mac80211: replace restart_complete() with reconfig_complete()
[cascardo/linux.git] / sound / soc / fsl / fsl_ssi.c
1 /*
2  * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  *
13  * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
14  *
15  * The i.MX SSI core has some nasty limitations in AC97 mode. While most
16  * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
17  * one FIFO which combines all valid receive slots. We cannot even select
18  * which slots we want to receive. The WM9712 with which this driver
19  * was developed with always sends GPIO status data in slot 12 which
20  * we receive in our (PCM-) data stream. The only chance we have is to
21  * manually skip this data in the FIQ handler. With sampling rates different
22  * from 48000Hz not every frame has valid receive data, so the ratio
23  * between pcm data and GPIO status data changes. Our FIQ handler is not
24  * able to handle this, hence this driver only works with 48000Hz sampling
25  * rate.
26  * Reading and writing AC97 registers is another challenge. The core
27  * provides us status bits when the read register is updated with *another*
28  * value. When we read the same register two times (and the register still
29  * contains the same value) these status bits are not set. We work
30  * around this by not polling these bits but only wait a fixed delay.
31  */
32
33 #include <linux/init.h>
34 #include <linux/io.h>
35 #include <linux/module.h>
36 #include <linux/interrupt.h>
37 #include <linux/clk.h>
38 #include <linux/device.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/of.h>
43 #include <linux/of_address.h>
44 #include <linux/of_irq.h>
45 #include <linux/of_platform.h>
46
47 #include <sound/core.h>
48 #include <sound/pcm.h>
49 #include <sound/pcm_params.h>
50 #include <sound/initval.h>
51 #include <sound/soc.h>
52 #include <sound/dmaengine_pcm.h>
53
54 #include "fsl_ssi.h"
55 #include "imx-pcm.h"
56
57 /**
58  * FSLSSI_I2S_RATES: sample rates supported by the I2S
59  *
60  * This driver currently only supports the SSI running in I2S slave mode,
61  * which means the codec determines the sample rate.  Therefore, we tell
62  * ALSA that we support all rates and let the codec driver decide what rates
63  * are really supported.
64  */
65 #define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
66
67 /**
68  * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
69  *
70  * This driver currently only supports the SSI running in I2S slave mode.
71  *
72  * The SSI has a limitation in that the samples must be in the same byte
73  * order as the host CPU.  This is because when multiple bytes are written
74  * to the STX register, the bytes and bits must be written in the same
75  * order.  The STX is a shift register, so all the bits need to be aligned
76  * (bit-endianness must match byte-endianness).  Processors typically write
77  * the bits within a byte in the same order that the bytes of a word are
78  * written in.  So if the host CPU is big-endian, then only big-endian
79  * samples will be written to STX properly.
80  */
81 #ifdef __BIG_ENDIAN
82 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
83          SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
84          SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
85 #else
86 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
87          SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
88          SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
89 #endif
90
91 #define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
92                 CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
93                 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
94 #define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
95                 CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
96                 CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
97
98 enum fsl_ssi_type {
99         FSL_SSI_MCP8610,
100         FSL_SSI_MX21,
101         FSL_SSI_MX35,
102         FSL_SSI_MX51,
103 };
104
105 struct fsl_ssi_reg_val {
106         u32 sier;
107         u32 srcr;
108         u32 stcr;
109         u32 scr;
110 };
111
112 struct fsl_ssi_rxtx_reg_val {
113         struct fsl_ssi_reg_val rx;
114         struct fsl_ssi_reg_val tx;
115 };
116 static const struct regmap_config fsl_ssi_regconfig = {
117         .max_register = CCSR_SSI_SACCDIS,
118         .reg_bits = 32,
119         .val_bits = 32,
120         .reg_stride = 4,
121         .val_format_endian = REGMAP_ENDIAN_NATIVE,
122 };
123
124 struct fsl_ssi_soc_data {
125         bool imx;
126         bool offline_config;
127         u32 sisr_write_mask;
128 };
129
130 /**
131  * fsl_ssi_private: per-SSI private data
132  *
133  * @reg: Pointer to the regmap registers
134  * @irq: IRQ of this SSI
135  * @cpu_dai_drv: CPU DAI driver for this device
136  *
137  * @dai_fmt: DAI configuration this device is currently used with
138  * @i2s_mode: i2s and network mode configuration of the device. Is used to
139  * switch between normal and i2s/network mode
140  * mode depending on the number of channels
141  * @use_dma: DMA is used or FIQ with stream filter
142  * @use_dual_fifo: DMA with support for both FIFOs used
143  * @fifo_deph: Depth of the SSI FIFOs
144  * @rxtx_reg_val: Specific register settings for receive/transmit configuration
145  *
146  * @clk: SSI clock
147  * @baudclk: SSI baud clock for master mode
148  * @baudclk_streams: Active streams that are using baudclk
149  * @bitclk_freq: bitclock frequency set by .set_dai_sysclk
150  *
151  * @dma_params_tx: DMA transmit parameters
152  * @dma_params_rx: DMA receive parameters
153  * @ssi_phys: physical address of the SSI registers
154  *
155  * @fiq_params: FIQ stream filtering parameters
156  *
157  * @pdev: Pointer to pdev used for deprecated fsl-ssi sound card
158  *
159  * @dbg_stats: Debugging statistics
160  *
161  * @soc: SoC specifc data
162  */
163 struct fsl_ssi_private {
164         struct regmap *regs;
165         unsigned int irq;
166         struct snd_soc_dai_driver cpu_dai_drv;
167
168         unsigned int dai_fmt;
169         u8 i2s_mode;
170         bool use_dma;
171         bool use_dual_fifo;
172         unsigned int fifo_depth;
173         struct fsl_ssi_rxtx_reg_val rxtx_reg_val;
174
175         struct clk *clk;
176         struct clk *baudclk;
177         unsigned int baudclk_streams;
178         unsigned int bitclk_freq;
179
180         /* DMA params */
181         struct snd_dmaengine_dai_dma_data dma_params_tx;
182         struct snd_dmaengine_dai_dma_data dma_params_rx;
183         dma_addr_t ssi_phys;
184
185         /* params for non-dma FIQ stream filtered mode */
186         struct imx_pcm_fiq_params fiq_params;
187
188         /* Used when using fsl-ssi as sound-card. This is only used by ppc and
189          * should be replaced with simple-sound-card. */
190         struct platform_device *pdev;
191
192         struct fsl_ssi_dbg dbg_stats;
193
194         const struct fsl_ssi_soc_data *soc;
195 };
196
197 /*
198  * imx51 and later SoCs have a slightly different IP that allows the
199  * SSI configuration while the SSI unit is running.
