Merge branch 'slab/next' into for-linus
[cascardo/linux.git] / net / core / sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Generic socket support routines. Memory allocators, socket lock/release
7  *              handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *              Alan Cox        :       Numerous verify_area() problems
17  *              Alan Cox        :       Connecting on a connecting socket
18  *                                      now returns an error for tcp.
19  *              Alan Cox        :       sock->protocol is set correctly.
20  *                                      and is not sometimes left as 0.
21  *              Alan Cox        :       connect handles icmp errors on a
22  *                                      connect properly. Unfortunately there
23  *                                      is a restart syscall nasty there. I
24  *                                      can't match BSD without hacking the C
25  *                                      library. Ideas urgently sought!
26  *              Alan Cox        :       Disallow bind() to addresses that are
27  *                                      not ours - especially broadcast ones!!
28  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
29  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
30  *                                      instead they leave that for the DESTROY timer.
31  *              Alan Cox        :       Clean up error flag in accept
32  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
33  *                                      was buggy. Put a remove_sock() in the handler
34  *                                      for memory when we hit 0. Also altered the timer
35  *                                      code. The ACK stuff can wait and needs major
36  *                                      TCP layer surgery.
37  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
38  *                                      and fixed timer/inet_bh race.
39  *              Alan Cox        :       Added zapped flag for TCP
40  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
41  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
43  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
46  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
47  *      Pauline Middelink       :       identd support
48  *              Alan Cox        :       Fixed connect() taking signals I think.
49  *              Alan Cox        :       SO_LINGER supported
50  *              Alan Cox        :       Error reporting fixes
51  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
52  *              Alan Cox        :       inet sockets don't set sk->type!
53  *              Alan Cox        :       Split socket option code
54  *              Alan Cox        :       Callbacks
55  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
56  *              Alex            :       Removed restriction on inet fioctl
57  *              Alan Cox        :       Splitting INET from NET core
58  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
59  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
60  *              Alan Cox        :       Split IP from generic code
61  *              Alan Cox        :       New kfree_skbmem()
62  *              Alan Cox        :       Make SO_DEBUG superuser only.
63  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
64  *                                      (compatibility fix)
65  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
66  *              Alan Cox        :       Allocator for a socket is settable.
67  *              Alan Cox        :       SO_ERROR includes soft errors.
68  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
69  *              Alan Cox        :       Generic socket allocation to make hooks
70  *                                      easier (suggested by Craig Metz).
71  *              Michael Pall    :       SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
79  *              Andi Kleen      :       Fix write_space callback
80  *              Chris Evans     :       Security fixes - signedness again
81  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *              This program is free software; you can redistribute it and/or
87  *              modify it under the terms of the GNU General Public License
88  *              as published by the Free Software Foundation; either version
89  *              2 of the License, or (at your option) any later version.
90  */
91
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114
115 #include <asm/uaccess.h>
116 #include <asm/system.h>
117
118 #include <linux/netdevice.h>
119 #include <net/protocol.h>
120 #include <linux/skbuff.h>
121 #include <net/net_namespace.h>
122 #include <net/request_sock.h>
123 #include <net/sock.h>
124 #include <linux/net_tstamp.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127 #include <net/cls_cgroup.h>
128
129 #include <linux/filter.h>
130
131 #ifdef CONFIG_INET
132 #include <net/tcp.h>
133 #endif
134
135 /*
136  * Each address family might have different locking rules, so we have
137  * one slock key per address family:
138  */
139 static struct lock_class_key af_family_keys[AF_MAX];
140 static struct lock_class_key af_family_slock_keys[AF_MAX];
141
142 /*
143  * Make lock validator output more readable. (we pre-construct these
144  * strings build-time, so that runtime initialization of socket
145  * locks is fast):
146  */
147 static const char *const af_family_key_strings[AF_MAX+1] = {
148   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
158   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
160   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" ,
161   "sk_lock-AF_MAX"
162 };
163 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
164   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
165   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
166   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
167   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
168   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
169   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
170   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
171   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
172   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
173   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
174   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
175   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
176   "slock-AF_IEEE802154", "slock-AF_CAIF" ,
177   "slock-AF_MAX"
178 };
179 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
180   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
181   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
182   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
183   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
184   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
185   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
186   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
187   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
188   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
189   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
190   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
191   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
192   "clock-AF_IEEE802154", "clock-AF_CAIF" ,
193   "clock-AF_MAX"
194 };
195
196 /*
197  * sk_callback_lock locking rules are per-address-family,
198  * so split the lock classes by using a per-AF key:
199  */
200 static struct lock_class_key af_callback_keys[AF_MAX];
201
202 /* Take into consideration the size of the struct sk_buff overhead in the
203  * determination of these values, since that is non-constant across
204  * platforms.  This makes socket queueing behavior and performance
205  * not depend upon such differences.
206  */
207 #define _SK_MEM_PACKETS         256
208 #define _SK_MEM_OVERHEAD        (sizeof(struct sk_buff) + 256)
209 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
211
212 /* Run time adjustable parameters. */
213 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
215 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
216 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
217
218 /* Maximal space eaten by iovec or ancilliary data plus some space */
219 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
220 EXPORT_SYMBOL(sysctl_optmem_max);
221
222 #if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
223 int net_cls_subsys_id = -1;
224 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
225 #endif
226
227 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
228 {
229         struct timeval tv;
230
231         if (optlen < sizeof(tv))
232                 return -EINVAL;
233         if (copy_from_user(&tv, optval, sizeof(tv)))
234                 return -EFAULT;
235         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
236                 return -EDOM;
237
238         if (tv.tv_sec < 0) {
239                 static int warned __read_mostly;
240
241                 *timeo_p = 0;
242                 if (warned < 10 && net_ratelimit()) {
243                         warned++;
244                         printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
245                                "tries to set negative timeout\n",
246                                 current->comm, task_pid_nr(current));
247                 }
248                 return 0;
249         }
250         *timeo_p = MAX_SCHEDULE_TIMEOUT;
251         if (tv.tv_sec == 0 && tv.tv_usec == 0)
252                 return 0;
253         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
254                 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
255         return 0;
256 }
257
258 static void sock_warn_obsolete_bsdism(const char *name)
259 {
260         static int warned;
261         static char warncomm[TASK_COMM_LEN];
262         if (strcmp(warncomm, current->comm) && warned < 5) {
263                 strcpy(warncomm,  current->comm);
264                 printk(KERN_WARNING "process `%s' is using obsolete "
265                        "%s SO_BSDCOMPAT\n", warncomm, name);
266                 warned++;
267         }
268 }
269
270 static void sock_disable_timestamp(struct sock *sk, int flag)
271 {
272         if (sock_flag(sk, flag)) {
273                 sock_reset_flag(sk, flag);
274                 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
275                     !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
276                         net_disable_timestamp();
277                 }
278         }
279 }
280
281
282 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
283 {
284         int err;
285         int skb_len;
286         unsigned long flags;
287         struct sk_buff_head *list = &sk->sk_receive_queue;
288
289         /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
290            number of warnings when compiling with -W --ANK
291          */
292         if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
293             (unsigned)sk->sk_rcvbuf) {
294                 atomic_inc(&sk->sk_drops);
295                 return -ENOMEM;
296         }
297
298         err = sk_filter(sk, skb);
299         if (err)
300                 return err;
301
302         if (!sk_rmem_schedule(sk, skb->truesize)) {
303                 atomic_inc(&sk->sk_drops);
304                 return -ENOBUFS;
305         }
306
307         skb->dev = NULL;
308         skb_set_owner_r(skb, sk);
309
310         /* Cache the SKB length before we tack it onto the receive
311          * queue.  Once it is added it no longer belongs to us and
312          * may be freed by other threads of control pulling packets
313          * from the queue.
314          */
315         skb_len = skb->len;
316
317         /* we escape from rcu protected region, make sure we dont leak
318          * a norefcounted dst
319          */
320         skb_dst_force(skb);
321
322         spin_lock_irqsave(&list->lock, flags);
323         skb->dropcount = atomic_read(&sk->sk_drops);
324         __skb_queue_tail(list, skb);
325         spin_unlock_irqrestore(&list->lock, flags);
326
327         if (!sock_flag(sk, SOCK_DEAD))
328                 sk->sk_data_ready(sk, skb_len);
329         return 0;
330 }
331 EXPORT_SYMBOL(sock_queue_rcv_skb);
332
333 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
334 {
335         int rc = NET_RX_SUCCESS;
336
337         if (sk_filter(sk, skb))
338                 goto discard_and_relse;
339
340         skb->dev = NULL;
341
342         if (sk_rcvqueues_full(sk, skb)) {
343                 atomic_inc(&sk->sk_drops);
344                 goto discard_and_relse;
345         }
346         if (nested)
347                 bh_lock_sock_nested(sk);
348         else
349                 bh_lock_sock(sk);
350         if (!sock_owned_by_user(sk)) {
351                 /*
352                  * trylock + unlock semantics:
353                  */
354                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
355
356                 rc = sk_backlog_rcv(sk, skb);
357
358                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
359         } else if (sk_add_backlog(sk, skb)) {
360                 bh_unlock_sock(sk);
361                 atomic_inc(&sk->sk_drops);
362                 goto discard_and_relse;
363         }
364
365         bh_unlock_sock(sk);
366 out:
367         sock_put(sk);
368         return rc;
369 discard_and_relse:
370         kfree_skb(skb);
371         goto out;
372 }
373 EXPORT_SYMBOL(sk_receive_skb);
374
375 void sk_reset_txq(struct sock *sk)
376 {
377         sk_tx_queue_clear(sk);
378 }
379 EXPORT_SYMBOL(sk_reset_txq);
380
381 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
382 {
383         struct dst_entry *dst = __sk_dst_get(sk);
384
385         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
386                 sk_tx_queue_clear(sk);
387                 rcu_assign_pointer(sk->sk_dst_cache, NULL);
388                 dst_release(dst);
389                 return NULL;
390         }
391
392         return dst;
393 }
394 EXPORT_SYMBOL(__sk_dst_check);
395
396 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
397 {
398         struct dst_entry *dst = sk_dst_get(sk);
399
400         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
401                 sk_dst_reset(sk);
402                 dst_release(dst);
403                 return NULL;
404         }
405
406         return dst;
407 }
408 EXPORT_SYMBOL(sk_dst_check);
409
410 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
411 {
412         int ret = -ENOPROTOOPT;
413 #ifdef CONFIG_NETDEVICES
414         struct net *net = sock_net(sk);
415         char devname[IFNAMSIZ];
416         int index;
417
418         /* Sorry... */
419         ret = -EPERM;
420         if (!capable(CAP_NET_RAW))
421                 goto out;
422
423         ret = -EINVAL;
424         if (optlen < 0)
425                 goto out;
426
427         /* Bind this socket to a particular device like "eth0",
428          * as specified in the passed interface name. If the
429          * name is "" or the option length is zero the socket
430          * is not bound.
