Merge tag 'nfs-for-4.9-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[cascardo/linux.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
28 #define RPCDBG_FACILITY         RPCDBG_SCHED
29 #endif
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE      (2048)
38 #define RPC_BUFFER_POOLSIZE     (8)
39 #define RPC_TASK_POOLSIZE       (8)
40 static struct kmem_cache        *rpc_task_slabp __read_mostly;
41 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
42 static mempool_t        *rpc_task_mempool __read_mostly;
43 static mempool_t        *rpc_buffer_mempool __read_mostly;
44
45 static void                     rpc_async_schedule(struct work_struct *);
46 static void                      rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue __read_mostly;
58 struct workqueue_struct *xprtiod_workqueue __read_mostly;
59
60 /*
61  * Disable the timer for a given RPC task. Should be called with
62  * queue->lock and bh_disabled in order to avoid races within
63  * rpc_run_timer().
64  */
65 static void
66 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
67 {
68         if (task->tk_timeout == 0)
69                 return;
70         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
71         task->tk_timeout = 0;
72         list_del(&task->u.tk_wait.timer_list);
73         if (list_empty(&queue->timer_list.list))
74                 del_timer(&queue->timer_list.timer);
75 }
76
77 static void
78 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
79 {
80         queue->timer_list.expires = expires;
81         mod_timer(&queue->timer_list.timer, expires);
82 }
83
84 /*
85  * Set up a timer for the current task.
86  */
87 static void
88 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
89 {
90         if (!task->tk_timeout)
91                 return;
92
93         dprintk("RPC: %5u setting alarm for %u ms\n",
94                 task->tk_pid, jiffies_to_msecs(task->tk_timeout));
95
96         task->u.tk_wait.expires = jiffies + task->tk_timeout;
97         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
98                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
99         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
100 }
101
102 static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
103 {
104         struct list_head *q = &queue->tasks[queue->priority];
105         struct rpc_task *task;
106
107         if (!list_empty(q)) {
108                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
109                 if (task->tk_owner == queue->owner)
110                         list_move_tail(&task->u.tk_wait.list, q);
111         }
112 }
113
114 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
115 {
116         if (queue->priority != priority) {
117                 /* Fairness: rotate the list when changing priority */
118                 rpc_rotate_queue_owner(queue);
119                 queue->priority = priority;
120         }
121 }
122
123 static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
124 {
125         queue->owner = pid;
126         queue->nr = RPC_BATCH_COUNT;
127 }
128
129 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
130 {
131         rpc_set_waitqueue_priority(queue, queue->maxpriority);
132         rpc_set_waitqueue_owner(queue, 0);
133 }
134
135 /*
136  * Add new request to a priority queue.
137  */
138 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
139                 struct rpc_task *task,
140                 unsigned char queue_priority)
141 {
142         struct list_head *q;
143         struct rpc_task *t;
144
145         INIT_LIST_HEAD(&task->u.tk_wait.links);
146         if (unlikely(queue_priority > queue->maxpriority))
147                 queue_priority = queue->maxpriority;
148         if (queue_priority > queue->priority)
149                 rpc_set_waitqueue_priority(queue, queue_priority);
150         q = &queue->tasks[queue_priority];
151         list_for_each_entry(t, q, u.tk_wait.list) {
152                 if (t->tk_owner == task->tk_owner) {
153                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
154                         return;
155                 }
156         }
157         list_add_tail(&task->u.tk_wait.list, q);
158 }
159
160 /*
161  * Add new request to wait queue.
162  *
163  * Swapper tasks always get inserted at the head of the queue.
164  * This should avoid many nasty memory deadlocks and hopefully
165  * improve overall performance.
166  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
167  */
168 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
169                 struct rpc_task *task,
170                 unsigned char queue_priority)
171 {
172         WARN_ON_ONCE(RPC_IS_QUEUED(task));
173         if (RPC_IS_QUEUED(task))
174                 return;
175
176         if (RPC_IS_PRIORITY(queue))
177                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
178         else if (RPC_IS_SWAPPER(task))
179                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
180         else
181                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
182         task->tk_waitqueue = queue;
183         queue->qlen++;
184         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
185         smp_wmb();
186         rpc_set_queued(task);
187
188         dprintk("RPC: %5u added to queue %p \"%s\"\n",
189                         task->tk_pid, queue, rpc_qname(queue));
190 }
191
192 /*
193  * Remove request from a priority queue.
