Merge branch 'printk-cleanups'
[cascardo/linux.git] / net / ipv6 / ip6_fib.c
1 /*
2  *      Linux INET6 implementation
3  *      Forwarding Information Database
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *      Changes:
14  *      Yuji SEKIYA @USAGI:     Support default route on router node;
15  *                              remove ip6_null_entry from the top of
16  *                              routing table.
17  *      Ville Nuorvala:         Fixed routing subtrees.
18  */
19
20 #define pr_fmt(fmt) "IPv6: " fmt
21
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39
40 #define RT6_DEBUG 2
41
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49
50 struct fib6_cleaner {
51         struct fib6_walker w;
52         struct net *net;
53         int (*func)(struct rt6_info *, void *arg);
54         int sernum;
55         void *arg;
56 };
57
58 #ifdef CONFIG_IPV6_SUBTREES
59 #define FWS_INIT FWS_S
60 #else
61 #define FWS_INIT FWS_L
62 #endif
63
64 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67 static int fib6_walk(struct net *net, struct fib6_walker *w);
68 static int fib6_walk_continue(struct fib6_walker *w);
69
70 /*
71  *      A routing update causes an increase of the serial number on the
72  *      affected subtree. This allows for cached routes to be asynchronously
73  *      tested when modifications are made to the destination cache as a
74  *      result of redirects, path MTU changes, etc.
75  */
76
77 static void fib6_gc_timer_cb(unsigned long arg);
78
79 #define FOR_WALKERS(net, w) \
80         list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81
82 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83 {
84         write_lock_bh(&net->ipv6.fib6_walker_lock);
85         list_add(&w->lh, &net->ipv6.fib6_walkers);
86         write_unlock_bh(&net->ipv6.fib6_walker_lock);
87 }
88
89 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90 {
91         write_lock_bh(&net->ipv6.fib6_walker_lock);
92         list_del(&w->lh);
93         write_unlock_bh(&net->ipv6.fib6_walker_lock);
94 }
95
96 static int fib6_new_sernum(struct net *net)
97 {
98         int new, old;
99
100         do {
101                 old = atomic_read(&net->ipv6.fib6_sernum);
102                 new = old < INT_MAX ? old + 1 : 1;
103         } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104                                 old, new) != old);
105         return new;
106 }
107
108 enum {
109         FIB6_NO_SERNUM_CHANGE = 0,
110 };
111
112 /*
113  *      Auxiliary address test functions for the radix tree.
114  *
115  *      These assume a 32bit processor (although it will work on
116  *      64bit processors)
117  */
118
119 /*
120  *      test bit
121  */
122 #if defined(__LITTLE_ENDIAN)
123 # define BITOP_BE32_SWIZZLE     (0x1F & ~7)
124 #else
125 # define BITOP_BE32_SWIZZLE     0
126 #endif
127
128 static __be32 addr_bit_set(const void *token, int fn_bit)
129 {
130         const __be32 *addr = token;
131         /*
132          * Here,
133          *      1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134          * is optimized version of
135          *      htonl(1 << ((~fn_bit)&0x1F))
136          * See include/asm-generic/bitops/le.h.
137          */
138         return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139                addr[fn_bit >> 5];
140 }
141
142 static struct fib6_node *node_alloc(void)
143 {
144         struct fib6_node *fn;
145
146         fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147
148         return fn;
149 }
150
151 static void node_free(struct fib6_node *fn)
152 {
153         kmem_cache_free(fib6_node_kmem, fn);
154 }
155
156 static void rt6_rcu_free(struct rt6_info *rt)
157 {
158         call_rcu(&rt->dst.rcu_head, dst_rcu_free);
159 }
160
161 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
162 {
163         int cpu;
164
165         if (!non_pcpu_rt->rt6i_pcpu)
166                 return;
167
168         for_each_possible_cpu(cpu) {
169                 struct rt6_info **ppcpu_rt;
170                 struct rt6_info *pcpu_rt;
171
172                 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
173                 pcpu_rt = *ppcpu_rt;
174                 if (pcpu_rt) {
175                         rt6_rcu_free(pcpu_rt);
176                         *ppcpu_rt = NULL;
177                 }
178         }
179
180         free_percpu(non_pcpu_rt->rt6i_pcpu);
181         non_pcpu_rt->rt6i_pcpu = NULL;
182 }
183
184 static void rt6_release(struct rt6_info *rt)
185 {
186         if (atomic_dec_and_test(&rt->rt6i_ref)) {
187                 rt6_free_pcpu(rt);
188                 rt6_rcu_free(rt);
189         }
190 }
191
192 static void fib6_link_table(struct net *net, struct fib6_table *tb)
193 {
194         unsigned int h;
195
196         /*
197          * Initialize table lock at a single place to give lockdep a key,
198          * tables aren't visible prior to being linked to the list.
199          */
200         rwlock_init(&tb->tb6_lock);
201
202         h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
203
204         /*
205          * No protection necessary, this is the only list mutatation
206          * operation, tables never disappear once they exist.
207          */
208         hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
209 }
210
211 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
212
213 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
214 {
215         struct fib6_table *table;
216
217         table = kzalloc(sizeof(*table), GFP_ATOMIC);
218         if (table) {
219                 table->tb6_id = id;
220                 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
221                 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
222                 inet_peer_base_init(&table->tb6_peers);
223         }
224
225         return table;
226 }
227
228 struct fib6_table *fib6_new_table(struct net *net, u32 id)
229 {
230         struct fib6_table *tb;
231
232         if (id == 0)
233                 id = RT6_TABLE_MAIN;
234         tb = fib6_get_table(net, id);
235         if (tb)
236                 return tb;
237
238         tb = fib6_alloc_table(net, id);
239         if (tb)
240                 fib6_link_table(net, tb);
241
242         return tb;
243 }
244 EXPORT_SYMBOL_GPL(fib6_new_table);
245
246 struct fib6_table *fib6_get_table(struct net *net, u32 id)
247 {
248         struct fib6_table *tb;
249         struct hlist_head *head;
250         unsigned int h;
251
252         if (id == 0)
253                 id = RT6_TABLE_MAIN;
254         h = id & (FIB6_TABLE_HASHSZ - 1);
255         rcu_read_lock();
256         head = &net->ipv6.fib_table_hash[h];
257         hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
258                 if (tb->tb6_id == id) {
259                         rcu_read_unlock();
260                         return tb;
261                 }
262         }
263         rcu_read_unlock();
264
265         return NULL;
266 }
267 EXPORT_SYMBOL_GPL(fib6_get_table);
268
269 static void __net_init fib6_tables_init(struct net *net)
270 {
271         fib6_link_table(net, net->ipv6.fib6_main_tbl);
272         fib6_link_table(net, net->ipv6.fib6_local_tbl);
273 }
274 #else
275
276 struct fib6_table *fib6_new_table(struct net *net, u32 id)
277 {
278         return fib6_get_table(net, id);
279 }
280
281 struct fib6_table *fib6_get_table(struct net *net, u32 id)
282 {
283           return net->ipv6.fib6_main_tbl;
284 }
285
286 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
287                                    int flags, pol_lookup_t lookup)
288 {
289         struct rt6_info *rt;
290
291         rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
292         if (rt->rt6i_flags & RTF_REJECT &&
293             rt->dst.error == -EAGAIN) {
294                 ip6_rt_put(rt);
295                 rt = net->ipv6.ip6_null_entry;
296                 dst_hold(&rt->dst);
297         }
298
299         return &rt->dst;
300 }
301
302 static void __net_init fib6_tables_init(struct net *net)
303 {
304         fib6_link_table(net, net->ipv6.fib6_main_tbl);
305 }
306
307 #endif
308
309 static int fib6_dump_node(struct fib6_walker *w)
310 {
311         int res;
312         struct rt6_info *rt;
313
314         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
315                 res = rt6_dump_route(rt, w->args);
316                 if (res < 0) {
317                         /* Frame is full, suspend walking */
318                         w->leaf = rt;
319                         return 1;
320                 }
321         }
322         w->leaf = NULL;
323         return 0;
324 }
