Merge tag 'perf-core-for-mingo-20160606' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/tracing_path.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <linux/err.h>
17 #include <sys/resource.h>
18 #include "asm/bug.h"
19 #include "callchain.h"
20 #include "cgroup.h"
21 #include "evsel.h"
22 #include "evlist.h"
23 #include "util.h"
24 #include "cpumap.h"
25 #include "thread_map.h"
26 #include "target.h"
27 #include "perf_regs.h"
28 #include "debug.h"
29 #include "trace-event.h"
30 #include "stat.h"
31
32 static struct {
33         bool sample_id_all;
34         bool exclude_guest;
35         bool mmap2;
36         bool cloexec;
37         bool clockid;
38         bool clockid_wrong;
39         bool lbr_flags;
40         bool write_backward;
41 } perf_missing_features;
42
43 static clockid_t clockid;
44
45 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
46 {
47         return 0;
48 }
49
50 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
51 {
52 }
53
54 static struct {
55         size_t  size;
56         int     (*init)(struct perf_evsel *evsel);
57         void    (*fini)(struct perf_evsel *evsel);
58 } perf_evsel__object = {
59         .size = sizeof(struct perf_evsel),
60         .init = perf_evsel__no_extra_init,
61         .fini = perf_evsel__no_extra_fini,
62 };
63
64 int perf_evsel__object_config(size_t object_size,
65                               int (*init)(struct perf_evsel *evsel),
66                               void (*fini)(struct perf_evsel *evsel))
67 {
68
69         if (object_size == 0)
70                 goto set_methods;
71
72         if (perf_evsel__object.size > object_size)
73                 return -EINVAL;
74
75         perf_evsel__object.size = object_size;
76
77 set_methods:
78         if (init != NULL)
79                 perf_evsel__object.init = init;
80
81         if (fini != NULL)
82                 perf_evsel__object.fini = fini;
83
84         return 0;
85 }
86
87 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
88
89 int __perf_evsel__sample_size(u64 sample_type)
90 {
91         u64 mask = sample_type & PERF_SAMPLE_MASK;
92         int size = 0;
93         int i;
94
95         for (i = 0; i < 64; i++) {
96                 if (mask & (1ULL << i))
97                         size++;
98         }
99
100         size *= sizeof(u64);
101
102         return size;
103 }
104
105 /**
106  * __perf_evsel__calc_id_pos - calculate id_pos.
107  * @sample_type: sample type
108  *
109  * This function returns the position of the event id (PERF_SAMPLE_ID or
110  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
111  * sample_event.
112  */
113 static int __perf_evsel__calc_id_pos(u64 sample_type)
114 {
115         int idx = 0;
116
117         if (sample_type & PERF_SAMPLE_IDENTIFIER)
118                 return 0;
119
120         if (!(sample_type & PERF_SAMPLE_ID))
121                 return -1;
122
123         if (sample_type & PERF_SAMPLE_IP)
124                 idx += 1;
125
126         if (sample_type & PERF_SAMPLE_TID)
127                 idx += 1;
128
129         if (sample_type & PERF_SAMPLE_TIME)
130                 idx += 1;
131
132         if (sample_type & PERF_SAMPLE_ADDR)
133                 idx += 1;
134
135         return idx;
136 }
137
138 /**
139  * __perf_evsel__calc_is_pos - calculate is_pos.
140  * @sample_type: sample type
141  *
142  * This function returns the position (counting backwards) of the event id
143  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
144  * sample_id_all is used there is an id sample appended to non-sample events.
145  */
146 static int __perf_evsel__calc_is_pos(u64 sample_type)
147 {
148         int idx = 1;
149
150         if (sample_type & PERF_SAMPLE_IDENTIFIER)
151                 return 1;
152
153         if (!(sample_type & PERF_SAMPLE_ID))
154                 return -1;
155
156         if (sample_type & PERF_SAMPLE_CPU)
157                 idx += 1;
158
159         if (sample_type & PERF_SAMPLE_STREAM_ID)
160                 idx += 1;
161
162         return idx;
163 }
164
165 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
166 {
167         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
168         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
169 }
170
171 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
172                                   enum perf_event_sample_format bit)
173 {
174         if (!(evsel->attr.sample_type & bit)) {
175                 evsel->attr.sample_type |= bit;
176                 evsel->sample_size += sizeof(u64);
177                 perf_evsel__calc_id_pos(evsel);
178         }
179 }
180
181 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
182                                     enum perf_event_sample_format bit)
183 {
184         if (evsel->attr.sample_type & bit) {
185                 evsel->attr.sample_type &= ~bit;
186                 evsel->sample_size -= sizeof(u64);
187                 perf_evsel__calc_id_pos(evsel);
188         }
189 }
190
191 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
192                                bool can_sample_identifier)
193 {
194         if (can_sample_identifier) {
195                 perf_evsel__reset_sample_bit(evsel, ID);
196                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
197         } else {
198                 perf_evsel__set_sample_bit(evsel, ID);
199         }
200         evsel->attr.read_format |= PERF_FORMAT_ID;
201 }
202
203 void perf_evsel__init(struct perf_evsel *evsel,
204                       struct perf_event_attr *attr, int idx)
205 {
206         evsel->idx         = idx;
207         evsel->tracking    = !idx;
208         evsel->attr        = *attr;
209         evsel->leader      = evsel;
210         evsel->unit        = "";
211         evsel->scale       = 1.0;
212         evsel->evlist      = NULL;
213         evsel->bpf_fd      = -1;
214         INIT_LIST_HEAD(&evsel->node);
215         INIT_LIST_HEAD(&evsel->config_terms);
216         perf_evsel__object.init(evsel);
217         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
218         perf_evsel__calc_id_pos(evsel);
219         evsel->cmdline_group_boundary = false;
220 }
221
222 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
223 {
224         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
225
226         if (evsel != NULL)
227                 perf_evsel__init(evsel, attr, idx);
228
229         if (perf_evsel__is_bpf_output(evsel)) {
230                 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
231                                             PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
232                 evsel->attr.sample_period = 1;
233         }
234
235         return evsel;
236 }
237
238 /*
239  * Returns pointer with encoded error via <linux/err.h> interface.
