Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[cascardo/linux.git] / net / core / sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Generic socket support routines. Memory allocators, socket lock/release
7  *              handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *              Alan Cox        :       Numerous verify_area() problems
17  *              Alan Cox        :       Connecting on a connecting socket
18  *                                      now returns an error for tcp.
19  *              Alan Cox        :       sock->protocol is set correctly.
20  *                                      and is not sometimes left as 0.
21  *              Alan Cox        :       connect handles icmp errors on a
22  *                                      connect properly. Unfortunately there
23  *                                      is a restart syscall nasty there. I
24  *                                      can't match BSD without hacking the C
25  *                                      library. Ideas urgently sought!
26  *              Alan Cox        :       Disallow bind() to addresses that are
27  *                                      not ours - especially broadcast ones!!
28  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
29  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
30  *                                      instead they leave that for the DESTROY timer.
31  *              Alan Cox        :       Clean up error flag in accept
32  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
33  *                                      was buggy. Put a remove_sock() in the handler
34  *                                      for memory when we hit 0. Also altered the timer
35  *                                      code. The ACK stuff can wait and needs major
36  *                                      TCP layer surgery.
37  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
38  *                                      and fixed timer/inet_bh race.
39  *              Alan Cox        :       Added zapped flag for TCP
40  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
41  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
43  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
46  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
47  *      Pauline Middelink       :       identd support
48  *              Alan Cox        :       Fixed connect() taking signals I think.
49  *              Alan Cox        :       SO_LINGER supported
50  *              Alan Cox        :       Error reporting fixes
51  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
52  *              Alan Cox        :       inet sockets don't set sk->type!
53  *              Alan Cox        :       Split socket option code
54  *              Alan Cox        :       Callbacks
55  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
56  *              Alex            :       Removed restriction on inet fioctl
57  *              Alan Cox        :       Splitting INET from NET core
58  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
59  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
60  *              Alan Cox        :       Split IP from generic code
61  *              Alan Cox        :       New kfree_skbmem()
62  *              Alan Cox        :       Make SO_DEBUG superuser only.
63  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
64  *                                      (compatibility fix)
65  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
66  *              Alan Cox        :       Allocator for a socket is settable.
67  *              Alan Cox        :       SO_ERROR includes soft errors.
68  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
69  *              Alan Cox        :       Generic socket allocation to make hooks
70  *                                      easier (suggested by Craig Metz).
71  *              Michael Pall    :       SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
79  *              Andi Kleen      :       Fix write_space callback
80  *              Chris Evans     :       Security fixes - signedness again
81  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *              This program is free software; you can redistribute it and/or
87  *              modify it under the terms of the GNU General Public License
88  *              as published by the Free Software Foundation; either version
89  *              2 of the License, or (at your option) any later version.
90  */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120
121 #include <asm/uaccess.h>
122
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138
139 #include <trace/events/sock.h>
140
141 #ifdef CONFIG_INET
142 #include <net/tcp.h>
143 #endif
144
145 #include <net/busy_poll.h>
146
147 static DEFINE_MUTEX(proto_list_mutex);
148 static LIST_HEAD(proto_list);
149
150 /**
151  * sk_ns_capable - General socket capability test
152  * @sk: Socket to use a capability on or through
153  * @user_ns: The user namespace of the capability to use
154  * @cap: The capability to use
155  *
156  * Test to see if the opener of the socket had when the socket was
157  * created and the current process has the capability @cap in the user
158  * namespace @user_ns.
159  */
160 bool sk_ns_capable(const struct sock *sk,
161                    struct user_namespace *user_ns, int cap)
162 {
163         return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164                 ns_capable(user_ns, cap);
165 }
166 EXPORT_SYMBOL(sk_ns_capable);
167
168 /**
169  * sk_capable - Socket global capability test
170  * @sk: Socket to use a capability on or through
171  * @cap: The global capability to use
172  *
173  * Test to see if the opener of the socket had when the socket was
174  * created and the current process has the capability @cap in all user
175  * namespaces.
176  */
177 bool sk_capable(const struct sock *sk, int cap)
178 {
179         return sk_ns_capable(sk, &init_user_ns, cap);
180 }
181 EXPORT_SYMBOL(sk_capable);
182
183 /**
184  * sk_net_capable - Network namespace socket capability test
185  * @sk: Socket to use a capability on or through
186  * @cap: The capability to use
187  *
188  * Test to see if the opener of the socket had when the socket was created
189  * and the current process has the capability @cap over the network namespace
190  * the socket is a member of.
191  */
192 bool sk_net_capable(const struct sock *sk, int cap)
193 {
194         return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 }
196 EXPORT_SYMBOL(sk_net_capable);
197
198 /*
199  * Each address family might have different locking rules, so we have
200  * one slock key per address family:
201  */
202 static struct lock_class_key af_family_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204
205 /*
206  * Make lock validator output more readable. (we pre-construct these
207  * strings build-time, so that runtime initialization of socket
208  * locks is fast):
209  */
210 static const char *const af_family_key_strings[AF_MAX+1] = {
211   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
212   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
213   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
214   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
215   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
216   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
217   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
218   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
219   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
220   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
221   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
222   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
223   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
224   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_KCM"      ,
225   "sk_lock-AF_MAX"
226 };
227 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
228   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
229   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
230   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
231   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
232   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
233   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
234   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
235   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
236   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
237   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
238   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
239   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
240   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
241   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_KCM"       ,
242   "slock-AF_MAX"
243 };
244 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
245   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
246   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
247   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
248   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
249   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
250   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
251   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
252   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
253   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
254   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
255   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
256   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
257   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
258   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_KCM"      ,
259   "clock-AF_MAX"
260 };
261
262 /*
263  * sk_callback_lock locking rules are per-address-family,
264  * so split the lock classes by using a per-AF key:
265  */
266 static struct lock_class_key af_callback_keys[AF_MAX];
267
268 /* Take into consideration the size of the struct sk_buff overhead in the
269  * determination of these values, since that is non-constant across
270  * platforms.  This makes socket queueing behavior and performance
271  * not depend upon such differences.
272  */
273 #define _SK_MEM_PACKETS         256
274 #define _SK_MEM_OVERHEAD        SKB_TRUESIZE(256)
275 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
276 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
277
278 /* Run time adjustable parameters. */
279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
280 EXPORT_SYMBOL(sysctl_wmem_max);
281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
282 EXPORT_SYMBOL(sysctl_rmem_max);
283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
285
286 /* Maximal space eaten by iovec or ancillary data plus some space */
287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
288 EXPORT_SYMBOL(sysctl_optmem_max);
289
290 int sysctl_tstamp_allow_data __read_mostly = 1;
291
292 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
293 EXPORT_SYMBOL_GPL(memalloc_socks);
294
295 /**
296  * sk_set_memalloc - sets %SOCK_MEMALLOC
297  * @sk: socket to set it on
298  *
299  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
300  * It's the responsibility of the admin to adjust min_free_kbytes
301  * to meet the requirements
302  */
303 void sk_set_memalloc(struct sock *sk)
304 {
305         sock_set_flag(sk, SOCK_MEMALLOC);
306         sk->sk_allocation |= __GFP_MEMALLOC;
307         static_key_slow_inc(&memalloc_socks);
308 }
309 EXPORT_SYMBOL_GPL(sk_set_memalloc);
310
311 void sk_clear_memalloc(struct sock *sk)
312 {
313         sock_reset_flag(sk, SOCK_MEMALLOC);
314         sk->sk_allocation &= ~__GFP_MEMALLOC;
315         static_key_slow_dec(&memalloc_socks);
316
317         /*
318          * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
319          * progress of swapping. SOCK_MEMALLOC may be cleared while
320          * it has rmem allocations due to the last swapfile being deactivated
321          * but there is a risk that the socket is unusable due to exceeding
322          * the rmem limits. Reclaim the reserves and obey rmem limits again.
323          */
324         sk_mem_reclaim(sk);
325 }
326 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
327
328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329 {
330         int ret;
331         unsigned long pflags = current->flags;
332
333         /* these should have been dropped before queueing */
334         BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
335
336         current->flags |= PF_MEMALLOC;
337         ret = sk->sk_backlog_rcv(sk, skb);
338         tsk_restore_flags(current, pflags, PF_MEMALLOC);
339
340         return ret;
341 }
342 EXPORT_SYMBOL(__sk_backlog_rcv);
343
344 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
345 {
346         struct timeval tv;
347
348         if (optlen < sizeof(tv))
349                 return -EINVAL;
350         if (copy_from_user(&tv, optval, sizeof(tv)))
351                 return -EFAULT;
352         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
353                 return -EDOM;
354
355         if (tv.tv_sec < 0) {
356                 static int warned __read_mostly;
357
358                 *timeo_p = 0;
359                 if (warned < 10 && net_ratelimit()) {
360                         warned++;
361                         pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
362                                 __func__, current->comm, task_pid_nr(current));
363                 }
364                 return 0;
365         }
366         *timeo_p = MAX_SCHEDULE_TIMEOUT;
367         if (tv.tv_sec == 0 && tv.tv_usec == 0)
368                 return 0;
369         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
370                 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
371         return 0;
372 }
373
374 static void sock_warn_obsolete_bsdism(const char *name)
375 {
376         static int warned;
377         static char warncomm[TASK_COMM_LEN];
378         if (strcmp(warncomm, current->comm) && warned < 5) {
379                 strcpy(warncomm,  current->comm);
380                 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
381                         warncomm, name);
382                 warned++;
383         }
384 }
385
386 static bool sock_needs_netstamp(const struct sock *sk)
387 {
388         switch (sk->sk_family) {
389         case AF_UNSPEC:
390         case AF_UNIX:
391                 return false;
392         default:
393                 return true;
394         }
395 }
396
397 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
398 {
399         if (sk->sk_flags & flags) {
400                 sk->sk_flags &= ~flags;
401                 if (sock_needs_netstamp(sk) &&
402                     !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
403                         net_disable_timestamp();
404         }
405 }
406
407
408 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
409 {
410         unsigned long flags;
411         struct sk_buff_head *list = &sk->sk_receive_queue;
412
413         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
414                 atomic_inc(&sk->sk_drops);
415                 trace_sock_rcvqueue_full(sk, skb);
416                 return -ENOMEM;
417         }
418
419         if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
420                 atomic_inc(&sk->sk_drops);
421                 return -ENOBUFS;
422         }
423
424         skb->dev = NULL;
425         skb_set_owner_r(skb, sk);
426
427         /* we escape from rcu protected region, make sure we dont leak
428          * a norefcounted dst
429          */
430         skb_dst_force(skb);
431
432         spin_lock_irqsave(&list->lock, flags);
433         sock_skb_set_dropcount(sk, skb);
434         __skb_queue_tail(list, skb);
435         spin_unlock_irqrestore(&list->lock, flags);
436
437         if (!sock_flag(sk, SOCK_DEAD))
438                 sk->sk_data_ready(sk);
439         return 0;
440 }
441 EXPORT_SYMBOL(__sock_queue_rcv_skb);
442
443 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
444 {
445         int err;
446
447         err = sk_filter(sk, skb);
448         if (err)
449                 return err;
450
451         return __sock_queue_rcv_skb(sk, skb);
452 }
453 EXPORT_SYMBOL(sock_queue_rcv_skb);
454
455 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
456                      const int nested, unsigned int trim_cap)
457 {
458         int rc = NET_RX_SUCCESS;
459
460         if (sk_filter_trim_cap(sk, skb, trim_cap))
461                 goto discard_and_relse;
462
463         skb->dev = NULL;
464
465         if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
466                 atomic_inc(&sk->sk_drops);
467                 goto discard_and_relse;
468         }
469         if (nested)
470                 bh_lock_sock_nested(sk);
471         else
472                 bh_lock_sock(sk);
473         if (!sock_owned_by_user(sk)) {
474                 /*
475                  * trylock + unlock semantics:
476                  */
477                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
478
479                 rc = sk_backlog_rcv(sk, skb);
480
481                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
482         } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
483                 bh_unlock_sock(sk);
484                 atomic_inc(&sk->sk_drops);
485                 goto discard_and_relse;
486         }
487
488         bh_unlock_sock(sk);
489 out:
490         sock_put(sk);
491         return rc;
492 discard_and_relse:
493         kfree_skb(skb);
494         goto out;
495 }
496 EXPORT_SYMBOL(__sk_receive_skb);
497
498 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
499 {
500         struct dst_entry *dst = __sk_dst_get(sk);
501
502         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
503                 sk_tx_queue_clear(sk);
504                 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
505                 dst_release(dst);
506                 return NULL;
507         }
508
509         return dst;
510 }
511 EXPORT_SYMBOL(__sk_dst_check);
512
513 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
514 {
515         struct dst_entry *dst = sk_dst_get(sk);
516
517         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
518                 sk_dst_reset(sk);
519                 dst_release(dst);
520                 return NULL;
521         }
522
523         return dst;
524 }
525 EXPORT_SYMBOL(sk_dst_check);
526
527 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
528                                 int optlen)
529 {
530         int ret = -ENOPROTOOPT;
531 #ifdef CONFIG_NETDEVICES
532         struct net *net = sock_net(sk);
533         char devname[IFNAMSIZ];
534         int index;
535
536         /* Sorry... */
537         ret = -EPERM;
538         if (!ns_capable(net->user_ns, CAP_NET_RAW))
539                 goto out;
540
541         ret = -EINVAL;
542         if (optlen < 0)
543                 goto out;
544
545         /* Bind this socket to a particular device like "eth0",
546          * as specified in the passed interface name. If the
547          * name is "" or the option length is zero the socket
548          * is not bound.