200  *
201  * More important, it is necessary on those SoCs to configure the
202  * sperate TX/RX DMA bits just before starting the stream
203  * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
204  * sends any DMA requests to the SDMA unit, otherwise it is not defined
205  * how the SDMA unit handles the DMA request.
206  *
207  * SDMA units are present on devices starting at imx35 but the imx35
208  * reference manual states that the DMA bits should not be changed
209  * while the SSI unit is running (SSIEN). So we support the necessary
210  * online configuration of fsl-ssi starting at imx51.
211  */
212
213 static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
214         .imx = false,
215         .offline_config = true,
216         .sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
217                         CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
218                         CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
219 };
220
221 static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
222         .imx = true,
223         .offline_config = true,
224         .sisr_write_mask = 0,
225 };
226
227 static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
228         .imx = true,
229         .offline_config = true,
230         .sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
231                         CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
232                         CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
233 };
234
235 static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
236         .imx = true,
237         .offline_config = false,
238         .sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
239                 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
240 };
241
242 static const struct of_device_id fsl_ssi_ids[] = {
243         { .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
244         { .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
245         { .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
246         { .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
247         {}
248 };
249 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
250
251 static bool fsl_ssi_is_ac97(struct fsl_ssi_private *ssi_private)
252 {
253         return !!(ssi_private->dai_fmt & SND_SOC_DAIFMT_AC97);
254 }
255
256 static bool fsl_ssi_is_i2s_master(struct fsl_ssi_private *ssi_private)
257 {
258         return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
259                 SND_SOC_DAIFMT_CBS_CFS;
260 }
261
262 /**
263  * fsl_ssi_isr: SSI interrupt handler
264  *
265  * Although it's possible to use the interrupt handler to send and receive
266  * data to/from the SSI, we use the DMA instead.  Programming is more
267  * complicated, but the performance is much better.
268  *
269  * This interrupt handler is used only to gather statistics.
270  *
271  * @irq: IRQ of the SSI device
272  * @dev_id: pointer to the ssi_private structure for this SSI device
273  */
274 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
275 {
276         struct fsl_ssi_private *ssi_private = dev_id;
277         struct regmap *regs = ssi_private->regs;
278         __be32 sisr;
279         __be32 sisr2;
280
281         /* We got an interrupt, so read the status register to see what we
282            were interrupted for.  We mask it with the Interrupt Enable register
283            so that we only check for events that we're interested in.
284          */
285         regmap_read(regs, CCSR_SSI_SISR, &sisr);
286
287         sisr2 = sisr & ssi_private->soc->sisr_write_mask;
288         /* Clear the bits that we set */
289         if (sisr2)
290                 regmap_write(regs, CCSR_SSI_SISR, sisr2);
291
292         fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr);
293
294         return IRQ_HANDLED;
295 }
296
297 /*
298  * Enable/Disable all rx/tx config flags at once.
299  */
300 static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
301                 bool enable)
302 {
303         struct regmap *regs = ssi_private->regs;
304         struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;
305
306         if (enable) {
307                 regmap_update_bits(regs, CCSR_SSI_SIER,
308                                 vals->rx.sier | vals->tx.sier,
309                                 vals->rx.sier | vals->tx.sier);
310                 regmap_update_bits(regs, CCSR_SSI_SRCR,
311                                 vals->rx.srcr | vals->tx.srcr,
312                                 vals->rx.srcr | vals->tx.srcr);
313                 regmap_update_bits(regs, CCSR_SSI_STCR,
314                                 vals->rx.stcr | vals->tx.stcr,
315                                 vals->rx.stcr | vals->tx.stcr);
316         } else {
317                 regmap_update_bits(regs, CCSR_SSI_SRCR,
318                                 vals->rx.srcr | vals->tx.srcr, 0);
319                 regmap_update_bits(regs, CCSR_SSI_STCR,
320                                 vals->rx.stcr | vals->tx.stcr, 0);
321                 regmap_update_bits(regs, CCSR_SSI_SIER,
322                                 vals->rx.sier | vals->tx.sier, 0);
323         }
324 }
325
326 /*
327  * Calculate the bits that have to be disabled for the current stream that is
328  * getting disabled. This keeps the bits enabled that are necessary for the
329  * second stream to work if 'stream_active' is true.
330  *
331  * Detailed calculation:
332  * These are the values that need to be active after disabling. For non-active
333  * second stream, this is 0:
334  *      vals_stream * !!stream_active
335  *
336  * The following computes the overall differences between the setup for the
337  * to-disable stream and the active stream, a simple XOR:
338  *      vals_disable ^ (vals_stream * !!(stream_active))
339  *
340  * The full expression adds a mask on all values we care about
341  */
342 #define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
343         ((vals_disable) & \
344          ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))
345
346 /*
347  * Enable/Disable a ssi configuration. You have to pass either
348  * ssi_private->rxtx_reg_val.rx or tx as vals parameter.
