Merge tag 'nfs-for-4.9-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[cascardo/linux.git] / net / sunrpc / cache.c
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/string_helpers.h>
24 #include <asm/uaccess.h>
25 #include <linux/poll.h>
26 #include <linux/seq_file.h>
27 #include <linux/proc_fs.h>
28 #include <linux/net.h>
29 #include <linux/workqueue.h>
30 #include <linux/mutex.h>
31 #include <linux/pagemap.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
37 #include "netns.h"
38
39 #define  RPCDBG_FACILITY RPCDBG_CACHE
40
41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
42 static void cache_revisit_request(struct cache_head *item);
43
44 static void cache_init(struct cache_head *h, struct cache_detail *detail)
45 {
46         time_t now = seconds_since_boot();
47         INIT_HLIST_NODE(&h->cache_list);
48         h->flags = 0;
49         kref_init(&h->ref);
50         h->expiry_time = now + CACHE_NEW_EXPIRY;
51         if (now <= detail->flush_time)
52                 /* ensure it isn't already expired */
53                 now = detail->flush_time + 1;
54         h->last_refresh = now;
55 }
56
57 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
58                                        struct cache_head *key, int hash)
59 {
60         struct cache_head *new = NULL, *freeme = NULL, *tmp = NULL;
61         struct hlist_head *head;
62
63         head = &detail->hash_table[hash];
64
65         read_lock(&detail->hash_lock);
66
67         hlist_for_each_entry(tmp, head, cache_list) {
68                 if (detail->match(tmp, key)) {
69                         if (cache_is_expired(detail, tmp))
70                                 /* This entry is expired, we will discard it. */
71                                 break;
72                         cache_get(tmp);
73                         read_unlock(&detail->hash_lock);
74                         return tmp;
75                 }
76         }
77         read_unlock(&detail->hash_lock);
78         /* Didn't find anything, insert an empty entry */
79
80         new = detail->alloc();
81         if (!new)
82                 return NULL;
83         /* must fully initialise 'new', else
84          * we might get lose if we need to
85          * cache_put it soon.
86          */
87         cache_init(new, detail);
88         detail->init(new, key);
89
90         write_lock(&detail->hash_lock);
91
92         /* check if entry appeared while we slept */
93         hlist_for_each_entry(tmp, head, cache_list) {
94                 if (detail->match(tmp, key)) {
95                         if (cache_is_expired(detail, tmp)) {
96                                 hlist_del_init(&tmp->cache_list);
97                                 detail->entries --;
98                                 freeme = tmp;
99                                 break;
100                         }
101                         cache_get(tmp);
102                         write_unlock(&detail->hash_lock);
103                         cache_put(new, detail);
104                         return tmp;
105                 }
106         }
107
108         hlist_add_head(&new->cache_list, head);
109         detail->entries++;
110         cache_get(new);
111         write_unlock(&detail->hash_lock);
112
113         if (freeme)
114                 cache_put(freeme, detail);
115         return new;
116 }
117 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
118
119
120 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
121
122 static void cache_fresh_locked(struct cache_head *head, time_t expiry,
123                                struct cache_detail *detail)
124 {
125         time_t now = seconds_since_boot();
126         if (now <= detail->flush_time)
127                 /* ensure it isn't immediately treated as expired */
128                 now = detail->flush_time + 1;
129         head->expiry_time = expiry;
130         head->last_refresh = now;
131         smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
132         set_bit(CACHE_VALID, &head->flags);
133 }
134
135 static void cache_fresh_unlocked(struct cache_head *head,
136                                  struct cache_detail *detail)
137 {
138         if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139                 cache_revisit_request(head);
140                 cache_dequeue(detail, head);
141         }
142 }
143
144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
145                                        struct cache_head *new, struct cache_head *old, int hash)
146 {
147         /* The 'old' entry is to be replaced by 'new'.
148          * If 'old' is not VALID, we update it directly,
149          * otherwise we need to replace it
150          */
151         struct cache_head *tmp;
152
153         if (!test_bit(CACHE_VALID, &old->flags)) {
154                 write_lock(&detail->hash_lock);
155                 if (!test_bit(CACHE_VALID, &old->flags)) {
156                         if (test_bit(CACHE_NEGATIVE, &new->flags))
157                                 set_bit(CACHE_NEGATIVE, &old->flags);
158                         else
159                                 detail->update(old, new);
160                         cache_fresh_locked(old, new->expiry_time, detail);
161                         write_unlock(&detail->hash_lock);
162                         cache_fresh_unlocked(old, detail);
163                         return old;
164                 }
165                 write_unlock(&detail->hash_lock);
166         }
167         /* We need to insert a new entry */
168         tmp = detail->alloc();
169         if (!tmp) {
170                 cache_put(old, detail);
171                 return NULL;
172         }
173         cache_init(tmp, detail);
174         detail->init(tmp, old);
175
176         write_lock(&detail->hash_lock);
177         if (test_bit(CACHE_NEGATIVE, &new->flags))
178                 set_bit(CACHE_NEGATIVE, &tmp->flags);
179         else
180                 detail->update(tmp, new);
181         hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
182         detail->entries++;
183         cache_get(tmp);
184         cache_fresh_locked(tmp, new->expiry_time, detail);
185         cache_fresh_locked(old, 0, detail);
186         write_unlock(&detail->hash_lock);
187         cache_fresh_unlocked(tmp, detail);
188         cache_fresh_unlocked(old, detail);
189         cache_put(old, detail);
190         return tmp;
191 }
192 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
193
194 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
195 {
196         if (cd->cache_upcall)
197                 return cd->cache_upcall(cd, h);
198         return sunrpc_cache_pipe_upcall(cd, h);
199 }
200
201 static inline int cache_is_valid(struct cache_head *h)
202 {
203         if (!test_bit(CACHE_VALID, &h->flags))
204                 return -EAGAIN;
205         else {
206                 /* entry is valid */
207                 if (test_bit(CACHE_NEGATIVE, &h->flags))
208                         return -ENOENT;
209                 else {
210                         /*
211                          * In combination with write barrier in
212                          * sunrpc_cache_update, ensures that anyone
213                          * using the cache entry after this sees the
214                          * updated contents:
215                          */
216                         smp_rmb();
217                         return 0;
218                 }
219         }
220 }
221
222 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
223 {
224         int rv;
225
226         write_lock(&detail->hash_lock);
227         rv = cache_is_valid(h);
228         if (rv == -EAGAIN) {
229                 set_bit(CACHE_NEGATIVE, &h->flags);
230                 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
231                                    detail);
232                 rv = -ENOENT;
233         }
234         write_unlock(&detail->hash_lock);
235         cache_fresh_unlocked(h, detail);
236         return rv;
237 }
238
239 /*
240  * This is the generic cache management routine for all
241  * the authentication caches.
242  * It checks the currency of a cache item and will (later)
243  * initiate an upcall to fill it if needed.
244  *
245  *
246  * Returns 0 if the cache_head can be used, or cache_puts it and returns
247  * -EAGAIN if upcall is pending and request has been queued
248  * -ETIMEDOUT if upcall failed or request could not be queue or
249  *           upcall completed but item is still invalid (implying that
250  *           the cache item has been replaced with a newer one).
