x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / net / netfilter / xt_connlimit.c
1 /*
2  * netfilter module to limit the number of parallel tcp
3  * connections per IP address.
4  *   (c) 2000 Gerd Knorr <kraxel@bytesex.org>
5  *   Nov 2002: Martin Bene <martin.bene@icomedias.com>:
6  *              only ignore TIME_WAIT or gone connections
7  *   (C) CC Computer Consultants GmbH, 2007
8  *
9  * based on ...
10  *
11  * Kernel module to match connection tracking information.
12  * GPL (C) 1999  Rusty Russell (rusty@rustcorp.com.au).
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/in.h>
16 #include <linux/in6.h>
17 #include <linux/ip.h>
18 #include <linux/ipv6.h>
19 #include <linux/jhash.h>
20 #include <linux/slab.h>
21 #include <linux/list.h>
22 #include <linux/rbtree.h>
23 #include <linux/module.h>
24 #include <linux/random.h>
25 #include <linux/skbuff.h>
26 #include <linux/spinlock.h>
27 #include <linux/netfilter/nf_conntrack_tcp.h>
28 #include <linux/netfilter/x_tables.h>
29 #include <linux/netfilter/xt_connlimit.h>
30 #include <net/netfilter/nf_conntrack.h>
31 #include <net/netfilter/nf_conntrack_core.h>
32 #include <net/netfilter/nf_conntrack_tuple.h>
33 #include <net/netfilter/nf_conntrack_zones.h>
34
35 #define CONNLIMIT_SLOTS         256U
36
37 #ifdef CONFIG_LOCKDEP
38 #define CONNLIMIT_LOCK_SLOTS    8U
39 #else
40 #define CONNLIMIT_LOCK_SLOTS    256U
41 #endif
42
43 #define CONNLIMIT_GC_MAX_NODES  8
44
45 /* we will save the tuples of all connections we care about */
46 struct xt_connlimit_conn {
47         struct hlist_node               node;
48         struct nf_conntrack_tuple       tuple;
49         union nf_inet_addr              addr;
50 };
51
52 struct xt_connlimit_rb {
53         struct rb_node node;
54         struct hlist_head hhead; /* connections/hosts in same subnet */
55         union nf_inet_addr addr; /* search key */
56 };
57
58 static spinlock_t xt_connlimit_locks[CONNLIMIT_LOCK_SLOTS] __cacheline_aligned_in_smp;
59
60 struct xt_connlimit_data {
61         struct rb_root climit_root4[CONNLIMIT_SLOTS];
62         struct rb_root climit_root6[CONNLIMIT_SLOTS];
63 };
64
65 static u_int32_t connlimit_rnd __read_mostly;
66 static struct kmem_cache *connlimit_rb_cachep __read_mostly;
67 static struct kmem_cache *connlimit_conn_cachep __read_mostly;
68
69 static inline unsigned int connlimit_iphash(__be32 addr)
70 {
71         return jhash_1word((__force __u32)addr,
72                             connlimit_rnd) % CONNLIMIT_SLOTS;
73 }
74
75 static inline unsigned int
76 connlimit_iphash6(const union nf_inet_addr *addr,
77                   const union nf_inet_addr *mask)
78 {
79         union nf_inet_addr res;
80         unsigned int i;
81
82         for (i = 0; i < ARRAY_SIZE(addr->ip6); ++i)
83                 res.ip6[i] = addr->ip6[i] & mask->ip6[i];
84
85         return jhash2((u32 *)res.ip6, ARRAY_SIZE(res.ip6),
86                        connlimit_rnd) % CONNLIMIT_SLOTS;
87 }
88
89 static inline bool already_closed(const struct nf_conn *conn)
90 {
91         if (nf_ct_protonum(conn) == IPPROTO_TCP)
92                 return conn->proto.tcp.state == TCP_CONNTRACK_TIME_WAIT ||
93                        conn->proto.tcp.state == TCP_CONNTRACK_CLOSE;
94         else
95                 return 0;
96 }
97
98 static int
99 same_source_net(const union nf_inet_addr *addr,
100                 const union nf_inet_addr *mask,
101                 const union nf_inet_addr *u3, u_int8_t family)
102 {
103         if (family == NFPROTO_IPV4) {
104                 return ntohl(addr->ip & mask->ip) -
105                        ntohl(u3->ip & mask->ip);
106         } else {
107                 union nf_inet_addr lh, rh;
108                 unsigned int i;
109
110                 for (i = 0; i < ARRAY_SIZE(addr->ip6); ++i) {
111                         lh.ip6[i] = addr->ip6[i] & mask->ip6[i];
112                         rh.ip6[i] = u3->ip6[i] & mask->ip6[i];
113                 }
114
115                 return memcmp(&lh.ip6, &rh.ip6, sizeof(lh.ip6));
116         }
117 }
118
119 static bool add_hlist(struct hlist_head *head,
120                       const struct nf_conntrack_tuple *tuple,
121                       const union nf_inet_addr *addr)
122 {
123         struct xt_connlimit_conn *conn;
124
125         conn = kmem_cache_alloc(connlimit_conn_cachep, GFP_ATOMIC);
126         if (conn == NULL)
127                 return false;
128         conn->tuple = *tuple;
129         conn->addr = *addr;
130         hlist_add_head(&conn->node, head);
131         return true;
132 }
133
134 static unsigned int check_hlist(struct net *net,
135                                 struct hlist_head *head,
136                                 const struct nf_conntrack_tuple *tuple,