194  */
195 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
196 {
197         struct rpc_task *t;
198
199         if (!list_empty(&task->u.tk_wait.links)) {
200                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
201                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
202                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
203         }
204 }
205
206 /*
207  * Remove request from queue.
208  * Note: must be called with spin lock held.
209  */
210 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
211 {
212         __rpc_disable_timer(queue, task);
213         if (RPC_IS_PRIORITY(queue))
214                 __rpc_remove_wait_queue_priority(task);
215         list_del(&task->u.tk_wait.list);
216         queue->qlen--;
217         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
218                         task->tk_pid, queue, rpc_qname(queue));
219 }
220
221 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
222 {
223         int i;
224
225         spin_lock_init(&queue->lock);
226         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
227                 INIT_LIST_HEAD(&queue->tasks[i]);
228         queue->maxpriority = nr_queues - 1;
229         rpc_reset_waitqueue_priority(queue);
230         queue->qlen = 0;
231         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
232         INIT_LIST_HEAD(&queue->timer_list.list);
233         rpc_assign_waitqueue_name(queue, qname);
234 }
235
236 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
237 {
238         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
239 }
240 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
241
242 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
243 {
244         __rpc_init_priority_wait_queue(queue, qname, 1);
245 }
246 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
247
248 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
249 {
250         del_timer_sync(&queue->timer_list.timer);
251 }
252 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
253
254 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
255 {
256         freezable_schedule_unsafe();
257         if (signal_pending_state(mode, current))
258                 return -ERESTARTSYS;
259         return 0;
260 }
261
262 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
263 static void rpc_task_set_debuginfo(struct rpc_task *task)
264 {
265         static atomic_t rpc_pid;
266
267         task->tk_pid = atomic_inc_return(&rpc_pid);
268 }
269 #else
270 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
271 {
272 }
273 #endif
274
275 static void rpc_set_active(struct rpc_task *task)
276 {
277         trace_rpc_task_begin(task->tk_client, task, NULL);
278
279         rpc_task_set_debuginfo(task);
280         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
281 }
282
283 /*
284  * Mark an RPC call as having completed by clearing the 'active' bit
285  * and then waking up all tasks that were sleeping.
286  */
287 static int rpc_complete_task(struct rpc_task *task)
288 {
289         void *m = &task->tk_runstate;
290         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
291         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
292         unsigned long flags;
293         int ret;
294
295         trace_rpc_task_complete(task->tk_client, task, NULL);
296
297         spin_lock_irqsave(&wq->lock, flags);
298         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
299         ret = atomic_dec_and_test(&task->tk_count);
300         if (waitqueue_active(wq))
301                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
302         spin_unlock_irqrestore(&wq->lock, flags);
303         return ret;
304 }
305
306 /*
307  * Allow callers to wait for completion of an RPC call
308  *
309  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
310  * to enforce taking of the wq->lock and hence avoid races with
311  * rpc_complete_task().
312  */
313 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
314 {
315         if (action == NULL)
316                 action = rpc_wait_bit_killable;
317         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
318                         action, TASK_KILLABLE);
319 }
320 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
321
322 /*
323  * Make an RPC task runnable.
324  *
325  * Note: If the task is ASYNC, and is being made runnable after sitting on an
326  * rpc_wait_queue, this must be called with the queue spinlock held to protect
327  * the wait queue operation.
328  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
329  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
330  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
331  * the RPC_TASK_RUNNING flag.
332  */
333 static void rpc_make_runnable(struct workqueue_struct *wq,
334                 struct rpc_task *task)
335 {
336         bool need_wakeup = !rpc_test_and_set_running(task);
337
338         rpc_clear_queued(task);
339         if (!need_wakeup)
340                 return;
341         if (RPC_IS_ASYNC(task)) {
342                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
343                 queue_work(wq, &task->u.tk_work);
344         } else
345                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
346 }
347
348 /*
349  * Prepare for sleeping on a wait queue.