251  * -ENOENT if cache entry was negative
252  */
253 int cache_check(struct cache_detail *detail,
254                     struct cache_head *h, struct cache_req *rqstp)
255 {
256         int rv;
257         long refresh_age, age;
258
259         /* First decide return status as best we can */
260         rv = cache_is_valid(h);
261
262         /* now see if we want to start an upcall */
263         refresh_age = (h->expiry_time - h->last_refresh);
264         age = seconds_since_boot() - h->last_refresh;
265
266         if (rqstp == NULL) {
267                 if (rv == -EAGAIN)
268                         rv = -ENOENT;
269         } else if (rv == -EAGAIN ||
270                    (h->expiry_time != 0 && age > refresh_age/2)) {
271                 dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
272                                 refresh_age, age);
273                 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
274                         switch (cache_make_upcall(detail, h)) {
275                         case -EINVAL:
276                                 rv = try_to_negate_entry(detail, h);
277                                 break;
278                         case -EAGAIN:
279                                 cache_fresh_unlocked(h, detail);
280                                 break;
281                         }
282                 }
283         }
284
285         if (rv == -EAGAIN) {
286                 if (!cache_defer_req(rqstp, h)) {
287                         /*
288                          * Request was not deferred; handle it as best
289                          * we can ourselves:
290                          */
291                         rv = cache_is_valid(h);
292                         if (rv == -EAGAIN)
293                                 rv = -ETIMEDOUT;
294                 }
295         }
296         if (rv)
297                 cache_put(h, detail);
298         return rv;
299 }
300 EXPORT_SYMBOL_GPL(cache_check);
301
302 /*
303  * caches need to be periodically cleaned.
304  * For this we maintain a list of cache_detail and
305  * a current pointer into that list and into the table
306  * for that entry.
307  *
308  * Each time cache_clean is called it finds the next non-empty entry
309  * in the current table and walks the list in that entry
310  * looking for entries that can be removed.
311  *
312  * An entry gets removed if:
313  * - The expiry is before current time
314  * - The last_refresh time is before the flush_time for that cache
315  *
316  * later we might drop old entries with non-NEVER expiry if that table
317  * is getting 'full' for some definition of 'full'
318  *
319  * The question of "how often to scan a table" is an interesting one
320  * and is answered in part by the use of the "nextcheck" field in the
321  * cache_detail.
322  * When a scan of a table begins, the nextcheck field is set to a time
323  * that is well into the future.
324  * While scanning, if an expiry time is found that is earlier than the
325  * current nextcheck time, nextcheck is set to that expiry time.
326  * If the flush_time is ever set to a time earlier than the nextcheck
327  * time, the nextcheck time is then set to that flush_time.
328  *
329  * A table is then only scanned if the current time is at least
330  * the nextcheck time.
331  *
332  */
333
334 static LIST_HEAD(cache_list);
335 static DEFINE_SPINLOCK(cache_list_lock);
336 static struct cache_detail *current_detail;
337 static int current_index;
338
339 static void do_cache_clean(struct work_struct *work);
340 static struct delayed_work cache_cleaner;
341
342 void sunrpc_init_cache_detail(struct cache_detail *cd)
343 {
344         rwlock_init(&cd->hash_lock);
345         INIT_LIST_HEAD(&cd->queue);
346         spin_lock(&cache_list_lock);
347         cd->nextcheck = 0;
348         cd->entries = 0;
349         atomic_set(&cd->readers, 0);
350         cd->last_close = 0;
351         cd->last_warn = -1;
352         list_add(&cd->others, &cache_list);
353         spin_unlock(&cache_list_lock);
354
355         /* start the cleaning process */
356         queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
357 }
358 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
359
360 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
361 {
362         cache_purge(cd);
363         spin_lock(&cache_list_lock);
364         write_lock(&cd->hash_lock);
365         if (cd->entries) {
366                 write_unlock(&cd->hash_lock);
367                 spin_unlock(&cache_list_lock);
368                 goto out;
369         }
370         if (current_detail == cd)
371                 current_detail = NULL;
372         list_del_init(&cd->others);
373         write_unlock(&cd->hash_lock);
374         spin_unlock(&cache_list_lock);
375         if (list_empty(&cache_list)) {
376                 /* module must be being unloaded so its safe to kill the worker */
377                 cancel_delayed_work_sync(&cache_cleaner);
378         }
379         return;
380 out:
381         printk(KERN_ERR "RPC: failed to unregister %s cache\n", cd->name);
382 }
383 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
384
385 /* clean cache tries to find something to clean
386  * and cleans it.
387  * It returns 1 if it cleaned something,
388  *            0 if it didn't find anything this time
389  *           -1 if it fell off the end of the list.
390  */
391 static int cache_clean(void)
392 {
393         int rv = 0;
394         struct list_head *next;
395
396         spin_lock(&cache_list_lock);
397
398         /* find a suitable table if we don't already have one */
399         while (current_detail == NULL ||
400             current_index >= current_detail->hash_size) {
401                 if (current_detail)
402                         next = current_detail->others.next;
403                 else
404                         next = cache_list.next;
405                 if (next == &cache_list) {
406                         current_detail = NULL;
407                         spin_unlock(&cache_list_lock);
408                         return -1;
409                 }
410                 current_detail = list_entry(next, struct cache_detail, others);
411                 if (current_detail->nextcheck > seconds_since_boot())
412                         current_index = current_detail->hash_size;
413                 else {
414                         current_index = 0;
415                         current_detail->nextcheck = seconds_since_boot()+30*60;
416                 }
417         }
418
419         /* find a non-empty bucket in the table */
420         while (current_detail &&
421                current_index < current_detail->hash_size &&
422                hlist_empty(&current_detail->hash_table[current_index]))
423                 current_index++;
424
425         /* find a cleanable entry in the bucket and clean it, or set to next bucket */
426
427         if (current_detail && current_index < current_detail->hash_size) {
428                 struct cache_head *ch = NULL;
429                 struct cache_detail *d;
430                 struct hlist_head *head;
431                 struct hlist_node *tmp;
432
433                 write_lock(&current_detail->hash_lock);
434
435                 /* Ok, now to clean this strand */
436
437                 head = &current_detail->hash_table[current_index];
438                 hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
439                         if (current_detail->nextcheck > ch->expiry_time)
440                                 current_detail->nextcheck = ch->expiry_time+1;
441                         if (!cache_is_expired(current_detail, ch))
442                                 continue;
443
444                         hlist_del_init(&ch->cache_list);
445                         current_detail->entries--;
446                         rv = 1;
447                         break;
448                 }
449
450                 write_unlock(&current_detail->hash_lock);
451                 d = current_detail;
452                 if (!ch)
453                         current_index ++;
454                 spin_unlock(&cache_list_lock);
455                 if (ch) {
456                         set_bit(CACHE_CLEANED, &ch->flags);
457                         cache_fresh_unlocked(ch, d);
458                         cache_put(ch, d);
459                 }
460         } else
461                 spin_unlock(&cache_list_lock);
462
463         return rv;
464 }
465
466 /*
467  * We want to regularly clean the cache, so we need to schedule some work ...