431          */
432         if (optlen > IFNAMSIZ - 1)
433                 optlen = IFNAMSIZ - 1;
434         memset(devname, 0, sizeof(devname));
435
436         ret = -EFAULT;
437         if (copy_from_user(devname, optval, optlen))
438                 goto out;
439
440         index = 0;
441         if (devname[0] != '\0') {
442                 struct net_device *dev;
443
444                 rcu_read_lock();
445                 dev = dev_get_by_name_rcu(net, devname);
446                 if (dev)
447                         index = dev->ifindex;
448                 rcu_read_unlock();
449                 ret = -ENODEV;
450                 if (!dev)
451                         goto out;
452         }
453
454         lock_sock(sk);
455         sk->sk_bound_dev_if = index;
456         sk_dst_reset(sk);
457         release_sock(sk);
458
459         ret = 0;
460
461 out:
462 #endif
463
464         return ret;
465 }
466
467 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
468 {
469         if (valbool)
470                 sock_set_flag(sk, bit);
471         else
472                 sock_reset_flag(sk, bit);
473 }
474
475 /*
476  *      This is meant for all protocols to use and covers goings on
477  *      at the socket level. Everything here is generic.
478  */
479
480 int sock_setsockopt(struct socket *sock, int level, int optname,
481                     char __user *optval, unsigned int optlen)
482 {
483         struct sock *sk = sock->sk;
484         int val;
485         int valbool;
486         struct linger ling;
487         int ret = 0;
488
489         /*
490          *      Options without arguments
491          */
492
493         if (optname == SO_BINDTODEVICE)
494                 return sock_bindtodevice(sk, optval, optlen);
495
496         if (optlen < sizeof(int))
497                 return -EINVAL;
498
499         if (get_user(val, (int __user *)optval))
500                 return -EFAULT;
501
502         valbool = val ? 1 : 0;
503
504         lock_sock(sk);
505
506         switch (optname) {
507         case SO_DEBUG:
508                 if (val && !capable(CAP_NET_ADMIN))
509                         ret = -EACCES;
510                 else
511                         sock_valbool_flag(sk, SOCK_DBG, valbool);
512                 break;
513         case SO_REUSEADDR:
514                 sk->sk_reuse = valbool;
515                 break;
516         case SO_TYPE:
517         case SO_PROTOCOL:
518         case SO_DOMAIN:
519         case SO_ERROR:
520                 ret = -ENOPROTOOPT;
521                 break;
522         case SO_DONTROUTE:
523                 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
524                 break;
525         case SO_BROADCAST:
526                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
527                 break;
528         case SO_SNDBUF:
529                 /* Don't error on this BSD doesn't and if you think
530                    about it this is right. Otherwise apps have to
531                    play 'guess the biggest size' games. RCVBUF/SNDBUF
532                    are treated in BSD as hints */
533
534                 if (val > sysctl_wmem_max)
535                         val = sysctl_wmem_max;
536 set_sndbuf:
537                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
538                 if ((val * 2) < SOCK_MIN_SNDBUF)
539                         sk->sk_sndbuf = SOCK_MIN_SNDBUF;
540                 else
541                         sk->sk_sndbuf = val * 2;
542
543                 /*
544                  *      Wake up sending tasks if we
545                  *      upped the value.
546                  */
547                 sk->sk_write_space(sk);
548                 break;
549
550         case SO_SNDBUFFORCE:
551                 if (!capable(CAP_NET_ADMIN)) {
552                         ret = -EPERM;
553                         break;
554                 }
555                 goto set_sndbuf;
556
557         case SO_RCVBUF:
558                 /* Don't error on this BSD doesn't and if you think
559                    about it this is right. Otherwise apps have to
560                    play 'guess the biggest size' games. RCVBUF/SNDBUF
561                    are treated in BSD as hints */
562
563                 if (val > sysctl_rmem_max)
564                         val = sysctl_rmem_max;
565 set_rcvbuf:
566                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
567                 /*
568                  * We double it on the way in to account for
569                  * "struct sk_buff" etc. overhead.   Applications
570                  * assume that the SO_RCVBUF setting they make will
571                  * allow that much actual data to be received on that
572                  * socket.
573                  *
574                  * Applications are unaware that "struct sk_buff" and
575                  * other overheads allocate from the receive buffer
576                  * during socket buffer allocation.
577                  *
578                  * And after considering the possible alternatives,
579                  * returning the value we actually used in getsockopt
580                  * is the most desirable behavior.
581                  */
582                 if ((val * 2) < SOCK_MIN_RCVBUF)
583                         sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
584                 else
585                         sk->sk_rcvbuf = val * 2;
586                 break;
587
588         case SO_RCVBUFFORCE:
589                 if (!capable(CAP_NET_ADMIN)) {
590                         ret = -EPERM;
591                         break;
592                 }
593                 goto set_rcvbuf;
594
595         case SO_KEEPALIVE:
596 #ifdef CONFIG_INET
597                 if (sk->sk_protocol == IPPROTO_TCP)
598                         tcp_set_keepalive(sk, valbool);
599 #endif
600                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
601                 break;
602
603         case SO_OOBINLINE:
604                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
605                 break;
606
607         case SO_NO_CHECK:
608                 sk->sk_no_check = valbool;
609                 break;
610
611         case SO_PRIORITY:
612                 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
613                         sk->sk_priority = val;
614                 else
615                         ret = -EPERM;
616                 break;
617
618         case SO_LINGER:
619                 if (optlen < sizeof(ling)) {
620                         ret = -EINVAL;  /* 1003.1g */
621                         break;
622                 }
623                 if (copy_from_user(&ling, optval, sizeof(ling))) {
624                         ret = -EFAULT;
625                         break;
626                 }
627                 if (!ling.l_onoff)
628                         sock_reset_flag(sk, SOCK_LINGER);
629                 else {
630 #if (BITS_PER_LONG == 32)
631                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
632                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
633                         else
634 #endif
635                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
636                         sock_set_flag(sk, SOCK_LINGER);
637                 }
638                 break;
639
640         case SO_BSDCOMPAT:
641                 sock_warn_obsolete_bsdism("setsockopt");
642                 break;
643
644         case SO_PASSCRED:
645                 if (valbool)
646                         set_bit(SOCK_PASSCRED, &sock->flags);
647                 else
648                         clear_bit(SOCK_PASSCRED, &sock->flags);
649                 break;
650
651         case SO_TIMESTAMP:
652         case SO_TIMESTAMPNS:
653                 if (valbool)  {
654                         if (optname == SO_TIMESTAMP)
655                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
656                         else
657                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
658                         sock_set_flag(sk, SOCK_RCVTSTAMP);
659                         sock_enable_timestamp(sk, SOCK_TIMESTAMP);
660                 } else {
661                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
662                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
663                 }
664                 break;
665
666         case SO_TIMESTAMPING:
667                 if (val & ~SOF_TIMESTAMPING_MASK) {
668                         ret = -EINVAL;
669                         break;
670                 }
671                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
672                                   val & SOF_TIMESTAMPING_TX_HARDWARE);
673                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
674                                   val & SOF_TIMESTAMPING_TX_SOFTWARE);
675                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
676                                   val & SOF_TIMESTAMPING_RX_HARDWARE);
677                 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
678                         sock_enable_timestamp(sk,
679                                               SOCK_TIMESTAMPING_RX_SOFTWARE);
680                 else
681                         sock_disable_timestamp(sk,
682                                                SOCK_TIMESTAMPING_RX_SOFTWARE);
683                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
684                                   val & SOF_TIMESTAMPING_SOFTWARE);
685                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
686                                   val & SOF_TIMESTAMPING_SYS_HARDWARE);
687                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
688                                   val & SOF_TIMESTAMPING_RAW_HARDWARE);
689                 break;
690
691         case SO_RCVLOWAT:
692                 if (val < 0)
693                         val = INT_MAX;
694                 sk->sk_rcvlowat = val ? : 1;
695                 break;
696
697         case SO_RCVTIMEO:
698                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
699                 break;
700
701         case SO_SNDTIMEO:
702                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
703                 break;
704
705         case SO_ATTACH_FILTER:
706                 ret = -EINVAL;
707                 if (optlen == sizeof(struct sock_fprog)) {
708                         struct sock_fprog fprog;
709
710                         ret = -EFAULT;
