Linux-2.6.12-rc2
[cascardo/linux.git] / sound / oss / cmpci.c
1 /*
2  *      cmpci.c  --  C-Media PCI audio driver.
3  *
4  *      Copyright (C) 1999  C-media support (support@cmedia.com.tw)
5  *
6  *      Based on the PCI drivers by Thomas Sailer (sailer@ife.ee.ethz.ch)
7  *
8  *      For update, visit:
9  *              http://www.cmedia.com.tw
10  *
11  *      This program is free software; you can redistribute it and/or modify
12  *      it under the terms of the GNU General Public License as published by
13  *      the Free Software Foundation; either version 2 of the License, or
14  *      (at your option) any later version.
15  *
16  *      This program is distributed in the hope that it will be useful,
17  *      but WITHOUT ANY WARRANTY; without even the implied warranty of
18  *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  *      GNU General Public License for more details.
20  *
21  *      You should have received a copy of the GNU General Public License
22  *      along with this program; if not, write to the Free Software
23  *      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Special thanks to David C. Niemi, Jan Pfeifer
26  *
27  *
28  * Module command line parameters:
29  *   none so far
30  *
31  *
32  *  Supported devices:
33  *  /dev/dsp    standard /dev/dsp device, (mostly) OSS compatible
34  *  /dev/mixer  standard /dev/mixer device, (mostly) OSS compatible
35  *  /dev/midi   simple MIDI UART interface, no ioctl
36  *
37  *  The card has both an FM and a Wavetable synth, but I have to figure
38  *  out first how to drive them...
39  *
40  *  Revision history
41  *    06.05.98   0.1   Initial release
42  *    10.05.98   0.2   Fixed many bugs, esp. ADC rate calculation
43  *                     First stab at a simple midi interface (no bells&whistles)
44  *    13.05.98   0.3   Fix stupid cut&paste error: set_adc_rate was called instead of
45  *                     set_dac_rate in the FMODE_WRITE case in cm_open
46  *                     Fix hwptr out of bounds (now mpg123 works)
47  *    14.05.98   0.4   Don't allow excessive interrupt rates
48  *    08.06.98   0.5   First release using Alan Cox' soundcore instead of miscdevice
49  *    03.08.98   0.6   Do not include modversions.h
50  *                     Now mixer behaviour can basically be selected between
51  *                     "OSS documented" and "OSS actual" behaviour
52  *    31.08.98   0.7   Fix realplayer problems - dac.count issues
53  *    10.12.98   0.8   Fix drain_dac trying to wait on not yet initialized DMA
54  *    16.12.98   0.9   Fix a few f_file & FMODE_ bugs
55  *    06.01.99   0.10  remove the silly SA_INTERRUPT flag.
56  *                     hopefully killed the egcs section type conflict
57  *    12.03.99   0.11  cinfo.blocks should be reset after GETxPTR ioctl.
58  *                     reported by Johan Maes <joma@telindus.be>
59  *    22.03.99   0.12  return EAGAIN instead of EBUSY when O_NONBLOCK
60  *                     read/write cannot be executed
61  *    18.08.99   1.5   Only deallocate DMA buffer when unloading.
62  *    02.09.99   1.6   Enable SPDIF LOOP
63  *                     Change the mixer read back
64  *    21.09.99   2.33  Use RCS version as driver version.
65  *                     Add support for modem, S/PDIF loop and 4 channels.
66  *                     (8738 only)
67  *                     Fix bug cause x11amp cannot play.
68  *
69  *    Fixes:
70  *    Arnaldo Carvalho de Melo <acme@conectiva.com.br>
71  *    18/05/2001 - .bss nitpicks, fix a bug in set_dac_channels where it
72  *                 was calling prog_dmabuf with s->lock held, call missing
73  *                 unlock_kernel in cm_midi_release
74  *    08/10/2001 - use set_current_state in some more places
75  *
76  *      Carlos Eduardo Gorges <carlos@techlinux.com.br>
77  *      Fri May 25 2001
78  *      - SMP support ( spin[un]lock* revision )
79  *      - speaker mixer support
80  *      Mon Aug 13 2001
81  *      - optimizations and cleanups
82  *
83  *    03/01/2003 - open_mode fixes from Georg Acher <acher@in.tum.de>
84  *      Simon Braunschmidt <brasimon@web.de>
85  *     Sat Jan 31 2004
86  *      - provide support for opl3 FM by releasing IO range after initialization
87  *
88  *    ChenLi Tien <cltien@cmedia.com.tw>
89  *    Mar 9 2004
90  *      - Fix S/PDIF out if spdif_loop enabled
91  *      - Load opl3 driver if enabled (fmio in proper range)
92  *      - Load mpu401 if enabled (mpuio in proper range)
93  *    Apr 5 2004
94  *      - Fix DUAL_DAC dma synchronization bug
95  *      - Check exist FM/MPU401 I/O before activate.
96  *      - Add AFTM_S16_BE format support, so MPlayer/Xine can play AC3/mutlichannel
97  *        on Mac
98  *      - Change to support kernel 2.6 so only small patch needed
99  *      - All parameters default to 0
100  *      - Add spdif_out to send PCM through S/PDIF out jack
101  *      - Add hw_copy to get 4-spaker output for general PCM/analog output
102  *
103  *    Stefan Thater <stefan.thaeter@gmx.de>
104  *    Apr 5 2004
105  *      - Fix mute single channel for CD/Line-in/AUX-in
106  */
107 /*****************************************************************************/
108
109 #include <linux/config.h>
110 #include <linux/module.h>
111 #include <linux/string.h>
112 #include <linux/interrupt.h>
113 #include <linux/ioport.h>
114 #include <linux/sched.h>
115 #include <linux/delay.h>
116 #include <linux/sound.h>
117 #include <linux/slab.h>
118 #include <linux/soundcard.h>
119 #include <linux/pci.h>
120 #include <linux/init.h>
121 #include <linux/poll.h>
122 #include <linux/spinlock.h>
123 #include <linux/smp_lock.h>
124 #include <linux/bitops.h>
125 #include <linux/wait.h>
126
127 #include <asm/io.h>
128 #include <asm/page.h>
129 #include <asm/uaccess.h>
130
131 #ifdef CONFIG_SOUND_CMPCI_MIDI
132 #include "sound_config.h"
133 #include "mpu401.h"
134 #endif
135 #ifdef CONFIG_SOUND_CMPCI_FM
136 #include "opl3.h"
137 #endif
138 #ifdef CONFIG_SOUND_CMPCI_JOYSTICK
139 #include <linux/gameport.h>
140 #endif
141
142 /* --------------------------------------------------------------------- */
143 #undef OSS_DOCUMENTED_MIXER_SEMANTICS
144 #undef DMABYTEIO
145 #define DBG(x) {}
146 /* --------------------------------------------------------------------- */
147
148 #define CM_MAGIC  ((PCI_VENDOR_ID_CMEDIA<<16)|PCI_DEVICE_ID_CMEDIA_CM8338A)
149
150 /* CM8338 registers definition ****************/
151
152 #define CODEC_CMI_FUNCTRL0              (0x00)
153 #define CODEC_CMI_FUNCTRL1              (0x04)
154 #define CODEC_CMI_CHFORMAT              (0x08)
155 #define CODEC_CMI_INT_HLDCLR            (0x0C)
156 #define CODEC_CMI_INT_STATUS            (0x10)
157 #define CODEC_CMI_LEGACY_CTRL           (0x14)
158 #define CODEC_CMI_MISC_CTRL             (0x18)
159 #define CODEC_CMI_TDMA_POS              (0x1C)
160 #define CODEC_CMI_MIXER                 (0x20)
161 #define CODEC_SB16_DATA                 (0x22)
162 #define CODEC_SB16_ADDR                 (0x23)
163 #define CODEC_CMI_MIXER1                (0x24)
164 #define CODEC_CMI_MIXER2                (0x25)
165 #define CODEC_CMI_AUX_VOL               (0x26)
166 #define CODEC_CMI_MISC                  (0x27)
167 #define CODEC_CMI_AC97                  (0x28)
168
169 #define CODEC_CMI_CH0_FRAME1            (0x80)
170 #define CODEC_CMI_CH0_FRAME2            (0x84)
171 #define CODEC_CMI_CH1_FRAME1            (0x88)
172 #define CODEC_CMI_CH1_FRAME2            (0x8C)
173
174 #define CODEC_CMI_SPDIF_CTRL            (0x90)
175 #define CODEC_CMI_MISC_CTRL2            (0x92)
176
177 #define CODEC_CMI_EXT_REG               (0xF0)
178
179 /*  Mixer registers for SB16 ******************/
180
181 #define DSP_MIX_DATARESETIDX            ((unsigned char)(0x00))
182
183 #define DSP_MIX_MASTERVOLIDX_L          ((unsigned char)(0x30))
184 #define DSP_MIX_MASTERVOLIDX_R          ((unsigned char)(0x31))
185 #define DSP_MIX_VOICEVOLIDX_L           ((unsigned char)(0x32))
186 #define DSP_MIX_VOICEVOLIDX_R           ((unsigned char)(0x33))
187 #define DSP_MIX_FMVOLIDX_L              ((unsigned char)(0x34))
188 #define DSP_MIX_FMVOLIDX_R              ((unsigned char)(0x35))
189 #define DSP_MIX_CDVOLIDX_L              ((unsigned char)(0x36))
190 #define DSP_MIX_CDVOLIDX_R              ((unsigned char)(0x37))
191 #define DSP_MIX_LINEVOLIDX_L            ((unsigned char)(0x38))
192 #define DSP_MIX_LINEVOLIDX_R            ((unsigned char)(0x39))
193
194 #define DSP_MIX_MICVOLIDX               ((unsigned char)(0x3A))
195 #define DSP_MIX_SPKRVOLIDX              ((unsigned char)(0x3B))
196
197 #define DSP_MIX_OUTMIXIDX               ((unsigned char)(0x3C))
198
199 #define DSP_MIX_ADCMIXIDX_L             ((unsigned char)(0x3D))
200 #define DSP_MIX_ADCMIXIDX_R             ((unsigned char)(0x3E))
201
202 #define DSP_MIX_INGAINIDX_L             ((unsigned char)(0x3F))
203 #define DSP_MIX_INGAINIDX_R             ((unsigned char)(0x40))
204 #define DSP_MIX_OUTGAINIDX_L            ((unsigned char)(0x41))
205 #define DSP_MIX_OUTGAINIDX_R            ((unsigned char)(0x42))
206
207 #define DSP_MIX_AGCIDX                  ((unsigned char)(0x43))
208
209 #define DSP_MIX_TREBLEIDX_L             ((unsigned char)(0x44))
210 #define DSP_MIX_TREBLEIDX_R             ((unsigned char)(0x45))
211 #define DSP_MIX_BASSIDX_L               ((unsigned char)(0x46))
212 #define DSP_MIX_BASSIDX_R               ((unsigned char)(0x47))
213 #define DSP_MIX_EXTENSION               ((unsigned char)(0xf0))
214 // pseudo register for AUX
215 #define DSP_MIX_AUXVOL_L                ((unsigned char)(0x50))
216 #define DSP_MIX_AUXVOL_R                ((unsigned char)(0x51))
217
218 // I/O length
219 #define CM_EXTENT_CODEC   0x100
220 #define CM_EXTENT_MIDI    0x2
221 #define CM_EXTENT_SYNTH   0x4
222 #define CM_EXTENT_GAME    0x8
223
224 // Function Control Register 0 (00h)
225 #define CHADC0          0x01
226 #define CHADC1          0x02
227 #define PAUSE0          0x04
228 #define PAUSE1          0x08
229
230 // Function Control Register 0+2 (02h)
231 #define CHEN0           0x01
232 #define CHEN1           0x02
233 #define RST_CH0         0x04
234 #define RST_CH1         0x08
235
236 // Function Control Register 1 (04h)
237 #define JYSTK_EN        0x02
238 #define UART_EN         0x04
239 #define SPDO2DAC        0x40
240 #define SPDFLOOP        0x80
241
242 // Function Control Register 1+1 (05h)
243 #define SPDF_0          0x01
244 #define SPDF_1          0x02
245 #define ASFC            0x1c
246 #define DSFC            0xe0
247 #define SPDIF2DAC       (SPDF_1 << 8 | SPDO2DAC)
248
249 // Channel Format Register (08h)
250 #define CM_CFMT_STEREO  0x01
251 #define CM_CFMT_16BIT   0x02
252 #define CM_CFMT_MASK    0x03
253 #define POLVALID        0x20
254 #define INVSPDIFI       0x80
255
256 // Channel Format Register+2 (0ah)
257 #define SPD24SEL        0x20
258
259 // Channel Format Register+3 (0bh)
260 #define CHB3D           0x20
261 #define CHB3D5C         0x80
262
263 // Interrupt Hold/Clear Register+2 (0eh)
264 #define CH0_INT_EN      0x01
265 #define CH1_INT_EN      0x02
266
267 // Interrupt Register (10h)
268 #define CHINT0          0x01
269 #define CHINT1          0x02
270 #define CH0BUSY         0x04
271 #define CH1BUSY         0x08
272
273 // Legacy Control/Status Register+1 (15h)
274 #define EXBASEN         0x10
275 #define BASE2LIN        0x20
276 #define CENTR2LIN       0x40
277 #define CB2LIN          (BASE2LIN | CENTR2LIN)
278 #define CHB3D6C         0x80
279
280 // Legacy Control/Status Register+2 (16h)
281 #define DAC2SPDO        0x20
282 #define SPDCOPYRHT      0x40
283 #define ENSPDOUT        0x80
284
285 // Legacy Control/Status Register+3 (17h)
286 #define FMSEL           0x03
287 #define VSBSEL          0x0c
288 #define VMPU            0x60
289 #define NXCHG           0x80
290
291 // Miscellaneous Control Register (18h)
292 #define REAR2LIN        0x20
293 #define MUTECH1         0x40
294 #define ENCENTER        0x80
295
296 // Miscellaneous Control Register+1 (19h)
297 #define SELSPDIFI2      0x01
298 #define SPDF_AC97       0x80
299
300 // Miscellaneous Control Register+2 (1ah)
301 #define AC3_EN          0x04
302 #define FM_EN           0x08
303 #define SPD32SEL        0x20
304 #define XCHGDAC         0x40
305 #define ENDBDAC         0x80
306
307 // Miscellaneous Control Register+3 (1bh)
308 #define SPDIFI48K       0x01
309 #define SPDO5V          0x02
310 #define N4SPK3D         0x04
311 #define RESET           0x40
312 #define PWD             0x80
313 #define SPDIF48K        (SPDIFI48K << 24 | SPDF_AC97 << 8)
314
315 // Mixer1 (24h)
316 #define CDPLAY          0x01
317 #define X3DEN           0x02
318 #define REAR2FRONT      0x10
319 #define SPK4            0x20
320 #define WSMUTE          0x40
321 #define FMMUTE          0x80
322
323 // Miscellaneous Register (27h)
324 #define SPDVALID        0x02
325 #define CENTR2MIC       0x04
326
327 // Miscellaneous Register2 (92h)
328 #define SPD32KFMT       0x10
329
330 #define CM_CFMT_DACSHIFT   2
331 #define CM_CFMT_ADCSHIFT   0
332 #define CM_FREQ_DACSHIFT   5
333 #define CM_FREQ_ADCSHIFT   2
334 #define RSTDAC  RST_CH1
335 #define RSTADC  RST_CH0
336 #define ENDAC   CHEN1
337 #define ENADC   CHEN0
338 #define PAUSEDAC        PAUSE1
339 #define PAUSEADC        PAUSE0
340 #define CODEC_CMI_ADC_FRAME1    CODEC_CMI_CH0_FRAME1
341 #define CODEC_CMI_ADC_FRAME2    CODEC_CMI_CH0_FRAME2
342 #define CODEC_CMI_DAC_FRAME1    CODEC_CMI_CH1_FRAME1
343 #define CODEC_CMI_DAC_FRAME2    CODEC_CMI_CH1_FRAME2
344 #define DACINT  CHINT1
345 #define ADCINT  CHINT0
346 #define DACBUSY CH1BUSY
347 #define ADCBUSY CH0BUSY
348 #define ENDACINT        CH1_INT_EN
349 #define ENADCINT        CH0_INT_EN
350
351 static const unsigned sample_size[] = { 1, 2, 2, 4 };
352 static const unsigned sample_shift[]    = { 0, 1, 1, 2 };
353
354 #define SND_DEV_DSP16   5
355
356 #define NR_DEVICE 3             /* maximum number of devices */
357
358 #define set_dac1_rate   set_adc_rate
359 #define set_dac1_rate_unlocked  set_adc_rate_unlocked
360 #define stop_dac1       stop_adc
361 #define stop_dac1_unlocked      stop_adc_unlocked
362 #define get_dmadac1     get_dmaadc
363
364 static unsigned int devindex = 0;
365
366 //*********************************************/
367
368 struct cm_state {
369         /* magic */
370         unsigned int magic;
371
372         /* list of cmedia devices */
373         struct list_head devs;
374
375         /* the corresponding pci_dev structure */
376         struct pci_dev *dev;
377
378         int dev_audio;                  /* soundcore stuff */
379         int dev_mixer;
380
381         unsigned int iosb, iobase, iosynth,
382                          iomidi, iogame, irq;   /* hardware resources */
383         unsigned short deviceid;                /* pci_id */
384
385         struct {                                /* mixer stuff */
386                 unsigned int modcnt;
387                 unsigned short vol[13];
388         } mix;
389
390         unsigned int rateadc, ratedac;          /* wave stuff */
391         unsigned char fmt, enable;
392
393         spinlock_t lock;
394         struct semaphore open_sem;
395         mode_t open_mode;
396         wait_queue_head_t open_wait;
397
398         struct dmabuf {
399                 void *rawbuf;
400                 dma_addr_t dmaaddr;
401                 unsigned buforder;
402                 unsigned numfrag;
403                 unsigned fragshift;
404                 unsigned hwptr, swptr;
405                 unsigned total_bytes;
406                 int count;
407                 unsigned error;         /* over/underrun */
408                 wait_queue_head_t wait;
409
410                 unsigned fragsize;      /* redundant, but makes calculations easier */
411                 unsigned dmasize;
412                 unsigned fragsamples;
413                 unsigned dmasamples;
414
415                 unsigned mapped:1;      /* OSS stuff */
416                 unsigned ready:1;
417                 unsigned endcleared:1;
418                 unsigned enabled:1;
419                 unsigned ossfragshift;
420                 int ossmaxfrags;
421                 unsigned subdivision;
422         } dma_dac, dma_adc;
423
424 #ifdef CONFIG_SOUND_CMPCI_MIDI
425         int midi_devc;
426         struct address_info mpu_data;
427 #endif
428 #ifdef CONFIG_SOUND_CMPCI_JOYSTICK
429         struct gameport *gameport;
430 #endif
431
432         int     chip_version;
433         int     max_channels;
434         int     curr_channels;
435         int     capability;             /* HW capability, various for chip versions */
436
437         int     status;                 /* HW or SW state */
438
439         int     spdif_counter;          /* spdif frame counter */
440 };
441
442 /* flags used for capability */
443 #define CAN_AC3_HW              0x00000001              /* 037 or later */
444 #define CAN_AC3_SW              0x00000002              /* 033 or later */
445 #define CAN_AC3                 (CAN_AC3_HW | CAN_AC3_SW)
446 #define CAN_DUAL_DAC            0x00000004              /* 033 or later */
447 #define CAN_MULTI_CH_HW         0x00000008              /* 039 or later */
448 #define CAN_MULTI_CH            (CAN_MULTI_CH_HW | CAN_DUAL_DAC)
449 #define CAN_LINE_AS_REAR        0x00000010              /* 033 or later */
450 #define CAN_LINE_AS_BASS        0x00000020              /* 039 or later */
451 #define CAN_MIC_AS_BASS         0x00000040              /* 039 or later */
452
453 /* flags used for status */
454 #define DO_AC3_HW               0x00000001
455 #define DO_AC3_SW               0x00000002
456 #define DO_AC3                  (DO_AC3_HW | DO_AC3_SW)
457 #define DO_DUAL_DAC             0x00000004
458 #define DO_MULTI_CH_HW          0x00000008
459 #define DO_MULTI_CH             (DO_MULTI_CH_HW | DO_DUAL_DAC)
460 #define DO_LINE_AS_REAR         0x00000010              /* 033 or later */
461 #define DO_LINE_AS_BASS         0x00000020              /* 039 or later */
462 #define DO_MIC_AS_BASS          0x00000040              /* 039 or later */
463 #define DO_SPDIF_OUT            0x00000100
464 #define DO_SPDIF_IN             0x00000200
465 #define DO_SPDIF_LOOP           0x00000400
466 #define DO_BIGENDIAN_W          0x00001000              /* used in PowerPC */
467 #define DO_BIGENDIAN_R          0x00002000              /* used in PowerPC */
468
469 static LIST_HEAD(devs);
470
471 static  int     mpuio;
472 static  int     fmio;