468  */
469 static void do_cache_clean(struct work_struct *work)
470 {
471         int delay = 5;
472         if (cache_clean() == -1)
473                 delay = round_jiffies_relative(30*HZ);
474
475         if (list_empty(&cache_list))
476                 delay = 0;
477
478         if (delay)
479                 queue_delayed_work(system_power_efficient_wq,
480                                    &cache_cleaner, delay);
481 }
482
483
484 /*
485  * Clean all caches promptly.  This just calls cache_clean
486  * repeatedly until we are sure that every cache has had a chance to
487  * be fully cleaned
488  */
489 void cache_flush(void)
490 {
491         while (cache_clean() != -1)
492                 cond_resched();
493         while (cache_clean() != -1)
494                 cond_resched();
495 }
496 EXPORT_SYMBOL_GPL(cache_flush);
497
498 void cache_purge(struct cache_detail *detail)
499 {
500         time_t now = seconds_since_boot();
501         if (detail->flush_time >= now)
502                 now = detail->flush_time + 1;
503         /* 'now' is the maximum value any 'last_refresh' can have */
504         detail->flush_time = now;
505         detail->nextcheck = seconds_since_boot();
506         cache_flush();
507 }
508 EXPORT_SYMBOL_GPL(cache_purge);
509
510
511 /*
512  * Deferral and Revisiting of Requests.
513  *
514  * If a cache lookup finds a pending entry, we
515  * need to defer the request and revisit it later.
516  * All deferred requests are stored in a hash table,
517  * indexed by "struct cache_head *".
518  * As it may be wasteful to store a whole request
519  * structure, we allow the request to provide a
520  * deferred form, which must contain a
521  * 'struct cache_deferred_req'
522  * This cache_deferred_req contains a method to allow
523  * it to be revisited when cache info is available
524  */
525
526 #define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
527 #define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
528
529 #define DFR_MAX 300     /* ??? */
530
531 static DEFINE_SPINLOCK(cache_defer_lock);
532 static LIST_HEAD(cache_defer_list);
533 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
534 static int cache_defer_cnt;
535
536 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
537 {
538         hlist_del_init(&dreq->hash);
539         if (!list_empty(&dreq->recent)) {
540                 list_del_init(&dreq->recent);
541                 cache_defer_cnt--;
542         }
543 }
544
545 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
546 {
547         int hash = DFR_HASH(item);
548
549         INIT_LIST_HEAD(&dreq->recent);
550         hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
551 }
552
553 static void setup_deferral(struct cache_deferred_req *dreq,
554                            struct cache_head *item,
555                            int count_me)
556 {
557
558         dreq->item = item;
559
560         spin_lock(&cache_defer_lock);
561
562         __hash_deferred_req(dreq, item);
563
564         if (count_me) {
565                 cache_defer_cnt++;
566                 list_add(&dreq->recent, &cache_defer_list);
567         }
568
569         spin_unlock(&cache_defer_lock);
570
571 }
572
573 struct thread_deferred_req {
574         struct cache_deferred_req handle;
575         struct completion completion;
576 };
577
578 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
579 {
580         struct thread_deferred_req *dr =
581                 container_of(dreq, struct thread_deferred_req, handle);
582         complete(&dr->completion);
583 }
584
585 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
586 {
587         struct thread_deferred_req sleeper;
588         struct cache_deferred_req *dreq = &sleeper.handle;
589
590         sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
591         dreq->revisit = cache_restart_thread;
592
593         setup_deferral(dreq, item, 0);
594
595         if (!test_bit(CACHE_PENDING, &item->flags) ||
596             wait_for_completion_interruptible_timeout(
597                     &sleeper.completion, req->thread_wait) <= 0) {
598                 /* The completion wasn't completed, so we need
599                  * to clean up
600                  */
601                 spin_lock(&cache_defer_lock);
602                 if (!hlist_unhashed(&sleeper.handle.hash)) {
603                         __unhash_deferred_req(&sleeper.handle);
604                         spin_unlock(&cache_defer_lock);
605                 } else {
606                         /* cache_revisit_request already removed
607                          * this from the hash table, but hasn't
608                          * called ->revisit yet.  It will very soon
609                          * and we need to wait for it.
610                          */
611                         spin_unlock(&cache_defer_lock);
612                         wait_for_completion(&sleeper.completion);
613                 }
614         }
615 }
616
617 static void cache_limit_defers(void)
618 {
619         /* Make sure we haven't exceed the limit of allowed deferred
620          * requests.
621          */
622         struct cache_deferred_req *discard = NULL;
623
624         if (cache_defer_cnt <= DFR_MAX)
625                 return;
626
627         spin_lock(&cache_defer_lock);
628
629         /* Consider removing either the first or the last */
630         if (cache_defer_cnt > DFR_MAX) {
631                 if (prandom_u32() & 1)
632                         discard = list_entry(cache_defer_list.next,
633                                              struct cache_deferred_req, recent);
634                 else
635                         discard = list_entry(cache_defer_list.prev,
636                                              struct cache_deferred_req, recent);
637                 __unhash_deferred_req(discard);
638         }
639         spin_unlock(&cache_defer_lock);
640         if (discard)
641                 discard->revisit(discard, 1);
642 }
643
644 /* Return true if and only if a deferred request is queued. */
645 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
646 {
647         struct cache_deferred_req *dreq;
648
649         if (req->thread_wait) {
650                 cache_wait_req(req, item);
651                 if (!test_bit(CACHE_PENDING, &item->flags))
652                         return false;
653         }
654         dreq = req->defer(req);
655         if (dreq == NULL)
656                 return false;
657         setup_deferral(dreq, item, 1);
658         if (!test_bit(CACHE_PENDING, &item->flags))
659                 /* Bit could have been cleared before we managed to
660                  * set up the deferral, so need to revisit just in case
661                  */
662                 cache_revisit_request(item);
663
664         cache_limit_defers();
665         return true;
666 }
667
668 static void cache_revisit_request(struct cache_head *item)
669 {
670         struct cache_deferred_req *dreq;
671         struct list_head pending;
672         struct hlist_node *tmp;
673         int hash = DFR_HASH(item);
674
675         INIT_LIST_HEAD(&pending);
676         spin_lock(&cache_defer_lock);
677
678         hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
679                 if (dreq->item == item) {
680                         __unhash_deferred_req(dreq);
681                         list_add(&dreq->recent, &pending);
682                 }
683
684         spin_unlock(&cache_defer_lock);
685
686         while (!list_empty(&pending)) {
687                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
688                 list_del_init(&dreq->recent);
689                 dreq->revisit(dreq, 0);
690         }
691 }
692
693 void cache_clean_deferred(void *owner)
694 {
695         struct cache_deferred_req *dreq, *tmp;
696         struct list_head pending;
697
698
699         INIT_LIST_HEAD(&pending);
700         spin_lock(&cache_defer_lock);
701
702         list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
703                 if (dreq->owner == owner) {
704                         __unhash_deferred_req(dreq);
705                         list_add(&dreq->recent, &pending);
706                 }
707         }
708         spin_unlock(&cache_defer_lock);
709
710         while (!list_empty(&pending)) {
711                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
712                 list_del_init(&dreq->recent);
713                 dreq->revisit(dreq, 1);
714         }
715 }
716
717 /*
718  * communicate with user-space
719  *
720  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
721  * On read, you get a full request, or block.