711                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
712                                 break;
713
714                         ret = sk_attach_filter(&fprog, sk);
715                 }
716                 break;
717
718         case SO_DETACH_FILTER:
719                 ret = sk_detach_filter(sk);
720                 break;
721
722         case SO_PASSSEC:
723                 if (valbool)
724                         set_bit(SOCK_PASSSEC, &sock->flags);
725                 else
726                         clear_bit(SOCK_PASSSEC, &sock->flags);
727                 break;
728         case SO_MARK:
729                 if (!capable(CAP_NET_ADMIN))
730                         ret = -EPERM;
731                 else
732                         sk->sk_mark = val;
733                 break;
734
735                 /* We implement the SO_SNDLOWAT etc to
736                    not be settable (1003.1g 5.3) */
737         case SO_RXQ_OVFL:
738                 if (valbool)
739                         sock_set_flag(sk, SOCK_RXQ_OVFL);
740                 else
741                         sock_reset_flag(sk, SOCK_RXQ_OVFL);
742                 break;
743         default:
744                 ret = -ENOPROTOOPT;
745                 break;
746         }
747         release_sock(sk);
748         return ret;
749 }
750 EXPORT_SYMBOL(sock_setsockopt);
751
752
753 void cred_to_ucred(struct pid *pid, const struct cred *cred,
754                    struct ucred *ucred)
755 {
756         ucred->pid = pid_vnr(pid);
757         ucred->uid = ucred->gid = -1;
758         if (cred) {
759                 struct user_namespace *current_ns = current_user_ns();
760
761                 ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
762                 ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
763         }
764 }
765 EXPORT_SYMBOL_GPL(cred_to_ucred);
766
767 int sock_getsockopt(struct socket *sock, int level, int optname,
768                     char __user *optval, int __user *optlen)
769 {
770         struct sock *sk = sock->sk;
771
772         union {
773                 int val;
774                 struct linger ling;
775                 struct timeval tm;
776         } v;
777
778         int lv = sizeof(int);
779         int len;
780
781         if (get_user(len, optlen))
782                 return -EFAULT;
783         if (len < 0)
784                 return -EINVAL;
785
786         memset(&v, 0, sizeof(v));
787
788         switch (optname) {
789         case SO_DEBUG:
790                 v.val = sock_flag(sk, SOCK_DBG);
791                 break;
792
793         case SO_DONTROUTE:
794                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
795                 break;
796
797         case SO_BROADCAST:
798                 v.val = !!sock_flag(sk, SOCK_BROADCAST);
799                 break;
800
801         case SO_SNDBUF:
802                 v.val = sk->sk_sndbuf;
803                 break;
804
805         case SO_RCVBUF:
806                 v.val = sk->sk_rcvbuf;
807                 break;
808
809         case SO_REUSEADDR:
810                 v.val = sk->sk_reuse;
811                 break;
812
813         case SO_KEEPALIVE:
814                 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
815                 break;
816
817         case SO_TYPE:
818                 v.val = sk->sk_type;
819                 break;
820
821         case SO_PROTOCOL:
822                 v.val = sk->sk_protocol;
823                 break;
824
825         case SO_DOMAIN:
826                 v.val = sk->sk_family;
827                 break;
828
829         case SO_ERROR:
830                 v.val = -sock_error(sk);
831                 if (v.val == 0)
832                         v.val = xchg(&sk->sk_err_soft, 0);
833                 break;
834
835         case SO_OOBINLINE:
836                 v.val = !!sock_flag(sk, SOCK_URGINLINE);
837                 break;
838
839         case SO_NO_CHECK:
840                 v.val = sk->sk_no_check;
841                 break;
842
843         case SO_PRIORITY:
844                 v.val = sk->sk_priority;
845                 break;
846
847         case SO_LINGER:
848                 lv              = sizeof(v.ling);
849                 v.ling.l_onoff  = !!sock_flag(sk, SOCK_LINGER);
850                 v.ling.l_linger = sk->sk_lingertime / HZ;
851                 break;
852
853         case SO_BSDCOMPAT:
854                 sock_warn_obsolete_bsdism("getsockopt");
855                 break;
856
857         case SO_TIMESTAMP:
858                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
859                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
860                 break;
861
862         case SO_TIMESTAMPNS:
863                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
864                 break;
865
866         case SO_TIMESTAMPING:
867                 v.val = 0;
868                 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
869                         v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
870                 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
871                         v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
872                 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
873                         v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
874                 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
875                         v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
876                 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
877                         v.val |= SOF_TIMESTAMPING_SOFTWARE;
878                 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
879                         v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
880                 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
881                         v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
882                 break;
883
884         case SO_RCVTIMEO:
885                 lv = sizeof(struct timeval);
886                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
887                         v.tm.tv_sec = 0;
888                         v.tm.tv_usec = 0;
889                 } else {
890                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
891                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
892                 }
893                 break;
894
895         case SO_SNDTIMEO:
896                 lv = sizeof(struct timeval);
897                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
898                         v.tm.tv_sec = 0;
899                         v.tm.tv_usec = 0;
900                 } else {
901                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
902                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
903                 }
904                 break;
905
906         case SO_RCVLOWAT:
907                 v.val = sk->sk_rcvlowat;
908                 break;
909
910         case SO_SNDLOWAT:
911                 v.val = 1;
912                 break;
913
914         case SO_PASSCRED:
915                 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
916                 break;
917
918         case SO_PEERCRED:
919         {
920                 struct ucred peercred;
921                 if (len > sizeof(peercred))
922                         len = sizeof(peercred);
923                 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
924                 if (copy_to_user(optval, &peercred, len))
925                         return -EFAULT;
926                 goto lenout;
927         }
928
929         case SO_PEERNAME:
930         {
931                 char address[128];
932
933                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
934                         return -ENOTCONN;
935                 if (lv < len)
936                         return -EINVAL;
937                 if (copy_to_user(optval, address, len))
938                         return -EFAULT;
939                 goto lenout;
940         }
941
942         /* Dubious BSD thing... Probably nobody even uses it, but
943          * the UNIX standard wants it for whatever reason... -DaveM
944          */
945         case SO_ACCEPTCONN:
946                 v.val = sk->sk_state == TCP_LISTEN;
947                 break;
948
949         case SO_PASSSEC:
950                 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
951                 break;
952
953         case SO_PEERSEC:
954                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
955
956         case SO_MARK:
957                 v.val = sk->sk_mark;
958                 break;
959
960         case SO_RXQ_OVFL:
961                 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
962                 break;
963
964         default:
965                 return -ENOPROTOOPT;
966         }
967
968         if (len > lv)
969                 len = lv;
970         if (copy_to_user(optval, &v, len))
971                 return -EFAULT;
972 lenout:
973         if (put_user(len, optlen))
974                 return -EFAULT;
975         return 0;
976 }
977
978 /*
979  * Initialize an sk_lock.
980  *
981  * (We also register the sk_lock with the lock validator.)
982  */
983 static inline void sock_lock_init(struct sock *sk)
984 {
985         sock_lock_init_class_and_name(sk,
986                         af_family_slock_key_strings[sk->sk_family],
987                         af_family_slock_keys + sk->sk_family,
988                         af_family_key_strings[sk->sk_family],
989                         af_family_keys + sk->sk_family);
990 }
991
992 /*
993  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
994  * even temporarly, because of RCU lookups. sk_node should also be left as is.
995  */
996 static void sock_copy(struct sock *nsk, const struct sock *osk)
997 {
998 #ifdef CONFIG_SECURITY_NETWORK
999         void *sptr = nsk->sk_security;
1000 #endif
1001         BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
1002                      sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) +
1003                      sizeof(osk->sk_tx_queue_mapping));
1004         memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
1005                osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
1006 #ifdef CONFIG_SECURITY_NETWORK
1007         nsk->sk_security = sptr;
1008         security_sk_clone(osk, nsk);
1009 #endif
1010 }
1011
1012 /*
1013  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1014  * un-modified. Special care is taken when initializing object to zero.