240  */
241 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
242 {
243         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
244         int err = -ENOMEM;
245
246         if (evsel == NULL) {
247                 goto out_err;
248         } else {
249                 struct perf_event_attr attr = {
250                         .type          = PERF_TYPE_TRACEPOINT,
251                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
252                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
253                 };
254
255                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
256                         goto out_free;
257
258                 evsel->tp_format = trace_event__tp_format(sys, name);
259                 if (IS_ERR(evsel->tp_format)) {
260                         err = PTR_ERR(evsel->tp_format);
261                         goto out_free;
262                 }
263
264                 event_attr_init(&attr);
265                 attr.config = evsel->tp_format->id;
266                 attr.sample_period = 1;
267                 perf_evsel__init(evsel, &attr, idx);
268         }
269
270         return evsel;
271
272 out_free:
273         zfree(&evsel->name);
274         free(evsel);
275 out_err:
276         return ERR_PTR(err);
277 }
278
279 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
280         "cycles",
281         "instructions",
282         "cache-references",
283         "cache-misses",
284         "branches",
285         "branch-misses",
286         "bus-cycles",
287         "stalled-cycles-frontend",
288         "stalled-cycles-backend",
289         "ref-cycles",
290 };
291
292 static const char *__perf_evsel__hw_name(u64 config)
293 {
294         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
295                 return perf_evsel__hw_names[config];
296
297         return "unknown-hardware";
298 }
299
300 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
301 {
302         int colon = 0, r = 0;
303         struct perf_event_attr *attr = &evsel->attr;
304         bool exclude_guest_default = false;
305
306 #define MOD_PRINT(context, mod) do {                                    \
307                 if (!attr->exclude_##context) {                         \
308                         if (!colon) colon = ++r;                        \
309                         r += scnprintf(bf + r, size - r, "%c", mod);    \
310                 } } while(0)
311
312         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
313                 MOD_PRINT(kernel, 'k');
314                 MOD_PRINT(user, 'u');
315                 MOD_PRINT(hv, 'h');
316                 exclude_guest_default = true;
317         }
318
319         if (attr->precise_ip) {
320                 if (!colon)
321                         colon = ++r;
322                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
323                 exclude_guest_default = true;
324         }
325
326         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
327                 MOD_PRINT(host, 'H');
328                 MOD_PRINT(guest, 'G');
329         }
330 #undef MOD_PRINT
331         if (colon)
332                 bf[colon - 1] = ':';
333         return r;
334 }
335
336 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
337 {
338         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
339         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
340 }
341
342 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
343         "cpu-clock",
344         "task-clock",
345         "page-faults",
346         "context-switches",
347         "cpu-migrations",
348         "minor-faults",
349         "major-faults",
350         "alignment-faults",
351         "emulation-faults",
352         "dummy",
353 };
354
355 static const char *__perf_evsel__sw_name(u64 config)
356 {
357         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
358                 return perf_evsel__sw_names[config];
359         return "unknown-software";
360 }
361
362 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
363 {
364         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
365         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
366 }
367
368 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
369 {
370         int r;
371
372         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
373
374         if (type & HW_BREAKPOINT_R)
375                 r += scnprintf(bf + r, size - r, "r");
376
377         if (type & HW_BREAKPOINT_W)
378                 r += scnprintf(bf + r, size - r, "w");
379
380         if (type & HW_BREAKPOINT_X)
381                 r += scnprintf(bf + r, size - r, "x");
382
383         return r;
384 }
385
386 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
387 {
388         struct perf_event_attr *attr = &evsel->attr;
389         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
390         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
391 }
392
393 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
394                                 [PERF_EVSEL__MAX_ALIASES] = {
395  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
396  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
397  { "LLC",       "L2",                                                   },
398  { "dTLB",      "d-tlb",        "Data-TLB",                             },
399  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
400  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
401  { "node",                                                              },
402 };
403
404 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
405                                    [PERF_EVSEL__MAX_ALIASES] = {
406  { "load",      "loads",        "read",                                 },
407  { "store",     "stores",       "write",                                },
408  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
409 };
410
411 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
412                                        [PERF_EVSEL__MAX_ALIASES] = {
413  { "refs",      "Reference",    "ops",          "access",               },
414  { "misses",    "miss",                                                 },
415 };
416
417 #define C(x)            PERF_COUNT_HW_CACHE_##x
418 #define CACHE_READ      (1 << C(OP_READ))
419 #define CACHE_WRITE     (1 << C(OP_WRITE))
420 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
421 #define COP(x)          (1 << x)
422
423 /*
424  * cache operartion stat
425  * L1I : Read and prefetch only
426  * ITLB and BPU : Read-only
427  */
428 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
429  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
430  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
431  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
432  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
433  [C(ITLB)]      = (CACHE_READ),
434  [C(BPU)]       = (CACHE_READ),
435  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
436 };
437
438 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
439 {
440         if (perf_evsel__hw_cache_stat[type] & COP(op))
441                 return true;    /* valid */
442         else
443                 return false;   /* invalid */
444 }
445
446 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
447                                             char *bf, size_t size)
448 {
449         if (result) {
450                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
451                                  perf_evsel__hw_cache_op[op][0],
452                                  perf_evsel__hw_cache_result[result][0]);
453         }
454
455         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
456                          perf_evsel__hw_cache_op[op][1]);
457 }
458
459 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
460 {
461         u8 op, result, type = (config >>  0) & 0xff;
462         const char *err = "unknown-ext-hardware-cache-type";
463
464         if (type > PERF_COUNT_HW_CACHE_MAX)
465                 goto out_err;
466
467         op = (config >>  8) & 0xff;
468         err = "unknown-ext-hardware-cache-op";
469         if (op > PERF_COUNT_HW_CACHE_OP_MAX)
470                 goto out_err;
471
472         result = (config >> 16) & 0xff;
473         err = "unknown-ext-hardware-cache-result";
474         if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
475                 goto out_err;
476
477         err = "invalid-cache";
478         if (!perf_evsel__is_cache_op_valid(type, op))
479                 goto out_err;
480
481         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
482 out_err:
483         return scnprintf(bf, size, "%s", err);
484 }
485
486 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
487 {
488         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
489         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
490 }
491
492 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
493 {
494         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
495         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
496 }
497
498 const char *perf_evsel__name(struct perf_evsel *evsel)
499 {
500         char bf[128];
501
502         if (evsel->name)
503                 return evsel->name;
504
505         switch (evsel->attr.type) {
506         case PERF_TYPE_RAW:
507                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
508                 break;
509
510         case PERF_TYPE_HARDWARE:
511                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
512                 break;
513
514         case PERF_TYPE_HW_CACHE:
515                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
516                 break;
517
518         case PERF_TYPE_SOFTWARE:
519                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
520                 break;
521
522         case PERF_TYPE_TRACEPOINT:
523                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
524                 break;
525
526         case PERF_TYPE_BREAKPOINT:
527                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
528                 break;
529
530         default:
531                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
532                           evsel->attr.type);
533                 break;
534         }
535
536         evsel->name = strdup(bf);
537
538         return evsel->name ?: "unknown";
539 }
540
541 const char *perf_evsel__group_name(struct perf_evsel *evsel)
542 {
543         return evsel->group_name ?: "anon group";
544 }
545
546 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
547 {
548         int ret;
549         struct perf_evsel *pos;
550         const char *group_name = perf_evsel__group_name(evsel);
551
552         ret = scnprintf(buf, size, "%s", group_name);
553
554         ret += scnprintf(buf + ret, size - ret, " { %s",
555                          perf_evsel__name(evsel));
556
557         for_each_group_member(pos, evsel)
558                 ret += scnprintf(buf + ret, size - ret, ", %s",
559                                  perf_evsel__name(pos));
560
561         ret += scnprintf(buf + ret, size - ret, " }");
562
563         return ret;
564 }
565
566 void perf_evsel__config_callchain(struct perf_evsel *evsel,
567                                   struct record_opts *opts,
568                                   struct callchain_param *param)
569 {
570         bool function = perf_evsel__is_function_event(evsel);
571         struct perf_event_attr *attr = &evsel->attr;
572
573         perf_evsel__set_sample_bit(evsel, CALLCHAIN);
574
575         attr->sample_max_stack = param->max_stack;
576
577         if (param->record_mode == CALLCHAIN_LBR) {
578                 if (!opts->branch_stack) {
579                         if (attr->exclude_user) {
580                                 pr_warning("LBR callstack option is only available "
581                                            "to get user callchain information. "
582                                            "Falling back to framepointers.\n");
583                         } else {
584                                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
585                                 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
586                                                         PERF_SAMPLE_BRANCH_CALL_STACK |
587                                                         PERF_SAMPLE_BRANCH_NO_CYCLES |
588                                                         PERF_SAMPLE_BRANCH_NO_FLAGS;
589                         }
590                 } else
591                          pr_warning("Cannot use LBR callstack with branch stack. "
592                                     "Falling back to framepointers.\n");
593         }
594
595         if (param->record_mode == CALLCHAIN_DWARF) {
596                 if (!function) {
597                         perf_evsel__set_sample_bit(evsel, REGS_USER);
598                         perf_evsel__set_sample_bit(evsel, STACK_USER);
599                         attr->sample_regs_user = PERF_REGS_MASK;
600                         attr->sample_stack_user = param->dump_size;
601                         attr->exclude_callchain_user = 1;
602                 } else {
603                         pr_info("Cannot use DWARF unwind for function trace event,"
604                                 " falling back to framepointers.\n");
605                 }
606         }
607
608         if (function) {
609                 pr_info("Disabling user space callchains for function trace event.\n");
610                 attr->exclude_callchain_user = 1;
611         }
612 }
613
614 static void
615 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
616                             struct callchain_param *param)
617 {
618         struct perf_event_attr *attr = &evsel->attr;
619
620         perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
621         if (param->record_mode == CALLCHAIN_LBR) {
622                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
623                 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
624                                               PERF_SAMPLE_BRANCH_CALL_STACK);
625         }
626         if (param->record_mode == CALLCHAIN_DWARF) {
627                 perf_evsel__reset_sample_bit(evsel, REGS_USER);
628                 perf_evsel__reset_sample_bit(evsel, STACK_USER);
629         }
630 }
631
632 static void apply_config_terms(struct perf_evsel *evsel,
633                                struct record_opts *opts)
634 {
635         struct perf_evsel_config_term *term;
636         struct list_head *config_terms = &evsel->config_terms;
637         struct perf_event_attr *attr = &evsel->attr;
638         struct callchain_param param;
639         u32 dump_size = 0;
640         int max_stack = 0;
641         const char *callgraph_buf = NULL;
642
643         /* callgraph default */
644         param.record_mode = callchain_param.record_mode;
645
646         list_for_each_entry(term, config_terms, list) {
647                 switch (term->type) {
648                 case PERF_EVSEL__CONFIG_TERM_PERIOD:
649                         attr->sample_period = term->val.period;
650                         attr->freq = 0;
651                         break;
652                 case PERF_EVSEL__CONFIG_TERM_FREQ:
653                         attr->sample_freq = term->val.freq;
654                         attr->freq = 1;
655                         break;
656                 case PERF_EVSEL__CONFIG_TERM_TIME:
657                         if (term->val.time)
658                                 perf_evsel__set_sample_bit(evsel, TIME);
659                         else
660                                 perf_evsel__reset_sample_bit(evsel, TIME);
661                         break;
662                 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
663                         callgraph_buf = term->val.callgraph;
664                         break;
665                 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
666                         dump_size = term->val.stack_user;
667                         break;
668                 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
669                         max_stack = term->val.max_stack;
670                         break;
671                 case PERF_EVSEL__CONFIG_TERM_INHERIT:
672                         /*
673                          * attr->inherit should has already been set by
674                          * perf_evsel__config. If user explicitly set
675                          * inherit using config terms, override global
676                          * opt->no_inherit setting.
