spi: spidev_fdx: Add support for Dual/Quad SPI Transfers
[cascardo/linux.git] / net / sched / sch_fq.c
1 /*
2  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3  *
4  *  Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
5  *
6  *      This program is free software; you can redistribute it and/or
7  *      modify it under the terms of the GNU General Public License
8  *      as published by the Free Software Foundation; either version
9  *      2 of the License, or (at your option) any later version.
10  *
11  *  Meant to be mostly used for localy generated traffic :
12  *  Fast classification depends on skb->sk being set before reaching us.
13  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14  *  All packets belonging to a socket are considered as a 'flow'.
15  *
16  *  Flows are dynamically allocated and stored in a hash table of RB trees
17  *  They are also part of one Round Robin 'queues' (new or old flows)
18  *
19  *  Burst avoidance (aka pacing) capability :
20  *
21  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22  *  bunch of packets, and this packet scheduler adds delay between
23  *  packets to respect rate limitation.
24  *
25  *  enqueue() :
26  *   - lookup one RB tree (out of 1024 or more) to find the flow.
27  *     If non existent flow, create it, add it to the tree.
28  *     Add skb to the per flow list of skb (fifo).
29  *   - Use a special fifo for high prio packets
30  *
31  *  dequeue() : serves flows in Round Robin
32  *  Note : When a flow becomes empty, we do not immediately remove it from
33  *  rb trees, for performance reasons (its expected to send additional packets,
34  *  or SLAB cache will reuse socket for another flow)
35  */
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlink.h>
52 #include <net/pkt_sched.h>
53 #include <net/sock.h>
54 #include <net/tcp_states.h>
55
56 /*
57  * Per flow structure, dynamically allocated
58  */
59 struct fq_flow {
60         struct sk_buff  *head;          /* list of skbs for this flow : first skb */
61         union {
62                 struct sk_buff *tail;   /* last skb in the list */
63                 unsigned long  age;     /* jiffies when flow was emptied, for gc */
64         };
65         struct rb_node  fq_node;        /* anchor in fq_root[] trees */
66         struct sock     *sk;
67         int             qlen;           /* number of packets in flow queue */
68         int             credit;
69         u32             socket_hash;    /* sk_hash */
70         struct fq_flow *next;           /* next pointer in RR lists, or &detached */
71
72         struct rb_node  rate_node;      /* anchor in q->delayed tree */
73         u64             time_next_packet;
74 };
75
76 struct fq_flow_head {
77         struct fq_flow *first;
78         struct fq_flow *last;
79 };
80
81 struct fq_sched_data {
82         struct fq_flow_head new_flows;
83
84         struct fq_flow_head old_flows;
85
86         struct rb_root  delayed;        /* for rate limited flows */
87         u64             time_next_delayed_flow;
88
89         struct fq_flow  internal;       /* for non classified or high prio packets */
90         u32             quantum;
91         u32             initial_quantum;
92         u32             flow_refill_delay;
93         u32             flow_max_rate;  /* optional max rate per flow */
94         u32             flow_plimit;    /* max packets per flow */
95         struct rb_root  *fq_root;
96         u8              rate_enable;
97         u8              fq_trees_log;
98
99         u32             flows;
100         u32             inactive_flows;
101         u32             throttled_flows;
102
103         u64             stat_gc_flows;
104         u64             stat_internal_packets;
105         u64             stat_tcp_retrans;
106         u64             stat_throttled;
107         u64             stat_flows_plimit;
108         u64             stat_pkts_too_long;
109         u64             stat_allocation_errors;
110         struct qdisc_watchdog watchdog;
111 };
112
113 /* special value to mark a detached flow (not on old/new list) */
114 static struct fq_flow detached, throttled;
115
116 static void fq_flow_set_detached(struct fq_flow *f)
117 {
118         f->next = &detached;
119         f->age = jiffies;
120 }
121
122 static bool fq_flow_is_detached(const struct fq_flow *f)
123 {
124         return f->next == &detached;
125 }
126
127 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
128 {
129         struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
130
131         while (*p) {
132                 struct fq_flow *aux;
133
134                 parent = *p;
135                 aux = container_of(parent, struct fq_flow, rate_node);
136                 if (f->time_next_packet >= aux->time_next_packet)
137                         p = &parent->rb_right;
138                 else
139                         p = &parent->rb_left;
140         }
141         rb_link_node(&f->rate_node, parent, p);
142         rb_insert_color(&f->rate_node, &q->delayed);
143         q->throttled_flows++;
144         q->stat_throttled++;
145
146         f->next = &throttled;
147         if (q->time_next_delayed_flow > f->time_next_packet)
148                 q->time_next_delayed_flow = f->time_next_packet;