549          */
550         if (optlen > IFNAMSIZ - 1)
551                 optlen = IFNAMSIZ - 1;
552         memset(devname, 0, sizeof(devname));
553
554         ret = -EFAULT;
555         if (copy_from_user(devname, optval, optlen))
556                 goto out;
557
558         index = 0;
559         if (devname[0] != '\0') {
560                 struct net_device *dev;
561
562                 rcu_read_lock();
563                 dev = dev_get_by_name_rcu(net, devname);
564                 if (dev)
565                         index = dev->ifindex;
566                 rcu_read_unlock();
567                 ret = -ENODEV;
568                 if (!dev)
569                         goto out;
570         }
571
572         lock_sock(sk);
573         sk->sk_bound_dev_if = index;
574         sk_dst_reset(sk);
575         release_sock(sk);
576
577         ret = 0;
578
579 out:
580 #endif
581
582         return ret;
583 }
584
585 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
586                                 int __user *optlen, int len)
587 {
588         int ret = -ENOPROTOOPT;
589 #ifdef CONFIG_NETDEVICES
590         struct net *net = sock_net(sk);
591         char devname[IFNAMSIZ];
592
593         if (sk->sk_bound_dev_if == 0) {
594                 len = 0;
595                 goto zero;
596         }
597
598         ret = -EINVAL;
599         if (len < IFNAMSIZ)
600                 goto out;
601
602         ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
603         if (ret)
604                 goto out;
605
606         len = strlen(devname) + 1;
607
608         ret = -EFAULT;
609         if (copy_to_user(optval, devname, len))
610                 goto out;
611
612 zero:
613         ret = -EFAULT;
614         if (put_user(len, optlen))
615                 goto out;
616
617         ret = 0;
618
619 out:
620 #endif
621
622         return ret;
623 }
624
625 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
626 {
627         if (valbool)
628                 sock_set_flag(sk, bit);
629         else
630                 sock_reset_flag(sk, bit);
631 }
632
633 bool sk_mc_loop(struct sock *sk)
634 {
635         if (dev_recursion_level())
636                 return false;
637         if (!sk)
638                 return true;
639         switch (sk->sk_family) {
640         case AF_INET:
641                 return inet_sk(sk)->mc_loop;
642 #if IS_ENABLED(CONFIG_IPV6)
643         case AF_INET6:
644                 return inet6_sk(sk)->mc_loop;
645 #endif
646         }
647         WARN_ON(1);
648         return true;
649 }
650 EXPORT_SYMBOL(sk_mc_loop);
651
652 /*
653  *      This is meant for all protocols to use and covers goings on
654  *      at the socket level. Everything here is generic.
655  */
656
657 int sock_setsockopt(struct socket *sock, int level, int optname,
658                     char __user *optval, unsigned int optlen)
659 {
660         struct sock *sk = sock->sk;
661         int val;
662         int valbool;
663         struct linger ling;
664         int ret = 0;
665
666         /*
667          *      Options without arguments
668          */
669
670         if (optname == SO_BINDTODEVICE)
671                 return sock_setbindtodevice(sk, optval, optlen);
672
673         if (optlen < sizeof(int))
674                 return -EINVAL;
675
676         if (get_user(val, (int __user *)optval))
677                 return -EFAULT;
678
679         valbool = val ? 1 : 0;
680
681         lock_sock(sk);
682
683         switch (optname) {
684         case SO_DEBUG:
685                 if (val && !capable(CAP_NET_ADMIN))
686                         ret = -EACCES;
687                 else
688                         sock_valbool_flag(sk, SOCK_DBG, valbool);
689                 break;
690         case SO_REUSEADDR:
691                 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
692                 break;
693         case SO_REUSEPORT:
694                 sk->sk_reuseport = valbool;
695                 break;
696         case SO_TYPE:
697         case SO_PROTOCOL:
698         case SO_DOMAIN:
699         case SO_ERROR:
700                 ret = -ENOPROTOOPT;
701                 break;
702         case SO_DONTROUTE:
703                 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
704                 break;
705         case SO_BROADCAST:
706                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
707                 break;
708         case SO_SNDBUF:
709                 /* Don't error on this BSD doesn't and if you think
710                  * about it this is right. Otherwise apps have to
711                  * play 'guess the biggest size' games. RCVBUF/SNDBUF
712                  * are treated in BSD as hints
713                  */
714                 val = min_t(u32, val, sysctl_wmem_max);
715 set_sndbuf:
716                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
717                 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
718                 /* Wake up sending tasks if we upped the value. */
719                 sk->sk_write_space(sk);
720                 break;
721
722         case SO_SNDBUFFORCE:
723                 if (!capable(CAP_NET_ADMIN)) {
724                         ret = -EPERM;
725                         break;
726                 }
727                 goto set_sndbuf;
728
729         case SO_RCVBUF:
730                 /* Don't error on this BSD doesn't and if you think
731                  * about it this is right. Otherwise apps have to
732                  * play 'guess the biggest size' games. RCVBUF/SNDBUF
733                  * are treated in BSD as hints
734                  */
735                 val = min_t(u32, val, sysctl_rmem_max);
736 set_rcvbuf:
737                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
738                 /*
739                  * We double it on the way in to account for
740                  * "struct sk_buff" etc. overhead.   Applications
741                  * assume that the SO_RCVBUF setting they make will
742                  * allow that much actual data to be received on that
743                  * socket.
744                  *
745                  * Applications are unaware that "struct sk_buff" and
746                  * other overheads allocate from the receive buffer
747                  * during socket buffer allocation.
748                  *
749                  * And after considering the possible alternatives,
750                  * returning the value we actually used in getsockopt
751                  * is the most desirable behavior.
752                  */
753                 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
754                 break;
755
756         case SO_RCVBUFFORCE:
757                 if (!capable(CAP_NET_ADMIN)) {
758                         ret = -EPERM;
759                         break;
760                 }
761                 goto set_rcvbuf;
762
763         case SO_KEEPALIVE:
764 #ifdef CONFIG_INET
765                 if (sk->sk_protocol == IPPROTO_TCP &&
766                     sk->sk_type == SOCK_STREAM)
767                         tcp_set_keepalive(sk, valbool);
768 #endif
769                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
770                 break;
771
772         case SO_OOBINLINE:
773                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
774                 break;
775
776         case SO_NO_CHECK:
777                 sk->sk_no_check_tx = valbool;
778                 break;
779
780         case SO_PRIORITY:
781                 if ((val >= 0 && val <= 6) ||
782                     ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
783                         sk->sk_priority = val;
784                 else
785                         ret = -EPERM;
786                 break;
787
788         case SO_LINGER:
789                 if (optlen < sizeof(ling)) {
790                         ret = -EINVAL;  /* 1003.1g */
791                         break;
792                 }
793                 if (copy_from_user(&ling, optval, sizeof(ling))) {
794                         ret = -EFAULT;
795                         break;
796                 }
797                 if (!ling.l_onoff)
798                         sock_reset_flag(sk, SOCK_LINGER);
799                 else {
800 #if (BITS_PER_LONG == 32)
801                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
802                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
803                         else
804 #endif
805                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
806                         sock_set_flag(sk, SOCK_LINGER);
807                 }
808                 break;
809
810         case SO_BSDCOMPAT:
811                 sock_warn_obsolete_bsdism("setsockopt");
812                 break;
813
814         case SO_PASSCRED:
815                 if (valbool)
816                         set_bit(SOCK_PASSCRED, &sock->flags);
817                 else
818                         clear_bit(SOCK_PASSCRED, &sock->flags);
819                 break;
820
821         case SO_TIMESTAMP:
822         case SO_TIMESTAMPNS:
823                 if (valbool)  {
824                         if (optname == SO_TIMESTAMP)
825                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
826                         else
827                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
828                         sock_set_flag(sk, SOCK_RCVTSTAMP);
829                         sock_enable_timestamp(sk, SOCK_TIMESTAMP);
830                 } else {
831                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
832                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
833                 }
834                 break;
835
836         case SO_TIMESTAMPING:
837                 if (val & ~SOF_TIMESTAMPING_MASK) {
838                         ret = -EINVAL;
839                         break;
840                 }
841
842                 if (val & SOF_TIMESTAMPING_OPT_ID &&
843                     !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
844                         if (sk->sk_protocol == IPPROTO_TCP &&
845                             sk->sk_type == SOCK_STREAM) {
846                                 if ((1 << sk->sk_state) &
847                                     (TCPF_CLOSE | TCPF_LISTEN)) {
848                                         ret = -EINVAL;
849                                         break;
850                                 }
851                                 sk->sk_tskey = tcp_sk(sk)->snd_una;
852                         } else {
853                                 sk->sk_tskey = 0;
854                         }
855                 }
856                 sk->sk_tsflags = val;
857                 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
858                         sock_enable_timestamp(sk,
859                                               SOCK_TIMESTAMPING_RX_SOFTWARE);
860                 else
861                         sock_disable_timestamp(sk,
862                                                (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
863                 break;
864
865         case SO_RCVLOWAT:
866                 if (val < 0)
867                         val = INT_MAX;
868                 sk->sk_rcvlowat = val ? : 1;
869                 break;
870
871         case SO_RCVTIMEO:
872                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
873                 break;
874
875         case SO_SNDTIMEO:
876                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
877                 break;
878
879         case SO_ATTACH_FILTER:
880                 ret = -EINVAL;
881                 if (optlen == sizeof(struct sock_fprog)) {
882                         struct sock_fprog fprog;
883
884                         ret = -EFAULT;
885                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
886                                 break;
887
888                         ret = sk_attach_filter(&fprog, sk);
889                 }
890                 break;
891
892         case SO_ATTACH_BPF:
893                 ret = -EINVAL;
894                 if (optlen == sizeof(u32)) {
895                         u32 ufd;
896
897                         ret = -EFAULT;
898                         if (copy_from_user(&ufd, optval, sizeof(ufd)))
899                                 break;
900
901                         ret = sk_attach_bpf(ufd, sk);
902                 }
903                 break;
904
905         case SO_ATTACH_REUSEPORT_CBPF:
906                 ret = -EINVAL;