1015  */
1016 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1017 {
1018         if (offsetof(struct sock, sk_node.next) != 0)
1019                 memset(sk, 0, offsetof(struct sock, sk_node.next));
1020         memset(&sk->sk_node.pprev, 0,
1021                size - offsetof(struct sock, sk_node.pprev));
1022 }
1023
1024 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1025 {
1026         unsigned long nulls1, nulls2;
1027
1028         nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1029         nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1030         if (nulls1 > nulls2)
1031                 swap(nulls1, nulls2);
1032
1033         if (nulls1 != 0)
1034                 memset((char *)sk, 0, nulls1);
1035         memset((char *)sk + nulls1 + sizeof(void *), 0,
1036                nulls2 - nulls1 - sizeof(void *));
1037         memset((char *)sk + nulls2 + sizeof(void *), 0,
1038                size - nulls2 - sizeof(void *));
1039 }
1040 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1041
1042 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1043                 int family)
1044 {
1045         struct sock *sk;
1046         struct kmem_cache *slab;
1047
1048         slab = prot->slab;
1049         if (slab != NULL) {
1050                 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1051                 if (!sk)
1052                         return sk;
1053                 if (priority & __GFP_ZERO) {
1054                         if (prot->clear_sk)
1055                                 prot->clear_sk(sk, prot->obj_size);
1056                         else
1057                                 sk_prot_clear_nulls(sk, prot->obj_size);
1058                 }
1059         } else
1060                 sk = kmalloc(prot->obj_size, priority);
1061
1062         if (sk != NULL) {
1063                 kmemcheck_annotate_bitfield(sk, flags);
1064
1065                 if (security_sk_alloc(sk, family, priority))
1066                         goto out_free;
1067
1068                 if (!try_module_get(prot->owner))
1069                         goto out_free_sec;
1070                 sk_tx_queue_clear(sk);
1071         }
1072
1073         return sk;
1074
1075 out_free_sec:
1076         security_sk_free(sk);
1077 out_free:
1078         if (slab != NULL)
1079                 kmem_cache_free(slab, sk);
1080         else
1081                 kfree(sk);
1082         return NULL;
1083 }
1084
1085 static void sk_prot_free(struct proto *prot, struct sock *sk)
1086 {
1087         struct kmem_cache *slab;
1088         struct module *owner;
1089
1090         owner = prot->owner;
1091         slab = prot->slab;
1092
1093         security_sk_free(sk);
1094         if (slab != NULL)
1095                 kmem_cache_free(slab, sk);
1096         else
1097                 kfree(sk);
1098         module_put(owner);
1099 }
1100
1101 #ifdef CONFIG_CGROUPS
1102 void sock_update_classid(struct sock *sk)
1103 {
1104         u32 classid;
1105
1106         rcu_read_lock();  /* doing current task, which cannot vanish. */
1107         classid = task_cls_classid(current);
1108         rcu_read_unlock();
1109         if (classid && classid != sk->sk_classid)
1110                 sk->sk_classid = classid;
1111 }
1112 EXPORT_SYMBOL(sock_update_classid);
1113 #endif
1114
1115 /**
1116  *      sk_alloc - All socket objects are allocated here
1117  *      @net: the applicable net namespace
1118  *      @family: protocol family
1119  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1120  *      @prot: struct proto associated with this new sock instance
1121  */
1122 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1123                       struct proto *prot)
1124 {
1125         struct sock *sk;
1126
1127         sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1128         if (sk) {
1129                 sk->sk_family = family;
1130                 /*
1131                  * See comment in struct sock definition to understand
1132                  * why we need sk_prot_creator -acme
1133                  */
1134                 sk->sk_prot = sk->sk_prot_creator = prot;
1135                 sock_lock_init(sk);
1136                 sock_net_set(sk, get_net(net));
1137                 atomic_set(&sk->sk_wmem_alloc, 1);
1138
1139                 sock_update_classid(sk);
1140         }
1141
1142         return sk;
1143 }
1144 EXPORT_SYMBOL(sk_alloc);
1145
1146 static void __sk_free(struct sock *sk)
1147 {
1148         struct sk_filter *filter;
1149
1150         if (sk->sk_destruct)
1151                 sk->sk_destruct(sk);
1152
1153         filter = rcu_dereference_check(sk->sk_filter,
1154                                        atomic_read(&sk->sk_wmem_alloc) == 0);
1155         if (filter) {
1156                 sk_filter_uncharge(sk, filter);
1157                 rcu_assign_pointer(sk->sk_filter, NULL);
1158         }
1159
1160         sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1161         sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1162
1163         if (atomic_read(&sk->sk_omem_alloc))
1164                 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1165                        __func__, atomic_read(&sk->sk_omem_alloc));
1166
1167         if (sk->sk_peer_cred)
1168                 put_cred(sk->sk_peer_cred);
1169         put_pid(sk->sk_peer_pid);
1170         put_net(sock_net(sk));
1171         sk_prot_free(sk->sk_prot_creator, sk);
1172 }
1173
1174 void sk_free(struct sock *sk)
1175 {
1176         /*
1177          * We substract one from sk_wmem_alloc and can know if
1178          * some packets are still in some tx queue.
1179          * If not null, sock_wfree() will call __sk_free(sk) later
1180          */
1181         if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1182                 __sk_free(sk);
1183 }
1184 EXPORT_SYMBOL(sk_free);
1185
1186 /*
1187  * Last sock_put should drop referrence to sk->sk_net. It has already
1188  * been dropped in sk_change_net. Taking referrence to stopping namespace
1189  * is not an option.
1190  * Take referrence to a socket to remove it from hash _alive_ and after that
1191  * destroy it in the context of init_net.
1192  */
1193 void sk_release_kernel(struct sock *sk)
1194 {
1195         if (sk == NULL || sk->sk_socket == NULL)
1196                 return;
1197
1198         sock_hold(sk);
1199         sock_release(sk->sk_socket);
1200         release_net(sock_net(sk));
1201         sock_net_set(sk, get_net(&init_net));
1202         sock_put(sk);
1203 }
1204 EXPORT_SYMBOL(sk_release_kernel);
1205
1206 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1207 {
1208         struct sock *newsk;
1209
1210         newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1211         if (newsk != NULL) {
1212                 struct sk_filter *filter;
1213
1214                 sock_copy(newsk, sk);
1215
1216                 /* SANITY */
1217                 get_net(sock_net(newsk));
1218                 sk_node_init(&newsk->sk_node);
1219                 sock_lock_init(newsk);
1220                 bh_lock_sock(newsk);
1221                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
1222                 newsk->sk_backlog.len = 0;
1223
1224                 atomic_set(&newsk->sk_rmem_alloc, 0);
1225                 /*
1226                  * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1227                  */
1228                 atomic_set(&newsk->sk_wmem_alloc, 1);
1229                 atomic_set(&newsk->sk_omem_alloc, 0);
1230                 skb_queue_head_init(&newsk->sk_receive_queue);
1231                 skb_queue_head_init(&newsk->sk_write_queue);
1232 #ifdef CONFIG_NET_DMA
1233                 skb_queue_head_init(&newsk->sk_async_wait_queue);
1234 #endif
1235
1236                 spin_lock_init(&newsk->sk_dst_lock);
1237                 rwlock_init(&newsk->sk_callback_lock);
1238                 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1239                                 af_callback_keys + newsk->sk_family,
1240                                 af_family_clock_key_strings[newsk->sk_family]);
1241
1242                 newsk->sk_dst_cache     = NULL;
1243                 newsk->sk_wmem_queued   = 0;
1244                 newsk->sk_forward_alloc = 0;
1245                 newsk->sk_send_head     = NULL;
1246                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1247
1248                 sock_reset_flag(newsk, SOCK_DONE);
1249                 skb_queue_head_init(&newsk->sk_error_queue);
1250
1251                 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1252                 if (filter != NULL)
1253                         sk_filter_charge(newsk, filter);
1254
1255                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1256                         /* It is still raw copy of parent, so invalidate
1257                          * destructor and make plain sk_free() */
1258                         newsk->sk_destruct = NULL;
1259                         sk_free(newsk);
1260                         newsk = NULL;
1261                         goto out;
1262                 }
1263
1264                 newsk->sk_err      = 0;
1265                 newsk->sk_priority = 0;
1266                 /*
1267                  * Before updating sk_refcnt, we must commit prior changes to memory
1268                  * (Documentation/RCU/rculist_nulls.txt for details)
1269                  */
1270                 smp_wmb();
1271                 atomic_set(&newsk->sk_refcnt, 2);
1272
1273                 /*
1274                  * Increment the counter in the same struct proto as the master
1275                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1276                  * is the same as sk->sk_prot->socks, as this field was copied
1277                  * with memcpy).
1278                  *
1279                  * This _changes_ the previous behaviour, where
1280                  * tcp_create_openreq_child always was incrementing the
1281                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1282                  * to be taken into account in all callers. -acme
1283                  */
1284                 sk_refcnt_debug_inc(newsk);
1285                 sk_set_socket(newsk, NULL);
1286                 newsk->sk_wq = NULL;
1287
1288                 if (newsk->sk_prot->sockets_allocated)
1289                         percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1290
1291                 if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1292                     sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1293                         net_enable_timestamp();
1294         }
1295 out:
1296         return newsk;
1297 }
1298 EXPORT_SYMBOL_GPL(sk_clone);
1299
1300 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1301 {
1302         __sk_dst_set(sk, dst);
1303         sk->sk_route_caps = dst->dev->features;
1304         if (sk->sk_route_caps & NETIF_F_GSO)
1305                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1306         sk->sk_route_caps &= ~sk->sk_route_nocaps;
1307         if (sk_can_gso(sk)) {
1308                 if (dst->header_len) {
1309                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1310                 } else {
1311                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1312                         sk->sk_gso_max_size = dst->dev->gso_max_size;
1313                 }
1314         }
1315 }
1316 EXPORT_SYMBOL_GPL(sk_setup_caps);
1317
1318 void __init sk_init(void)
1319 {
1320         if (totalram_pages <= 4096) {
1321                 sysctl_wmem_max = 32767;
1322                 sysctl_rmem_max = 32767;
1323                 sysctl_wmem_default = 32767;
1324                 sysctl_rmem_default = 32767;
1325         } else if (totalram_pages >= 131072) {
1326                 sysctl_wmem_max = 131071;
1327                 sysctl_rmem_max = 131071;
1328         }
1329 }
1330
1331 /*
1332  *      Simple resource managers for sockets.
1333  */
1334
1335
1336 /*
1337  * Write buffer destructor automatically called from kfree_skb.