325
326 static void fib6_dump_end(struct netlink_callback *cb)
327 {
328         struct net *net = sock_net(cb->skb->sk);
329         struct fib6_walker *w = (void *)cb->args[2];
330
331         if (w) {
332                 if (cb->args[4]) {
333                         cb->args[4] = 0;
334                         fib6_walker_unlink(net, w);
335                 }
336                 cb->args[2] = 0;
337                 kfree(w);
338         }
339         cb->done = (void *)cb->args[3];
340         cb->args[1] = 3;
341 }
342
343 static int fib6_dump_done(struct netlink_callback *cb)
344 {
345         fib6_dump_end(cb);
346         return cb->done ? cb->done(cb) : 0;
347 }
348
349 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
350                            struct netlink_callback *cb)
351 {
352         struct net *net = sock_net(skb->sk);
353         struct fib6_walker *w;
354         int res;
355
356         w = (void *)cb->args[2];
357         w->root = &table->tb6_root;
358
359         if (cb->args[4] == 0) {
360                 w->count = 0;
361                 w->skip = 0;
362
363                 read_lock_bh(&table->tb6_lock);
364                 res = fib6_walk(net, w);
365                 read_unlock_bh(&table->tb6_lock);
366                 if (res > 0) {
367                         cb->args[4] = 1;
368                         cb->args[5] = w->root->fn_sernum;
369                 }
370         } else {
371                 if (cb->args[5] != w->root->fn_sernum) {
372                         /* Begin at the root if the tree changed */
373                         cb->args[5] = w->root->fn_sernum;
374                         w->state = FWS_INIT;
375                         w->node = w->root;
376                         w->skip = w->count;
377                 } else
378                         w->skip = 0;
379
380                 read_lock_bh(&table->tb6_lock);
381                 res = fib6_walk_continue(w);
382                 read_unlock_bh(&table->tb6_lock);
383                 if (res <= 0) {
384                         fib6_walker_unlink(net, w);
385                         cb->args[4] = 0;
386                 }
387         }
388
389         return res;
390 }
391
392 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
393 {
394         struct net *net = sock_net(skb->sk);
395         unsigned int h, s_h;
396         unsigned int e = 0, s_e;
397         struct rt6_rtnl_dump_arg arg;
398         struct fib6_walker *w;
399         struct fib6_table *tb;
400         struct hlist_head *head;
401         int res = 0;
402
403         s_h = cb->args[0];
404         s_e = cb->args[1];
405
406         w = (void *)cb->args[2];
407         if (!w) {
408                 /* New dump:
409                  *
410                  * 1. hook callback destructor.
411                  */
412                 cb->args[3] = (long)cb->done;
413                 cb->done = fib6_dump_done;
414
415                 /*
416                  * 2. allocate and initialize walker.
417                  */
418                 w = kzalloc(sizeof(*w), GFP_ATOMIC);
419                 if (!w)
420                         return -ENOMEM;
421                 w->func = fib6_dump_node;
422                 cb->args[2] = (long)w;
423         }
424
425         arg.skb = skb;
426         arg.cb = cb;
427         arg.net = net;
428         w->args = &arg;
429
430         rcu_read_lock();
431         for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
432                 e = 0;
433                 head = &net->ipv6.fib_table_hash[h];
434                 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
435                         if (e < s_e)
436                                 goto next;
437                         res = fib6_dump_table(tb, skb, cb);
438                         if (res != 0)
439                                 goto out;
440 next:
441                         e++;
442                 }
443         }
444 out:
445         rcu_read_unlock();
446         cb->args[1] = e;
447         cb->args[0] = h;
448
449         res = res < 0 ? res : skb->len;
450         if (res <= 0)
451                 fib6_dump_end(cb);
452         return res;
453 }
454
455 /*
456  *      Routing Table
457  *
458  *      return the appropriate node for a routing tree "add" operation
459  *      by either creating and inserting or by returning an existing
460  *      node.
461  */
462
463 static struct fib6_node *fib6_add_1(struct fib6_node *root,
464                                      struct in6_addr *addr, int plen,
465                                      int offset, int allow_create,
466                                      int replace_required, int sernum)
467 {
468         struct fib6_node *fn, *in, *ln;
469         struct fib6_node *pn = NULL;
470         struct rt6key *key;
471         int     bit;
472         __be32  dir = 0;
473
474         RT6_TRACE("fib6_add_1\n");
475
476         /* insert node in tree */
477
478         fn = root;
479
480         do {
481                 key = (struct rt6key *)((u8 *)fn->leaf + offset);
482
483                 /*
484                  *      Prefix match
485                  */
486                 if (plen < fn->fn_bit ||
487                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
488                         if (!allow_create) {
489                                 if (replace_required) {
490                                         pr_warn("Can't replace route, no match found\n");
491                                         return ERR_PTR(-ENOENT);
492                                 }
493                                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
494                         }
495                         goto insert_above;
496                 }
497
498                 /*
499                  *      Exact match ?
500                  */
501
502                 if (plen == fn->fn_bit) {
503                         /* clean up an intermediate node */
504                         if (!(fn->fn_flags & RTN_RTINFO)) {
505                                 rt6_release(fn->leaf);
506                                 fn->leaf = NULL;
507                         }
508
509                         fn->fn_sernum = sernum;
510
511                         return fn;
512                 }
513
514                 /*
515                  *      We have more bits to go
516                  */
517
518                 /* Try to walk down on tree. */
519                 fn->fn_sernum = sernum;
520                 dir = addr_bit_set(addr, fn->fn_bit);
521                 pn = fn;
522                 fn = dir ? fn->right : fn->left;
523         } while (fn);
524
525         if (!allow_create) {
526                 /* We should not create new node because
527                  * NLM_F_REPLACE was specified without NLM_F_CREATE
528                  * I assume it is safe to require NLM_F_CREATE when
529                  * REPLACE flag is used! Later we may want to remove the
530                  * check for replace_required, because according
531                  * to netlink specification, NLM_F_CREATE
532                  * MUST be specified if new route is created.
533                  * That would keep IPv6 consistent with IPv4
534                  */
535                 if (replace_required) {
536                         pr_warn("Can't replace route, no match found\n");
537                         return ERR_PTR(-ENOENT);
538                 }
539                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
540         }
541         /*
542          *      We walked to the bottom of tree.
543          *      Create new leaf node without children.
544          */
545
546         ln = node_alloc();
547
548         if (!ln)
549                 return ERR_PTR(-ENOMEM);
550         ln->fn_bit = plen;
551
552         ln->parent = pn;
553         ln->fn_sernum = sernum;
554
555         if (dir)
556                 pn->right = ln;
557         else
558                 pn->left  = ln;
559
560         return ln;
561
562
563 insert_above:
564         /*
565          * split since we don't have a common prefix anymore or
566          * we have a less significant route.
567          * we've to insert an intermediate node on the list
568          * this new node will point to the one we need to create
569          * and the current
570          */
571
572         pn = fn->parent;
573
574         /* find 1st bit in difference between the 2 addrs.
575
576            See comment in __ipv6_addr_diff: bit may be an invalid value,
577            but if it is >= plen, the value is ignored in any case.