907                 if (optlen == sizeof(struct sock_fprog)) {
908                         struct sock_fprog fprog;
909
910                         ret = -EFAULT;
911                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
912                                 break;
913
914                         ret = sk_reuseport_attach_filter(&fprog, sk);
915                 }
916                 break;
917
918         case SO_ATTACH_REUSEPORT_EBPF:
919                 ret = -EINVAL;
920                 if (optlen == sizeof(u32)) {
921                         u32 ufd;
922
923                         ret = -EFAULT;
924                         if (copy_from_user(&ufd, optval, sizeof(ufd)))
925                                 break;
926
927                         ret = sk_reuseport_attach_bpf(ufd, sk);
928                 }
929                 break;
930
931         case SO_DETACH_FILTER:
932                 ret = sk_detach_filter(sk);
933                 break;
934
935         case SO_LOCK_FILTER:
936                 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
937                         ret = -EPERM;
938                 else
939                         sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
940                 break;
941
942         case SO_PASSSEC:
943                 if (valbool)
944                         set_bit(SOCK_PASSSEC, &sock->flags);
945                 else
946                         clear_bit(SOCK_PASSSEC, &sock->flags);
947                 break;
948         case SO_MARK:
949                 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
950                         ret = -EPERM;
951                 else
952                         sk->sk_mark = val;
953                 break;
954
955         case SO_RXQ_OVFL:
956                 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
957                 break;
958
959         case SO_WIFI_STATUS:
960                 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
961                 break;
962
963         case SO_PEEK_OFF:
964                 if (sock->ops->set_peek_off)
965                         ret = sock->ops->set_peek_off(sk, val);
966                 else
967                         ret = -EOPNOTSUPP;
968                 break;
969
970         case SO_NOFCS:
971                 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
972                 break;
973
974         case SO_SELECT_ERR_QUEUE:
975                 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
976                 break;
977
978 #ifdef CONFIG_NET_RX_BUSY_POLL
979         case SO_BUSY_POLL:
980                 /* allow unprivileged users to decrease the value */
981                 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
982                         ret = -EPERM;
983                 else {
984                         if (val < 0)
985                                 ret = -EINVAL;
986                         else
987                                 sk->sk_ll_usec = val;
988                 }
989                 break;
990 #endif
991
992         case SO_MAX_PACING_RATE:
993                 sk->sk_max_pacing_rate = val;
994                 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
995                                          sk->sk_max_pacing_rate);
996                 break;
997
998         case SO_INCOMING_CPU:
999                 sk->sk_incoming_cpu = val;
1000                 break;
1001
1002         case SO_CNX_ADVICE:
1003                 if (val == 1)
1004                         dst_negative_advice(sk);
1005                 break;
1006         default:
1007                 ret = -ENOPROTOOPT;
1008                 break;
1009         }
1010         release_sock(sk);
1011         return ret;
1012 }
1013 EXPORT_SYMBOL(sock_setsockopt);
1014
1015
1016 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1017                           struct ucred *ucred)
1018 {
1019         ucred->pid = pid_vnr(pid);
1020         ucred->uid = ucred->gid = -1;
1021         if (cred) {
1022                 struct user_namespace *current_ns = current_user_ns();
1023
1024                 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1025                 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1026         }
1027 }
1028
1029 int sock_getsockopt(struct socket *sock, int level, int optname,
1030                     char __user *optval, int __user *optlen)
1031 {
1032         struct sock *sk = sock->sk;
1033
1034         union {
1035                 int val;
1036                 struct linger ling;
1037                 struct timeval tm;
1038         } v;
1039
1040         int lv = sizeof(int);
1041         int len;
1042
1043         if (get_user(len, optlen))
1044                 return -EFAULT;
1045         if (len < 0)
1046                 return -EINVAL;
1047
1048         memset(&v, 0, sizeof(v));
1049
1050         switch (optname) {
1051         case SO_DEBUG:
1052                 v.val = sock_flag(sk, SOCK_DBG);
1053                 break;
1054
1055         case SO_DONTROUTE:
1056                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1057                 break;
1058
1059         case SO_BROADCAST:
1060                 v.val = sock_flag(sk, SOCK_BROADCAST);
1061                 break;
1062
1063         case SO_SNDBUF:
1064                 v.val = sk->sk_sndbuf;
1065                 break;
1066
1067         case SO_RCVBUF:
1068                 v.val = sk->sk_rcvbuf;
1069                 break;
1070
1071         case SO_REUSEADDR:
1072                 v.val = sk->sk_reuse;
1073                 break;
1074
1075         case SO_REUSEPORT:
1076                 v.val = sk->sk_reuseport;
1077                 break;
1078
1079         case SO_KEEPALIVE:
1080                 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1081                 break;
1082
1083         case SO_TYPE:
1084                 v.val = sk->sk_type;
1085                 break;
1086
1087         case SO_PROTOCOL:
1088                 v.val = sk->sk_protocol;
1089                 break;
1090
1091         case SO_DOMAIN:
1092                 v.val = sk->sk_family;
1093                 break;
1094
1095         case SO_ERROR:
1096                 v.val = -sock_error(sk);
1097                 if (v.val == 0)
1098                         v.val = xchg(&sk->sk_err_soft, 0);
1099                 break;
1100
1101         case SO_OOBINLINE:
1102                 v.val = sock_flag(sk, SOCK_URGINLINE);
1103                 break;
1104
1105         case SO_NO_CHECK:
1106                 v.val = sk->sk_no_check_tx;
1107                 break;
1108
1109         case SO_PRIORITY:
1110                 v.val = sk->sk_priority;
1111                 break;
1112
1113         case SO_LINGER:
1114                 lv              = sizeof(v.ling);
1115                 v.ling.l_onoff  = sock_flag(sk, SOCK_LINGER);
1116                 v.ling.l_linger = sk->sk_lingertime / HZ;
1117                 break;
1118
1119         case SO_BSDCOMPAT:
1120                 sock_warn_obsolete_bsdism("getsockopt");
1121                 break;
1122
1123         case SO_TIMESTAMP:
1124                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1125                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1126                 break;
1127
1128         case SO_TIMESTAMPNS:
1129                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1130                 break;
1131
1132         case SO_TIMESTAMPING:
1133                 v.val = sk->sk_tsflags;
1134                 break;
1135
1136         case SO_RCVTIMEO:
1137                 lv = sizeof(struct timeval);
1138                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1139                         v.tm.tv_sec = 0;
1140                         v.tm.tv_usec = 0;
1141                 } else {
1142                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1143                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1144                 }
1145                 break;
1146
1147         case SO_SNDTIMEO:
1148                 lv = sizeof(struct timeval);
1149                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1150                         v.tm.tv_sec = 0;
1151                         v.tm.tv_usec = 0;
1152                 } else {
1153                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1154                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1155                 }
1156                 break;
1157
1158         case SO_RCVLOWAT:
1159                 v.val = sk->sk_rcvlowat;
1160                 break;
1161
1162         case SO_SNDLOWAT:
1163                 v.val = 1;
1164                 break;
1165
1166         case SO_PASSCRED:
1167                 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1168                 break;
1169
1170         case SO_PEERCRED:
1171         {
1172                 struct ucred peercred;
1173                 if (len > sizeof(peercred))
1174                         len = sizeof(peercred);
1175                 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1176                 if (copy_to_user(optval, &peercred, len))
1177                         return -EFAULT;
1178                 goto lenout;
1179         }
1180
1181         case SO_PEERNAME:
1182         {
1183                 char address[128];
1184
1185                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1186                         return -ENOTCONN;
1187                 if (lv < len)
1188                         return -EINVAL;
1189                 if (copy_to_user(optval, address, len))
1190                         return -EFAULT;
1191                 goto lenout;
1192         }
1193
1194         /* Dubious BSD thing... Probably nobody even uses it, but
1195          * the UNIX standard wants it for whatever reason... -DaveM
1196          */
1197         case SO_ACCEPTCONN:
1198                 v.val = sk->sk_state == TCP_LISTEN;
1199                 break;
1200
1201         case SO_PASSSEC:
1202                 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1203                 break;
1204
1205         case SO_PEERSEC:
1206                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1207
1208         case SO_MARK:
1209                 v.val = sk->sk_mark;
1210                 break;
1211
1212         case SO_RXQ_OVFL:
1213                 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1214                 break;
1215
1216         case SO_WIFI_STATUS:
1217                 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1218                 break;
1219
1220         case SO_PEEK_OFF:
1221                 if (!sock->ops->set_peek_off)
1222                         return -EOPNOTSUPP;
1223
1224                 v.val = sk->sk_peek_off;
1225                 break;
1226         case SO_NOFCS:
1227                 v.val = sock_flag(sk, SOCK_NOFCS);
1228                 break;
1229
1230         case SO_BINDTODEVICE:
1231                 return sock_getbindtodevice(sk, optval, optlen, len);
1232
1233         case SO_GET_FILTER:
1234                 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1235                 if (len < 0)
1236                         return len;
1237
1238                 goto lenout;
1239
1240         case SO_LOCK_FILTER:
1241                 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1242                 break;
1243
1244         case SO_BPF_EXTENSIONS:
1245                 v.val = bpf_tell_extensions();
1246                 break;
1247
1248         case SO_SELECT_ERR_QUEUE:
1249                 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1250                 break;
1251
1252 #ifdef CONFIG_NET_RX_BUSY_POLL
1253         case SO_BUSY_POLL:
1254                 v.val = sk->sk_ll_usec;
1255                 break;
1256 #endif
1257
1258         case SO_MAX_PACING_RATE:
1259                 v.val = sk->sk_max_pacing_rate;
1260                 break;
1261
1262         case SO_INCOMING_CPU:
1263                 v.val = sk->sk_incoming_cpu;
1264                 break;
1265
1266         default:
1267                 /* We implement the SO_SNDLOWAT etc to not be settable
1268                  * (1003.1g 7).
1269                  */
1270                 return -ENOPROTOOPT;
1271         }
1272
1273         if (len > lv)
1274                 len = lv;
1275         if (copy_to_user(optval, &v, len))
1276                 return -EFAULT;
1277 lenout:
1278         if (put_user(len, optlen))
1279                 return -EFAULT;
1280         return 0;
1281 }
1282
1283 /*
1284  * Initialize an sk_lock.