149 }
150
151
152 static struct kmem_cache *fq_flow_cachep __read_mostly;
153
154 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
155 {
156         if (head->first)
157                 head->last->next = flow;
158         else
159                 head->first = flow;
160         head->last = flow;
161         flow->next = NULL;
162 }
163
164 /* limit number of collected flows per round */
165 #define FQ_GC_MAX 8
166 #define FQ_GC_AGE (3*HZ)
167
168 static bool fq_gc_candidate(const struct fq_flow *f)
169 {
170         return fq_flow_is_detached(f) &&
171                time_after(jiffies, f->age + FQ_GC_AGE);
172 }
173
174 static void fq_gc(struct fq_sched_data *q,
175                   struct rb_root *root,
176                   struct sock *sk)
177 {
178         struct fq_flow *f, *tofree[FQ_GC_MAX];
179         struct rb_node **p, *parent;
180         int fcnt = 0;
181
182         p = &root->rb_node;
183         parent = NULL;
184         while (*p) {
185                 parent = *p;
186
187                 f = container_of(parent, struct fq_flow, fq_node);
188                 if (f->sk == sk)
189                         break;
190
191                 if (fq_gc_candidate(f)) {
192                         tofree[fcnt++] = f;
193                         if (fcnt == FQ_GC_MAX)
194                                 break;
195                 }
196
197                 if (f->sk > sk)
198                         p = &parent->rb_right;
199                 else
200                         p = &parent->rb_left;
201         }
202
203         q->flows -= fcnt;
204         q->inactive_flows -= fcnt;
205         q->stat_gc_flows += fcnt;
206         while (fcnt) {
207                 struct fq_flow *f = tofree[--fcnt];
208
209                 rb_erase(&f->fq_node, root);
210                 kmem_cache_free(fq_flow_cachep, f);
211         }
212 }
213
214 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
215 {
216         struct rb_node **p, *parent;
217         struct sock *sk = skb->sk;
218         struct rb_root *root;
219         struct fq_flow *f;
220
221         /* warning: no starvation prevention... */
222         if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
223                 return &q->internal;
224
225         if (unlikely(!sk)) {
226                 /* By forcing low order bit to 1, we make sure to not
227                  * collide with a local flow (socket pointers are word aligned)
228                  */
229                 sk = (struct sock *)(skb_get_hash(skb) | 1L);
230         }
231
232         root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
233
234         if (q->flows >= (2U << q->fq_trees_log) &&
235             q->inactive_flows > q->flows/2)
236                 fq_gc(q, root, sk);
237
238         p = &root->rb_node;
239         parent = NULL;
240         while (*p) {
241                 parent = *p;
242
243                 f = container_of(parent, struct fq_flow, fq_node);
244                 if (f->sk == sk) {
245                         /* socket might have been reallocated, so check
246                          * if its sk_hash is the same.
247                          * It not, we need to refill credit with
248                          * initial quantum
249                          */
250                         if (unlikely(skb->sk &&
251                                      f->socket_hash != sk->sk_hash)) {
252                                 f->credit = q->initial_quantum;
253                                 f->socket_hash = sk->sk_hash;
254                                 f->time_next_packet = 0ULL;
255                         }
256                         return f;
257                 }
258                 if (f->sk > sk)
259                         p = &parent->rb_right;
260                 else
261                         p = &parent->rb_left;
262         }
263
264         f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
265         if (unlikely(!f)) {
266                 q->stat_allocation_errors++;
267                 return &q->internal;
268         }
269         fq_flow_set_detached(f);
270         f->sk = sk;
271         if (skb->sk)
272                 f->socket_hash = sk->sk_hash;
273         f->credit = q->initial_quantum;
274
275         rb_link_node(&f->fq_node, parent, p);
276         rb_insert_color(&f->fq_node, root);
277
278         q->flows++;
279         q->inactive_flows++;
280         return f;
281 }
282
283
284 /* remove one skb from head of flow queue */
285 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
286 {
287         struct sk_buff *skb = flow->head;
288
289         if (skb) {
290                 flow->head = skb->next;
291                 skb->next = NULL;
292                 flow->qlen--;
293                 sch->qstats.backlog -= qdisc_pkt_len(skb);
294                 sch->q.qlen--;
295         }
296         return skb;
297 }
298
299 /* We might add in the future detection of retransmits
300  * For the time being, just return false
301  */
302 static bool skb_is_retransmit(struct sk_buff *skb)
303 {
304         return false;
305 }
306
307 /* add skb to flow queue
308  * flow queue is a linked list, kind of FIFO, except for TCP retransmits
309  * We special case tcp retransmits to be transmitted before other packets.