677                          */
678                         attr->inherit = term->val.inherit ? 1 : 0;
679                         break;
680                 default:
681                         break;
682                 }
683         }
684
685         /* User explicitly set per-event callgraph, clear the old setting and reset. */
686         if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
687                 if (max_stack) {
688                         param.max_stack = max_stack;
689                         if (callgraph_buf == NULL)
690                                 callgraph_buf = "fp";
691                 }
692
693                 /* parse callgraph parameters */
694                 if (callgraph_buf != NULL) {
695                         if (!strcmp(callgraph_buf, "no")) {
696                                 param.enabled = false;
697                                 param.record_mode = CALLCHAIN_NONE;
698                         } else {
699                                 param.enabled = true;
700                                 if (parse_callchain_record(callgraph_buf, &param)) {
701                                         pr_err("per-event callgraph setting for %s failed. "
702                                                "Apply callgraph global setting for it\n",
703                                                evsel->name);
704                                         return;
705                                 }
706                         }
707                 }
708                 if (dump_size > 0) {
709                         dump_size = round_up(dump_size, sizeof(u64));
710                         param.dump_size = dump_size;
711                 }
712
713                 /* If global callgraph set, clear it */
714                 if (callchain_param.enabled)
715                         perf_evsel__reset_callgraph(evsel, &callchain_param);
716
717                 /* set perf-event callgraph */
718                 if (param.enabled)
719                         perf_evsel__config_callchain(evsel, opts, &param);
720         }
721 }
722
723 /*
724  * The enable_on_exec/disabled value strategy:
725  *
726  *  1) For any type of traced program:
727  *    - all independent events and group leaders are disabled
728  *    - all group members are enabled
729  *
730  *     Group members are ruled by group leaders. They need to
731  *     be enabled, because the group scheduling relies on that.
732  *
733  *  2) For traced programs executed by perf:
734  *     - all independent events and group leaders have
735  *       enable_on_exec set
736  *     - we don't specifically enable or disable any event during
737  *       the record command
738  *
739  *     Independent events and group leaders are initially disabled
740  *     and get enabled by exec. Group members are ruled by group
741  *     leaders as stated in 1).
742  *
743  *  3) For traced programs attached by perf (pid/tid):
744  *     - we specifically enable or disable all events during
745  *       the record command
746  *
747  *     When attaching events to already running traced we
748  *     enable/disable events specifically, as there's no
749  *     initial traced exec call.
750  */
751 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
752                         struct callchain_param *callchain)
753 {
754         struct perf_evsel *leader = evsel->leader;
755         struct perf_event_attr *attr = &evsel->attr;
756         int track = evsel->tracking;
757         bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
758
759         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
760         attr->inherit       = !opts->no_inherit;
761
762         perf_evsel__set_sample_bit(evsel, IP);
763         perf_evsel__set_sample_bit(evsel, TID);
764
765         if (evsel->sample_read) {
766                 perf_evsel__set_sample_bit(evsel, READ);
767
768                 /*
769                  * We need ID even in case of single event, because
770                  * PERF_SAMPLE_READ process ID specific data.
771                  */
772                 perf_evsel__set_sample_id(evsel, false);
773
774                 /*
775                  * Apply group format only if we belong to group
776                  * with more than one members.
777                  */
778                 if (leader->nr_members > 1) {
779                         attr->read_format |= PERF_FORMAT_GROUP;
780                         attr->inherit = 0;
781                 }
782         }
783
784         /*
785          * We default some events to have a default interval. But keep
786          * it a weak assumption overridable by the user.
787          */
788         if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
789                                      opts->user_interval != ULLONG_MAX)) {
790                 if (opts->freq) {
791                         perf_evsel__set_sample_bit(evsel, PERIOD);
792                         attr->freq              = 1;
793                         attr->sample_freq       = opts->freq;
794                 } else {
795                         attr->sample_period = opts->default_interval;
796                 }
797         }
798
799         /*
800          * Disable sampling for all group members other
801          * than leader in case leader 'leads' the sampling.
802          */
803         if ((leader != evsel) && leader->sample_read) {
804                 attr->sample_freq   = 0;
805                 attr->sample_period = 0;
806         }
807
808         if (opts->no_samples)
809                 attr->sample_freq = 0;
810
811         if (opts->inherit_stat)
812                 attr->inherit_stat = 1;
813
814         if (opts->sample_address) {
815                 perf_evsel__set_sample_bit(evsel, ADDR);
816                 attr->mmap_data = track;
817         }
818
819         /*
820          * We don't allow user space callchains for  function trace
821          * event, due to issues with page faults while tracing page
822          * fault handler and its overall trickiness nature.
823          */
824         if (perf_evsel__is_function_event(evsel))
825                 evsel->attr.exclude_callchain_user = 1;
826
827         if (callchain && callchain->enabled && !evsel->no_aux_samples)
828                 perf_evsel__config_callchain(evsel, opts, callchain);
829
830         if (opts->sample_intr_regs) {
831                 attr->sample_regs_intr = opts->sample_intr_regs;
832                 perf_evsel__set_sample_bit(evsel, REGS_INTR);
833         }
834
835         if (target__has_cpu(&opts->target))
836                 perf_evsel__set_sample_bit(evsel, CPU);
837
838         if (opts->period)
839                 perf_evsel__set_sample_bit(evsel, PERIOD);
840
841         /*
842          * When the user explicitly disabled time don't force it here.
843          */
844         if (opts->sample_time &&
845             (!perf_missing_features.sample_id_all &&
846             (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
847              opts->sample_time_set)))
848                 perf_evsel__set_sample_bit(evsel, TIME);
849
850         if (opts->raw_samples && !evsel->no_aux_samples) {
851                 perf_evsel__set_sample_bit(evsel, TIME);
852                 perf_evsel__set_sample_bit(evsel, RAW);
853                 perf_evsel__set_sample_bit(evsel, CPU);
854         }
855
856         if (opts->sample_address)
857                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
858
859         if (opts->no_buffering) {
860                 attr->watermark = 0;
861                 attr->wakeup_events = 1;
862         }
863         if (opts->branch_stack && !evsel->no_aux_samples) {
864                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
865                 attr->branch_sample_type = opts->branch_stack;
866         }
867
868         if (opts->sample_weight)
869                 perf_evsel__set_sample_bit(evsel, WEIGHT);
870
871         attr->task  = track;
872         attr->mmap  = track;
873         attr->mmap2 = track && !perf_missing_features.mmap2;
874         attr->comm  = track;
875
876         if (opts->record_switch_events)
877                 attr->context_switch = track;
878
879         if (opts->sample_transaction)
880                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
881
882         if (opts->running_time) {
883                 evsel->attr.read_format |=
884                         PERF_FORMAT_TOTAL_TIME_ENABLED |
885                         PERF_FORMAT_TOTAL_TIME_RUNNING;
886         }
887
888         /*
889          * XXX see the function comment above
890          *
891          * Disabling only independent events or group leaders,
892          * keeping group members enabled.
893          */
894         if (perf_evsel__is_group_leader(evsel))
895                 attr->disabled = 1;
896
897         /*
898          * Setting enable_on_exec for independent events and
899          * group leaders for traced executed by perf.
