70bef2ab7f2bc6017081ad780a8c5cb1aa9feb67
[cascardo/linux.git] / net / openvswitch / flow.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/if_arp.h>
33 #include <linux/ip.h>
34 #include <linux/ipv6.h>
35 #include <linux/mpls.h>
36 #include <linux/sctp.h>
37 #include <linux/smp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/ip.h>
44 #include <net/ip_tunnels.h>
45 #include <net/ipv6.h>
46 #include <net/mpls.h>
47 #include <net/ndisc.h>
48
49 #include "datapath.h"
50 #include "flow.h"
51 #include "flow_netlink.h"
52
53 u64 ovs_flow_used_time(unsigned long flow_jiffies)
54 {
55         struct timespec cur_ts;
56         u64 cur_ms, idle_ms;
57
58         ktime_get_ts(&cur_ts);
59         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
60         cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
61                  cur_ts.tv_nsec / NSEC_PER_MSEC;
62
63         return cur_ms - idle_ms;
64 }
65
66 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
67
68 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
69                            const struct sk_buff *skb)
70 {
71         struct flow_stats *stats;
72         int node = numa_node_id();
73
74         stats = rcu_dereference(flow->stats[node]);
75
76         /* Check if already have node-specific stats. */
77         if (likely(stats)) {
78                 spin_lock(&stats->lock);
79                 /* Mark if we write on the pre-allocated stats. */
80                 if (node == 0 && unlikely(flow->stats_last_writer != node))
81                         flow->stats_last_writer = node;
82         } else {
83                 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
84                 spin_lock(&stats->lock);
85
86                 /* If the current NUMA-node is the only writer on the
87                  * pre-allocated stats keep using them.
88                  */
89                 if (unlikely(flow->stats_last_writer != node)) {
90                         /* A previous locker may have already allocated the
91                          * stats, so we need to check again.  If node-specific
92                          * stats were already allocated, we update the pre-
93                          * allocated stats as we have already locked them.
94                          */
95                         if (likely(flow->stats_last_writer != NUMA_NO_NODE)
96                             && likely(!rcu_access_pointer(flow->stats[node]))) {
97                                 /* Try to allocate node-specific stats. */
98                                 struct flow_stats *new_stats;
99
100                                 new_stats =
101                                         kmem_cache_alloc_node(flow_stats_cache,
102                                                               GFP_THISNODE |
103                                                               __GFP_NOMEMALLOC,
104                                                               node);
105                                 if (likely(new_stats)) {
106                                         new_stats->used = jiffies;
107                                         new_stats->packet_count = 1;
108                                         new_stats->byte_count = skb->len;
109                                         new_stats->tcp_flags = tcp_flags;
110                                         spin_lock_init(&new_stats->lock);
111
112                                         rcu_assign_pointer(flow->stats[node],
113                                                            new_stats);
114                                         goto unlock;
115                                 }
116                         }
117                         flow->stats_last_writer = node;
118                 }
119         }
120
121         stats->used = jiffies;
122         stats->packet_count++;
123         stats->byte_count += skb->len;
124         stats->tcp_flags |= tcp_flags;
125 unlock:
126         spin_unlock(&stats->lock);
127 }
128
129 /* Must be called with rcu_read_lock or ovs_mutex. */
130 void ovs_flow_stats_get(const struct sw_flow *flow,
131                         struct ovs_flow_stats *ovs_stats,
132                         unsigned long *used, __be16 *tcp_flags)
133 {
134         int node;
135
136         *used = 0;
137         *tcp_flags = 0;
138         memset(ovs_stats, 0, sizeof(*ovs_stats));
139
140         for_each_node(node) {
141                 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[node]);
142
143                 if (stats) {
144                         /* Local CPU may write on non-local stats, so we must
145                          * block bottom-halves here.