473 static  int     joystick;
474 static  int     spdif_inverse;
475 static  int     spdif_loop;
476 static  int     spdif_out;
477 static  int     use_line_as_rear;
478 static  int     use_line_as_bass;
479 static  int     use_mic_as_bass;
480 static  int     mic_boost;
481 static  int     hw_copy;
482 module_param(mpuio, int, 0);
483 module_param(fmio, int, 0);
484 module_param(joystick, bool, 0);
485 module_param(spdif_inverse, bool, 0);
486 module_param(spdif_loop, bool, 0);
487 module_param(spdif_out, bool, 0);
488 module_param(use_line_as_rear, bool, 0);
489 module_param(use_line_as_bass, bool, 0);
490 module_param(use_mic_as_bass, bool, 0);
491 module_param(mic_boost, bool, 0);
492 module_param(hw_copy, bool, 0);
493 MODULE_PARM_DESC(mpuio, "(0x330, 0x320, 0x310, 0x300) Base of MPU-401, 0 to disable");
494 MODULE_PARM_DESC(fmio, "(0x388, 0x3C8, 0x3E0) Base of OPL3, 0 to disable");
495 MODULE_PARM_DESC(joystick, "(1/0) Enable joystick interface, still need joystick driver");
496 MODULE_PARM_DESC(spdif_inverse, "(1/0) Invert S/PDIF-in signal");
497 MODULE_PARM_DESC(spdif_loop, "(1/0) Route S/PDIF-in to S/PDIF-out directly");
498 MODULE_PARM_DESC(spdif_out, "(1/0) Send PCM to S/PDIF-out (PCM volume will not function)");
499 MODULE_PARM_DESC(use_line_as_rear, "(1/0) Use line-in jack as rear-out");
500 MODULE_PARM_DESC(use_line_as_bass, "(1/0) Use line-in jack as bass/center");
501 MODULE_PARM_DESC(use_mic_as_bass, "(1/0) Use mic-in jack as bass/center");
502 MODULE_PARM_DESC(mic_boost, "(1/0) Enable microphone boost");
503 MODULE_PARM_DESC(hw_copy, "Copy front channel to surround channel");
504
505 /* --------------------------------------------------------------------- */
506
507 static inline unsigned ld2(unsigned int x)
508 {
509         unsigned exp=16,l=5,r=0;
510         static const unsigned num[]={0x2,0x4,0x10,0x100,0x10000};
511
512         /* num: 2, 4, 16, 256, 65536 */
513         /* exp: 1, 2,  4,   8,    16 */
514
515         while(l--) {
516                 if( x >= num[l] ) {
517                         if(num[l]>2) x >>= exp;
518                         r+=exp;
519                 }
520                 exp>>=1;
521         }
522
523         return r;
524 }
525
526 /* --------------------------------------------------------------------- */
527
528 static void maskb(unsigned int addr, unsigned int mask, unsigned int value)
529 {
530         outb((inb(addr) & mask) | value, addr);
531 }
532
533 static void maskw(unsigned int addr, unsigned int mask, unsigned int value)
534 {
535         outw((inw(addr) & mask) | value, addr);
536 }
537
538 static void maskl(unsigned int addr, unsigned int mask, unsigned int value)
539 {
540         outl((inl(addr) & mask) | value, addr);
541 }
542
543 static void set_dmadac1(struct cm_state *s, unsigned int addr, unsigned int count)
544 {
545         if (addr)
546             outl(addr, s->iobase + CODEC_CMI_ADC_FRAME1);
547         outw(count - 1, s->iobase + CODEC_CMI_ADC_FRAME2);
548         maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~CHADC0, 0);
549 }
550
551 static void set_dmaadc(struct cm_state *s, unsigned int addr, unsigned int count)
552 {
553         outl(addr, s->iobase + CODEC_CMI_ADC_FRAME1);
554         outw(count - 1, s->iobase + CODEC_CMI_ADC_FRAME2);
555         maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, CHADC0);
556 }
557
558 static void set_dmadac(struct cm_state *s, unsigned int addr, unsigned int count)
559 {
560         outl(addr, s->iobase + CODEC_CMI_DAC_FRAME1);
561         outw(count - 1, s->iobase + CODEC_CMI_DAC_FRAME2);
562         maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~CHADC1, 0);
563         if (s->status & DO_DUAL_DAC)
564                 set_dmadac1(s, 0, count);
565 }
566
567 static void set_countadc(struct cm_state *s, unsigned count)
568 {
569         outw(count - 1, s->iobase + CODEC_CMI_ADC_FRAME2 + 2);
570 }
571
572 static void set_countdac(struct cm_state *s, unsigned count)
573 {
574         outw(count - 1, s->iobase + CODEC_CMI_DAC_FRAME2 + 2);
575         if (s->status & DO_DUAL_DAC)
576             set_countadc(s, count);
577 }
578
579 static unsigned get_dmadac(struct cm_state *s)
580 {
581         unsigned int curr_addr;
582
583         curr_addr = inw(s->iobase + CODEC_CMI_DAC_FRAME2) + 1;
584         curr_addr <<= sample_shift[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK];
585         curr_addr = s->dma_dac.dmasize - curr_addr;
586
587         return curr_addr;
588 }
589
590 static unsigned get_dmaadc(struct cm_state *s)
591 {
592         unsigned int curr_addr;
593
594         curr_addr = inw(s->iobase + CODEC_CMI_ADC_FRAME2) + 1;
595         curr_addr <<= sample_shift[(s->fmt >> CM_CFMT_ADCSHIFT) & CM_CFMT_MASK];
596         curr_addr = s->dma_adc.dmasize - curr_addr;
597
598         return curr_addr;
599 }
600
601 static void wrmixer(struct cm_state *s, unsigned char idx, unsigned char data)
602 {
603         unsigned char regval, pseudo;
604
605         // pseudo register
606         if (idx == DSP_MIX_AUXVOL_L) {
607                 data >>= 4;
608                 data &= 0x0f;
609                 regval = inb(s->iobase + CODEC_CMI_AUX_VOL) & ~0x0f;
610                 outb(regval | data, s->iobase + CODEC_CMI_AUX_VOL);
611                 return;
612         }
613         if (idx == DSP_MIX_AUXVOL_R) {
614                 data &= 0xf0;
615                 regval = inb(s->iobase + CODEC_CMI_AUX_VOL) & ~0xf0;
616                 outb(regval | data, s->iobase + CODEC_CMI_AUX_VOL);
617                 return;
618         }
619         outb(idx, s->iobase + CODEC_SB16_ADDR);
620         udelay(10);
621         // pseudo bits
622         if (idx == DSP_MIX_OUTMIXIDX) {
623                 pseudo = data & ~0x1f;
624                 pseudo >>= 1;
625                 regval = inb(s->iobase + CODEC_CMI_MIXER2) & ~0x30;
626                 outb(regval | pseudo, s->iobase + CODEC_CMI_MIXER2);
627         }
628         if (idx == DSP_MIX_ADCMIXIDX_L) {
629                 pseudo = data & 0x80;
630                 pseudo >>= 1;
631                 regval = inb(s->iobase + CODEC_CMI_MIXER2) & ~0x40;
632                 outb(regval | pseudo, s->iobase + CODEC_CMI_MIXER2);
633         }
634         if (idx == DSP_MIX_ADCMIXIDX_R) {
635                 pseudo = data & 0x80;
636                 regval = inb(s->iobase + CODEC_CMI_MIXER2) & ~0x80;
637                 outb(regval | pseudo, s->iobase + CODEC_CMI_MIXER2);
638         }
639         outb(data, s->iobase + CODEC_SB16_DATA);
640         udelay(10);
641 }
642
643 static unsigned char rdmixer(struct cm_state *s, unsigned char idx)
644 {
645         unsigned char v, pseudo;
646
647         // pseudo register
648         if (idx == DSP_MIX_AUXVOL_L) {
649                 v = inb(s->iobase + CODEC_CMI_AUX_VOL) & 0x0f;
650                 v <<= 4;
651                 return v;
652         }
653         if (idx == DSP_MIX_AUXVOL_L) {
654                 v = inb(s->iobase + CODEC_CMI_AUX_VOL) & 0xf0;
655                 return v;
656         }
657         outb(idx, s->iobase + CODEC_SB16_ADDR);
658         udelay(10);
659         v = inb(s->iobase + CODEC_SB16_DATA);
660         udelay(10);
661         // pseudo bits
662         if (idx == DSP_MIX_OUTMIXIDX) {
663                 pseudo = inb(s->iobase + CODEC_CMI_MIXER2) & 0x30;
664                 pseudo <<= 1;
665                 v |= pseudo;
666         }
667         if (idx == DSP_MIX_ADCMIXIDX_L) {
668                 pseudo = inb(s->iobase + CODEC_CMI_MIXER2) & 0x40;
669                 pseudo <<= 1;
670                 v |= pseudo;
671         }
672         if (idx == DSP_MIX_ADCMIXIDX_R) {
673                 pseudo = inb(s->iobase + CODEC_CMI_MIXER2) & 0x80;
674                 v |= pseudo;
675         }
676         return v;
677 }
678
679 static void set_fmt_unlocked(struct cm_state *s, unsigned char mask, unsigned char data)
680 {
681         if (mask && s->chip_version > 0) {      /* 8338 cannot keep this */
682                 s->fmt = inb(s->iobase + CODEC_CMI_CHFORMAT);
683                 udelay(10);
684         }
685         s->fmt = (s->fmt & mask) | data;
686         outb(s->fmt, s->iobase + CODEC_CMI_CHFORMAT);
687         udelay(10);
688 }
689
690 static void set_fmt(struct cm_state *s, unsigned char mask, unsigned char data)
691 {
692         unsigned long flags;
693
694         spin_lock_irqsave(&s->lock, flags);
695         set_fmt_unlocked(s,mask,data);
696         spin_unlock_irqrestore(&s->lock, flags);
697 }
698
699 static void frobindir(struct cm_state *s, unsigned char idx, unsigned char mask, unsigned char data)
700 {
701         outb(idx, s->iobase + CODEC_SB16_ADDR);
702         udelay(10);
703         outb((inb(s->iobase + CODEC_SB16_DATA) & mask) | data, s->iobase + CODEC_SB16_DATA);
704         udelay(10);
705 }
706
707 static struct {
708         unsigned        rate;
709         unsigned        lower;
710         unsigned        upper;
711         unsigned char   freq;
712 } rate_lookup[] =
713 {
714         { 5512,         (0 + 5512) / 2,         (5512 + 8000) / 2,      0 },
715         { 8000,         (5512 + 8000) / 2,      (8000 + 11025) / 2,     4 },
716         { 11025,        (8000 + 11025) / 2,     (11025 + 16000) / 2,    1 },
717         { 16000,        (11025 + 16000) / 2,    (16000 + 22050) / 2,    5 },
718         { 22050,        (16000 + 22050) / 2,    (22050 + 32000) / 2,    2 },
719         { 32000,        (22050 + 32000) / 2,    (32000 + 44100) / 2,    6 },
720         { 44100,        (32000 + 44100) / 2,    (44100 + 48000) / 2,    3 },
721         { 48000,        (44100 + 48000) / 2,    48000,                  7 }
722 };
723
724 static void set_spdif_copyright(struct cm_state *s, int spdif_copyright)
725 {
726         /* enable SPDIF-in Copyright */
727         maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 2, ~SPDCOPYRHT, spdif_copyright ? SPDCOPYRHT : 0);
728 }
729
730 static void set_spdif_loop(struct cm_state *s, int spdif_loop)
731 {
732         /* enable SPDIF loop */
733         if (spdif_loop) {
734                 s->status |= DO_SPDIF_LOOP;
735                 /* turn on spdif-in to spdif-out */
736                 maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, SPDFLOOP);
737         } else {
738                 s->status &= ~DO_SPDIF_LOOP;
739                 /* turn off spdif-in to spdif-out */
740                 maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~SPDFLOOP, 0);
741         }
742 }
743
744 static void set_spdif_monitor(struct cm_state *s, int channel)
745 {
746         // SPDO2DAC
747         maskw(s->iobase + CODEC_CMI_FUNCTRL1, ~SPDO2DAC, channel == 2 ? SPDO2DAC : 0);
748         // CDPLAY
749         if (s->chip_version >= 39)
750                 maskb(s->iobase + CODEC_CMI_MIXER1, ~CDPLAY, channel ? CDPLAY : 0);
751 }
752
753 static void set_spdifout_level(struct cm_state *s, int level5v)
754 {
755         /* SPDO5V */
756         if (s->chip_version > 0)
757                 maskb(s->iobase + CODEC_CMI_MISC_CTRL + 3, ~SPDO5V, level5v ? SPDO5V : 0);
758 }
759
760 static void set_spdifin_inverse(struct cm_state *s, int spdif_inverse)
761 {
762         if (s->chip_version == 0)       /* 8338 has not this feature */
763                 return;
764         if (spdif_inverse) {
765                 /* turn on spdif-in inverse */
766                 if (s->chip_version >= 39)
767                         maskb(s->iobase + CODEC_CMI_CHFORMAT, ~0, INVSPDIFI);
768                 else
769                         maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 1);
770         } else {
771                 /* turn off spdif-ininverse */
772                 if (s->chip_version >= 39)
773                         maskb(s->iobase + CODEC_CMI_CHFORMAT, ~INVSPDIFI, 0);
774                 else
775                         maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~1, 0);
776         }
777 }
778
779 static void set_spdifin_channel2(struct cm_state *s, int channel2)
780 {
781         /* SELSPDIFI2 */
782         if (s->chip_version >= 39)
783                 maskb(s->iobase + CODEC_CMI_MISC_CTRL + 1, ~SELSPDIFI2, channel2 ? SELSPDIFI2 : 0);
784 }
785
786 static void set_spdifin_valid(struct cm_state *s, int valid)
787 {
788         /* SPDVALID */
789         maskb(s->iobase + CODEC_CMI_MISC, ~SPDVALID, valid ? SPDVALID : 0);
790 }
791
792 static void set_spdifout_unlocked(struct cm_state *s, unsigned rate)
793 {
794         if (rate != 48000 && rate != 44100)
795                 rate = 0;
796         if (rate == 48000 || rate == 44100) {
797                 set_spdif_loop(s, 0);
798                 // SPDF_1
799                 maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~0, SPDF_1);
800                 // SPDIFI48K SPDF_AC97
801                 maskl(s->iobase + CODEC_CMI_MISC_CTRL, ~SPDIF48K, rate == 48000 ? SPDIF48K : 0);
802                 if (s->chip_version >= 55)
803                 // SPD32KFMT
804                         maskb(s->iobase + CODEC_CMI_MISC_CTRL2, ~SPD32KFMT, rate == 48000 ? SPD32KFMT : 0);
805                 if (s->chip_version > 0)
806                 // ENSPDOUT
807                         maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 2, ~0, ENSPDOUT);
808                 // monitor SPDIF out
809                 set_spdif_monitor(s, 2);
810                 s->status |= DO_SPDIF_OUT;
811         } else {
812                 maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~SPDF_1, 0);
813                 maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 2, ~ENSPDOUT, 0);
814                 // monitor none
815                 set_spdif_monitor(s, 0);
816                 s->status &= ~DO_SPDIF_OUT;
817         }
818 }
819
820 static void set_spdifout(struct cm_state *s, unsigned rate)
821 {
822         unsigned long flags;
823
824         spin_lock_irqsave(&s->lock, flags);
825         set_spdifout_unlocked(s,rate);
826         spin_unlock_irqrestore(&s->lock, flags);
827 }
828
829 static void set_spdifin_unlocked(struct cm_state *s, unsigned rate)
830 {
831         if (rate == 48000 || rate == 44100) {
832                 // SPDF_1
833                 maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~0, SPDF_1);
834                 // SPDIFI48K SPDF_AC97
835                 maskl(s->iobase + CODEC_CMI_MISC_CTRL, ~SPDIF48K, rate == 48000 ? SPDIF48K : 0);
836                 s->status |= DO_SPDIF_IN;
837         } else {
838                 maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~SPDF_1, 0);
839                 s->status &= ~DO_SPDIF_IN;
840         }
841 }
842
843 static void set_spdifin(struct cm_state *s, unsigned rate)
844 {
845         unsigned long flags;
846
847         spin_lock_irqsave(&s->lock, flags);
848         set_spdifin_unlocked(s,rate);
849         spin_unlock_irqrestore(&s->lock, flags);
850 }
851
852 /* find parity for bit 4~30 */
853 static unsigned parity(unsigned data)
854 {
855         unsigned parity = 0;
856         int counter = 4;
857
858         data >>= 4;     // start from bit 4
859         while (counter <= 30) {
860                 if (data & 1)
861                         parity++;
862                 data >>= 1;
863                 counter++;
864         }
865         return parity & 1;
866 }
867
868 static void set_ac3_unlocked(struct cm_state *s, unsigned rate)
869 {
870         if (!(s->capability & CAN_AC3))
871                 return;
872         /* enable AC3 */
873         if (rate && rate != 44100)
874                 rate = 48000;
875         if (rate == 48000 || rate == 44100) {
876                 // mute DAC
877                 maskb(s->iobase + CODEC_CMI_MIXER1, ~0, WSMUTE);
878                 if (s->chip_version >= 39)
879                         maskb(s->iobase + CODEC_CMI_MISC_CTRL, ~0, MUTECH1);
880                 // AC3EN for 039, 0x04
881                 if (s->chip_version >= 39) {
882                         maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, AC3_EN);
883                         if (s->chip_version == 55)
884                                 maskb(s->iobase + CODEC_CMI_SPDIF_CTRL, ~2, 0);
885                 // AC3EN for 037, 0x10
886                 } else if (s->chip_version == 37)
887                         maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 0x10);
888                 if (s->capability & CAN_AC3_HW) {
889                         // SPD24SEL for 039, 0x20, but cannot be set
890                         if (s->chip_version == 39)
891                                 maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, SPD24SEL);
892                         // SPD24SEL for 037, 0x02
893                         else if (s->chip_version == 37)
894                                 maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 0x02);
895                         if (s->chip_version >= 39)
896                                 maskb(s->iobase + CODEC_CMI_MIXER1, ~CDPLAY, 0);
897
898                         s->status |= DO_AC3_HW;
899                  } else {
900                         // SPD32SEL for 037 & 039
901                         maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, SPD32SEL);
902                         // set 176K sample rate to fix 033 HW bug
903                         if (s->chip_version == 33) {
904                                 if (rate == 48000)
905                                         maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0, 0x08);
906                                 else
907                                         maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0x08, 0);
908                         }
909                         s->status |= DO_AC3_SW;
910                 }
911         } else {
912                 maskb(s->iobase + CODEC_CMI_MIXER1, ~WSMUTE, 0);
913                 if (s->chip_version >= 39)
914                         maskb(s->iobase + CODEC_CMI_MISC_CTRL, ~MUTECH1, 0);
915                 maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~(SPD24SEL|0x12), 0);
916                 maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~(SPD32SEL|AC3_EN), 0);
917                 if (s->chip_version == 33)
918                         maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0x08, 0);
919                 if (s->chip_version >= 39)
920                         maskb(s->iobase + CODEC_CMI_MIXER1, ~0, CDPLAY);
921                 s->status &= ~DO_AC3;
922         }