310  * We rely on fact that TCP retransmits are unlikely, so we do not waste
311  * a separate queue or a pointer.
312  * head->  [retrans pkt 1]
313  *         [retrans pkt 2]
314  *         [ normal pkt 1]
315  *         [ normal pkt 2]
316  *         [ normal pkt 3]
317  * tail->  [ normal pkt 4]
318  */
319 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
320 {
321         struct sk_buff *prev, *head = flow->head;
322
323         skb->next = NULL;
324         if (!head) {
325                 flow->head = skb;
326                 flow->tail = skb;
327                 return;
328         }
329         if (likely(!skb_is_retransmit(skb))) {
330                 flow->tail->next = skb;
331                 flow->tail = skb;
332                 return;
333         }
334
335         /* This skb is a tcp retransmit,
336          * find the last retrans packet in the queue
337          */
338         prev = NULL;
339         while (skb_is_retransmit(head)) {
340                 prev = head;
341                 head = head->next;
342                 if (!head)
343                         break;
344         }
345         if (!prev) { /* no rtx packet in queue, become the new head */
346                 skb->next = flow->head;
347                 flow->head = skb;
348         } else {
349                 if (prev == flow->tail)
350                         flow->tail = skb;
351                 else
352                         skb->next = prev->next;
353                 prev->next = skb;
354         }
355 }
356
357 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
358 {
359         struct fq_sched_data *q = qdisc_priv(sch);
360         struct fq_flow *f;
361
362         if (unlikely(sch->q.qlen >= sch->limit))
363                 return qdisc_drop(skb, sch);
364
365         f = fq_classify(skb, q);
366         if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
367                 q->stat_flows_plimit++;
368                 return qdisc_drop(skb, sch);
369         }
370
371         f->qlen++;
372         if (skb_is_retransmit(skb))
373                 q->stat_tcp_retrans++;
374         sch->qstats.backlog += qdisc_pkt_len(skb);
375         if (fq_flow_is_detached(f)) {
376                 fq_flow_add_tail(&q->new_flows, f);
377                 if (time_after(jiffies, f->age + q->flow_refill_delay))
378                         f->credit = max_t(u32, f->credit, q->quantum);
379                 q->inactive_flows--;
380                 qdisc_unthrottled(sch);
381         }
382
383         /* Note: this overwrites f->age */
384         flow_queue_add(f, skb);
385
386         if (unlikely(f == &q->internal)) {
387                 q->stat_internal_packets++;
388                 qdisc_unthrottled(sch);
389         }
390         sch->q.qlen++;
391
392         return NET_XMIT_SUCCESS;
393 }
394
395 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
396 {
397         struct rb_node *p;
398
399         if (q->time_next_delayed_flow > now)
400                 return;
401
402         q->time_next_delayed_flow = ~0ULL;
403         while ((p = rb_first(&q->delayed)) != NULL) {
404                 struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
405
406                 if (f->time_next_packet > now) {
407                         q->time_next_delayed_flow = f->time_next_packet;
408                         break;
409                 }
410                 rb_erase(p, &q->delayed);
411                 q->throttled_flows--;
412                 fq_flow_add_tail(&q->old_flows, f);
413         }
414 }
415
416 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
417 {
418         struct fq_sched_data *q = qdisc_priv(sch);
419         u64 now = ktime_to_ns(ktime_get());
420         struct fq_flow_head *head;
421         struct sk_buff *skb;
422         struct fq_flow *f;
423         u32 rate;
424
425         skb = fq_dequeue_head(sch, &q->internal);
426         if (skb)
427                 goto out;
428         fq_check_throttled(q, now);
429 begin:
430         head = &q->new_flows;
431         if (!head->first) {
432                 head = &q->old_flows;
433                 if (!head->first) {
434                         if (q->time_next_delayed_flow != ~0ULL)
435                                 qdisc_watchdog_schedule_ns(&q->watchdog,
436                                                            q->time_next_delayed_flow);
437                         return NULL;
438                 }
439         }
440         f = head->first;
441
442         if (f->credit <= 0) {
443                 f->credit += q->quantum;
444                 head->first = f->next;
445                 fq_flow_add_tail(&q->old_flows, f);
446                 goto begin;
447         }
448
449         if (unlikely(f->head && now < f->time_next_packet)) {
450                 head->first = f->next;
