Merge remote-tracking branch 'wireless-next/master' into mac80211-next
[cascardo/linux.git] / net / openvswitch / flow_netlink.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49
50 #include "flow_netlink.h"
51
52 static void update_range__(struct sw_flow_match *match,
53                            size_t offset, size_t size, bool is_mask)
54 {
55         struct sw_flow_key_range *range = NULL;
56         size_t start = rounddown(offset, sizeof(long));
57         size_t end = roundup(offset + size, sizeof(long));
58
59         if (!is_mask)
60                 range = &match->range;
61         else if (match->mask)
62                 range = &match->mask->range;
63
64         if (!range)
65                 return;
66
67         if (range->start == range->end) {
68                 range->start = start;
69                 range->end = end;
70                 return;
71         }
72
73         if (range->start > start)
74                 range->start = start;
75
76         if (range->end < end)
77                 range->end = end;
78 }
79
80 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
81         do { \
82                 update_range__(match, offsetof(struct sw_flow_key, field),  \
83                                      sizeof((match)->key->field), is_mask); \
84                 if (is_mask) {                                              \
85                         if ((match)->mask)                                  \
86                                 (match)->mask->key.field = value;           \
87                 } else {                                                    \
88                         (match)->key->field = value;                        \
89                 }                                                           \
90         } while (0)
91
92 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)     \
93         do {                                                                \
94                 update_range__(match, offset, len, is_mask);                \
95                 if (is_mask)                                                \
96                         memcpy((u8 *)&(match)->mask->key + offset, value_p, \
97                                len);                                        \
98                 else                                                        \
99                         memcpy((u8 *)(match)->key + offset, value_p, len);  \
100         } while (0)
101
102 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)               \
103         SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
104                                   value_p, len, is_mask)
105
106 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
107         do { \
108                 update_range__(match, offsetof(struct sw_flow_key, field),  \
109                                      sizeof((match)->key->field), is_mask); \
110                 if (is_mask) {                                              \
111                         if ((match)->mask)                                  \
112                                 memset((u8 *)&(match)->mask->key.field, value,\
113                                        sizeof((match)->mask->key.field));   \
114                 } else {                                                    \
115                         memset((u8 *)&(match)->key->field, value,           \
116                                sizeof((match)->key->field));                \
117                 }                                                           \
118         } while (0)
119
120 static bool match_validate(const struct sw_flow_match *match,
121                            u64 key_attrs, u64 mask_attrs)
122 {
123         u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
124         u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
125
126         /* The following mask attributes allowed only if they
127          * pass the validation tests. */
128         mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
129                         | (1 << OVS_KEY_ATTR_IPV6)
130                         | (1 << OVS_KEY_ATTR_TCP)
131                         | (1 << OVS_KEY_ATTR_TCP_FLAGS)
132                         | (1 << OVS_KEY_ATTR_UDP)
133                         | (1 << OVS_KEY_ATTR_SCTP)
134                         | (1 << OVS_KEY_ATTR_ICMP)
135                         | (1 << OVS_KEY_ATTR_ICMPV6)
136                         | (1 << OVS_KEY_ATTR_ARP)
137                         | (1 << OVS_KEY_ATTR_ND));
138
139         /* Always allowed mask fields. */
140         mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
141                        | (1 << OVS_KEY_ATTR_IN_PORT)
142                        | (1 << OVS_KEY_ATTR_ETHERTYPE));
143
144         /* Check key attributes. */
145         if (match->key->eth.type == htons(ETH_P_ARP)
146                         || match->key->eth.type == htons(ETH_P_RARP)) {
147                 key_expected |= 1 << OVS_KEY_ATTR_ARP;
148                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
149                         mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
150         }
151
152         if (match->key->eth.type == htons(ETH_P_IP)) {
153                 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
154                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
155                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
156
157                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
158                         if (match->key->ip.proto == IPPROTO_UDP) {
159                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
160                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
161                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
162                         }
163
164                         if (match->key->ip.proto == IPPROTO_SCTP) {
165                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
166                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
167                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
168                         }
169
170                         if (match->key->ip.proto == IPPROTO_TCP) {
171                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
172                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
173                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
174                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
175                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
176                                 }
177                         }
178
179                         if (match->key->ip.proto == IPPROTO_ICMP) {
180                                 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
181                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
182                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
183                         }
184                 }
185         }
186
187         if (match->key->eth.type == htons(ETH_P_IPV6)) {
188                 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
189                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
190                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
191
192                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
193                         if (match->key->ip.proto == IPPROTO_UDP) {
194                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
195                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
196                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
197                         }
198
199                         if (match->key->ip.proto == IPPROTO_SCTP) {
200                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
201                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
202                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
203                         }
204
205                         if (match->key->ip.proto == IPPROTO_TCP) {
206                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
207                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
208                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
209                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
210                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
211                                 }
212                         }
213
214                         if (match->key->ip.proto == IPPROTO_ICMPV6) {
215                                 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
216                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
217                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
218
219                                 if (match->key->tp.src ==
220                                                 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
221                                     match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
222                                         key_expected |= 1 << OVS_KEY_ATTR_ND;
223                                         if (match->mask && (match->mask->key.tp.src == htons(0xffff)))
224                                                 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
225                                 }
226                         }
227                 }
228         }
229
230         if ((key_attrs & key_expected) != key_expected) {
231                 /* Key attributes check failed. */
232                 OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n",
233                                 (unsigned long long)key_attrs, (unsigned long long)key_expected);
234                 return false;
235         }
236
237         if ((mask_attrs & mask_allowed) != mask_attrs) {