900          */
901         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
902                 !opts->initial_delay)
903                 attr->enable_on_exec = 1;
904
905         if (evsel->immediate) {
906                 attr->disabled = 0;
907                 attr->enable_on_exec = 0;
908         }
909
910         clockid = opts->clockid;
911         if (opts->use_clockid) {
912                 attr->use_clockid = 1;
913                 attr->clockid = opts->clockid;
914         }
915
916         if (evsel->precise_max)
917                 perf_event_attr__set_max_precise_ip(attr);
918
919         if (opts->all_user) {
920                 attr->exclude_kernel = 1;
921                 attr->exclude_user   = 0;
922         }
923
924         if (opts->all_kernel) {
925                 attr->exclude_kernel = 0;
926                 attr->exclude_user   = 1;
927         }
928
929         /*
930          * Apply event specific term settings,
931          * it overloads any global configuration.
932          */
933         apply_config_terms(evsel, opts);
934 }
935
936 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
937 {
938         int cpu, thread;
939
940         if (evsel->system_wide)
941                 nthreads = 1;
942
943         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
944
945         if (evsel->fd) {
946                 for (cpu = 0; cpu < ncpus; cpu++) {
947                         for (thread = 0; thread < nthreads; thread++) {
948                                 FD(evsel, cpu, thread) = -1;
949                         }
950                 }
951         }
952
953         return evsel->fd != NULL ? 0 : -ENOMEM;
954 }
955
956 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
957                           int ioc,  void *arg)
958 {
959         int cpu, thread;
960
961         if (evsel->system_wide)
962                 nthreads = 1;
963
964         for (cpu = 0; cpu < ncpus; cpu++) {
965                 for (thread = 0; thread < nthreads; thread++) {
966                         int fd = FD(evsel, cpu, thread),
967                             err = ioctl(fd, ioc, arg);
968
969                         if (err)
970                                 return err;
971                 }
972         }
973
974         return 0;
975 }
976
977 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
978                              const char *filter)
979 {
980         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
981                                      PERF_EVENT_IOC_SET_FILTER,
982                                      (void *)filter);
983 }
984
985 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
986 {
987         char *new_filter = strdup(filter);
988
989         if (new_filter != NULL) {
990                 free(evsel->filter);
991                 evsel->filter = new_filter;
992                 return 0;
993         }
994
995         return -1;
996 }
997
998 int perf_evsel__append_filter(struct perf_evsel *evsel,
999                               const char *op, const char *filter)
1000 {
1001         char *new_filter;
1002
1003         if (evsel->filter == NULL)
1004                 return perf_evsel__set_filter(evsel, filter);
1005
1006         if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) {
1007                 free(evsel->filter);
1008                 evsel->filter = new_filter;
1009                 return 0;
1010         }
1011
1012         return -1;
1013 }
1014
1015 int perf_evsel__enable(struct perf_evsel *evsel)
1016 {
1017         int nthreads = thread_map__nr(evsel->threads);
1018         int ncpus = cpu_map__nr(evsel->cpus);
1019
1020         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1021                                      PERF_EVENT_IOC_ENABLE,
1022                                      0);
1023 }
1024
1025 int perf_evsel__disable(struct perf_evsel *evsel)
1026 {
1027         int nthreads = thread_map__nr(evsel->threads);
1028         int ncpus = cpu_map__nr(evsel->cpus);
1029
1030         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1031                                      PERF_EVENT_IOC_DISABLE,
1032                                      0);
1033 }
1034
1035 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1036 {
1037         if (ncpus == 0 || nthreads == 0)
1038                 return 0;
1039
1040         if (evsel->system_wide)
1041                 nthreads = 1;
1042
1043         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1044         if (evsel->sample_id == NULL)
1045                 return -ENOMEM;
1046
1047         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1048         if (evsel->id == NULL) {
1049                 xyarray__delete(evsel->sample_id);
1050                 evsel->sample_id = NULL;
1051                 return -ENOMEM;
1052         }
1053
1054         return 0;
1055 }
1056
1057 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1058 {
1059         xyarray__delete(evsel->fd);
1060         evsel->fd = NULL;
1061 }
1062
1063 static void perf_evsel__free_id(struct perf_evsel *evsel)
1064 {
1065         xyarray__delete(evsel->sample_id);
1066         evsel->sample_id = NULL;
1067         zfree(&evsel->id);
1068 }
1069
1070 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1071 {
1072         struct perf_evsel_config_term *term, *h;
1073
1074         list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1075                 list_del(&term->list);
1076                 free(term);
1077         }
1078 }
1079
1080 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1081 {
1082         int cpu, thread;
1083
1084         if (evsel->system_wide)
1085                 nthreads = 1;
1086
1087         for (cpu = 0; cpu < ncpus; cpu++)
1088                 for (thread = 0; thread < nthreads; ++thread) {
1089                         close(FD(evsel, cpu, thread));
1090                         FD(evsel, cpu, thread) = -1;
1091                 }
1092 }
1093
1094 void perf_evsel__exit(struct perf_evsel *evsel)
1095 {
1096         assert(list_empty(&evsel->node));
1097         assert(evsel->evlist == NULL);
1098         perf_evsel__free_fd(evsel);
1099         perf_evsel__free_id(evsel);
1100         perf_evsel__free_config_terms(evsel);
1101         close_cgroup(evsel->cgrp);
1102         cpu_map__put(evsel->cpus);
1103         cpu_map__put(evsel->own_cpus);
1104         thread_map__put(evsel->threads);
1105         zfree(&evsel->group_name);
1106         zfree(&evsel->name);
1107         perf_evsel__object.fini(evsel);
1108 }
1109
1110 void perf_evsel__delete(struct perf_evsel *evsel)
1111 {
1112         perf_evsel__exit(evsel);
1113         free(evsel);
1114 }
1115
1116 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1117                                 struct perf_counts_values *count)
1118 {
1119         struct perf_counts_values tmp;
1120
1121         if (!evsel->prev_raw_counts)
1122                 return;
1123
1124         if (cpu == -1) {
1125                 tmp = evsel->prev_raw_counts->aggr;
1126                 evsel->prev_raw_counts->aggr = *count;
1127         } else {
1128                 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1129                 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1130         }
1131
1132         count->val = count->val - tmp.val;
1133         count->ena = count->ena - tmp.ena;
1134         count->run = count->run - tmp.run;
1135 }
1136
1137 void perf_counts_values__scale(struct perf_counts_values *count,
1138                                bool scale, s8 *pscaled)
1139 {
1140         s8 scaled = 0;
1141
1142         if (scale) {
1143                 if (count->run == 0) {
1144                         scaled = -1;
1145                         count->val = 0;
1146                 } else if (count->run < count->ena) {
1147                         scaled = 1;
1148                         count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1149                 }
1150         } else
1151                 count->ena = count->run = 0;
1152
1153         if (pscaled)
1154                 *pscaled = scaled;
1155 }
1156
1157 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1158                      struct perf_counts_values *count)
1159 {
1160         memset(count, 0, sizeof(*count));
1161
1162         if (FD(evsel, cpu, thread) < 0)
1163                 return -EINVAL;
1164
1165         if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
1166                 return -errno;
1167
1168         return 0;
1169 }
1170
1171 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1172                               int cpu, int thread, bool scale)
1173 {
1174         struct perf_counts_values count;
1175         size_t nv = scale ? 3 : 1;
1176
1177         if (FD(evsel, cpu, thread) < 0)
1178                 return -EINVAL;
1179
1180         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1181                 return -ENOMEM;
1182
1183         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
1184                 return -errno;
1185
1186         perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1187         perf_counts_values__scale(&count, scale, NULL);
1188         *perf_counts(evsel->counts, cpu, thread) = count;
1189         return 0;
1190 }
1191
1192 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1193 {
1194         struct perf_evsel *leader = evsel->leader;
1195         int fd;
1196
1197         if (perf_evsel__is_group_leader(evsel))
1198                 return -1;
1199
1200         /*
1201          * Leader must be already processed/open,
1202          * if not it's a bug.