451                 fq_flow_set_throttled(q, f);
452                 goto begin;
453         }
454
455         skb = fq_dequeue_head(sch, f);
456         if (!skb) {
457                 head->first = f->next;
458                 /* force a pass through old_flows to prevent starvation */
459                 if ((head == &q->new_flows) && q->old_flows.first) {
460                         fq_flow_add_tail(&q->old_flows, f);
461                 } else {
462                         fq_flow_set_detached(f);
463                         q->inactive_flows++;
464                 }
465                 goto begin;
466         }
467         prefetch(&skb->end);
468         f->time_next_packet = now;
469         f->credit -= qdisc_pkt_len(skb);
470
471         if (f->credit > 0 || !q->rate_enable)
472                 goto out;
473
474         rate = q->flow_max_rate;
475         if (skb->sk && skb->sk->sk_state != TCP_TIME_WAIT)
476                 rate = min(skb->sk->sk_pacing_rate, rate);
477
478         if (rate != ~0U) {
479                 u32 plen = max(qdisc_pkt_len(skb), q->quantum);
480                 u64 len = (u64)plen * NSEC_PER_SEC;
481
482                 if (likely(rate))
483                         do_div(len, rate);
484                 /* Since socket rate can change later,
485                  * clamp the delay to 125 ms.
486                  * TODO: maybe segment the too big skb, as in commit
487                  * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
488                  */
489                 if (unlikely(len > 125 * NSEC_PER_MSEC)) {
490                         len = 125 * NSEC_PER_MSEC;
491                         q->stat_pkts_too_long++;
492                 }
493
494                 f->time_next_packet = now + len;
495         }
496 out:
497         qdisc_bstats_update(sch, skb);
498         qdisc_unthrottled(sch);
499         return skb;
500 }
501
502 static void fq_reset(struct Qdisc *sch)
503 {
504         struct fq_sched_data *q = qdisc_priv(sch);
505         struct rb_root *root;
506         struct sk_buff *skb;
507         struct rb_node *p;
508         struct fq_flow *f;
509         unsigned int idx;
510
511         while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
512                 kfree_skb(skb);
513
514         if (!q->fq_root)
515                 return;
516
517         for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
518                 root = &q->fq_root[idx];
519                 while ((p = rb_first(root)) != NULL) {
520                         f = container_of(p, struct fq_flow, fq_node);
521                         rb_erase(p, root);
522
523                         while ((skb = fq_dequeue_head(sch, f)) != NULL)
524                                 kfree_skb(skb);
525
526                         kmem_cache_free(fq_flow_cachep, f);
527                 }
528         }
529         q->new_flows.first      = NULL;
530         q->old_flows.first      = NULL;
531         q->delayed              = RB_ROOT;
532         q->flows                = 0;
533         q->inactive_flows       = 0;
534         q->throttled_flows      = 0;
535 }
536
537 static void fq_rehash(struct fq_sched_data *q,
538                       struct rb_root *old_array, u32 old_log,
539                       struct rb_root *new_array, u32 new_log)
540 {
541         struct rb_node *op, **np, *parent;
542         struct rb_root *oroot, *nroot;
543         struct fq_flow *of, *nf;
544         int fcnt = 0;
545         u32 idx;
546
547         for (idx = 0; idx < (1U << old_log); idx++) {
548                 oroot = &old_array[idx];
549                 while ((op = rb_first(oroot)) != NULL) {
550                         rb_erase(op, oroot);
551                         of = container_of(op, struct fq_flow, fq_node);
552                         if (fq_gc_candidate(of)) {
553                                 fcnt++;
554                                 kmem_cache_free(fq_flow_cachep, of);
555                                 continue;
556                         }
557                         nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
558
559                         np = &nroot->rb_node;
560                         parent = NULL;
561                         while (*np) {
562                                 parent = *np;
563
564                                 nf = container_of(parent, struct fq_flow, fq_node);
565                                 BUG_ON(nf->sk == of->sk);
566
567                                 if (nf->sk > of->sk)
568                                         np = &parent->rb_right;
569                                 else
570                                         np = &parent->rb_left;
571                         }
572
573                         rb_link_node(&of->fq_node, parent, np);
574                         rb_insert_color(&of->fq_node, nroot);