349  */
350 static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
351                 struct fsl_ssi_reg_val *vals)
352 {
353         struct regmap *regs = ssi_private->regs;
354         struct fsl_ssi_reg_val *avals;
355         int nr_active_streams;
356         u32 scr_val;
357         int keep_active;
358
359         regmap_read(regs, CCSR_SSI_SCR, &scr_val);
360
361         nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
362                                 !!(scr_val & CCSR_SSI_SCR_RE);
363
364         if (nr_active_streams - 1 > 0)
365                 keep_active = 1;
366         else
367                 keep_active = 0;
368
369         /* Find the other direction values rx or tx which we do not want to
370          * modify */
371         if (&ssi_private->rxtx_reg_val.rx == vals)
372                 avals = &ssi_private->rxtx_reg_val.tx;
373         else
374                 avals = &ssi_private->rxtx_reg_val.rx;
375
376         /* If vals should be disabled, start with disabling the unit */
377         if (!enable) {
378                 u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
379                                 keep_active);
380                 regmap_update_bits(regs, CCSR_SSI_SCR, scr, 0);
381         }
382
383         /*
384          * We are running on a SoC which does not support online SSI
385          * reconfiguration, so we have to enable all necessary flags at once
386          * even if we do not use them later (capture and playback configuration)
387          */
388         if (ssi_private->soc->offline_config) {
389                 if ((enable && !nr_active_streams) ||
390                                 (!enable && !keep_active))
391                         fsl_ssi_rxtx_config(ssi_private, enable);
392
393                 goto config_done;
394         }
395
396         /*
397          * Configure single direction units while the SSI unit is running
398          * (online configuration)
399          */
400         if (enable) {
401                 regmap_update_bits(regs, CCSR_SSI_SIER, vals->sier, vals->sier);
402                 regmap_update_bits(regs, CCSR_SSI_SRCR, vals->srcr, vals->srcr);
403                 regmap_update_bits(regs, CCSR_SSI_STCR, vals->stcr, vals->stcr);
404         } else {
405                 u32 sier;
406                 u32 srcr;
407                 u32 stcr;
408
409                 /*
410                  * Disabling the necessary flags for one of rx/tx while the
411                  * other stream is active is a little bit more difficult. We
412                  * have to disable only those flags that differ between both
413                  * streams (rx XOR tx) and that are set in the stream that is
414                  * disabled now. Otherwise we could alter flags of the other
415                  * stream
416                  */
417
418                 /* These assignments are simply vals without bits set in avals*/
419                 sier = fsl_ssi_disable_val(vals->sier, avals->sier,
420                                 keep_active);
421                 srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
422                                 keep_active);
423                 stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
424                                 keep_active);
425
426                 regmap_update_bits(regs, CCSR_SSI_SRCR, srcr, 0);
427                 regmap_update_bits(regs, CCSR_SSI_STCR, stcr, 0);
428                 regmap_update_bits(regs, CCSR_SSI_SIER, sier, 0);
429         }
430
431 config_done:
432         /* Enabling of subunits is done after configuration */
433         if (enable)
434                 regmap_update_bits(regs, CCSR_SSI_SCR, vals->scr, vals->scr);
435 }
436
437
438 static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
439 {
440         fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
441 }
442
443 static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
444 {
445         fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
446 }
447
448 /*
449  * Setup rx/tx register values used to enable/disable the streams. These will
450  * be used later in fsl_ssi_config to setup the streams without the need to
451  * check for all different SSI modes.
452  */
453 static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
454 {
455         struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;
456
457         reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
458         reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
459         reg->rx.scr = 0;
460         reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
461         reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
462         reg->tx.scr = 0;
463
464         if (!fsl_ssi_is_ac97(ssi_private)) {
465                 reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
466                 reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN;
467                 reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
468                 reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN;
469         }
470
471         if (ssi_private->use_dma) {
472                 reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
473                 reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
474         } else {
475                 reg->rx.sier |= CCSR_SSI_SIER_RIE;
476                 reg->tx.sier |= CCSR_SSI_SIER_TIE;
477         }
478
479         reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
480         reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
481 }
482
483 static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
484 {
485         struct regmap *regs = ssi_private->regs;
486
487         /*
488          * Setup the clock control register
489          */
490         regmap_write(regs, CCSR_SSI_STCCR,
491                         CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
492         regmap_write(regs, CCSR_SSI_SRCCR,
493                         CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
494
495         /*
496          * Enable AC97 mode and startup the SSI
497          */
498         regmap_write(regs, CCSR_SSI_SACNT,
499                         CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV);
500         regmap_write(regs, CCSR_SSI_SACCDIS, 0xff);
501         regmap_write(regs, CCSR_SSI_SACCEN, 0x300);
502
503         /*
504          * Enable SSI, Transmit and Receive. AC97 has to communicate with the
505          * codec before a stream is started.
506          */
507         regmap_update_bits(regs, CCSR_SSI_SCR,
508                         CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE,
509                         CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
510
511         regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_WAIT(3));
512 }
513
514 /**
515  * fsl_ssi_startup: create a new substream
516  *
517  * This is the first function called when a stream is opened.
518  *
519  * If this is the first stream open, then grab the IRQ and program most of
520  * the SSI registers.
521  */
522 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
523                            struct snd_soc_dai *dai)
524 {
525         struct snd_soc_pcm_runtime *rtd = substream->private_data;
526         struct fsl_ssi_private *ssi_private =
527                 snd_soc_dai_get_drvdata(rtd->cpu_dai);
528
529         /* When using dual fifo mode, it is safer to ensure an even period
530          * size. If appearing to an odd number while DMA always starts its
531          * task from fifo0, fifo1 would be neglected at the end of each
532          * period. But SSI would still access fifo1 with an invalid data.