578          */
579
580         bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
581
582         /*
583          *              (intermediate)[in]
584          *                /        \
585          *      (new leaf node)[ln] (old node)[fn]
586          */
587         if (plen > bit) {
588                 in = node_alloc();
589                 ln = node_alloc();
590
591                 if (!in || !ln) {
592                         if (in)
593                                 node_free(in);
594                         if (ln)
595                                 node_free(ln);
596                         return ERR_PTR(-ENOMEM);
597                 }
598
599                 /*
600                  * new intermediate node.
601                  * RTN_RTINFO will
602                  * be off since that an address that chooses one of
603                  * the branches would not match less specific routes
604                  * in the other branch
605                  */
606
607                 in->fn_bit = bit;
608
609                 in->parent = pn;
610                 in->leaf = fn->leaf;
611                 atomic_inc(&in->leaf->rt6i_ref);
612
613                 in->fn_sernum = sernum;
614
615                 /* update parent pointer */
616                 if (dir)
617                         pn->right = in;
618                 else
619                         pn->left  = in;
620
621                 ln->fn_bit = plen;
622
623                 ln->parent = in;
624                 fn->parent = in;
625
626                 ln->fn_sernum = sernum;
627
628                 if (addr_bit_set(addr, bit)) {
629                         in->right = ln;
630                         in->left  = fn;
631                 } else {
632                         in->left  = ln;
633                         in->right = fn;
634                 }
635         } else { /* plen <= bit */
636
637                 /*
638                  *              (new leaf node)[ln]
639                  *                /        \
640                  *           (old node)[fn] NULL
641                  */
642
643                 ln = node_alloc();
644
645                 if (!ln)
646                         return ERR_PTR(-ENOMEM);
647
648                 ln->fn_bit = plen;
649
650                 ln->parent = pn;
651
652                 ln->fn_sernum = sernum;
653
654                 if (dir)
655                         pn->right = ln;
656                 else
657                         pn->left  = ln;
658
659                 if (addr_bit_set(&key->addr, plen))
660                         ln->right = fn;
661                 else
662                         ln->left  = fn;
663
664                 fn->parent = ln;
665         }
666         return ln;
667 }
668
669 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
670 {
671         return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
672                RTF_GATEWAY;
673 }
674
675 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
676 {
677         int i;
678
679         for (i = 0; i < RTAX_MAX; i++) {
680                 if (test_bit(i, mxc->mx_valid))
681                         mp[i] = mxc->mx[i];
682         }
683 }
684
685 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
686 {
687         if (!mxc->mx)
688                 return 0;
689
690         if (dst->flags & DST_HOST) {
691                 u32 *mp = dst_metrics_write_ptr(dst);
692
693                 if (unlikely(!mp))
694                         return -ENOMEM;
695
696                 fib6_copy_metrics(mp, mxc);
697         } else {
698                 dst_init_metrics(dst, mxc->mx, false);
699
700                 /* We've stolen mx now. */
701                 mxc->mx = NULL;
702         }
703
704         return 0;
705 }
706
707 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
708                           struct net *net)
709 {
710         if (atomic_read(&rt->rt6i_ref) != 1) {
711                 /* This route is used as dummy address holder in some split
712                  * nodes. It is not leaked, but it still holds other resources,
713                  * which must be released in time. So, scan ascendant nodes
714                  * and replace dummy references to this route with references
715                  * to still alive ones.
716                  */
717                 while (fn) {
718                         if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
719                                 fn->leaf = fib6_find_prefix(net, fn);
720                                 atomic_inc(&fn->leaf->rt6i_ref);
721                                 rt6_release(rt);
722                         }
723                         fn = fn->parent;
724                 }
725                 /* No more references are possible at this point. */
726                 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
727         }
728 }
729
730 /*
731  *      Insert routing information in a node.
732  */
733
734 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
735                             struct nl_info *info, struct mx6_config *mxc)
736 {
737         struct rt6_info *iter = NULL;
738         struct rt6_info **ins;
739         struct rt6_info **fallback_ins = NULL;
740         int replace = (info->nlh &&
741                        (info->nlh->nlmsg_flags & NLM_F_REPLACE));
742         int add = (!info->nlh ||
743                    (info->nlh->nlmsg_flags & NLM_F_CREATE));
744         int found = 0;
745         bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
746         u16 nlflags = NLM_F_EXCL;
747         int err;
748
749         ins = &fn->leaf;
750
751         for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
752                 /*
753                  *      Search for duplicates
754                  */
755
756                 if (iter->rt6i_metric == rt->rt6i_metric) {
757                         /*
758                          *      Same priority level
759                          */
760                         if (info->nlh &&
761                             (info->nlh->nlmsg_flags & NLM_F_EXCL))
762                                 return -EEXIST;
763
764                         nlflags &= ~NLM_F_EXCL;
765                         if (replace) {
766                                 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
767                                         found++;
768                                         break;
769                                 }
770                                 if (rt_can_ecmp)
771                                         fallback_ins = fallback_ins ?: ins;
772                                 goto next_iter;
773                         }
774
775                         if (iter->dst.dev == rt->dst.dev &&
776                             iter->rt6i_idev == rt->rt6i_idev &&
777                             ipv6_addr_equal(&iter->rt6i_gateway,
778                                             &rt->rt6i_gateway)) {
779                                 if (rt->rt6i_nsiblings)
780                                         rt->rt6i_nsiblings = 0;
781                                 if (!(iter->rt6i_flags & RTF_EXPIRES))
782                                         return -EEXIST;
783                                 if (!(rt->rt6i_flags & RTF_EXPIRES))
784                                         rt6_clean_expires(iter);
785                                 else
786                                         rt6_set_expires(iter, rt->dst.expires);
787                                 iter->rt6i_pmtu = rt->rt6i_pmtu;
788                                 return -EEXIST;
789                         }
790                         /* If we have the same destination and the same metric,
791                          * but not the same gateway, then the route we try to
792                          * add is sibling to this route, increment our counter
793                          * of siblings, and later we will add our route to the
794                          * list.
795                          * Only static routes (which don't have flag
796                          * RTF_EXPIRES) are used for ECMPv6.
797                          *
798                          * To avoid long list, we only had siblings if the
799                          * route have a gateway.
800                          */
801                         if (rt_can_ecmp &&
802                             rt6_qualify_for_ecmp(iter))
803                                 rt->rt6i_nsiblings++;
804                 }
805
806                 if (iter->rt6i_metric > rt->rt6i_metric)
807                         break;
808
809 next_iter:
810                 ins = &iter->dst.rt6_next;
811         }
812
813         if (fallback_ins && !found) {
814                 /* No ECMP-able route found, replace first non-ECMP one */
815                 ins = fallback_ins;
816                 iter = *ins;
817                 found++;
818         }
819
820         /* Reset round-robin state, if necessary */
821         if (ins == &fn->leaf)
822                 fn->rr_ptr = NULL;
823
824         /* Link this route to others same route. */
825         if (rt->rt6i_nsiblings) {
826                 unsigned int rt6i_nsiblings;
827                 struct rt6_info *sibling, *temp_sibling;
828
829                 /* Find the first route that have the same metric */
830                 sibling = fn->leaf;
831                 while (sibling) {
832                         if (sibling->rt6i_metric == rt->rt6i_metric &&
833                             rt6_qualify_for_ecmp(sibling)) {
834                                 list_add_tail(&rt->rt6i_siblings,
835                                               &sibling->rt6i_siblings);
836                                 break;
837                         }
838                         sibling = sibling->dst.rt6_next;
839                 }
840                 /* For each sibling in the list, increment the counter of
841                  * siblings. BUG() if counters does not match, list of siblings
842                  * is broken!