238                 /* Mask attributes check failed. */
239                 OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n",
240                                 (unsigned long long)mask_attrs, (unsigned long long)mask_allowed);
241                 return false;
242         }
243
244         return true;
245 }
246
247 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
248 static const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
249         [OVS_KEY_ATTR_ENCAP] = -1,
250         [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
251         [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
252         [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
253         [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
254         [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
255         [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
256         [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
257         [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
258         [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
259         [OVS_KEY_ATTR_TCP_FLAGS] = sizeof(__be16),
260         [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
261         [OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp),
262         [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
263         [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
264         [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
265         [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
266         [OVS_KEY_ATTR_RECIRC_ID] = sizeof(u32),
267         [OVS_KEY_ATTR_DP_HASH] = sizeof(u32),
268         [OVS_KEY_ATTR_TUNNEL] = -1,
269 };
270
271 static bool is_all_zero(const u8 *fp, size_t size)
272 {
273         int i;
274
275         if (!fp)
276                 return false;
277
278         for (i = 0; i < size; i++)
279                 if (fp[i])
280                         return false;
281
282         return true;
283 }
284
285 static int __parse_flow_nlattrs(const struct nlattr *attr,
286                                 const struct nlattr *a[],
287                                 u64 *attrsp, bool nz)
288 {
289         const struct nlattr *nla;
290         u64 attrs;
291         int rem;
292
293         attrs = *attrsp;
294         nla_for_each_nested(nla, attr, rem) {
295                 u16 type = nla_type(nla);
296                 int expected_len;
297
298                 if (type > OVS_KEY_ATTR_MAX) {
299                         OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n",
300                                   type, OVS_KEY_ATTR_MAX);
301                         return -EINVAL;
302                 }
303
304                 if (attrs & (1 << type)) {
305                         OVS_NLERR("Duplicate key attribute (type %d).\n", type);
306                         return -EINVAL;
307                 }
308
309                 expected_len = ovs_key_lens[type];
310                 if (nla_len(nla) != expected_len && expected_len != -1) {
311                         OVS_NLERR("Key attribute has unexpected length (type=%d"
312                                   ", length=%d, expected=%d).\n", type,
313                                   nla_len(nla), expected_len);
314                         return -EINVAL;
315                 }
316
317                 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
318                         attrs |= 1 << type;
319                         a[type] = nla;
320                 }
321         }
322         if (rem) {
323                 OVS_NLERR("Message has %d unknown bytes.\n", rem);
324                 return -EINVAL;
325         }
326
327         *attrsp = attrs;
328         return 0;
329 }
330
331 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
332                                    const struct nlattr *a[], u64 *attrsp)
333 {
334         return __parse_flow_nlattrs(attr, a, attrsp, true);
335 }
336
337 static int parse_flow_nlattrs(const struct nlattr *attr,
338                               const struct nlattr *a[], u64 *attrsp)
339 {
340         return __parse_flow_nlattrs(attr, a, attrsp, false);
341 }
342
343 static int ipv4_tun_from_nlattr(const struct nlattr *attr,
344                                 struct sw_flow_match *match, bool is_mask)
345 {
346         struct nlattr *a;
347         int rem;
348         bool ttl = false;
349         __be16 tun_flags = 0;
350         unsigned long opt_key_offset;
351
352         nla_for_each_nested(a, attr, rem) {
353                 int type = nla_type(a);
354                 static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
355                         [OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
356                         [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
357                         [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
358                         [OVS_TUNNEL_KEY_ATTR_TOS] = 1,
359                         [OVS_TUNNEL_KEY_ATTR_TTL] = 1,
360                         [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
361                         [OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
362                         [OVS_TUNNEL_KEY_ATTR_OAM] = 0,
363                         [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = -1,
364                 };
365
366                 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
367                         OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n",
368                         type, OVS_TUNNEL_KEY_ATTR_MAX);
369                         return -EINVAL;
370                 }
371
372                 if (ovs_tunnel_key_lens[type] != nla_len(a) &&
373                     ovs_tunnel_key_lens[type] != -1) {
374                         OVS_NLERR("IPv4 tunnel attribute type has unexpected "
375                                   " length (type=%d, length=%d, expected=%d).\n",
376                                   type, nla_len(a), ovs_tunnel_key_lens[type]);
377                         return -EINVAL;
378                 }
379
380                 switch (type) {
381                 case OVS_TUNNEL_KEY_ATTR_ID:
382                         SW_FLOW_KEY_PUT(match, tun_key.tun_id,
383                                         nla_get_be64(a), is_mask);
384                         tun_flags |= TUNNEL_KEY;
385                         break;
386                 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
387                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
388                                         nla_get_be32(a), is_mask);
389                         break;
390                 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
391                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
392                                         nla_get_be32(a), is_mask);
393                         break;
394                 case OVS_TUNNEL_KEY_ATTR_TOS:
395                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
396                                         nla_get_u8(a), is_mask);
397                         break;
398                 case OVS_TUNNEL_KEY_ATTR_TTL:
399                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
400                                         nla_get_u8(a), is_mask);
401                         ttl = true;
402                         break;
403                 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
404                         tun_flags |= TUNNEL_DONT_FRAGMENT;
405                         break;
406                 case OVS_TUNNEL_KEY_ATTR_CSUM:
407                         tun_flags |= TUNNEL_CSUM;
408                         break;
409                 case OVS_TUNNEL_KEY_ATTR_OAM:
410                         tun_flags |= TUNNEL_OAM;
411                         break;
412                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
413                         tun_flags |= TUNNEL_OPTIONS_PRESENT;
414                         if (nla_len(a) > sizeof(match->key->tun_opts)) {
415                                 OVS_NLERR("Geneve option length exceeds maximum size (len %d, max %zu).\n",
416                                           nla_len(a),
417                                           sizeof(match->key->tun_opts));
418                                 return -EINVAL;
419                         }
420
421                         if (nla_len(a) % 4 != 0) {
422                                 OVS_NLERR("Geneve option length is not a multiple of 4 (len %d).\n",
423                                           nla_len(a));
424                                 return -EINVAL;
425                         }
426
427                         /* We need to record the length of the options passed
428                          * down, otherwise packets with the same format but
429                          * additional options will be silently matched.
430                          */
431                         if (!is_mask) {
432                                 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
433                                                 false);
434                         } else {
435                                 /* This is somewhat unusual because it looks at
436                                  * both the key and mask while parsing the
437                                  * attributes (and by extension assumes the key
438                                  * is parsed first). Normally, we would verify
439                                  * that each is the correct length and that the
440                                  * attributes line up in the validate function.
441                                  * However, that is difficult because this is
442                                  * variable length and we won't have the
443                                  * information later.