533          */
534         if (ssi_private->use_dual_fifo)
535                 snd_pcm_hw_constraint_step(substream->runtime, 0,
536                                 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
537
538         return 0;
539 }
540
541 /**
542  * fsl_ssi_set_bclk - configure Digital Audio Interface bit clock
543  *
544  * Note: This function can be only called when using SSI as DAI master
545  *
546  * Quick instruction for parameters:
547  * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
548  * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
549  */
550 static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
551                 struct snd_soc_dai *cpu_dai,
552                 struct snd_pcm_hw_params *hw_params)
553 {
554         struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
555         struct regmap *regs = ssi_private->regs;
556         int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
557         u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
558         unsigned long clkrate, baudrate, tmprate;
559         u64 sub, savesub = 100000;
560         unsigned int freq;
561         bool baudclk_is_used;
562
563         /* Prefer the explicitly set bitclock frequency */
564         if (ssi_private->bitclk_freq)
565                 freq = ssi_private->bitclk_freq;
566         else
567                 freq = params_channels(hw_params) * 32 * params_rate(hw_params);
568
569         /* Don't apply it to any non-baudclk circumstance */
570         if (IS_ERR(ssi_private->baudclk))
571                 return -EINVAL;
572
573         baudclk_is_used = ssi_private->baudclk_streams & ~(BIT(substream->stream));
574
575         /* It should be already enough to divide clock by setting pm alone */
576         psr = 0;
577         div2 = 0;
578
579         factor = (div2 + 1) * (7 * psr + 1) * 2;
580
581         for (i = 0; i < 255; i++) {
582                 /* The bclk rate must be smaller than 1/5 sysclk rate */
583                 if (factor * (i + 1) < 5)
584                         continue;
585
586                 tmprate = freq * factor * (i + 2);
587
588                 if (baudclk_is_used)
589                         clkrate = clk_get_rate(ssi_private->baudclk);
590                 else
591                         clkrate = clk_round_rate(ssi_private->baudclk, tmprate);
592
593                 clkrate /= factor;
594                 afreq = clkrate / (i + 1);
595
596                 if (freq == afreq)
597                         sub = 0;
598                 else if (freq / afreq == 1)
599                         sub = freq - afreq;
600                 else if (afreq / freq == 1)
601                         sub = afreq - freq;
602                 else
603                         continue;
604
605                 /* Calculate the fraction */
606                 sub *= 100000;
607                 do_div(sub, freq);
608
609                 if (sub < savesub) {
610                         baudrate = tmprate;
611                         savesub = sub;
612                         pm = i;
613                 }
614
615                 /* We are lucky */
616                 if (savesub == 0)
617                         break;
618         }
619
620         /* No proper pm found if it is still remaining the initial value */
621         if (pm == 999) {
622                 dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
623                 return -EINVAL;
624         }
625
626         stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
627                 (psr ? CCSR_SSI_SxCCR_PSR : 0);
628         mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 |
629                 CCSR_SSI_SxCCR_PSR;
630
631         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || synchronous)
632                 regmap_update_bits(regs, CCSR_SSI_STCCR, mask, stccr);
633         else
634                 regmap_update_bits(regs, CCSR_SSI_SRCCR, mask, stccr);
635
636         if (!baudclk_is_used) {
637                 ret = clk_set_rate(ssi_private->baudclk, baudrate);
638                 if (ret) {
639                         dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
640                         return -EINVAL;
641                 }
642         }
643
644         return 0;
645 }
646
647 static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
648                 int clk_id, unsigned int freq, int dir)
649 {
650         struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
651
652         ssi_private->bitclk_freq = freq;
653
654         return 0;
655 }
656
657 /**
658  * fsl_ssi_hw_params - program the sample size
659  *
660  * Most of the SSI registers have been programmed in the startup function,
661  * but the word length must be programmed here.  Unfortunately, programming
662  * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
663  * cause a problem with supporting simultaneous playback and capture.  If
664  * the SSI is already playing a stream, then that stream may be temporarily
665  * stopped when you start capture.
666  *
667  * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
668  * clock master.
669  */
670 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
671         struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
672 {
673         struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
674         struct regmap *regs = ssi_private->regs;
675         unsigned int channels = params_channels(hw_params);
676         unsigned int sample_size =
677                 snd_pcm_format_width(params_format(hw_params));
678         u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
679         int ret;
680         u32 scr_val;
681         int enabled;
682
683         regmap_read(regs, CCSR_SSI_SCR, &scr_val);
684         enabled = scr_val & CCSR_SSI_SCR_SSIEN;
685
686         /*
687          * If we're in synchronous mode, and the SSI is already enabled,
688          * then STCCR is already set properly.
689          */
690         if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
691                 return 0;
692
693         if (fsl_ssi_is_i2s_master(ssi_private)) {
694                 ret = fsl_ssi_set_bclk(substream, cpu_dai, hw_params);
695                 if (ret)
696                         return ret;
697
698                 /* Do not enable the clock if it is already enabled */
699                 if (!(ssi_private->baudclk_streams & BIT(substream->stream))) {
700                         ret = clk_prepare_enable(ssi_private->baudclk);
701                         if (ret)
702                                 return ret;
703
704                         ssi_private->baudclk_streams |= BIT(substream->stream);
705                 }
706         }
707
708         /*
709          * FIXME: The documentation says that SxCCR[WL] should not be
710          * modified while the SSI is enabled.  The only time this can
711          * happen is if we're trying to do simultaneous playback and
712          * capture in asynchronous mode.  Unfortunately, I have been enable
713          * to get that to work at all on the P1022DS.  Therefore, we don't
714          * bother to disable/enable the SSI when setting SxCCR[WL], because
715          * the SSI will stop anyway.  Maybe one day, this will get fixed.