146                          */
147                         spin_lock_bh(&stats->lock);
148                         if (!*used || time_after(stats->used, *used))
149                                 *used = stats->used;
150                         *tcp_flags |= stats->tcp_flags;
151                         ovs_stats->n_packets += stats->packet_count;
152                         ovs_stats->n_bytes += stats->byte_count;
153                         spin_unlock_bh(&stats->lock);
154                 }
155         }
156 }
157
158 /* Called with ovs_mutex. */
159 void ovs_flow_stats_clear(struct sw_flow *flow)
160 {
161         int node;
162
163         for_each_node(node) {
164                 struct flow_stats *stats = ovsl_dereference(flow->stats[node]);
165
166                 if (stats) {
167                         spin_lock_bh(&stats->lock);
168                         stats->used = 0;
169                         stats->packet_count = 0;
170                         stats->byte_count = 0;
171                         stats->tcp_flags = 0;
172                         spin_unlock_bh(&stats->lock);
173                 }
174         }
175 }
176
177 static int check_header(struct sk_buff *skb, int len)
178 {
179         if (unlikely(skb->len < len))
180                 return -EINVAL;
181         if (unlikely(!pskb_may_pull(skb, len)))
182                 return -ENOMEM;
183         return 0;
184 }
185
186 static bool arphdr_ok(struct sk_buff *skb)
187 {
188         return pskb_may_pull(skb, skb_network_offset(skb) +
189                                   sizeof(struct arp_eth_header));
190 }
191
192 static int check_iphdr(struct sk_buff *skb)
193 {
194         unsigned int nh_ofs = skb_network_offset(skb);
195         unsigned int ip_len;
196         int err;
197
198         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
199         if (unlikely(err))
200                 return err;
201
202         ip_len = ip_hdrlen(skb);
203         if (unlikely(ip_len < sizeof(struct iphdr) ||
204                      skb->len < nh_ofs + ip_len))
205                 return -EINVAL;
206
207         skb_set_transport_header(skb, nh_ofs + ip_len);
208         return 0;
209 }
210
211 static bool tcphdr_ok(struct sk_buff *skb)
212 {
213         int th_ofs = skb_transport_offset(skb);
214         int tcp_len;
215
216         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
217                 return false;
218
219         tcp_len = tcp_hdrlen(skb);
220         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
221                      skb->len < th_ofs + tcp_len))
222                 return false;
223
224         return true;
225 }
226
227 static bool udphdr_ok(struct sk_buff *skb)
228 {
229         return pskb_may_pull(skb, skb_transport_offset(skb) +
230                                   sizeof(struct udphdr));
231 }
232
233 static bool sctphdr_ok(struct sk_buff *skb)
234 {
235         return pskb_may_pull(skb, skb_transport_offset(skb) +
236                                   sizeof(struct sctphdr));
237 }
238
239 static bool icmphdr_ok(struct sk_buff *skb)
240 {
241         return pskb_may_pull(skb, skb_transport_offset(skb) +
242                                   sizeof(struct icmphdr));
243 }
244
245 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
246 {
247         unsigned int nh_ofs = skb_network_offset(skb);
248         unsigned int nh_len;
249         int payload_ofs;
250         struct ipv6hdr *nh;
251         uint8_t nexthdr;
252         __be16 frag_off;
253         int err;
254
255         err = check_header(skb, nh_ofs + sizeof(*nh));
256         if (unlikely(err))
257                 return err;
258
259         nh = ipv6_hdr(skb);
260         nexthdr = nh->nexthdr;
261         payload_ofs = (u8 *)(nh + 1) - skb->data;
262
263         key->ip.proto = NEXTHDR_NONE;
264         key->ip.tos = ipv6_get_dsfield(nh);
265         key->ip.ttl = nh->hop_limit;
266         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
267         key->ipv6.addr.src = nh->saddr;
268         key->ipv6.addr.dst = nh->daddr;
269
270         payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
271         if (unlikely(payload_ofs < 0))
272                 return -EINVAL;
273
274         if (frag_off) {
275                 if (frag_off & htons(~0x7))
276                         key->ip.frag = OVS_FRAG_TYPE_LATER;
277                 else
278                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
