[IA64] sim: Add casts to avoid assignment warnings
[cascardo/linux.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY         RPCDBG_SCHED
29 #endif
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE      (2048)
38 #define RPC_BUFFER_POOLSIZE     (8)
39 #define RPC_TASK_POOLSIZE       (8)
40 static struct kmem_cache        *rpc_task_slabp __read_mostly;
41 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
42 static mempool_t        *rpc_task_mempool __read_mostly;
43 static mempool_t        *rpc_buffer_mempool __read_mostly;
44
45 static void                     rpc_async_schedule(struct work_struct *);
46 static void                      rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue;
58
59 /*
60  * Disable the timer for a given RPC task. Should be called with
61  * queue->lock and bh_disabled in order to avoid races within
62  * rpc_run_timer().
63  */
64 static void
65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
66 {
67         if (task->tk_timeout == 0)
68                 return;
69         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70         task->tk_timeout = 0;
71         list_del(&task->u.tk_wait.timer_list);
72         if (list_empty(&queue->timer_list.list))
73                 del_timer(&queue->timer_list.timer);
74 }
75
76 static void
77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
78 {
79         queue->timer_list.expires = expires;
80         mod_timer(&queue->timer_list.timer, expires);
81 }
82
83 /*
84  * Set up a timer for the current task.
85  */
86 static void
87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
88 {
89         if (!task->tk_timeout)
90                 return;
91
92         dprintk("RPC: %5u setting alarm for %lu ms\n",
93                         task->tk_pid, task->tk_timeout * 1000 / HZ);
94
95         task->u.tk_wait.expires = jiffies + task->tk_timeout;
96         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 }
100
101 static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
102 {
103         struct list_head *q = &queue->tasks[queue->priority];
104         struct rpc_task *task;
105
106         if (!list_empty(q)) {
107                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
108                 if (task->tk_owner == queue->owner)
109                         list_move_tail(&task->u.tk_wait.list, q);
110         }
111 }
112
113 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
114 {
115         if (queue->priority != priority) {
116                 /* Fairness: rotate the list when changing priority */
117                 rpc_rotate_queue_owner(queue);
118                 queue->priority = priority;
119         }
120 }
121
122 static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
123 {
124         queue->owner = pid;
125         queue->nr = RPC_BATCH_COUNT;
126 }
127
128 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
129 {
130         rpc_set_waitqueue_priority(queue, queue->maxpriority);
131         rpc_set_waitqueue_owner(queue, 0);
132 }
133
134 /*
135  * Add new request to a priority queue.
136  */
137 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
138                 struct rpc_task *task,
139                 unsigned char queue_priority)
140 {
141         struct list_head *q;
142         struct rpc_task *t;
143
144         INIT_LIST_HEAD(&task->u.tk_wait.links);
145         if (unlikely(queue_priority > queue->maxpriority))
146                 queue_priority = queue->maxpriority;
147         if (queue_priority > queue->priority)
148                 rpc_set_waitqueue_priority(queue, queue_priority);
149         q = &queue->tasks[queue_priority];
150         list_for_each_entry(t, q, u.tk_wait.list) {
151                 if (t->tk_owner == task->tk_owner) {
152                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
153                         return;
154                 }
155         }
156         list_add_tail(&task->u.tk_wait.list, q);
157 }
158
159 /*
160  * Add new request to wait queue.
161  *
162  * Swapper tasks always get inserted at the head of the queue.
163  * This should avoid many nasty memory deadlocks and hopefully
164  * improve overall performance.
165  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
166  */
167 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
168                 struct rpc_task *task,
169                 unsigned char queue_priority)
170 {
171         WARN_ON_ONCE(RPC_IS_QUEUED(task));
172         if (RPC_IS_QUEUED(task))
173                 return;
174
175         if (RPC_IS_PRIORITY(queue))
176                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
177         else if (RPC_IS_SWAPPER(task))
178                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
179         else
180                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
181         task->tk_waitqueue = queue;
182         queue->qlen++;
183         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
184         smp_wmb();
185         rpc_set_queued(task);
186
187         dprintk("RPC: %5u added to queue %p \"%s\"\n",
188                         task->tk_pid, queue, rpc_qname(queue));
189 }
190
191 /*
192  * Remove request from a priority queue.