1338  */
1339 void sock_wfree(struct sk_buff *skb)
1340 {
1341         struct sock *sk = skb->sk;
1342         unsigned int len = skb->truesize;
1343
1344         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1345                 /*
1346                  * Keep a reference on sk_wmem_alloc, this will be released
1347                  * after sk_write_space() call
1348                  */
1349                 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1350                 sk->sk_write_space(sk);
1351                 len = 1;
1352         }
1353         /*
1354          * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1355          * could not do because of in-flight packets
1356          */
1357         if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1358                 __sk_free(sk);
1359 }
1360 EXPORT_SYMBOL(sock_wfree);
1361
1362 /*
1363  * Read buffer destructor automatically called from kfree_skb.
1364  */
1365 void sock_rfree(struct sk_buff *skb)
1366 {
1367         struct sock *sk = skb->sk;
1368         unsigned int len = skb->truesize;
1369
1370         atomic_sub(len, &sk->sk_rmem_alloc);
1371         sk_mem_uncharge(sk, len);
1372 }
1373 EXPORT_SYMBOL(sock_rfree);
1374
1375
1376 int sock_i_uid(struct sock *sk)
1377 {
1378         int uid;
1379
1380         read_lock_bh(&sk->sk_callback_lock);
1381         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1382         read_unlock_bh(&sk->sk_callback_lock);
1383         return uid;
1384 }
1385 EXPORT_SYMBOL(sock_i_uid);
1386
1387 unsigned long sock_i_ino(struct sock *sk)
1388 {
1389         unsigned long ino;
1390
1391         read_lock_bh(&sk->sk_callback_lock);
1392         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1393         read_unlock_bh(&sk->sk_callback_lock);
1394         return ino;
1395 }
1396 EXPORT_SYMBOL(sock_i_ino);
1397
1398 /*
1399  * Allocate a skb from the socket's send buffer.
1400  */
1401 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1402                              gfp_t priority)
1403 {
1404         if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1405                 struct sk_buff *skb = alloc_skb(size, priority);
1406                 if (skb) {
1407                         skb_set_owner_w(skb, sk);
1408                         return skb;
1409                 }
1410         }
1411         return NULL;
1412 }
1413 EXPORT_SYMBOL(sock_wmalloc);
1414
1415 /*
1416  * Allocate a skb from the socket's receive buffer.
1417  */
1418 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1419                              gfp_t priority)
1420 {
1421         if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1422                 struct sk_buff *skb = alloc_skb(size, priority);
1423                 if (skb) {
1424                         skb_set_owner_r(skb, sk);
1425                         return skb;
1426                 }
1427         }
1428         return NULL;
1429 }
1430
1431 /*
1432  * Allocate a memory block from the socket's option memory buffer.
1433  */
1434 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1435 {
1436         if ((unsigned)size <= sysctl_optmem_max &&
1437             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1438                 void *mem;
1439                 /* First do the add, to avoid the race if kmalloc
1440                  * might sleep.
1441                  */
1442                 atomic_add(size, &sk->sk_omem_alloc);
1443                 mem = kmalloc(size, priority);
1444                 if (mem)
1445                         return mem;
1446                 atomic_sub(size, &sk->sk_omem_alloc);
1447         }
1448         return NULL;
1449 }
1450 EXPORT_SYMBOL(sock_kmalloc);
1451
1452 /*
1453  * Free an option memory block.
1454  */
1455 void sock_kfree_s(struct sock *sk, void *mem, int size)
1456 {
1457         kfree(mem);
1458         atomic_sub(size, &sk->sk_omem_alloc);
1459 }
1460 EXPORT_SYMBOL(sock_kfree_s);
1461
1462 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1463    I think, these locks should be removed for datagram sockets.
1464  */
1465 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1466 {
1467         DEFINE_WAIT(wait);
1468
1469         clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1470         for (;;) {
1471                 if (!timeo)
1472                         break;
1473                 if (signal_pending(current))
1474                         break;
1475                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1476                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1477                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1478                         break;
1479                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1480                         break;
1481                 if (sk->sk_err)
1482                         break;
1483                 timeo = schedule_timeout(timeo);
1484         }
1485         finish_wait(sk_sleep(sk), &wait);
1486         return timeo;
1487 }
1488
1489
1490 /*
1491  *      Generic send/receive buffer handlers
1492  */
1493
1494 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1495                                      unsigned long data_len, int noblock,
1496                                      int *errcode)
1497 {
1498         struct sk_buff *skb;
1499         gfp_t gfp_mask;
1500         long timeo;
1501         int err;
1502
1503         gfp_mask = sk->sk_allocation;
1504         if (gfp_mask & __GFP_WAIT)
1505                 gfp_mask |= __GFP_REPEAT;
1506
1507         timeo = sock_sndtimeo(sk, noblock);
1508         while (1) {
1509                 err = sock_error(sk);
1510                 if (err != 0)
1511                         goto failure;
1512
1513                 err = -EPIPE;
1514                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1515                         goto failure;
1516
1517                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1518                         skb = alloc_skb(header_len, gfp_mask);
1519                         if (skb) {
1520                                 int npages;
1521                                 int i;
1522
1523                                 /* No pages, we're done... */
1524                                 if (!data_len)
1525                                         break;
1526
1527                                 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1528                                 skb->truesize += data_len;
1529                                 skb_shinfo(skb)->nr_frags = npages;
1530                                 for (i = 0; i < npages; i++) {
1531                                         struct page *page;
1532                                         skb_frag_t *frag;
1533
1534                                         page = alloc_pages(sk->sk_allocation, 0);
1535                                         if (!page) {
1536                                                 err = -ENOBUFS;
1537                                                 skb_shinfo(skb)->nr_frags = i;
1538                                                 kfree_skb(skb);
1539                                                 goto failure;
1540                                         }
1541
1542                                         frag = &skb_shinfo(skb)->frags[i];
1543                                         frag->page = page;
1544                                         frag->page_offset = 0;
1545                                         frag->size = (data_len >= PAGE_SIZE ?
1546                                                       PAGE_SIZE :
1547                                                       data_len);
1548                                         data_len -= PAGE_SIZE;
1549                                 }
1550
1551                                 /* Full success... */
1552                                 break;
1553                         }
1554                         err = -ENOBUFS;
1555                         goto failure;
1556                 }
1557                 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1558                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1559                 err = -EAGAIN;
1560                 if (!timeo)
1561                         goto failure;
1562                 if (signal_pending(current))
1563                         goto interrupted;
1564                 timeo = sock_wait_for_wmem(sk, timeo);
1565         }
1566
1567         skb_set_owner_w(skb, sk);
1568         return skb;
1569
1570 interrupted:
1571         err = sock_intr_errno(timeo);
1572 failure:
1573         *errcode = err;
1574         return NULL;
1575 }
1576 EXPORT_SYMBOL(sock_alloc_send_pskb);
1577
1578 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1579                                     int noblock, int *errcode)
1580 {
1581         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1582 }
1583 EXPORT_SYMBOL(sock_alloc_send_skb);
1584
1585 static void __lock_sock(struct sock *sk)
1586         __releases(&sk->sk_lock.slock)
1587         __acquires(&sk->sk_lock.slock)
1588 {
1589         DEFINE_WAIT(wait);
1590
1591         for (;;) {
1592                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1593                                         TASK_UNINTERRUPTIBLE);
1594                 spin_unlock_bh(&sk->sk_lock.slock);
1595                 schedule();
1596                 spin_lock_bh(&sk->sk_lock.slock);
1597                 if (!sock_owned_by_user(sk))
1598                         break;
1599         }
1600         finish_wait(&sk->sk_lock.wq, &wait);
1601 }
1602
1603 static void __release_sock(struct sock *sk)
1604         __releases(&sk->sk_lock.slock)
1605         __acquires(&sk->sk_lock.slock)
1606 {
1607         struct sk_buff *skb = sk->sk_backlog.head;
1608
1609         do {
1610                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1611                 bh_unlock_sock(sk);
1612
1613                 do {
1614                         struct sk_buff *next = skb->next;
1615
1616                         WARN_ON_ONCE(skb_dst_is_noref(skb));
1617                         skb->next = NULL;
1618                         sk_backlog_rcv(sk, skb);
1619
1620                         /*
1621                          * We are in process context here with softirqs
1622                          * disabled, use cond_resched_softirq() to preempt.
1623                          * This is safe to do because we've taken the backlog
1624                          * queue private:
1625                          */
1626                         cond_resched_softirq();
1627
1628                         skb = next;
1629                 } while (skb != NULL);
1630
1631                 bh_lock_sock(sk);
1632         } while ((skb = sk->sk_backlog.head) != NULL);
1633
1634         /*
1635          * Doing the zeroing here guarantee we can not loop forever
1636          * while a wild producer attempts to flood us.
1637          */
1638         sk->sk_backlog.len = 0;
1639 }
1640
1641 /**
1642  * sk_wait_data - wait for data to arrive at sk_receive_queue
1643  * @sk:    sock to wait on
1644  * @timeo: for how long
1645  *
1646  * Now socket state including sk->sk_err is changed only under lock,
1647  * hence we may omit checks after joining wait queue.
1648  * We check receive queue before schedule() only as optimization;
1649  * it is very likely that release_sock() added new data.
1650  */
1651 int sk_wait_data(struct sock *sk, long *timeo)
1652 {
1653         int rc;
1654         DEFINE_WAIT(wait);
1655
1656         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1657         set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1658         rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1659         clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1660         finish_wait(sk_sleep(sk), &wait);
1661         return rc;
1662 }
1663 EXPORT_SYMBOL(sk_wait_data);
1664
1665 /**
1666  *      __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1667  *      @sk: socket
1668  *      @size: memory size to allocate
1669  *      @kind: allocation type
1670  *
1671  *      If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1672  *      rmem allocation. This function assumes that protocols which have
1673  *      memory_pressure use sk_wmem_queued as write buffer accounting.