1285  *
1286  * (We also register the sk_lock with the lock validator.)
1287  */
1288 static inline void sock_lock_init(struct sock *sk)
1289 {
1290         sock_lock_init_class_and_name(sk,
1291                         af_family_slock_key_strings[sk->sk_family],
1292                         af_family_slock_keys + sk->sk_family,
1293                         af_family_key_strings[sk->sk_family],
1294                         af_family_keys + sk->sk_family);
1295 }
1296
1297 /*
1298  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1299  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1300  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1301  */
1302 static void sock_copy(struct sock *nsk, const struct sock *osk)
1303 {
1304 #ifdef CONFIG_SECURITY_NETWORK
1305         void *sptr = nsk->sk_security;
1306 #endif
1307         memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1308
1309         memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1310                osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1311
1312 #ifdef CONFIG_SECURITY_NETWORK
1313         nsk->sk_security = sptr;
1314         security_sk_clone(osk, nsk);
1315 #endif
1316 }
1317
1318 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1319 {
1320         unsigned long nulls1, nulls2;
1321
1322         nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1323         nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1324         if (nulls1 > nulls2)
1325                 swap(nulls1, nulls2);
1326
1327         if (nulls1 != 0)
1328                 memset((char *)sk, 0, nulls1);
1329         memset((char *)sk + nulls1 + sizeof(void *), 0,
1330                nulls2 - nulls1 - sizeof(void *));
1331         memset((char *)sk + nulls2 + sizeof(void *), 0,
1332                size - nulls2 - sizeof(void *));
1333 }
1334 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1335
1336 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1337                 int family)
1338 {
1339         struct sock *sk;
1340         struct kmem_cache *slab;
1341
1342         slab = prot->slab;
1343         if (slab != NULL) {
1344                 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1345                 if (!sk)
1346                         return sk;
1347                 if (priority & __GFP_ZERO) {
1348                         if (prot->clear_sk)
1349                                 prot->clear_sk(sk, prot->obj_size);
1350                         else
1351                                 sk_prot_clear_nulls(sk, prot->obj_size);
1352                 }
1353         } else
1354                 sk = kmalloc(prot->obj_size, priority);
1355
1356         if (sk != NULL) {
1357                 kmemcheck_annotate_bitfield(sk, flags);
1358
1359                 if (security_sk_alloc(sk, family, priority))
1360                         goto out_free;
1361
1362                 if (!try_module_get(prot->owner))
1363                         goto out_free_sec;
1364                 sk_tx_queue_clear(sk);
1365                 cgroup_sk_alloc(&sk->sk_cgrp_data);
1366         }
1367
1368         return sk;
1369
1370 out_free_sec:
1371         security_sk_free(sk);
1372 out_free:
1373         if (slab != NULL)
1374                 kmem_cache_free(slab, sk);
1375         else
1376                 kfree(sk);
1377         return NULL;
1378 }
1379
1380 static void sk_prot_free(struct proto *prot, struct sock *sk)
1381 {
1382         struct kmem_cache *slab;
1383         struct module *owner;
1384
1385         owner = prot->owner;
1386         slab = prot->slab;
1387
1388         cgroup_sk_free(&sk->sk_cgrp_data);
1389         security_sk_free(sk);
1390         if (slab != NULL)
1391                 kmem_cache_free(slab, sk);
1392         else
1393                 kfree(sk);
1394         module_put(owner);
1395 }
1396
1397 /**
1398  *      sk_alloc - All socket objects are allocated here
1399  *      @net: the applicable net namespace
1400  *      @family: protocol family
1401  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1402  *      @prot: struct proto associated with this new sock instance
1403  *      @kern: is this to be a kernel socket?
1404  */
1405 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1406                       struct proto *prot, int kern)
1407 {
1408         struct sock *sk;
1409
1410         sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1411         if (sk) {
1412                 sk->sk_family = family;
1413                 /*
1414                  * See comment in struct sock definition to understand
1415                  * why we need sk_prot_creator -acme
1416                  */
1417                 sk->sk_prot = sk->sk_prot_creator = prot;
1418                 sock_lock_init(sk);
1419                 sk->sk_net_refcnt = kern ? 0 : 1;
1420                 if (likely(sk->sk_net_refcnt))
1421                         get_net(net);
1422                 sock_net_set(sk, net);
1423                 atomic_set(&sk->sk_wmem_alloc, 1);
1424
1425                 sock_update_classid(&sk->sk_cgrp_data);
1426                 sock_update_netprioidx(&sk->sk_cgrp_data);
1427         }
1428
1429         return sk;
1430 }
1431 EXPORT_SYMBOL(sk_alloc);
1432
1433 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1434  * grace period. This is the case for UDP sockets and TCP listeners.
1435  */
1436 static void __sk_destruct(struct rcu_head *head)
1437 {
1438         struct sock *sk = container_of(head, struct sock, sk_rcu);
1439         struct sk_filter *filter;
1440
1441         if (sk->sk_destruct)
1442                 sk->sk_destruct(sk);
1443
1444         filter = rcu_dereference_check(sk->sk_filter,
1445                                        atomic_read(&sk->sk_wmem_alloc) == 0);
1446         if (filter) {
1447                 sk_filter_uncharge(sk, filter);
1448                 RCU_INIT_POINTER(sk->sk_filter, NULL);
1449         }
1450         if (rcu_access_pointer(sk->sk_reuseport_cb))
1451                 reuseport_detach_sock(sk);
1452
1453         sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1454
1455         if (atomic_read(&sk->sk_omem_alloc))
1456                 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1457                          __func__, atomic_read(&sk->sk_omem_alloc));
1458
1459         if (sk->sk_peer_cred)
1460                 put_cred(sk->sk_peer_cred);
1461         put_pid(sk->sk_peer_pid);
1462         if (likely(sk->sk_net_refcnt))
1463                 put_net(sock_net(sk));
1464         sk_prot_free(sk->sk_prot_creator, sk);
1465 }
1466
1467 void sk_destruct(struct sock *sk)
1468 {
1469         if (sock_flag(sk, SOCK_RCU_FREE))
1470                 call_rcu(&sk->sk_rcu, __sk_destruct);
1471         else
1472                 __sk_destruct(&sk->sk_rcu);
1473 }
1474
1475 static void __sk_free(struct sock *sk)
1476 {
1477         if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1478                 sock_diag_broadcast_destroy(sk);
1479         else
1480                 sk_destruct(sk);
1481 }
1482
1483 void sk_free(struct sock *sk)
1484 {
1485         /*
1486          * We subtract one from sk_wmem_alloc and can know if
1487          * some packets are still in some tx queue.
1488          * If not null, sock_wfree() will call __sk_free(sk) later
1489          */
1490         if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1491                 __sk_free(sk);
1492 }
1493 EXPORT_SYMBOL(sk_free);
1494
1495 /**
1496  *      sk_clone_lock - clone a socket, and lock its clone
1497  *      @sk: the socket to clone
1498  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1499  *
1500  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1501  */
1502 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1503 {
1504         struct sock *newsk;
1505         bool is_charged = true;
1506
1507         newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1508         if (newsk != NULL) {
1509                 struct sk_filter *filter;
1510
1511                 sock_copy(newsk, sk);
1512
1513                 /* SANITY */
1514                 if (likely(newsk->sk_net_refcnt))
1515                         get_net(sock_net(newsk));
1516                 sk_node_init(&newsk->sk_node);
1517                 sock_lock_init(newsk);
1518                 bh_lock_sock(newsk);
1519                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
1520                 newsk->sk_backlog.len = 0;
1521
1522                 atomic_set(&newsk->sk_rmem_alloc, 0);
1523                 /*
1524                  * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1525                  */
1526                 atomic_set(&newsk->sk_wmem_alloc, 1);
1527                 atomic_set(&newsk->sk_omem_alloc, 0);
1528                 skb_queue_head_init(&newsk->sk_receive_queue);
1529                 skb_queue_head_init(&newsk->sk_write_queue);
1530
1531                 rwlock_init(&newsk->sk_callback_lock);
1532                 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1533                                 af_callback_keys + newsk->sk_family,
1534                                 af_family_clock_key_strings[newsk->sk_family]);
1535
1536                 newsk->sk_dst_cache     = NULL;
1537                 newsk->sk_wmem_queued   = 0;
1538                 newsk->sk_forward_alloc = 0;
1539                 atomic_set(&newsk->sk_drops, 0);
1540                 newsk->sk_send_head     = NULL;
1541                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1542
1543                 sock_reset_flag(newsk, SOCK_DONE);
1544                 skb_queue_head_init(&newsk->sk_error_queue);
1545
1546                 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1547                 if (filter != NULL)
1548                         /* though it's an empty new sock, the charging may fail
1549                          * if sysctl_optmem_max was changed between creation of
1550                          * original socket and cloning
1551                          */
1552                         is_charged = sk_filter_charge(newsk, filter);
1553
1554                 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1555                         /* It is still raw copy of parent, so invalidate
1556                          * destructor and make plain sk_free() */
1557                         newsk->sk_destruct = NULL;
1558                         bh_unlock_sock(newsk);
1559                         sk_free(newsk);
1560                         newsk = NULL;
1561                         goto out;
1562                 }
1563                 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1564
1565                 newsk->sk_err      = 0;
1566                 newsk->sk_priority = 0;
1567                 newsk->sk_incoming_cpu = raw_smp_processor_id();
1568                 atomic64_set(&newsk->sk_cookie, 0);
1569                 /*
1570                  * Before updating sk_refcnt, we must commit prior changes to memory
1571                  * (Documentation/RCU/rculist_nulls.txt for details)
1572                  */
1573                 smp_wmb();
1574                 atomic_set(&newsk->sk_refcnt, 2);
1575
1576                 /*
1577                  * Increment the counter in the same struct proto as the master
1578                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1579                  * is the same as sk->sk_prot->socks, as this field was copied
1580                  * with memcpy).
1581                  *
1582                  * This _changes_ the previous behaviour, where
1583                  * tcp_create_openreq_child always was incrementing the
1584                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1585                  * to be taken into account in all callers. -acme
1586                  */
1587                 sk_refcnt_debug_inc(newsk);
1588                 sk_set_socket(newsk, NULL);
1589                 newsk->sk_wq = NULL;
1590
1591                 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1592                         sock_update_memcg(newsk);
1593
1594                 if (newsk->sk_prot->sockets_allocated)
1595                         sk_sockets_allocated_inc(newsk);
1596
1597                 if (sock_needs_netstamp(sk) &&
1598                     newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1599                         net_enable_timestamp();
1600         }
1601 out:
1602         return newsk;
1603 }
1604 EXPORT_SYMBOL_GPL(sk_clone_lock);
1605
1606 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1607 {
1608         u32 max_segs = 1;
1609
1610         sk_dst_set(sk, dst);
1611         sk->sk_route_caps = dst->dev->features;
1612         if (sk->sk_route_caps & NETIF_F_GSO)
1613                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1614         sk->sk_route_caps &= ~sk->sk_route_nocaps;
1615         if (sk_can_gso(sk)) {
1616                 if (dst->header_len) {
1617                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1618                 } else {
1619                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1620                         sk->sk_gso_max_size = dst->dev->gso_max_size;
1621                         max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1622                 }
1623         }
1624         sk->sk_gso_max_segs = max_segs;
1625 }
1626 EXPORT_SYMBOL_GPL(sk_setup_caps);
1627
1628 /*
1629  *      Simple resource managers for sockets.