716          */
717
718         /* In synchronous mode, the SSI uses STCCR for capture */
719         if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
720             ssi_private->cpu_dai_drv.symmetric_rates)
721                 regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_WL_MASK,
722                                 wl);
723         else
724                 regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_WL_MASK,
725                                 wl);
726
727         if (!fsl_ssi_is_ac97(ssi_private))
728                 regmap_update_bits(regs, CCSR_SSI_SCR,
729                                 CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
730                                 channels == 1 ? 0 : ssi_private->i2s_mode);
731
732         return 0;
733 }
734
735 static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
736                 struct snd_soc_dai *cpu_dai)
737 {
738         struct snd_soc_pcm_runtime *rtd = substream->private_data;
739         struct fsl_ssi_private *ssi_private =
740                 snd_soc_dai_get_drvdata(rtd->cpu_dai);
741
742         if (fsl_ssi_is_i2s_master(ssi_private) &&
743                         ssi_private->baudclk_streams & BIT(substream->stream)) {
744                 clk_disable_unprepare(ssi_private->baudclk);
745                 ssi_private->baudclk_streams &= ~BIT(substream->stream);
746         }
747
748         return 0;
749 }
750
751 static int _fsl_ssi_set_dai_fmt(struct device *dev,
752                                 struct fsl_ssi_private *ssi_private,
753                                 unsigned int fmt)
754 {
755         struct regmap *regs = ssi_private->regs;
756         u32 strcr = 0, stcr, srcr, scr, mask;
757         u8 wm;
758
759         ssi_private->dai_fmt = fmt;
760
761         if (fsl_ssi_is_i2s_master(ssi_private) && IS_ERR(ssi_private->baudclk)) {
762                 dev_err(dev, "baudclk is missing which is necessary for master mode\n");
763                 return -EINVAL;
764         }
765
766         fsl_ssi_setup_reg_vals(ssi_private);
767
768         regmap_read(regs, CCSR_SSI_SCR, &scr);
769         scr &= ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
770         scr |= CCSR_SSI_SCR_SYNC_TX_FS;
771
772         mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
773                 CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
774                 CCSR_SSI_STCR_TEFS;
775         regmap_read(regs, CCSR_SSI_STCR, &stcr);
776         regmap_read(regs, CCSR_SSI_SRCR, &srcr);
777         stcr &= ~mask;
778         srcr &= ~mask;
779
780         ssi_private->i2s_mode = CCSR_SSI_SCR_NET;
781         switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
782         case SND_SOC_DAIFMT_I2S:
783                 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
784                 case SND_SOC_DAIFMT_CBS_CFS:
785                         ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
786                         regmap_update_bits(regs, CCSR_SSI_STCCR,
787                                         CCSR_SSI_SxCCR_DC_MASK,
788                                         CCSR_SSI_SxCCR_DC(2));
789                         regmap_update_bits(regs, CCSR_SSI_SRCCR,
790                                         CCSR_SSI_SxCCR_DC_MASK,
791                                         CCSR_SSI_SxCCR_DC(2));
792                         break;
793                 case SND_SOC_DAIFMT_CBM_CFM:
794                         ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
795                         break;
796                 default:
797                         return -EINVAL;
798                 }
799
800                 /* Data on rising edge of bclk, frame low, 1clk before data */
801                 strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
802                         CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
803                 break;
804         case SND_SOC_DAIFMT_LEFT_J:
805                 /* Data on rising edge of bclk, frame high */
806                 strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
807                 break;
808         case SND_SOC_DAIFMT_DSP_A:
809                 /* Data on rising edge of bclk, frame high, 1clk before data */
810                 strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
811                         CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
812                 break;
813         case SND_SOC_DAIFMT_DSP_B:
814                 /* Data on rising edge of bclk, frame high */
815                 strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
816                         CCSR_SSI_STCR_TXBIT0;
817                 break;
818         case SND_SOC_DAIFMT_AC97:
819                 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
820                 break;
821         default:
822                 return -EINVAL;
823         }
824         scr |= ssi_private->i2s_mode;
825
826         /* DAI clock inversion */
827         switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
828         case SND_SOC_DAIFMT_NB_NF:
829                 /* Nothing to do for both normal cases */
830                 break;
831         case SND_SOC_DAIFMT_IB_NF:
832                 /* Invert bit clock */
833                 strcr ^= CCSR_SSI_STCR_TSCKP;
834                 break;
835         case SND_SOC_DAIFMT_NB_IF:
836                 /* Invert frame clock */
837                 strcr ^= CCSR_SSI_STCR_TFSI;
838                 break;
839         case SND_SOC_DAIFMT_IB_IF:
840                 /* Invert both clocks */
841                 strcr ^= CCSR_SSI_STCR_TSCKP;
842                 strcr ^= CCSR_SSI_STCR_TFSI;
843                 break;
844         default:
845                 return -EINVAL;
846         }
847
848         /* DAI clock master masks */
849         switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
850         case SND_SOC_DAIFMT_CBS_CFS:
851                 strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
852                 scr |= CCSR_SSI_SCR_SYS_CLK_EN;
853                 break;
854         case SND_SOC_DAIFMT_CBM_CFM:
855                 scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
856                 break;
857         default:
858                 return -EINVAL;
859         }
860
861         stcr |= strcr;
862         srcr |= strcr;
863
864         if (ssi_private->cpu_dai_drv.symmetric_rates) {
865                 /* Need to clear RXDIR when using SYNC mode */
866                 srcr &= ~CCSR_SSI_SRCR_RXDIR;
867                 scr |= CCSR_SSI_SCR_SYN;
868         }
869
870         regmap_write(regs, CCSR_SSI_STCR, stcr);
871         regmap_write(regs, CCSR_SSI_SRCR, srcr);
872         regmap_write(regs, CCSR_SSI_SCR, scr);
873
874         /*
875          * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
876          * use FIFO 1. We program the transmit water to signal a DMA transfer
877          * if there are only two (or fewer) elements left in the FIFO. Two
878          * elements equals one frame (left channel, right channel). This value,
879          * however, depends on the depth of the transmit buffer.
880          *
881          * We set the watermark on the same level as the DMA burstsize.  For
882          * fiq it is probably better to use the biggest possible watermark
883          * size.