193  */
194 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
195 {
196         struct rpc_task *t;
197
198         if (!list_empty(&task->u.tk_wait.links)) {
199                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
200                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
201                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
202         }
203 }
204
205 /*
206  * Remove request from queue.
207  * Note: must be called with spin lock held.
208  */
209 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
210 {
211         __rpc_disable_timer(queue, task);
212         if (RPC_IS_PRIORITY(queue))
213                 __rpc_remove_wait_queue_priority(task);
214         list_del(&task->u.tk_wait.list);
215         queue->qlen--;
216         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
217                         task->tk_pid, queue, rpc_qname(queue));
218 }
219
220 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
221 {
222         int i;
223
224         spin_lock_init(&queue->lock);
225         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
226                 INIT_LIST_HEAD(&queue->tasks[i]);
227         queue->maxpriority = nr_queues - 1;
228         rpc_reset_waitqueue_priority(queue);
229         queue->qlen = 0;
230         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
231         INIT_LIST_HEAD(&queue->timer_list.list);
232         rpc_assign_waitqueue_name(queue, qname);
233 }
234
235 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
236 {
237         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
238 }
239 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
240
241 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
242 {
243         __rpc_init_priority_wait_queue(queue, qname, 1);
244 }
245 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
246
247 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
248 {
249         del_timer_sync(&queue->timer_list.timer);
250 }
251 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
252
253 static int rpc_wait_bit_killable(void *word)
254 {
255         if (fatal_signal_pending(current))
256                 return -ERESTARTSYS;
257         freezable_schedule_unsafe();
258         return 0;
259 }
260
261 #ifdef RPC_DEBUG
262 static void rpc_task_set_debuginfo(struct rpc_task *task)
263 {
264         static atomic_t rpc_pid;
265
266         task->tk_pid = atomic_inc_return(&rpc_pid);
267 }
268 #else
269 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
270 {
271 }
272 #endif
273
274 static void rpc_set_active(struct rpc_task *task)
275 {
276         trace_rpc_task_begin(task->tk_client, task, NULL);
277
278         rpc_task_set_debuginfo(task);
279         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
280 }
281
282 /*
283  * Mark an RPC call as having completed by clearing the 'active' bit
284  * and then waking up all tasks that were sleeping.
285  */
286 static int rpc_complete_task(struct rpc_task *task)
287 {
288         void *m = &task->tk_runstate;
289         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
290         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
291         unsigned long flags;
292         int ret;
293
294         trace_rpc_task_complete(task->tk_client, task, NULL);
295
296         spin_lock_irqsave(&wq->lock, flags);
297         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
298         ret = atomic_dec_and_test(&task->tk_count);
299         if (waitqueue_active(wq))
300                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
301         spin_unlock_irqrestore(&wq->lock, flags);
302         return ret;
303 }
304
305 /*
306  * Allow callers to wait for completion of an RPC call
307  *
308  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
309  * to enforce taking of the wq->lock and hence avoid races with
310  * rpc_complete_task().
311  */
312 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
313 {
314         if (action == NULL)
315                 action = rpc_wait_bit_killable;
316         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
317                         action, TASK_KILLABLE);
318 }
319 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
320
321 /*
322  * Make an RPC task runnable.
323  *
324  * Note: If the task is ASYNC, and is being made runnable after sitting on an
325  * rpc_wait_queue, this must be called with the queue spinlock held to protect
326  * the wait queue operation.
327  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
328  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
329  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
330  * the RPC_TASK_RUNNING flag.
331  */
332 static void rpc_make_runnable(struct rpc_task *task)
333 {
334         bool need_wakeup = !rpc_test_and_set_running(task);
335
336         rpc_clear_queued(task);
337         if (!need_wakeup)
338                 return;
339         if (RPC_IS_ASYNC(task)) {
340                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
341                 queue_work(rpciod_workqueue, &task->u.tk_work);
342         } else
343                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
344 }
345
346 /*
347  * Prepare for sleeping on a wait queue.