575                 }
576         }
577         q->flows -= fcnt;
578         q->inactive_flows -= fcnt;
579         q->stat_gc_flows += fcnt;
580 }
581
582 static void *fq_alloc_node(size_t sz, int node)
583 {
584         void *ptr;
585
586         ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
587         if (!ptr)
588                 ptr = vmalloc_node(sz, node);
589         return ptr;
590 }
591
592 static void fq_free(void *addr)
593 {
594         if (addr && is_vmalloc_addr(addr))
595                 vfree(addr);
596         else
597                 kfree(addr);
598 }
599
600 static int fq_resize(struct Qdisc *sch, u32 log)
601 {
602         struct fq_sched_data *q = qdisc_priv(sch);
603         struct rb_root *array;
604         u32 idx;
605
606         if (q->fq_root && log == q->fq_trees_log)
607                 return 0;
608
609         /* If XPS was setup, we can allocate memory on right NUMA node */
610         array = fq_alloc_node(sizeof(struct rb_root) << log,
611                               netdev_queue_numa_node_read(sch->dev_queue));
612         if (!array)
613                 return -ENOMEM;
614
615         for (idx = 0; idx < (1U << log); idx++)
616                 array[idx] = RB_ROOT;
617
618         if (q->fq_root) {
619                 fq_rehash(q, q->fq_root, q->fq_trees_log, array, log);
620                 fq_free(q->fq_root);
621         }
622         q->fq_root = array;
623         q->fq_trees_log = log;
624
625         return 0;
626 }
627
628 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
629         [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
630         [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
631         [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
632         [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
633         [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
634         [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
635         [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
636         [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
637         [TCA_FQ_FLOW_REFILL_DELAY]      = { .type = NLA_U32 },
638 };
639
640 static int fq_change(struct Qdisc *sch, struct nlattr *opt)
641 {
642         struct fq_sched_data *q = qdisc_priv(sch);
643         struct nlattr *tb[TCA_FQ_MAX + 1];
644         int err, drop_count = 0;
645         u32 fq_log;
646
647         if (!opt)
648                 return -EINVAL;
649
650         err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
651         if (err < 0)
652                 return err;
653
654         sch_tree_lock(sch);
655
656         fq_log = q->fq_trees_log;
657
658         if (tb[TCA_FQ_BUCKETS_LOG]) {
659                 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
660
661                 if (nval >= 1 && nval <= ilog2(256*1024))
662                         fq_log = nval;
663                 else
664                         err = -EINVAL;
665         }
666         if (tb[TCA_FQ_PLIMIT])
667                 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
668
669         if (tb[TCA_FQ_FLOW_PLIMIT])
670                 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
671
672         if (tb[TCA_FQ_QUANTUM])
673                 q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
674
675         if (tb[TCA_FQ_INITIAL_QUANTUM])
676                 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
677
678         if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
679                 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
680                                     nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
681
682         if (tb[TCA_FQ_FLOW_MAX_RATE])
683                 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
684
685         if (tb[TCA_FQ_RATE_ENABLE]) {
686                 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
687
688                 if (enable <= 1)
689                         q->rate_enable = enable;
690                 else
691                         err = -EINVAL;
692         }
693
694         if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
695                 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
696
697                 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
698         }
699
700         if (!err)
701                 err = fq_resize(sch, fq_log);
702
703         while (sch->q.qlen > sch->limit) {
704                 struct sk_buff *skb = fq_dequeue(sch);
705
706                 if (!skb)
707                         break;
708                 kfree_skb(skb);
709                 drop_count++;
710         }
711         qdisc_tree_decrease_qlen(sch, drop_count);
712
713         sch_tree_unlock(sch);
714         return err;
715 }
716