444                                  */
445                                 if (match->key->tun_opts_len != nla_len(a)) {
446                                         OVS_NLERR("Geneve option key length (%d) is different from mask length (%d).",
447                                                   match->key->tun_opts_len,
448                                                   nla_len(a));
449                                         return -EINVAL;
450                                 }
451
452                                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff,
453                                                 true);
454                         }
455
456                         opt_key_offset = (unsigned long)GENEVE_OPTS(
457                                           (struct sw_flow_key *)0,
458                                           nla_len(a));
459                         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset,
460                                                   nla_data(a), nla_len(a),
461                                                   is_mask);
462                         break;
463                 default:
464                         OVS_NLERR("Unknown IPv4 tunnel attribute (%d).\n",
465                                   type);
466                         return -EINVAL;
467                 }
468         }
469
470         SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
471
472         if (rem > 0) {
473                 OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem);
474                 return -EINVAL;
475         }
476
477         if (!is_mask) {
478                 if (!match->key->tun_key.ipv4_dst) {
479                         OVS_NLERR("IPv4 tunnel destination address is zero.\n");
480                         return -EINVAL;
481                 }
482
483                 if (!ttl) {
484                         OVS_NLERR("IPv4 tunnel TTL not specified.\n");
485                         return -EINVAL;
486                 }
487         }
488
489         return 0;
490 }
491
492 static int __ipv4_tun_to_nlattr(struct sk_buff *skb,
493                                 const struct ovs_key_ipv4_tunnel *output,
494                                 const struct geneve_opt *tun_opts,
495                                 int swkey_tun_opts_len)
496 {
497         if (output->tun_flags & TUNNEL_KEY &&
498             nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
499                 return -EMSGSIZE;
500         if (output->ipv4_src &&
501             nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
502                 return -EMSGSIZE;
503         if (output->ipv4_dst &&
504             nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
505                 return -EMSGSIZE;
506         if (output->ipv4_tos &&
507             nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
508                 return -EMSGSIZE;
509         if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
510                 return -EMSGSIZE;
511         if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
512             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
513                 return -EMSGSIZE;
514         if ((output->tun_flags & TUNNEL_CSUM) &&
515             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
516                 return -EMSGSIZE;
517         if ((output->tun_flags & TUNNEL_OAM) &&
518             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
519                 return -EMSGSIZE;
520         if (tun_opts &&
521             nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
522                     swkey_tun_opts_len, tun_opts))
523                 return -EMSGSIZE;
524
525         return 0;
526 }
527
528
529 static int ipv4_tun_to_nlattr(struct sk_buff *skb,
530                               const struct ovs_key_ipv4_tunnel *output,
531                               const struct geneve_opt *tun_opts,
532                               int swkey_tun_opts_len)
533 {
534         struct nlattr *nla;
535         int err;
536
537         nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
538         if (!nla)
539                 return -EMSGSIZE;
540
541         err = __ipv4_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len);
542         if (err)
543                 return err;
544
545         nla_nest_end(skb, nla);
546         return 0;
547 }
548
549 static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs,
550                                  const struct nlattr **a, bool is_mask)
551 {
552         if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
553                 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
554
555                 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
556                 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
557         }
558
559         if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
560                 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
561
562                 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
563                 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
564         }
565
566         if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
567                 SW_FLOW_KEY_PUT(match, phy.priority,
568                           nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
569                 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
570         }
571
572         if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
573                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
574
575                 if (is_mask)
576                         in_port = 0xffffffff; /* Always exact match in_port. */
577                 else if (in_port >= DP_MAX_PORTS)
578                         return -EINVAL;
579
580                 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
581                 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
582         } else if (!is_mask) {
583                 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
584         }
585
586         if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
587                 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
588
589                 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
590                 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
591         }
592         if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
593                 if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
594                                          is_mask))
595                         return -EINVAL;
596                 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
597         }
598         return 0;
599 }
600
601 static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
602                                 const struct nlattr **a, bool is_mask)
603 {
604         int err;
605         u64 orig_attrs = attrs;
606
607         err = metadata_from_nlattrs(match, &attrs, a, is_mask);
608         if (err)
609                 return err;
610
611         if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
612                 const struct ovs_key_ethernet *eth_key;
613
614                 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
615                 SW_FLOW_KEY_MEMCPY(match, eth.src,
616                                 eth_key->eth_src, ETH_ALEN, is_mask);
617                 SW_FLOW_KEY_MEMCPY(match, eth.dst,
618                                 eth_key->eth_dst, ETH_ALEN, is_mask);
619                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
620         }
621
622         if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
623                 __be16 tci;
624
625                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
626                 if (!(tci & htons(VLAN_TAG_PRESENT))) {
627                         if (is_mask)
628                                 OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n");
629                         else
630                                 OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n");
631
632                         return -EINVAL;
633                 }
634
635                 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
636                 attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
637         } else if (!is_mask)
638                 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
639
640         if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
641                 __be16 eth_type;
642
643                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
644                 if (is_mask) {
645                         /* Always exact match EtherType. */
646                         eth_type = htons(0xffff);
647                 } else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
648                         OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n",
649                                         ntohs(eth_type), ETH_P_802_3_MIN);
650                         return -EINVAL;
651                 }
652
653                 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
654                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
655         } else if (!is_mask) {
656                 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
657         }
658
659         if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
660                 const struct ovs_key_ipv4 *ipv4_key;
661
662                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
663                 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
664                         OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n",
665                                 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
666                         return -EINVAL;
667                 }
668                 SW_FLOW_KEY_PUT(match, ip.proto,
669                                 ipv4_key->ipv4_proto, is_mask);
670                 SW_FLOW_KEY_PUT(match, ip.tos,
671                                 ipv4_key->ipv4_tos, is_mask);
672                 SW_FLOW_KEY_PUT(match, ip.ttl,
673                                 ipv4_key->ipv4_ttl, is_mask);
674                 SW_FLOW_KEY_PUT(match, ip.frag,
675                                 ipv4_key->ipv4_frag, is_mask);
676                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
677                                 ipv4_key->ipv4_src, is_mask);
678                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
679                                 ipv4_key->ipv4_dst, is_mask);
680                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
681         }
682
683         if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
684                 const struct ovs_key_ipv6 *ipv6_key;
685
686                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
687                 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
688                         OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n",
689                                 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