1203          */
1204         BUG_ON(!leader->fd);
1205
1206         fd = FD(leader, cpu, thread);
1207         BUG_ON(fd == -1);
1208
1209         return fd;
1210 }
1211
1212 struct bit_names {
1213         int bit;
1214         const char *name;
1215 };
1216
1217 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1218 {
1219         bool first_bit = true;
1220         int i = 0;
1221
1222         do {
1223                 if (value & bits[i].bit) {
1224                         buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1225                         first_bit = false;
1226                 }
1227         } while (bits[++i].name != NULL);
1228 }
1229
1230 static void __p_sample_type(char *buf, size_t size, u64 value)
1231 {
1232 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1233         struct bit_names bits[] = {
1234                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1235                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1236                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1237                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1238                 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1239                 bit_name(WEIGHT),
1240                 { .name = NULL, }
1241         };
1242 #undef bit_name
1243         __p_bits(buf, size, value, bits);
1244 }
1245
1246 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1247 {
1248 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1249         struct bit_names bits[] = {
1250                 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1251                 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1252                 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1253                 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1254                 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1255                 { .name = NULL, }
1256         };
1257 #undef bit_name
1258         __p_bits(buf, size, value, bits);
1259 }
1260
1261 static void __p_read_format(char *buf, size_t size, u64 value)
1262 {
1263 #define bit_name(n) { PERF_FORMAT_##n, #n }
1264         struct bit_names bits[] = {
1265                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1266                 bit_name(ID), bit_name(GROUP),
1267                 { .name = NULL, }
1268         };
1269 #undef bit_name
1270         __p_bits(buf, size, value, bits);
1271 }
1272
1273 #define BUF_SIZE                1024
1274
1275 #define p_hex(val)              snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1276 #define p_unsigned(val)         snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1277 #define p_signed(val)           snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1278 #define p_sample_type(val)      __p_sample_type(buf, BUF_SIZE, val)
1279 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1280 #define p_read_format(val)      __p_read_format(buf, BUF_SIZE, val)
1281
1282 #define PRINT_ATTRn(_n, _f, _p)                         \
1283 do {                                                    \
1284         if (attr->_f) {                                 \
1285                 _p(attr->_f);                           \
1286                 ret += attr__fprintf(fp, _n, buf, priv);\
1287         }                                               \
1288 } while (0)
1289
1290 #define PRINT_ATTRf(_f, _p)     PRINT_ATTRn(#_f, _f, _p)
1291
1292 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1293                              attr__fprintf_f attr__fprintf, void *priv)
1294 {
1295         char buf[BUF_SIZE];
1296         int ret = 0;
1297
1298         PRINT_ATTRf(type, p_unsigned);
1299         PRINT_ATTRf(size, p_unsigned);
1300         PRINT_ATTRf(config, p_hex);
1301         PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1302         PRINT_ATTRf(sample_type, p_sample_type);
1303         PRINT_ATTRf(read_format, p_read_format);
1304
1305         PRINT_ATTRf(disabled, p_unsigned);
1306         PRINT_ATTRf(inherit, p_unsigned);
1307         PRINT_ATTRf(pinned, p_unsigned);
1308         PRINT_ATTRf(exclusive, p_unsigned);
1309         PRINT_ATTRf(exclude_user, p_unsigned);
1310         PRINT_ATTRf(exclude_kernel, p_unsigned);
1311         PRINT_ATTRf(exclude_hv, p_unsigned);
1312         PRINT_ATTRf(exclude_idle, p_unsigned);
1313         PRINT_ATTRf(mmap, p_unsigned);
1314         PRINT_ATTRf(comm, p_unsigned);
1315         PRINT_ATTRf(freq, p_unsigned);
1316         PRINT_ATTRf(inherit_stat, p_unsigned);
1317         PRINT_ATTRf(enable_on_exec, p_unsigned);
1318         PRINT_ATTRf(task, p_unsigned);
1319         PRINT_ATTRf(watermark, p_unsigned);
1320         PRINT_ATTRf(precise_ip, p_unsigned);
1321         PRINT_ATTRf(mmap_data, p_unsigned);
1322         PRINT_ATTRf(sample_id_all, p_unsigned);
1323         PRINT_ATTRf(exclude_host, p_unsigned);
1324         PRINT_ATTRf(exclude_guest, p_unsigned);
1325         PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1326         PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1327         PRINT_ATTRf(mmap2, p_unsigned);
1328         PRINT_ATTRf(comm_exec, p_unsigned);
1329         PRINT_ATTRf(use_clockid, p_unsigned);
1330         PRINT_ATTRf(context_switch, p_unsigned);
1331         PRINT_ATTRf(write_backward, p_unsigned);
1332
1333         PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1334         PRINT_ATTRf(bp_type, p_unsigned);
1335         PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1336         PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1337         PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1338         PRINT_ATTRf(sample_regs_user, p_hex);
1339         PRINT_ATTRf(sample_stack_user, p_unsigned);
1340         PRINT_ATTRf(clockid, p_signed);
1341         PRINT_ATTRf(sample_regs_intr, p_hex);
1342         PRINT_ATTRf(aux_watermark, p_unsigned);
1343         PRINT_ATTRf(sample_max_stack, p_unsigned);
1344
1345         return ret;
1346 }
1347
1348 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1349                                 void *priv __attribute__((unused)))
1350 {
1351         return fprintf(fp, "  %-32s %s\n", name, val);
1352 }
1353
1354 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1355                               struct thread_map *threads)
1356 {
1357         int cpu, thread, nthreads;
1358         unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1359         int pid = -1, err;
1360         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1361
1362         if (evsel->system_wide)
1363                 nthreads = 1;
1364         else
1365                 nthreads = threads->nr;
1366
1367         if (evsel->fd == NULL &&
1368             perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1369                 return -ENOMEM;
1370
1371         if (evsel->cgrp) {
1372                 flags |= PERF_FLAG_PID_CGROUP;
1373                 pid = evsel->cgrp->fd;
1374         }
1375
1376 fallback_missing_features:
1377         if (perf_missing_features.clockid_wrong)
1378                 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1379         if (perf_missing_features.clockid) {
1380                 evsel->attr.use_clockid = 0;
1381                 evsel->attr.clockid = 0;
1382         }
1383         if (perf_missing_features.cloexec)
1384                 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1385         if (perf_missing_features.mmap2)
1386                 evsel->attr.mmap2 = 0;
1387         if (perf_missing_features.exclude_guest)
1388                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1389         if (perf_missing_features.lbr_flags)
1390                 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1391                                      PERF_SAMPLE_BRANCH_NO_CYCLES);
1392         if (perf_missing_features.write_backward)
1393                 evsel->attr.write_backward = false;
1394 retry_sample_id:
1395         if (perf_missing_features.sample_id_all)
1396                 evsel->attr.sample_id_all = 0;
1397
1398         if (verbose >= 2) {
1399                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1400                 fprintf(stderr, "perf_event_attr:\n");
1401                 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1402                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1403         }
1404
1405         for (cpu = 0; cpu < cpus->nr; cpu++) {
1406
1407                 for (thread = 0; thread < nthreads; thread++) {
1408                         int group_fd;
1409
1410                         if (!evsel->cgrp && !evsel->system_wide)
1411                                 pid = thread_map__pid(threads, thread);
1412
1413                         group_fd = get_group_fd(evsel, cpu, thread);
1414 retry_open:
1415                         pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1416                                   pid, cpus->map[cpu], group_fd, flags);
1417
1418                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1419                                                                      pid,
1420                                                                      cpus->map[cpu],
1421                                                                      group_fd, flags);
1422                         if (FD(evsel, cpu, thread) < 0) {
1423                                 err = -errno;
1424                                 pr_debug2("sys_perf_event_open failed, error %d\n",
1425                                           err);
1426                                 goto try_fallback;
1427                         }
1428
1429                         if (evsel->bpf_fd >= 0) {
1430                                 int evt_fd = FD(evsel, cpu, thread);
1431                                 int bpf_fd = evsel->bpf_fd;
1432
1433                                 err = ioctl(evt_fd,
1434                                             PERF_EVENT_IOC_SET_BPF,
1435                                             bpf_fd);
1436                                 if (err && errno != EEXIST) {
1437                                         pr_err("failed to attach bpf fd %d: %s\n",
1438                                                bpf_fd, strerror(errno));
1439                                         err = -EINVAL;
1440                                         goto out_close;
1441                                 }
1442                         }
1443
1444                         set_rlimit = NO_CHANGE;
1445
1446                         /*
1447                          * If we succeeded but had to kill clockid, fail and
1448                          * have perf_evsel__open_strerror() print us a nice
1449                          * error.
1450                          */
1451                         if (perf_missing_features.clockid ||
1452                             perf_missing_features.clockid_wrong) {
1453                                 err = -EINVAL;
1454                                 goto out_close;
1455                         }
1456
1457                         if (evsel->overwrite &&
1458                             perf_missing_features.write_backward) {
1459                                 err = -EINVAL;
1460                                 goto out_close;
1461                         }
1462                 }
1463         }
1464
1465         return 0;
1466
1467 try_fallback:
1468         /*
1469          * perf stat needs between 5 and 22 fds per CPU. When we run out
1470          * of them try to increase the limits.