350  * By always appending tasks to the list we ensure FIFO behavior.
351  * NB: An RPC task will only receive interrupt-driven events as long
352  * as it's on a wait queue.
353  */
354 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
355                 struct rpc_task *task,
356                 rpc_action action,
357                 unsigned char queue_priority)
358 {
359         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
360                         task->tk_pid, rpc_qname(q), jiffies);
361
362         trace_rpc_task_sleep(task->tk_client, task, q);
363
364         __rpc_add_wait_queue(q, task, queue_priority);
365
366         WARN_ON_ONCE(task->tk_callback != NULL);
367         task->tk_callback = action;
368         __rpc_add_timer(q, task);
369 }
370
371 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
372                                 rpc_action action)
373 {
374         /* We shouldn't ever put an inactive task to sleep */
375         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
376         if (!RPC_IS_ACTIVATED(task)) {
377                 task->tk_status = -EIO;
378                 rpc_put_task_async(task);
379                 return;
380         }
381
382         /*
383          * Protect the queue operations.
384          */
385         spin_lock_bh(&q->lock);
386         __rpc_sleep_on_priority(q, task, action, task->tk_priority);
387         spin_unlock_bh(&q->lock);
388 }
389 EXPORT_SYMBOL_GPL(rpc_sleep_on);
390
391 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
392                 rpc_action action, int priority)
393 {
394         /* We shouldn't ever put an inactive task to sleep */
395         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
396         if (!RPC_IS_ACTIVATED(task)) {
397                 task->tk_status = -EIO;
398                 rpc_put_task_async(task);
399                 return;
400         }
401
402         /*
403          * Protect the queue operations.
404          */
405         spin_lock_bh(&q->lock);
406         __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
407         spin_unlock_bh(&q->lock);
408 }
409 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
410
411 /**
412  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
413  * @wq: workqueue on which to run task
414  * @queue: wait queue
415  * @task: task to be woken up
416  *
417  * Caller must hold queue->lock, and have cleared the task queued flag.
418  */
419 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
420                 struct rpc_wait_queue *queue,
421                 struct rpc_task *task)
422 {
423         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
424                         task->tk_pid, jiffies);
425
426         /* Has the task been executed yet? If not, we cannot wake it up! */
427         if (!RPC_IS_ACTIVATED(task)) {
428                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
429                 return;
430         }
431
432         trace_rpc_task_wakeup(task->tk_client, task, queue);
433
434         __rpc_remove_wait_queue(queue, task);
435
436         rpc_make_runnable(wq, task);
437
438         dprintk("RPC:       __rpc_wake_up_task done\n");
439 }
440
441 /*
442  * Wake up a queued task while the queue lock is being held
443  */
444 static void rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
445                 struct rpc_wait_queue *queue, struct rpc_task *task)
446 {
447         if (RPC_IS_QUEUED(task)) {
448                 smp_rmb();
449                 if (task->tk_waitqueue == queue)
450                         __rpc_do_wake_up_task_on_wq(wq, queue, task);
451         }
452 }
453
454 /*
455  * Wake up a queued task while the queue lock is being held
456  */
457 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
458 {
459         rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
460 }
461
462 /*
463  * Wake up a task on a specific queue
464  */
465 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
466 {
467         spin_lock_bh(&queue->lock);
468         rpc_wake_up_task_queue_locked(queue, task);
469         spin_unlock_bh(&queue->lock);
470 }
471 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
472
473 /*
474  * Wake up the next task on a priority queue.
475  */
476 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
477 {
478         struct list_head *q;
479         struct rpc_task *task;
480
481         /*
482          * Service a batch of tasks from a single owner.
483          */
484         q = &queue->tasks[queue->priority];
485         if (!list_empty(q)) {
486                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
487                 if (queue->owner == task->tk_owner) {
488                         if (--queue->nr)
489                                 goto out;
490                         list_move_tail(&task->u.tk_wait.list, q);
491                 }
492                 /*
493                  * Check if we need to switch queues.
494                  */
495                 goto new_owner;
496         }
497
498         /*
499          * Service the next queue.