843                  */
844                 rt6i_nsiblings = 0;
845                 list_for_each_entry_safe(sibling, temp_sibling,
846                                          &rt->rt6i_siblings, rt6i_siblings) {
847                         sibling->rt6i_nsiblings++;
848                         BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
849                         rt6i_nsiblings++;
850                 }
851                 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
852         }
853
854         /*
855          *      insert node
856          */
857         if (!replace) {
858                 if (!add)
859                         pr_warn("NLM_F_CREATE should be set when creating new route\n");
860
861 add:
862                 nlflags |= NLM_F_CREATE;
863                 err = fib6_commit_metrics(&rt->dst, mxc);
864                 if (err)
865                         return err;
866
867                 rt->dst.rt6_next = iter;
868                 *ins = rt;
869                 rt->rt6i_node = fn;
870                 atomic_inc(&rt->rt6i_ref);
871                 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
872                 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
873
874                 if (!(fn->fn_flags & RTN_RTINFO)) {
875                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
876                         fn->fn_flags |= RTN_RTINFO;
877                 }
878
879         } else {
880                 int nsiblings;
881
882                 if (!found) {
883                         if (add)
884                                 goto add;
885                         pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
886                         return -ENOENT;
887                 }
888
889                 err = fib6_commit_metrics(&rt->dst, mxc);
890                 if (err)
891                         return err;
892
893                 *ins = rt;
894                 rt->rt6i_node = fn;
895                 rt->dst.rt6_next = iter->dst.rt6_next;
896                 atomic_inc(&rt->rt6i_ref);
897                 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
898                 if (!(fn->fn_flags & RTN_RTINFO)) {
899                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
900                         fn->fn_flags |= RTN_RTINFO;
901                 }
902                 nsiblings = iter->rt6i_nsiblings;
903                 fib6_purge_rt(iter, fn, info->nl_net);
904                 rt6_release(iter);
905
906                 if (nsiblings) {
907                         /* Replacing an ECMP route, remove all siblings */
908                         ins = &rt->dst.rt6_next;
909                         iter = *ins;
910                         while (iter) {
911                                 if (rt6_qualify_for_ecmp(iter)) {
912                                         *ins = iter->dst.rt6_next;
913                                         fib6_purge_rt(iter, fn, info->nl_net);
914                                         rt6_release(iter);
915                                         nsiblings--;
916                                 } else {
917                                         ins = &iter->dst.rt6_next;
918                                 }
919                                 iter = *ins;
920                         }
921                         WARN_ON(nsiblings != 0);
922                 }
923         }
924
925         return 0;
926 }
927
928 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
929 {
930         if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
931             (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
932                 mod_timer(&net->ipv6.ip6_fib_timer,
933                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
934 }
935
936 void fib6_force_start_gc(struct net *net)
937 {
938         if (!timer_pending(&net->ipv6.ip6_fib_timer))
939                 mod_timer(&net->ipv6.ip6_fib_timer,
940                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
941 }
942
943 /*
944  *      Add routing information to the routing tree.
945  *      <destination addr>/<source addr>
946  *      with source addr info in sub-trees
947  */
948
949 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
950              struct nl_info *info, struct mx6_config *mxc)
951 {
952         struct fib6_node *fn, *pn = NULL;
953         int err = -ENOMEM;
954         int allow_create = 1;
955         int replace_required = 0;
956         int sernum = fib6_new_sernum(info->nl_net);
957
958         if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
959                          !atomic_read(&rt->dst.__refcnt)))
960                 return -EINVAL;
961
962         if (info->nlh) {
963                 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
964                         allow_create = 0;
965                 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
966                         replace_required = 1;
967         }
968         if (!allow_create && !replace_required)
969                 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
970
971         fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
972                         offsetof(struct rt6_info, rt6i_dst), allow_create,
973                         replace_required, sernum);
974         if (IS_ERR(fn)) {
975                 err = PTR_ERR(fn);
976                 fn = NULL;
977                 goto out;
978         }
979
980         pn = fn;
981
982 #ifdef CONFIG_IPV6_SUBTREES
983         if (rt->rt6i_src.plen) {
984                 struct fib6_node *sn;
985
986                 if (!fn->subtree) {
987                         struct fib6_node *sfn;
988
989                         /*
990                          * Create subtree.
991                          *
992                          *              fn[main tree]
993                          *              |
994                          *              sfn[subtree root]
995                          *                 \
996                          *                  sn[new leaf node]
997                          */
998
999                         /* Create subtree root node */
1000                         sfn = node_alloc();
1001                         if (!sfn)
1002                                 goto st_failure;
1003
1004                         sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1005                         atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1006                         sfn->fn_flags = RTN_ROOT;
1007                         sfn->fn_sernum = sernum;
1008
1009                         /* Now add the first leaf node to new subtree */
1010
1011                         sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1012                                         rt->rt6i_src.plen,
1013                                         offsetof(struct rt6_info, rt6i_src),
1014                                         allow_create, replace_required, sernum);
1015
1016                         if (IS_ERR(sn)) {
1017                                 /* If it is failed, discard just allocated
1018                                    root, and then (in st_failure) stale node
1019                                    in main tree.
1020                                  */
1021                                 node_free(sfn);
1022                                 err = PTR_ERR(sn);
1023                                 goto st_failure;
1024                         }
1025
1026                         /* Now link new subtree to main tree */
1027                         sfn->parent = fn;
1028                         fn->subtree = sfn;
1029                 } else {
1030                         sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1031                                         rt->rt6i_src.plen,
1032                                         offsetof(struct rt6_info, rt6i_src),
1033                                         allow_create, replace_required, sernum);
1034
1035                         if (IS_ERR(sn)) {
1036                                 err = PTR_ERR(sn);
1037                                 goto st_failure;
1038                         }
1039                 }
1040
1041                 if (!fn->leaf) {
1042                         fn->leaf = rt;
1043                         atomic_inc(&rt->rt6i_ref);
1044                 }
1045                 fn = sn;
1046         }
1047 #endif
1048
1049         err = fib6_add_rt2node(fn, rt, info, mxc);
1050         if (!err) {
1051                 fib6_start_gc(info->nl_net, rt);
1052                 if (!(rt->rt6i_flags & RTF_CACHE))
1053                         fib6_prune_clones(info->nl_net, pn);
1054                 rt->dst.flags &= ~DST_NOCACHE;
1055         }
1056
1057 out:
1058         if (err) {
1059 #ifdef CONFIG_IPV6_SUBTREES
1060                 /*
1061                  * If fib6_add_1 has cleared the old leaf pointer in the
1062                  * super-tree leaf node we have to find a new one for it.
1063                  */
1064                 if (pn != fn && pn->leaf == rt) {
1065                         pn->leaf = NULL;
1066                         atomic_dec(&rt->rt6i_ref);
1067                 }
1068                 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1069                         pn->leaf = fib6_find_prefix(info->nl_net, pn);
1070 #if RT6_DEBUG >= 2
1071                         if (!pn->leaf) {
1072                                 WARN_ON(pn->leaf == NULL);
1073                                 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1074                         }
1075 #endif
1076                         atomic_inc(&pn->leaf->rt6i_ref);
1077                 }
1078 #endif
1079                 if (!(rt->dst.flags & DST_NOCACHE))
1080                         dst_free(&rt->dst);
1081         }
1082         return err;
1083
1084 #ifdef CONFIG_IPV6_SUBTREES
1085         /* Subtree creation failed, probably main tree node
1086            is orphan. If it is, shoot it.