348  * By always appending tasks to the list we ensure FIFO behavior.
349  * NB: An RPC task will only receive interrupt-driven events as long
350  * as it's on a wait queue.
351  */
352 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
353                 struct rpc_task *task,
354                 rpc_action action,
355                 unsigned char queue_priority)
356 {
357         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
358                         task->tk_pid, rpc_qname(q), jiffies);
359
360         trace_rpc_task_sleep(task->tk_client, task, q);
361
362         __rpc_add_wait_queue(q, task, queue_priority);
363
364         WARN_ON_ONCE(task->tk_callback != NULL);
365         task->tk_callback = action;
366         __rpc_add_timer(q, task);
367 }
368
369 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
370                                 rpc_action action)
371 {
372         /* We shouldn't ever put an inactive task to sleep */
373         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
374         if (!RPC_IS_ACTIVATED(task)) {
375                 task->tk_status = -EIO;
376                 rpc_put_task_async(task);
377                 return;
378         }
379
380         /*
381          * Protect the queue operations.
382          */
383         spin_lock_bh(&q->lock);
384         __rpc_sleep_on_priority(q, task, action, task->tk_priority);
385         spin_unlock_bh(&q->lock);
386 }
387 EXPORT_SYMBOL_GPL(rpc_sleep_on);
388
389 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
390                 rpc_action action, int priority)
391 {
392         /* We shouldn't ever put an inactive task to sleep */
393         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
394         if (!RPC_IS_ACTIVATED(task)) {
395                 task->tk_status = -EIO;
396                 rpc_put_task_async(task);
397                 return;
398         }
399
400         /*
401          * Protect the queue operations.
402          */
403         spin_lock_bh(&q->lock);
404         __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
405         spin_unlock_bh(&q->lock);
406 }
407 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
408
409 /**
410  * __rpc_do_wake_up_task - wake up a single rpc_task
411  * @queue: wait queue
412  * @task: task to be woken up
413  *
414  * Caller must hold queue->lock, and have cleared the task queued flag.
415  */
416 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
417 {
418         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
419                         task->tk_pid, jiffies);
420
421         /* Has the task been executed yet? If not, we cannot wake it up! */
422         if (!RPC_IS_ACTIVATED(task)) {
423                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
424                 return;
425         }
426
427         trace_rpc_task_wakeup(task->tk_client, task, queue);
428
429         __rpc_remove_wait_queue(queue, task);
430
431         rpc_make_runnable(task);
432
433         dprintk("RPC:       __rpc_wake_up_task done\n");
434 }
435
436 /*
437  * Wake up a queued task while the queue lock is being held
438  */
439 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
440 {
441         if (RPC_IS_QUEUED(task)) {
442                 smp_rmb();
443                 if (task->tk_waitqueue == queue)
444                         __rpc_do_wake_up_task(queue, task);
445         }
446 }
447
448 /*
449  * Tests whether rpc queue is empty
450  */
451 int rpc_queue_empty(struct rpc_wait_queue *queue)
452 {
453         int res;
454
455         spin_lock_bh(&queue->lock);
456         res = queue->qlen;
457         spin_unlock_bh(&queue->lock);
458         return res == 0;
459 }
460 EXPORT_SYMBOL_GPL(rpc_queue_empty);
461
462 /*
463  * Wake up a task on a specific queue
464  */
465 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
466 {
467         spin_lock_bh(&queue->lock);
468         rpc_wake_up_task_queue_locked(queue, task);
469         spin_unlock_bh(&queue->lock);
470 }
471 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
472
473 /*
474  * Wake up the next task on a priority queue.
475  */
476 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
477 {
478         struct list_head *q;
479         struct rpc_task *task;
480
481         /*
482          * Service a batch of tasks from a single owner.