923         s->spdif_counter = 0;
924 }
925
926 static void set_line_as_rear(struct cm_state *s, int use_line_as_rear)
927 {
928         if (!(s->capability & CAN_LINE_AS_REAR))
929                 return;
930         if (use_line_as_rear) {
931                 maskb(s->iobase + CODEC_CMI_MIXER1, ~0, SPK4);
932                 s->status |= DO_LINE_AS_REAR;
933         } else {
934                 maskb(s->iobase + CODEC_CMI_MIXER1, ~SPK4, 0);
935                 s->status &= ~DO_LINE_AS_REAR;
936         }
937 }
938
939 static void set_line_as_bass(struct cm_state *s, int use_line_as_bass)
940 {
941         if (!(s->capability & CAN_LINE_AS_BASS))
942                 return;
943         if (use_line_as_bass) {
944                 maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~0, CB2LIN);
945                 s->status |= DO_LINE_AS_BASS;
946         } else {
947                 maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~CB2LIN, 0);
948                 s->status &= ~DO_LINE_AS_BASS;
949         }
950 }
951
952 static void set_mic_as_bass(struct cm_state *s, int use_mic_as_bass)
953 {
954         if (!(s->capability & CAN_MIC_AS_BASS))
955                 return;
956         if (use_mic_as_bass) {
957                 maskb(s->iobase + CODEC_CMI_MISC, ~0, 0x04);
958                 s->status |= DO_MIC_AS_BASS;
959         } else {
960                 maskb(s->iobase + CODEC_CMI_MISC, ~0x04, 0);
961                 s->status &= ~DO_MIC_AS_BASS;
962         }
963 }
964
965 static void set_hw_copy(struct cm_state *s, int hw_copy)
966 {
967         if (s->max_channels > 2 && hw_copy)
968                 maskb(s->iobase + CODEC_CMI_MISC_CTRL + 3, ~0, N4SPK3D);
969         else
970                 maskb(s->iobase + CODEC_CMI_MISC_CTRL + 3, ~N4SPK3D, 0);
971 }
972
973 static void set_ac3(struct cm_state *s, unsigned rate)
974 {
975         unsigned long flags;
976
977         spin_lock_irqsave(&s->lock, flags);
978         set_spdifout_unlocked(s, rate);
979         set_ac3_unlocked(s, rate);
980         spin_unlock_irqrestore(&s->lock, flags);
981 }
982
983 static int trans_ac3(struct cm_state *s, void *dest, const char __user *source, int size)
984 {
985         int   i = size / 2;
986         unsigned long data;
987         unsigned short data16;
988         unsigned long *dst = (unsigned long *) dest;
989         unsigned short __user *src = (unsigned short __user *)source;
990         int err;
991
992         do {
993                 if ((err = __get_user(data16, src++)))
994                         return err;
995                 data = (unsigned long)le16_to_cpu(data16);
996                 data <<= 12;                    // ok for 16-bit data
997                 if (s->spdif_counter == 2 || s->spdif_counter == 3)
998                         data |= 0x40000000;     // indicate AC-3 raw data
999                 if (parity(data))
1000                         data |= 0x80000000;     // parity
1001                 if (s->spdif_counter == 0)
1002                         data |= 3;              // preamble 'M'
1003                 else if (s->spdif_counter & 1)
1004                         data |= 5;              // odd, 'W'
1005                 else
1006                         data |= 9;              // even, 'M'
1007                 *dst++ = cpu_to_le32(data);
1008                 s->spdif_counter++;
1009                 if (s->spdif_counter == 384)
1010                         s->spdif_counter = 0;
1011         } while (--i);
1012
1013         return 0;
1014 }
1015
1016 static void set_adc_rate_unlocked(struct cm_state *s, unsigned rate)
1017 {
1018         unsigned char freq = 4;
1019         int     i;
1020
1021         if (rate > 48000)
1022                 rate = 48000;
1023         if (rate < 8000)
1024                 rate = 8000;
1025         for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) {
1026                 if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) {
1027                         rate = rate_lookup[i].rate;
1028                         freq = rate_lookup[i].freq;
1029                         break;
1030                 }
1031         }
1032         s->rateadc = rate;
1033         freq <<= CM_FREQ_ADCSHIFT;
1034
1035         maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~ASFC, freq);
1036 }
1037
1038 static void set_adc_rate(struct cm_state *s, unsigned rate)
1039 {
1040         unsigned long flags;
1041         unsigned char freq = 4;
1042         int     i;
1043
1044         if (rate > 48000)
1045                 rate = 48000;
1046         if (rate < 8000)
1047                 rate = 8000;
1048         for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) {
1049                 if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) {
1050                         rate = rate_lookup[i].rate;
1051                         freq = rate_lookup[i].freq;
1052                         break;
1053                 }
1054         }
1055         s->rateadc = rate;
1056         freq <<= CM_FREQ_ADCSHIFT;
1057
1058         spin_lock_irqsave(&s->lock, flags);
1059         maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~ASFC, freq);
1060         spin_unlock_irqrestore(&s->lock, flags);
1061 }
1062
1063 static void set_dac_rate(struct cm_state *s, unsigned rate)
1064 {
1065         unsigned long flags;
1066         unsigned char freq = 4;
1067         int     i;
1068
1069         if (rate > 48000)
1070                 rate = 48000;
1071         if (rate < 8000)
1072                 rate = 8000;
1073         for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) {
1074                 if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) {
1075                         rate = rate_lookup[i].rate;
1076                         freq = rate_lookup[i].freq;
1077                         break;
1078                 }
1079         }
1080         s->ratedac = rate;
1081         freq <<= CM_FREQ_DACSHIFT;
1082
1083         spin_lock_irqsave(&s->lock, flags);
1084         maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~DSFC, freq);
1085         spin_unlock_irqrestore(&s->lock, flags);
1086
1087         if (s->curr_channels <= 2 && spdif_out)
1088                 set_spdifout(s, rate);
1089         if (s->status & DO_DUAL_DAC)
1090                 set_dac1_rate(s, rate);
1091 }
1092
1093 /* --------------------------------------------------------------------- */
1094 static inline void reset_adc(struct cm_state *s)
1095 {
1096         /* reset bus master */
1097         outb(s->enable | RSTADC, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
1098         udelay(10);
1099         outb(s->enable & ~RSTADC, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
1100 }
1101
1102 static inline void reset_dac(struct cm_state *s)
1103 {
1104         /* reset bus master */
1105         outb(s->enable | RSTDAC, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
1106         udelay(10);
1107         outb(s->enable & ~RSTDAC, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
1108         if (s->status & DO_DUAL_DAC)
1109                 reset_adc(s);
1110 }
1111
1112 static inline void pause_adc(struct cm_state *s)
1113 {
1114         maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, PAUSEADC);
1115 }
1116
1117 static inline void pause_dac(struct cm_state *s)
1118 {
1119         maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, PAUSEDAC);
1120         if (s->status & DO_DUAL_DAC)
1121                 pause_adc(s);
1122 }
1123
1124 static inline void disable_adc(struct cm_state *s)
1125 {
1126         /* disable channel */
1127         s->enable &= ~ENADC;
1128         outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
1129         reset_adc(s);
1130 }
1131
1132 static inline void disable_dac(struct cm_state *s)
1133 {
1134         /* disable channel */
1135         s->enable &= ~ENDAC;
1136         outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
1137         reset_dac(s);
1138         if (s->status & DO_DUAL_DAC)
1139                 disable_adc(s);
1140 }
1141
1142 static inline void enable_adc(struct cm_state *s)
1143 {
1144         if (!(s->enable & ENADC)) {
1145                 /* enable channel */
1146                 s->enable |= ENADC;
1147                 outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
1148         }
1149         maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~PAUSEADC, 0);
1150 }
1151
1152 static inline void enable_dac_unlocked(struct cm_state *s)
1153 {
1154         if (!(s->enable & ENDAC)) {
1155                 /* enable channel */
1156                 s->enable |= ENDAC;
1157                 outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
1158         }
1159         maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~PAUSEDAC, 0);
1160
1161         if (s->status & DO_DUAL_DAC)
1162                 enable_adc(s);
1163 }
1164
1165 static inline void stop_adc_unlocked(struct cm_state *s)
1166 {
1167         if (s->enable & ENADC) {
1168                 /* disable interrupt */
1169                 maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~ENADCINT, 0);
1170                 disable_adc(s);
1171         }
1172 }
1173
1174 static inline void stop_adc(struct cm_state *s)
1175 {
1176         unsigned long flags;
1177
1178         spin_lock_irqsave(&s->lock, flags);
1179         stop_adc_unlocked(s);
1180         spin_unlock_irqrestore(&s->lock, flags);
1181
1182 }
1183
1184 static inline void stop_dac_unlocked(struct cm_state *s)
1185 {
1186         if (s->enable & ENDAC) {
1187                 /* disable interrupt */
1188                 maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~ENDACINT, 0);
1189                 disable_dac(s);
1190         }
1191         if (s->status & DO_DUAL_DAC)
1192                 stop_dac1_unlocked(s);
1193 }
1194
1195 static inline void stop_dac(struct cm_state *s)
1196 {
1197         unsigned long flags;
1198
1199         spin_lock_irqsave(&s->lock, flags);
1200         stop_dac_unlocked(s);
1201         spin_unlock_irqrestore(&s->lock, flags);
1202 }
1203
1204 static inline void start_adc_unlocked(struct cm_state *s)
1205 {
1206         if ((s->dma_adc.mapped || s->dma_adc.count < (signed)(s->dma_adc.dmasize - 2*s->dma_adc.fragsize))
1207             && s->dma_adc.ready) {
1208                 /* enable interrupt */
1209                 maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, ENADCINT);
1210                 enable_adc(s);
1211         }
1212 }
1213
1214 static void start_adc(struct cm_state *s)
1215 {
1216         unsigned long flags;
1217
1218         spin_lock_irqsave(&s->lock, flags);
1219         start_adc_unlocked(s);
1220         spin_unlock_irqrestore(&s->lock, flags);
1221 }
1222
1223 static void start_dac1_unlocked(struct cm_state *s)
1224 {
1225         if ((s->dma_adc.mapped || s->dma_adc.count > 0) && s->dma_adc.ready) {
1226                 /* enable interrupt */
1227                 maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, ENADCINT);
1228                 enable_dac_unlocked(s);
1229         }
1230 }
1231
1232 static void start_dac_unlocked(struct cm_state *s)
1233 {
1234         if ((s->dma_dac.mapped || s->dma_dac.count > 0) && s->dma_dac.ready) {
1235                 /* enable interrupt */
1236                 maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, ENDACINT);
1237                 enable_dac_unlocked(s);
1238         }
1239         if (s->status & DO_DUAL_DAC)
1240                 start_dac1_unlocked(s);
1241 }
1242
1243 static void start_dac(struct cm_state *s)
1244 {
1245         unsigned long flags;
1246
1247         spin_lock_irqsave(&s->lock, flags);
1248         start_dac_unlocked(s);
1249         spin_unlock_irqrestore(&s->lock, flags);
1250 }
1251
1252 static int prog_dmabuf(struct cm_state *s, unsigned rec);
1253
1254 static int set_dac_channels(struct cm_state *s, int channels)
1255 {
1256         unsigned long flags;
1257         static unsigned int fmmute = 0;
1258
1259         spin_lock_irqsave(&s->lock, flags);
1260
1261         if ((channels > 2) && (channels <= s->max_channels)
1262          && (((s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK) == (CM_CFMT_STEREO | CM_CFMT_16BIT))) {
1263             set_spdifout_unlocked(s, 0);
1264             if (s->capability & CAN_MULTI_CH_HW) {
1265                 // NXCHG
1266                 maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0, NXCHG);
1267                 // CHB3D or CHB3D5C
1268                 maskb(s->iobase + CODEC_CMI_CHFORMAT + 3, ~(CHB3D5C|CHB3D), channels > 4 ? CHB3D5C : CHB3D);
1269                 // CHB3D6C
1270                 maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~CHB3D6C, channels == 6 ? CHB3D6C : 0);
1271                 // ENCENTER
1272                 maskb(s->iobase + CODEC_CMI_MISC_CTRL, ~ENCENTER, channels == 6 ? ENCENTER : 0);
1273                 s->status |= DO_MULTI_CH_HW;
1274             } else if (s->capability & CAN_DUAL_DAC) {
1275                 unsigned char fmtm = ~0, fmts = 0;
1276                 ssize_t ret;
1277
1278                 // ENDBDAC, turn on double DAC mode
1279                 // XCHGDAC, CH0 -> back, CH1->front
1280                 maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, ENDBDAC|XCHGDAC);
1281                 // mute FM
1282                 fmmute = inb(s->iobase + CODEC_CMI_MIXER1) & FMMUTE;
1283                 maskb(s->iobase + CODEC_CMI_MIXER1, ~0, FMMUTE);
1284                 s->status |= DO_DUAL_DAC;
1285                 // prepare secondary buffer
1286                 spin_unlock_irqrestore(&s->lock, flags);
1287                 ret = prog_dmabuf(s, 1);
1288                 if (ret) return ret;
1289                 spin_lock_irqsave(&s->lock, flags);
1290
1291                 // copy the hw state
1292                 fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT);
1293                 fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_ADCSHIFT);
1294                 // the HW only support 16-bit stereo
1295                 fmts |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT;
1296                 fmts |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT;
1297                 fmts |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
1298                 fmts |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
1299
1300                 set_fmt_unlocked(s, fmtm, fmts);
1301                 set_adc_rate_unlocked(s, s->ratedac);
1302             }
1303             // disable 4 speaker mode (analog duplicate)
1304             set_hw_copy(s, 0);
1305             s->curr_channels = channels;
1306
1307             // enable jack redirect
1308             set_line_as_rear(s, use_line_as_rear);
1309             if (channels > 4) {
1310                     set_line_as_bass(s, use_line_as_bass);
1311                     set_mic_as_bass(s, use_mic_as_bass);
1312             }
1313         } else {
1314             if (s->status & DO_MULTI_CH_HW) {
1315                 maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~NXCHG, 0);
1316                 maskb(s->iobase + CODEC_CMI_CHFORMAT + 3, ~(CHB3D5C|CHB3D), 0);
1317                 maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~CHB3D6C, 0);
1318             } else if (s->status & DO_DUAL_DAC) {
1319                 maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~ENDBDAC, 0);
1320                 maskb(s->iobase + CODEC_CMI_MIXER1, ~FMMUTE, fmmute);
1321             }
1322             // enable 4 speaker mode (analog duplicate)
1323             set_hw_copy(s, hw_copy);
1324             s->status &= ~DO_MULTI_CH;
1325             s->curr_channels = s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1;
1326             // disable jack redirect
1327             set_line_as_rear(s, hw_copy ? use_line_as_rear : 0);
1328             set_line_as_bass(s, 0);
1329             set_mic_as_bass(s, 0);
1330         }
1331         spin_unlock_irqrestore(&s->lock, flags);
1332         return s->curr_channels;
1333 }
1334
1335 /* --------------------------------------------------------------------- */
1336
1337 #define DMABUF_DEFAULTORDER (16-PAGE_SHIFT)
1338 #define DMABUF_MINORDER 1
1339
1340 static void dealloc_dmabuf(struct cm_state *s, struct dmabuf *db)
1341 {
1342         struct page *pstart, *pend;
1343
1344         if (db->rawbuf) {
1345                 /* undo marking the pages as reserved */
1346                 pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
1347                 for (pstart = virt_to_page(db->rawbuf); pstart <= pend; pstart++)
1348                         ClearPageReserved(pstart);
1349                 pci_free_consistent(s->dev, PAGE_SIZE << db->buforder, db->rawbuf, db->dmaaddr);
1350         }
1351         db->rawbuf = NULL;
1352         db->mapped = db->ready = 0;
1353 }
1354
1355 /* Ch1 is used for playback, Ch0 is used for recording */
1356
1357 static int prog_dmabuf(struct cm_state *s, unsigned rec)
1358 {
1359         struct dmabuf *db = rec ? &s->dma_adc : &s->dma_dac;
1360         unsigned rate = rec ? s->rateadc : s->ratedac;
1361         int order;
1362         unsigned bytepersec;
1363         unsigned bufs;
1364         struct page *pstart, *pend;
1365         unsigned char fmt;
1366         unsigned long flags;
1367
1368         fmt = s->fmt;
1369         if (rec) {
1370                 stop_adc(s);
1371                 fmt >>= CM_CFMT_ADCSHIFT;
1372         } else {
1373                 stop_dac(s);
1374                 fmt >>= CM_CFMT_DACSHIFT;
1375         }
1376
1377         fmt &= CM_CFMT_MASK;
1378         db->hwptr = db->swptr = db->total_bytes = db->count = db->error = db->endcleared = 0;
1379         if (!db->rawbuf) {
1380                 db->ready = db->mapped = 0;
1381                 for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--)
1382                         if ((db->rawbuf = pci_alloc_consistent(s->dev, PAGE_SIZE << order, &db->dmaaddr)))
1383                                 break;
1384                 if (!db->rawbuf || !db->dmaaddr)
1385                         return -ENOMEM;
1386                 db->buforder = order;
1387                 /* now mark the pages as reserved; otherwise remap_pfn_range doesn't do what we want */
1388                 pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
1389                 for (pstart = virt_to_page(db->rawbuf); pstart <= pend; pstart++)