137                                 const struct nf_conntrack_zone *zone,
138                                 bool *addit)
139 {
140         const struct nf_conntrack_tuple_hash *found;
141         struct xt_connlimit_conn *conn;
142         struct hlist_node *n;
143         struct nf_conn *found_ct;
144         unsigned int length = 0;
145
146         *addit = true;
147         rcu_read_lock();
148
149         /* check the saved connections */
150         hlist_for_each_entry_safe(conn, n, head, node) {
151                 found = nf_conntrack_find_get(net, zone, &conn->tuple);
152                 if (found == NULL) {
153                         hlist_del(&conn->node);
154                         kmem_cache_free(connlimit_conn_cachep, conn);
155                         continue;
156                 }
157
158                 found_ct = nf_ct_tuplehash_to_ctrack(found);
159
160                 if (nf_ct_tuple_equal(&conn->tuple, tuple)) {
161                         /*
162                          * Just to be sure we have it only once in the list.
163                          * We should not see tuples twice unless someone hooks
164                          * this into a table without "-p tcp --syn".
165                          */
166                         *addit = false;
167                 } else if (already_closed(found_ct)) {
168                         /*
169                          * we do not care about connections which are
170                          * closed already -> ditch it
171                          */
172                         nf_ct_put(found_ct);
173                         hlist_del(&conn->node);
174                         kmem_cache_free(connlimit_conn_cachep, conn);
175                         continue;
176                 }
177
178                 nf_ct_put(found_ct);
179                 length++;
180         }
181
182         rcu_read_unlock();
183
184         return length;
185 }
186
187 static void tree_nodes_free(struct rb_root *root,
188                             struct xt_connlimit_rb *gc_nodes[],
189                             unsigned int gc_count)
190 {
191         struct xt_connlimit_rb *rbconn;
192
193         while (gc_count) {
194                 rbconn = gc_nodes[--gc_count];
195                 rb_erase(&rbconn->node, root);
196                 kmem_cache_free(connlimit_rb_cachep, rbconn);
197         }
198 }
199
200 static unsigned int
201 count_tree(struct net *net, struct rb_root *root,
202            const struct nf_conntrack_tuple *tuple,
203            const union nf_inet_addr *addr, const union nf_inet_addr *mask,
204            u8 family, const struct nf_conntrack_zone *zone)
205 {
206         struct xt_connlimit_rb *gc_nodes[CONNLIMIT_GC_MAX_NODES];
207         struct rb_node **rbnode, *parent;
208         struct xt_connlimit_rb *rbconn;
209         struct xt_connlimit_conn *conn;
210         unsigned int gc_count;
211         bool no_gc = false;
212
213  restart:
214         gc_count = 0;
215         parent = NULL;
216         rbnode = &(root->rb_node);
217         while (*rbnode) {
218                 int diff;
219                 bool addit;
220
221                 rbconn = container_of(*rbnode, struct xt_connlimit_rb, node);
222
223                 parent = *rbnode;
224                 diff = same_source_net(addr, mask, &rbconn->addr, family);
225                 if (diff < 0) {
226                         rbnode = &((*rbnode)->rb_left);
227                 } else if (diff > 0) {
228                         rbnode = &((*rbnode)->rb_right);
229                 } else {
230                         /* same source network -> be counted! */
231                         unsigned int count;
232                         count = check_hlist(net, &rbconn->hhead, tuple, zone, &addit);
233
234                         tree_nodes_free(root, gc_nodes, gc_count);
235                         if (!addit)
236                                 return count;
237
238                         if (!add_hlist(&rbconn->hhead, tuple, addr))
239                                 return 0; /* hotdrop */
240
241                         return count + 1;
242                 }
243
244                 if (no_gc || gc_count >= ARRAY_SIZE(gc_nodes))
245                         continue;
246
247                 /* only used for GC on hhead, retval and 'addit' ignored */
248                 check_hlist(net, &rbconn->hhead, tuple, zone, &addit);
249                 if (hlist_empty(&rbconn->hhead))
250                         gc_nodes[gc_count++] = rbconn;
251         }
252
253         if (gc_count) {
254                 no_gc = true;
255                 tree_nodes_free(root, gc_nodes, gc_count);
256                 /* tree_node_free before new allocation permits
257                  * allocator to re-use newly free'd object.