1630  */
1631
1632
1633 /*
1634  * Write buffer destructor automatically called from kfree_skb.
1635  */
1636 void sock_wfree(struct sk_buff *skb)
1637 {
1638         struct sock *sk = skb->sk;
1639         unsigned int len = skb->truesize;
1640
1641         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1642                 /*
1643                  * Keep a reference on sk_wmem_alloc, this will be released
1644                  * after sk_write_space() call
1645                  */
1646                 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1647                 sk->sk_write_space(sk);
1648                 len = 1;
1649         }
1650         /*
1651          * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1652          * could not do because of in-flight packets
1653          */
1654         if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1655                 __sk_free(sk);
1656 }
1657 EXPORT_SYMBOL(sock_wfree);
1658
1659 /* This variant of sock_wfree() is used by TCP,
1660  * since it sets SOCK_USE_WRITE_QUEUE.
1661  */
1662 void __sock_wfree(struct sk_buff *skb)
1663 {
1664         struct sock *sk = skb->sk;
1665
1666         if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1667                 __sk_free(sk);
1668 }
1669
1670 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1671 {
1672         skb_orphan(skb);
1673         skb->sk = sk;
1674 #ifdef CONFIG_INET
1675         if (unlikely(!sk_fullsock(sk))) {
1676                 skb->destructor = sock_edemux;
1677                 sock_hold(sk);
1678                 return;
1679         }
1680 #endif
1681         skb->destructor = sock_wfree;
1682         skb_set_hash_from_sk(skb, sk);
1683         /*
1684          * We used to take a refcount on sk, but following operation
1685          * is enough to guarantee sk_free() wont free this sock until
1686          * all in-flight packets are completed
1687          */
1688         atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1689 }
1690 EXPORT_SYMBOL(skb_set_owner_w);
1691
1692 /* This helper is used by netem, as it can hold packets in its
1693  * delay queue. We want to allow the owner socket to send more
1694  * packets, as if they were already TX completed by a typical driver.
1695  * But we also want to keep skb->sk set because some packet schedulers
1696  * rely on it (sch_fq for example). So we set skb->truesize to a small
1697  * amount (1) and decrease sk_wmem_alloc accordingly.
1698  */
1699 void skb_orphan_partial(struct sk_buff *skb)
1700 {
1701         /* If this skb is a TCP pure ACK or already went here,
1702          * we have nothing to do. 2 is already a very small truesize.
1703          */
1704         if (skb->truesize <= 2)
1705                 return;
1706
1707         /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1708          * so we do not completely orphan skb, but transfert all
1709          * accounted bytes but one, to avoid unexpected reorders.
1710          */
1711         if (skb->destructor == sock_wfree
1712 #ifdef CONFIG_INET
1713             || skb->destructor == tcp_wfree
1714 #endif
1715                 ) {
1716                 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1717                 skb->truesize = 1;
1718         } else {
1719                 skb_orphan(skb);
1720         }
1721 }
1722 EXPORT_SYMBOL(skb_orphan_partial);
1723
1724 /*
1725  * Read buffer destructor automatically called from kfree_skb.
1726  */
1727 void sock_rfree(struct sk_buff *skb)
1728 {
1729         struct sock *sk = skb->sk;
1730         unsigned int len = skb->truesize;
1731
1732         atomic_sub(len, &sk->sk_rmem_alloc);
1733         sk_mem_uncharge(sk, len);
1734 }
1735 EXPORT_SYMBOL(sock_rfree);
1736
1737 /*
1738  * Buffer destructor for skbs that are not used directly in read or write
1739  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1740  */
1741 void sock_efree(struct sk_buff *skb)
1742 {
1743         sock_put(skb->sk);
1744 }
1745 EXPORT_SYMBOL(sock_efree);
1746
1747 kuid_t sock_i_uid(struct sock *sk)
1748 {
1749         kuid_t uid;
1750
1751         read_lock_bh(&sk->sk_callback_lock);
1752         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1753         read_unlock_bh(&sk->sk_callback_lock);
1754         return uid;
1755 }
1756 EXPORT_SYMBOL(sock_i_uid);
1757
1758 unsigned long sock_i_ino(struct sock *sk)
1759 {
1760         unsigned long ino;
1761
1762         read_lock_bh(&sk->sk_callback_lock);
1763         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1764         read_unlock_bh(&sk->sk_callback_lock);
1765         return ino;
1766 }
1767 EXPORT_SYMBOL(sock_i_ino);
1768
1769 /*
1770  * Allocate a skb from the socket's send buffer.
1771  */
1772 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1773                              gfp_t priority)
1774 {
1775         if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1776                 struct sk_buff *skb = alloc_skb(size, priority);
1777                 if (skb) {
1778                         skb_set_owner_w(skb, sk);
1779                         return skb;
1780                 }
1781         }
1782         return NULL;
1783 }
1784 EXPORT_SYMBOL(sock_wmalloc);
1785
1786 /*
1787  * Allocate a memory block from the socket's option memory buffer.
1788  */
1789 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1790 {
1791         if ((unsigned int)size <= sysctl_optmem_max &&
1792             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1793                 void *mem;
1794                 /* First do the add, to avoid the race if kmalloc
1795                  * might sleep.
1796                  */
1797                 atomic_add(size, &sk->sk_omem_alloc);
1798                 mem = kmalloc(size, priority);
1799                 if (mem)
1800                         return mem;
1801                 atomic_sub(size, &sk->sk_omem_alloc);
1802         }
1803         return NULL;
1804 }
1805 EXPORT_SYMBOL(sock_kmalloc);
1806
1807 /* Free an option memory block. Note, we actually want the inline
1808  * here as this allows gcc to detect the nullify and fold away the
1809  * condition entirely.
1810  */
1811 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1812                                   const bool nullify)
1813 {
1814         if (WARN_ON_ONCE(!mem))
1815                 return;
1816         if (nullify)
1817                 kzfree(mem);
1818         else
1819                 kfree(mem);
1820         atomic_sub(size, &sk->sk_omem_alloc);
1821 }
1822
1823 void sock_kfree_s(struct sock *sk, void *mem, int size)
1824 {
1825         __sock_kfree_s(sk, mem, size, false);
1826 }
1827 EXPORT_SYMBOL(sock_kfree_s);
1828
1829 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1830 {
1831         __sock_kfree_s(sk, mem, size, true);
1832 }
1833 EXPORT_SYMBOL(sock_kzfree_s);
1834
1835 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1836    I think, these locks should be removed for datagram sockets.
1837  */
1838 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1839 {
1840         DEFINE_WAIT(wait);
1841
1842         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1843         for (;;) {
1844                 if (!timeo)
1845                         break;
1846                 if (signal_pending(current))
1847                         break;
1848                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1849                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1850                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1851                         break;
1852                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1853                         break;
1854                 if (sk->sk_err)
1855                         break;
1856                 timeo = schedule_timeout(timeo);
1857         }
1858         finish_wait(sk_sleep(sk), &wait);
1859         return timeo;
1860 }
1861
1862
1863 /*
1864  *      Generic send/receive buffer handlers
1865  */
1866
1867 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1868                                      unsigned long data_len, int noblock,
1869                                      int *errcode, int max_page_order)
1870 {
1871         struct sk_buff *skb;
1872         long timeo;
1873         int err;
1874
1875         timeo = sock_sndtimeo(sk, noblock);
1876         for (;;) {
1877                 err = sock_error(sk);
1878                 if (err != 0)
1879                         goto failure;
1880
1881                 err = -EPIPE;
1882                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1883                         goto failure;
1884
1885                 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1886                         break;
1887
1888                 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1889                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1890                 err = -EAGAIN;
1891                 if (!timeo)
1892                         goto failure;
1893                 if (signal_pending(current))
1894                         goto interrupted;
1895                 timeo = sock_wait_for_wmem(sk, timeo);
1896         }
1897         skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1898                                    errcode, sk->sk_allocation);
1899         if (skb)
1900                 skb_set_owner_w(skb, sk);
1901         return skb;
1902
1903 interrupted:
1904         err = sock_intr_errno(timeo);
1905 failure:
1906         *errcode = err;
1907         return NULL;
1908 }
1909 EXPORT_SYMBOL(sock_alloc_send_pskb);
1910
1911 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1912                                     int noblock, int *errcode)
1913 {
1914         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1915 }
1916 EXPORT_SYMBOL(sock_alloc_send_skb);
1917
1918 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1919                      struct sockcm_cookie *sockc)
1920 {
1921         u32 tsflags;
1922
1923         switch (cmsg->cmsg_type) {
1924         case SO_MARK:
1925                 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1926                         return -EPERM;
1927                 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1928                         return -EINVAL;
1929                 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1930                 break;
1931         case SO_TIMESTAMPING:
1932                 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1933                         return -EINVAL;
1934
1935                 tsflags = *(u32 *)CMSG_DATA(cmsg);
1936                 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
1937                         return -EINVAL;
1938
1939                 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
1940                 sockc->tsflags |= tsflags;
1941                 break;
1942         /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
1943         case SCM_RIGHTS:
1944         case SCM_CREDENTIALS:
1945                 break;
1946         default:
1947                 return -EINVAL;
1948         }
1949         return 0;
1950 }
1951 EXPORT_SYMBOL(__sock_cmsg_send);
1952
1953 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1954                    struct sockcm_cookie *sockc)
1955 {
1956         struct cmsghdr *cmsg;
1957         int ret;
1958
1959         for_each_cmsghdr(cmsg, msg) {
1960                 if (!CMSG_OK(msg, cmsg))
1961                         return -EINVAL;
1962                 if (cmsg->cmsg_level != SOL_SOCKET)
1963                         continue;
1964                 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
1965                 if (ret)
1966                         return ret;
1967         }
1968         return 0;
1969 }
1970 EXPORT_SYMBOL(sock_cmsg_send);
1971
1972 /* On 32bit arches, an skb frag is limited to 2^15 */
1973 #define SKB_FRAG_PAGE_ORDER     get_order(32768)
1974
1975 /**
1976  * skb_page_frag_refill - check that a page_frag contains enough room
1977  * @sz: minimum size of the fragment we want to get
1978  * @pfrag: pointer to page_frag
1979  * @gfp: priority for memory allocation
1980  *
1981  * Note: While this allocator tries to use high order pages, there is
1982  * no guarantee that allocations succeed. Therefore, @sz MUST be
1983  * less or equal than PAGE_SIZE.