500          */
501         do {
502                 if (q == &queue->tasks[0])
503                         q = &queue->tasks[queue->maxpriority];
504                 else
505                         q = q - 1;
506                 if (!list_empty(q)) {
507                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
508                         goto new_queue;
509                 }
510         } while (q != &queue->tasks[queue->priority]);
511
512         rpc_reset_waitqueue_priority(queue);
513         return NULL;
514
515 new_queue:
516         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
517 new_owner:
518         rpc_set_waitqueue_owner(queue, task->tk_owner);
519 out:
520         return task;
521 }
522
523 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
524 {
525         if (RPC_IS_PRIORITY(queue))
526                 return __rpc_find_next_queued_priority(queue);
527         if (!list_empty(&queue->tasks[0]))
528                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
529         return NULL;
530 }
531
532 /*
533  * Wake up the first task on the wait queue.
534  */
535 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
536                 struct rpc_wait_queue *queue,
537                 bool (*func)(struct rpc_task *, void *), void *data)
538 {
539         struct rpc_task *task = NULL;
540
541         dprintk("RPC:       wake_up_first(%p \"%s\")\n",
542                         queue, rpc_qname(queue));
543         spin_lock_bh(&queue->lock);
544         task = __rpc_find_next_queued(queue);
545         if (task != NULL) {
546                 if (func(task, data))
547                         rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
548                 else
549                         task = NULL;
550         }
551         spin_unlock_bh(&queue->lock);
552
553         return task;
554 }
555
556 /*
557  * Wake up the first task on the wait queue.
558  */
559 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
560                 bool (*func)(struct rpc_task *, void *), void *data)
561 {
562         return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
563 }
564 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
565
566 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
567 {
568         return true;
569 }
570
571 /*
572  * Wake up the next task on the wait queue.
573 */
574 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
575 {
576         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
577 }
578 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
579
580 /**
581  * rpc_wake_up - wake up all rpc_tasks
582  * @queue: rpc_wait_queue on which the tasks are sleeping
583  *
584  * Grabs queue->lock
585  */
586 void rpc_wake_up(struct rpc_wait_queue *queue)
587 {
588         struct list_head *head;
589
590         spin_lock_bh(&queue->lock);
591         head = &queue->tasks[queue->maxpriority];
592         for (;;) {
593                 while (!list_empty(head)) {
594                         struct rpc_task *task;
595                         task = list_first_entry(head,
596                                         struct rpc_task,
597                                         u.tk_wait.list);
598                         rpc_wake_up_task_queue_locked(queue, task);
599                 }
600                 if (head == &queue->tasks[0])
601                         break;
602                 head--;
603         }
604         spin_unlock_bh(&queue->lock);
605 }
606 EXPORT_SYMBOL_GPL(rpc_wake_up);
607
608 /**
609  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
610  * @queue: rpc_wait_queue on which the tasks are sleeping
611  * @status: status value to set
612  *
613  * Grabs queue->lock
614  */
615 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
616 {
617         struct list_head *head;
618
619         spin_lock_bh(&queue->lock);
620         head = &queue->tasks[queue->maxpriority];
621         for (;;) {
622                 while (!list_empty(head)) {
623                         struct rpc_task *task;
624                         task = list_first_entry(head,
625                                         struct rpc_task,
626                                         u.tk_wait.list);
627                         task->tk_status = status;
628                         rpc_wake_up_task_queue_locked(queue, task);
629                 }
630                 if (head == &queue->tasks[0])
631                         break;
632                 head--;
633         }
634         spin_unlock_bh(&queue->lock);
635 }
636 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
637
638 static void __rpc_queue_timer_fn(unsigned long ptr)
639 {
640         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
641         struct rpc_task *task, *n;
642         unsigned long expires, now, timeo;
643
644         spin_lock(&queue->lock);
645         expires = now = jiffies;
646         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
647                 timeo = task->u.tk_wait.expires;