722  * On write, an update request is processed.
723  * Poll works if anything to read, and always allows write.
724  *
725  * Implemented by linked list of requests.  Each open file has
726  * a ->private that also exists in this list.  New requests are added
727  * to the end and may wakeup and preceding readers.
728  * New readers are added to the head.  If, on read, an item is found with
729  * CACHE_UPCALLING clear, we free it from the list.
730  *
731  */
732
733 static DEFINE_SPINLOCK(queue_lock);
734 static DEFINE_MUTEX(queue_io_mutex);
735
736 struct cache_queue {
737         struct list_head        list;
738         int                     reader; /* if 0, then request */
739 };
740 struct cache_request {
741         struct cache_queue      q;
742         struct cache_head       *item;
743         char                    * buf;
744         int                     len;
745         int                     readers;
746 };
747 struct cache_reader {
748         struct cache_queue      q;
749         int                     offset; /* if non-0, we have a refcnt on next request */
750 };
751
752 static int cache_request(struct cache_detail *detail,
753                                struct cache_request *crq)
754 {
755         char *bp = crq->buf;
756         int len = PAGE_SIZE;
757
758         detail->cache_request(detail, crq->item, &bp, &len);
759         if (len < 0)
760                 return -EAGAIN;
761         return PAGE_SIZE - len;
762 }
763
764 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
765                           loff_t *ppos, struct cache_detail *cd)
766 {
767         struct cache_reader *rp = filp->private_data;
768         struct cache_request *rq;
769         struct inode *inode = file_inode(filp);
770         int err;
771
772         if (count == 0)
773                 return 0;
774
775         inode_lock(inode); /* protect against multiple concurrent
776                               * readers on this file */
777  again:
778         spin_lock(&queue_lock);
779         /* need to find next request */
780         while (rp->q.list.next != &cd->queue &&
781                list_entry(rp->q.list.next, struct cache_queue, list)
782                ->reader) {
783                 struct list_head *next = rp->q.list.next;
784                 list_move(&rp->q.list, next);
785         }
786         if (rp->q.list.next == &cd->queue) {
787                 spin_unlock(&queue_lock);
788                 inode_unlock(inode);
789                 WARN_ON_ONCE(rp->offset);
790                 return 0;
791         }
792         rq = container_of(rp->q.list.next, struct cache_request, q.list);
793         WARN_ON_ONCE(rq->q.reader);
794         if (rp->offset == 0)
795                 rq->readers++;
796         spin_unlock(&queue_lock);
797
798         if (rq->len == 0) {
799                 err = cache_request(cd, rq);
800                 if (err < 0)
801                         goto out;
802                 rq->len = err;
803         }
804
805         if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
806                 err = -EAGAIN;
807                 spin_lock(&queue_lock);
808                 list_move(&rp->q.list, &rq->q.list);
809                 spin_unlock(&queue_lock);
810         } else {
811                 if (rp->offset + count > rq->len)
812                         count = rq->len - rp->offset;
813                 err = -EFAULT;
814                 if (copy_to_user(buf, rq->buf + rp->offset, count))
815                         goto out;
816                 rp->offset += count;
817                 if (rp->offset >= rq->len) {
818                         rp->offset = 0;
819                         spin_lock(&queue_lock);
820                         list_move(&rp->q.list, &rq->q.list);
821                         spin_unlock(&queue_lock);
822                 }
823                 err = 0;
824         }
825  out:
826         if (rp->offset == 0) {
827                 /* need to release rq */
828                 spin_lock(&queue_lock);
829                 rq->readers--;
830                 if (rq->readers == 0 &&
831                     !test_bit(CACHE_PENDING, &rq->item->flags)) {
832                         list_del(&rq->q.list);
833                         spin_unlock(&queue_lock);
834                         cache_put(rq->item, cd);
835                         kfree(rq->buf);
836                         kfree(rq);
837                 } else
838                         spin_unlock(&queue_lock);
839         }
840         if (err == -EAGAIN)
841                 goto again;
842         inode_unlock(inode);
843         return err ? err :  count;
844 }
845
846 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
847                                  size_t count, struct cache_detail *cd)
848 {
849         ssize_t ret;
850
851         if (count == 0)
852                 return -EINVAL;
853         if (copy_from_user(kaddr, buf, count))
854                 return -EFAULT;
855         kaddr[count] = '\0';
856         ret = cd->cache_parse(cd, kaddr, count);
857         if (!ret)
858                 ret = count;
859         return ret;
860 }
861
862 static ssize_t cache_slow_downcall(const char __user *buf,
863                                    size_t count, struct cache_detail *cd)
864 {
865         static char write_buf[8192]; /* protected by queue_io_mutex */
866         ssize_t ret = -EINVAL;
867
868         if (count >= sizeof(write_buf))
869                 goto out;
870         mutex_lock(&queue_io_mutex);
871         ret = cache_do_downcall(write_buf, buf, count, cd);
872         mutex_unlock(&queue_io_mutex);
873 out:
874         return ret;
875 }
876
877 static ssize_t cache_downcall(struct address_space *mapping,
878                               const char __user *buf,
879                               size_t count, struct cache_detail *cd)
880 {
881         struct page *page;
882         char *kaddr;
883         ssize_t ret = -ENOMEM;
884
885         if (count >= PAGE_SIZE)
886                 goto out_slow;
887
888         page = find_or_create_page(mapping, 0, GFP_KERNEL);
889         if (!page)
890                 goto out_slow;
891
892         kaddr = kmap(page);
893         ret = cache_do_downcall(kaddr, buf, count, cd);
894         kunmap(page);
895         unlock_page(page);
896         put_page(page);
897         return ret;
898 out_slow:
899         return cache_slow_downcall(buf, count, cd);
900 }
901
902 static ssize_t cache_write(struct file *filp, const char __user *buf,
903                            size_t count, loff_t *ppos,
904                            struct cache_detail *cd)
905 {
906         struct address_space *mapping = filp->f_mapping;
907         struct inode *inode = file_inode(filp);
908         ssize_t ret = -EINVAL;
909
910         if (!cd->cache_parse)
911                 goto out;
912
913         inode_lock(inode);
914         ret = cache_downcall(mapping, buf, count, cd);
915         inode_unlock(inode);
916 out:
917         return ret;
918 }
919
920 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
921
922 static unsigned int cache_poll(struct file *filp, poll_table *wait,
923                                struct cache_detail *cd)
924 {
925         unsigned int mask;
926         struct cache_reader *rp = filp->private_data;
927         struct cache_queue *cq;
928
929         poll_wait(filp, &queue_wait, wait);
930
931         /* alway allow write */
932         mask = POLLOUT | POLLWRNORM;
933
934         if (!rp)
935                 return mask;
936
937         spin_lock(&queue_lock);
938
939         for (cq= &rp->q; &cq->list != &cd->queue;