884          */
885         if (ssi_private->use_dma)
886                 wm = ssi_private->fifo_depth - 2;
887         else
888                 wm = ssi_private->fifo_depth;
889
890         regmap_write(regs, CCSR_SSI_SFCSR,
891                         CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
892                         CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm));
893
894         if (ssi_private->use_dual_fifo) {
895                 regmap_update_bits(regs, CCSR_SSI_SRCR, CCSR_SSI_SRCR_RFEN1,
896                                 CCSR_SSI_SRCR_RFEN1);
897                 regmap_update_bits(regs, CCSR_SSI_STCR, CCSR_SSI_STCR_TFEN1,
898                                 CCSR_SSI_STCR_TFEN1);
899                 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_TCH_EN,
900                                 CCSR_SSI_SCR_TCH_EN);
901         }
902
903         if (fmt & SND_SOC_DAIFMT_AC97)
904                 fsl_ssi_setup_ac97(ssi_private);
905
906         return 0;
907
908 }
909
910 /**
911  * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
912  */
913 static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
914 {
915         struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
916
917         return _fsl_ssi_set_dai_fmt(cpu_dai->dev, ssi_private, fmt);
918 }
919
920 /**
921  * fsl_ssi_set_dai_tdm_slot - set TDM slot number
922  *
923  * Note: This function can be only called when using SSI as DAI master
924  */
925 static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
926                                 u32 rx_mask, int slots, int slot_width)
927 {
928         struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
929         struct regmap *regs = ssi_private->regs;
930         u32 val;
931
932         /* The slot number should be >= 2 if using Network mode or I2S mode */
933         regmap_read(regs, CCSR_SSI_SCR, &val);
934         val &= CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET;
935         if (val && slots < 2) {
936                 dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
937                 return -EINVAL;
938         }
939
940         regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_DC_MASK,
941                         CCSR_SSI_SxCCR_DC(slots));
942         regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_DC_MASK,
943                         CCSR_SSI_SxCCR_DC(slots));
944
945         /* The register SxMSKs needs SSI to provide essential clock due to
946          * hardware design. So we here temporarily enable SSI to set them.
947          */
948         regmap_read(regs, CCSR_SSI_SCR, &val);
949         val &= CCSR_SSI_SCR_SSIEN;
950         regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN,
951                         CCSR_SSI_SCR_SSIEN);
952
953         regmap_write(regs, CCSR_SSI_STMSK, tx_mask);
954         regmap_write(regs, CCSR_SSI_SRMSK, rx_mask);
955
956         regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, val);
957
958         return 0;
959 }
960
961 /**
962  * fsl_ssi_trigger: start and stop the DMA transfer.
963  *
964  * This function is called by ALSA to start, stop, pause, and resume the DMA
965  * transfer of data.
966  *
967  * The DMA channel is in external master start and pause mode, which
968  * means the SSI completely controls the flow of data.
969  */
970 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
971                            struct snd_soc_dai *dai)
972 {
973         struct snd_soc_pcm_runtime *rtd = substream->private_data;
974         struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
975         struct regmap *regs = ssi_private->regs;
976
977         switch (cmd) {
978         case SNDRV_PCM_TRIGGER_START:
979         case SNDRV_PCM_TRIGGER_RESUME:
980         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
981                 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
982                         fsl_ssi_tx_config(ssi_private, true);
983                 else
984                         fsl_ssi_rx_config(ssi_private, true);
985                 break;
986
987         case SNDRV_PCM_TRIGGER_STOP:
988         case SNDRV_PCM_TRIGGER_SUSPEND:
989         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
990                 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
991                         fsl_ssi_tx_config(ssi_private, false);
992                 else
993                         fsl_ssi_rx_config(ssi_private, false);
994                 break;
995
996         default:
997                 return -EINVAL;
998         }
999
1000         if (fsl_ssi_is_ac97(ssi_private)) {
1001                 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1002                         regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_TX_CLR);
1003                 else
1004                         regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_RX_CLR);
1005         }
1006
1007         return 0;
1008 }
1009
1010 static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1011 {
1012         struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
1013
1014         if (ssi_private->soc->imx && ssi_private->use_dma) {
1015                 dai->playback_dma_data = &ssi_private->dma_params_tx;
1016                 dai->capture_dma_data = &ssi_private->dma_params_rx;
1017         }
1018
1019         return 0;
1020 }
1021
1022 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1023         .startup        = fsl_ssi_startup,
1024         .hw_params      = fsl_ssi_hw_params,
1025         .hw_free        = fsl_ssi_hw_free,
1026         .set_fmt        = fsl_ssi_set_dai_fmt,
1027         .set_sysclk     = fsl_ssi_set_dai_sysclk,
1028         .set_tdm_slot   = fsl_ssi_set_dai_tdm_slot,
1029         .trigger        = fsl_ssi_trigger,
1030 };
1031
1032 /* Template for the CPU dai driver structure */
1033 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1034         .probe = fsl_ssi_dai_probe,
1035         .playback = {
1036                 .stream_name = "CPU-Playback",
1037                 .channels_min = 1,
1038                 .channels_max = 2,
1039                 .rates = FSLSSI_I2S_RATES,
1040                 .formats = FSLSSI_I2S_FORMATS,
1041         },
1042         .capture = {
1043                 .stream_name = "CPU-Capture",
1044                 .channels_min = 1,
1045                 .channels_max = 2,
1046                 .rates = FSLSSI_I2S_RATES,
1047                 .formats = FSLSSI_I2S_FORMATS,
1048         },
1049         .ops = &fsl_ssi_dai_ops,
1050 };
1051
1052 static const struct snd_soc_component_driver fsl_ssi_component = {
1053         .name           = "fsl-ssi",
1054 };
1055
1056 static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1057         .ac97_control = 1,