1984  */
1985 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1986 {
1987         if (pfrag->page) {
1988                 if (page_ref_count(pfrag->page) == 1) {
1989                         pfrag->offset = 0;
1990                         return true;
1991                 }
1992                 if (pfrag->offset + sz <= pfrag->size)
1993                         return true;
1994                 put_page(pfrag->page);
1995         }
1996
1997         pfrag->offset = 0;
1998         if (SKB_FRAG_PAGE_ORDER) {
1999                 /* Avoid direct reclaim but allow kswapd to wake */
2000                 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2001                                           __GFP_COMP | __GFP_NOWARN |
2002                                           __GFP_NORETRY,
2003                                           SKB_FRAG_PAGE_ORDER);
2004                 if (likely(pfrag->page)) {
2005                         pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2006                         return true;
2007                 }
2008         }
2009         pfrag->page = alloc_page(gfp);
2010         if (likely(pfrag->page)) {
2011                 pfrag->size = PAGE_SIZE;
2012                 return true;
2013         }
2014         return false;
2015 }
2016 EXPORT_SYMBOL(skb_page_frag_refill);
2017
2018 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2019 {
2020         if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2021                 return true;
2022
2023         sk_enter_memory_pressure(sk);
2024         sk_stream_moderate_sndbuf(sk);
2025         return false;
2026 }
2027 EXPORT_SYMBOL(sk_page_frag_refill);
2028
2029 static void __lock_sock(struct sock *sk)
2030         __releases(&sk->sk_lock.slock)
2031         __acquires(&sk->sk_lock.slock)
2032 {
2033         DEFINE_WAIT(wait);
2034
2035         for (;;) {
2036                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2037                                         TASK_UNINTERRUPTIBLE);
2038                 spin_unlock_bh(&sk->sk_lock.slock);
2039                 schedule();
2040                 spin_lock_bh(&sk->sk_lock.slock);
2041                 if (!sock_owned_by_user(sk))
2042                         break;
2043         }
2044         finish_wait(&sk->sk_lock.wq, &wait);
2045 }
2046
2047 static void __release_sock(struct sock *sk)
2048         __releases(&sk->sk_lock.slock)
2049         __acquires(&sk->sk_lock.slock)
2050 {
2051         struct sk_buff *skb, *next;
2052
2053         while ((skb = sk->sk_backlog.head) != NULL) {
2054                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2055
2056                 spin_unlock_bh(&sk->sk_lock.slock);
2057
2058                 do {
2059                         next = skb->next;
2060                         prefetch(next);
2061                         WARN_ON_ONCE(skb_dst_is_noref(skb));
2062                         skb->next = NULL;
2063                         sk_backlog_rcv(sk, skb);
2064
2065                         cond_resched();
2066
2067                         skb = next;
2068                 } while (skb != NULL);
2069
2070                 spin_lock_bh(&sk->sk_lock.slock);
2071         }
2072
2073         /*
2074          * Doing the zeroing here guarantee we can not loop forever
2075          * while a wild producer attempts to flood us.
2076          */
2077         sk->sk_backlog.len = 0;
2078 }
2079
2080 void __sk_flush_backlog(struct sock *sk)
2081 {
2082         spin_lock_bh(&sk->sk_lock.slock);
2083         __release_sock(sk);
2084         spin_unlock_bh(&sk->sk_lock.slock);
2085 }
2086
2087 /**
2088  * sk_wait_data - wait for data to arrive at sk_receive_queue
2089  * @sk:    sock to wait on
2090  * @timeo: for how long
2091  * @skb:   last skb seen on sk_receive_queue
2092  *
2093  * Now socket state including sk->sk_err is changed only under lock,
2094  * hence we may omit checks after joining wait queue.
2095  * We check receive queue before schedule() only as optimization;
2096  * it is very likely that release_sock() added new data.
2097  */
2098 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2099 {
2100         int rc;
2101         DEFINE_WAIT(wait);
2102
2103         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2104         sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2105         rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
2106         sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2107         finish_wait(sk_sleep(sk), &wait);
2108         return rc;
2109 }
2110 EXPORT_SYMBOL(sk_wait_data);
2111
2112 /**
2113  *      __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2114  *      @sk: socket
2115  *      @size: memory size to allocate
2116  *      @kind: allocation type
2117  *
2118  *      If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2119  *      rmem allocation. This function assumes that protocols which have
2120  *      memory_pressure use sk_wmem_queued as write buffer accounting.
2121  */
2122 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2123 {
2124         struct proto *prot = sk->sk_prot;
2125         int amt = sk_mem_pages(size);
2126         long allocated;
2127
2128         sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2129
2130         allocated = sk_memory_allocated_add(sk, amt);
2131
2132         if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2133             !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2134                 goto suppress_allocation;
2135
2136         /* Under limit. */
2137         if (allocated <= sk_prot_mem_limits(sk, 0)) {
2138                 sk_leave_memory_pressure(sk);
2139                 return 1;
2140         }
2141
2142         /* Under pressure. */
2143         if (allocated > sk_prot_mem_limits(sk, 1))
2144                 sk_enter_memory_pressure(sk);
2145
2146         /* Over hard limit. */
2147         if (allocated > sk_prot_mem_limits(sk, 2))
2148                 goto suppress_allocation;
2149
2150         /* guarantee minimum buffer size under pressure */
2151         if (kind == SK_MEM_RECV) {
2152                 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2153                         return 1;
2154
2155         } else { /* SK_MEM_SEND */
2156                 if (sk->sk_type == SOCK_STREAM) {
2157                         if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2158                                 return 1;
2159                 } else if (atomic_read(&sk->sk_wmem_alloc) <
2160                            prot->sysctl_wmem[0])
2161                                 return 1;
2162         }
2163
2164         if (sk_has_memory_pressure(sk)) {
2165                 int alloc;
2166
2167                 if (!sk_under_memory_pressure(sk))
2168                         return 1;
2169                 alloc = sk_sockets_allocated_read_positive(sk);
2170                 if (sk_prot_mem_limits(sk, 2) > alloc *
2171                     sk_mem_pages(sk->sk_wmem_queued +
2172                                  atomic_read(&sk->sk_rmem_alloc) +
2173                                  sk->sk_forward_alloc))
2174                         return 1;
2175         }
2176
2177 suppress_allocation:
2178
2179         if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2180                 sk_stream_moderate_sndbuf(sk);
2181
2182                 /* Fail only if socket is _under_ its sndbuf.
2183                  * In this case we cannot block, so that we have to fail.
2184                  */
2185                 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2186                         return 1;
2187         }
2188
2189         trace_sock_exceed_buf_limit(sk, prot, allocated);
2190
2191         /* Alas. Undo changes. */
2192         sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2193
2194         sk_memory_allocated_sub(sk, amt);
2195
2196         if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2197                 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2198
2199         return 0;
2200 }
2201 EXPORT_SYMBOL(__sk_mem_schedule);
2202
2203 /**
2204  *      __sk_mem_reclaim - reclaim memory_allocated
2205  *      @sk: socket
2206  *      @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2207  */
2208 void __sk_mem_reclaim(struct sock *sk, int amount)
2209 {
2210         amount >>= SK_MEM_QUANTUM_SHIFT;
2211         sk_memory_allocated_sub(sk, amount);
2212         sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2213
2214         if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2215                 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2216
2217         if (sk_under_memory_pressure(sk) &&
2218             (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2219                 sk_leave_memory_pressure(sk);
2220 }
2221 EXPORT_SYMBOL(__sk_mem_reclaim);
2222
2223 int sk_set_peek_off(struct sock *sk, int val)
2224 {
2225         if (val < 0)
2226                 return -EINVAL;
2227
2228         sk->sk_peek_off = val;
2229         return 0;
2230 }
2231 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2232
2233 /*
2234  * Set of default routines for initialising struct proto_ops when
2235  * the protocol does not support a particular function. In certain
2236  * cases where it makes no sense for a protocol to have a "do nothing"
2237  * function, some default processing is provided.
2238  */
2239
2240 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2241 {
2242         return -EOPNOTSUPP;
2243 }
2244 EXPORT_SYMBOL(sock_no_bind);
2245
2246 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2247                     int len, int flags)
2248 {
2249         return -EOPNOTSUPP;
2250 }
2251 EXPORT_SYMBOL(sock_no_connect);
2252
2253 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2254 {
2255         return -EOPNOTSUPP;
2256 }
2257 EXPORT_SYMBOL(sock_no_socketpair);
2258
2259 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2260 {
2261         return -EOPNOTSUPP;
2262 }
2263 EXPORT_SYMBOL(sock_no_accept);
2264
2265 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2266                     int *len, int peer)
2267 {
2268         return -EOPNOTSUPP;
2269 }
2270 EXPORT_SYMBOL(sock_no_getname);
2271
2272 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2273 {
2274         return 0;
2275 }
2276 EXPORT_SYMBOL(sock_no_poll);
2277
2278 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2279 {
2280         return -EOPNOTSUPP;
2281 }
2282 EXPORT_SYMBOL(sock_no_ioctl);
2283
2284 int sock_no_listen(struct socket *sock, int backlog)
2285 {
2286         return -EOPNOTSUPP;
2287 }
2288 EXPORT_SYMBOL(sock_no_listen);
2289
2290 int sock_no_shutdown(struct socket *sock, int how)
2291 {
2292         return -EOPNOTSUPP;
2293 }
2294 EXPORT_SYMBOL(sock_no_shutdown);
2295
2296 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2297                     char __user *optval, unsigned int optlen)
2298 {
2299         return -EOPNOTSUPP;
2300 }
2301 EXPORT_SYMBOL(sock_no_setsockopt);
2302
2303 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2304                     char __user *optval, int __user *optlen)
2305 {
2306         return -EOPNOTSUPP;
2307 }
2308 EXPORT_SYMBOL(sock_no_getsockopt);
2309
2310 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2311 {
2312         return -EOPNOTSUPP;
2313 }
2314 EXPORT_SYMBOL(sock_no_sendmsg);
2315
2316 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2317                     int flags)
2318 {
2319         return -EOPNOTSUPP;
2320 }
2321 EXPORT_SYMBOL(sock_no_recvmsg);
2322
2323 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2324 {
2325         /* Mirror missing mmap method error code */
2326         return -ENODEV;
2327 }
2328 EXPORT_SYMBOL(sock_no_mmap);
2329
2330 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2331 {
2332         ssize_t res;
2333         struct msghdr msg = {.msg_flags = flags};
2334         struct kvec iov;
2335         char *kaddr = kmap(page);
2336         iov.iov_base = kaddr + offset;
2337         iov.iov_len = size;
2338         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2339         kunmap(page);
2340         return res;
2341 }
2342 EXPORT_SYMBOL(sock_no_sendpage);
2343
2344 /*
2345  *      Default Socket Callbacks
2346  */
2347
2348 static void sock_def_wakeup(struct sock *sk)
2349 {
2350         struct socket_wq *wq;
2351
2352         rcu_read_lock();
2353         wq = rcu_dereference(sk->sk_wq);
2354         if (skwq_has_sleeper(wq))
2355                 wake_up_interruptible_all(&wq->wait);
2356         rcu_read_unlock();
2357 }
2358
2359 static void sock_def_error_report(struct sock *sk)
2360 {
2361         struct socket_wq *wq;
2362
2363         rcu_read_lock();
2364         wq = rcu_dereference(sk->sk_wq);
2365         if (skwq_has_sleeper(wq))
2366                 wake_up_interruptible_poll(&wq->wait, POLLERR);
2367         sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2368         rcu_read_unlock();