690                         return -EINVAL;
691                 }
692                 SW_FLOW_KEY_PUT(match, ipv6.label,
693                                 ipv6_key->ipv6_label, is_mask);
694                 SW_FLOW_KEY_PUT(match, ip.proto,
695                                 ipv6_key->ipv6_proto, is_mask);
696                 SW_FLOW_KEY_PUT(match, ip.tos,
697                                 ipv6_key->ipv6_tclass, is_mask);
698                 SW_FLOW_KEY_PUT(match, ip.ttl,
699                                 ipv6_key->ipv6_hlimit, is_mask);
700                 SW_FLOW_KEY_PUT(match, ip.frag,
701                                 ipv6_key->ipv6_frag, is_mask);
702                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
703                                 ipv6_key->ipv6_src,
704                                 sizeof(match->key->ipv6.addr.src),
705                                 is_mask);
706                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
707                                 ipv6_key->ipv6_dst,
708                                 sizeof(match->key->ipv6.addr.dst),
709                                 is_mask);
710
711                 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
712         }
713
714         if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
715                 const struct ovs_key_arp *arp_key;
716
717                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
718                 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
719                         OVS_NLERR("Unknown ARP opcode (opcode=%d).\n",
720                                   arp_key->arp_op);
721                         return -EINVAL;
722                 }
723
724                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
725                                 arp_key->arp_sip, is_mask);
726                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
727                         arp_key->arp_tip, is_mask);
728                 SW_FLOW_KEY_PUT(match, ip.proto,
729                                 ntohs(arp_key->arp_op), is_mask);
730                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
731                                 arp_key->arp_sha, ETH_ALEN, is_mask);
732                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
733                                 arp_key->arp_tha, ETH_ALEN, is_mask);
734
735                 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
736         }
737
738         if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
739                 const struct ovs_key_tcp *tcp_key;
740
741                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
742                 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
743                 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
744                 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
745         }
746
747         if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
748                 if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
749                         SW_FLOW_KEY_PUT(match, tp.flags,
750                                         nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
751                                         is_mask);
752                 } else {
753                         SW_FLOW_KEY_PUT(match, tp.flags,
754                                         nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
755                                         is_mask);
756                 }
757                 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
758         }
759
760         if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
761                 const struct ovs_key_udp *udp_key;
762
763                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
764                 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
765                 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
766                 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
767         }
768
769         if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
770                 const struct ovs_key_sctp *sctp_key;
771
772                 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
773                 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
774                 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
775                 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
776         }
777
778         if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
779                 const struct ovs_key_icmp *icmp_key;
780
781                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
782                 SW_FLOW_KEY_PUT(match, tp.src,
783                                 htons(icmp_key->icmp_type), is_mask);
784                 SW_FLOW_KEY_PUT(match, tp.dst,
785                                 htons(icmp_key->icmp_code), is_mask);
786                 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
787         }
788
789         if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
790                 const struct ovs_key_icmpv6 *icmpv6_key;
791
792                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
793                 SW_FLOW_KEY_PUT(match, tp.src,
794                                 htons(icmpv6_key->icmpv6_type), is_mask);
795                 SW_FLOW_KEY_PUT(match, tp.dst,
796                                 htons(icmpv6_key->icmpv6_code), is_mask);
797                 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
798         }
799
800         if (attrs & (1 << OVS_KEY_ATTR_ND)) {
801                 const struct ovs_key_nd *nd_key;
802
803                 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
804                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
805                         nd_key->nd_target,
806                         sizeof(match->key->ipv6.nd.target),
807                         is_mask);
808                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
809                         nd_key->nd_sll, ETH_ALEN, is_mask);
810                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
811                                 nd_key->nd_tll, ETH_ALEN, is_mask);
812                 attrs &= ~(1 << OVS_KEY_ATTR_ND);
813         }
814
815         if (attrs != 0)
816                 return -EINVAL;
817
818         return 0;
819 }
820
821 static void nlattr_set(struct nlattr *attr, u8 val, bool is_attr_mask_key)
822 {
823         struct nlattr *nla;
824         int rem;
825
826         /* The nlattr stream should already have been validated */
827         nla_for_each_nested(nla, attr, rem) {
828                 /* We assume that ovs_key_lens[type] == -1 means that type is a
829                  * nested attribute
830                  */
831                 if (is_attr_mask_key && ovs_key_lens[nla_type(nla)] == -1)
832                         nlattr_set(nla, val, false);
833                 else
834                         memset(nla_data(nla), val, nla_len(nla));
835         }
836 }
837
838 static void mask_set_nlattr(struct nlattr *attr, u8 val)
839 {
840         nlattr_set(attr, val, true);
841 }
842
843 /**
844  * ovs_nla_get_match - parses Netlink attributes into a flow key and
845  * mask. In case the 'mask' is NULL, the flow is treated as exact match
846  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
847  * does not include any don't care bit.
848  * @match: receives the extracted flow match information.
849  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
850  * sequence. The fields should of the packet that triggered the creation
851  * of this flow.
852  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
853  * attribute specifies the mask field of the wildcarded flow.
854  */
855 int ovs_nla_get_match(struct sw_flow_match *match,
856                       const struct nlattr *key,
857                       const struct nlattr *mask)
858 {
859         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
860         const struct nlattr *encap;
861         struct nlattr *newmask = NULL;
862         u64 key_attrs = 0;
863         u64 mask_attrs = 0;
864         bool encap_valid = false;
865         int err;
866
867         err = parse_flow_nlattrs(key, a, &key_attrs);
868         if (err)
869                 return err;
870
871         if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
872             (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
873             (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
874                 __be16 tci;
875
876                 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
877                       (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
878                         OVS_NLERR("Invalid Vlan frame.\n");
879                         return -EINVAL;
880                 }
881
882                 key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
883                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
884                 encap = a[OVS_KEY_ATTR_ENCAP];
885                 key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
886                 encap_valid = true;
887
888                 if (tci & htons(VLAN_TAG_PRESENT)) {
889                         err = parse_flow_nlattrs(encap, a, &key_attrs);
890                         if (err)
891                                 return err;
892                 } else if (!tci) {
893                         /* Corner case for truncated 802.1Q header. */
894                         if (nla_len(encap)) {
895                                 OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n");
896                                 return -EINVAL;
897                         }
898                 } else {
899                         OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n");
900                         return  -EINVAL;
901                 }
902         }
903
904         err = ovs_key_from_nlattrs(match, key_attrs, a, false);
905         if (err)
906                 return err;
907
908         if (match->mask && !mask) {
909                 /* Create an exact match mask. We need to set to 0xff all the
910                  * 'match->mask' fields that have been touched in 'match->key'.
911                  * We cannot simply memset 'match->mask', because padding bytes
912                  * and fields not specified in 'match->key' should be left to 0.
913                  * Instead, we use a stream of netlink attributes, copied from
914                  * 'key' and set to 0xff: ovs_key_from_nlattrs() will take care
915                  * of filling 'match->mask' appropriately.
916                  */
917                 newmask = kmemdup(key, nla_total_size(nla_len(key)),
918                                   GFP_KERNEL);
919                 if (!newmask)
920                         return -ENOMEM;
921
922                 mask_set_nlattr(newmask, 0xff);
923
924                 /* The userspace does not send tunnel attributes that are 0,
925                  * but we should not wildcard them nonetheless.