1390                         SetPageReserved(pstart);
1391         }
1392         bytepersec = rate << sample_shift[fmt];
1393         bufs = PAGE_SIZE << db->buforder;
1394         if (db->ossfragshift) {
1395                 if ((1000 << db->ossfragshift) < bytepersec)
1396                         db->fragshift = ld2(bytepersec/1000);
1397                 else
1398                         db->fragshift = db->ossfragshift;
1399         } else {
1400                 db->fragshift = ld2(bytepersec/100/(db->subdivision ? db->subdivision : 1));
1401                 if (db->fragshift < 3)
1402                         db->fragshift = 3;
1403         }
1404         db->numfrag = bufs >> db->fragshift;
1405         while (db->numfrag < 4 && db->fragshift > 3) {
1406                 db->fragshift--;
1407                 db->numfrag = bufs >> db->fragshift;
1408         }
1409         db->fragsize = 1 << db->fragshift;
1410         if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag)
1411                 db->numfrag = db->ossmaxfrags;
1412         /* to make fragsize >= 4096 */
1413         db->fragsamples = db->fragsize >> sample_shift[fmt];
1414         db->dmasize = db->numfrag << db->fragshift;
1415         db->dmasamples = db->dmasize >> sample_shift[fmt];
1416         memset(db->rawbuf, (fmt & CM_CFMT_16BIT) ? 0 : 0x80, db->dmasize);
1417         spin_lock_irqsave(&s->lock, flags);
1418         if (rec) {
1419                 if (s->status & DO_DUAL_DAC)
1420                     set_dmadac1(s, db->dmaaddr, db->dmasize >> sample_shift[fmt]);
1421                 else
1422                     set_dmaadc(s, db->dmaaddr, db->dmasize >> sample_shift[fmt]);
1423                 /* program sample counts */
1424                 set_countdac(s, db->fragsamples);
1425         } else {
1426                 set_dmadac(s, db->dmaaddr, db->dmasize >> sample_shift[fmt]);
1427                 /* program sample counts */
1428                 set_countdac(s, db->fragsamples);
1429         }
1430         spin_unlock_irqrestore(&s->lock, flags);
1431         db->enabled = 1;
1432         db->ready = 1;
1433         return 0;
1434 }
1435
1436 static inline void clear_advance(struct cm_state *s)
1437 {
1438         unsigned char c = (s->fmt & (CM_CFMT_16BIT << CM_CFMT_DACSHIFT)) ? 0 : 0x80;
1439         unsigned char *buf = s->dma_dac.rawbuf;
1440         unsigned char *buf1 = s->dma_adc.rawbuf;
1441         unsigned bsize = s->dma_dac.dmasize;
1442         unsigned bptr = s->dma_dac.swptr;
1443         unsigned len = s->dma_dac.fragsize;
1444
1445         if (bptr + len > bsize) {
1446                 unsigned x = bsize - bptr;
1447                 memset(buf + bptr, c, x);
1448                 if (s->status & DO_DUAL_DAC)
1449                         memset(buf1 + bptr, c, x);
1450                 bptr = 0;
1451                 len -= x;
1452         }
1453         memset(buf + bptr, c, len);
1454         if (s->status & DO_DUAL_DAC)
1455                 memset(buf1 + bptr, c, len);
1456 }
1457
1458 /* call with spinlock held! */
1459 static void cm_update_ptr(struct cm_state *s)
1460 {
1461         unsigned hwptr;
1462         int diff;
1463
1464         /* update ADC pointer */
1465         if (s->dma_adc.ready) {
1466             if (s->status & DO_DUAL_DAC) {
1467                     /* the dac part will finish for this */
1468             } else {
1469                 hwptr = get_dmaadc(s) % s->dma_adc.dmasize;
1470                 diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize;
1471                 s->dma_adc.hwptr = hwptr;
1472                 s->dma_adc.total_bytes += diff;
1473                 s->dma_adc.count += diff;
1474                 if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
1475                         wake_up(&s->dma_adc.wait);
1476                 if (!s->dma_adc.mapped) {
1477                         if (s->dma_adc.count > (signed)(s->dma_adc.dmasize - ((3 * s->dma_adc.fragsize) >> 1))) {
1478                                 pause_adc(s);
1479                                 s->dma_adc.error++;
1480                         }
1481                 }
1482             }
1483         }
1484         /* update DAC pointer */
1485         if (s->dma_dac.ready) {
1486                 hwptr = get_dmadac(s) % s->dma_dac.dmasize;
1487                 diff = (s->dma_dac.dmasize + hwptr - s->dma_dac.hwptr) % s->dma_dac.dmasize;
1488                 s->dma_dac.hwptr = hwptr;
1489                 s->dma_dac.total_bytes += diff;
1490                 if (s->status & DO_DUAL_DAC) {
1491                         s->dma_adc.hwptr = hwptr;
1492                         s->dma_adc.total_bytes += diff;
1493                 }
1494                 if (s->dma_dac.mapped) {
1495                         s->dma_dac.count += diff;
1496                         if (s->status & DO_DUAL_DAC)
1497                                 s->dma_adc.count += diff;
1498                         if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
1499                                 wake_up(&s->dma_dac.wait);
1500                 } else {
1501                         s->dma_dac.count -= diff;
1502                         if (s->status & DO_DUAL_DAC)
1503                                 s->dma_adc.count -= diff;
1504                         if (s->dma_dac.count <= 0) {
1505                                 pause_dac(s);
1506                                 s->dma_dac.error++;
1507                         } else if (s->dma_dac.count <= (signed)s->dma_dac.fragsize && !s->dma_dac.endcleared) {
1508                                 clear_advance(s);
1509                                 s->dma_dac.endcleared = 1;
1510                                 if (s->status & DO_DUAL_DAC)
1511                                         s->dma_adc.endcleared = 1;
1512                         }
1513                         if (s->dma_dac.count + (signed)s->dma_dac.fragsize <= (signed)s->dma_dac.dmasize)
1514                                 wake_up(&s->dma_dac.wait);
1515                 }
1516         }
1517 }
1518
1519 static irqreturn_t cm_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1520 {
1521         struct cm_state *s = (struct cm_state *)dev_id;
1522         unsigned int intsrc, intstat;
1523         unsigned char mask = 0;
1524
1525         /* fastpath out, to ease interrupt sharing */
1526         intsrc = inl(s->iobase + CODEC_CMI_INT_STATUS);
1527         if (!(intsrc & 0x80000000))
1528                 return IRQ_NONE;
1529         spin_lock(&s->lock);
1530         intstat = inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2);
1531         /* acknowledge interrupt */
1532         if (intsrc & ADCINT)
1533                 mask |= ENADCINT;
1534         if (intsrc & DACINT)
1535                 mask |= ENDACINT;
1536         outb(intstat & ~mask, s->iobase + CODEC_CMI_INT_HLDCLR + 2);
1537         outb(intstat | mask, s->iobase + CODEC_CMI_INT_HLDCLR + 2);
1538         cm_update_ptr(s);
1539         spin_unlock(&s->lock);
1540 #ifdef CONFIG_SOUND_CMPCI_MIDI
1541         if (intsrc & 0x00010000) {      // UART interrupt
1542                 if (s->midi_devc && intchk_mpu401((void *)s->midi_devc))
1543                         mpuintr(irq, (void *)s->midi_devc, regs);
1544                 else
1545                         inb(s->iomidi);// dummy read
1546         }
1547 #endif
1548         return IRQ_HANDLED;
1549 }
1550
1551 /* --------------------------------------------------------------------- */
1552
1553 static const char invalid_magic[] = KERN_CRIT "cmpci: invalid magic value\n";
1554
1555 #define VALIDATE_STATE(s)                         \
1556 ({                                                \
1557         if (!(s) || (s)->magic != CM_MAGIC) { \
1558                 printk(invalid_magic);            \
1559                 return -ENXIO;                    \
1560         }                                         \
1561 })
1562
1563 /* --------------------------------------------------------------------- */
1564
1565 #define MT_4          1
1566 #define MT_5MUTE      2
1567 #define MT_4MUTEMONO  3
1568 #define MT_6MUTE      4
1569 #define MT_5MUTEMONO  5
1570
1571 static const struct {
1572         unsigned left;
1573         unsigned right;
1574         unsigned type;
1575         unsigned rec;
1576         unsigned play;
1577 } mixtable[SOUND_MIXER_NRDEVICES] = {
1578         [SOUND_MIXER_CD]     = { DSP_MIX_CDVOLIDX_L,     DSP_MIX_CDVOLIDX_R,     MT_5MUTE,     0x04, 0x06 },
1579         [SOUND_MIXER_LINE]   = { DSP_MIX_LINEVOLIDX_L,   DSP_MIX_LINEVOLIDX_R,   MT_5MUTE,     0x10, 0x18 },
1580         [SOUND_MIXER_MIC]    = { DSP_MIX_MICVOLIDX,      DSP_MIX_MICVOLIDX,      MT_5MUTEMONO, 0x01, 0x01 },
1581         [SOUND_MIXER_SYNTH]  = { DSP_MIX_FMVOLIDX_L,     DSP_MIX_FMVOLIDX_R,     MT_5MUTE,     0x40, 0x00 },
1582         [SOUND_MIXER_VOLUME] = { DSP_MIX_MASTERVOLIDX_L, DSP_MIX_MASTERVOLIDX_R, MT_5MUTE,     0x00, 0x00 },
1583         [SOUND_MIXER_PCM]    = { DSP_MIX_VOICEVOLIDX_L,  DSP_MIX_VOICEVOLIDX_R,  MT_5MUTE,     0x00, 0x00 },
1584         [SOUND_MIXER_LINE1]  = { DSP_MIX_AUXVOL_L,       DSP_MIX_AUXVOL_R,       MT_5MUTE,     0x80, 0x60 },
1585         [SOUND_MIXER_SPEAKER]= { DSP_MIX_SPKRVOLIDX,     DSP_MIX_SPKRVOLIDX,     MT_5MUTEMONO, 0x00, 0x01 }
1586 };
1587
1588 static const unsigned char volidx[SOUND_MIXER_NRDEVICES] =
1589 {
1590         [SOUND_MIXER_CD]     = 1,
1591         [SOUND_MIXER_LINE]   = 2,
1592         [SOUND_MIXER_MIC]    = 3,
1593         [SOUND_MIXER_SYNTH]  = 4,
1594         [SOUND_MIXER_VOLUME] = 5,
1595         [SOUND_MIXER_PCM]    = 6,
1596         [SOUND_MIXER_LINE1]  = 7,
1597         [SOUND_MIXER_SPEAKER]= 8
1598 };
1599
1600 static unsigned mixer_outmask(struct cm_state *s)
1601 {
1602         unsigned long flags;
1603         int i, j, k;
1604
1605         spin_lock_irqsave(&s->lock, flags);
1606         j = rdmixer(s, DSP_MIX_OUTMIXIDX);
1607         spin_unlock_irqrestore(&s->lock, flags);
1608         for (k = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
1609                 if (j & mixtable[i].play)
1610                         k |= 1 << i;
1611         return k;
1612 }
1613
1614 static unsigned mixer_recmask(struct cm_state *s)
1615 {
1616         unsigned long flags;
1617         int i, j, k;
1618
1619         spin_lock_irqsave(&s->lock, flags);
1620         j = rdmixer(s, DSP_MIX_ADCMIXIDX_L);
1621         spin_unlock_irqrestore(&s->lock, flags);
1622         for (k = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
1623                 if (j & mixtable[i].rec)
1624                         k |= 1 << i;
1625         return k;
1626 }
1627
1628 static int mixer_ioctl(struct cm_state *s, unsigned int cmd, unsigned long arg)
1629 {
1630         unsigned long flags;
1631         int i, val, j;
1632         unsigned char l, r, rl, rr;
1633         void __user *argp = (void __user *)arg;
1634         int __user *p = argp;
1635
1636         VALIDATE_STATE(s);
1637         if (cmd == SOUND_MIXER_INFO) {
1638                 mixer_info info;
1639                 memset(&info, 0, sizeof(info));
1640                 strlcpy(info.id, "cmpci", sizeof(info.id));
1641                 strlcpy(info.name, "C-Media PCI", sizeof(info.name));
1642                 info.modify_counter = s->mix.modcnt;
1643                 if (copy_to_user(argp, &info, sizeof(info)))
1644                         return -EFAULT;
1645                 return 0;
1646         }
1647         if (cmd == SOUND_OLD_MIXER_INFO) {
1648                 _old_mixer_info info;
1649                 memset(&info, 0, sizeof(info));
1650                 strlcpy(info.id, "cmpci", sizeof(info.id));
1651                 strlcpy(info.name, "C-Media cmpci", sizeof(info.name));
1652                 if (copy_to_user(argp, &info, sizeof(info)))
1653                         return -EFAULT;
1654                 return 0;
1655         }
1656         if (cmd == OSS_GETVERSION)
1657                 return put_user(SOUND_VERSION, p);
1658         if (_IOC_TYPE(cmd) != 'M' || _SIOC_SIZE(cmd) != sizeof(int))
1659                 return -EINVAL;
1660         if (_SIOC_DIR(cmd) == _SIOC_READ) {
1661                 switch (_IOC_NR(cmd)) {
1662                 case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
1663                         val = mixer_recmask(s);
1664                         return put_user(val, p);
1665
1666                 case SOUND_MIXER_OUTSRC: /* Arg contains a bit for each recording source */
1667                         val = mixer_outmask(s);
1668                         return put_user(val, p);
1669
1670                 case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */
1671                         for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
1672                                 if (mixtable[i].type)
1673                                         val |= 1 << i;
1674                         return put_user(val, p);
1675
1676                 case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */
1677                         for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
1678                                 if (mixtable[i].rec)
1679                                         val |= 1 << i;
1680                         return put_user(val, p);
1681
1682                 case SOUND_MIXER_OUTMASK: /* Arg contains a bit for each supported recording source */
1683                         for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
1684                                 if (mixtable[i].play)
1685                                         val |= 1 << i;
1686                         return put_user(val, p);
1687
1688                  case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */
1689                         for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
1690                                 if (mixtable[i].type && mixtable[i].type != MT_4MUTEMONO)
1691                                         val |= 1 << i;
1692                         return put_user(val, p);
1693
1694                 case SOUND_MIXER_CAPS:
1695                         return put_user(0, p);
1696
1697                 default:
1698                         i = _IOC_NR(cmd);
1699                         if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type)
1700                                 return -EINVAL;
1701                         if (!volidx[i])
1702                                 return -EINVAL;
1703                         return put_user(s->mix.vol[volidx[i]-1], p);
1704                 }
1705         }
1706         if (_SIOC_DIR(cmd) != (_SIOC_READ|_SIOC_WRITE))
1707                 return -EINVAL;
1708         s->mix.modcnt++;
1709         switch (_IOC_NR(cmd)) {
1710         case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
1711                 if (get_user(val, p))
1712                         return -EFAULT;
1713                 i = generic_hweight32(val);
1714                 for (j = i = 0; i < SOUND_MIXER_NRDEVICES; i++) {
1715                         if (!(val & (1 << i)))
1716                                 continue;
1717                         if (!mixtable[i].rec) {
1718                                 val &= ~(1 << i);
1719                                 continue;
1720                         }
1721                         j |= mixtable[i].rec;
1722                 }
1723                 spin_lock_irqsave(&s->lock, flags);
1724                 wrmixer(s, DSP_MIX_ADCMIXIDX_L, j);
1725                 wrmixer(s, DSP_MIX_ADCMIXIDX_R, (j & 1) | (j>>1) | (j & 0x80));
1726                 spin_unlock_irqrestore(&s->lock, flags);
1727                 return 0;
1728
1729         case SOUND_MIXER_OUTSRC: /* Arg contains a bit for each recording source */
1730                 if (get_user(val, p))
1731                         return -EFAULT;
1732                 for (j = i = 0; i < SOUND_MIXER_NRDEVICES; i++) {
1733                         if (!(val & (1 << i)))
1734                                 continue;
1735                         if (!mixtable[i].play) {
1736                                 val &= ~(1 << i);
1737                                 continue;
1738                         }
1739                         j |= mixtable[i].play;
1740                 }
1741                 spin_lock_irqsave(&s->lock, flags);
1742                 wrmixer(s, DSP_MIX_OUTMIXIDX, j);
1743                 spin_unlock_irqrestore(&s->lock, flags);
1744                 return 0;
1745
1746         default:
1747                 i = _IOC_NR(cmd);
1748                 if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type)
1749                         return -EINVAL;
1750                 if (get_user(val, p))
1751                         return -EFAULT;
1752                 l = val & 0xff;
1753                 r = (val >> 8) & 0xff;
1754                 if (l > 100)
1755                         l = 100;
1756                 if (r > 100)
1757                         r = 100;
1758                 spin_lock_irqsave(&s->lock, flags);
1759                 switch (mixtable[i].type) {
1760                 case MT_4:
1761                         if (l >= 10)
1762                                 l -= 10;
1763                         if (r >= 10)
1764                                 r -= 10;
1765                         frobindir(s, mixtable[i].left, 0xf0, l / 6);
1766                         frobindir(s, mixtable[i].right, 0xf0, l / 6);
1767                         break;
1768
1769                 case MT_4MUTEMONO:
1770                         rl = (l < 4 ? 0 : (l - 5) / 3) & 31;
1771                         rr = (rl >> 2) & 7;
1772                         wrmixer(s, mixtable[i].left, rl<<3);
1773                         if (i == SOUND_MIXER_MIC)
1774                                 maskb(s->iobase + CODEC_CMI_MIXER2, ~0x0e, rr<<1);
1775                         break;
1776
1777                 case MT_5MUTEMONO:
1778                         rl = l < 4 ? 0 : (l - 5) / 3;
1779                         wrmixer(s, mixtable[i].left, rl<<3);
1780                         l = rdmixer(s, DSP_MIX_OUTMIXIDX) & ~mixtable[i].play;
1781                         r = rl ? mixtable[i].play : 0;
1782                         wrmixer(s, DSP_MIX_OUTMIXIDX, l | r);
1783                         /* for recording */
1784                         if (i == SOUND_MIXER_MIC) {
1785                                 if (s->chip_version >= 37) {
1786                                         rr = rl >> 1;