1674  */
1675 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1676 {
1677         struct proto *prot = sk->sk_prot;
1678         int amt = sk_mem_pages(size);
1679         long allocated;
1680
1681         sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1682         allocated = atomic_long_add_return(amt, prot->memory_allocated);
1683
1684         /* Under limit. */
1685         if (allocated <= prot->sysctl_mem[0]) {
1686                 if (prot->memory_pressure && *prot->memory_pressure)
1687                         *prot->memory_pressure = 0;
1688                 return 1;
1689         }
1690
1691         /* Under pressure. */
1692         if (allocated > prot->sysctl_mem[1])
1693                 if (prot->enter_memory_pressure)
1694                         prot->enter_memory_pressure(sk);
1695
1696         /* Over hard limit. */
1697         if (allocated > prot->sysctl_mem[2])
1698                 goto suppress_allocation;
1699
1700         /* guarantee minimum buffer size under pressure */
1701         if (kind == SK_MEM_RECV) {
1702                 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1703                         return 1;
1704         } else { /* SK_MEM_SEND */
1705                 if (sk->sk_type == SOCK_STREAM) {
1706                         if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1707                                 return 1;
1708                 } else if (atomic_read(&sk->sk_wmem_alloc) <
1709                            prot->sysctl_wmem[0])
1710                                 return 1;
1711         }
1712
1713         if (prot->memory_pressure) {
1714                 int alloc;
1715
1716                 if (!*prot->memory_pressure)
1717                         return 1;
1718                 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1719                 if (prot->sysctl_mem[2] > alloc *
1720                     sk_mem_pages(sk->sk_wmem_queued +
1721                                  atomic_read(&sk->sk_rmem_alloc) +
1722                                  sk->sk_forward_alloc))
1723                         return 1;
1724         }
1725
1726 suppress_allocation:
1727
1728         if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1729                 sk_stream_moderate_sndbuf(sk);
1730
1731                 /* Fail only if socket is _under_ its sndbuf.
1732                  * In this case we cannot block, so that we have to fail.
1733                  */
1734                 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1735                         return 1;
1736         }
1737
1738         /* Alas. Undo changes. */
1739         sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1740         atomic_long_sub(amt, prot->memory_allocated);
1741         return 0;
1742 }
1743 EXPORT_SYMBOL(__sk_mem_schedule);
1744
1745 /**
1746  *      __sk_reclaim - reclaim memory_allocated
1747  *      @sk: socket
1748  */
1749 void __sk_mem_reclaim(struct sock *sk)
1750 {
1751         struct proto *prot = sk->sk_prot;
1752
1753         atomic_long_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1754                    prot->memory_allocated);
1755         sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1756
1757         if (prot->memory_pressure && *prot->memory_pressure &&
1758             (atomic_long_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1759                 *prot->memory_pressure = 0;
1760 }
1761 EXPORT_SYMBOL(__sk_mem_reclaim);
1762
1763
1764 /*
1765  * Set of default routines for initialising struct proto_ops when
1766  * the protocol does not support a particular function. In certain
1767  * cases where it makes no sense for a protocol to have a "do nothing"
1768  * function, some default processing is provided.
1769  */
1770
1771 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1772 {
1773         return -EOPNOTSUPP;
1774 }
1775 EXPORT_SYMBOL(sock_no_bind);
1776
1777 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1778                     int len, int flags)
1779 {
1780         return -EOPNOTSUPP;
1781 }
1782 EXPORT_SYMBOL(sock_no_connect);
1783
1784 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1785 {
1786         return -EOPNOTSUPP;
1787 }
1788 EXPORT_SYMBOL(sock_no_socketpair);
1789
1790 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1791 {
1792         return -EOPNOTSUPP;
1793 }
1794 EXPORT_SYMBOL(sock_no_accept);
1795
1796 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1797                     int *len, int peer)
1798 {
1799         return -EOPNOTSUPP;
1800 }
1801 EXPORT_SYMBOL(sock_no_getname);
1802
1803 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1804 {
1805         return 0;
1806 }
1807 EXPORT_SYMBOL(sock_no_poll);
1808
1809 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1810 {
1811         return -EOPNOTSUPP;
1812 }
1813 EXPORT_SYMBOL(sock_no_ioctl);
1814
1815 int sock_no_listen(struct socket *sock, int backlog)
1816 {
1817         return -EOPNOTSUPP;
1818 }
1819 EXPORT_SYMBOL(sock_no_listen);
1820
1821 int sock_no_shutdown(struct socket *sock, int how)
1822 {
1823         return -EOPNOTSUPP;
1824 }
1825 EXPORT_SYMBOL(sock_no_shutdown);
1826
1827 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1828                     char __user *optval, unsigned int optlen)
1829 {
1830         return -EOPNOTSUPP;
1831 }
1832 EXPORT_SYMBOL(sock_no_setsockopt);
1833
1834 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1835                     char __user *optval, int __user *optlen)
1836 {
1837         return -EOPNOTSUPP;
1838 }
1839 EXPORT_SYMBOL(sock_no_getsockopt);
1840
1841 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1842                     size_t len)
1843 {
1844         return -EOPNOTSUPP;
1845 }
1846 EXPORT_SYMBOL(sock_no_sendmsg);
1847
1848 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1849                     size_t len, int flags)
1850 {
1851         return -EOPNOTSUPP;
1852 }
1853 EXPORT_SYMBOL(sock_no_recvmsg);
1854
1855 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1856 {
1857         /* Mirror missing mmap method error code */
1858         return -ENODEV;
1859 }
1860 EXPORT_SYMBOL(sock_no_mmap);
1861
1862 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1863 {
1864         ssize_t res;
1865         struct msghdr msg = {.msg_flags = flags};
1866         struct kvec iov;
1867         char *kaddr = kmap(page);
1868         iov.iov_base = kaddr + offset;
1869         iov.iov_len = size;
1870         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1871         kunmap(page);
1872         return res;
1873 }
1874 EXPORT_SYMBOL(sock_no_sendpage);
1875
1876 /*
1877  *      Default Socket Callbacks
1878  */
1879
1880 static void sock_def_wakeup(struct sock *sk)
1881 {
1882         struct socket_wq *wq;
1883
1884         rcu_read_lock();
1885         wq = rcu_dereference(sk->sk_wq);
1886         if (wq_has_sleeper(wq))
1887                 wake_up_interruptible_all(&wq->wait);
1888         rcu_read_unlock();
1889 }
1890
1891 static void sock_def_error_report(struct sock *sk)
1892 {
1893         struct socket_wq *wq;
1894
1895         rcu_read_lock();
1896         wq = rcu_dereference(sk->sk_wq);
1897         if (wq_has_sleeper(wq))
1898                 wake_up_interruptible_poll(&wq->wait, POLLERR);
1899         sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1900         rcu_read_unlock();
1901 }
1902
1903 static void sock_def_readable(struct sock *sk, int len)
1904 {
1905         struct socket_wq *wq;
1906
1907         rcu_read_lock();
1908         wq = rcu_dereference(sk->sk_wq);
1909         if (wq_has_sleeper(wq))
1910                 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
1911                                                 POLLRDNORM | POLLRDBAND);
1912         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1913         rcu_read_unlock();
1914 }
1915
1916 static void sock_def_write_space(struct sock *sk)
1917 {
1918         struct socket_wq *wq;
1919
1920         rcu_read_lock();
1921
1922         /* Do not wake up a writer until he can make "significant"
1923          * progress.  --DaveM
1924          */
1925         if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1926                 wq = rcu_dereference(sk->sk_wq);
1927                 if (wq_has_sleeper(wq))
1928                         wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1929                                                 POLLWRNORM | POLLWRBAND);
1930
1931                 /* Should agree with poll, otherwise some programs break */
1932                 if (sock_writeable(sk))
1933                         sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1934         }
1935
1936         rcu_read_unlock();
1937 }
1938
1939 static void sock_def_destruct(struct sock *sk)
1940 {
1941         kfree(sk->sk_protinfo);
1942 }
1943
1944 void sk_send_sigurg(struct sock *sk)
1945 {
1946         if (sk->sk_socket && sk->sk_socket->file)
1947                 if (send_sigurg(&sk->sk_socket->file->f_owner))
1948                         sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1949 }
1950 EXPORT_SYMBOL(sk_send_sigurg);
1951
1952 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1953                     unsigned long expires)
1954 {
1955         if (!mod_timer(timer, expires))
1956                 sock_hold(sk);
1957 }
1958 EXPORT_SYMBOL(sk_reset_timer);
1959
1960 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1961 {
1962         if (timer_pending(timer) && del_timer(timer))
1963                 __sock_put(sk);
1964 }
1965 EXPORT_SYMBOL(sk_stop_timer);
1966
1967 void sock_init_data(struct socket *sock, struct sock *sk)
1968 {
1969         skb_queue_head_init(&sk->sk_receive_queue);
1970         skb_queue_head_init(&sk->sk_write_queue);
1971         skb_queue_head_init(&sk->sk_error_queue);
1972 #ifdef CONFIG_NET_DMA
1973         skb_queue_head_init(&sk->sk_async_wait_queue);
1974 #endif
1975
1976         sk->sk_send_head        =       NULL;