279         } else {
280                 key->ip.frag = OVS_FRAG_TYPE_NONE;
281         }
282
283         nh_len = payload_ofs - nh_ofs;
284         skb_set_transport_header(skb, nh_ofs + nh_len);
285         key->ip.proto = nexthdr;
286         return nh_len;
287 }
288
289 static bool icmp6hdr_ok(struct sk_buff *skb)
290 {
291         return pskb_may_pull(skb, skb_transport_offset(skb) +
292                                   sizeof(struct icmp6hdr));
293 }
294
295 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
296 {
297         struct qtag_prefix {
298                 __be16 eth_type; /* ETH_P_8021Q */
299                 __be16 tci;
300         };
301         struct qtag_prefix *qp;
302
303         if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
304                 return 0;
305
306         if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
307                                          sizeof(__be16))))
308                 return -ENOMEM;
309
310         qp = (struct qtag_prefix *) skb->data;
311         key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
312         __skb_pull(skb, sizeof(struct qtag_prefix));
313
314         return 0;
315 }
316
317 static __be16 parse_ethertype(struct sk_buff *skb)
318 {
319         struct llc_snap_hdr {
320                 u8  dsap;  /* Always 0xAA */
321                 u8  ssap;  /* Always 0xAA */
322                 u8  ctrl;
323                 u8  oui[3];
324                 __be16 ethertype;
325         };
326         struct llc_snap_hdr *llc;
327         __be16 proto;
328
329         proto = *(__be16 *) skb->data;
330         __skb_pull(skb, sizeof(__be16));
331
332         if (ntohs(proto) >= ETH_P_802_3_MIN)
333                 return proto;
334
335         if (skb->len < sizeof(struct llc_snap_hdr))
336                 return htons(ETH_P_802_2);
337
338         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
339                 return htons(0);
340
341         llc = (struct llc_snap_hdr *) skb->data;
342         if (llc->dsap != LLC_SAP_SNAP ||
343             llc->ssap != LLC_SAP_SNAP ||
344             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
345                 return htons(ETH_P_802_2);
346
347         __skb_pull(skb, sizeof(struct llc_snap_hdr));
348
349         if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN)
350                 return llc->ethertype;
351
352         return htons(ETH_P_802_2);
353 }
354
355 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
356                         int nh_len)
357 {
358         struct icmp6hdr *icmp = icmp6_hdr(skb);
359
360         /* The ICMPv6 type and code fields use the 16-bit transport port
361          * fields, so we need to store them in 16-bit network byte order.
362          */
363         key->tp.src = htons(icmp->icmp6_type);
364         key->tp.dst = htons(icmp->icmp6_code);
365         memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
366
367         if (icmp->icmp6_code == 0 &&
368             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
369              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
370                 int icmp_len = skb->len - skb_transport_offset(skb);
371                 struct nd_msg *nd;
372                 int offset;
373
374                 /* In order to process neighbor discovery options, we need the
375                  * entire packet.
376                  */
377                 if (unlikely(icmp_len < sizeof(*nd)))
378                         return 0;
379
380                 if (unlikely(skb_linearize(skb)))
381                         return -ENOMEM;
382
383                 nd = (struct nd_msg *)skb_transport_header(skb);
384                 key->ipv6.nd.target = nd->target;
385
386                 icmp_len -= sizeof(*nd);
387                 offset = 0;
388                 while (icmp_len >= 8) {
389                         struct nd_opt_hdr *nd_opt =
390                                  (struct nd_opt_hdr *)(nd->opt + offset);
391                         int opt_len = nd_opt->nd_opt_len * 8;
392
393                         if (unlikely(!opt_len || opt_len > icmp_len))
394                                 return 0;
395
396                         /* Store the link layer address if the appropriate
397                          * option is provided.  It is considered an error if
398                          * the same link layer option is specified twice.