1787                                         maskb(s->iobase + CODEC_CMI_MIXER2, ~0x0e, (rr&0x07)<<1);
1788                                         frobindir(s, DSP_MIX_EXTENSION, ~0x01, rr>>3);
1789                                 } else {
1790                                         rr = rl >> 2;
1791                                         maskb(s->iobase + CODEC_CMI_MIXER2, ~0x0e, rr<<1);
1792                                 }
1793                         }
1794                         break;
1795
1796                 case MT_5MUTE:
1797                         rl = l < 4 ? 0 : (l - 5) / 3;
1798                         rr = r < 4 ? 0 : (r - 5) / 3;
1799                         wrmixer(s, mixtable[i].left, rl<<3);
1800                         wrmixer(s, mixtable[i].right, rr<<3);
1801                         l = rdmixer(s, DSP_MIX_OUTMIXIDX);
1802                         l &= ~mixtable[i].play;
1803                         r = (rl|rr) ? mixtable[i].play : 0;
1804                         wrmixer(s, DSP_MIX_OUTMIXIDX, l | r);
1805                         break;
1806
1807                 case MT_6MUTE:
1808                         if (l < 6)
1809                                 rl = 0x00;
1810                         else
1811                                 rl = l * 2 / 3;
1812                         if (r < 6)
1813                                 rr = 0x00;
1814                         else
1815                                 rr = r * 2 / 3;
1816                         wrmixer(s, mixtable[i].left, rl);
1817                         wrmixer(s, mixtable[i].right, rr);
1818                         break;
1819                 }
1820                 spin_unlock_irqrestore(&s->lock, flags);
1821
1822                 if (!volidx[i])
1823                         return -EINVAL;
1824                 s->mix.vol[volidx[i]-1] = val;
1825                 return put_user(s->mix.vol[volidx[i]-1], p);
1826         }
1827 }
1828
1829 /* --------------------------------------------------------------------- */
1830
1831 static int cm_open_mixdev(struct inode *inode, struct file *file)
1832 {
1833         int minor = iminor(inode);
1834         struct list_head *list;
1835         struct cm_state *s;
1836
1837         for (list = devs.next; ; list = list->next) {
1838                 if (list == &devs)
1839                         return -ENODEV;
1840                 s = list_entry(list, struct cm_state, devs);
1841                 if (s->dev_mixer == minor)
1842                         break;
1843         }
1844         VALIDATE_STATE(s);
1845         file->private_data = s;
1846         return nonseekable_open(inode, file);
1847 }
1848
1849 static int cm_release_mixdev(struct inode *inode, struct file *file)
1850 {
1851         struct cm_state *s = (struct cm_state *)file->private_data;
1852
1853         VALIDATE_STATE(s);
1854         return 0;
1855 }
1856
1857 static int cm_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1858 {
1859         return mixer_ioctl((struct cm_state *)file->private_data, cmd, arg);
1860 }
1861
1862 static /*const*/ struct file_operations cm_mixer_fops = {
1863         .owner   = THIS_MODULE,
1864         .llseek  = no_llseek,
1865         .ioctl   = cm_ioctl_mixdev,
1866         .open    = cm_open_mixdev,
1867         .release = cm_release_mixdev,
1868 };
1869
1870
1871 /* --------------------------------------------------------------------- */
1872
1873 static int drain_dac(struct cm_state *s, int nonblock)
1874 {
1875         DECLARE_WAITQUEUE(wait, current);
1876         unsigned long flags;
1877         int count, tmo;
1878
1879         if (s->dma_dac.mapped || !s->dma_dac.ready)
1880                 return 0;
1881         add_wait_queue(&s->dma_dac.wait, &wait);
1882         for (;;) {
1883                 __set_current_state(TASK_INTERRUPTIBLE);
1884                 spin_lock_irqsave(&s->lock, flags);
1885                 count = s->dma_dac.count;
1886                 spin_unlock_irqrestore(&s->lock, flags);
1887                 if (count <= 0)
1888                         break;
1889                 if (signal_pending(current))
1890                         break;
1891                 if (nonblock) {
1892                         remove_wait_queue(&s->dma_dac.wait, &wait);
1893                         set_current_state(TASK_RUNNING);
1894                         return -EBUSY;
1895                 }
1896                 tmo = 3 * HZ * (count + s->dma_dac.fragsize) / 2 / s->ratedac;
1897                 tmo >>= sample_shift[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK];
1898                 if (!schedule_timeout(tmo + 1))
1899                         DBG(printk(KERN_DEBUG "cmpci: dma timed out??\n");)
1900         }
1901         remove_wait_queue(&s->dma_dac.wait, &wait);
1902         set_current_state(TASK_RUNNING);
1903         if (signal_pending(current))
1904                 return -ERESTARTSYS;
1905         return 0;
1906 }
1907
1908 /* --------------------------------------------------------------------- */
1909
1910 static ssize_t cm_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
1911 {
1912         struct cm_state *s = (struct cm_state *)file->private_data;
1913         DECLARE_WAITQUEUE(wait, current);
1914         ssize_t ret;
1915         unsigned long flags;
1916         unsigned swptr;
1917         int cnt;
1918
1919         VALIDATE_STATE(s);
1920         if (s->dma_adc.mapped)
1921                 return -ENXIO;
1922         if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
1923                 return ret;
1924         if (!access_ok(VERIFY_WRITE, buffer, count))
1925                 return -EFAULT;
1926         ret = 0;
1927
1928         add_wait_queue(&s->dma_adc.wait, &wait);
1929         while (count > 0) {
1930                 spin_lock_irqsave(&s->lock, flags);
1931                 swptr = s->dma_adc.swptr;
1932                 cnt = s->dma_adc.dmasize-swptr;
1933                 if (s->dma_adc.count < cnt)
1934                         cnt = s->dma_adc.count;
1935                 if (cnt <= 0)
1936                         __set_current_state(TASK_INTERRUPTIBLE);
1937                 spin_unlock_irqrestore(&s->lock, flags);
1938                 if (cnt > count)
1939                         cnt = count;
1940                 if (cnt <= 0) {
1941                         if (s->dma_adc.enabled)
1942                                 start_adc(s);
1943                         if (file->f_flags & O_NONBLOCK) {
1944                                 if (!ret)
1945                                         ret = -EAGAIN;
1946                                 goto out;
1947                         }
1948                         if (!schedule_timeout(HZ)) {
1949                                 printk(KERN_DEBUG "cmpci: read: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n",
1950                                        s->dma_adc.dmasize, s->dma_adc.fragsize, s->dma_adc.count,
1951                                        s->dma_adc.hwptr, s->dma_adc.swptr);
1952                                 spin_lock_irqsave(&s->lock, flags);
1953                                 stop_adc_unlocked(s);
1954                                 set_dmaadc(s, s->dma_adc.dmaaddr, s->dma_adc.dmasamples);
1955                                 /* program sample counts */
1956                                 set_countadc(s, s->dma_adc.fragsamples);
1957                                 s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0;
1958                                 spin_unlock_irqrestore(&s->lock, flags);
1959                         }
1960                         if (signal_pending(current)) {
1961                                 if (!ret)
1962                                         ret = -ERESTARTSYS;
1963                                 goto out;
1964                         }
1965                         continue;
1966                 }
1967                 if (s->status & DO_BIGENDIAN_R) {
1968                         int     i, err;
1969                         unsigned char *src;
1970                         char __user *dst = buffer;
1971                         unsigned char data[2];
1972
1973                         src = (unsigned char *) (s->dma_adc.rawbuf + swptr);
1974                         // copy left/right sample at one time
1975                         for (i = 0; i < cnt / 2; i++) {
1976                                 data[0] = src[1];
1977                                 data[1] = src[0];
1978                                 if ((err = __put_user(data[0], dst++))) {
1979                                         ret = err;
1980                                         goto out;
1981                                 }
1982                                 if ((err = __put_user(data[1], dst++))) {
1983                                         ret = err;
1984                                         goto out;
1985                                 }
1986                                 src += 2;
1987                         }
1988                 } else if (copy_to_user(buffer, s->dma_adc.rawbuf + swptr, cnt)) {
1989                         if (!ret)
1990                                 ret = -EFAULT;
1991                         goto out;
1992                 }
1993                 swptr = (swptr + cnt) % s->dma_adc.dmasize;
1994                 spin_lock_irqsave(&s->lock, flags);
1995                 s->dma_adc.swptr = swptr;
1996                 s->dma_adc.count -= cnt;
1997                 count -= cnt;
1998                 buffer += cnt;
1999                 ret += cnt;
2000                 if (s->dma_adc.enabled)
2001                         start_adc_unlocked(s);
2002                 spin_unlock_irqrestore(&s->lock, flags);
2003         }
2004 out:
2005         remove_wait_queue(&s->dma_adc.wait, &wait);
2006         set_current_state(TASK_RUNNING);
2007         return ret;
2008 }
2009
2010 static ssize_t cm_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
2011 {
2012         struct cm_state *s = (struct cm_state *)file->private_data;
2013         DECLARE_WAITQUEUE(wait, current);
2014         ssize_t ret;
2015         unsigned long flags;
2016         unsigned swptr;
2017         int cnt;
2018
2019         VALIDATE_STATE(s);
2020         if (s->dma_dac.mapped)
2021                 return -ENXIO;
2022         if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
2023                 return ret;
2024         if (!access_ok(VERIFY_READ, buffer, count))
2025                 return -EFAULT;
2026         if (s->status & DO_DUAL_DAC) {
2027                 if (s->dma_adc.mapped)
2028                         return -ENXIO;
2029                 if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
2030                         return ret;
2031         }
2032         if (!access_ok(VERIFY_READ, buffer, count))
2033                 return -EFAULT;
2034         ret = 0;
2035
2036         add_wait_queue(&s->dma_dac.wait, &wait);
2037         while (count > 0) {
2038                 spin_lock_irqsave(&s->lock, flags);
2039                 if (s->dma_dac.count < 0) {
2040                         s->dma_dac.count = 0;
2041                         s->dma_dac.swptr = s->dma_dac.hwptr;
2042                 }
2043                 if (s->status & DO_DUAL_DAC) {
2044                         s->dma_adc.swptr = s->dma_dac.swptr;
2045                         s->dma_adc.count = s->dma_dac.count;
2046                         s->dma_adc.endcleared = s->dma_dac.endcleared;
2047                 }
2048                 swptr = s->dma_dac.swptr;
2049                 cnt = s->dma_dac.dmasize-swptr;
2050                 if (s->status & DO_AC3_SW) {
2051                         if (s->dma_dac.count + 2 * cnt > s->dma_dac.dmasize)
2052                                 cnt = (s->dma_dac.dmasize - s->dma_dac.count) / 2;
2053                 } else {
2054                         if (s->dma_dac.count + cnt > s->dma_dac.dmasize)
2055                                 cnt = s->dma_dac.dmasize - s->dma_dac.count;
2056                 }
2057                 if (cnt <= 0)
2058                         __set_current_state(TASK_INTERRUPTIBLE);
2059                 spin_unlock_irqrestore(&s->lock, flags);
2060                 if (cnt > count)
2061                         cnt = count;
2062                 if ((s->status & DO_DUAL_DAC) && (cnt > count / 2))
2063                     cnt = count / 2;
2064                 if (cnt <= 0) {
2065                         if (s->dma_dac.enabled)
2066                                 start_dac(s);
2067                         if (file->f_flags & O_NONBLOCK) {
2068                                 if (!ret)
2069                                         ret = -EAGAIN;
2070                                 goto out;
2071                         }
2072                         if (!schedule_timeout(HZ)) {
2073                                 printk(KERN_DEBUG "cmpci: write: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n",
2074                                        s->dma_dac.dmasize, s->dma_dac.fragsize, s->dma_dac.count,
2075                                        s->dma_dac.hwptr, s->dma_dac.swptr);
2076                                 spin_lock_irqsave(&s->lock, flags);
2077                                 stop_dac_unlocked(s);
2078                                 set_dmadac(s, s->dma_dac.dmaaddr, s->dma_dac.dmasamples);
2079                                 /* program sample counts */
2080                                 set_countdac(s, s->dma_dac.fragsamples);
2081                                 s->dma_dac.count = s->dma_dac.hwptr = s->dma_dac.swptr = 0;
2082                                 if (s->status & DO_DUAL_DAC)  {
2083                                         set_dmadac1(s, s->dma_adc.dmaaddr, s->dma_adc.dmasamples);
2084                                         s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0;
2085                                 }
2086                                 spin_unlock_irqrestore(&s->lock, flags);
2087                         }
2088                         if (signal_pending(current)) {
2089                                 if (!ret)
2090                                         ret = -ERESTARTSYS;
2091                                 goto out;
2092                         }
2093                         continue;
2094                 }
2095                 if (s->status & DO_AC3_SW) {
2096                         int err;
2097
2098                         // clip exceeded data, caught by 033 and 037
2099                         if (swptr + 2 * cnt > s->dma_dac.dmasize)
2100                                 cnt = (s->dma_dac.dmasize - swptr) / 2;
2101                         if ((err = trans_ac3(s, s->dma_dac.rawbuf + swptr, buffer, cnt))) {
2102                                 ret = err;
2103                                 goto out;
2104                         }
2105                         swptr = (swptr + 2 * cnt) % s->dma_dac.dmasize;
2106                 } else if ((s->status & DO_DUAL_DAC) && (s->status & DO_BIGENDIAN_W)) {
2107                         int     i, err;
2108                         const char __user *src = buffer;
2109                         unsigned char *dst0, *dst1;
2110                         unsigned char data[8];
2111
2112                         dst0 = (unsigned char *) (s->dma_dac.rawbuf + swptr);
2113                         dst1 = (unsigned char *) (s->dma_adc.rawbuf + swptr);
2114                         // copy left/right sample at one time
2115                         for (i = 0; i < cnt / 4; i++) {
2116                                 if ((err = __get_user(data[0], src++))) {
2117                                         ret = err;
2118                                         goto out;
2119                                 }
2120                                 if ((err = __get_user(data[1], src++))) {
2121                                         ret = err;
2122                                         goto out;
2123                                 }
2124                                 if ((err = __get_user(data[2], src++))) {
2125                                         ret = err;
2126                                         goto out;
2127                                 }
2128                                 if ((err = __get_user(data[3], src++))) {
2129                                         ret = err;
2130                                         goto out;
2131                                 }
2132                                 if ((err = __get_user(data[4], src++))) {
2133                                         ret = err;
2134                                         goto out;
2135                                 }
2136                                 if ((err = __get_user(data[5], src++))) {
2137                                         ret = err;
2138                                         goto out;
2139                                 }
2140                                 if ((err = __get_user(data[6], src++))) {
2141                                         ret = err;
2142                                         goto out;
2143                                 }
2144                                 if ((err = __get_user(data[7], src++))) {
2145                                         ret = err;
2146                                         goto out;
2147                                 }
2148                                 dst0[0] = data[1];
2149                                 dst0[1] = data[0];
2150                                 dst0[2] = data[3];
2151                                 dst0[3] = data[2];
2152                                 dst1[0] = data[5];
2153                                 dst1[1] = data[4];
2154                                 dst1[2] = data[7];
2155                                 dst1[3] = data[6];
2156                                 dst0 += 4;
2157                                 dst1 += 4;
2158                         }
2159                         swptr = (swptr + cnt) % s->dma_dac.dmasize;
2160                 } else if (s->status & DO_DUAL_DAC) {
2161                         int     i, err;
2162                         unsigned long __user *src = (unsigned long __user *) buffer;
2163                         unsigned long *dst0, *dst1;
2164
2165                         dst0 = (unsigned long *) (s->dma_dac.rawbuf + swptr);
2166                         dst1 = (unsigned long *) (s->dma_adc.rawbuf + swptr);