1977
1978         init_timer(&sk->sk_timer);
1979
1980         sk->sk_allocation       =       GFP_KERNEL;
1981         sk->sk_rcvbuf           =       sysctl_rmem_default;
1982         sk->sk_sndbuf           =       sysctl_wmem_default;
1983         sk->sk_state            =       TCP_CLOSE;
1984         sk_set_socket(sk, sock);
1985
1986         sock_set_flag(sk, SOCK_ZAPPED);
1987
1988         if (sock) {
1989                 sk->sk_type     =       sock->type;
1990                 sk->sk_wq       =       sock->wq;
1991                 sock->sk        =       sk;
1992         } else
1993                 sk->sk_wq       =       NULL;
1994
1995         spin_lock_init(&sk->sk_dst_lock);
1996         rwlock_init(&sk->sk_callback_lock);
1997         lockdep_set_class_and_name(&sk->sk_callback_lock,
1998                         af_callback_keys + sk->sk_family,
1999                         af_family_clock_key_strings[sk->sk_family]);
2000
2001         sk->sk_state_change     =       sock_def_wakeup;
2002         sk->sk_data_ready       =       sock_def_readable;
2003         sk->sk_write_space      =       sock_def_write_space;
2004         sk->sk_error_report     =       sock_def_error_report;
2005         sk->sk_destruct         =       sock_def_destruct;
2006
2007         sk->sk_sndmsg_page      =       NULL;
2008         sk->sk_sndmsg_off       =       0;
2009
2010         sk->sk_peer_pid         =       NULL;
2011         sk->sk_peer_cred        =       NULL;
2012         sk->sk_write_pending    =       0;
2013         sk->sk_rcvlowat         =       1;
2014         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
2015         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
2016
2017         sk->sk_stamp = ktime_set(-1L, 0);
2018
2019         /*
2020          * Before updating sk_refcnt, we must commit prior changes to memory
2021          * (Documentation/RCU/rculist_nulls.txt for details)
2022          */
2023         smp_wmb();
2024         atomic_set(&sk->sk_refcnt, 1);
2025         atomic_set(&sk->sk_drops, 0);
2026 }
2027 EXPORT_SYMBOL(sock_init_data);
2028
2029 void lock_sock_nested(struct sock *sk, int subclass)
2030 {
2031         might_sleep();
2032         spin_lock_bh(&sk->sk_lock.slock);
2033         if (sk->sk_lock.owned)
2034                 __lock_sock(sk);
2035         sk->sk_lock.owned = 1;
2036         spin_unlock(&sk->sk_lock.slock);
2037         /*
2038          * The sk_lock has mutex_lock() semantics here:
2039          */
2040         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2041         local_bh_enable();
2042 }
2043 EXPORT_SYMBOL(lock_sock_nested);
2044
2045 void release_sock(struct sock *sk)
2046 {
2047         /*
2048          * The sk_lock has mutex_unlock() semantics:
2049          */
2050         mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2051
2052         spin_lock_bh(&sk->sk_lock.slock);
2053         if (sk->sk_backlog.tail)
2054                 __release_sock(sk);
2055         sk->sk_lock.owned = 0;
2056         if (waitqueue_active(&sk->sk_lock.wq))
2057                 wake_up(&sk->sk_lock.wq);
2058         spin_unlock_bh(&sk->sk_lock.slock);
2059 }
2060 EXPORT_SYMBOL(release_sock);
2061
2062 /**
2063  * lock_sock_fast - fast version of lock_sock
2064  * @sk: socket
2065  *
2066  * This version should be used for very small section, where process wont block
2067  * return false if fast path is taken
2068  *   sk_lock.slock locked, owned = 0, BH disabled
2069  * return true if slow path is taken
2070  *   sk_lock.slock unlocked, owned = 1, BH enabled
2071  */
2072 bool lock_sock_fast(struct sock *sk)
2073 {
2074         might_sleep();
2075         spin_lock_bh(&sk->sk_lock.slock);
2076
2077         if (!sk->sk_lock.owned)
2078                 /*
2079                  * Note : We must disable BH
2080                  */
2081                 return false;
2082
2083         __lock_sock(sk);
2084         sk->sk_lock.owned = 1;
2085         spin_unlock(&sk->sk_lock.slock);
2086         /*
2087          * The sk_lock has mutex_lock() semantics here:
2088          */
2089         mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2090         local_bh_enable();
2091         return true;
2092 }
2093 EXPORT_SYMBOL(lock_sock_fast);
2094
2095 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2096 {
2097         struct timeval tv;
2098         if (!sock_flag(sk, SOCK_TIMESTAMP))
2099                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2100         tv = ktime_to_timeval(sk->sk_stamp);
2101         if (tv.tv_sec == -1)
2102                 return -ENOENT;
2103         if (tv.tv_sec == 0) {
2104                 sk->sk_stamp = ktime_get_real();
2105                 tv = ktime_to_timeval(sk->sk_stamp);
2106         }
2107         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2108 }
2109 EXPORT_SYMBOL(sock_get_timestamp);
2110
2111 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2112 {
2113         struct timespec ts;
2114         if (!sock_flag(sk, SOCK_TIMESTAMP))
2115                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2116         ts = ktime_to_timespec(sk->sk_stamp);
2117         if (ts.tv_sec == -1)
2118                 return -ENOENT;
2119         if (ts.tv_sec == 0) {
2120                 sk->sk_stamp = ktime_get_real();
2121                 ts = ktime_to_timespec(sk->sk_stamp);
2122         }
2123         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2124 }
2125 EXPORT_SYMBOL(sock_get_timestampns);
2126
2127 void sock_enable_timestamp(struct sock *sk, int flag)
2128 {
2129         if (!sock_flag(sk, flag)) {
2130                 sock_set_flag(sk, flag);
2131                 /*
2132                  * we just set one of the two flags which require net
2133                  * time stamping, but time stamping might have been on
2134                  * already because of the other one
2135                  */
2136                 if (!sock_flag(sk,
2137                                 flag == SOCK_TIMESTAMP ?
2138                                 SOCK_TIMESTAMPING_RX_SOFTWARE :
2139                                 SOCK_TIMESTAMP))
2140                         net_enable_timestamp();
2141         }
2142 }
2143
2144 /*
2145  *      Get a socket option on an socket.
2146  *
2147  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
2148  *      asynchronous errors should be reported by getsockopt. We assume
2149  *      this means if you specify SO_ERROR (otherwise whats the point of it).
2150  */
2151 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2152                            char __user *optval, int __user *optlen)
2153 {
2154         struct sock *sk = sock->sk;
2155
2156         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2157 }
2158 EXPORT_SYMBOL(sock_common_getsockopt);
2159
2160 #ifdef CONFIG_COMPAT
2161 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2162                                   char __user *optval, int __user *optlen)
2163 {
2164         struct sock *sk = sock->sk;
2165
2166         if (sk->sk_prot->compat_getsockopt != NULL)
2167                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2168                                                       optval, optlen);
2169         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2170 }
2171 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2172 #endif
2173
2174 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2175                         struct msghdr *msg, size_t size, int flags)
2176 {
2177         struct sock *sk = sock->sk;
2178         int addr_len = 0;
2179         int err;
2180
2181         err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2182                                    flags & ~MSG_DONTWAIT, &addr_len);
2183         if (err >= 0)
2184                 msg->msg_namelen = addr_len;
2185         return err;
2186 }
2187 EXPORT_SYMBOL(sock_common_recvmsg);
2188
2189 /*
2190  *      Set socket options on an inet socket.
2191  */
2192 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2193                            char __user *optval, unsigned int optlen)
2194 {
2195         struct sock *sk = sock->sk;
2196
2197         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2198 }
2199 EXPORT_SYMBOL(sock_common_setsockopt);
2200
2201 #ifdef CONFIG_COMPAT
2202 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2203                                   char __user *optval, unsigned int optlen)
2204 {
2205         struct sock *sk = sock->sk;
2206
2207         if (sk->sk_prot->compat_setsockopt != NULL)
2208                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2209                                                       optval, optlen);
2210         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2211 }
2212 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2213 #endif
2214
2215 void sk_common_release(struct sock *sk)
2216 {
2217         if (sk->sk_prot->destroy)
2218                 sk->sk_prot->destroy(sk);
2219
2220         /*
2221          * Observation: when sock_common_release is called, processes have
2222          * no access to socket. But net still has.
2223          * Step one, detach it from networking:
2224          *
2225          * A. Remove from hash tables.
2226          */
2227
2228         sk->sk_prot->unhash(sk);
2229
2230         /*
2231          * In this point socket cannot receive new packets, but it is possible
2232          * that some packets are in flight because some CPU runs receiver and
2233          * did hash table lookup before we unhashed socket. They will achieve
2234          * receive queue and will be purged by socket destructor.
2235          *
2236          * Also we still have packets pending on receive queue and probably,
2237          * our own packets waiting in device queues. sock_destroy will drain
2238          * receive queue, but transmitted packets will delay socket destruction
2239          * until the last reference will be released.
