359
8360 subsys_initcall(net_dev_init);