2167                         // copy left/right sample at one time
2168                         for (i = 0; i < cnt / 4; i++) {
2169                                 if ((err = __get_user(*dst0++, src++))) {
2170                                         ret = err;
2171                                         goto out;
2172                                 }
2173                                 if ((err = __get_user(*dst1++, src++))) {
2174                                         ret = err;
2175                                         goto out;
2176                                 }
2177                         }
2178                         swptr = (swptr + cnt) % s->dma_dac.dmasize;
2179                 } else if (s->status & DO_BIGENDIAN_W) {
2180                         int     i, err;
2181                         const char __user *src = buffer;
2182                         unsigned char *dst;
2183                         unsigned char data[2];
2184
2185                         dst = (unsigned char *) (s->dma_dac.rawbuf + swptr);
2186                         // swap hi/lo bytes for each sample
2187                         for (i = 0; i < cnt / 2; i++) {
2188                                 if ((err = __get_user(data[0], src++))) {
2189                                         ret = err;
2190                                         goto out;
2191                                 }
2192                                 if ((err = __get_user(data[1], src++))) {
2193                                         ret = err;
2194                                         goto out;
2195                                 }
2196                                 dst[0] = data[1];
2197                                 dst[1] = data[0];
2198                                 dst += 2;
2199                         }
2200                         swptr = (swptr + cnt) % s->dma_dac.dmasize;
2201                 } else {
2202                         if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt)) {
2203                                 if (!ret)
2204                                         ret = -EFAULT;
2205                                 goto out;
2206                         }
2207                         swptr = (swptr + cnt) % s->dma_dac.dmasize;
2208                 }
2209                 spin_lock_irqsave(&s->lock, flags);
2210                 s->dma_dac.swptr = swptr;
2211                 s->dma_dac.count += cnt;
2212                 if (s->status & DO_AC3_SW)
2213                         s->dma_dac.count += cnt;
2214                 s->dma_dac.endcleared = 0;
2215                 spin_unlock_irqrestore(&s->lock, flags);
2216                 count -= cnt;
2217                 buffer += cnt;
2218                 ret += cnt;
2219                 if (s->status & DO_DUAL_DAC) {
2220                         count -= cnt;
2221                         buffer += cnt;
2222                         ret += cnt;
2223                 }
2224                 if (s->dma_dac.enabled)
2225                         start_dac(s);
2226         }
2227 out:
2228         remove_wait_queue(&s->dma_dac.wait, &wait);
2229         set_current_state(TASK_RUNNING);
2230         return ret;
2231 }
2232
2233 static unsigned int cm_poll(struct file *file, struct poll_table_struct *wait)
2234 {
2235         struct cm_state *s = (struct cm_state *)file->private_data;
2236         unsigned long flags;
2237         unsigned int mask = 0;
2238
2239         VALIDATE_STATE(s);
2240         if (file->f_mode & FMODE_WRITE) {
2241                 if (!s->dma_dac.ready && prog_dmabuf(s, 0))
2242                         return 0;
2243                 poll_wait(file, &s->dma_dac.wait, wait);
2244         }
2245         if (file->f_mode & FMODE_READ) {
2246                 if (!s->dma_adc.ready && prog_dmabuf(s, 1))
2247                         return 0;
2248                 poll_wait(file, &s->dma_adc.wait, wait);
2249         }
2250         spin_lock_irqsave(&s->lock, flags);
2251         cm_update_ptr(s);
2252         if (file->f_mode & FMODE_READ) {
2253                 if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
2254                         mask |= POLLIN | POLLRDNORM;
2255         }
2256         if (file->f_mode & FMODE_WRITE) {
2257                 if (s->dma_dac.mapped) {
2258                         if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
2259                                 mask |= POLLOUT | POLLWRNORM;
2260                 } else {
2261                         if ((signed)s->dma_dac.dmasize >= s->dma_dac.count + (signed)s->dma_dac.fragsize)
2262                                 mask |= POLLOUT | POLLWRNORM;
2263                 }
2264         }
2265         spin_unlock_irqrestore(&s->lock, flags);
2266         return mask;
2267 }
2268
2269 static int cm_mmap(struct file *file, struct vm_area_struct *vma)
2270 {
2271         struct cm_state *s = (struct cm_state *)file->private_data;
2272         struct dmabuf *db;
2273         int ret = -EINVAL;
2274         unsigned long size;
2275
2276         VALIDATE_STATE(s);
2277         lock_kernel();
2278         if (vma->vm_flags & VM_WRITE) {
2279                 if ((ret = prog_dmabuf(s, 0)) != 0)
2280                         goto out;
2281                 db = &s->dma_dac;
2282         } else if (vma->vm_flags & VM_READ) {
2283                 if ((ret = prog_dmabuf(s, 1)) != 0)
2284                         goto out;
2285                 db = &s->dma_adc;
2286         } else
2287                 goto out;
2288         ret = -EINVAL;
2289         if (vma->vm_pgoff != 0)
2290                 goto out;
2291         size = vma->vm_end - vma->vm_start;
2292         if (size > (PAGE_SIZE << db->buforder))
2293                 goto out;
2294         ret = -EINVAL;
2295         if (remap_pfn_range(vma, vma->vm_start,
2296                                 virt_to_phys(db->rawbuf) >> PAGE_SHIFT,
2297                                 size, vma->vm_page_prot))
2298                 goto out;
2299         db->mapped = 1;
2300         ret = 0;
2301 out:
2302         unlock_kernel();
2303         return ret;
2304 }
2305
2306 #define SNDCTL_SPDIF_COPYRIGHT  _SIOW('S',  0, int)       // set/reset S/PDIF copy protection
2307 #define SNDCTL_SPDIF_LOOP       _SIOW('S',  1, int)       // set/reset S/PDIF loop
2308 #define SNDCTL_SPDIF_MONITOR    _SIOW('S',  2, int)       // set S/PDIF monitor
2309 #define SNDCTL_SPDIF_LEVEL      _SIOW('S',  3, int)       // set/reset S/PDIF out level
2310 #define SNDCTL_SPDIF_INV        _SIOW('S',  4, int)       // set/reset S/PDIF in inverse
2311 #define SNDCTL_SPDIF_SEL2       _SIOW('S',  5, int)       // set S/PDIF in #2
2312 #define SNDCTL_SPDIF_VALID      _SIOW('S',  6, int)       // set S/PDIF valid
2313 #define SNDCTL_SPDIFOUT         _SIOW('S',  7, int)       // set S/PDIF out
2314 #define SNDCTL_SPDIFIN          _SIOW('S',  8, int)       // set S/PDIF out
2315
2316 static int cm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2317 {
2318         struct cm_state *s = (struct cm_state *)file->private_data;
2319         unsigned long flags;
2320         audio_buf_info abinfo;
2321         count_info cinfo;
2322         int val, mapped, ret;
2323         unsigned char fmtm, fmtd;
2324         void __user *argp = (void __user *)arg;
2325         int __user *p = argp;
2326
2327         VALIDATE_STATE(s);
2328         mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
2329                 ((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
2330         switch (cmd) {
2331         case OSS_GETVERSION:
2332                 return put_user(SOUND_VERSION, p);
2333
2334         case SNDCTL_DSP_SYNC:
2335                 if (file->f_mode & FMODE_WRITE)
2336                         return drain_dac(s, 0/*file->f_flags & O_NONBLOCK*/);
2337                 return 0;
2338
2339         case SNDCTL_DSP_SETDUPLEX:
2340                 return 0;
2341
2342         case SNDCTL_DSP_GETCAPS:
2343                 return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP | DSP_CAP_BIND, p);
2344
2345         case SNDCTL_DSP_RESET:
2346                 if (file->f_mode & FMODE_WRITE) {
2347                         stop_dac(s);
2348                         synchronize_irq(s->irq);
2349                         s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0;
2350                         if (s->status & DO_DUAL_DAC)
2351                                 s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0;
2352                 }
2353                 if (file->f_mode & FMODE_READ) {
2354                         stop_adc(s);
2355                         synchronize_irq(s->irq);
2356                         s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0;
2357                 }
2358                 return 0;
2359
2360         case SNDCTL_DSP_SPEED:
2361                 if (get_user(val, p))
2362                         return -EFAULT;
2363                 if (val >= 0) {
2364                         if (file->f_mode & FMODE_READ) {
2365                                 spin_lock_irqsave(&s->lock, flags);
2366                                 stop_adc_unlocked(s);
2367                                 s->dma_adc.ready = 0;
2368                                 set_adc_rate_unlocked(s, val);
2369                                 spin_unlock_irqrestore(&s->lock, flags);
2370                         }
2371                         if (file->f_mode & FMODE_WRITE) {
2372                                 stop_dac(s);
2373                                 s->dma_dac.ready = 0;
2374                                 if (s->status & DO_DUAL_DAC)
2375                                         s->dma_adc.ready = 0;
2376                                 set_dac_rate(s, val);
2377                         }
2378                 }
2379                 return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);
2380
2381         case SNDCTL_DSP_STEREO:
2382                 if (get_user(val, p))
2383                         return -EFAULT;
2384                 fmtd = 0;
2385                 fmtm = ~0;
2386                 if (file->f_mode & FMODE_READ) {
2387                         stop_adc(s);
2388                         s->dma_adc.ready = 0;
2389                         if (val)
2390                                 fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
2391                         else
2392                                 fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
2393                 }
2394                 if (file->f_mode & FMODE_WRITE) {
2395                         stop_dac(s);
2396                         s->dma_dac.ready = 0;
2397                         if (val)
2398                                 fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
2399                         else
2400                                 fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT);
2401                         if (s->status & DO_DUAL_DAC) {
2402                                 s->dma_adc.ready = 0;
2403                                 if (val)
2404                                         fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
2405                                 else
2406                                         fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
2407                         }
2408                 }
2409                 set_fmt(s, fmtm, fmtd);
2410                 return 0;
2411
2412         case SNDCTL_DSP_CHANNELS:
2413                 if (get_user(val, p))
2414                         return -EFAULT;
2415                 if (val != 0) {
2416                         fmtd = 0;
2417                         fmtm = ~0;
2418                         if (file->f_mode & FMODE_READ) {
2419                                 stop_adc(s);
2420                                 s->dma_adc.ready = 0;
2421                                 if (val >= 2)
2422                                         fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
2423                                 else
2424                                         fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
2425                         }
2426                         if (file->f_mode & FMODE_WRITE) {
2427                                 stop_dac(s);
2428                                 s->dma_dac.ready = 0;
2429                                 if (val >= 2)
2430                                         fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
2431                                 else
2432                                         fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT);
2433                                 if (s->status & DO_DUAL_DAC) {
2434                                         s->dma_adc.ready = 0;
2435                                         if (val >= 2)
2436                                                 fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
2437                                         else
2438                                                 fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
2439                                 }
2440                         }
2441                         set_fmt(s, fmtm, fmtd);
2442                         if ((s->capability & CAN_MULTI_CH)
2443                              && (file->f_mode & FMODE_WRITE)) {
2444                                 val = set_dac_channels(s, val);
2445                                 return put_user(val, p);
2446                         }
2447                 }
2448                 return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT)
2449                                            : (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, p);
2450
2451         case SNDCTL_DSP_GETFMTS: /* Returns a mask */
2452                 return put_user(AFMT_S16_BE|AFMT_S16_LE|AFMT_U8|
2453                         ((s->capability & CAN_AC3) ? AFMT_AC3 : 0), p);
2454
2455         case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
2456                 if (get_user(val, p))
2457                         return -EFAULT;
2458                 if (val != AFMT_QUERY) {
2459                         fmtd = 0;
2460                         fmtm = ~0;
2461                         if (file->f_mode & FMODE_READ) {
2462                                 stop_adc(s);
2463                                 s->dma_adc.ready = 0;
2464                                 if (val == AFMT_S16_BE || val == AFMT_S16_LE)
2465                                         fmtd |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT;
2466                                 else
2467                                         fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_ADCSHIFT);
2468                                 if (val == AFMT_S16_BE)
2469                                         s->status |= DO_BIGENDIAN_R;
2470                                 else
2471                                         s->status &= ~DO_BIGENDIAN_R;
2472                         }
2473                         if (file->f_mode & FMODE_WRITE) {
2474                                 stop_dac(s);
2475                                 s->dma_dac.ready = 0;
2476                                 if (val == AFMT_S16_BE || val == AFMT_S16_LE || val == AFMT_AC3)
2477                                         fmtd |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT;
2478                                 else
2479                                         fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_DACSHIFT);
2480                                 if (val == AFMT_AC3) {
2481                                         fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
2482                                         set_ac3(s, 48000);
2483                                 } else
2484                                         set_ac3(s, 0);
2485                                 if (s->status & DO_DUAL_DAC) {
2486                                         s->dma_adc.ready = 0;
2487                                         if (val == AFMT_S16_BE || val == AFMT_S16_LE)
2488                                                 fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
2489                                         else
2490                                                 fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
2491                                 }
2492                                 if (val == AFMT_S16_BE)
2493                                         s->status |= DO_BIGENDIAN_W;
2494                                 else
2495                                         s->status &= ~DO_BIGENDIAN_W;
2496                         }
2497                         set_fmt(s, fmtm, fmtd);
2498                 }
2499                 if (s->status & DO_AC3) return put_user(AFMT_AC3, p);
2500                 return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT)
2501                                            : (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? val : AFMT_U8, p);
2502
2503         case SNDCTL_DSP_POST:
2504                 return 0;
2505
2506         case SNDCTL_DSP_GETTRIGGER:
2507                 val = 0;
2508                 if (s->status & DO_DUAL_DAC) {
2509                         if (file->f_mode & FMODE_WRITE &&
2510                          (s->enable & ENDAC) &&
2511                          (s->enable & ENADC))
2512                                 val |= PCM_ENABLE_OUTPUT;
2513                         return put_user(val, p);
2514                 }
2515                 if (file->f_mode & FMODE_READ && s->enable & ENADC)
2516                         val |= PCM_ENABLE_INPUT;
2517                 if (file->f_mode & FMODE_WRITE && s->enable & ENDAC)
2518                         val |= PCM_ENABLE_OUTPUT;
2519                 return put_user(val, p);
2520
2521         case SNDCTL_DSP_SETTRIGGER:
2522                 if (get_user(val, p))
2523                         return -EFAULT;
2524                 if (file->f_mode & FMODE_READ) {
2525                         if (val & PCM_ENABLE_INPUT) {
2526                                 if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
2527                                         return ret;
2528                                 s->dma_adc.enabled = 1;
2529                                 start_adc(s);
2530                         } else {
2531                                 s->dma_adc.enabled = 0;