1471          */
1472         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1473                 struct rlimit l;
1474                 int old_errno = errno;
1475
1476                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1477                         if (set_rlimit == NO_CHANGE)
1478                                 l.rlim_cur = l.rlim_max;
1479                         else {
1480                                 l.rlim_cur = l.rlim_max + 1000;
1481                                 l.rlim_max = l.rlim_cur;
1482                         }
1483                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1484                                 set_rlimit++;
1485                                 errno = old_errno;
1486                                 goto retry_open;
1487                         }
1488                 }
1489                 errno = old_errno;
1490         }
1491
1492         if (err != -EINVAL || cpu > 0 || thread > 0)
1493                 goto out_close;
1494
1495         /*
1496          * Must probe features in the order they were added to the
1497          * perf_event_attr interface.
1498          */
1499         if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1500                 perf_missing_features.clockid_wrong = true;
1501                 goto fallback_missing_features;
1502         } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1503                 perf_missing_features.clockid = true;
1504                 goto fallback_missing_features;
1505         } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1506                 perf_missing_features.cloexec = true;
1507                 goto fallback_missing_features;
1508         } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1509                 perf_missing_features.mmap2 = true;
1510                 goto fallback_missing_features;
1511         } else if (!perf_missing_features.exclude_guest &&
1512                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1513                 perf_missing_features.exclude_guest = true;
1514                 goto fallback_missing_features;
1515         } else if (!perf_missing_features.sample_id_all) {
1516                 perf_missing_features.sample_id_all = true;
1517                 goto retry_sample_id;
1518         } else if (!perf_missing_features.lbr_flags &&
1519                         (evsel->attr.branch_sample_type &
1520                          (PERF_SAMPLE_BRANCH_NO_CYCLES |
1521                           PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1522                 perf_missing_features.lbr_flags = true;
1523                 goto fallback_missing_features;
1524         } else if (!perf_missing_features.write_backward &&
1525                         evsel->attr.write_backward) {
1526                 perf_missing_features.write_backward = true;
1527                 goto fallback_missing_features;
1528         }
1529
1530 out_close:
1531         do {
1532                 while (--thread >= 0) {
1533                         close(FD(evsel, cpu, thread));
1534                         FD(evsel, cpu, thread) = -1;
1535                 }
1536                 thread = nthreads;
1537         } while (--cpu >= 0);
1538         return err;
1539 }
1540
1541 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1542 {
1543         if (evsel->fd == NULL)
1544                 return;
1545
1546         perf_evsel__close_fd(evsel, ncpus, nthreads);
1547         perf_evsel__free_fd(evsel);
1548 }
1549
1550 static struct {
1551         struct cpu_map map;
1552         int cpus[1];
1553 } empty_cpu_map = {
1554         .map.nr = 1,
1555         .cpus   = { -1, },
1556 };
1557
1558 static struct {
1559         struct thread_map map;
1560         int threads[1];
1561 } empty_thread_map = {
1562         .map.nr  = 1,
1563         .threads = { -1, },
1564 };
1565
1566 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1567                      struct thread_map *threads)
1568 {
1569         if (cpus == NULL) {
1570                 /* Work around old compiler warnings about strict aliasing */
1571                 cpus = &empty_cpu_map.map;
1572         }
1573
1574         if (threads == NULL)
1575                 threads = &empty_thread_map.map;
1576
1577         return __perf_evsel__open(evsel, cpus, threads);
1578 }
1579
1580 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1581                              struct cpu_map *cpus)
1582 {
1583         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1584 }
1585
1586 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1587                                 struct thread_map *threads)
1588 {
1589         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1590 }
1591
1592 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1593                                        const union perf_event *event,
1594                                        struct perf_sample *sample)
1595 {
1596         u64 type = evsel->attr.sample_type;
1597         const u64 *array = event->sample.array;
1598         bool swapped = evsel->needs_swap;
1599         union u64_swap u;
1600
1601         array += ((event->header.size -
1602                    sizeof(event->header)) / sizeof(u64)) - 1;
1603
1604         if (type & PERF_SAMPLE_IDENTIFIER) {
1605                 sample->id = *array;
1606                 array--;
1607         }
1608
1609         if (type & PERF_SAMPLE_CPU) {
1610                 u.val64 = *array;
1611                 if (swapped) {
1612                         /* undo swap of u64, then swap on individual u32s */
1613                         u.val64 = bswap_64(u.val64);
1614                         u.val32[0] = bswap_32(u.val32[0]);
1615                 }
1616
1617                 sample->cpu = u.val32[0];
1618                 array--;
1619         }
1620
1621         if (type & PERF_SAMPLE_STREAM_ID) {
1622                 sample->stream_id = *array;
1623                 array--;
1624         }
1625
1626         if (type & PERF_SAMPLE_ID) {
1627                 sample->id = *array;
1628                 array--;
1629         }
1630
1631         if (type & PERF_SAMPLE_TIME) {
1632                 sample->time = *array;
1633                 array--;
1634         }
1635
1636         if (type & PERF_SAMPLE_TID) {
1637                 u.val64 = *array;
1638                 if (swapped) {
1639                         /* undo swap of u64, then swap on individual u32s */
1640                         u.val64 = bswap_64(u.val64);
1641                         u.val32[0] = bswap_32(u.val32[0]);
1642                         u.val32[1] = bswap_32(u.val32[1]);
1643                 }
1644
1645                 sample->pid = u.val32[0];
1646                 sample->tid = u.val32[1];
1647                 array--;
1648         }
1649
1650         return 0;
1651 }
1652
1653 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1654                             u64 size)
1655 {
1656         return size > max_size || offset + size > endp;
1657 }
1658
1659 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1660         do {                                                            \
1661                 if (overflow(endp, (max_size), (offset), (size)))       \
1662                         return -EFAULT;                                 \
1663         } while (0)
1664
1665 #define OVERFLOW_CHECK_u64(offset) \
1666         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1667
1668 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1669                              struct perf_sample *data)
1670 {
1671         u64 type = evsel->attr.sample_type;
1672         bool swapped = evsel->needs_swap;
1673         const u64 *array;
1674         u16 max_size = event->header.size;
1675         const void *endp = (void *)event + max_size;
1676         u64 sz;
1677
1678         /*
1679          * used for cross-endian analysis. See git commit 65014ab3
1680          * for why this goofiness is needed.
1681          */
1682         union u64_swap u;
1683
1684         memset(data, 0, sizeof(*data));
1685         data->cpu = data->pid = data->tid = -1;
1686         data->stream_id = data->id = data->time = -1ULL;
1687         data->period = evsel->attr.sample_period;
1688         data->weight = 0;
1689         data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1690
1691         if (event->header.type != PERF_RECORD_SAMPLE) {
1692                 if (!evsel->attr.sample_id_all)
1693                         return 0;
1694                 return perf_evsel__parse_id_sample(evsel, event, data);
1695         }
1696
1697         array = event->sample.array;
1698
1699         /*
1700          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1701          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1702          * check the format does not go past the end of the event.