940              cq = list_entry(cq->list.next, struct cache_queue, list))
941                 if (!cq->reader) {
942                         mask |= POLLIN | POLLRDNORM;
943                         break;
944                 }
945         spin_unlock(&queue_lock);
946         return mask;
947 }
948
949 static int cache_ioctl(struct inode *ino, struct file *filp,
950                        unsigned int cmd, unsigned long arg,
951                        struct cache_detail *cd)
952 {
953         int len = 0;
954         struct cache_reader *rp = filp->private_data;
955         struct cache_queue *cq;
956
957         if (cmd != FIONREAD || !rp)
958                 return -EINVAL;
959
960         spin_lock(&queue_lock);
961
962         /* only find the length remaining in current request,
963          * or the length of the next request
964          */
965         for (cq= &rp->q; &cq->list != &cd->queue;
966              cq = list_entry(cq->list.next, struct cache_queue, list))
967                 if (!cq->reader) {
968                         struct cache_request *cr =
969                                 container_of(cq, struct cache_request, q);
970                         len = cr->len - rp->offset;
971                         break;
972                 }
973         spin_unlock(&queue_lock);
974
975         return put_user(len, (int __user *)arg);
976 }
977
978 static int cache_open(struct inode *inode, struct file *filp,
979                       struct cache_detail *cd)
980 {
981         struct cache_reader *rp = NULL;
982
983         if (!cd || !try_module_get(cd->owner))
984                 return -EACCES;
985         nonseekable_open(inode, filp);
986         if (filp->f_mode & FMODE_READ) {
987                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
988                 if (!rp) {
989                         module_put(cd->owner);
990                         return -ENOMEM;
991                 }
992                 rp->offset = 0;
993                 rp->q.reader = 1;
994                 atomic_inc(&cd->readers);
995                 spin_lock(&queue_lock);
996                 list_add(&rp->q.list, &cd->queue);
997                 spin_unlock(&queue_lock);
998         }
999         filp->private_data = rp;
1000         return 0;
1001 }
1002
1003 static int cache_release(struct inode *inode, struct file *filp,
1004                          struct cache_detail *cd)
1005 {
1006         struct cache_reader *rp = filp->private_data;
1007
1008         if (rp) {
1009                 spin_lock(&queue_lock);
1010                 if (rp->offset) {
1011                         struct cache_queue *cq;
1012                         for (cq= &rp->q; &cq->list != &cd->queue;
1013                              cq = list_entry(cq->list.next, struct cache_queue, list))
1014                                 if (!cq->reader) {
1015                                         container_of(cq, struct cache_request, q)
1016                                                 ->readers--;
1017                                         break;
1018                                 }
1019                         rp->offset = 0;
1020                 }
1021                 list_del(&rp->q.list);
1022                 spin_unlock(&queue_lock);
1023
1024                 filp->private_data = NULL;
1025                 kfree(rp);
1026
1027                 cd->last_close = seconds_since_boot();
1028                 atomic_dec(&cd->readers);
1029         }
1030         module_put(cd->owner);
1031         return 0;
1032 }
1033
1034
1035
1036 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1037 {
1038         struct cache_queue *cq, *tmp;
1039         struct cache_request *cr;
1040         struct list_head dequeued;
1041
1042         INIT_LIST_HEAD(&dequeued);
1043         spin_lock(&queue_lock);
1044         list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1045                 if (!cq->reader) {
1046                         cr = container_of(cq, struct cache_request, q);
1047                         if (cr->item != ch)
1048                                 continue;
1049                         if (test_bit(CACHE_PENDING, &ch->flags))
1050                                 /* Lost a race and it is pending again */
1051                                 break;
1052                         if (cr->readers != 0)
1053                                 continue;
1054                         list_move(&cr->q.list, &dequeued);
1055                 }
1056         spin_unlock(&queue_lock);
1057         while (!list_empty(&dequeued)) {
1058                 cr = list_entry(dequeued.next, struct cache_request, q.list);
1059                 list_del(&cr->q.list);
1060                 cache_put(cr->item, detail);
1061                 kfree(cr->buf);
1062                 kfree(cr);
1063         }
1064 }
1065
1066 /*
1067  * Support routines for text-based upcalls.
1068  * Fields are separated by spaces.
1069  * Fields are either mangled to quote space tab newline slosh with slosh
1070  * or a hexified with a leading \x
1071  * Record is terminated with newline.
1072  *
1073  */
1074
1075 void qword_add(char **bpp, int *lp, char *str)
1076 {
1077         char *bp = *bpp;
1078         int len = *lp;
1079         int ret;
1080
1081         if (len < 0) return;
1082
1083         ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1084         if (ret >= len) {
1085                 bp += len;
1086                 len = -1;
1087         } else {
1088                 bp += ret;
1089                 len -= ret;
1090                 *bp++ = ' ';
1091                 len--;
1092         }
1093         *bpp = bp;
1094         *lp = len;
1095 }
1096 EXPORT_SYMBOL_GPL(qword_add);
1097
1098 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1099 {
1100         char *bp = *bpp;
1101         int len = *lp;
1102
1103         if (len < 0) return;
1104
1105         if (len > 2) {
1106                 *bp++ = '\\';
1107                 *bp++ = 'x';
1108                 len -= 2;
1109                 while (blen && len >= 2) {
1110                         bp = hex_byte_pack(bp, *buf++);
1111                         len -= 2;
1112                         blen--;
1113                 }
1114         }
1115         if (blen || len<1) len = -1;
1116         else {
1117                 *bp++ = ' ';
1118                 len--;
1119         }
1120         *bpp = bp;
1121         *lp = len;
1122 }
1123 EXPORT_SYMBOL_GPL(qword_addhex);
1124
1125 static void warn_no_listener(struct cache_detail *detail)
1126 {
1127         if (detail->last_warn != detail->last_close) {
1128                 detail->last_warn = detail->last_close;
1129                 if (detail->warn_no_listener)
1130                         detail->warn_no_listener(detail, detail->last_close != 0);
1131         }
1132 }
1133
1134 static bool cache_listeners_exist(struct cache_detail *detail)
1135 {
1136         if (atomic_read(&detail->readers))
1137                 return true;
1138         if (detail->last_close == 0)
1139                 /* This cache was never opened */
1140                 return false;
1141         if (detail->last_close < seconds_since_boot() - 30)
1142                 /*
1143                  * We allow for the possibility that someone might
1144                  * restart a userspace daemon without restarting the
1145                  * server; but after 30 seconds, we give up.
1146                  */
1147                  return false;
1148         return true;
1149 }
1150
1151 /*
1152  * register an upcall request to user-space and queue it up for read() by the
1153  * upcall daemon.
1154  *
1155  * Each request is at most one page long.