483          */
484         q = &queue->tasks[queue->priority];
485         if (!list_empty(q)) {
486                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
487                 if (queue->owner == task->tk_owner) {
488                         if (--queue->nr)
489                                 goto out;
490                         list_move_tail(&task->u.tk_wait.list, q);
491                 }
492                 /*
493                  * Check if we need to switch queues.
494                  */
495                 goto new_owner;
496         }
497
498         /*
499          * Service the next queue.
500          */
501         do {
502                 if (q == &queue->tasks[0])
503                         q = &queue->tasks[queue->maxpriority];
504                 else
505                         q = q - 1;
506                 if (!list_empty(q)) {
507                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
508                         goto new_queue;
509                 }
510         } while (q != &queue->tasks[queue->priority]);
511
512         rpc_reset_waitqueue_priority(queue);
513         return NULL;
514
515 new_queue:
516         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
517 new_owner:
518         rpc_set_waitqueue_owner(queue, task->tk_owner);
519 out:
520         return task;
521 }
522
523 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
524 {
525         if (RPC_IS_PRIORITY(queue))
526                 return __rpc_find_next_queued_priority(queue);
527         if (!list_empty(&queue->tasks[0]))
528                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
529         return NULL;
530 }
531
532 /*
533  * Wake up the first task on the wait queue.
534  */
535 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
536                 bool (*func)(struct rpc_task *, void *), void *data)
537 {
538         struct rpc_task *task = NULL;
539
540         dprintk("RPC:       wake_up_first(%p \"%s\")\n",
541                         queue, rpc_qname(queue));
542         spin_lock_bh(&queue->lock);
543         task = __rpc_find_next_queued(queue);
544         if (task != NULL) {
545                 if (func(task, data))
546                         rpc_wake_up_task_queue_locked(queue, task);
547                 else
548                         task = NULL;
549         }
550         spin_unlock_bh(&queue->lock);
551
552         return task;
553 }
554 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
555
556 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
557 {
558         return true;
559 }
560
561 /*
562  * Wake up the next task on the wait queue.
563 */
564 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
565 {
566         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
567 }
568 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
569
570 /**
571  * rpc_wake_up - wake up all rpc_tasks
572  * @queue: rpc_wait_queue on which the tasks are sleeping
573  *
574  * Grabs queue->lock
575  */
576 void rpc_wake_up(struct rpc_wait_queue *queue)
577 {
578         struct list_head *head;
579
580         spin_lock_bh(&queue->lock);
581         head = &queue->tasks[queue->maxpriority];
582         for (;;) {
583                 while (!list_empty(head)) {
584                         struct rpc_task *task;
585                         task = list_first_entry(head,
586                                         struct rpc_task,
587                                         u.tk_wait.list);
588                         rpc_wake_up_task_queue_locked(queue, task);
589                 }
590                 if (head == &queue->tasks[0])
591                         break;
592                 head--;
593         }
594         spin_unlock_bh(&queue->lock);
595 }
596 EXPORT_SYMBOL_GPL(rpc_wake_up);
597
598 /**
599  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
600  * @queue: rpc_wait_queue on which the tasks are sleeping
601  * @status: status value to set
602  *
603  * Grabs queue->lock
604  */
605 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
606 {
607         struct list_head *head;
608
609         spin_lock_bh(&queue->lock);
610         head = &queue->tasks[queue->maxpriority];
611         for (;;) {
612                 while (!list_empty(head)) {
613                         struct rpc_task *task;
614                         task = list_first_entry(head,
615                                         struct rpc_task,
616                                         u.tk_wait.list);
617                         task->tk_status = status;
618                         rpc_wake_up_task_queue_locked(queue, task);
619                 }
620                 if (head == &queue->tasks[0])
621                         break;
622                 head--;
623         }
624         spin_unlock_bh(&queue->lock);
625 }
626 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
627
628 static void __rpc_queue_timer_fn(unsigned long ptr)
629 {