2240          */
2241
2242         sock_orphan(sk);
2243
2244         xfrm_sk_free_policy(sk);
2245
2246         sk_refcnt_debug_release(sk);
2247         sock_put(sk);
2248 }
2249 EXPORT_SYMBOL(sk_common_release);
2250
2251 static DEFINE_RWLOCK(proto_list_lock);
2252 static LIST_HEAD(proto_list);
2253
2254 #ifdef CONFIG_PROC_FS
2255 #define PROTO_INUSE_NR  64      /* should be enough for the first time */
2256 struct prot_inuse {
2257         int val[PROTO_INUSE_NR];
2258 };
2259
2260 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2261
2262 #ifdef CONFIG_NET_NS
2263 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2264 {
2265         __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2266 }
2267 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2268
2269 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2270 {
2271         int cpu, idx = prot->inuse_idx;
2272         int res = 0;
2273
2274         for_each_possible_cpu(cpu)
2275                 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2276
2277         return res >= 0 ? res : 0;
2278 }
2279 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2280
2281 static int __net_init sock_inuse_init_net(struct net *net)
2282 {
2283         net->core.inuse = alloc_percpu(struct prot_inuse);
2284         return net->core.inuse ? 0 : -ENOMEM;
2285 }
2286
2287 static void __net_exit sock_inuse_exit_net(struct net *net)
2288 {
2289         free_percpu(net->core.inuse);
2290 }
2291
2292 static struct pernet_operations net_inuse_ops = {
2293         .init = sock_inuse_init_net,
2294         .exit = sock_inuse_exit_net,
2295 };
2296
2297 static __init int net_inuse_init(void)
2298 {
2299         if (register_pernet_subsys(&net_inuse_ops))
2300                 panic("Cannot initialize net inuse counters");
2301
2302         return 0;
2303 }
2304
2305 core_initcall(net_inuse_init);
2306 #else
2307 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2308
2309 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2310 {
2311         __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2312 }
2313 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2314
2315 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2316 {
2317         int cpu, idx = prot->inuse_idx;
2318         int res = 0;
2319
2320         for_each_possible_cpu(cpu)
2321                 res += per_cpu(prot_inuse, cpu).val[idx];
2322
2323         return res >= 0 ? res : 0;
2324 }
2325 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2326 #endif
2327
2328 static void assign_proto_idx(struct proto *prot)
2329 {
2330         prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2331
2332         if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2333                 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2334                 return;
2335         }
2336
2337         set_bit(prot->inuse_idx, proto_inuse_idx);
2338 }
2339
2340 static void release_proto_idx(struct proto *prot)
2341 {
2342         if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2343                 clear_bit(prot->inuse_idx, proto_inuse_idx);
2344 }
2345 #else
2346 static inline void assign_proto_idx(struct proto *prot)
2347 {
2348 }
2349
2350 static inline void release_proto_idx(struct proto *prot)
2351 {
2352 }
2353 #endif
2354
2355 int proto_register(struct proto *prot, int alloc_slab)
2356 {
2357         if (alloc_slab) {
2358                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2359                                         SLAB_HWCACHE_ALIGN | prot->slab_flags,
2360                                         NULL);
2361
2362                 if (prot->slab == NULL) {
2363                         printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2364                                prot->name);
2365                         goto out;
2366                 }
2367
2368                 if (prot->rsk_prot != NULL) {
2369                         prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2370                         if (prot->rsk_prot->slab_name == NULL)
2371                                 goto out_free_sock_slab;
2372
2373                         prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2374                                                                  prot->rsk_prot->obj_size, 0,
2375                                                                  SLAB_HWCACHE_ALIGN, NULL);
2376
2377                         if (prot->rsk_prot->slab == NULL) {
2378                                 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2379                                        prot->name);
2380                                 goto out_free_request_sock_slab_name;
2381                         }
2382                 }
2383
2384                 if (prot->twsk_prot != NULL) {
2385                         prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2386
2387                         if (prot->twsk_prot->twsk_slab_name == NULL)
2388                                 goto out_free_request_sock_slab;
2389
2390                         prot->twsk_prot->twsk_slab =
2391                                 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2392                                                   prot->twsk_prot->twsk_obj_size,
2393                                                   0,
2394                                                   SLAB_HWCACHE_ALIGN |
2395                                                         prot->slab_flags,
2396                                                   NULL);
2397                         if (prot->twsk_prot->twsk_slab == NULL)
2398                                 goto out_free_timewait_sock_slab_name;
2399                 }
2400         }
2401
2402         write_lock(&proto_list_lock);
2403         list_add(&prot->node, &proto_list);
2404         assign_proto_idx(prot);
2405         write_unlock(&proto_list_lock);
2406         return 0;
2407
2408 out_free_timewait_sock_slab_name:
2409         kfree(prot->twsk_prot->twsk_slab_name);
2410 out_free_request_sock_slab:
2411         if (prot->rsk_prot && prot->rsk_prot->slab) {
2412                 kmem_cache_destroy(prot->rsk_prot->slab);
2413                 prot->rsk_prot->slab = NULL;
2414         }
2415 out_free_request_sock_slab_name:
2416         if (prot->rsk_prot)
2417                 kfree(prot->rsk_prot->slab_name);
2418 out_free_sock_slab:
2419         kmem_cache_destroy(prot->slab);
2420         prot->slab = NULL;
2421 out:
2422         return -ENOBUFS;
2423 }
2424 EXPORT_SYMBOL(proto_register);
2425
2426 void proto_unregister(struct proto *prot)
2427 {
2428         write_lock(&proto_list_lock);
2429         release_proto_idx(prot);
2430         list_del(&prot->node);
2431         write_unlock(&proto_list_lock);
2432
2433         if (prot->slab != NULL) {
2434                 kmem_cache_destroy(prot->slab);
2435                 prot->slab = NULL;
2436         }
2437
2438         if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2439                 kmem_cache_destroy(prot->rsk_prot->slab);
2440                 kfree(prot->rsk_prot->slab_name);
2441                 prot->rsk_prot->slab = NULL;
2442         }
2443
2444         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2445                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2446                 kfree(prot->twsk_prot->twsk_slab_name);
2447                 prot->twsk_prot->twsk_slab = NULL;
2448         }
2449 }
2450 EXPORT_SYMBOL(proto_unregister);
2451
2452 #ifdef CONFIG_PROC_FS
2453 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2454         __acquires(proto_list_lock)
2455 {
2456         read_lock(&proto_list_lock);
2457         return seq_list_start_head(&proto_list, *pos);
2458 }
2459
2460 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2461 {
2462         return seq_list_next(v, &proto_list, pos);
2463 }
2464
2465 static void proto_seq_stop(struct seq_file *seq, void *v)
2466         __releases(proto_list_lock)
2467 {
2468         read_unlock(&proto_list_lock);
2469 }
2470
2471 static char proto_method_implemented(const void *method)
2472 {
2473         return method == NULL ? 'n' : 'y';
2474 }
2475
2476 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2477 {
2478         seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2479                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2480                    proto->name,
2481                    proto->obj_size,
2482                    sock_prot_inuse_get(seq_file_net(seq), proto),
2483                    proto->memory_allocated != NULL ? atomic_long_read(proto->memory_allocated) : -1L,
2484                    proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2485                    proto->max_header,
2486                    proto->slab == NULL ? "no" : "yes",
2487                    module_name(proto->owner),
2488                    proto_method_implemented(proto->close),
2489                    proto_method_implemented(proto->connect),
2490                    proto_method_implemented(proto->disconnect),
2491                    proto_method_implemented(proto->accept),
2492                    proto_method_implemented(proto->ioctl),
2493                    proto_method_implemented(proto->init),
2494                    proto_method_implemented(proto->destroy),
2495                    proto_method_implemented(proto->shutdown),
2496                    proto_method_implemented(proto->setsockopt),
2497                    proto_method_implemented(proto->getsockopt),
2498                    proto_method_implemented(proto->sendmsg),
2499                    proto_method_implemented(proto->recvmsg),
2500                    proto_method_implemented(proto->sendpage),
2501                    proto_method_implemented(proto->bind),
2502                    proto_method_implemented(proto->backlog_rcv),
2503                    proto_method_implemented(proto->hash),
2504                    proto_method_implemented(proto->unhash),
2505                    proto_method_implemented(proto->get_port),
2506                    proto_method_implemented(proto->enter_memory_pressure));
2507 }
2508
2509 static int proto_seq_show(struct seq_file *seq, void *v)
2510 {
2511         if (v == &proto_list)
2512                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2513                            "protocol",
2514                            "size",
2515                            "sockets",
2516                            "memory",
2517                            "press",
2518                            "maxhdr",
2519                            "slab",
2520                            "module",
2521                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2522         else
2523                 proto_seq_printf(seq, list_entry(v, struct proto, node));
2524         return 0;
2525 }
2526
2527 static const struct seq_operations proto_seq_ops = {
2528         .start  = proto_seq_start,
2529         .next   = proto_seq_next,
2530         .stop   = proto_seq_stop,
2531         .show   = proto_seq_show,
2532 };
2533
2534 static int proto_seq_open(struct inode *inode, struct file *file)
2535 {
2536         return seq_open_net(inode, file, &proto_seq_ops,
2537                             sizeof(struct seq_net_private));
2538 }
2539
2540 static const struct file_operations proto_seq_fops = {
2541         .owner          = THIS_MODULE,
2542         .open           = proto_seq_open,
2543         .read           = seq_read,
2544         .llseek         = seq_lseek,
2545         .release        = seq_release_net,
2546 };
2547
2548 static __net_init int proto_init_net(struct net *net)
2549 {
2550         if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2551                 return -ENOMEM;
2552
2553         return 0;
2554 }
2555
2556 static __net_exit void proto_exit_net(struct net *net)
2557 {
2558         proc_net_remove(net, "protocols");
2559 }
2560
2561
2562 static __net_initdata struct pernet_operations proto_net_ops = {
2563         .init = proto_init_net,
2564         .exit = proto_exit_net,
2565 };
2566
2567 static int __init proto_init(void)
2568 {
2569         return register_pernet_subsys(&proto_net_ops);
2570 }
2571
2572 subsys_initcall(proto_init);
2573
2574 #endif /* PROC_FS */