1156  */
1157 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1158 {
1159
1160         char *buf;
1161         struct cache_request *crq;
1162         int ret = 0;
1163
1164         if (!detail->cache_request)
1165                 return -EINVAL;
1166
1167         if (!cache_listeners_exist(detail)) {
1168                 warn_no_listener(detail);
1169                 return -EINVAL;
1170         }
1171         if (test_bit(CACHE_CLEANED, &h->flags))
1172                 /* Too late to make an upcall */
1173                 return -EAGAIN;
1174
1175         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1176         if (!buf)
1177                 return -EAGAIN;
1178
1179         crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1180         if (!crq) {
1181                 kfree(buf);
1182                 return -EAGAIN;
1183         }
1184
1185         crq->q.reader = 0;
1186         crq->buf = buf;
1187         crq->len = 0;
1188         crq->readers = 0;
1189         spin_lock(&queue_lock);
1190         if (test_bit(CACHE_PENDING, &h->flags)) {
1191                 crq->item = cache_get(h);
1192                 list_add_tail(&crq->q.list, &detail->queue);
1193         } else
1194                 /* Lost a race, no longer PENDING, so don't enqueue */
1195                 ret = -EAGAIN;
1196         spin_unlock(&queue_lock);
1197         wake_up(&queue_wait);
1198         if (ret == -EAGAIN) {
1199                 kfree(buf);
1200                 kfree(crq);
1201         }
1202         return ret;
1203 }
1204 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1205
1206 /*
1207  * parse a message from user-space and pass it
1208  * to an appropriate cache
1209  * Messages are, like requests, separated into fields by
1210  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1211  *
1212  * Message is
1213  *   reply cachename expiry key ... content....
1214  *
1215  * key and content are both parsed by cache
1216  */
1217
1218 int qword_get(char **bpp, char *dest, int bufsize)
1219 {
1220         /* return bytes copied, or -1 on error */
1221         char *bp = *bpp;
1222         int len = 0;
1223
1224         while (*bp == ' ') bp++;
1225
1226         if (bp[0] == '\\' && bp[1] == 'x') {
1227                 /* HEX STRING */
1228                 bp += 2;
1229                 while (len < bufsize - 1) {
1230                         int h, l;
1231
1232                         h = hex_to_bin(bp[0]);
1233                         if (h < 0)
1234                                 break;
1235
1236                         l = hex_to_bin(bp[1]);
1237                         if (l < 0)
1238                                 break;
1239
1240                         *dest++ = (h << 4) | l;
1241                         bp += 2;
1242                         len++;
1243                 }
1244         } else {
1245                 /* text with \nnn octal quoting */
1246                 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1247                         if (*bp == '\\' &&
1248                             isodigit(bp[1]) && (bp[1] <= '3') &&
1249                             isodigit(bp[2]) &&
1250                             isodigit(bp[3])) {
1251                                 int byte = (*++bp -'0');
1252                                 bp++;
1253                                 byte = (byte << 3) | (*bp++ - '0');
1254                                 byte = (byte << 3) | (*bp++ - '0');
1255                                 *dest++ = byte;
1256                                 len++;
1257                         } else {
1258                                 *dest++ = *bp++;
1259                                 len++;
1260                         }
1261                 }
1262         }
1263
1264         if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1265                 return -1;
1266         while (*bp == ' ') bp++;
1267         *bpp = bp;
1268         *dest = '\0';
1269         return len;
1270 }
1271 EXPORT_SYMBOL_GPL(qword_get);
1272
1273
1274 /*
1275  * support /proc/sunrpc/cache/$CACHENAME/content
1276  * as a seqfile.
1277  * We call ->cache_show passing NULL for the item to
1278  * get a header, then pass each real item in the cache
1279  */
1280
1281 void *cache_seq_start(struct seq_file *m, loff_t *pos)
1282         __acquires(cd->hash_lock)
1283 {
1284         loff_t n = *pos;
1285         unsigned int hash, entry;
1286         struct cache_head *ch;
1287         struct cache_detail *cd = m->private;
1288
1289         read_lock(&cd->hash_lock);
1290         if (!n--)
1291                 return SEQ_START_TOKEN;
1292         hash = n >> 32;
1293         entry = n & ((1LL<<32) - 1);
1294
1295         hlist_for_each_entry(ch, &cd->hash_table[hash], cache_list)
1296                 if (!entry--)
1297                         return ch;
1298         n &= ~((1LL<<32) - 1);
1299         do {
1300                 hash++;
1301                 n += 1LL<<32;
1302         } while(hash < cd->hash_size &&
1303                 hlist_empty(&cd->hash_table[hash]));
1304         if (hash >= cd->hash_size)
1305                 return NULL;
1306         *pos = n+1;
1307         return hlist_entry_safe(cd->hash_table[hash].first,
1308                                 struct cache_head, cache_list);
1309 }
1310 EXPORT_SYMBOL_GPL(cache_seq_start);
1311
1312 void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1313 {
1314         struct cache_head *ch = p;
1315         int hash = (*pos >> 32);
1316         struct cache_detail *cd = m->private;
1317
1318         if (p == SEQ_START_TOKEN)
1319                 hash = 0;
1320         else if (ch->cache_list.next == NULL) {
1321                 hash++;
1322                 *pos += 1LL<<32;
1323         } else {
1324                 ++*pos;
1325                 return hlist_entry_safe(ch->cache_list.next,
1326                                         struct cache_head, cache_list);
1327         }
1328         *pos &= ~((1LL<<32) - 1);
1329         while (hash < cd->hash_size &&
1330                hlist_empty(&cd->hash_table[hash])) {
1331                 hash++;
1332                 *pos += 1LL<<32;
1333         }
1334         if (hash >= cd->hash_size)
1335                 return NULL;
1336         ++*pos;
1337         return hlist_entry_safe(cd->hash_table[hash].first,
1338                                 struct cache_head, cache_list);
1339 }
1340 EXPORT_SYMBOL_GPL(cache_seq_next);
1341
1342 void cache_seq_stop(struct seq_file *m, void *p)
1343         __releases(cd->hash_lock)
1344 {
1345         struct cache_detail *cd = m->private;
1346         read_unlock(&cd->hash_lock);
1347 }
1348 EXPORT_SYMBOL_GPL(cache_seq_stop);
1349
1350 static int c_show(struct seq_file *m, void *p)
1351 {
1352         struct cache_head *cp = p;
1353         struct cache_detail *cd = m->private;
1354
1355         if (p == SEQ_START_TOKEN)
1356                 return cd->cache_show(m, cd, NULL);
1357
1358         ifdebug(CACHE)
1359                 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1360                            convert_to_wallclock(cp->expiry_time),
1361                            atomic_read(&cp->ref.refcount), cp->flags);
1362         cache_get(cp);
1363         if (cache_check(cd, cp, NULL))
1364                 /* cache_check does a cache_put on failure */
1365                 seq_printf(m, "# ");
1366         else {
1367                 if (cache_is_expired(cd, cp))
1368                         seq_printf(m, "# ");
1369                 cache_put(cp, cd);
1370         }
1371
1372         return cd->cache_show(m, cd, cp);
1373 }
1374
1375 static const struct seq_operations cache_content_op = {
1376         .start  = cache_seq_start,
1377         .next   = cache_seq_next,
1378         .stop   = cache_seq_stop,
1379         .show   = c_show,
1380 };
1381
1382 static int content_open(struct inode *inode, struct file *file,
1383                         struct cache_detail *cd)
1384 {
1385         struct seq_file *seq;
1386         int err;
1387