926                  */
927                 if (match->key->tun_key.ipv4_dst)
928                         SW_FLOW_KEY_MEMSET_FIELD(match, tun_key, 0xff, true);
929
930                 mask = newmask;
931         }
932
933         if (mask) {
934                 err = parse_flow_mask_nlattrs(mask, a, &mask_attrs);
935                 if (err)
936                         goto free_newmask;
937
938                 if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
939                         __be16 eth_type = 0;
940                         __be16 tci = 0;
941
942                         if (!encap_valid) {
943                                 OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n");
944                                 err = -EINVAL;
945                                 goto free_newmask;
946                         }
947
948                         mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
949                         if (a[OVS_KEY_ATTR_ETHERTYPE])
950                                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
951
952                         if (eth_type == htons(0xffff)) {
953                                 mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
954                                 encap = a[OVS_KEY_ATTR_ENCAP];
955                                 err = parse_flow_mask_nlattrs(encap, a, &mask_attrs);
956                                 if (err)
957                                         goto free_newmask;
958                         } else {
959                                 OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n",
960                                                 ntohs(eth_type));
961                                 err = -EINVAL;
962                                 goto free_newmask;
963                         }
964
965                         if (a[OVS_KEY_ATTR_VLAN])
966                                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
967
968                         if (!(tci & htons(VLAN_TAG_PRESENT))) {
969                                 OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci));
970                                 err = -EINVAL;
971                                 goto free_newmask;
972                         }
973                 }
974
975                 err = ovs_key_from_nlattrs(match, mask_attrs, a, true);
976                 if (err)
977                         goto free_newmask;
978         }
979
980         if (!match_validate(match, key_attrs, mask_attrs))
981                 err = -EINVAL;
982
983 free_newmask:
984         kfree(newmask);
985         return err;
986 }
987
988 /**
989  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
990  * @key: Receives extracted in_port, priority, tun_key and skb_mark.
991  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
992  * sequence.
993  *
994  * This parses a series of Netlink attributes that form a flow key, which must
995  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
996  * get the metadata, that is, the parts of the flow key that cannot be
997  * extracted from the packet itself.
998  */
999
1000 int ovs_nla_get_flow_metadata(const struct nlattr *attr,
1001                               struct sw_flow_key *key)
1002 {
1003         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1004         struct sw_flow_match match;
1005         u64 attrs = 0;
1006         int err;
1007
1008         err = parse_flow_nlattrs(attr, a, &attrs);
1009         if (err)
1010                 return -EINVAL;
1011
1012         memset(&match, 0, sizeof(match));
1013         match.key = key;
1014
1015         key->phy.in_port = DP_MAX_PORTS;
1016
1017         return metadata_from_nlattrs(&match, &attrs, a, false);
1018 }
1019
1020 int ovs_nla_put_flow(const struct sw_flow_key *swkey,
1021                      const struct sw_flow_key *output, struct sk_buff *skb)
1022 {
1023         struct ovs_key_ethernet *eth_key;
1024         struct nlattr *nla, *encap;
1025         bool is_mask = (swkey != output);
1026
1027         if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1028                 goto nla_put_failure;
1029
1030         if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1031                 goto nla_put_failure;
1032
1033         if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1034                 goto nla_put_failure;
1035
1036         if ((swkey->tun_key.ipv4_dst || is_mask)) {
1037                 const struct geneve_opt *opts = NULL;
1038
1039                 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1040                         opts = GENEVE_OPTS(output, swkey->tun_opts_len);
1041
1042                 if (ipv4_tun_to_nlattr(skb, &output->tun_key, opts,
1043                                        swkey->tun_opts_len))
1044                         goto nla_put_failure;
1045         }
1046
1047         if (swkey->phy.in_port == DP_MAX_PORTS) {
1048                 if (is_mask && (output->phy.in_port == 0xffff))
1049                         if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1050                                 goto nla_put_failure;
1051         } else {
1052                 u16 upper_u16;
1053                 upper_u16 = !is_mask ? 0 : 0xffff;
1054
1055                 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1056                                 (upper_u16 << 16) | output->phy.in_port))
1057                         goto nla_put_failure;
1058         }
1059
1060         if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1061                 goto nla_put_failure;
1062
1063         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1064         if (!nla)
1065                 goto nla_put_failure;
1066
1067         eth_key = nla_data(nla);
1068         ether_addr_copy(eth_key->eth_src, output->eth.src);
1069         ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1070
1071         if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1072                 __be16 eth_type;
1073                 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1074                 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1075                     nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1076                         goto nla_put_failure;
1077                 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1078                 if (!swkey->eth.tci)
1079                         goto unencap;
1080         } else
1081                 encap = NULL;
1082
1083         if (swkey->eth.type == htons(ETH_P_802_2)) {
1084                 /*
1085                  * Ethertype 802.2 is represented in the netlink with omitted
1086                  * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1087                  * 0xffff in the mask attribute.  Ethertype can also
1088                  * be wildcarded.
1089                  */
1090                 if (is_mask && output->eth.type)
1091                         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1092                                                 output->eth.type))
1093                                 goto nla_put_failure;
1094                 goto unencap;
1095         }
1096
1097         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1098                 goto nla_put_failure;
1099
1100         if (swkey->eth.type == htons(ETH_P_IP)) {
1101                 struct ovs_key_ipv4 *ipv4_key;
1102
1103                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1104                 if (!nla)
1105                         goto nla_put_failure;
1106                 ipv4_key = nla_data(nla);
1107                 ipv4_key->ipv4_src = output->ipv4.addr.src;
1108                 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1109                 ipv4_key->ipv4_proto = output->ip.proto;
1110                 ipv4_key->ipv4_tos = output->ip.tos;
1111                 ipv4_key->ipv4_ttl = output->ip.ttl;
1112                 ipv4_key->ipv4_frag = output->ip.frag;
1113         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1114                 struct ovs_key_ipv6 *ipv6_key;
1115
1116                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1117                 if (!nla)
1118                         goto nla_put_failure;
1119                 ipv6_key = nla_data(nla);
1120                 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1121                                 sizeof(ipv6_key->ipv6_src));
1122                 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1123                                 sizeof(ipv6_key->ipv6_dst));
1124                 ipv6_key->ipv6_label = output->ipv6.label;
1125                 ipv6_key->ipv6_proto = output->ip.proto;
1126                 ipv6_key->ipv6_tclass = output->ip.tos;
1127                 ipv6_key->ipv6_hlimit = output->ip.ttl;