648                 if (time_after_eq(now, timeo)) {
649                         dprintk("RPC: %5u timeout\n", task->tk_pid);
650                         task->tk_status = -ETIMEDOUT;
651                         rpc_wake_up_task_queue_locked(queue, task);
652                         continue;
653                 }
654                 if (expires == now || time_after(expires, timeo))
655                         expires = timeo;
656         }
657         if (!list_empty(&queue->timer_list.list))
658                 rpc_set_queue_timer(queue, expires);
659         spin_unlock(&queue->lock);
660 }
661
662 static void __rpc_atrun(struct rpc_task *task)
663 {
664         if (task->tk_status == -ETIMEDOUT)
665                 task->tk_status = 0;
666 }
667
668 /*
669  * Run a task at a later time
670  */
671 void rpc_delay(struct rpc_task *task, unsigned long delay)
672 {
673         task->tk_timeout = delay;
674         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
675 }
676 EXPORT_SYMBOL_GPL(rpc_delay);
677
678 /*
679  * Helper to call task->tk_ops->rpc_call_prepare
680  */
681 void rpc_prepare_task(struct rpc_task *task)
682 {
683         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
684 }
685
686 static void
687 rpc_init_task_statistics(struct rpc_task *task)
688 {
689         /* Initialize retry counters */
690         task->tk_garb_retry = 2;
691         task->tk_cred_retry = 2;
692         task->tk_rebind_retry = 2;
693
694         /* starting timestamp */
695         task->tk_start = ktime_get();
696 }
697
698 static void
699 rpc_reset_task_statistics(struct rpc_task *task)
700 {
701         task->tk_timeouts = 0;
702         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
703
704         rpc_init_task_statistics(task);
705 }
706
707 /*
708  * Helper that calls task->tk_ops->rpc_call_done if it exists
709  */
710 void rpc_exit_task(struct rpc_task *task)
711 {
712         task->tk_action = NULL;
713         if (task->tk_ops->rpc_call_done != NULL) {
714                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
715                 if (task->tk_action != NULL) {
716                         WARN_ON(RPC_ASSASSINATED(task));
717                         /* Always release the RPC slot and buffer memory */
718                         xprt_release(task);
719                         rpc_reset_task_statistics(task);
720                 }
721         }
722 }
723
724 void rpc_exit(struct rpc_task *task, int status)
725 {
726         task->tk_status = status;
727         task->tk_action = rpc_exit_task;
728         if (RPC_IS_QUEUED(task))
729                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
730 }
731 EXPORT_SYMBOL_GPL(rpc_exit);
732
733 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
734 {
735         if (ops->rpc_release != NULL)
736                 ops->rpc_release(calldata);
737 }
738
739 /*
740  * This is the RPC `scheduler' (or rather, the finite state machine).
741  */
742 static void __rpc_execute(struct rpc_task *task)
743 {
744         struct rpc_wait_queue *queue;
745         int task_is_async = RPC_IS_ASYNC(task);
746         int status = 0;
747
748         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
749                         task->tk_pid, task->tk_flags);
750
751         WARN_ON_ONCE(RPC_IS_QUEUED(task));
752         if (RPC_IS_QUEUED(task))
753                 return;
754
755         for (;;) {
756                 void (*do_action)(struct rpc_task *);
757
758                 /*
759                  * Execute any pending callback first.
760                  */
761                 do_action = task->tk_callback;
762                 task->tk_callback = NULL;
763                 if (do_action == NULL) {
764                         /*
765                          * Perform the next FSM step.
766                          * tk_action may be NULL if the task has been killed.
767                          * In particular, note that rpc_killall_tasks may
768                          * do this at any time, so beware when dereferencing.
769                          */
770                         do_action = task->tk_action;
771                         if (do_action == NULL)
772                                 break;
773                 }
774                 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
775                 do_action(task);
776
777                 /*
778                  * Lockless check for whether task is sleeping or not.
779                  */
780                 if (!RPC_IS_QUEUED(task))
781                         continue;
782                 /*
783                  * The queue->lock protects against races with
784                  * rpc_make_runnable().
785                  *
786                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
787                  * rpc_task, rpc_make_runnable() can assign it to a
788                  * different workqueue. We therefore cannot assume that the
789                  * rpc_task pointer may still be dereferenced.