1058         .playback = {
1059                 .stream_name = "AC97 Playback",
1060                 .channels_min = 2,
1061                 .channels_max = 2,
1062                 .rates = SNDRV_PCM_RATE_8000_48000,
1063                 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1064         },
1065         .capture = {
1066                 .stream_name = "AC97 Capture",
1067                 .channels_min = 2,
1068                 .channels_max = 2,
1069                 .rates = SNDRV_PCM_RATE_48000,
1070                 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1071         },
1072         .ops = &fsl_ssi_dai_ops,
1073 };
1074
1075
1076 static struct fsl_ssi_private *fsl_ac97_data;
1077
1078 static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1079                 unsigned short val)
1080 {
1081         struct regmap *regs = fsl_ac97_data->regs;
1082         unsigned int lreg;
1083         unsigned int lval;
1084
1085         if (reg > 0x7f)
1086                 return;
1087
1088
1089         lreg = reg <<  12;
1090         regmap_write(regs, CCSR_SSI_SACADD, lreg);
1091
1092         lval = val << 4;
1093         regmap_write(regs, CCSR_SSI_SACDAT, lval);
1094
1095         regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1096                         CCSR_SSI_SACNT_WR);
1097         udelay(100);
1098 }
1099
1100 static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1101                 unsigned short reg)
1102 {
1103         struct regmap *regs = fsl_ac97_data->regs;
1104
1105         unsigned short val = -1;
1106         u32 reg_val;
1107         unsigned int lreg;
1108
1109         lreg = (reg & 0x7f) <<  12;
1110         regmap_write(regs, CCSR_SSI_SACADD, lreg);
1111         regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1112                         CCSR_SSI_SACNT_RD);
1113
1114         udelay(100);
1115
1116         regmap_read(regs, CCSR_SSI_SACDAT, &reg_val);
1117         val = (reg_val >> 4) & 0xffff;
1118
1119         return val;
1120 }
1121
1122 static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1123         .read           = fsl_ssi_ac97_read,
1124         .write          = fsl_ssi_ac97_write,
1125 };
1126
1127 /**
1128  * Make every character in a string lower-case
1129  */
1130 static void make_lowercase(char *s)
1131 {
1132         char *p = s;
1133         char c;
1134
1135         while ((c = *p)) {
1136                 if ((c >= 'A') && (c <= 'Z'))
1137                         *p = c + ('a' - 'A');
1138                 p++;
1139         }
1140 }
1141
1142 static int fsl_ssi_imx_probe(struct platform_device *pdev,
1143                 struct fsl_ssi_private *ssi_private, void __iomem *iomem)
1144 {
1145         struct device_node *np = pdev->dev.of_node;
1146         u32 dmas[4];
1147         int ret;
1148
1149         ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
1150         if (IS_ERR(ssi_private->clk)) {
1151                 ret = PTR_ERR(ssi_private->clk);
1152                 dev_err(&pdev->dev, "could not get clock: %d\n", ret);
1153                 return ret;
1154         }
1155
1156         ret = clk_prepare_enable(ssi_private->clk);
1157         if (ret) {
1158                 dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1159                 return ret;
1160         }
1161
1162         /* For those SLAVE implementations, we ingore non-baudclk cases
1163          * and, instead, abandon MASTER mode that needs baud clock.
1164          */
1165         ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
1166         if (IS_ERR(ssi_private->baudclk))
1167                 dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
1168                          PTR_ERR(ssi_private->baudclk));
1169
1170         /*
1171          * We have burstsize be "fifo_depth - 2" to match the SSI
1172          * watermark setting in fsl_ssi_startup().
1173          */
1174         ssi_private->dma_params_tx.maxburst = ssi_private->fifo_depth - 2;
1175         ssi_private->dma_params_rx.maxburst = ssi_private->fifo_depth - 2;
1176         ssi_private->dma_params_tx.addr = ssi_private->ssi_phys + CCSR_SSI_STX0;
1177         ssi_private->dma_params_rx.addr = ssi_private->ssi_phys + CCSR_SSI_SRX0;
1178
1179         ret = !of_property_read_u32_array(np, "dmas", dmas, 4);
1180         if (ssi_private->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
1181                 ssi_private->use_dual_fifo = true;
1182                 /* When using dual fifo mode, we need to keep watermark
1183                  * as even numbers due to dma script limitation.
1184                  */
1185                 ssi_private->dma_params_tx.maxburst &= ~0x1;
1186                 ssi_private->dma_params_rx.maxburst &= ~0x1;
1187         }
1188
1189         if (!ssi_private->use_dma) {
1190
1191                 /*
1192                  * Some boards use an incompatible codec. To get it
1193                  * working, we are using imx-fiq-pcm-audio, that
1194                  * can handle those codecs. DMA is not possible in this
1195                  * situation.
1196                  */
1197
1198                 ssi_private->fiq_params.irq = ssi_private->irq;
1199                 ssi_private->fiq_params.base = iomem;
1200                 ssi_private->fiq_params.dma_params_rx =
1201                         &ssi_private->dma_params_rx;
1202                 ssi_private->fiq_params.dma_params_tx =
1203                         &ssi_private->dma_params_tx;
1204
1205                 ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
1206                 if (ret)
1207                         goto error_pcm;
1208         } else {
1209                 ret = imx_pcm_dma_init(pdev);
1210                 if (ret)
1211                         goto error_pcm;
1212         }
1213
1214         return 0;
1215
1216 error_pcm:
1217         clk_disable_unprepare(ssi_private->clk);
1218
1219         return ret;
1220 }
1221
1222 static void fsl_ssi_imx_clean(struct platform_device *pdev,
1223                 struct fsl_ssi_private *ssi_private)
1224 {
1225         if (!ssi_private->use_dma)
1226                 imx_pcm_fiq_exit(pdev);
1227         clk_disable_unprepare(ssi_private->clk);
1228 }
1229
1230 static int fsl_ssi_probe(struct platform_device *pdev)
1231 {
1232         struct fsl_ssi_private *ssi_private;
1233         int ret = 0;
1234         struct device_node *np = pdev->dev.of_node;
1235         const struct of_device_id *of_id;
1236         const char *p, *sprop;
1237         const uint32_t *iprop;
1238         struct resource res;
1239         void __iomem *iomem;
1240         char name[64];
1241
1242         /* SSIs that are not connected on the board should have a
1243          *      status = "disabled"
1244          * property in their device tree nodes.