399                          */
400                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
401                             && opt_len == 8) {
402                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
403                                         goto invalid;
404                                 ether_addr_copy(key->ipv6.nd.sll,
405                                                 &nd->opt[offset+sizeof(*nd_opt)]);
406                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
407                                    && opt_len == 8) {
408                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
409                                         goto invalid;
410                                 ether_addr_copy(key->ipv6.nd.tll,
411                                                 &nd->opt[offset+sizeof(*nd_opt)]);
412                         }
413
414                         icmp_len -= opt_len;
415                         offset += opt_len;
416                 }
417         }
418
419         return 0;
420
421 invalid:
422         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
423         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
424         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
425
426         return 0;
427 }
428
429 /**
430  * key_extract - extracts a flow key from an Ethernet frame.
431  * @skb: sk_buff that contains the frame, with skb->data pointing to the
432  * Ethernet header
433  * @key: output flow key
434  *
435  * The caller must ensure that skb->len >= ETH_HLEN.
436  *
437  * Returns 0 if successful, otherwise a negative errno value.
438  *
439  * Initializes @skb header pointers as follows:
440  *
441  *    - skb->mac_header: the Ethernet header.
442  *
443  *    - skb->network_header: just past the Ethernet header, or just past the
444  *      VLAN header, to the first byte of the Ethernet payload.
445  *
446  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
447  *      on output, then just past the IP header, if one is present and
448  *      of a correct length, otherwise the same as skb->network_header.
449  *      For other key->eth.type values it is left untouched.
450  */
451 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
452 {
453         int error;
454         struct ethhdr *eth;
455
456         /* Flags are always used as part of stats */
457         key->tp.flags = 0;
458
459         skb_reset_mac_header(skb);
460
461         /* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
462          * header in the linear data area.
463          */
464         eth = eth_hdr(skb);
465         ether_addr_copy(key->eth.src, eth->h_source);
466         ether_addr_copy(key->eth.dst, eth->h_dest);
467
468         __skb_pull(skb, 2 * ETH_ALEN);
469         /* We are going to push all headers that we pull, so no need to
470          * update skb->csum here.
471          */
472
473         key->eth.tci = 0;
474         if (vlan_tx_tag_present(skb))
475                 key->eth.tci = htons(skb->vlan_tci);
476         else if (eth->h_proto == htons(ETH_P_8021Q))
477                 if (unlikely(parse_vlan(skb, key)))
478                         return -ENOMEM;
479
480         key->eth.type = parse_ethertype(skb);
481         if (unlikely(key->eth.type == htons(0)))
482                 return -ENOMEM;
483
484         skb_reset_network_header(skb);
485         skb_reset_mac_len(skb);
486         __skb_push(skb, skb->data - skb_mac_header(skb));
487
488         /* Network layer. */
489         if (key->eth.type == htons(ETH_P_IP)) {
490                 struct iphdr *nh;
491                 __be16 offset;
492
493                 error = check_iphdr(skb);
494                 if (unlikely(error)) {
495                         memset(&key->ip, 0, sizeof(key->ip));
496                         memset(&key->ipv4, 0, sizeof(key->ipv4));
497                         if (error == -EINVAL) {
498                                 skb->transport_header = skb->network_header;
499                                 error = 0;
500                         }
501                         return error;
502                 }
503
504                 nh = ip_hdr(skb);
505                 key->ipv4.addr.src = nh->saddr;
506                 key->ipv4.addr.dst = nh->daddr;
507
508                 key->ip.proto = nh->protocol;
509                 key->ip.tos = nh->tos;
510                 key->ip.ttl = nh->ttl;
511
512                 offset = nh->frag_off & htons(IP_OFFSET);