1128                 ipv6_key->ipv6_frag = output->ip.frag;
1129         } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1130                    swkey->eth.type == htons(ETH_P_RARP)) {
1131                 struct ovs_key_arp *arp_key;
1132
1133                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1134                 if (!nla)
1135                         goto nla_put_failure;
1136                 arp_key = nla_data(nla);
1137                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1138                 arp_key->arp_sip = output->ipv4.addr.src;
1139                 arp_key->arp_tip = output->ipv4.addr.dst;
1140                 arp_key->arp_op = htons(output->ip.proto);
1141                 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1142                 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1143         }
1144
1145         if ((swkey->eth.type == htons(ETH_P_IP) ||
1146              swkey->eth.type == htons(ETH_P_IPV6)) &&
1147              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1148
1149                 if (swkey->ip.proto == IPPROTO_TCP) {
1150                         struct ovs_key_tcp *tcp_key;
1151
1152                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1153                         if (!nla)
1154                                 goto nla_put_failure;
1155                         tcp_key = nla_data(nla);
1156                         tcp_key->tcp_src = output->tp.src;
1157                         tcp_key->tcp_dst = output->tp.dst;
1158                         if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1159                                          output->tp.flags))
1160                                 goto nla_put_failure;
1161                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1162                         struct ovs_key_udp *udp_key;
1163
1164                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1165                         if (!nla)
1166                                 goto nla_put_failure;
1167                         udp_key = nla_data(nla);
1168                         udp_key->udp_src = output->tp.src;
1169                         udp_key->udp_dst = output->tp.dst;
1170                 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1171                         struct ovs_key_sctp *sctp_key;
1172
1173                         nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1174                         if (!nla)
1175                                 goto nla_put_failure;
1176                         sctp_key = nla_data(nla);
1177                         sctp_key->sctp_src = output->tp.src;
1178                         sctp_key->sctp_dst = output->tp.dst;
1179                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1180                            swkey->ip.proto == IPPROTO_ICMP) {
1181                         struct ovs_key_icmp *icmp_key;
1182
1183                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1184                         if (!nla)
1185                                 goto nla_put_failure;
1186                         icmp_key = nla_data(nla);
1187                         icmp_key->icmp_type = ntohs(output->tp.src);
1188                         icmp_key->icmp_code = ntohs(output->tp.dst);
1189                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1190                            swkey->ip.proto == IPPROTO_ICMPV6) {
1191                         struct ovs_key_icmpv6 *icmpv6_key;
1192
1193                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1194                                                 sizeof(*icmpv6_key));
1195                         if (!nla)
1196                                 goto nla_put_failure;
1197                         icmpv6_key = nla_data(nla);
1198                         icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1199                         icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1200
1201                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1202                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1203                                 struct ovs_key_nd *nd_key;
1204
1205                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1206                                 if (!nla)
1207                                         goto nla_put_failure;
1208                                 nd_key = nla_data(nla);
1209                                 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1210                                                         sizeof(nd_key->nd_target));
1211                                 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1212                                 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1213                         }
1214                 }
1215         }
1216
1217 unencap:
1218         if (encap)
1219                 nla_nest_end(skb, encap);
1220
1221         return 0;
1222
1223 nla_put_failure:
1224         return -EMSGSIZE;
1225 }
1226
1227 #define MAX_ACTIONS_BUFSIZE     (32 * 1024)
1228
1229 struct sw_flow_actions *ovs_nla_alloc_flow_actions(int size)
1230 {
1231         struct sw_flow_actions *sfa;
1232
1233         if (size > MAX_ACTIONS_BUFSIZE)
1234                 return ERR_PTR(-EINVAL);
1235
1236         sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1237         if (!sfa)
1238                 return ERR_PTR(-ENOMEM);
1239
1240         sfa->actions_len = 0;
1241         return sfa;
1242 }
1243
1244 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1245  * The caller must hold rcu_read_lock for this to be sensible. */
1246 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1247 {
1248         kfree_rcu(sf_acts, rcu);
1249 }
1250
1251 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1252                                        int attr_len)
1253 {
1254
1255         struct sw_flow_actions *acts;
1256         int new_acts_size;
1257         int req_size = NLA_ALIGN(attr_len);
1258         int next_offset = offsetof(struct sw_flow_actions, actions) +
1259                                         (*sfa)->actions_len;
1260
1261         if (req_size <= (ksize(*sfa) - next_offset))
1262                 goto out;
1263
1264         new_acts_size = ksize(*sfa) * 2;
1265
1266         if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1267                 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1268                         return ERR_PTR(-EMSGSIZE);
1269                 new_acts_size = MAX_ACTIONS_BUFSIZE;
1270         }
1271
1272         acts = ovs_nla_alloc_flow_actions(new_acts_size);
1273         if (IS_ERR(acts))
1274                 return (void *)acts;
1275
1276         memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1277         acts->actions_len = (*sfa)->actions_len;
1278         kfree(*sfa);
1279         *sfa = acts;
1280
1281 out:
1282         (*sfa)->actions_len += req_size;
1283         return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1284 }
1285
1286 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1287                                    int attrtype, void *data, int len)
1288 {
1289         struct nlattr *a;
1290
1291         a = reserve_sfa_size(sfa, nla_attr_size(len));
1292         if (IS_ERR(a))
1293                 return a;
1294
1295         a->nla_type = attrtype;
1296         a->nla_len = nla_attr_size(len);
1297
1298         if (data)
1299                 memcpy(nla_data(a), data, len);
1300         memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1301
1302         return a;
1303 }
1304
1305 static int add_action(struct sw_flow_actions **sfa, int attrtype,
1306                       void *data, int len)
1307 {
1308         struct nlattr *a;
1309
1310         a = __add_action(sfa, attrtype, data, len);
1311         if (IS_ERR(a))
1312                 return PTR_ERR(a);
1313
1314         return 0;
1315 }
1316
1317 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1318                                           int attrtype)
1319 {
1320         int used = (*sfa)->actions_len;
1321         int err;
1322
1323         err = add_action(sfa, attrtype, NULL, 0);
1324         if (err)
1325                 return err;
1326
1327         return used;
1328 }
1329
1330 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1331                                          int st_offset)
1332 {
1333         struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1334                                                                st_offset);
1335
1336         a->nla_len = sfa->actions_len - st_offset;
1337 }
1338
1339 static int validate_and_copy_sample(const struct nlattr *attr,
1340                                     const struct sw_flow_key *key, int depth,