1245          */
1246         if (!of_device_is_available(np))
1247                 return -ENODEV;
1248
1249         of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
1250         if (!of_id || !of_id->data)
1251                 return -EINVAL;
1252
1253         ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private),
1254                         GFP_KERNEL);
1255         if (!ssi_private) {
1256                 dev_err(&pdev->dev, "could not allocate DAI object\n");
1257                 return -ENOMEM;
1258         }
1259
1260         ssi_private->soc = of_id->data;
1261
1262         sprop = of_get_property(np, "fsl,mode", NULL);
1263         if (sprop) {
1264                 if (!strcmp(sprop, "ac97-slave"))
1265                         ssi_private->dai_fmt = SND_SOC_DAIFMT_AC97;
1266                 else if (!strcmp(sprop, "i2s-slave"))
1267                         ssi_private->dai_fmt = SND_SOC_DAIFMT_I2S |
1268                                 SND_SOC_DAIFMT_CBM_CFM;
1269         }
1270
1271         ssi_private->use_dma = !of_property_read_bool(np,
1272                         "fsl,fiq-stream-filter");
1273
1274         if (fsl_ssi_is_ac97(ssi_private)) {
1275                 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
1276                                 sizeof(fsl_ssi_ac97_dai));
1277
1278                 fsl_ac97_data = ssi_private;
1279
1280                 snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1281         } else {
1282                 /* Initialize this copy of the CPU DAI driver structure */
1283                 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
1284                        sizeof(fsl_ssi_dai_template));
1285         }
1286         ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev);
1287
1288         /* Get the addresses and IRQ */
1289         ret = of_address_to_resource(np, 0, &res);
1290         if (ret) {
1291                 dev_err(&pdev->dev, "could not determine device resources\n");
1292                 return ret;
1293         }
1294         ssi_private->ssi_phys = res.start;
1295
1296         iomem = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
1297         if (!iomem) {
1298                 dev_err(&pdev->dev, "could not map device resources\n");
1299                 return -ENOMEM;
1300         }
1301
1302         ssi_private->regs = devm_regmap_init_mmio(&pdev->dev, iomem,
1303                         &fsl_ssi_regconfig);
1304         if (IS_ERR(ssi_private->regs)) {
1305                 dev_err(&pdev->dev, "Failed to init register map\n");
1306                 return PTR_ERR(ssi_private->regs);
1307         }
1308
1309         ssi_private->irq = irq_of_parse_and_map(np, 0);
1310         if (!ssi_private->irq) {
1311                 dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
1312                 return -ENXIO;
1313         }
1314
1315         /* Are the RX and the TX clocks locked? */
1316         if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1317                 ssi_private->cpu_dai_drv.symmetric_rates = 1;
1318                 ssi_private->cpu_dai_drv.symmetric_channels = 1;
1319                 ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
1320         }
1321
1322         /* Determine the FIFO depth. */
1323         iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1324         if (iprop)
1325                 ssi_private->fifo_depth = be32_to_cpup(iprop);
1326         else
1327                 /* Older 8610 DTs didn't have the fifo-depth property */
1328                 ssi_private->fifo_depth = 8;
1329
1330         dev_set_drvdata(&pdev->dev, ssi_private);
1331
1332         if (ssi_private->soc->imx) {
1333                 ret = fsl_ssi_imx_probe(pdev, ssi_private, iomem);
1334                 if (ret)
1335                         goto error_irqmap;
1336         }
1337
1338         ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
1339                                          &ssi_private->cpu_dai_drv, 1);
1340         if (ret) {
1341                 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1342                 goto error_asoc_register;
1343         }
1344
1345         if (ssi_private->use_dma) {
1346                 ret = devm_request_irq(&pdev->dev, ssi_private->irq,
1347                                         fsl_ssi_isr, 0, dev_name(&pdev->dev),
1348                                         ssi_private);
1349                 if (ret < 0) {
1350                         dev_err(&pdev->dev, "could not claim irq %u\n",
1351                                         ssi_private->irq);
1352                         goto error_irq;
1353                 }
1354         }
1355
1356         ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev);
1357         if (ret)
1358                 goto error_asoc_register;
1359
1360         /*
1361          * If codec-handle property is missing from SSI node, we assume
1362          * that the machine driver uses new binding which does not require
1363          * SSI driver to trigger machine driver's probe.
1364          */
1365         if (!of_get_property(np, "codec-handle", NULL))
1366                 goto done;
1367
1368         /* Trigger the machine driver's probe function.  The platform driver
1369          * name of the machine driver is taken from /compatible property of the
1370          * device tree.  We also pass the address of the CPU DAI driver
1371          * structure.
1372          */
1373         sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
1374         /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1375         p = strrchr(sprop, ',');
1376         if (p)
1377                 sprop = p + 1;
1378         snprintf(name, sizeof(name), "snd-soc-%s", sprop);
1379         make_lowercase(name);
1380
1381         ssi_private->pdev =
1382                 platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1383         if (IS_ERR(ssi_private->pdev)) {
1384                 ret = PTR_ERR(ssi_private->pdev);
1385                 dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1386                 goto error_sound_card;
1387         }
1388
1389 done:
1390         if (ssi_private->dai_fmt)
1391                 _fsl_ssi_set_dai_fmt(&pdev->dev, ssi_private,
1392                                      ssi_private->dai_fmt);
1393
1394         return 0;
1395
1396 error_sound_card:
1397         fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1398
1399 error_irq:
1400         snd_soc_unregister_component(&pdev->dev);
1401
1402 error_asoc_register:
1403         if (ssi_private->soc->imx)
1404                 fsl_ssi_imx_clean(pdev, ssi_private);
1405
1406 error_irqmap:
1407         if (ssi_private->use_dma)
1408                 irq_dispose_mapping(ssi_private->irq);
1409
1410         return ret;
1411 }
1412
1413 static int fsl_ssi_remove(struct platform_device *pdev)
1414 {
1415         struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1416
1417         fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1418
1419         if (ssi_private->pdev)
1420                 platform_device_unregister(ssi_private->pdev);
1421         snd_soc_unregister_component(&pdev->dev);
1422
1423         if (ssi_private->soc->imx)
1424                 fsl_ssi_imx_clean(pdev, ssi_private);
1425
1426         if (ssi_private->use_dma)
1427                 irq_dispose_mapping(ssi_private->irq);
1428
1429         return 0;
1430 }
1431
1432 static struct platform_driver fsl_ssi_driver = {
1433         .driver = {
1434                 .name = "fsl-ssi-dai",
1435                 .owner = THIS_MODULE,
1436                 .of_match_table = fsl_ssi_ids,
1437         },
1438         .probe = fsl_ssi_probe,
1439         .remove = fsl_ssi_remove,
1440 };
1441
1442 module_platform_driver(fsl_ssi_driver);
1443
1444 MODULE_ALIAS("platform:fsl-ssi-dai");
1445 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1446 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1447 MODULE_LICENSE("GPL v2");