630         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
631         struct rpc_task *task, *n;
632         unsigned long expires, now, timeo;
633
634         spin_lock(&queue->lock);
635         expires = now = jiffies;
636         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
637                 timeo = task->u.tk_wait.expires;
638                 if (time_after_eq(now, timeo)) {
639                         dprintk("RPC: %5u timeout\n", task->tk_pid);
640                         task->tk_status = -ETIMEDOUT;
641                         rpc_wake_up_task_queue_locked(queue, task);
642                         continue;
643                 }
644                 if (expires == now || time_after(expires, timeo))
645                         expires = timeo;
646         }
647         if (!list_empty(&queue->timer_list.list))
648                 rpc_set_queue_timer(queue, expires);
649         spin_unlock(&queue->lock);
650 }
651
652 static void __rpc_atrun(struct rpc_task *task)
653 {
654         task->tk_status = 0;
655 }
656
657 /*
658  * Run a task at a later time
659  */
660 void rpc_delay(struct rpc_task *task, unsigned long delay)
661 {
662         task->tk_timeout = delay;
663         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
664 }
665 EXPORT_SYMBOL_GPL(rpc_delay);
666
667 /*
668  * Helper to call task->tk_ops->rpc_call_prepare
669  */
670 void rpc_prepare_task(struct rpc_task *task)
671 {
672         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
673 }
674
675 static void
676 rpc_init_task_statistics(struct rpc_task *task)
677 {
678         /* Initialize retry counters */
679         task->tk_garb_retry = 2;
680         task->tk_cred_retry = 2;
681         task->tk_rebind_retry = 2;
682
683         /* starting timestamp */
684         task->tk_start = ktime_get();
685 }
686
687 static void
688 rpc_reset_task_statistics(struct rpc_task *task)
689 {
690         task->tk_timeouts = 0;
691         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
692
693         rpc_init_task_statistics(task);
694 }
695
696 /*
697  * Helper that calls task->tk_ops->rpc_call_done if it exists
698  */
699 void rpc_exit_task(struct rpc_task *task)
700 {
701         task->tk_action = NULL;
702         if (task->tk_ops->rpc_call_done != NULL) {
703                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
704                 if (task->tk_action != NULL) {
705                         WARN_ON(RPC_ASSASSINATED(task));
706                         /* Always release the RPC slot and buffer memory */
707                         xprt_release(task);
708                         rpc_reset_task_statistics(task);
709                 }
710         }
711 }
712
713 void rpc_exit(struct rpc_task *task, int status)
714 {
715         task->tk_status = status;
716         task->tk_action = rpc_exit_task;
717         if (RPC_IS_QUEUED(task))
718                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
719 }
720 EXPORT_SYMBOL_GPL(rpc_exit);
721
722 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
723 {
724         if (ops->rpc_release != NULL)
725                 ops->rpc_release(calldata);
726 }
727
728 /*
729  * This is the RPC `scheduler' (or rather, the finite state machine).
730  */
731 static void __rpc_execute(struct rpc_task *task)
732 {
733         struct rpc_wait_queue *queue;
734         int task_is_async = RPC_IS_ASYNC(task);
735         int status = 0;
736
737         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
738                         task->tk_pid, task->tk_flags);
739
740         WARN_ON_ONCE(RPC_IS_QUEUED(task));
741         if (RPC_IS_QUEUED(task))
742                 return;
743
744         for (;;) {
745                 void (*do_action)(struct rpc_task *);
746
747                 /*
748                  * Execute any pending callback first.
749                  */
750                 do_action = task->tk_callback;
751                 task->tk_callback = NULL;
752                 if (do_action == NULL) {
753                         /*
754                          * Perform the next FSM step.
755                          * tk_action may be NULL if the task has been killed.
756                          * In particular, note that rpc_killall_tasks may
757                          * do this at any time, so beware when dereferencing.
758                          */
759                         do_action = task->tk_action;
760                         if (do_action == NULL)
761                                 break;
762                 }
763                 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
764                 do_action(task);
765
766                 /*
767                  * Lockless check for whether task is sleeping or not.
768                  */
769                 if (!RPC_IS_QUEUED(task))
770                         continue;
771                 /*
772                  * The queue->lock protects against races with
773                  * rpc_make_runnable().