2369 }
2370
2371 static void sock_def_readable(struct sock *sk)
2372 {
2373         struct socket_wq *wq;
2374
2375         rcu_read_lock();
2376         wq = rcu_dereference(sk->sk_wq);
2377         if (skwq_has_sleeper(wq))
2378                 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2379                                                 POLLRDNORM | POLLRDBAND);
2380         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2381         rcu_read_unlock();
2382 }
2383
2384 static void sock_def_write_space(struct sock *sk)
2385 {
2386         struct socket_wq *wq;
2387
2388         rcu_read_lock();
2389
2390         /* Do not wake up a writer until he can make "significant"
2391          * progress.  --DaveM
2392          */
2393         if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2394                 wq = rcu_dereference(sk->sk_wq);
2395                 if (skwq_has_sleeper(wq))
2396                         wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2397                                                 POLLWRNORM | POLLWRBAND);
2398
2399                 /* Should agree with poll, otherwise some programs break */
2400                 if (sock_writeable(sk))
2401                         sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2402         }
2403
2404         rcu_read_unlock();
2405 }
2406
2407 static void sock_def_destruct(struct sock *sk)
2408 {
2409 }
2410
2411 void sk_send_sigurg(struct sock *sk)
2412 {
2413         if (sk->sk_socket && sk->sk_socket->file)
2414                 if (send_sigurg(&sk->sk_socket->file->f_owner))
2415                         sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2416 }
2417 EXPORT_SYMBOL(sk_send_sigurg);
2418
2419 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2420                     unsigned long expires)
2421 {
2422         if (!mod_timer(timer, expires))
2423                 sock_hold(sk);
2424 }
2425 EXPORT_SYMBOL(sk_reset_timer);
2426
2427 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2428 {
2429         if (del_timer(timer))
2430                 __sock_put(sk);
2431 }
2432 EXPORT_SYMBOL(sk_stop_timer);
2433
2434 void sock_init_data(struct socket *sock, struct sock *sk)
2435 {
2436         skb_queue_head_init(&sk->sk_receive_queue);
2437         skb_queue_head_init(&sk->sk_write_queue);
2438         skb_queue_head_init(&sk->sk_error_queue);
2439
2440         sk->sk_send_head        =       NULL;
2441
2442         init_timer(&sk->sk_timer);
2443
2444         sk->sk_allocation       =       GFP_KERNEL;
2445         sk->sk_rcvbuf           =       sysctl_rmem_default;
2446         sk->sk_sndbuf           =       sysctl_wmem_default;
2447         sk->sk_state            =       TCP_CLOSE;
2448         sk_set_socket(sk, sock);
2449
2450         sock_set_flag(sk, SOCK_ZAPPED);
2451
2452         if (sock) {
2453                 sk->sk_type     =       sock->type;
2454                 sk->sk_wq       =       sock->wq;
2455                 sock->sk        =       sk;
2456         } else
2457                 sk->sk_wq       =       NULL;
2458
2459         rwlock_init(&sk->sk_callback_lock);
2460         lockdep_set_class_and_name(&sk->sk_callback_lock,
2461                         af_callback_keys + sk->sk_family,
2462                         af_family_clock_key_strings[sk->sk_family]);
2463
2464         sk->sk_state_change     =       sock_def_wakeup;
2465         sk->sk_data_ready       =       sock_def_readable;
2466         sk->sk_write_space      =       sock_def_write_space;
2467         sk->sk_error_report     =       sock_def_error_report;
2468         sk->sk_destruct         =       sock_def_destruct;
2469
2470         sk->sk_frag.page        =       NULL;
2471         sk->sk_frag.offset      =       0;
2472         sk->sk_peek_off         =       -1;
2473
2474         sk->sk_peer_pid         =       NULL;
2475         sk->sk_peer_cred        =       NULL;
2476         sk->sk_write_pending    =       0;
2477         sk->sk_rcvlowat         =       1;
2478         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
2479         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
2480
2481         sk->sk_stamp = ktime_set(-1L, 0);
2482
2483 #ifdef CONFIG_NET_RX_BUSY_POLL
2484         sk->sk_napi_id          =       0;
2485         sk->sk_ll_usec          =       sysctl_net_busy_read;
2486 #endif
2487
2488         sk->sk_max_pacing_rate = ~0U;
2489         sk->sk_pacing_rate = ~0U;
2490         sk->sk_incoming_cpu = -1;
2491         /*
2492          * Before updating sk_refcnt, we must commit prior changes to memory
2493          * (Documentation/RCU/rculist_nulls.txt for details)
2494          */
2495         smp_wmb();
2496         atomic_set(&sk->sk_refcnt, 1);
2497         atomic_set(&sk->sk_drops, 0);
2498 }
2499 EXPORT_SYMBOL(sock_init_data);
2500
2501 void lock_sock_nested(struct sock *sk, int subclass)
2502 {
2503         might_sleep();
2504         spin_lock_bh(&sk->sk_lock.slock);
2505         if (sk->sk_lock.owned)
2506                 __lock_sock(sk);
2507         sk->sk_lock.owned = 1;
2508         spin_unlock(&sk->sk_lock.slock);
2509         /*
2510          * The sk_lock has mutex_lock() semantics here:
2511          */
2512         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2513         local_bh_enable();
2514 }
2515 EXPORT_SYMBOL(lock_sock_nested);
2516
2517 void release_sock(struct sock *sk)
2518 {
2519         spin_lock_bh(&sk->sk_lock.slock);
2520         if (sk->sk_backlog.tail)
2521                 __release_sock(sk);
2522
2523         /* Warning : release_cb() might need to release sk ownership,
2524          * ie call sock_release_ownership(sk) before us.
2525          */
2526         if (sk->sk_prot->release_cb)
2527                 sk->sk_prot->release_cb(sk);
2528
2529         sock_release_ownership(sk);
2530         if (waitqueue_active(&sk->sk_lock.wq))
2531                 wake_up(&sk->sk_lock.wq);
2532         spin_unlock_bh(&sk->sk_lock.slock);
2533 }
2534 EXPORT_SYMBOL(release_sock);
2535
2536 /**
2537  * lock_sock_fast - fast version of lock_sock
2538  * @sk: socket
2539  *
2540  * This version should be used for very small section, where process wont block
2541  * return false if fast path is taken
2542  *   sk_lock.slock locked, owned = 0, BH disabled
2543  * return true if slow path is taken
2544  *   sk_lock.slock unlocked, owned = 1, BH enabled
2545  */
2546 bool lock_sock_fast(struct sock *sk)
2547 {
2548         might_sleep();
2549         spin_lock_bh(&sk->sk_lock.slock);
2550
2551         if (!sk->sk_lock.owned)
2552                 /*
2553                  * Note : We must disable BH
2554                  */
2555                 return false;
2556
2557         __lock_sock(sk);
2558         sk->sk_lock.owned = 1;
2559         spin_unlock(&sk->sk_lock.slock);
2560         /*
2561          * The sk_lock has mutex_lock() semantics here:
2562          */
2563         mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2564         local_bh_enable();
2565         return true;
2566 }
2567 EXPORT_SYMBOL(lock_sock_fast);
2568
2569 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2570 {
2571         struct timeval tv;
2572         if (!sock_flag(sk, SOCK_TIMESTAMP))
2573                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2574         tv = ktime_to_timeval(sk->sk_stamp);
2575         if (tv.tv_sec == -1)
2576                 return -ENOENT;
2577         if (tv.tv_sec == 0) {
2578                 sk->sk_stamp = ktime_get_real();
2579                 tv = ktime_to_timeval(sk->sk_stamp);
2580         }
2581         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2582 }
2583 EXPORT_SYMBOL(sock_get_timestamp);
2584
2585 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2586 {
2587         struct timespec ts;
2588         if (!sock_flag(sk, SOCK_TIMESTAMP))
2589                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2590         ts = ktime_to_timespec(sk->sk_stamp);
2591         if (ts.tv_sec == -1)
2592                 return -ENOENT;
2593         if (ts.tv_sec == 0) {
2594                 sk->sk_stamp = ktime_get_real();
2595                 ts = ktime_to_timespec(sk->sk_stamp);
2596         }
2597         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2598 }
2599 EXPORT_SYMBOL(sock_get_timestampns);
2600
2601 void sock_enable_timestamp(struct sock *sk, int flag)
2602 {
2603         if (!sock_flag(sk, flag)) {
2604                 unsigned long previous_flags = sk->sk_flags;
2605
2606                 sock_set_flag(sk, flag);
2607                 /*
2608                  * we just set one of the two flags which require net
2609                  * time stamping, but time stamping might have been on
2610                  * already because of the other one
2611                  */
2612                 if (sock_needs_netstamp(sk) &&
2613                     !(previous_flags & SK_FLAGS_TIMESTAMP))
2614                         net_enable_timestamp();
2615         }
2616 }
2617
2618 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2619                        int level, int type)
2620 {
2621         struct sock_exterr_skb *serr;
2622         struct sk_buff *skb;
2623         int copied, err;
2624
2625         err = -EAGAIN;
2626         skb = sock_dequeue_err_skb(sk);
2627         if (skb == NULL)
2628                 goto out;
2629
2630         copied = skb->len;
2631         if (copied > len) {
2632                 msg->msg_flags |= MSG_TRUNC;
2633                 copied = len;
2634         }
2635         err = skb_copy_datagram_msg(skb, 0, msg, copied);
2636         if (err)
2637                 goto out_free_skb;
2638
2639         sock_recv_timestamp(msg, sk, skb);
2640
2641         serr = SKB_EXT_ERR(skb);
2642         put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2643
2644         msg->msg_flags |= MSG_ERRQUEUE;
2645         err = copied;
2646
2647 out_free_skb:
2648         kfree_skb(skb);
2649 out:
2650         return err;
2651 }
2652 EXPORT_SYMBOL(sock_recv_errqueue);
2653
2654 /*
2655  *      Get a socket option on an socket.
2656  *
2657  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
2658  *      asynchronous errors should be reported by getsockopt. We assume
2659  *      this means if you specify SO_ERROR (otherwise whats the point of it).
2660  */
2661 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2662                            char __user *optval, int __user *optlen)
2663 {
2664         struct sock *sk = sock->sk;
2665
2666         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2667 }
2668 EXPORT_SYMBOL(sock_common_getsockopt);
2669
2670 #ifdef CONFIG_COMPAT
2671 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2672                                   char __user *optval, int __user *optlen)
2673 {
2674         struct sock *sk = sock->sk;
2675
2676         if (sk->sk_prot->compat_getsockopt != NULL)
2677                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2678                                                       optval, optlen);
2679         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2680 }
2681 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2682 #endif
2683
2684 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2685                         int flags)
2686 {
2687         struct sock *sk = sock->sk;
2688         int addr_len = 0;
2689         int err;
2690
2691         err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2692                                    flags & ~MSG_DONTWAIT, &addr_len);
2693         if (err >= 0)
2694                 msg->msg_namelen = addr_len;
2695         return err;
2696 }
2697 EXPORT_SYMBOL(sock_common_recvmsg);
2698
2699 /*
2700  *      Set socket options on an inet socket.
2701  */
2702 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2703                            char __user *optval, unsigned int optlen)
2704 {
2705         struct sock *sk = sock->sk;
2706
2707         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2708 }
2709 EXPORT_SYMBOL(sock_common_setsockopt);
2710
2711 #ifdef CONFIG_COMPAT
2712 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2713                                   char __user *optval, unsigned int optlen)
2714 {
2715         struct sock *sk = sock->sk;
2716
2717         if (sk->sk_prot->compat_setsockopt != NULL)
2718                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2719                                                       optval, optlen);
2720         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2721 }
2722 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2723 #endif
2724
2725 void sk_common_release(struct sock *sk)
2726 {
2727         if (sk->sk_prot->destroy)
2728                 sk->sk_prot->destroy(sk);
2729
2730         /*
2731          * Observation: when sock_common_release is called, processes have
2732          * no access to socket. But net still has.