1087          */
1088 st_failure:
1089         if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1090                 fib6_repair_tree(info->nl_net, fn);
1091         if (!(rt->dst.flags & DST_NOCACHE))
1092                 dst_free(&rt->dst);
1093         return err;
1094 #endif
1095 }
1096
1097 /*
1098  *      Routing tree lookup
1099  *
1100  */
1101
1102 struct lookup_args {
1103         int                     offset;         /* key offset on rt6_info       */
1104         const struct in6_addr   *addr;          /* search key                   */
1105 };
1106
1107 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1108                                        struct lookup_args *args)
1109 {
1110         struct fib6_node *fn;
1111         __be32 dir;
1112
1113         if (unlikely(args->offset == 0))
1114                 return NULL;
1115
1116         /*
1117          *      Descend on a tree
1118          */
1119
1120         fn = root;
1121
1122         for (;;) {
1123                 struct fib6_node *next;
1124
1125                 dir = addr_bit_set(args->addr, fn->fn_bit);
1126
1127                 next = dir ? fn->right : fn->left;
1128
1129                 if (next) {
1130                         fn = next;
1131                         continue;
1132                 }
1133                 break;
1134         }
1135
1136         while (fn) {
1137                 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1138                         struct rt6key *key;
1139
1140                         key = (struct rt6key *) ((u8 *) fn->leaf +
1141                                                  args->offset);
1142
1143                         if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1144 #ifdef CONFIG_IPV6_SUBTREES
1145                                 if (fn->subtree) {
1146                                         struct fib6_node *sfn;
1147                                         sfn = fib6_lookup_1(fn->subtree,
1148                                                             args + 1);
1149                                         if (!sfn)
1150                                                 goto backtrack;
1151                                         fn = sfn;
1152                                 }
1153 #endif
1154                                 if (fn->fn_flags & RTN_RTINFO)
1155                                         return fn;
1156                         }
1157                 }
1158 #ifdef CONFIG_IPV6_SUBTREES
1159 backtrack:
1160 #endif
1161                 if (fn->fn_flags & RTN_ROOT)
1162                         break;
1163
1164                 fn = fn->parent;
1165         }
1166
1167         return NULL;
1168 }
1169
1170 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1171                               const struct in6_addr *saddr)
1172 {
1173         struct fib6_node *fn;
1174         struct lookup_args args[] = {
1175                 {
1176                         .offset = offsetof(struct rt6_info, rt6i_dst),
1177                         .addr = daddr,
1178                 },
1179 #ifdef CONFIG_IPV6_SUBTREES
1180                 {
1181                         .offset = offsetof(struct rt6_info, rt6i_src),
1182                         .addr = saddr,
1183                 },
1184 #endif
1185                 {
1186                         .offset = 0,    /* sentinel */
1187                 }
1188         };
1189
1190         fn = fib6_lookup_1(root, daddr ? args : args + 1);
1191         if (!fn || fn->fn_flags & RTN_TL_ROOT)
1192                 fn = root;
1193
1194         return fn;
1195 }
1196
1197 /*
1198  *      Get node with specified destination prefix (and source prefix,
1199  *      if subtrees are used)
1200  */
1201
1202
1203 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1204                                        const struct in6_addr *addr,
1205                                        int plen, int offset)
1206 {
1207         struct fib6_node *fn;
1208
1209         for (fn = root; fn ; ) {
1210                 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1211
1212                 /*
1213                  *      Prefix match
1214                  */
1215                 if (plen < fn->fn_bit ||
1216                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1217                         return NULL;
1218
1219                 if (plen == fn->fn_bit)
1220                         return fn;
1221
1222                 /*
1223                  *      We have more bits to go
1224                  */
1225                 if (addr_bit_set(addr, fn->fn_bit))
1226                         fn = fn->right;
1227                 else
1228                         fn = fn->left;
1229         }
1230         return NULL;
1231 }
1232
1233 struct fib6_node *fib6_locate(struct fib6_node *root,
1234                               const struct in6_addr *daddr, int dst_len,
1235                               const struct in6_addr *saddr, int src_len)
1236 {
1237         struct fib6_node *fn;
1238
1239         fn = fib6_locate_1(root, daddr, dst_len,
1240                            offsetof(struct rt6_info, rt6i_dst));
1241
1242 #ifdef CONFIG_IPV6_SUBTREES
1243         if (src_len) {
1244                 WARN_ON(saddr == NULL);
1245                 if (fn && fn->subtree)
1246                         fn = fib6_locate_1(fn->subtree, saddr, src_len,
1247                                            offsetof(struct rt6_info, rt6i_src));
1248         }
1249 #endif
1250
1251         if (fn && fn->fn_flags & RTN_RTINFO)
1252                 return fn;
1253
1254         return NULL;
1255 }
1256
1257
1258 /*
1259  *      Deletion
1260  *
1261  */
1262
1263 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1264 {
1265         if (fn->fn_flags & RTN_ROOT)
1266                 return net->ipv6.ip6_null_entry;
1267
1268         while (fn) {
1269                 if (fn->left)
1270                         return fn->left->leaf;
1271                 if (fn->right)
1272                         return fn->right->leaf;
1273
1274                 fn = FIB6_SUBTREE(fn);
1275         }
1276         return NULL;
1277 }
1278
1279 /*
1280  *      Called to trim the tree of intermediate nodes when possible. "fn"
1281  *      is the node we want to try and remove.
1282  */
1283
1284 static struct fib6_node *fib6_repair_tree(struct net *net,
1285                                            struct fib6_node *fn)
1286 {
1287         int children;
1288         int nstate;
1289         struct fib6_node *child, *pn;
1290         struct fib6_walker *w;
1291         int iter = 0;
1292
1293         for (;;) {
1294                 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1295                 iter++;
1296
1297                 WARN_ON(fn->fn_flags & RTN_RTINFO);
1298                 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1299                 WARN_ON(fn->leaf);
1300
1301                 children = 0;
1302                 child = NULL;
1303                 if (fn->right)
1304                         child = fn->right, children |= 1;
1305                 if (fn->left)
1306                         child = fn->left, children |= 2;
1307
1308                 if (children == 3 || FIB6_SUBTREE(fn)
1309 #ifdef CONFIG_IPV6_SUBTREES
1310                     /* Subtree root (i.e. fn) may have one child */
1311                     || (children && fn->fn_flags & RTN_ROOT)
1312 #endif
1313                     ) {
1314                         fn->leaf = fib6_find_prefix(net, fn);
1315 #if RT6_DEBUG >= 2
1316                         if (!fn->leaf) {
1317                                 WARN_ON(!fn->leaf);
1318                                 fn->leaf = net->ipv6.ip6_null_entry;
1319                         }
1320 #endif
1321                         atomic_inc(&fn->leaf->rt6i_ref);
1322                         return fn->parent;
1323                 }
1324
1325                 pn = fn->parent;
1326 #ifdef CONFIG_IPV6_SUBTREES
1327                 if (FIB6_SUBTREE(pn) == fn) {
1328                         WARN_ON(!(fn->fn_flags & RTN_ROOT));
1329                         FIB6_SUBTREE(pn) = NULL;
1330                         nstate = FWS_L;
1331                 } else {
1332                         WARN_ON(fn->fn_flags & RTN_ROOT);
1333 #endif
1334                         if (pn->right == fn)
1335                                 pn->right = child;
1336                         else if (pn->left == fn)
1337                                 pn->left = child;
1338 #if RT6_DEBUG >= 2
1339                         else
1340                                 WARN_ON(1);
1341 #endif
1342                         if (child)
1343                                 child->parent = pn;
1344                         nstate = FWS_R;
1345 #ifdef CONFIG_IPV6_SUBTREES
1346                 }
1347 #endif
1348
1349                 read_lock(&net->ipv6.fib6_walker_lock);
1350                 FOR_WALKERS(net, w) {
1351                         if (!child) {
1352                                 if (w->root == fn) {
1353                                         w->root = w->node = NULL;
1354                                         RT6_TRACE("W %p adjusted by delroot 1\n", w);
1355                                 } else if (w->node == fn) {
1356                                         RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1357                                         w->node = pn;
1358                                         w->state = nstate;
1359                                 }
1360                         } else {
1361                                 if (w->root == fn) {
1362                                         w->root = child;
1363                                         RT6_TRACE("W %p adjusted by delroot 2\n", w);
1364                                 }
1365                                 if (w->node == fn) {
1366                                         w->node = child;
1367                                         if (children&2) {
1368                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1369                                                 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1370                                         } else {