513                 if (offset) {
514                         key->ip.frag = OVS_FRAG_TYPE_LATER;
515                         return 0;
516                 }
517                 if (nh->frag_off & htons(IP_MF) ||
518                         skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
519                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
520                 else
521                         key->ip.frag = OVS_FRAG_TYPE_NONE;
522
523                 /* Transport layer. */
524                 if (key->ip.proto == IPPROTO_TCP) {
525                         if (tcphdr_ok(skb)) {
526                                 struct tcphdr *tcp = tcp_hdr(skb);
527                                 key->tp.src = tcp->source;
528                                 key->tp.dst = tcp->dest;
529                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
530                         } else {
531                                 memset(&key->tp, 0, sizeof(key->tp));
532                         }
533
534                 } else if (key->ip.proto == IPPROTO_UDP) {
535                         if (udphdr_ok(skb)) {
536                                 struct udphdr *udp = udp_hdr(skb);
537                                 key->tp.src = udp->source;
538                                 key->tp.dst = udp->dest;
539                         } else {
540                                 memset(&key->tp, 0, sizeof(key->tp));
541                         }
542                 } else if (key->ip.proto == IPPROTO_SCTP) {
543                         if (sctphdr_ok(skb)) {
544                                 struct sctphdr *sctp = sctp_hdr(skb);
545                                 key->tp.src = sctp->source;
546                                 key->tp.dst = sctp->dest;
547                         } else {
548                                 memset(&key->tp, 0, sizeof(key->tp));
549                         }
550                 } else if (key->ip.proto == IPPROTO_ICMP) {
551                         if (icmphdr_ok(skb)) {
552                                 struct icmphdr *icmp = icmp_hdr(skb);
553                                 /* The ICMP type and code fields use the 16-bit
554                                  * transport port fields, so we need to store
555                                  * them in 16-bit network byte order. */
556                                 key->tp.src = htons(icmp->type);
557                                 key->tp.dst = htons(icmp->code);
558                         } else {
559                                 memset(&key->tp, 0, sizeof(key->tp));
560                         }
561                 }
562
563         } else if (key->eth.type == htons(ETH_P_ARP) ||
564                    key->eth.type == htons(ETH_P_RARP)) {
565                 struct arp_eth_header *arp;
566                 bool arp_available = arphdr_ok(skb);
567
568                 arp = (struct arp_eth_header *)skb_network_header(skb);
569
570                 if (arp_available &&
571                     arp->ar_hrd == htons(ARPHRD_ETHER) &&
572                     arp->ar_pro == htons(ETH_P_IP) &&
573                     arp->ar_hln == ETH_ALEN &&
574                     arp->ar_pln == 4) {
575
576                         /* We only match on the lower 8 bits of the opcode. */
577                         if (ntohs(arp->ar_op) <= 0xff)
578                                 key->ip.proto = ntohs(arp->ar_op);
579                         else
580                                 key->ip.proto = 0;
581
582                         memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
583                         memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
584                         ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
585                         ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
586                 } else {
587                         memset(&key->ip, 0, sizeof(key->ip));
588                         memset(&key->ipv4, 0, sizeof(key->ipv4));
589                 }
590         } else if (eth_p_mpls(key->eth.type)) {
591                 size_t stack_len = MPLS_HLEN;
592
593                 /* In the presence of an MPLS label stack the end of the L2
594                  * header and the beginning of the L3 header differ.
595                  *
596                  * Advance network_header to the beginning of the L3
597                  * header. mac_len corresponds to the end of the L2 header.