1341                                     struct sw_flow_actions **sfa)
1342 {
1343         const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1344         const struct nlattr *probability, *actions;
1345         const struct nlattr *a;
1346         int rem, start, err, st_acts;
1347
1348         memset(attrs, 0, sizeof(attrs));
1349         nla_for_each_nested(a, attr, rem) {
1350                 int type = nla_type(a);
1351                 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1352                         return -EINVAL;
1353                 attrs[type] = a;
1354         }
1355         if (rem)
1356                 return -EINVAL;
1357
1358         probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1359         if (!probability || nla_len(probability) != sizeof(u32))
1360                 return -EINVAL;
1361
1362         actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1363         if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1364                 return -EINVAL;
1365
1366         /* validation done, copy sample action. */
1367         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE);
1368         if (start < 0)
1369                 return start;
1370         err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1371                          nla_data(probability), sizeof(u32));
1372         if (err)
1373                 return err;
1374         st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS);
1375         if (st_acts < 0)
1376                 return st_acts;
1377
1378         err = ovs_nla_copy_actions(actions, key, depth + 1, sfa);
1379         if (err)
1380                 return err;
1381
1382         add_nested_action_end(*sfa, st_acts);
1383         add_nested_action_end(*sfa, start);
1384
1385         return 0;
1386 }
1387
1388 static int validate_tp_port(const struct sw_flow_key *flow_key)
1389 {
1390         if ((flow_key->eth.type == htons(ETH_P_IP) ||
1391              flow_key->eth.type == htons(ETH_P_IPV6)) &&
1392             (flow_key->tp.src || flow_key->tp.dst))
1393                 return 0;
1394
1395         return -EINVAL;
1396 }
1397
1398 void ovs_match_init(struct sw_flow_match *match,
1399                     struct sw_flow_key *key,
1400                     struct sw_flow_mask *mask)
1401 {
1402         memset(match, 0, sizeof(*match));
1403         match->key = key;
1404         match->mask = mask;
1405
1406         memset(key, 0, sizeof(*key));
1407
1408         if (mask) {
1409                 memset(&mask->key, 0, sizeof(mask->key));
1410                 mask->range.start = mask->range.end = 0;
1411         }
1412 }
1413
1414 static int validate_and_copy_set_tun(const struct nlattr *attr,
1415                                      struct sw_flow_actions **sfa)
1416 {
1417         struct sw_flow_match match;
1418         struct sw_flow_key key;
1419         struct ovs_tunnel_info *tun_info;
1420         struct nlattr *a;
1421         int err, start;
1422
1423         ovs_match_init(&match, &key, NULL);
1424         err = ipv4_tun_from_nlattr(nla_data(attr), &match, false);
1425         if (err)
1426                 return err;
1427
1428         if (key.tun_opts_len) {
1429                 struct geneve_opt *option = GENEVE_OPTS(&key,
1430                                                         key.tun_opts_len);
1431                 int opts_len = key.tun_opts_len;
1432                 bool crit_opt = false;
1433
1434                 while (opts_len > 0) {
1435                         int len;
1436
1437                         if (opts_len < sizeof(*option))
1438                                 return -EINVAL;
1439
1440                         len = sizeof(*option) + option->length * 4;
1441                         if (len > opts_len)
1442                                 return -EINVAL;
1443
1444                         crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1445
1446                         option = (struct geneve_opt *)((u8 *)option + len);
1447                         opts_len -= len;
1448                 };
1449
1450                 key.tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1451         };
1452
1453         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET);
1454         if (start < 0)
1455                 return start;
1456
1457         a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1458                          sizeof(*tun_info) + key.tun_opts_len);
1459         if (IS_ERR(a))
1460                 return PTR_ERR(a);
1461
1462         tun_info = nla_data(a);
1463         tun_info->tunnel = key.tun_key;
1464         tun_info->options_len = key.tun_opts_len;
1465
1466         if (tun_info->options_len) {
1467                 /* We need to store the options in the action itself since
1468                  * everything else will go away after flow setup. We can append
1469                  * it to tun_info and then point there.
1470                  */
1471                 memcpy((tun_info + 1), GENEVE_OPTS(&key, key.tun_opts_len),
1472                        key.tun_opts_len);
1473                 tun_info->options = (struct geneve_opt *)(tun_info + 1);
1474         } else {
1475                 tun_info->options = NULL;
1476         }
1477
1478         add_nested_action_end(*sfa, start);
1479
1480         return err;
1481 }
1482
1483 static int validate_set(const struct nlattr *a,
1484                         const struct sw_flow_key *flow_key,
1485                         struct sw_flow_actions **sfa,
1486                         bool *set_tun)
1487 {
1488         const struct nlattr *ovs_key = nla_data(a);
1489         int key_type = nla_type(ovs_key);
1490
1491         /* There can be only one key in a action */
1492         if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
1493                 return -EINVAL;
1494
1495         if (key_type > OVS_KEY_ATTR_MAX ||
1496             (ovs_key_lens[key_type] != nla_len(ovs_key) &&
1497              ovs_key_lens[key_type] != -1))
1498                 return -EINVAL;
1499
1500         switch (key_type) {
1501         const struct ovs_key_ipv4 *ipv4_key;
1502         const struct ovs_key_ipv6 *ipv6_key;
1503         int err;
1504
1505         case OVS_KEY_ATTR_PRIORITY:
1506         case OVS_KEY_ATTR_SKB_MARK:
1507         case OVS_KEY_ATTR_ETHERNET:
1508                 break;
1509
1510         case OVS_KEY_ATTR_TUNNEL:
1511                 *set_tun = true;
1512                 err = validate_and_copy_set_tun(a, sfa);
1513                 if (err)
1514                         return err;
1515                 break;
1516
1517         case OVS_KEY_ATTR_IPV4:
1518                 if (flow_key->eth.type != htons(ETH_P_IP))
1519                         return -EINVAL;
1520
1521                 if (!flow_key->ip.proto)
1522                         return -EINVAL;
1523
1524                 ipv4_key = nla_data(ovs_key);
1525                 if (ipv4_key->ipv4_proto != flow_key->ip.proto)
1526                         return -EINVAL;
1527
1528                 if (ipv4_key->ipv4_frag != flow_key->ip.frag)
1529                         return -EINVAL;
1530
1531                 break;
1532
1533         case OVS_KEY_ATTR_IPV6:
1534                 if (flow_key->eth.type != htons(ETH_P_IPV6))
1535                         return -EINVAL;
1536
1537                 if (!flow_key->ip.proto)
1538                         return -EINVAL;
1539
1540                 ipv6_key = nla_data(ovs_key);
1541                 if (ipv6_key->ipv6_proto != flow_key->ip.proto)
1542                         return -EINVAL;
1543
1544                 if (ipv6_key->ipv6_frag != flow_key->ip.frag)
1545                         return -EINVAL;
1546
1547                 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
1548                         return -EINVAL;
1549
1550                 break;
1551
1552         case OVS_KEY_ATTR_TCP:
1553                 if (flow_key->ip.proto != IPPROTO_TCP)
1554                         return -EINVAL;
1555
1556                 return validate_tp_port(flow_key);
1557
1558         case OVS_KEY_ATTR_UDP:
1559                 if (flow_key->ip.proto != IPPROTO_UDP)
1560                         return -EINVAL;
1561
1562                 return validate_tp_port(flow_key);
1563
1564         case OVS_KEY_ATTR_SCTP:
1565                 if (flow_key->ip.proto != IPPROTO_SCTP)
1566                         return -EINVAL;
1567
1568                 return validate_tp_port(flow_key);
1569
1570         default:
1571                 return -EINVAL;
1572         }
1573
1574         return 0;
1575 }
1576
1577 static int validate_userspace(const struct nlattr *attr)
1578 {
1579         static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
1580                 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
1581                 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