717 static void fq_destroy(struct Qdisc *sch)
718 {
719         struct fq_sched_data *q = qdisc_priv(sch);
720
721         fq_reset(sch);
722         fq_free(q->fq_root);
723         qdisc_watchdog_cancel(&q->watchdog);
724 }
725
726 static int fq_init(struct Qdisc *sch, struct nlattr *opt)
727 {
728         struct fq_sched_data *q = qdisc_priv(sch);
729         int err;
730
731         sch->limit              = 10000;
732         q->flow_plimit          = 100;
733         q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
734         q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
735         q->flow_refill_delay    = msecs_to_jiffies(40);
736         q->flow_max_rate        = ~0U;
737         q->rate_enable          = 1;
738         q->new_flows.first      = NULL;
739         q->old_flows.first      = NULL;
740         q->delayed              = RB_ROOT;
741         q->fq_root              = NULL;
742         q->fq_trees_log         = ilog2(1024);
743         qdisc_watchdog_init(&q->watchdog, sch);
744
745         if (opt)
746                 err = fq_change(sch, opt);
747         else
748                 err = fq_resize(sch, q->fq_trees_log);
749
750         return err;
751 }
752
753 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
754 {
755         struct fq_sched_data *q = qdisc_priv(sch);
756         struct nlattr *opts;
757
758         opts = nla_nest_start(skb, TCA_OPTIONS);
759         if (opts == NULL)
760                 goto nla_put_failure;
761
762         /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
763
764         if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
765             nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
766             nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
767             nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
768             nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
769             nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
770             nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
771                         jiffies_to_usecs(q->flow_refill_delay)) ||
772             nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
773                 goto nla_put_failure;
774
775         nla_nest_end(skb, opts);
776         return skb->len;
777
778 nla_put_failure:
779         return -1;
780 }
781
782 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
783 {
784         struct fq_sched_data *q = qdisc_priv(sch);
785         u64 now = ktime_to_ns(ktime_get());
786         struct tc_fq_qd_stats st = {
787                 .gc_flows               = q->stat_gc_flows,
788                 .highprio_packets       = q->stat_internal_packets,
789                 .tcp_retrans            = q->stat_tcp_retrans,
790                 .throttled              = q->stat_throttled,
791                 .flows_plimit           = q->stat_flows_plimit,
792                 .pkts_too_long          = q->stat_pkts_too_long,
793                 .allocation_errors      = q->stat_allocation_errors,
794                 .flows                  = q->flows,
795                 .inactive_flows         = q->inactive_flows,
796                 .throttled_flows        = q->throttled_flows,
797                 .time_next_delayed_flow = q->time_next_delayed_flow - now,
798         };
799
800         return gnet_stats_copy_app(d, &st, sizeof(st));
801 }
802
803 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
804         .id             =       "fq",
805         .priv_size      =       sizeof(struct fq_sched_data),
806
807         .enqueue        =       fq_enqueue,
808         .dequeue        =       fq_dequeue,
809         .peek           =       qdisc_peek_dequeued,
810         .init           =       fq_init,
811         .reset          =       fq_reset,
812         .destroy        =       fq_destroy,
813         .change         =       fq_change,
814         .dump           =       fq_dump,
815         .dump_stats     =       fq_dump_stats,
816         .owner          =       THIS_MODULE,
817 };
818
819 static int __init fq_module_init(void)
820 {
821         int ret;
822
823         fq_flow_cachep = kmem_cache_create("fq_flow_cache",
824                                            sizeof(struct fq_flow),
825                                            0, 0, NULL);
826         if (!fq_flow_cachep)
827                 return -ENOMEM;
828
829         ret = register_qdisc(&fq_qdisc_ops);
830         if (ret)
831                 kmem_cache_destroy(fq_flow_cachep);
832         return ret;
833 }
834
835 static void __exit fq_module_exit(void)
836 {
837         unregister_qdisc(&fq_qdisc_ops);
838         kmem_cache_destroy(fq_flow_cachep);
839 }
840
841 module_init(fq_module_init)
842 module_exit(fq_module_exit)
843 MODULE_AUTHOR("Eric Dumazet");
844 MODULE_LICENSE("GPL");