790                  */
791                 queue = task->tk_waitqueue;
792                 spin_lock_bh(&queue->lock);
793                 if (!RPC_IS_QUEUED(task)) {
794                         spin_unlock_bh(&queue->lock);
795                         continue;
796                 }
797                 rpc_clear_running(task);
798                 spin_unlock_bh(&queue->lock);
799                 if (task_is_async)
800                         return;
801
802                 /* sync task: sleep here */
803                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
804                 status = out_of_line_wait_on_bit(&task->tk_runstate,
805                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
806                                 TASK_KILLABLE);
807                 if (status == -ERESTARTSYS) {
808                         /*
809                          * When a sync task receives a signal, it exits with
810                          * -ERESTARTSYS. In order to catch any callbacks that
811                          * clean up after sleeping on some queue, we don't
812                          * break the loop here, but go around once more.
813                          */
814                         dprintk("RPC: %5u got signal\n", task->tk_pid);
815                         task->tk_flags |= RPC_TASK_KILLED;
816                         rpc_exit(task, -ERESTARTSYS);
817                 }
818                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
819         }
820
821         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
822                         task->tk_status);
823         /* Release all resources associated with the task */
824         rpc_release_task(task);
825 }
826
827 /*
828  * User-visible entry point to the scheduler.
829  *
830  * This may be called recursively if e.g. an async NFS task updates
831  * the attributes and finds that dirty pages must be flushed.
832  * NOTE: Upon exit of this function the task is guaranteed to be
833  *       released. In particular note that tk_release() will have
834  *       been called, so your task memory may have been freed.
835  */
836 void rpc_execute(struct rpc_task *task)
837 {
838         bool is_async = RPC_IS_ASYNC(task);
839
840         rpc_set_active(task);
841         rpc_make_runnable(rpciod_workqueue, task);
842         if (!is_async)
843                 __rpc_execute(task);
844 }
845
846 static void rpc_async_schedule(struct work_struct *work)
847 {
848         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
849 }
850
851 /**
852  * rpc_malloc - allocate RPC buffer resources
853  * @task: RPC task
854  *
855  * A single memory region is allocated, which is split between the
856  * RPC call and RPC reply that this task is being used for. When
857  * this RPC is retired, the memory is released by calling rpc_free.
858  *
859  * To prevent rpciod from hanging, this allocator never sleeps,
860  * returning -ENOMEM and suppressing warning if the request cannot
861  * be serviced immediately. The caller can arrange to sleep in a
862  * way that is safe for rpciod.
863  *
864  * Most requests are 'small' (under 2KiB) and can be serviced from a
865  * mempool, ensuring that NFS reads and writes can always proceed,
866  * and that there is good locality of reference for these buffers.
867  *
868  * In order to avoid memory starvation triggering more writebacks of
869  * NFS requests, we avoid using GFP_KERNEL.
870  */
871 int rpc_malloc(struct rpc_task *task)
872 {
873         struct rpc_rqst *rqst = task->tk_rqstp;
874         size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
875         struct rpc_buffer *buf;
876         gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
877
878         if (RPC_IS_SWAPPER(task))
879                 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
880
881         size += sizeof(struct rpc_buffer);
882         if (size <= RPC_BUFFER_MAXSIZE)
883                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
884         else
885                 buf = kmalloc(size, gfp);
886
887         if (!buf)
888                 return -ENOMEM;
889
890         buf->len = size;
891         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
892                         task->tk_pid, size, buf);
893         rqst->rq_buffer = buf->data;
894         rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
895         return 0;
896 }
897 EXPORT_SYMBOL_GPL(rpc_malloc);
898
899 /**
900  * rpc_free - free RPC buffer resources allocated via rpc_malloc
901  * @task: RPC task
902  *
903  */
904 void rpc_free(struct rpc_task *task)
905 {
906         void *buffer = task->tk_rqstp->rq_buffer;
907         size_t size;
908         struct rpc_buffer *buf;
909
910         buf = container_of(buffer, struct rpc_buffer, data);
911         size = buf->len;
912
913         dprintk("RPC:       freeing buffer of size %zu at %p\n",
914                         size, buf);
915
916         if (size <= RPC_BUFFER_MAXSIZE)
917                 mempool_free(buf, rpc_buffer_mempool);
918         else
919                 kfree(buf);
920 }
921 EXPORT_SYMBOL_GPL(rpc_free);
922
923 /*
924  * Creation and deletion of RPC task structures
925  */
926 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
927 {
928         memset(task, 0, sizeof(*task));
929         atomic_set(&task->tk_count, 1);
930         task->tk_flags  = task_setup_data->flags;
931         task->tk_ops = task_setup_data->callback_ops;
932         task->tk_calldata = task_setup_data->callback_data;
933         INIT_LIST_HEAD(&task->tk_task);
934
935         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
936         task->tk_owner = current->tgid;
937
938         /* Initialize workqueue for async tasks */
939         task->tk_workqueue = task_setup_data->workqueue;
940
941         task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
942
943         if (task->tk_ops->rpc_call_prepare != NULL)
944                 task->tk_action = rpc_prepare_task;
945
946         rpc_init_task_statistics(task);
947
948         dprintk("RPC:       new task initialized, procpid %u\n",
949                                 task_pid_nr(current));
950 }
951
952 static struct rpc_task *
953 rpc_alloc_task(void)
954 {
955         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
956 }
957
958 /*
959  * Create a new task for the specified client.