2733          * Step one, detach it from networking:
2734          *
2735          * A. Remove from hash tables.
2736          */
2737
2738         sk->sk_prot->unhash(sk);
2739
2740         /*
2741          * In this point socket cannot receive new packets, but it is possible
2742          * that some packets are in flight because some CPU runs receiver and
2743          * did hash table lookup before we unhashed socket. They will achieve
2744          * receive queue and will be purged by socket destructor.
2745          *
2746          * Also we still have packets pending on receive queue and probably,
2747          * our own packets waiting in device queues. sock_destroy will drain
2748          * receive queue, but transmitted packets will delay socket destruction
2749          * until the last reference will be released.
2750          */
2751
2752         sock_orphan(sk);
2753
2754         xfrm_sk_free_policy(sk);
2755
2756         sk_refcnt_debug_release(sk);
2757
2758         if (sk->sk_frag.page) {
2759                 put_page(sk->sk_frag.page);
2760                 sk->sk_frag.page = NULL;
2761         }
2762
2763         sock_put(sk);
2764 }
2765 EXPORT_SYMBOL(sk_common_release);
2766
2767 #ifdef CONFIG_PROC_FS
2768 #define PROTO_INUSE_NR  64      /* should be enough for the first time */
2769 struct prot_inuse {
2770         int val[PROTO_INUSE_NR];
2771 };
2772
2773 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2774
2775 #ifdef CONFIG_NET_NS
2776 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2777 {
2778         __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2779 }
2780 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2781
2782 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2783 {
2784         int cpu, idx = prot->inuse_idx;
2785         int res = 0;
2786
2787         for_each_possible_cpu(cpu)
2788                 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2789
2790         return res >= 0 ? res : 0;
2791 }
2792 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2793
2794 static int __net_init sock_inuse_init_net(struct net *net)
2795 {
2796         net->core.inuse = alloc_percpu(struct prot_inuse);
2797         return net->core.inuse ? 0 : -ENOMEM;
2798 }
2799
2800 static void __net_exit sock_inuse_exit_net(struct net *net)
2801 {
2802         free_percpu(net->core.inuse);
2803 }
2804
2805 static struct pernet_operations net_inuse_ops = {
2806         .init = sock_inuse_init_net,
2807         .exit = sock_inuse_exit_net,
2808 };
2809
2810 static __init int net_inuse_init(void)
2811 {
2812         if (register_pernet_subsys(&net_inuse_ops))
2813                 panic("Cannot initialize net inuse counters");
2814
2815         return 0;
2816 }
2817
2818 core_initcall(net_inuse_init);
2819 #else
2820 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2821
2822 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2823 {
2824         __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2825 }
2826 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2827
2828 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2829 {
2830         int cpu, idx = prot->inuse_idx;
2831         int res = 0;
2832
2833         for_each_possible_cpu(cpu)
2834                 res += per_cpu(prot_inuse, cpu).val[idx];
2835
2836         return res >= 0 ? res : 0;
2837 }
2838 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2839 #endif
2840
2841 static void assign_proto_idx(struct proto *prot)
2842 {
2843         prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2844
2845         if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2846                 pr_err("PROTO_INUSE_NR exhausted\n");
2847                 return;
2848         }
2849
2850         set_bit(prot->inuse_idx, proto_inuse_idx);
2851 }
2852
2853 static void release_proto_idx(struct proto *prot)
2854 {
2855         if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2856                 clear_bit(prot->inuse_idx, proto_inuse_idx);
2857 }
2858 #else
2859 static inline void assign_proto_idx(struct proto *prot)
2860 {
2861 }
2862
2863 static inline void release_proto_idx(struct proto *prot)
2864 {
2865 }
2866 #endif
2867
2868 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2869 {
2870         if (!rsk_prot)
2871                 return;
2872         kfree(rsk_prot->slab_name);
2873         rsk_prot->slab_name = NULL;
2874         kmem_cache_destroy(rsk_prot->slab);
2875         rsk_prot->slab = NULL;
2876 }
2877
2878 static int req_prot_init(const struct proto *prot)
2879 {
2880         struct request_sock_ops *rsk_prot = prot->rsk_prot;
2881
2882         if (!rsk_prot)
2883                 return 0;
2884
2885         rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2886                                         prot->name);
2887         if (!rsk_prot->slab_name)
2888                 return -ENOMEM;
2889
2890         rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2891                                            rsk_prot->obj_size, 0,
2892                                            prot->slab_flags, NULL);
2893
2894         if (!rsk_prot->slab) {
2895                 pr_crit("%s: Can't create request sock SLAB cache!\n",
2896                         prot->name);
2897                 return -ENOMEM;
2898         }
2899         return 0;
2900 }
2901
2902 int proto_register(struct proto *prot, int alloc_slab)
2903 {
2904         if (alloc_slab) {
2905                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2906                                         SLAB_HWCACHE_ALIGN | prot->slab_flags,
2907                                         NULL);
2908
2909                 if (prot->slab == NULL) {
2910                         pr_crit("%s: Can't create sock SLAB cache!\n",
2911                                 prot->name);
2912                         goto out;
2913                 }
2914
2915                 if (req_prot_init(prot))
2916                         goto out_free_request_sock_slab;
2917
2918                 if (prot->twsk_prot != NULL) {
2919                         prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2920
2921                         if (prot->twsk_prot->twsk_slab_name == NULL)
2922                                 goto out_free_request_sock_slab;
2923
2924                         prot->twsk_prot->twsk_slab =
2925                                 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2926                                                   prot->twsk_prot->twsk_obj_size,
2927                                                   0,
2928                                                   prot->slab_flags,
2929                                                   NULL);
2930                         if (prot->twsk_prot->twsk_slab == NULL)
2931                                 goto out_free_timewait_sock_slab_name;
2932                 }
2933         }
2934
2935         mutex_lock(&proto_list_mutex);
2936         list_add(&prot->node, &proto_list);
2937         assign_proto_idx(prot);
2938         mutex_unlock(&proto_list_mutex);
2939         return 0;
2940
2941 out_free_timewait_sock_slab_name:
2942         kfree(prot->twsk_prot->twsk_slab_name);
2943 out_free_request_sock_slab:
2944         req_prot_cleanup(prot->rsk_prot);
2945
2946         kmem_cache_destroy(prot->slab);
2947         prot->slab = NULL;
2948 out:
2949         return -ENOBUFS;
2950 }
2951 EXPORT_SYMBOL(proto_register);
2952
2953 void proto_unregister(struct proto *prot)
2954 {
2955         mutex_lock(&proto_list_mutex);
2956         release_proto_idx(prot);
2957         list_del(&prot->node);
2958         mutex_unlock(&proto_list_mutex);
2959
2960         kmem_cache_destroy(prot->slab);
2961         prot->slab = NULL;
2962
2963         req_prot_cleanup(prot->rsk_prot);
2964
2965         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2966                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2967                 kfree(prot->twsk_prot->twsk_slab_name);
2968                 prot->twsk_prot->twsk_slab = NULL;
2969         }
2970 }
2971 EXPORT_SYMBOL(proto_unregister);
2972
2973 #ifdef CONFIG_PROC_FS
2974 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2975         __acquires(proto_list_mutex)
2976 {
2977         mutex_lock(&proto_list_mutex);
2978         return seq_list_start_head(&proto_list, *pos);
2979 }
2980
2981 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2982 {
2983         return seq_list_next(v, &proto_list, pos);
2984 }
2985
2986 static void proto_seq_stop(struct seq_file *seq, void *v)
2987         __releases(proto_list_mutex)
2988 {
2989         mutex_unlock(&proto_list_mutex);
2990 }
2991
2992 static char proto_method_implemented(const void *method)
2993 {
2994         return method == NULL ? 'n' : 'y';
2995 }
2996 static long sock_prot_memory_allocated(struct proto *proto)
2997 {
2998         return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2999 }
3000
3001 static char *sock_prot_memory_pressure(struct proto *proto)
3002 {
3003         return proto->memory_pressure != NULL ?
3004         proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3005 }
3006
3007 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3008 {
3009
3010         seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3011                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3012                    proto->name,
3013                    proto->obj_size,
3014                    sock_prot_inuse_get(seq_file_net(seq), proto),
3015                    sock_prot_memory_allocated(proto),
3016                    sock_prot_memory_pressure(proto),
3017                    proto->max_header,
3018                    proto->slab == NULL ? "no" : "yes",
3019                    module_name(proto->owner),
3020                    proto_method_implemented(proto->close),
3021                    proto_method_implemented(proto->connect),
3022                    proto_method_implemented(proto->disconnect),
3023                    proto_method_implemented(proto->accept),
3024                    proto_method_implemented(proto->ioctl),
3025                    proto_method_implemented(proto->init),
3026                    proto_method_implemented(proto->destroy),
3027                    proto_method_implemented(proto->shutdown),
3028                    proto_method_implemented(proto->setsockopt),
3029                    proto_method_implemented(proto->getsockopt),
3030                    proto_method_implemented(proto->sendmsg),
3031                    proto_method_implemented(proto->recvmsg),
3032                    proto_method_implemented(proto->sendpage),
3033                    proto_method_implemented(proto->bind),
3034                    proto_method_implemented(proto->backlog_rcv),
3035                    proto_method_implemented(proto->hash),
3036                    proto_method_implemented(proto->unhash),
3037                    proto_method_implemented(proto->get_port),
3038                    proto_method_implemented(proto->enter_memory_pressure));
3039 }
3040
3041 static int proto_seq_show(struct seq_file *seq, void *v)
3042 {
3043         if (v == &proto_list)
3044                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3045                            "protocol",
3046                            "size",
3047                            "sockets",
3048                            "memory",
3049                            "press",
3050                            "maxhdr",
3051                            "slab",
3052                            "module",
3053                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3054         else
3055                 proto_seq_printf(seq, list_entry(v, struct proto, node));
3056         return 0;
3057 }
3058
3059 static const struct seq_operations proto_seq_ops = {
3060         .start  = proto_seq_start,
3061         .next   = proto_seq_next,
3062         .stop   = proto_seq_stop,
3063         .show   = proto_seq_show,
3064 };
3065
3066 static int proto_seq_open(struct inode *inode, struct file *file)
3067 {
3068         return seq_open_net(inode, file, &proto_seq_ops,
3069                             sizeof(struct seq_net_private));
3070 }
3071
3072 static const struct file_operations proto_seq_fops = {
3073         .owner          = THIS_MODULE,
3074         .open           = proto_seq_open,
3075         .read           = seq_read,
3076         .llseek         = seq_lseek,
3077         .release        = seq_release_net,
3078 };
3079
3080 static __net_init int proto_init_net(struct net *net)
3081 {
3082         if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3083                 return -ENOMEM;
3084
3085         return 0;
3086 }
3087
3088 static __net_exit void proto_exit_net(struct net *net)
3089 {
3090         remove_proc_entry("protocols", net->proc_net);
3091 }
3092
3093
3094 static __net_initdata struct pernet_operations proto_net_ops = {
3095         .init = proto_init_net,
3096         .exit = proto_exit_net,
3097 };
3098
3099 static int __init proto_init(void)
3100 {
3101         return register_pernet_subsys(&proto_net_ops);
3102 }
3103
3104 subsys_initcall(proto_init);
3105
3106 #endif /* PROC_FS */