774                  *
775                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
776                  * rpc_task, rpc_make_runnable() can assign it to a
777                  * different workqueue. We therefore cannot assume that the
778                  * rpc_task pointer may still be dereferenced.
779                  */
780                 queue = task->tk_waitqueue;
781                 spin_lock_bh(&queue->lock);
782                 if (!RPC_IS_QUEUED(task)) {
783                         spin_unlock_bh(&queue->lock);
784                         continue;
785                 }
786                 rpc_clear_running(task);
787                 spin_unlock_bh(&queue->lock);
788                 if (task_is_async)
789                         return;
790
791                 /* sync task: sleep here */
792                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
793                 status = out_of_line_wait_on_bit(&task->tk_runstate,
794                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
795                                 TASK_KILLABLE);
796                 if (status == -ERESTARTSYS) {
797                         /*
798                          * When a sync task receives a signal, it exits with
799                          * -ERESTARTSYS. In order to catch any callbacks that
800                          * clean up after sleeping on some queue, we don't
801                          * break the loop here, but go around once more.
802                          */
803                         dprintk("RPC: %5u got signal\n", task->tk_pid);
804                         task->tk_flags |= RPC_TASK_KILLED;
805                         rpc_exit(task, -ERESTARTSYS);
806                 }
807                 rpc_set_running(task);
808                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
809         }
810
811         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
812                         task->tk_status);
813         /* Release all resources associated with the task */
814         rpc_release_task(task);
815 }
816
817 /*
818  * User-visible entry point to the scheduler.
819  *
820  * This may be called recursively if e.g. an async NFS task updates
821  * the attributes and finds that dirty pages must be flushed.
822  * NOTE: Upon exit of this function the task is guaranteed to be
823  *       released. In particular note that tk_release() will have
824  *       been called, so your task memory may have been freed.
825  */
826 void rpc_execute(struct rpc_task *task)
827 {
828         rpc_set_active(task);
829         rpc_make_runnable(task);
830         if (!RPC_IS_ASYNC(task))
831                 __rpc_execute(task);
832 }
833
834 static void rpc_async_schedule(struct work_struct *work)
835 {
836         current->flags |= PF_FSTRANS;
837         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
838         current->flags &= ~PF_FSTRANS;
839 }
840
841 /**
842  * rpc_malloc - allocate an RPC buffer
843  * @task: RPC task that will use this buffer
844  * @size: requested byte size
845  *
846  * To prevent rpciod from hanging, this allocator never sleeps,
847  * returning NULL if the request cannot be serviced immediately.
848  * The caller can arrange to sleep in a way that is safe for rpciod.
849  *
850  * Most requests are 'small' (under 2KiB) and can be serviced from a
851  * mempool, ensuring that NFS reads and writes can always proceed,
852  * and that there is good locality of reference for these buffers.
853  *
854  * In order to avoid memory starvation triggering more writebacks of
855  * NFS requests, we avoid using GFP_KERNEL.