1371                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1372                                                 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1373                                         }
1374                                 }
1375                         }
1376                 }
1377                 read_unlock(&net->ipv6.fib6_walker_lock);
1378
1379                 node_free(fn);
1380                 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1381                         return pn;
1382
1383                 rt6_release(pn->leaf);
1384                 pn->leaf = NULL;
1385                 fn = pn;
1386         }
1387 }
1388
1389 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1390                            struct nl_info *info)
1391 {
1392         struct fib6_walker *w;
1393         struct rt6_info *rt = *rtp;
1394         struct net *net = info->nl_net;
1395
1396         RT6_TRACE("fib6_del_route\n");
1397
1398         /* Unlink it */
1399         *rtp = rt->dst.rt6_next;
1400         rt->rt6i_node = NULL;
1401         net->ipv6.rt6_stats->fib_rt_entries--;
1402         net->ipv6.rt6_stats->fib_discarded_routes++;
1403
1404         /* Reset round-robin state, if necessary */
1405         if (fn->rr_ptr == rt)
1406                 fn->rr_ptr = NULL;
1407
1408         /* Remove this entry from other siblings */
1409         if (rt->rt6i_nsiblings) {
1410                 struct rt6_info *sibling, *next_sibling;
1411
1412                 list_for_each_entry_safe(sibling, next_sibling,
1413                                          &rt->rt6i_siblings, rt6i_siblings)
1414                         sibling->rt6i_nsiblings--;
1415                 rt->rt6i_nsiblings = 0;
1416                 list_del_init(&rt->rt6i_siblings);
1417         }
1418
1419         /* Adjust walkers */
1420         read_lock(&net->ipv6.fib6_walker_lock);
1421         FOR_WALKERS(net, w) {
1422                 if (w->state == FWS_C && w->leaf == rt) {
1423                         RT6_TRACE("walker %p adjusted by delroute\n", w);
1424                         w->leaf = rt->dst.rt6_next;
1425                         if (!w->leaf)
1426                                 w->state = FWS_U;
1427                 }
1428         }
1429         read_unlock(&net->ipv6.fib6_walker_lock);
1430
1431         rt->dst.rt6_next = NULL;
1432
1433         /* If it was last route, expunge its radix tree node */
1434         if (!fn->leaf) {
1435                 fn->fn_flags &= ~RTN_RTINFO;
1436                 net->ipv6.rt6_stats->fib_route_nodes--;
1437                 fn = fib6_repair_tree(net, fn);
1438         }
1439
1440         fib6_purge_rt(rt, fn, net);
1441
1442         inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1443         rt6_release(rt);
1444 }
1445
1446 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1447 {
1448         struct net *net = info->nl_net;
1449         struct fib6_node *fn = rt->rt6i_node;
1450         struct rt6_info **rtp;
1451
1452 #if RT6_DEBUG >= 2
1453         if (rt->dst.obsolete > 0) {
1454                 WARN_ON(fn);
1455                 return -ENOENT;
1456         }
1457 #endif
1458         if (!fn || rt == net->ipv6.ip6_null_entry)
1459                 return -ENOENT;
1460
1461         WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1462
1463         if (!(rt->rt6i_flags & RTF_CACHE)) {
1464                 struct fib6_node *pn = fn;
1465 #ifdef CONFIG_IPV6_SUBTREES
1466                 /* clones of this route might be in another subtree */
1467                 if (rt->rt6i_src.plen) {
1468                         while (!(pn->fn_flags & RTN_ROOT))
1469                                 pn = pn->parent;
1470                         pn = pn->parent;
1471                 }
1472 #endif
1473                 fib6_prune_clones(info->nl_net, pn);
1474         }
1475
1476         /*
1477          *      Walk the leaf entries looking for ourself
1478          */
1479
1480         for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1481                 if (*rtp == rt) {
1482                         fib6_del_route(fn, rtp, info);
1483                         return 0;
1484                 }
1485         }
1486         return -ENOENT;
1487 }
1488
1489 /*
1490  *      Tree traversal function.
1491  *
1492  *      Certainly, it is not interrupt safe.
1493  *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1494  *      It means, that we can modify tree during walking
1495  *      and use this function for garbage collection, clone pruning,
1496  *      cleaning tree when a device goes down etc. etc.
1497  *
1498  *      It guarantees that every node will be traversed,
1499  *      and that it will be traversed only once.
1500  *
1501  *      Callback function w->func may return:
1502  *      0 -> continue walking.
1503  *      positive value -> walking is suspended (used by tree dumps,
1504  *      and probably by gc, if it will be split to several slices)
1505  *      negative value -> terminate walking.
1506  *
1507  *      The function itself returns:
1508  *      0   -> walk is complete.
1509  *      >0  -> walk is incomplete (i.e. suspended)
1510  *      <0  -> walk is terminated by an error.
1511  */
1512
1513 static int fib6_walk_continue(struct fib6_walker *w)
1514 {
1515         struct fib6_node *fn, *pn;
1516
1517         for (;;) {
1518                 fn = w->node;
1519                 if (!fn)
1520                         return 0;
1521
1522                 if (w->prune && fn != w->root &&
1523                     fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1524                         w->state = FWS_C;
1525                         w->leaf = fn->leaf;
1526                 }
1527                 switch (w->state) {
1528 #ifdef CONFIG_IPV6_SUBTREES
1529                 case FWS_S:
1530                         if (FIB6_SUBTREE(fn)) {
1531                                 w->node = FIB6_SUBTREE(fn);
1532                                 continue;
1533                         }
1534                         w->state = FWS_L;
1535 #endif
1536                 case FWS_L:
1537                         if (fn->left) {
1538                                 w->node = fn->left;
1539                                 w->state = FWS_INIT;
1540                                 continue;
1541                         }
1542                         w->state = FWS_R;
1543                 case FWS_R:
1544                         if (fn->right) {
1545                                 w->node = fn->right;
1546                                 w->state = FWS_INIT;
1547                                 continue;
1548                         }
1549                         w->state = FWS_C;
1550                         w->leaf = fn->leaf;
1551                 case FWS_C:
1552                         if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1553                                 int err;
1554
1555                                 if (w->skip) {
1556                                         w->skip--;
1557                                         goto skip;
1558                                 }
1559
1560                                 err = w->func(w);
1561                                 if (err)
1562                                         return err;
1563
1564                                 w->count++;
1565                                 continue;
1566                         }
1567 skip:
1568                         w->state = FWS_U;
1569                 case FWS_U:
1570                         if (fn == w->root)
1571                                 return 0;
1572                         pn = fn->parent;
1573                         w->node = pn;
1574 #ifdef CONFIG_IPV6_SUBTREES
1575                         if (FIB6_SUBTREE(pn) == fn) {
1576                                 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1577                                 w->state = FWS_L;
1578                                 continue;
1579                         }
1580 #endif
1581                         if (pn->left == fn) {
1582                                 w->state = FWS_R;
1583                                 continue;
1584                         }
1585                         if (pn->right == fn) {
1586                                 w->state = FWS_C;
1587                                 w->leaf = w->node->leaf;
1588                                 continue;
1589                         }
1590 #if RT6_DEBUG >= 2
1591                         WARN_ON(1);
1592 #endif
1593                 }
1594         }
1595 }
1596
1597 static int fib6_walk(struct net *net, struct fib6_walker *w)
1598 {
1599         int res;
1600
1601         w->state = FWS_INIT;
1602         w->node = w->root;
1603
1604         fib6_walker_link(net, w);
1605         res = fib6_walk_continue(w);
1606         if (res <= 0)
1607                 fib6_walker_unlink(net, w);
1608         return res;
1609 }
1610
1611 static int fib6_clean_node(struct fib6_walker *w)
1612 {
1613         int res;
1614         struct rt6_info *rt;
1615         struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1616         struct nl_info info = {
1617                 .nl_net = c->net,
1618         };
1619
1620         if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1621             w->node->fn_sernum != c->sernum)
1622                 w->node->fn_sernum = c->sernum;
1623
1624         if (!c->func) {
1625                 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1626                 w->leaf = NULL;
1627                 return 0;
1628         }
1629
1630         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1631                 res = c->func(rt, c->arg);
1632                 if (res < 0) {
1633                         w->leaf = rt;
1634                         res = fib6_del(rt, &info);
1635                         if (res) {
1636 #if RT6_DEBUG >= 2
1637                                 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1638                                          __func__, rt, rt->rt6i_node, res);
1639 #endif
1640                                 continue;
1641                         }
1642                         return 0;
1643                 }
1644                 WARN_ON(res != 0);
1645         }
1646         w->leaf = rt;
1647         return 0;
1648 }
1649
1650 /*
1651  *      Convenient frontend to tree walker.