1388         if (!cd || !try_module_get(cd->owner))
1389                 return -EACCES;
1390
1391         err = seq_open(file, &cache_content_op);
1392         if (err) {
1393                 module_put(cd->owner);
1394                 return err;
1395         }
1396
1397         seq = file->private_data;
1398         seq->private = cd;
1399         return 0;
1400 }
1401
1402 static int content_release(struct inode *inode, struct file *file,
1403                 struct cache_detail *cd)
1404 {
1405         int ret = seq_release(inode, file);
1406         module_put(cd->owner);
1407         return ret;
1408 }
1409
1410 static int open_flush(struct inode *inode, struct file *file,
1411                         struct cache_detail *cd)
1412 {
1413         if (!cd || !try_module_get(cd->owner))
1414                 return -EACCES;
1415         return nonseekable_open(inode, file);
1416 }
1417
1418 static int release_flush(struct inode *inode, struct file *file,
1419                         struct cache_detail *cd)
1420 {
1421         module_put(cd->owner);
1422         return 0;
1423 }
1424
1425 static ssize_t read_flush(struct file *file, char __user *buf,
1426                           size_t count, loff_t *ppos,
1427                           struct cache_detail *cd)
1428 {
1429         char tbuf[22];
1430         unsigned long p = *ppos;
1431         size_t len;
1432
1433         snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1434         len = strlen(tbuf);
1435         if (p >= len)
1436                 return 0;
1437         len -= p;
1438         if (len > count)
1439                 len = count;
1440         if (copy_to_user(buf, (void*)(tbuf+p), len))
1441                 return -EFAULT;
1442         *ppos += len;
1443         return len;
1444 }
1445
1446 static ssize_t write_flush(struct file *file, const char __user *buf,
1447                            size_t count, loff_t *ppos,
1448                            struct cache_detail *cd)
1449 {
1450         char tbuf[20];
1451         char *bp, *ep;
1452         time_t then, now;
1453
1454         if (*ppos || count > sizeof(tbuf)-1)
1455                 return -EINVAL;
1456         if (copy_from_user(tbuf, buf, count))
1457                 return -EFAULT;
1458         tbuf[count] = 0;
1459         simple_strtoul(tbuf, &ep, 0);
1460         if (*ep && *ep != '\n')
1461                 return -EINVAL;
1462
1463         bp = tbuf;
1464         then = get_expiry(&bp);
1465         now = seconds_since_boot();
1466         cd->nextcheck = now;
1467         /* Can only set flush_time to 1 second beyond "now", or
1468          * possibly 1 second beyond flushtime.  This is because
1469          * flush_time never goes backwards so it mustn't get too far
1470          * ahead of time.
1471          */
1472         if (then >= now) {
1473                 /* Want to flush everything, so behave like cache_purge() */
1474                 if (cd->flush_time >= now)
1475                         now = cd->flush_time + 1;
1476                 then = now;
1477         }
1478
1479         cd->flush_time = then;
1480         cache_flush();
1481
1482         *ppos += count;
1483         return count;
1484 }
1485
1486 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1487                                  size_t count, loff_t *ppos)
1488 {
1489         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1490
1491         return cache_read(filp, buf, count, ppos, cd);
1492 }
1493
1494 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1495                                   size_t count, loff_t *ppos)
1496 {
1497         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1498
1499         return cache_write(filp, buf, count, ppos, cd);
1500 }
1501
1502 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1503 {
1504         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1505
1506         return cache_poll(filp, wait, cd);
1507 }
1508
1509 static long cache_ioctl_procfs(struct file *filp,
1510                                unsigned int cmd, unsigned long arg)
1511 {
1512         struct inode *inode = file_inode(filp);
1513         struct cache_detail *cd = PDE_DATA(inode);
1514
1515         return cache_ioctl(inode, filp, cmd, arg, cd);
1516 }
1517
1518 static int cache_open_procfs(struct inode *inode, struct file *filp)
1519 {
1520         struct cache_detail *cd = PDE_DATA(inode);
1521
1522         return cache_open(inode, filp, cd);
1523 }
1524
1525 static int cache_release_procfs(struct inode *inode, struct file *filp)
1526 {
1527         struct cache_detail *cd = PDE_DATA(inode);
1528
1529         return cache_release(inode, filp, cd);
1530 }
1531
1532 static const struct file_operations cache_file_operations_procfs = {
1533         .owner          = THIS_MODULE,
1534         .llseek         = no_llseek,
1535         .read           = cache_read_procfs,
1536         .write          = cache_write_procfs,
1537         .poll           = cache_poll_procfs,
1538         .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1539         .open           = cache_open_procfs,
1540         .release        = cache_release_procfs,
1541 };
1542
1543 static int content_open_procfs(struct inode *inode, struct file *filp)
1544 {
1545         struct cache_detail *cd = PDE_DATA(inode);
1546
1547         return content_open(inode, filp, cd);
1548 }
1549
1550 static int content_release_procfs(struct inode *inode, struct file *filp)
1551 {
1552         struct cache_detail *cd = PDE_DATA(inode);
1553
1554         return content_release(inode, filp, cd);
1555 }
1556
1557 static const struct file_operations content_file_operations_procfs = {
1558         .open           = content_open_procfs,
1559         .read           = seq_read,
1560         .llseek         = seq_lseek,
1561         .release        = content_release_procfs,
1562 };
1563
1564 static int open_flush_procfs(struct inode *inode, struct file *filp)
1565 {
1566         struct cache_detail *cd = PDE_DATA(inode);
1567
1568         return open_flush(inode, filp, cd);
1569 }
1570
1571 static int release_flush_procfs(struct inode *inode, struct file *filp)
1572 {
1573         struct cache_detail *cd = PDE_DATA(inode);
1574
1575         return release_flush(inode, filp, cd);
1576 }
1577
1578 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1579                             size_t count, loff_t *ppos)
1580 {
1581         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1582
1583         return read_flush(filp, buf, count, ppos, cd);
1584 }
1585
1586 static ssize_t write_flush_procfs(struct file *filp,
1587                                   const char __user *buf,
1588                                   size_t count, loff_t *ppos)
1589 {
1590         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1591
1592         return write_flush(filp, buf, count, ppos, cd);
1593 }
1594
1595 static const struct file_operations cache_flush_operations_procfs = {
1596         .open           = open_flush_procfs,
1597         .read           = read_flush_procfs,
1598         .write          = write_flush_procfs,
1599         .release        = release_flush_procfs,
1600         .llseek         = no_llseek,
1601 };
1602
1603 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1604 {
1605         struct sunrpc_net *sn;
1606
1607         if (cd->u.procfs.proc_ent == NULL)
1608                 return;
1609         if (cd->u.procfs.flush_ent)
1610                 remove_proc_entry("flush", cd->u.procfs.proc_ent);
1611         if (cd->u.procfs.channel_ent)
1612                 remove_proc_entry("channel", cd->u.procfs.proc_ent);
1613         if (cd->u.procfs.content_ent)
1614                 remove_proc_entry("content", cd->u.procfs.proc_ent);
1615         cd->u.procfs.proc_ent = NULL;
1616         sn = net_generic(net, sunrpc_net_id);
1617         remove_proc_entry(cd->name, sn->proc_net_rpc);
1618 }
1619
1620 #ifdef CONFIG_PROC_FS
1621 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1622 {
1623         struct proc_dir_entry *p;