856  */
857 void *rpc_malloc(struct rpc_task *task, size_t size)
858 {
859         struct rpc_buffer *buf;
860         gfp_t gfp = GFP_NOWAIT;
861
862         if (RPC_IS_SWAPPER(task))
863                 gfp |= __GFP_MEMALLOC;
864
865         size += sizeof(struct rpc_buffer);
866         if (size <= RPC_BUFFER_MAXSIZE)
867                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
868         else
869                 buf = kmalloc(size, gfp);
870
871         if (!buf)
872                 return NULL;
873
874         buf->len = size;
875         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
876                         task->tk_pid, size, buf);
877         return &buf->data;
878 }
879 EXPORT_SYMBOL_GPL(rpc_malloc);
880
881 /**
882  * rpc_free - free buffer allocated via rpc_malloc
883  * @buffer: buffer to free
884  *
885  */
886 void rpc_free(void *buffer)
887 {
888         size_t size;
889         struct rpc_buffer *buf;
890
891         if (!buffer)
892                 return;
893
894         buf = container_of(buffer, struct rpc_buffer, data);
895         size = buf->len;
896
897         dprintk("RPC:       freeing buffer of size %zu at %p\n",
898                         size, buf);
899
900         if (size <= RPC_BUFFER_MAXSIZE)
901                 mempool_free(buf, rpc_buffer_mempool);
902         else
903                 kfree(buf);
904 }
905 EXPORT_SYMBOL_GPL(rpc_free);
906
907 /*
908  * Creation and deletion of RPC task structures
909  */
910 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
911 {
912         memset(task, 0, sizeof(*task));
913         atomic_set(&task->tk_count, 1);
914         task->tk_flags  = task_setup_data->flags;
915         task->tk_ops = task_setup_data->callback_ops;
916         task->tk_calldata = task_setup_data->callback_data;
917         INIT_LIST_HEAD(&task->tk_task);
918
919         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
920         task->tk_owner = current->tgid;
921
922         /* Initialize workqueue for async tasks */
923         task->tk_workqueue = task_setup_data->workqueue;
924
925         if (task->tk_ops->rpc_call_prepare != NULL)
926                 task->tk_action = rpc_prepare_task;
927
928         rpc_init_task_statistics(task);
929
930         dprintk("RPC:       new task initialized, procpid %u\n",
931                                 task_pid_nr(current));
932 }
933
934 static struct rpc_task *
935 rpc_alloc_task(void)
936 {
937         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
938 }
939
940 /*
941  * Create a new task for the specified client.
942  */
943 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
944 {
945         struct rpc_task *task = setup_data->task;
946         unsigned short flags = 0;
947
948         if (task == NULL) {
949                 task = rpc_alloc_task();
950                 if (task == NULL) {
951                         rpc_release_calldata(setup_data->callback_ops,
952                                         setup_data->callback_data);
953                         return ERR_PTR(-ENOMEM);
954                 }
955                 flags = RPC_TASK_DYNAMIC;
956         }
957
958         rpc_init_task(task, setup_data);
959         task->tk_flags |= flags;
960         dprintk("RPC:       allocated task %p\n", task);
961         return task;
962 }
963
964 /*
965  * rpc_free_task - release rpc task and perform cleanups
966  *
967  * Note that we free up the rpc_task _after_ rpc_release_calldata()
968  * in order to work around a workqueue dependency issue.
969  *
970  * Tejun Heo states:
971  * "Workqueue currently considers two work items to be the same if they're
972  * on the same address and won't execute them concurrently - ie. it
973  * makes a work item which is queued again while being executed wait
974  * for the previous execution to complete.
975  *
976  * If a work function frees the work item, and then waits for an event
977  * which should be performed by another work item and *that* work item
978  * recycles the freed work item, it can create a false dependency loop.
979  * There really is no reliable way to detect this short of verifying
980  * every memory free."
981  *
982  */
983 static void rpc_free_task(struct rpc_task *task)
984 {
985         unsigned short tk_flags = task->tk_flags;
986
987         rpc_release_calldata(task->tk_ops, task->tk_calldata);
988
989         if (tk_flags & RPC_TASK_DYNAMIC) {
990                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
991                 mempool_free(task, rpc_task_mempool);
992         }
993 }
994
995 static void rpc_async_release(struct work_struct *work)
996 {
997         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
998 }
999
1000 static void rpc_release_resources_task(struct rpc_task *task)
1001 {
1002         xprt_release(task);
1003         if (task->tk_msg.rpc_cred) {
1004                 put_rpccred(task->tk_msg.rpc_cred);
1005                 task->tk_msg.rpc_cred = NULL;
1006         }
1007         rpc_task_release_client(task);
1008 }
1009
1010 static void rpc_final_put_task(struct rpc_task *task,
1011                 struct workqueue_struct *q)
1012 {
1013         if (q != NULL) {
1014                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1015                 queue_work(q, &task->u.tk_work);
1016         } else
1017                 rpc_free_task(task);
1018 }
1019
1020 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1021 {
1022         if (atomic_dec_and_test(&task->tk_count)) {
1023                 rpc_release_resources_task(task);
1024                 rpc_final_put_task(task, q);
1025         }
1026 }
1027
1028 void rpc_put_task(struct rpc_task *task)
1029 {
1030         rpc_do_put_task(task, NULL);
1031 }
1032 EXPORT_SYMBOL_GPL(rpc_put_task);
1033
1034 void rpc_put_task_async(struct rpc_task *task)
1035 {
1036         rpc_do_put_task(task, task->tk_workqueue);
1037 }
1038 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1039
1040 static void rpc_release_task(struct rpc_task *task)
1041 {
1042         dprintk("RPC: %5u release task\n", task->tk_pid);
1043
1044         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1045
1046         rpc_release_resources_task(task);
1047
1048         /*
1049          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1050          * so it should be safe to use task->tk_count as a test for whether
1051          * or not any other processes still hold references to our rpc_task.