2532                                 stop_adc(s);
2533                         }
2534                 }
2535                 if (file->f_mode & FMODE_WRITE) {
2536                         if (val & PCM_ENABLE_OUTPUT) {
2537                                 if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
2538                                         return ret;
2539                                 if (s->status & DO_DUAL_DAC) {
2540                                         if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
2541                                                 return ret;
2542                                 }
2543                                 s->dma_dac.enabled = 1;
2544                                 start_dac(s);
2545                         } else {
2546                                 s->dma_dac.enabled = 0;
2547                                 stop_dac(s);
2548                         }
2549                 }
2550                 return 0;
2551
2552         case SNDCTL_DSP_GETOSPACE:
2553                 if (!(file->f_mode & FMODE_WRITE))
2554                         return -EINVAL;
2555                 if (!(s->enable & ENDAC) && (val = prog_dmabuf(s, 0)) != 0)
2556                         return val;
2557                 spin_lock_irqsave(&s->lock, flags);
2558                 cm_update_ptr(s);
2559                 abinfo.fragsize = s->dma_dac.fragsize;
2560                 abinfo.bytes = s->dma_dac.dmasize - s->dma_dac.count;
2561                 abinfo.fragstotal = s->dma_dac.numfrag;
2562                 abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;
2563                 spin_unlock_irqrestore(&s->lock, flags);
2564                 return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
2565
2566         case SNDCTL_DSP_GETISPACE:
2567                 if (!(file->f_mode & FMODE_READ))
2568                         return -EINVAL;
2569                 if (!(s->enable & ENADC) && (val = prog_dmabuf(s, 1)) != 0)
2570                         return val;
2571                 spin_lock_irqsave(&s->lock, flags);
2572                 cm_update_ptr(s);
2573                 abinfo.fragsize = s->dma_adc.fragsize;
2574                 abinfo.bytes = s->dma_adc.count;
2575                 abinfo.fragstotal = s->dma_adc.numfrag;
2576                 abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift;
2577                 spin_unlock_irqrestore(&s->lock, flags);
2578                 return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
2579
2580         case SNDCTL_DSP_NONBLOCK:
2581                 file->f_flags |= O_NONBLOCK;
2582                 return 0;
2583
2584         case SNDCTL_DSP_GETODELAY:
2585                 if (!(file->f_mode & FMODE_WRITE))
2586                         return -EINVAL;
2587                 spin_lock_irqsave(&s->lock, flags);
2588                 cm_update_ptr(s);
2589                 val = s->dma_dac.count;
2590                 spin_unlock_irqrestore(&s->lock, flags);
2591                 return put_user(val, p);
2592
2593         case SNDCTL_DSP_GETIPTR:
2594                 if (!(file->f_mode & FMODE_READ))
2595                         return -EINVAL;
2596                 spin_lock_irqsave(&s->lock, flags);
2597                 cm_update_ptr(s);
2598                 cinfo.bytes = s->dma_adc.total_bytes;
2599                 cinfo.blocks = s->dma_adc.count >> s->dma_adc.fragshift;
2600                 cinfo.ptr = s->dma_adc.hwptr;
2601                 if (s->dma_adc.mapped)
2602                         s->dma_adc.count &= s->dma_adc.fragsize-1;
2603                 spin_unlock_irqrestore(&s->lock, flags);
2604                 return copy_to_user(argp, &cinfo, sizeof(cinfo))  ? -EFAULT : 0;
2605
2606         case SNDCTL_DSP_GETOPTR:
2607                 if (!(file->f_mode & FMODE_WRITE))
2608                         return -EINVAL;
2609                 spin_lock_irqsave(&s->lock, flags);
2610                 cm_update_ptr(s);
2611                 cinfo.bytes = s->dma_dac.total_bytes;
2612                 cinfo.blocks = s->dma_dac.count >> s->dma_dac.fragshift;
2613                 cinfo.ptr = s->dma_dac.hwptr;
2614                 if (s->dma_dac.mapped)
2615                         s->dma_dac.count &= s->dma_dac.fragsize-1;
2616                 if (s->status & DO_DUAL_DAC) {
2617                         if (s->dma_adc.mapped)
2618                                 s->dma_adc.count &= s->dma_adc.fragsize-1;
2619                 }
2620                 spin_unlock_irqrestore(&s->lock, flags);
2621                 return copy_to_user(argp, &cinfo, sizeof(cinfo)) ? -EFAULT : 0;
2622
2623         case SNDCTL_DSP_GETBLKSIZE:
2624                 if (file->f_mode & FMODE_WRITE) {
2625                         if ((val = prog_dmabuf(s, 0)))
2626                                 return val;
2627                         if (s->status & DO_DUAL_DAC) {
2628                                 if ((val = prog_dmabuf(s, 1)))
2629                                         return val;
2630                                 return put_user(2 * s->dma_dac.fragsize, p);
2631                         }
2632                         return put_user(s->dma_dac.fragsize, p);
2633                 }
2634                 if ((val = prog_dmabuf(s, 1)))
2635                         return val;
2636                 return put_user(s->dma_adc.fragsize, p);
2637
2638         case SNDCTL_DSP_SETFRAGMENT:
2639                 if (get_user(val, p))
2640                         return -EFAULT;
2641                 if (file->f_mode & FMODE_READ) {
2642                         s->dma_adc.ossfragshift = val & 0xffff;
2643                         s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff;
2644                         if (s->dma_adc.ossfragshift < 4)
2645                                 s->dma_adc.ossfragshift = 4;
2646                         if (s->dma_adc.ossfragshift > 15)
2647                                 s->dma_adc.ossfragshift = 15;
2648                         if (s->dma_adc.ossmaxfrags < 4)
2649                                 s->dma_adc.ossmaxfrags = 4;
2650                 }
2651                 if (file->f_mode & FMODE_WRITE) {
2652                         s->dma_dac.ossfragshift = val & 0xffff;
2653                         s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff;
2654                         if (s->dma_dac.ossfragshift < 4)
2655                                 s->dma_dac.ossfragshift = 4;
2656                         if (s->dma_dac.ossfragshift > 15)
2657                                 s->dma_dac.ossfragshift = 15;
2658                         if (s->dma_dac.ossmaxfrags < 4)
2659                                 s->dma_dac.ossmaxfrags = 4;
2660                         if (s->status & DO_DUAL_DAC) {
2661                                 s->dma_adc.ossfragshift = s->dma_dac.ossfragshift;
2662                                 s->dma_adc.ossmaxfrags = s->dma_dac.ossmaxfrags;
2663                         }
2664                 }
2665                 return 0;
2666
2667         case SNDCTL_DSP_SUBDIVIDE:
2668                 if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) ||
2669                     (file->f_mode & FMODE_WRITE && s->dma_dac.subdivision))
2670                         return -EINVAL;
2671                 if (get_user(val, p))
2672                         return -EFAULT;
2673                 if (val != 1 && val != 2 && val != 4)
2674                         return -EINVAL;
2675                 if (file->f_mode & FMODE_READ)
2676                         s->dma_adc.subdivision = val;
2677                 if (file->f_mode & FMODE_WRITE) {
2678                         s->dma_dac.subdivision = val;
2679                         if (s->status & DO_DUAL_DAC)
2680                                 s->dma_adc.subdivision = val;
2681                 }
2682                 return 0;
2683
2684         case SOUND_PCM_READ_RATE:
2685                 return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);
2686
2687         case SOUND_PCM_READ_CHANNELS:
2688                 return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT) : (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, p);
2689
2690         case SOUND_PCM_READ_BITS:
2691                 return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT) : (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? 16 : 8, p);
2692
2693         case SOUND_PCM_READ_FILTER:
2694                 return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);
2695
2696         case SNDCTL_DSP_GETCHANNELMASK:
2697                 return put_user(DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE|DSP_BIND_SPDIF, p);
2698
2699         case SNDCTL_DSP_BIND_CHANNEL:
2700                 if (get_user(val, p))
2701                         return -EFAULT;
2702                 if (val == DSP_BIND_QUERY) {
2703                         val = DSP_BIND_FRONT;
2704                         if (s->status & DO_SPDIF_OUT)
2705                                 val |= DSP_BIND_SPDIF;
2706                         else {
2707                                 if (s->curr_channels == 4)
2708                                         val |= DSP_BIND_SURR;
2709                                 if (s->curr_channels > 4)
2710                                         val |= DSP_BIND_CENTER_LFE;
2711                         }
2712                 } else {
2713                         if (file->f_mode & FMODE_READ) {
2714                                 stop_adc(s);
2715                                 s->dma_adc.ready = 0;
2716                                 if (val & DSP_BIND_SPDIF) {
2717                                         set_spdifin(s, s->rateadc);
2718                                         if (!(s->status & DO_SPDIF_OUT))
2719                                                 val &= ~DSP_BIND_SPDIF;
2720                                 }
2721                         }
2722                         if (file->f_mode & FMODE_WRITE) {
2723                                 stop_dac(s);
2724                                 s->dma_dac.ready = 0;
2725                                 if (val & DSP_BIND_SPDIF) {
2726                                         set_spdifout(s, s->ratedac);
2727                                         set_dac_channels(s, s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1);
2728                                         if (!(s->status & DO_SPDIF_OUT))
2729                                                 val &= ~DSP_BIND_SPDIF;
2730                                 } else {
2731                                         int channels;
2732                                         int mask;
2733
2734                                         mask = val & (DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE);
2735                                         switch (mask) {
2736                                             case DSP_BIND_FRONT:
2737                                                 channels = 2;
2738                                                 break;
2739                                             case DSP_BIND_FRONT|DSP_BIND_SURR:
2740                                                 channels = 4;
2741                                                 break;
2742                                             case DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE:
2743                                                 channels = 6;
2744                                                 break;
2745                                             default:
2746                                                 channels = s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1;
2747                                                 break;
2748                                         }
2749                                         set_dac_channels(s, channels);
2750                                 }
2751                         }
2752                 }
2753                 return put_user(val, p);
2754
2755         case SOUND_PCM_WRITE_FILTER:
2756         case SNDCTL_DSP_MAPINBUF:
2757         case SNDCTL_DSP_MAPOUTBUF:
2758         case SNDCTL_DSP_SETSYNCRO:
2759                 return -EINVAL;
2760         case SNDCTL_SPDIF_COPYRIGHT:
2761                 if (get_user(val, p))
2762                         return -EFAULT;
2763                 set_spdif_copyright(s, val);
2764                 return 0;
2765         case SNDCTL_SPDIF_LOOP:
2766                 if (get_user(val, p))
2767                         return -EFAULT;
2768                 set_spdif_loop(s, val);
2769                 return 0;
2770         case SNDCTL_SPDIF_MONITOR:
2771                 if (get_user(val, p))
2772                         return -EFAULT;
2773                 set_spdif_monitor(s, val);
2774                 return 0;
2775         case SNDCTL_SPDIF_LEVEL:
2776                 if (get_user(val, p))
2777                         return -EFAULT;
2778                 set_spdifout_level(s, val);
2779                 return 0;
2780         case SNDCTL_SPDIF_INV:
2781                 if (get_user(val, p))
2782                         return -EFAULT;
2783                 set_spdifin_inverse(s, val);
2784                 return 0;
2785         case SNDCTL_SPDIF_SEL2:
2786                 if (get_user(val, p))
2787                         return -EFAULT;
2788                 set_spdifin_channel2(s, val);
2789                 return 0;
2790         case SNDCTL_SPDIF_VALID:
2791                 if (get_user(val, p))
2792                         return -EFAULT;
2793                 set_spdifin_valid(s, val);
2794                 return 0;
2795         case SNDCTL_SPDIFOUT:
2796                 if (get_user(val, p))
2797                         return -EFAULT;
2798                 set_spdifout(s, val ? s->ratedac : 0);
2799                 return 0;
2800         case SNDCTL_SPDIFIN:
2801                 if (get_user(val, p))
2802                         return -EFAULT;
2803                 set_spdifin(s, val ? s->rateadc : 0);
2804                 return 0;
2805         }
2806         return mixer_ioctl(s, cmd, arg);
2807 }
2808
2809 static int cm_open(struct inode *inode, struct file *file)
2810 {
2811         int minor = iminor(inode);
2812         DECLARE_WAITQUEUE(wait, current);
2813         unsigned char fmtm = ~0, fmts = 0;
2814         struct list_head *list;
2815         struct cm_state *s;
2816
2817         for (list = devs.next; ; list = list->next) {
2818                 if (list == &devs)
2819                         return -ENODEV;
2820                 s = list_entry(list, struct cm_state, devs);
2821                 if (!((s->dev_audio ^ minor) & ~0xf))
2822                         break;
2823         }
2824         VALIDATE_STATE(s);
2825         file->private_data = s;
2826         /* wait for device to become free */
2827         down(&s->open_sem);
2828         while (s->open_mode & file->f_mode) {
2829                 if (file->f_flags & O_NONBLOCK) {
2830                         up(&s->open_sem);
2831                         return -EBUSY;
2832                 }
2833                 add_wait_queue(&s->open_wait, &wait);
2834                 __set_current_state(TASK_INTERRUPTIBLE);
2835                 up(&s->open_sem);
2836                 schedule();
2837                 remove_wait_queue(&s->open_wait, &wait);
2838                 set_current_state(TASK_RUNNING);
2839                 if (signal_pending(current))
2840                         return -ERESTARTSYS;
2841                 down(&s->open_sem);
2842         }
2843         if (file->f_mode & FMODE_READ) {
2844                 s->status &= ~DO_BIGENDIAN_R;
2845                 fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_ADCSHIFT);
2846                 if ((minor & 0xf) == SND_DEV_DSP16)
2847                         fmts |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT;
2848                 s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0;
2849                 s->dma_adc.enabled = 1;
2850                 set_adc_rate(s, 8000);
2851                 // spdif-in is turnned off by default
2852                 set_spdifin(s, 0);
2853         }
2854         if (file->f_mode & FMODE_WRITE) {
2855                 s->status &= ~DO_BIGENDIAN_W;
2856                 fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT);
2857                 if ((minor & 0xf) == SND_DEV_DSP16)
2858                         fmts |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT;
2859                 s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0;
2860                 s->dma_dac.enabled = 1;
2861                 set_dac_rate(s, 8000);
2862                 // clear previous multichannel, spdif, ac3 state
2863                 set_spdifout(s, 0);
2864                 set_ac3(s, 0);
2865                 set_dac_channels(s, 1);
2866         }
2867         set_fmt(s, fmtm, fmts);
2868         s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
2869         up(&s->open_sem);
2870         return nonseekable_open(inode, file);
2871 }
2872
2873 static int cm_release(struct inode *inode, struct file *file)
2874 {
2875         struct cm_state *s = (struct cm_state *)file->private_data;
2876
2877         VALIDATE_STATE(s);
2878         lock_kernel();
2879         if (file->f_mode & FMODE_WRITE)
2880                 drain_dac(s, file->f_flags & O_NONBLOCK);
2881         down(&s->open_sem);
2882         if (file->f_mode & FMODE_WRITE) {
2883                 stop_dac(s);
2884
2885                 dealloc_dmabuf(s, &s->dma_dac);
2886                 if (s->status & DO_DUAL_DAC)
2887                         dealloc_dmabuf(s, &s->dma_adc);
2888
2889                 if (s->status & DO_MULTI_CH)
2890                         set_dac_channels(s, 1);
2891                 if (s->status & DO_AC3)
2892                         set_ac3(s, 0);
2893                 if (s->status & DO_SPDIF_OUT)
2894                         set_spdifout(s, 0);
2895                 /* enable SPDIF loop */
2896                 set_spdif_loop(s, spdif_loop);
2897                 s->status &= ~DO_BIGENDIAN_W;
2898         }
2899         if (file->f_mode & FMODE_READ) {
2900                 stop_adc(s);
2901                 dealloc_dmabuf(s, &s->dma_adc);
2902                 s->status &= ~DO_BIGENDIAN_R;
2903         }
2904         s->open_mode &= ~(file->f_mode & (FMODE_READ|FMODE_WRITE));
2905         up(&s->open_sem);