598                  */
599                 while (1) {
600                         __be32 lse;
601
602                         error = check_header(skb, skb->mac_len + stack_len);
603                         if (unlikely(error))
604                                 return 0;
605
606                         memcpy(&lse, skb_network_header(skb), MPLS_HLEN);
607
608                         if (stack_len == MPLS_HLEN)
609                                 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
610
611                         skb_set_network_header(skb, skb->mac_len + stack_len);
612                         if (lse & htonl(MPLS_LS_S_MASK))
613                                 break;
614
615                         stack_len += MPLS_HLEN;
616                 }
617         } else if (key->eth.type == htons(ETH_P_IPV6)) {
618                 int nh_len;             /* IPv6 Header + Extensions */
619
620                 nh_len = parse_ipv6hdr(skb, key);
621                 if (unlikely(nh_len < 0)) {
622                         memset(&key->ip, 0, sizeof(key->ip));
623                         memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
624                         if (nh_len == -EINVAL) {
625                                 skb->transport_header = skb->network_header;
626                                 error = 0;
627                         } else {
628                                 error = nh_len;
629                         }
630                         return error;
631                 }
632
633                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
634                         return 0;
635                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
636                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
637
638                 /* Transport layer. */
639                 if (key->ip.proto == NEXTHDR_TCP) {
640                         if (tcphdr_ok(skb)) {
641                                 struct tcphdr *tcp = tcp_hdr(skb);
642                                 key->tp.src = tcp->source;
643                                 key->tp.dst = tcp->dest;
644                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
645                         } else {
646                                 memset(&key->tp, 0, sizeof(key->tp));
647                         }
648                 } else if (key->ip.proto == NEXTHDR_UDP) {
649                         if (udphdr_ok(skb)) {
650                                 struct udphdr *udp = udp_hdr(skb);
651                                 key->tp.src = udp->source;
652                                 key->tp.dst = udp->dest;
653                         } else {
654                                 memset(&key->tp, 0, sizeof(key->tp));
655                         }
656                 } else if (key->ip.proto == NEXTHDR_SCTP) {
657                         if (sctphdr_ok(skb)) {
658                                 struct sctphdr *sctp = sctp_hdr(skb);
659                                 key->tp.src = sctp->source;
660                                 key->tp.dst = sctp->dest;
661                         } else {
662                                 memset(&key->tp, 0, sizeof(key->tp));
663                         }
664                 } else if (key->ip.proto == NEXTHDR_ICMP) {
665                         if (icmp6hdr_ok(skb)) {
666                                 error = parse_icmpv6(skb, key, nh_len);
667                                 if (error)
668                                         return error;
669                         } else {
670                                 memset(&key->tp, 0, sizeof(key->tp));
671                         }
672                 }
673         }
674         return 0;
675 }
676
677 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
678 {
679         return key_extract(skb, key);
680 }
681
682 int ovs_flow_key_extract(const struct ovs_tunnel_info *tun_info,
683                          struct sk_buff *skb, struct sw_flow_key *key)
684 {
685         /* Extract metadata from packet. */
686         if (tun_info) {
687                 memcpy(&key->tun_key, &tun_info->tunnel, sizeof(key->tun_key));
688
689                 if (tun_info->options) {
690                         BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
691                                                    8)) - 1
692                                         > sizeof(key->tun_opts));
693                         memcpy(GENEVE_OPTS(key, tun_info->options_len),
694                                tun_info->options, tun_info->options_len);
695                         key->tun_opts_len = tun_info->options_len;
696                 } else {
697                         key->tun_opts_len = 0;
698                 }
699         } else  {
700                 key->tun_opts_len = 0;
701                 memset(&key->tun_key, 0, sizeof(key->tun_key));
702         }
703
704         key->phy.priority = skb->priority;
705         key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
706         key->phy.skb_mark = skb->mark;
707         key->ovs_flow_hash = 0;
708         key->recirc_id = 0;
709
710         return key_extract(skb, key);
711 }
712
713 int ovs_flow_key_extract_userspace(const struct nlattr *attr,
714                                    struct sk_buff *skb,
715                                    struct sw_flow_key *key, bool log)
716 {
717         int err;
718
719         /* Extract metadata from netlink attributes. */
720         err = ovs_nla_get_flow_metadata(attr, key, log);
721         if (err)
722                 return err;
723
724         return key_extract(skb, key);
725 }