1582         };
1583         struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
1584         int error;
1585
1586         error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
1587                                  attr, userspace_policy);
1588         if (error)
1589                 return error;
1590
1591         if (!a[OVS_USERSPACE_ATTR_PID] ||
1592             !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
1593                 return -EINVAL;
1594
1595         return 0;
1596 }
1597
1598 static int copy_action(const struct nlattr *from,
1599                        struct sw_flow_actions **sfa)
1600 {
1601         int totlen = NLA_ALIGN(from->nla_len);
1602         struct nlattr *to;
1603
1604         to = reserve_sfa_size(sfa, from->nla_len);
1605         if (IS_ERR(to))
1606                 return PTR_ERR(to);
1607
1608         memcpy(to, from, totlen);
1609         return 0;
1610 }
1611
1612 int ovs_nla_copy_actions(const struct nlattr *attr,
1613                          const struct sw_flow_key *key,
1614                          int depth,
1615                          struct sw_flow_actions **sfa)
1616 {
1617         const struct nlattr *a;
1618         int rem, err;
1619
1620         if (depth >= SAMPLE_ACTION_DEPTH)
1621                 return -EOVERFLOW;
1622
1623         nla_for_each_nested(a, attr, rem) {
1624                 /* Expected argument lengths, (u32)-1 for variable length. */
1625                 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
1626                         [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
1627                         [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
1628                         [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
1629                         [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
1630                         [OVS_ACTION_ATTR_POP_VLAN] = 0,
1631                         [OVS_ACTION_ATTR_SET] = (u32)-1,
1632                         [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
1633                         [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash)
1634                 };
1635                 const struct ovs_action_push_vlan *vlan;
1636                 int type = nla_type(a);
1637                 bool skip_copy;
1638
1639                 if (type > OVS_ACTION_ATTR_MAX ||
1640                     (action_lens[type] != nla_len(a) &&
1641                      action_lens[type] != (u32)-1))
1642                         return -EINVAL;
1643
1644                 skip_copy = false;
1645                 switch (type) {
1646                 case OVS_ACTION_ATTR_UNSPEC:
1647                         return -EINVAL;
1648
1649                 case OVS_ACTION_ATTR_USERSPACE:
1650                         err = validate_userspace(a);
1651                         if (err)
1652                                 return err;
1653                         break;
1654
1655                 case OVS_ACTION_ATTR_OUTPUT:
1656                         if (nla_get_u32(a) >= DP_MAX_PORTS)
1657                                 return -EINVAL;
1658                         break;
1659
1660                 case OVS_ACTION_ATTR_HASH: {
1661                         const struct ovs_action_hash *act_hash = nla_data(a);
1662
1663                         switch (act_hash->hash_alg) {
1664                         case OVS_HASH_ALG_L4:
1665                                 break;
1666                         default:
1667                                 return  -EINVAL;
1668                         }
1669
1670                         break;
1671                 }
1672
1673                 case OVS_ACTION_ATTR_POP_VLAN:
1674                         break;
1675
1676                 case OVS_ACTION_ATTR_PUSH_VLAN:
1677                         vlan = nla_data(a);
1678                         if (vlan->vlan_tpid != htons(ETH_P_8021Q))
1679                                 return -EINVAL;
1680                         if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
1681                                 return -EINVAL;
1682                         break;
1683
1684                 case OVS_ACTION_ATTR_RECIRC:
1685                         break;
1686
1687                 case OVS_ACTION_ATTR_SET:
1688                         err = validate_set(a, key, sfa, &skip_copy);
1689                         if (err)
1690                                 return err;
1691                         break;
1692
1693                 case OVS_ACTION_ATTR_SAMPLE:
1694                         err = validate_and_copy_sample(a, key, depth, sfa);
1695                         if (err)
1696                                 return err;
1697                         skip_copy = true;
1698                         break;
1699
1700                 default:
1701                         return -EINVAL;
1702                 }
1703                 if (!skip_copy) {
1704                         err = copy_action(a, sfa);
1705                         if (err)
1706                                 return err;
1707                 }
1708         }
1709
1710         if (rem > 0)
1711                 return -EINVAL;
1712
1713         return 0;
1714 }
1715
1716 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
1717 {
1718         const struct nlattr *a;
1719         struct nlattr *start;
1720         int err = 0, rem;
1721
1722         start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
1723         if (!start)
1724                 return -EMSGSIZE;
1725
1726         nla_for_each_nested(a, attr, rem) {
1727                 int type = nla_type(a);
1728                 struct nlattr *st_sample;
1729
1730                 switch (type) {
1731                 case OVS_SAMPLE_ATTR_PROBABILITY:
1732                         if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
1733                                     sizeof(u32), nla_data(a)))
1734                                 return -EMSGSIZE;
1735                         break;
1736                 case OVS_SAMPLE_ATTR_ACTIONS:
1737                         st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
1738                         if (!st_sample)
1739                                 return -EMSGSIZE;
1740                         err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
1741                         if (err)
1742                                 return err;
1743                         nla_nest_end(skb, st_sample);
1744                         break;
1745                 }
1746         }
1747
1748         nla_nest_end(skb, start);
1749         return err;
1750 }
1751
1752 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
1753 {
1754         const struct nlattr *ovs_key = nla_data(a);
1755         int key_type = nla_type(ovs_key);
1756         struct nlattr *start;
1757         int err;
1758
1759         switch (key_type) {
1760         case OVS_KEY_ATTR_TUNNEL_INFO: {
1761                 struct ovs_tunnel_info *tun_info = nla_data(ovs_key);
1762
1763                 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
1764                 if (!start)
1765                         return -EMSGSIZE;
1766
1767                 err = ipv4_tun_to_nlattr(skb, &tun_info->tunnel,
1768                                          tun_info->options_len ?
1769                                                 tun_info->options : NULL,
1770                                          tun_info->options_len);
1771                 if (err)
1772                         return err;
1773                 nla_nest_end(skb, start);
1774                 break;
1775         }
1776         default:
1777                 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
1778                         return -EMSGSIZE;
1779                 break;
1780         }
1781
1782         return 0;
1783 }
1784
1785 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
1786 {
1787         const struct nlattr *a;
1788         int rem, err;
1789
1790         nla_for_each_attr(a, attr, len, rem) {
1791                 int type = nla_type(a);
1792
1793                 switch (type) {
1794                 case OVS_ACTION_ATTR_SET:
1795                         err = set_action_to_attr(a, skb);
1796                         if (err)
1797                                 return err;
1798                         break;
1799
1800                 case OVS_ACTION_ATTR_SAMPLE:
1801                         err = sample_action_to_attr(a, skb);
1802                         if (err)
1803                                 return err;
1804                         break;
1805                 default:
1806                         if (nla_put(skb, type, nla_len(a), nla_data(a)))
1807                                 return -EMSGSIZE;
1808                         break;
1809                 }
1810         }
1811
1812         return 0;
1813 }