258                  *
259                  * This is a rare event; in most cases we will find
260                  * existing node to re-use. (or gc_count is 0).
261                  */
262                 goto restart;
263         }
264
265         /* no match, need to insert new node */
266         rbconn = kmem_cache_alloc(connlimit_rb_cachep, GFP_ATOMIC);
267         if (rbconn == NULL)
268                 return 0;
269
270         conn = kmem_cache_alloc(connlimit_conn_cachep, GFP_ATOMIC);
271         if (conn == NULL) {
272                 kmem_cache_free(connlimit_rb_cachep, rbconn);
273                 return 0;
274         }
275
276         conn->tuple = *tuple;
277         conn->addr = *addr;
278         rbconn->addr = *addr;
279
280         INIT_HLIST_HEAD(&rbconn->hhead);
281         hlist_add_head(&conn->node, &rbconn->hhead);
282
283         rb_link_node(&rbconn->node, parent, rbnode);
284         rb_insert_color(&rbconn->node, root);
285         return 1;
286 }
287
288 static int count_them(struct net *net,
289                       struct xt_connlimit_data *data,
290                       const struct nf_conntrack_tuple *tuple,
291                       const union nf_inet_addr *addr,
292                       const union nf_inet_addr *mask,
293                       u_int8_t family,
294                       const struct nf_conntrack_zone *zone)
295 {
296         struct rb_root *root;
297         int count;
298         u32 hash;
299
300         if (family == NFPROTO_IPV6) {
301                 hash = connlimit_iphash6(addr, mask);
302                 root = &data->climit_root6[hash];
303         } else {
304                 hash = connlimit_iphash(addr->ip & mask->ip);
305                 root = &data->climit_root4[hash];
306         }
307
308         spin_lock_bh(&xt_connlimit_locks[hash % CONNLIMIT_LOCK_SLOTS]);
309
310         count = count_tree(net, root, tuple, addr, mask, family, zone);
311
312         spin_unlock_bh(&xt_connlimit_locks[hash % CONNLIMIT_LOCK_SLOTS]);
313
314         return count;
315 }
316
317 static bool
318 connlimit_mt(const struct sk_buff *skb, struct xt_action_param *par)
319 {
320         struct net *net = par->net;
321         const struct xt_connlimit_info *info = par->matchinfo;
322         union nf_inet_addr addr;
323         struct nf_conntrack_tuple tuple;
324         const struct nf_conntrack_tuple *tuple_ptr = &tuple;
325         const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
326         enum ip_conntrack_info ctinfo;
327         const struct nf_conn *ct;
328         unsigned int connections;
329
330         ct = nf_ct_get(skb, &ctinfo);
331         if (ct != NULL) {
332                 tuple_ptr = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
333                 zone = nf_ct_zone(ct);
334         } else if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
335                                       par->family, net, &tuple)) {
336                 goto hotdrop;
337         }
338
339         if (par->family == NFPROTO_IPV6) {
340                 const struct ipv6hdr *iph = ipv6_hdr(skb);
341                 memcpy(&addr.ip6, (info->flags & XT_CONNLIMIT_DADDR) ?
342                        &iph->daddr : &iph->saddr, sizeof(addr.ip6));
343         } else {
344                 const struct iphdr *iph = ip_hdr(skb);
345                 addr.ip = (info->flags & XT_CONNLIMIT_DADDR) ?