2906         wake_up(&s->open_wait);
2907         unlock_kernel();
2908         return 0;
2909 }
2910
2911 static /*const*/ struct file_operations cm_audio_fops = {
2912         .owner   = THIS_MODULE,
2913         .llseek  = no_llseek,
2914         .read    = cm_read,
2915         .write   = cm_write,
2916         .poll    = cm_poll,
2917         .ioctl   = cm_ioctl,
2918         .mmap    = cm_mmap,
2919         .open    = cm_open,
2920         .release = cm_release,
2921 };
2922
2923 /* --------------------------------------------------------------------- */
2924
2925 static struct initvol {
2926         int mixch;
2927         int vol;
2928 } initvol[] __devinitdata = {
2929         { SOUND_MIXER_WRITE_CD, 0x4f4f },
2930         { SOUND_MIXER_WRITE_LINE, 0x4f4f },
2931         { SOUND_MIXER_WRITE_MIC, 0x4f4f },
2932         { SOUND_MIXER_WRITE_SYNTH, 0x4f4f },
2933         { SOUND_MIXER_WRITE_VOLUME, 0x4f4f },
2934         { SOUND_MIXER_WRITE_PCM, 0x4f4f }
2935 };
2936
2937 /* check chip version and capability */
2938 static int query_chip(struct cm_state *s)
2939 {
2940         int ChipVersion = -1;
2941         unsigned char RegValue;
2942
2943         // check reg 0Ch, bit 24-31
2944         RegValue = inb(s->iobase + CODEC_CMI_INT_HLDCLR + 3);
2945         if (RegValue == 0) {
2946             // check reg 08h, bit 24-28
2947             RegValue = inb(s->iobase + CODEC_CMI_CHFORMAT + 3);
2948             RegValue &= 0x1f;
2949             if (RegValue == 0) {
2950                 ChipVersion = 33;
2951                 s->max_channels = 4;
2952                 s->capability |= CAN_AC3_SW;
2953                 s->capability |= CAN_DUAL_DAC;
2954             } else {
2955                 ChipVersion = 37;
2956                 s->max_channels = 4;
2957                 s->capability |= CAN_AC3_HW;
2958                 s->capability |= CAN_DUAL_DAC;
2959             }
2960         } else {
2961             // check reg 0Ch, bit 26
2962             if (RegValue & (1 << (26-24))) {
2963                 ChipVersion = 39;
2964                 if (RegValue & (1 << (24-24)))
2965                     s->max_channels = 6;
2966                 else
2967                     s->max_channels = 4;
2968                 s->capability |= CAN_AC3_HW;
2969                 s->capability |= CAN_DUAL_DAC;
2970                 s->capability |= CAN_MULTI_CH_HW;
2971                 s->capability |= CAN_LINE_AS_BASS;
2972                 s->capability |= CAN_MIC_AS_BASS;
2973             } else {
2974                 ChipVersion = 55; // 4 or 6 channels
2975                 s->max_channels = 6;
2976                 s->capability |= CAN_AC3_HW;
2977                 s->capability |= CAN_DUAL_DAC;
2978                 s->capability |= CAN_MULTI_CH_HW;
2979                 s->capability |= CAN_LINE_AS_BASS;
2980                 s->capability |= CAN_MIC_AS_BASS;
2981             }
2982         }
2983         s->capability |= CAN_LINE_AS_REAR;
2984         return ChipVersion;
2985 }
2986
2987 #ifdef CONFIG_SOUND_CMPCI_JOYSTICK
2988 static int __devinit cm_create_gameport(struct cm_state *s, int io_port)
2989 {
2990         struct gameport *gp;
2991
2992         if (!request_region(io_port, CM_EXTENT_GAME, "cmpci GAME")) {
2993                 printk(KERN_ERR "cmpci: gameport io ports 0x%#x in use\n", io_port);
2994                 return -EBUSY;
2995         }
2996
2997         if (!(s->gameport = gp = gameport_allocate_port())) {
2998                 printk(KERN_ERR "cmpci: can not allocate memory for gameport\n");
2999                 release_region(io_port, CM_EXTENT_GAME);
3000                 return -ENOMEM;
3001         }
3002
3003         gameport_set_name(gp, "C-Media GP");
3004         gameport_set_phys(gp, "pci%s/gameport0", pci_name(s->dev));
3005         gp->dev.parent = &s->dev->dev;
3006         gp->io = io_port;
3007
3008         /* enable joystick */
3009         maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x02);
3010
3011         gameport_register_port(gp);
3012
3013         return 0;
3014 }
3015
3016 static void __devexit cm_free_gameport(struct cm_state *s)
3017 {
3018         if (s->gameport) {
3019                 int gpio = s->gameport->io;
3020
3021                 gameport_unregister_port(s->gameport);
3022                 s->gameport = NULL;
3023                 maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x02, 0);
3024                 release_region(gpio, CM_EXTENT_GAME);
3025         }
3026 }
3027 #else
3028 static inline int cm_create_gameport(struct cm_state *s, int io_port) { return -ENOSYS; }
3029 static inline void cm_free_gameport(struct cm_state *s) { }
3030 #endif
3031
3032 #define echo_option(x)\
3033 if (x) strcat(options, "" #x " ")
3034
3035 static int __devinit cm_probe(struct pci_dev *pcidev, const struct pci_device_id *pciid)
3036 {
3037         struct cm_state *s;
3038         mm_segment_t fs;
3039         int i, val, ret;
3040         unsigned char reg_mask;
3041         int timeout;
3042         struct resource *ports;
3043         struct {
3044                 unsigned short  deviceid;
3045                 char            *devicename;
3046         } devicetable[] = {
3047                 { PCI_DEVICE_ID_CMEDIA_CM8338A, "CM8338A" },
3048                 { PCI_DEVICE_ID_CMEDIA_CM8338B, "CM8338B" },
3049                 { PCI_DEVICE_ID_CMEDIA_CM8738,  "CM8738" },
3050                 { PCI_DEVICE_ID_CMEDIA_CM8738B, "CM8738B" },
3051         };
3052         char    *devicename = "unknown";
3053         char    options[256];
3054
3055         if ((ret = pci_enable_device(pcidev)))
3056                 return ret;
3057         if (!(pci_resource_flags(pcidev, 0) & IORESOURCE_IO))
3058                 return -ENODEV;
3059         if (pcidev->irq == 0)
3060                 return -ENODEV;
3061         i = pci_set_dma_mask(pcidev, 0xffffffff);
3062         if (i) {
3063                 printk(KERN_WARNING "cmpci: architecture does not support 32bit PCI busmaster DMA\n");
3064                 return i;
3065         }
3066         s = kmalloc(sizeof(*s), GFP_KERNEL);
3067         if (!s) {
3068                 printk(KERN_WARNING "cmpci: out of memory\n");
3069                 return -ENOMEM;
3070         }
3071         /* search device name */
3072         for (i = 0; i < sizeof(devicetable) / sizeof(devicetable[0]); i++) {
3073                 if (devicetable[i].deviceid == pcidev->device) {
3074                         devicename = devicetable[i].devicename;
3075                         break;
3076                 }
3077         }
3078         memset(s, 0, sizeof(struct cm_state));
3079         init_waitqueue_head(&s->dma_adc.wait);
3080         init_waitqueue_head(&s->dma_dac.wait);
3081         init_waitqueue_head(&s->open_wait);
3082         init_MUTEX(&s->open_sem);
3083         spin_lock_init(&s->lock);
3084         s->magic = CM_MAGIC;
3085         s->dev = pcidev;
3086         s->iobase = pci_resource_start(pcidev, 0);
3087         s->iosynth = fmio;
3088         s->iomidi = mpuio;
3089 #ifdef CONFIG_SOUND_CMPCI_MIDI
3090         s->midi_devc = 0;
3091 #endif
3092         s->status = 0;
3093         if (s->iobase == 0)
3094                 return -ENODEV;
3095         s->irq = pcidev->irq;
3096
3097         if (!request_region(s->iobase, CM_EXTENT_CODEC, "cmpci")) {
3098                 printk(KERN_ERR "cmpci: io ports %#x-%#x in use\n", s->iobase, s->iobase+CM_EXTENT_CODEC-1);
3099                 ret = -EBUSY;
3100                 goto err_region5;
3101         }
3102         /* dump parameters */
3103         strcpy(options, "cmpci: ");
3104         echo_option(joystick);
3105         echo_option(spdif_inverse);
3106         echo_option(spdif_loop);
3107         echo_option(spdif_out);
3108         echo_option(use_line_as_rear);
3109         echo_option(use_line_as_bass);
3110         echo_option(use_mic_as_bass);
3111         echo_option(mic_boost);
3112         echo_option(hw_copy);
3113         printk(KERN_INFO "%s\n", options);
3114
3115         /* initialize codec registers */
3116         outb(0, s->iobase + CODEC_CMI_INT_HLDCLR + 2);  /* disable ints */
3117         outb(0, s->iobase + CODEC_CMI_FUNCTRL0 + 2); /* disable channels */
3118         /* reset mixer */
3119         wrmixer(s, DSP_MIX_DATARESETIDX, 0);
3120
3121         /* request irq */
3122         if ((ret = request_irq(s->irq, cm_interrupt, SA_SHIRQ, "cmpci", s))) {
3123                 printk(KERN_ERR "cmpci: irq %u in use\n", s->irq);
3124                 goto err_irq;
3125         }
3126         printk(KERN_INFO "cmpci: found %s adapter at io %#x irq %u\n",
3127                devicename, s->iobase, s->irq);
3128         /* register devices */
3129         if ((s->dev_audio = register_sound_dsp(&cm_audio_fops, -1)) < 0) {
3130                 ret = s->dev_audio;
3131                 goto err_dev1;
3132         }
3133         if ((s->dev_mixer = register_sound_mixer(&cm_mixer_fops, -1)) < 0) {
3134                 ret = s->dev_mixer;
3135                 goto err_dev2;
3136         }
3137         pci_set_master(pcidev); /* enable bus mastering */
3138         /* initialize the chips */
3139         fs = get_fs();
3140         set_fs(KERNEL_DS);
3141         /* set mixer output */
3142         frobindir(s, DSP_MIX_OUTMIXIDX, 0x1f, 0x1f);
3143         /* set mixer input */
3144         val = SOUND_MASK_LINE|SOUND_MASK_SYNTH|SOUND_MASK_CD|SOUND_MASK_MIC;
3145         mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long)&val);
3146         for (i = 0; i < sizeof(initvol)/sizeof(initvol[0]); i++) {
3147                 val = initvol[i].vol;
3148                 mixer_ioctl(s, initvol[i].mixch, (unsigned long)&val);
3149         }
3150         set_fs(fs);
3151         /* use channel 1 for playback, channel 0 for record */
3152         maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~CHADC1, CHADC0);
3153         /* turn off VMIC3 - mic boost */
3154         if (mic_boost)
3155                 maskb(s->iobase + CODEC_CMI_MIXER2, ~1, 0);
3156         else
3157                 maskb(s->iobase + CODEC_CMI_MIXER2, ~0, 1);
3158         s->deviceid = pcidev->device;
3159
3160         if (pcidev->device == PCI_DEVICE_ID_CMEDIA_CM8738
3161          || pcidev->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
3162
3163                 /* chip version and hw capability check */
3164                 s->chip_version = query_chip(s);
3165                 printk(KERN_INFO "cmpci: chip version = 0%d\n", s->chip_version);
3166
3167                 /* set SPDIF-in inverse before enable SPDIF loop */
3168                 set_spdifin_inverse(s, spdif_inverse);
3169
3170                 /* use SPDIF in #1 */
3171                 set_spdifin_channel2(s, 0);
3172         } else {
3173                 s->chip_version = 0;
3174                 /* 8338 will fall here */
3175                 s->max_channels = 4;
3176                 s->capability |= CAN_DUAL_DAC;
3177                 s->capability |= CAN_LINE_AS_REAR;
3178         }
3179         /* enable SPDIF loop */
3180         set_spdif_loop(s, spdif_loop);
3181
3182         // enable 4 speaker mode (analog duplicate)
3183         set_hw_copy(s, hw_copy);
3184
3185         reg_mask = 0;
3186 #ifdef CONFIG_SOUND_CMPCI_FM
3187         /* disable FM */
3188         maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~8, 0);
3189         if (s->iosynth) {
3190             /* don't enable OPL3 if there is one */
3191             if (opl3_detect(s->iosynth, NULL)) {
3192                 s->iosynth = 0;
3193             } else {
3194                 /* set IO based at 0x388 */
3195                 switch (s->iosynth) {
3196                     case 0x388:
3197                         reg_mask = 0;
3198                         break;
3199                     case 0x3C8:
3200                         reg_mask = 0x01;
3201                         break;
3202                     case 0x3E0:
3203                         reg_mask = 0x02;
3204                         break;
3205                     case 0x3E8:
3206                         reg_mask = 0x03;
3207                         break;
3208                     default:
3209                         s->iosynth = 0;
3210                         break;
3211                 }
3212                 maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0x03, reg_mask);
3213                 /* enable FM */
3214                 if (s->iosynth) {
3215                         maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, 8);
3216                         if (opl3_detect(s->iosynth, NULL))
3217                                 ret = opl3_init(s->iosynth, NULL, THIS_MODULE);
3218                         else {
3219                                 maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~8, 0);
3220                                 s->iosynth = 0;
3221                         }
3222                 }
3223             }
3224         }
3225 #endif
3226 #ifdef CONFIG_SOUND_CMPCI_MIDI
3227         switch (s->iomidi) {
3228             case 0x330:
3229                 reg_mask = 0;
3230                 break;
3231             case 0x320:
3232                 reg_mask = 0x20;
3233                 break;
3234             case 0x310:
3235                 reg_mask = 0x40;
3236                 break;
3237             case 0x300:
3238                 reg_mask = 0x60;
3239                 break;
3240             default:
3241                 s->iomidi = 0;
3242                 goto skip_mpu;
3243         }
3244         ports = request_region(s->iomidi, 2, "mpu401");
3245         if (!ports)
3246                 goto skip_mpu;
3247         /* disable MPU-401 */
3248         maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x04, 0);
3249         s->mpu_data.name = "cmpci mpu";
3250         s->mpu_data.io_base = s->iomidi;
3251         s->mpu_data.irq = -s->irq;      // tell mpu401 to share irq
3252         if (probe_mpu401(&s->mpu_data, ports)) {
3253                 release_region(s->iomidi, 2);
3254                 s->iomidi = 0;
3255                 goto skip_mpu;
3256         }
3257         maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0x60, reg_mask);
3258         /* enable MPU-401 */
3259         maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x04);
3260         /* clear all previously received interrupt */
3261         for (timeout = 900000; timeout > 0; timeout--) {
3262                 if ((inb(s->iomidi + 1) && 0x80) == 0)
3263                         inb(s->iomidi);
3264                 else
3265                         break;
3266         }
3267         if (!probe_mpu401(&s->mpu_data, ports)) {
3268                 release_region(s->iomidi, 2);
3269                 s->iomidi = 0;
3270                 maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x04);
3271         } else {
3272                 attach_mpu401(&s->mpu_data, THIS_MODULE);
3273                 s->midi_devc = s->mpu_data.slots[1];
3274         }
3275 skip_mpu:
3276 #endif
3277         /* disable joystick port */
3278         maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x02, 0);
3279         if (joystick)
3280                 cm_create_gameport(s, 0x200);
3281
3282         /* store it in the driver field */
3283         pci_set_drvdata(pcidev, s);
3284         /* put it into driver list */
3285         list_add_tail(&s->devs, &devs);
3286         /* increment devindex */
3287         if (devindex < NR_DEVICE-1)
3288                 devindex++;
3289         return 0;
3290
3291 err_dev2:
3292         unregister_sound_dsp(s->dev_audio);
3293 err_dev1:
3294         printk(KERN_ERR "cmpci: cannot register misc device\n");
3295         free_irq(s->irq, s);
3296 err_irq:
3297         release_region(s->iobase, CM_EXTENT_CODEC);
3298 err_region5:
3299         kfree(s);
3300         return ret;
3301 }
3302
3303 /* --------------------------------------------------------------------- */
3304
3305 MODULE_AUTHOR("ChenLi Tien, cltien@cmedia.com.tw");
3306 MODULE_DESCRIPTION("CM8x38 Audio Driver");
3307 MODULE_LICENSE("GPL");
3308
3309 static void __devexit cm_remove(struct pci_dev *dev)
3310 {
3311         struct cm_state *s = pci_get_drvdata(dev);
3312
3313         if (!s)
3314                 return;
3315
3316         cm_free_gameport(s);
3317
3318 #ifdef CONFIG_SOUND_CMPCI_FM
3319         if (s->iosynth) {
3320                 /* disable FM */
3321                 maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~8, 0);
3322         }
3323 #endif
3324 #ifdef CONFIG_SOUND_CMPCI_MIDI
3325         if (s->iomidi) {
3326                 unload_mpu401(&s->mpu_data);
3327                 /* disable MPU-401 */
3328                 maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x04, 0);
3329         }
3330 #endif
3331         set_spdif_loop(s, 0);
3332         list_del(&s->devs);
3333         outb(0, s->iobase + CODEC_CMI_INT_HLDCLR + 2);  /* disable ints */
3334         synchronize_irq(s->irq);
3335         outb(0, s->iobase + CODEC_CMI_FUNCTRL0 + 2); /* disable channels */
3336         free_irq(s->irq, s);
3337
3338         /* reset mixer */
3339         wrmixer(s, DSP_MIX_DATARESETIDX, 0);
3340
3341         release_region(s->iobase, CM_EXTENT_CODEC);
3342         unregister_sound_dsp(s->dev_audio);
3343         unregister_sound_mixer(s->dev_mixer);
3344         kfree(s);
3345         pci_set_drvdata(dev, NULL);
3346 }
3347
3348 static struct pci_device_id id_table[] __devinitdata = {
3349         { PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
3350         { PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
3351         { PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
3352         { PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
3353         { 0, }
3354 };
3355
3356 MODULE_DEVICE_TABLE(pci, id_table);
3357
3358 static struct pci_driver cm_driver = {
3359        .name     = "cmpci",
3360        .id_table = id_table,
3361        .probe    = cm_probe,
3362        .remove   = __devexit_p(cm_remove)
3363 };
3364
3365 static int __init init_cmpci(void)
3366 {
3367         printk(KERN_INFO "cmpci: version $Revision: 6.82 $ time " __TIME__ " " __DATE__ "\n");
3368         return pci_module_init(&cm_driver);
3369 }
3370
3371 static void __exit cleanup_cmpci(void)
3372 {
3373         printk(KERN_INFO "cmpci: unloading\n");
3374         pci_unregister_driver(&cm_driver);
3375 }
3376
3377 module_init(init_cmpci);
3378 module_exit(cleanup_cmpci);