1052          */
1053         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1054                 /* Wake up anyone who may be waiting for task completion */
1055                 if (!rpc_complete_task(task))
1056                         return;
1057         } else {
1058                 if (!atomic_dec_and_test(&task->tk_count))
1059                         return;
1060         }
1061         rpc_final_put_task(task, task->tk_workqueue);
1062 }
1063
1064 int rpciod_up(void)
1065 {
1066         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1067 }
1068
1069 void rpciod_down(void)
1070 {
1071         module_put(THIS_MODULE);
1072 }
1073
1074 /*
1075  * Start up the rpciod workqueue.
1076  */
1077 static int rpciod_start(void)
1078 {
1079         struct workqueue_struct *wq;
1080
1081         /*
1082          * Create the rpciod thread and wait for it to start.
1083          */
1084         dprintk("RPC:       creating workqueue rpciod\n");
1085         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 1);
1086         rpciod_workqueue = wq;
1087         return rpciod_workqueue != NULL;
1088 }
1089
1090 static void rpciod_stop(void)
1091 {
1092         struct workqueue_struct *wq = NULL;
1093
1094         if (rpciod_workqueue == NULL)
1095                 return;
1096         dprintk("RPC:       destroying workqueue rpciod\n");
1097
1098         wq = rpciod_workqueue;
1099         rpciod_workqueue = NULL;
1100         destroy_workqueue(wq);
1101 }
1102
1103 void
1104 rpc_destroy_mempool(void)
1105 {
1106         rpciod_stop();
1107         if (rpc_buffer_mempool)
1108                 mempool_destroy(rpc_buffer_mempool);
1109         if (rpc_task_mempool)
1110                 mempool_destroy(rpc_task_mempool);
1111         if (rpc_task_slabp)
1112                 kmem_cache_destroy(rpc_task_slabp);
1113         if (rpc_buffer_slabp)
1114                 kmem_cache_destroy(rpc_buffer_slabp);
1115         rpc_destroy_wait_queue(&delay_queue);
1116 }
1117
1118 int
1119 rpc_init_mempool(void)
1120 {
1121         /*
1122          * The following is not strictly a mempool initialisation,
1123          * but there is no harm in doing it here
1124          */
1125         rpc_init_wait_queue(&delay_queue, "delayq");
1126         if (!rpciod_start())
1127                 goto err_nomem;
1128
1129         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1130                                              sizeof(struct rpc_task),
1131                                              0, SLAB_HWCACHE_ALIGN,
1132                                              NULL);
1133         if (!rpc_task_slabp)
1134                 goto err_nomem;
1135         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1136                                              RPC_BUFFER_MAXSIZE,
1137                                              0, SLAB_HWCACHE_ALIGN,
1138                                              NULL);
1139         if (!rpc_buffer_slabp)
1140                 goto err_nomem;
1141         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1142                                                     rpc_task_slabp);
1143         if (!rpc_task_mempool)
1144                 goto err_nomem;
1145         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1146                                                       rpc_buffer_slabp);
1147         if (!rpc_buffer_mempool)
1148                 goto err_nomem;
1149         return 0;
1150 err_nomem:
1151         rpc_destroy_mempool();
1152         return -ENOMEM;
1153 }