1703          */
1704         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1705                 return -EFAULT;
1706
1707         data->id = -1ULL;
1708         if (type & PERF_SAMPLE_IDENTIFIER) {
1709                 data->id = *array;
1710                 array++;
1711         }
1712
1713         if (type & PERF_SAMPLE_IP) {
1714                 data->ip = *array;
1715                 array++;
1716         }
1717
1718         if (type & PERF_SAMPLE_TID) {
1719                 u.val64 = *array;
1720                 if (swapped) {
1721                         /* undo swap of u64, then swap on individual u32s */
1722                         u.val64 = bswap_64(u.val64);
1723                         u.val32[0] = bswap_32(u.val32[0]);
1724                         u.val32[1] = bswap_32(u.val32[1]);
1725                 }
1726
1727                 data->pid = u.val32[0];
1728                 data->tid = u.val32[1];
1729                 array++;
1730         }
1731
1732         if (type & PERF_SAMPLE_TIME) {
1733                 data->time = *array;
1734                 array++;
1735         }
1736
1737         data->addr = 0;
1738         if (type & PERF_SAMPLE_ADDR) {
1739                 data->addr = *array;
1740                 array++;
1741         }
1742
1743         if (type & PERF_SAMPLE_ID) {
1744                 data->id = *array;
1745                 array++;
1746         }
1747
1748         if (type & PERF_SAMPLE_STREAM_ID) {
1749                 data->stream_id = *array;
1750                 array++;
1751         }
1752
1753         if (type & PERF_SAMPLE_CPU) {
1754
1755                 u.val64 = *array;
1756                 if (swapped) {
1757                         /* undo swap of u64, then swap on individual u32s */
1758                         u.val64 = bswap_64(u.val64);
1759                         u.val32[0] = bswap_32(u.val32[0]);
1760                 }
1761
1762                 data->cpu = u.val32[0];
1763                 array++;
1764         }
1765
1766         if (type & PERF_SAMPLE_PERIOD) {
1767                 data->period = *array;
1768                 array++;
1769         }
1770
1771         if (type & PERF_SAMPLE_READ) {
1772                 u64 read_format = evsel->attr.read_format;
1773
1774                 OVERFLOW_CHECK_u64(array);
1775                 if (read_format & PERF_FORMAT_GROUP)
1776                         data->read.group.nr = *array;
1777                 else
1778                         data->read.one.value = *array;
1779
1780                 array++;
1781
1782                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1783                         OVERFLOW_CHECK_u64(array);
1784                         data->read.time_enabled = *array;
1785                         array++;
1786                 }
1787
1788                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1789                         OVERFLOW_CHECK_u64(array);
1790                         data->read.time_running = *array;
1791                         array++;
1792                 }
1793
1794                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1795                 if (read_format & PERF_FORMAT_GROUP) {
1796                         const u64 max_group_nr = UINT64_MAX /
1797                                         sizeof(struct sample_read_value);
1798
1799                         if (data->read.group.nr > max_group_nr)
1800                                 return -EFAULT;
1801                         sz = data->read.group.nr *
1802                              sizeof(struct sample_read_value);
1803                         OVERFLOW_CHECK(array, sz, max_size);
1804                         data->read.group.values =
1805                                         (struct sample_read_value *)array;
1806                         array = (void *)array + sz;
1807                 } else {
1808                         OVERFLOW_CHECK_u64(array);
1809                         data->read.one.id = *array;
1810                         array++;
1811                 }
1812         }
1813
1814         if (type & PERF_SAMPLE_CALLCHAIN) {
1815                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1816
1817                 OVERFLOW_CHECK_u64(array);
1818                 data->callchain = (struct ip_callchain *)array++;
1819                 if (data->callchain->nr > max_callchain_nr)
1820                         return -EFAULT;
1821                 sz = data->callchain->nr * sizeof(u64);
1822                 OVERFLOW_CHECK(array, sz, max_size);
1823                 array = (void *)array + sz;
1824         }
1825
1826         if (type & PERF_SAMPLE_RAW) {
1827                 OVERFLOW_CHECK_u64(array);
1828                 u.val64 = *array;
1829                 if (WARN_ONCE(swapped,
1830                               "Endianness of raw data not corrected!\n")) {
1831                         /* undo swap of u64, then swap on individual u32s */
1832                         u.val64 = bswap_64(u.val64);
1833                         u.val32[0] = bswap_32(u.val32[0]);
1834                         u.val32[1] = bswap_32(u.val32[1]);
1835                 }
1836                 data->raw_size = u.val32[0];
1837                 array = (void *)array + sizeof(u32);
1838
1839                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1840                 data->raw_data = (void *)array;
1841                 array = (void *)array + data->raw_size;
1842         }
1843
1844         if (type & PERF_SAMPLE_BRANCH_STACK) {
1845                 const u64 max_branch_nr = UINT64_MAX /
1846                                           sizeof(struct branch_entry);
1847
1848                 OVERFLOW_CHECK_u64(array);
1849                 data->branch_stack = (struct branch_stack *)array++;
1850
1851                 if (data->branch_stack->nr > max_branch_nr)
1852                         return -EFAULT;
1853                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1854                 OVERFLOW_CHECK(array, sz, max_size);
1855                 array = (void *)array + sz;
1856         }
1857
1858         if (type & PERF_SAMPLE_REGS_USER) {
1859                 OVERFLOW_CHECK_u64(array);
1860                 data->user_regs.abi = *array;
1861                 array++;
1862
1863                 if (data->user_regs.abi) {
1864                         u64 mask = evsel->attr.sample_regs_user;
1865
1866                         sz = hweight_long(mask) * sizeof(u64);
1867                         OVERFLOW_CHECK(array, sz, max_size);
1868                         data->user_regs.mask = mask;
1869                         data->user_regs.regs = (u64 *)array;
1870                         array = (void *)array + sz;
1871                 }
1872         }
1873
1874         if (type & PERF_SAMPLE_STACK_USER) {
1875                 OVERFLOW_CHECK_u64(array);
1876                 sz = *array++;
1877
1878                 data->user_stack.offset = ((char *)(array - 1)
1879                                           - (char *) event);
1880
1881                 if (!sz) {
1882                         data->user_stack.size = 0;
1883                 } else {
1884                         OVERFLOW_CHECK(array, sz, max_size);
1885                         data->user_stack.data = (char *)array;
1886                         array = (void *)array + sz;
1887                         OVERFLOW_CHECK_u64(array);
1888                         data->user_stack.size = *array++;
1889                         if (WARN_ONCE(data->user_stack.size > sz,
1890                                       "user stack dump failure\n"))
1891                                 return -EFAULT;
1892                 }
1893         }
1894
1895         data->weight = 0;
1896         if (type & PERF_SAMPLE_WEIGHT) {
1897                 OVERFLOW_CHECK_u64(array);
1898                 data->weight = *array;
1899                 array++;
1900         }
1901
1902         data->data_src = PERF_MEM_DATA_SRC_NONE;
1903         if (type & PERF_SAMPLE_DATA_SRC) {
1904                 OVERFLOW_CHECK_u64(array);
1905                 data->data_src = *array;
1906                 array++;
1907         }
1908
1909         data->transaction = 0;
1910         if (type & PERF_SAMPLE_TRANSACTION) {
1911                 OVERFLOW_CHECK_u64(array);
1912                 data->transaction = *array;
1913                 array++;
1914         }
1915
1916         data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1917         if (type & PERF_SAMPLE_REGS_INTR) {
1918                 OVERFLOW_CHECK_u64(array);
1919                 data->intr_regs.abi = *array;
1920                 array++;
1921
1922                 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1923                         u64 mask = evsel->attr.sample_regs_intr;
1924
1925                         sz = hweight_long(mask) * sizeof(u64);
1926                         OVERFLOW_CHECK(array, sz, max_size);
1927                         data->intr_regs.mask = mask;
1928                         data->intr_regs.regs = (u64 *)array;
1929                         array = (void *)array + sz;
1930                 }
1931         }
1932
1933         return 0;
1934 }
1935
1936 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1937                                      u64 read_format)
1938 {
1939         size_t sz, result = sizeof(struct sample_event);
1940
1941         if (type & PERF_SAMPLE_IDENTIFIER)
1942                 result += sizeof(u64);
1943
1944         if (type & PERF_SAMPLE_IP)
1945                 result += sizeof(u64);
1946
1947         if (type & PERF_SAMPLE_TID)
1948                 result += sizeof(u64);
1949
1950         if (type & PERF_SAMPLE_TIME)
1951                 result += sizeof(u64);
1952
1953         if (type & PERF_SAMPLE_ADDR)
1954                 result += sizeof(u64);
1955
1956         if (type & PERF_SAMPLE_ID)
1957                 result += sizeof(u64);
1958
1959         if (type & PERF_SAMPLE_STREAM_ID)
1960                 result += sizeof(u64);
1961
1962         if (type & PERF_SAMPLE_CPU)
1963                 result += sizeof(u64);
1964
1965         if (type & PERF_SAMPLE_PERIOD)
1966                 result += sizeof(u64);
1967
1968         if (type & PERF_SAMPLE_READ) {
1969                 result += sizeof(u64);
1970                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1971                         result += sizeof(u64);
1972                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1973                         result += sizeof(u64);
1974                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1975                 if (read_format & PERF_FORMAT_GROUP) {
1976                         sz = sample->read.group.nr *
1977                              sizeof(struct sample_read_value);
1978                         result += sz;
1979                 } else {
1980                         result += sizeof(u64);
1981                 }
1982         }
1983
1984         if (type & PERF_SAMPLE_CALLCHAIN) {
1985                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1986                 result += sz;
1987         }
1988
1989         if (type & PERF_SAMPLE_RAW) {
1990                 result += sizeof(u32);
1991                 result += sample->raw_size;
1992         }
1993
1994         if (type & PERF_SAMPLE_BRANCH_STACK) {
1995                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1996                 sz += sizeof(u64);
1997                 result += sz;
1998         }
1999
2000         if (type & PERF_SAMPLE_REGS_USER) {
2001                 if (sample->user_regs.abi) {
2002                         result += sizeof(u64);
2003                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2004                         result += sz;
2005                 } else {
2006                         result += sizeof(u64);
2007                 }
2008         }
2009
2010         if (type & PERF_SAMPLE_STACK_USER) {
2011                 sz = sample->user_stack.size;
2012                 result += sizeof(u64);
2013                 if (sz) {
2014                         result += sz;
2015                         result += sizeof(u64);
2016                 }
2017         }
2018
2019         if (type & PERF_SAMPLE_WEIGHT)
2020                 result += sizeof(u64);
2021
2022         if (type & PERF_SAMPLE_DATA_SRC)
2023                 result += sizeof(u64);
2024
2025         if (type & PERF_SAMPLE_TRANSACTION)
2026                 result += sizeof(u64);
2027
2028         if (type & PERF_SAMPLE_REGS_INTR) {
2029                 if (sample->intr_regs.abi) {
2030                         result += sizeof(u64);
2031                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2032                         result += sz;
2033                 } else {
2034                         result += sizeof(u64);
2035                 }
2036         }
2037
2038         return result;
2039 }
2040
2041 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2042                                   u64 read_format,
2043                                   const struct perf_sample *sample,
2044                                   bool swapped)
2045 {
2046         u64 *array;
2047         size_t sz;
2048         /*
2049          * used for cross-endian analysis. See git commit 65014ab3
2050          * for why this goofiness is needed.