1624         struct sunrpc_net *sn;
1625
1626         sn = net_generic(net, sunrpc_net_id);
1627         cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1628         if (cd->u.procfs.proc_ent == NULL)
1629                 goto out_nomem;
1630         cd->u.procfs.channel_ent = NULL;
1631         cd->u.procfs.content_ent = NULL;
1632
1633         p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1634                              cd->u.procfs.proc_ent,
1635                              &cache_flush_operations_procfs, cd);
1636         cd->u.procfs.flush_ent = p;
1637         if (p == NULL)
1638                 goto out_nomem;
1639
1640         if (cd->cache_request || cd->cache_parse) {
1641                 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1642                                      cd->u.procfs.proc_ent,
1643                                      &cache_file_operations_procfs, cd);
1644                 cd->u.procfs.channel_ent = p;
1645                 if (p == NULL)
1646                         goto out_nomem;
1647         }
1648         if (cd->cache_show) {
1649                 p = proc_create_data("content", S_IFREG|S_IRUSR,
1650                                 cd->u.procfs.proc_ent,
1651                                 &content_file_operations_procfs, cd);
1652                 cd->u.procfs.content_ent = p;
1653                 if (p == NULL)
1654                         goto out_nomem;
1655         }
1656         return 0;
1657 out_nomem:
1658         remove_cache_proc_entries(cd, net);
1659         return -ENOMEM;
1660 }
1661 #else /* CONFIG_PROC_FS */
1662 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1663 {
1664         return 0;
1665 }
1666 #endif
1667
1668 void __init cache_initialize(void)
1669 {
1670         INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1671 }
1672
1673 int cache_register_net(struct cache_detail *cd, struct net *net)
1674 {
1675         int ret;
1676
1677         sunrpc_init_cache_detail(cd);
1678         ret = create_cache_proc_entries(cd, net);
1679         if (ret)
1680                 sunrpc_destroy_cache_detail(cd);
1681         return ret;
1682 }
1683 EXPORT_SYMBOL_GPL(cache_register_net);
1684
1685 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1686 {
1687         remove_cache_proc_entries(cd, net);
1688         sunrpc_destroy_cache_detail(cd);
1689 }
1690 EXPORT_SYMBOL_GPL(cache_unregister_net);
1691
1692 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1693 {
1694         struct cache_detail *cd;
1695         int i;
1696
1697         cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1698         if (cd == NULL)
1699                 return ERR_PTR(-ENOMEM);
1700
1701         cd->hash_table = kzalloc(cd->hash_size * sizeof(struct hlist_head),
1702                                  GFP_KERNEL);
1703         if (cd->hash_table == NULL) {
1704                 kfree(cd);
1705                 return ERR_PTR(-ENOMEM);
1706         }
1707
1708         for (i = 0; i < cd->hash_size; i++)
1709                 INIT_HLIST_HEAD(&cd->hash_table[i]);
1710         cd->net = net;
1711         return cd;
1712 }
1713 EXPORT_SYMBOL_GPL(cache_create_net);
1714
1715 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1716 {
1717         kfree(cd->hash_table);
1718         kfree(cd);
1719 }
1720 EXPORT_SYMBOL_GPL(cache_destroy_net);
1721
1722 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1723                                  size_t count, loff_t *ppos)
1724 {
1725         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1726
1727         return cache_read(filp, buf, count, ppos, cd);
1728 }
1729
1730 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1731                                   size_t count, loff_t *ppos)
1732 {
1733         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1734
1735         return cache_write(filp, buf, count, ppos, cd);
1736 }
1737
1738 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1739 {
1740         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1741
1742         return cache_poll(filp, wait, cd);
1743 }
1744
1745 static long cache_ioctl_pipefs(struct file *filp,
1746                               unsigned int cmd, unsigned long arg)
1747 {
1748         struct inode *inode = file_inode(filp);
1749         struct cache_detail *cd = RPC_I(inode)->private;
1750
1751         return cache_ioctl(inode, filp, cmd, arg, cd);
1752 }
1753
1754 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1755 {
1756         struct cache_detail *cd = RPC_I(inode)->private;
1757
1758         return cache_open(inode, filp, cd);
1759 }
1760
1761 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1762 {
1763         struct cache_detail *cd = RPC_I(inode)->private;
1764
1765         return cache_release(inode, filp, cd);
1766 }
1767
1768 const struct file_operations cache_file_operations_pipefs = {
1769         .owner          = THIS_MODULE,
1770         .llseek         = no_llseek,
1771         .read           = cache_read_pipefs,
1772         .write          = cache_write_pipefs,
1773         .poll           = cache_poll_pipefs,
1774         .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1775         .open           = cache_open_pipefs,
1776         .release        = cache_release_pipefs,
1777 };
1778
1779 static int content_open_pipefs(struct inode *inode, struct file *filp)
1780 {
1781         struct cache_detail *cd = RPC_I(inode)->private;
1782
1783         return content_open(inode, filp, cd);
1784 }
1785
1786 static int content_release_pipefs(struct inode *inode, struct file *filp)
1787 {
1788         struct cache_detail *cd = RPC_I(inode)->private;
1789
1790         return content_release(inode, filp, cd);
1791 }
1792
1793 const struct file_operations content_file_operations_pipefs = {
1794         .open           = content_open_pipefs,
1795         .read           = seq_read,
1796         .llseek         = seq_lseek,
1797         .release        = content_release_pipefs,
1798 };
1799
1800 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1801 {
1802         struct cache_detail *cd = RPC_I(inode)->private;
1803
1804         return open_flush(inode, filp, cd);
1805 }
1806
1807 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1808 {
1809         struct cache_detail *cd = RPC_I(inode)->private;
1810
1811         return release_flush(inode, filp, cd);
1812 }
1813
1814 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1815                             size_t count, loff_t *ppos)
1816 {
1817         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1818
1819         return read_flush(filp, buf, count, ppos, cd);
1820 }
1821
1822 static ssize_t write_flush_pipefs(struct file *filp,
1823                                   const char __user *buf,
1824                                   size_t count, loff_t *ppos)
1825 {
1826         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1827
1828         return write_flush(filp, buf, count, ppos, cd);
1829 }
1830
1831 const struct file_operations cache_flush_operations_pipefs = {
1832         .open           = open_flush_pipefs,
1833         .read           = read_flush_pipefs,
1834         .write          = write_flush_pipefs,
1835         .release        = release_flush_pipefs,
1836         .llseek         = no_llseek,
1837 };
1838
1839 int sunrpc_cache_register_pipefs(struct dentry *parent,
1840                                  const char *name, umode_t umode,
1841                                  struct cache_detail *cd)
1842 {
1843         struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1844         if (IS_ERR(dir))
1845                 return PTR_ERR(dir);
1846         cd->u.pipefs.dir = dir;
1847         return 0;
1848 }
1849 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1850
1851 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1852 {
1853         rpc_remove_cache_dir(cd->u.pipefs.dir);
1854         cd->u.pipefs.dir = NULL;
1855 }
1856 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1857