960  */
961 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
962 {
963         struct rpc_task *task = setup_data->task;
964         unsigned short flags = 0;
965
966         if (task == NULL) {
967                 task = rpc_alloc_task();
968                 if (task == NULL) {
969                         rpc_release_calldata(setup_data->callback_ops,
970                                         setup_data->callback_data);
971                         return ERR_PTR(-ENOMEM);
972                 }
973                 flags = RPC_TASK_DYNAMIC;
974         }
975
976         rpc_init_task(task, setup_data);
977         task->tk_flags |= flags;
978         dprintk("RPC:       allocated task %p\n", task);
979         return task;
980 }
981
982 /*
983  * rpc_free_task - release rpc task and perform cleanups
984  *
985  * Note that we free up the rpc_task _after_ rpc_release_calldata()
986  * in order to work around a workqueue dependency issue.
987  *
988  * Tejun Heo states:
989  * "Workqueue currently considers two work items to be the same if they're
990  * on the same address and won't execute them concurrently - ie. it
991  * makes a work item which is queued again while being executed wait
992  * for the previous execution to complete.
993  *
994  * If a work function frees the work item, and then waits for an event
995  * which should be performed by another work item and *that* work item
996  * recycles the freed work item, it can create a false dependency loop.
997  * There really is no reliable way to detect this short of verifying
998  * every memory free."
999  *
1000  */
1001 static void rpc_free_task(struct rpc_task *task)
1002 {
1003         unsigned short tk_flags = task->tk_flags;
1004
1005         rpc_release_calldata(task->tk_ops, task->tk_calldata);
1006
1007         if (tk_flags & RPC_TASK_DYNAMIC) {
1008                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1009                 mempool_free(task, rpc_task_mempool);
1010         }
1011 }
1012
1013 static void rpc_async_release(struct work_struct *work)
1014 {
1015         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1016 }
1017
1018 static void rpc_release_resources_task(struct rpc_task *task)
1019 {
1020         xprt_release(task);
1021         if (task->tk_msg.rpc_cred) {
1022                 put_rpccred(task->tk_msg.rpc_cred);
1023                 task->tk_msg.rpc_cred = NULL;
1024         }
1025         rpc_task_release_client(task);
1026 }
1027
1028 static void rpc_final_put_task(struct rpc_task *task,
1029                 struct workqueue_struct *q)
1030 {
1031         if (q != NULL) {
1032                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1033                 queue_work(q, &task->u.tk_work);
1034         } else
1035                 rpc_free_task(task);
1036 }
1037
1038 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1039 {
1040         if (atomic_dec_and_test(&task->tk_count)) {
1041                 rpc_release_resources_task(task);
1042                 rpc_final_put_task(task, q);
1043         }
1044 }
1045
1046 void rpc_put_task(struct rpc_task *task)
1047 {
1048         rpc_do_put_task(task, NULL);
1049 }
1050 EXPORT_SYMBOL_GPL(rpc_put_task);
1051
1052 void rpc_put_task_async(struct rpc_task *task)
1053 {
1054         rpc_do_put_task(task, task->tk_workqueue);
1055 }
1056 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1057
1058 static void rpc_release_task(struct rpc_task *task)
1059 {
1060         dprintk("RPC: %5u release task\n", task->tk_pid);
1061
1062         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1063
1064         rpc_release_resources_task(task);
1065
1066         /*
1067          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1068          * so it should be safe to use task->tk_count as a test for whether
1069          * or not any other processes still hold references to our rpc_task.