1652  *
1653  *      func is called on each route.
1654  *              It may return -1 -> delete this route.
1655  *                            0  -> continue walking
1656  *
1657  *      prune==1 -> only immediate children of node (certainly,
1658  *      ignoring pure split nodes) will be scanned.
1659  */
1660
1661 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1662                             int (*func)(struct rt6_info *, void *arg),
1663                             bool prune, int sernum, void *arg)
1664 {
1665         struct fib6_cleaner c;
1666
1667         c.w.root = root;
1668         c.w.func = fib6_clean_node;
1669         c.w.prune = prune;
1670         c.w.count = 0;
1671         c.w.skip = 0;
1672         c.func = func;
1673         c.sernum = sernum;
1674         c.arg = arg;
1675         c.net = net;
1676
1677         fib6_walk(net, &c.w);
1678 }
1679
1680 static void __fib6_clean_all(struct net *net,
1681                              int (*func)(struct rt6_info *, void *),
1682                              int sernum, void *arg)
1683 {
1684         struct fib6_table *table;
1685         struct hlist_head *head;
1686         unsigned int h;
1687
1688         rcu_read_lock();
1689         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1690                 head = &net->ipv6.fib_table_hash[h];
1691                 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1692                         write_lock_bh(&table->tb6_lock);
1693                         fib6_clean_tree(net, &table->tb6_root,
1694                                         func, false, sernum, arg);
1695                         write_unlock_bh(&table->tb6_lock);
1696                 }
1697         }
1698         rcu_read_unlock();
1699 }
1700
1701 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1702                     void *arg)
1703 {
1704         __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1705 }
1706
1707 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1708 {
1709         if (rt->rt6i_flags & RTF_CACHE) {
1710                 RT6_TRACE("pruning clone %p\n", rt);
1711                 return -1;
1712         }
1713
1714         return 0;
1715 }
1716
1717 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1718 {
1719         fib6_clean_tree(net, fn, fib6_prune_clone, true,
1720                         FIB6_NO_SERNUM_CHANGE, NULL);
1721 }
1722
1723 static void fib6_flush_trees(struct net *net)
1724 {
1725         int new_sernum = fib6_new_sernum(net);
1726
1727         __fib6_clean_all(net, NULL, new_sernum, NULL);
1728 }
1729
1730 /*
1731  *      Garbage collection
1732  */
1733
1734 struct fib6_gc_args
1735 {
1736         int                     timeout;
1737         int                     more;
1738 };
1739
1740 static int fib6_age(struct rt6_info *rt, void *arg)
1741 {
1742         struct fib6_gc_args *gc_args = arg;
1743         unsigned long now = jiffies;
1744
1745         /*
1746          *      check addrconf expiration here.
1747          *      Routes are expired even if they are in use.
1748          *
1749          *      Also age clones. Note, that clones are aged out
1750          *      only if they are not in use now.
1751          */
1752
1753         if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1754                 if (time_after(now, rt->dst.expires)) {
1755                         RT6_TRACE("expiring %p\n", rt);
1756                         return -1;
1757                 }
1758                 gc_args->more++;
1759         } else if (rt->rt6i_flags & RTF_CACHE) {
1760                 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1761                     time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1762                         RT6_TRACE("aging clone %p\n", rt);
1763                         return -1;
1764                 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1765                         struct neighbour *neigh;
1766                         __u8 neigh_flags = 0;
1767
1768                         neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1769                         if (neigh) {
1770                                 neigh_flags = neigh->flags;
1771                                 neigh_release(neigh);
1772                         }
1773                         if (!(neigh_flags & NTF_ROUTER)) {
1774                                 RT6_TRACE("purging route %p via non-router but gateway\n",
1775                                           rt);
1776                                 return -1;
1777                         }
1778                 }
1779                 gc_args->more++;
1780         }
1781
1782         return 0;
1783 }
1784
1785 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1786 {
1787         struct fib6_gc_args gc_args;
1788         unsigned long now;
1789
1790         if (force) {
1791                 spin_lock_bh(&net->ipv6.fib6_gc_lock);
1792         } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1793                 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1794                 return;
1795         }
1796         gc_args.timeout = expires ? (int)expires :
1797                           net->ipv6.sysctl.ip6_rt_gc_interval;
1798
1799         gc_args.more = icmp6_dst_gc();
1800
1801         fib6_clean_all(net, fib6_age, &gc_args);
1802         now = jiffies;
1803         net->ipv6.ip6_rt_last_gc = now;
1804
1805         if (gc_args.more)
1806                 mod_timer(&net->ipv6.ip6_fib_timer,
1807                           round_jiffies(now
1808                                         + net->ipv6.sysctl.ip6_rt_gc_interval));
1809         else
1810                 del_timer(&net->ipv6.ip6_fib_timer);
1811         spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1812 }
1813
1814 static void fib6_gc_timer_cb(unsigned long arg)
1815 {
1816         fib6_run_gc(0, (struct net *)arg, true);
1817 }
1818
1819 static int __net_init fib6_net_init(struct net *net)
1820 {
1821         size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1822
1823         spin_lock_init(&net->ipv6.fib6_gc_lock);
1824         rwlock_init(&net->ipv6.fib6_walker_lock);
1825         INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1826         setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1827
1828         net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1829         if (!net->ipv6.rt6_stats)
1830                 goto out_timer;
1831
1832         /* Avoid false sharing : Use at least a full cache line */
1833         size = max_t(size_t, size, L1_CACHE_BYTES);
1834
1835         net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1836         if (!net->ipv6.fib_table_hash)
1837                 goto out_rt6_stats;
1838
1839         net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1840                                           GFP_KERNEL);
1841         if (!net->ipv6.fib6_main_tbl)
1842                 goto out_fib_table_hash;
1843
1844         net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1845         net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1846         net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1847                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1848         inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1849
1850 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1851         net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1852                                            GFP_KERNEL);
1853         if (!net->ipv6.fib6_local_tbl)
1854                 goto out_fib6_main_tbl;
1855         net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1856         net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1857         net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1858                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1859         inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1860 #endif
1861         fib6_tables_init(net);
1862
1863         return 0;
1864
1865 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1866 out_fib6_main_tbl:
1867         kfree(net->ipv6.fib6_main_tbl);
1868 #endif
1869 out_fib_table_hash:
1870         kfree(net->ipv6.fib_table_hash);