346                           iph->daddr : iph->saddr;
347         }
348
349         connections = count_them(net, info->data, tuple_ptr, &addr,
350                                  &info->mask, par->family, zone);
351         if (connections == 0)
352                 /* kmalloc failed, drop it entirely */
353                 goto hotdrop;
354
355         return (connections > info->limit) ^
356                !!(info->flags & XT_CONNLIMIT_INVERT);
357
358  hotdrop:
359         par->hotdrop = true;
360         return false;
361 }
362
363 static int connlimit_mt_check(const struct xt_mtchk_param *par)
364 {
365         struct xt_connlimit_info *info = par->matchinfo;
366         unsigned int i;
367         int ret;
368
369         net_get_random_once(&connlimit_rnd, sizeof(connlimit_rnd));
370
371         ret = nf_ct_l3proto_try_module_get(par->family);
372         if (ret < 0) {
373                 pr_info("cannot load conntrack support for "
374                         "address family %u\n", par->family);
375                 return ret;
376         }
377
378         /* init private data */
379         info->data = kmalloc(sizeof(struct xt_connlimit_data), GFP_KERNEL);
380         if (info->data == NULL) {
381                 nf_ct_l3proto_module_put(par->family);
382                 return -ENOMEM;
383         }
384
385         for (i = 0; i < ARRAY_SIZE(info->data->climit_root4); ++i)
386                 info->data->climit_root4[i] = RB_ROOT;
387         for (i = 0; i < ARRAY_SIZE(info->data->climit_root6); ++i)
388                 info->data->climit_root6[i] = RB_ROOT;
389
390         return 0;
391 }
392
393 static void destroy_tree(struct rb_root *r)
394 {
395         struct xt_connlimit_conn *conn;
396         struct xt_connlimit_rb *rbconn;
397         struct hlist_node *n;
398         struct rb_node *node;
399
400         while ((node = rb_first(r)) != NULL) {
401                 rbconn = container_of(node, struct xt_connlimit_rb, node);
402
403                 rb_erase(node, r);
404
405                 hlist_for_each_entry_safe(conn, n, &rbconn->hhead, node)
406                         kmem_cache_free(connlimit_conn_cachep, conn);
407
408                 kmem_cache_free(connlimit_rb_cachep, rbconn);
409         }
410 }
411
412 static void connlimit_mt_destroy(const struct xt_mtdtor_param *par)
413 {
414         const struct xt_connlimit_info *info = par->matchinfo;
415         unsigned int i;
416
417         nf_ct_l3proto_module_put(par->family);
418
419         for (i = 0; i < ARRAY_SIZE(info->data->climit_root4); ++i)
420                 destroy_tree(&info->data->climit_root4[i]);
421         for (i = 0; i < ARRAY_SIZE(info->data->climit_root6); ++i)
422                 destroy_tree(&info->data->climit_root6[i]);
423
424         kfree(info->data);
425 }
426
427 static struct xt_match connlimit_mt_reg __read_mostly = {
428         .name       = "connlimit",
429         .revision   = 1,
430         .family     = NFPROTO_UNSPEC,
431         .checkentry = connlimit_mt_check,
432         .match      = connlimit_mt,
433         .matchsize  = sizeof(struct xt_connlimit_info),
434         .destroy    = connlimit_mt_destroy,
435         .me         = THIS_MODULE,
436 };
437
438 static int __init connlimit_mt_init(void)
439 {
440         int ret, i;
441
442         BUILD_BUG_ON(CONNLIMIT_LOCK_SLOTS > CONNLIMIT_SLOTS);
443         BUILD_BUG_ON((CONNLIMIT_SLOTS % CONNLIMIT_LOCK_SLOTS) != 0);
444
445         for (i = 0; i < CONNLIMIT_LOCK_SLOTS; ++i)
446                 spin_lock_init(&xt_connlimit_locks[i]);
447
448         connlimit_conn_cachep = kmem_cache_create("xt_connlimit_conn",
449                                            sizeof(struct xt_connlimit_conn),
450                                            0, 0, NULL);
451         if (!connlimit_conn_cachep)
452                 return -ENOMEM;
453
454         connlimit_rb_cachep = kmem_cache_create("xt_connlimit_rb",
455                                            sizeof(struct xt_connlimit_rb),
456                                            0, 0, NULL);
457         if (!connlimit_rb_cachep) {
458                 kmem_cache_destroy(connlimit_conn_cachep);
459                 return -ENOMEM;
460         }
461         ret = xt_register_match(&connlimit_mt_reg);
462         if (ret != 0) {
463                 kmem_cache_destroy(connlimit_conn_cachep);
464                 kmem_cache_destroy(connlimit_rb_cachep);
465         }
466         return ret;
467 }
468
469 static void __exit connlimit_mt_exit(void)
470 {
471         xt_unregister_match(&connlimit_mt_reg);
472         kmem_cache_destroy(connlimit_conn_cachep);
473         kmem_cache_destroy(connlimit_rb_cachep);
474 }
475
476 module_init(connlimit_mt_init);
477 module_exit(connlimit_mt_exit);
478 MODULE_AUTHOR("Jan Engelhardt <jengelh@medozas.de>");
479 MODULE_DESCRIPTION("Xtables: Number of connections matching");
480 MODULE_LICENSE("GPL");
481 MODULE_ALIAS("ipt_connlimit");
482 MODULE_ALIAS("ip6t_connlimit");