1070          */
1071         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1072                 /* Wake up anyone who may be waiting for task completion */
1073                 if (!rpc_complete_task(task))
1074                         return;
1075         } else {
1076                 if (!atomic_dec_and_test(&task->tk_count))
1077                         return;
1078         }
1079         rpc_final_put_task(task, task->tk_workqueue);
1080 }
1081
1082 int rpciod_up(void)
1083 {
1084         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1085 }
1086
1087 void rpciod_down(void)
1088 {
1089         module_put(THIS_MODULE);
1090 }
1091
1092 /*
1093  * Start up the rpciod workqueue.
1094  */
1095 static int rpciod_start(void)
1096 {
1097         struct workqueue_struct *wq;
1098
1099         /*
1100          * Create the rpciod thread and wait for it to start.
1101          */
1102         dprintk("RPC:       creating workqueue rpciod\n");
1103         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1104         if (!wq)
1105                 goto out_failed;
1106         rpciod_workqueue = wq;
1107         /* Note: highpri because network receive is latency sensitive */
1108         wq = alloc_workqueue("xprtiod", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1109         if (!wq)
1110                 goto free_rpciod;
1111         xprtiod_workqueue = wq;
1112         return 1;
1113 free_rpciod:
1114         wq = rpciod_workqueue;
1115         rpciod_workqueue = NULL;
1116         destroy_workqueue(wq);
1117 out_failed:
1118         return 0;
1119 }
1120
1121 static void rpciod_stop(void)
1122 {
1123         struct workqueue_struct *wq = NULL;
1124
1125         if (rpciod_workqueue == NULL)
1126                 return;
1127         dprintk("RPC:       destroying workqueue rpciod\n");
1128
1129         wq = rpciod_workqueue;
1130         rpciod_workqueue = NULL;
1131         destroy_workqueue(wq);
1132         wq = xprtiod_workqueue;
1133         xprtiod_workqueue = NULL;
1134         destroy_workqueue(wq);
1135 }
1136
1137 void
1138 rpc_destroy_mempool(void)
1139 {
1140         rpciod_stop();
1141         mempool_destroy(rpc_buffer_mempool);
1142         mempool_destroy(rpc_task_mempool);
1143         kmem_cache_destroy(rpc_task_slabp);
1144         kmem_cache_destroy(rpc_buffer_slabp);
1145         rpc_destroy_wait_queue(&delay_queue);
1146 }
1147
1148 int
1149 rpc_init_mempool(void)
1150 {
1151         /*
1152          * The following is not strictly a mempool initialisation,
1153          * but there is no harm in doing it here
1154          */
1155         rpc_init_wait_queue(&delay_queue, "delayq");
1156         if (!rpciod_start())
1157                 goto err_nomem;
1158
1159         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1160                                              sizeof(struct rpc_task),
1161                                              0, SLAB_HWCACHE_ALIGN,
1162                                              NULL);
1163         if (!rpc_task_slabp)
1164                 goto err_nomem;
1165         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1166                                              RPC_BUFFER_MAXSIZE,
1167                                              0, SLAB_HWCACHE_ALIGN,
1168                                              NULL);
1169         if (!rpc_buffer_slabp)
1170                 goto err_nomem;
1171         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1172                                                     rpc_task_slabp);
1173         if (!rpc_task_mempool)
1174                 goto err_nomem;
1175         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1176                                                       rpc_buffer_slabp);
1177         if (!rpc_buffer_mempool)
1178                 goto err_nomem;
1179         return 0;
1180 err_nomem:
1181         rpc_destroy_mempool();
1182         return -ENOMEM;
1183 }