1871 out_rt6_stats:
1872         kfree(net->ipv6.rt6_stats);
1873 out_timer:
1874         return -ENOMEM;
1875 }
1876
1877 static void fib6_net_exit(struct net *net)
1878 {
1879         rt6_ifdown(net, NULL);
1880         del_timer_sync(&net->ipv6.ip6_fib_timer);
1881
1882 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1883         inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1884         kfree(net->ipv6.fib6_local_tbl);
1885 #endif
1886         inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1887         kfree(net->ipv6.fib6_main_tbl);
1888         kfree(net->ipv6.fib_table_hash);
1889         kfree(net->ipv6.rt6_stats);
1890 }
1891
1892 static struct pernet_operations fib6_net_ops = {
1893         .init = fib6_net_init,
1894         .exit = fib6_net_exit,
1895 };
1896
1897 int __init fib6_init(void)
1898 {
1899         int ret = -ENOMEM;
1900
1901         fib6_node_kmem = kmem_cache_create("fib6_nodes",
1902                                            sizeof(struct fib6_node),
1903                                            0, SLAB_HWCACHE_ALIGN,
1904                                            NULL);
1905         if (!fib6_node_kmem)
1906                 goto out;
1907
1908         ret = register_pernet_subsys(&fib6_net_ops);
1909         if (ret)
1910                 goto out_kmem_cache_create;
1911
1912         ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1913                               NULL);
1914         if (ret)
1915                 goto out_unregister_subsys;
1916
1917         __fib6_flush_trees = fib6_flush_trees;
1918 out:
1919         return ret;
1920
1921 out_unregister_subsys:
1922         unregister_pernet_subsys(&fib6_net_ops);
1923 out_kmem_cache_create:
1924         kmem_cache_destroy(fib6_node_kmem);
1925         goto out;
1926 }
1927
1928 void fib6_gc_cleanup(void)
1929 {
1930         unregister_pernet_subsys(&fib6_net_ops);
1931         kmem_cache_destroy(fib6_node_kmem);
1932 }
1933
1934 #ifdef CONFIG_PROC_FS
1935
1936 struct ipv6_route_iter {
1937         struct seq_net_private p;
1938         struct fib6_walker w;
1939         loff_t skip;
1940         struct fib6_table *tbl;
1941         int sernum;
1942 };
1943
1944 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1945 {
1946         struct rt6_info *rt = v;
1947         struct ipv6_route_iter *iter = seq->private;
1948
1949         seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1950
1951 #ifdef CONFIG_IPV6_SUBTREES
1952         seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1953 #else
1954         seq_puts(seq, "00000000000000000000000000000000 00 ");
1955 #endif
1956         if (rt->rt6i_flags & RTF_GATEWAY)
1957                 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1958         else
1959                 seq_puts(seq, "00000000000000000000000000000000");
1960
1961         seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1962                    rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1963                    rt->dst.__use, rt->rt6i_flags,
1964                    rt->dst.dev ? rt->dst.dev->name : "");
1965         iter->w.leaf = NULL;
1966         return 0;
1967 }
1968
1969 static int ipv6_route_yield(struct fib6_walker *w)
1970 {
1971         struct ipv6_route_iter *iter = w->args;
1972
1973         if (!iter->skip)
1974                 return 1;
1975
1976         do {
1977                 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1978                 iter->skip--;
1979                 if (!iter->skip && iter->w.leaf)
1980                         return 1;
1981         } while (iter->w.leaf);
1982
1983         return 0;
1984 }
1985
1986 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
1987                                       struct net *net)
1988 {
1989         memset(&iter->w, 0, sizeof(iter->w));
1990         iter->w.func = ipv6_route_yield;
1991         iter->w.root = &iter->tbl->tb6_root;
1992         iter->w.state = FWS_INIT;
1993         iter->w.node = iter->w.root;
1994         iter->w.args = iter;
1995         iter->sernum = iter->w.root->fn_sernum;
1996         INIT_LIST_HEAD(&iter->w.lh);
1997         fib6_walker_link(net, &iter->w);
1998 }
1999
2000 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2001                                                     struct net *net)
2002 {
2003         unsigned int h;
2004         struct hlist_node *node;
2005
2006         if (tbl) {
2007                 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2008                 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2009         } else {
2010                 h = 0;
2011                 node = NULL;
2012         }
2013
2014         while (!node && h < FIB6_TABLE_HASHSZ) {
2015                 node = rcu_dereference_bh(
2016                         hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2017         }
2018         return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2019 }
2020
2021 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2022 {
2023         if (iter->sernum != iter->w.root->fn_sernum) {
2024                 iter->sernum = iter->w.root->fn_sernum;
2025                 iter->w.state = FWS_INIT;
2026                 iter->w.node = iter->w.root;
2027                 WARN_ON(iter->w.skip);
2028                 iter->w.skip = iter->w.count;
2029         }
2030 }
2031
2032 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2033 {
2034         int r;
2035         struct rt6_info *n;
2036         struct net *net = seq_file_net(seq);
2037         struct ipv6_route_iter *iter = seq->private;
2038
2039         if (!v)
2040                 goto iter_table;
2041
2042         n = ((struct rt6_info *)v)->dst.rt6_next;
2043         if (n) {
2044                 ++*pos;
2045                 return n;
2046         }
2047
2048 iter_table:
2049         ipv6_route_check_sernum(iter);
2050         read_lock(&iter->tbl->tb6_lock);
2051         r = fib6_walk_continue(&iter->w);
2052         read_unlock(&iter->tbl->tb6_lock);
2053         if (r > 0) {
2054                 if (v)
2055                         ++*pos;
2056                 return iter->w.leaf;
2057         } else if (r < 0) {
2058                 fib6_walker_unlink(net, &iter->w);
2059                 return NULL;
2060         }
2061         fib6_walker_unlink(net, &iter->w);
2062
2063         iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2064         if (!iter->tbl)
2065                 return NULL;
2066
2067         ipv6_route_seq_setup_walk(iter, net);
2068         goto iter_table;
2069 }
2070
2071 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2072         __acquires(RCU_BH)
2073 {
2074         struct net *net = seq_file_net(seq);
2075         struct ipv6_route_iter *iter = seq->private;
2076
2077         rcu_read_lock_bh();
2078         iter->tbl = ipv6_route_seq_next_table(NULL, net);
2079         iter->skip = *pos;
2080
2081         if (iter->tbl) {
2082                 ipv6_route_seq_setup_walk(iter, net);
2083                 return ipv6_route_seq_next(seq, NULL, pos);
2084         } else {
2085                 return NULL;
2086         }
2087 }
2088
2089 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2090 {
2091         struct fib6_walker *w = &iter->w;
2092         return w->node && !(w->state == FWS_U && w->node == w->root);
2093 }
2094
2095 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2096         __releases(RCU_BH)
2097 {
2098         struct net *net = seq_file_net(seq);
2099         struct ipv6_route_iter *iter = seq->private;
2100
2101         if (ipv6_route_iter_active(iter))
2102                 fib6_walker_unlink(net, &iter->w);
2103
2104         rcu_read_unlock_bh();
2105 }
2106
2107 static const struct seq_operations ipv6_route_seq_ops = {
2108         .start  = ipv6_route_seq_start,
2109         .next   = ipv6_route_seq_next,
2110         .stop   = ipv6_route_seq_stop,
2111         .show   = ipv6_route_seq_show
2112 };
2113
2114 int ipv6_route_open(struct inode *inode, struct file *file)
2115 {
2116         return seq_open_net(inode, file, &ipv6_route_seq_ops,
2117                             sizeof(struct ipv6_route_iter));
2118 }
2119
2120 #endif /* CONFIG_PROC_FS */