2051          */
2052         union u64_swap u;
2053
2054         array = event->sample.array;
2055
2056         if (type & PERF_SAMPLE_IDENTIFIER) {
2057                 *array = sample->id;
2058                 array++;
2059         }
2060
2061         if (type & PERF_SAMPLE_IP) {
2062                 *array = sample->ip;
2063                 array++;
2064         }
2065
2066         if (type & PERF_SAMPLE_TID) {
2067                 u.val32[0] = sample->pid;
2068                 u.val32[1] = sample->tid;
2069                 if (swapped) {
2070                         /*
2071                          * Inverse of what is done in perf_evsel__parse_sample
2072                          */
2073                         u.val32[0] = bswap_32(u.val32[0]);
2074                         u.val32[1] = bswap_32(u.val32[1]);
2075                         u.val64 = bswap_64(u.val64);
2076                 }
2077
2078                 *array = u.val64;
2079                 array++;
2080         }
2081
2082         if (type & PERF_SAMPLE_TIME) {
2083                 *array = sample->time;
2084                 array++;
2085         }
2086
2087         if (type & PERF_SAMPLE_ADDR) {
2088                 *array = sample->addr;
2089                 array++;
2090         }
2091
2092         if (type & PERF_SAMPLE_ID) {
2093                 *array = sample->id;
2094                 array++;
2095         }
2096
2097         if (type & PERF_SAMPLE_STREAM_ID) {
2098                 *array = sample->stream_id;
2099                 array++;
2100         }
2101
2102         if (type & PERF_SAMPLE_CPU) {
2103                 u.val32[0] = sample->cpu;
2104                 if (swapped) {
2105                         /*
2106                          * Inverse of what is done in perf_evsel__parse_sample
2107                          */
2108                         u.val32[0] = bswap_32(u.val32[0]);
2109                         u.val64 = bswap_64(u.val64);
2110                 }
2111                 *array = u.val64;
2112                 array++;
2113         }
2114
2115         if (type & PERF_SAMPLE_PERIOD) {
2116                 *array = sample->period;
2117                 array++;
2118         }
2119
2120         if (type & PERF_SAMPLE_READ) {
2121                 if (read_format & PERF_FORMAT_GROUP)
2122                         *array = sample->read.group.nr;
2123                 else
2124                         *array = sample->read.one.value;
2125                 array++;
2126
2127                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2128                         *array = sample->read.time_enabled;
2129                         array++;
2130                 }
2131
2132                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2133                         *array = sample->read.time_running;
2134                         array++;
2135                 }
2136
2137                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2138                 if (read_format & PERF_FORMAT_GROUP) {
2139                         sz = sample->read.group.nr *
2140                              sizeof(struct sample_read_value);
2141                         memcpy(array, sample->read.group.values, sz);
2142                         array = (void *)array + sz;
2143                 } else {
2144                         *array = sample->read.one.id;
2145                         array++;
2146                 }
2147         }
2148
2149         if (type & PERF_SAMPLE_CALLCHAIN) {
2150                 sz = (sample->callchain->nr + 1) * sizeof(u64);
2151                 memcpy(array, sample->callchain, sz);
2152                 array = (void *)array + sz;
2153         }
2154
2155         if (type & PERF_SAMPLE_RAW) {
2156                 u.val32[0] = sample->raw_size;
2157                 if (WARN_ONCE(swapped,
2158                               "Endianness of raw data not corrected!\n")) {
2159                         /*
2160                          * Inverse of what is done in perf_evsel__parse_sample
2161                          */
2162                         u.val32[0] = bswap_32(u.val32[0]);
2163                         u.val32[1] = bswap_32(u.val32[1]);
2164                         u.val64 = bswap_64(u.val64);
2165                 }
2166                 *array = u.val64;
2167                 array = (void *)array + sizeof(u32);
2168
2169                 memcpy(array, sample->raw_data, sample->raw_size);
2170                 array = (void *)array + sample->raw_size;
2171         }
2172
2173         if (type & PERF_SAMPLE_BRANCH_STACK) {
2174                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2175                 sz += sizeof(u64);
2176                 memcpy(array, sample->branch_stack, sz);
2177                 array = (void *)array + sz;
2178         }
2179
2180         if (type & PERF_SAMPLE_REGS_USER) {
2181                 if (sample->user_regs.abi) {
2182                         *array++ = sample->user_regs.abi;
2183                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2184                         memcpy(array, sample->user_regs.regs, sz);
2185                         array = (void *)array + sz;
2186                 } else {
2187                         *array++ = 0;
2188                 }
2189         }
2190
2191         if (type & PERF_SAMPLE_STACK_USER) {
2192                 sz = sample->user_stack.size;
2193                 *array++ = sz;
2194                 if (sz) {
2195                         memcpy(array, sample->user_stack.data, sz);
2196                         array = (void *)array + sz;
2197                         *array++ = sz;
2198                 }
2199         }
2200
2201         if (type & PERF_SAMPLE_WEIGHT) {
2202                 *array = sample->weight;
2203                 array++;
2204         }
2205
2206         if (type & PERF_SAMPLE_DATA_SRC) {
2207                 *array = sample->data_src;
2208                 array++;
2209         }
2210
2211         if (type & PERF_SAMPLE_TRANSACTION) {
2212                 *array = sample->transaction;
2213                 array++;
2214         }
2215
2216         if (type & PERF_SAMPLE_REGS_INTR) {
2217                 if (sample->intr_regs.abi) {
2218                         *array++ = sample->intr_regs.abi;
2219                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2220                         memcpy(array, sample->intr_regs.regs, sz);
2221                         array = (void *)array + sz;
2222                 } else {
2223                         *array++ = 0;
2224                 }
2225         }
2226
2227         return 0;
2228 }
2229
2230 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2231 {
2232         return pevent_find_field(evsel->tp_format, name);
2233 }
2234
2235 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2236                          const char *name)
2237 {
2238         struct format_field *field = perf_evsel__field(evsel, name);
2239         int offset;
2240
2241         if (!field)
2242                 return NULL;
2243
2244         offset = field->offset;
2245
2246         if (field->flags & FIELD_IS_DYNAMIC) {
2247                 offset = *(int *)(sample->raw_data + field->offset);
2248                 offset &= 0xffff;
2249         }
2250
2251         return sample->raw_data + offset;
2252 }
2253
2254 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2255                          bool needs_swap)
2256 {
2257         u64 value;
2258         void *ptr = sample->raw_data + field->offset;
2259
2260         switch (field->size) {
2261         case 1:
2262                 return *(u8 *)ptr;
2263         case 2:
2264                 value = *(u16 *)ptr;
2265                 break;
2266         case 4:
2267                 value = *(u32 *)ptr;
2268                 break;
2269         case 8:
2270                 memcpy(&value, ptr, sizeof(u64));
2271                 break;
2272         default:
2273                 return 0;
2274         }
2275
2276         if (!needs_swap)
2277                 return value;
2278
2279         switch (field->size) {
2280         case 2:
2281                 return bswap_16(value);
2282         case 4:
2283                 return bswap_32(value);
2284         case 8:
2285                 return bswap_64(value);
2286         default:
2287                 return 0;
2288         }
2289
2290         return 0;
2291 }
2292
2293 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2294                        const char *name)
2295 {
2296         struct format_field *field = perf_evsel__field(evsel, name);
2297
2298         if (!field)
2299                 return 0;
2300
2301         return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2302 }
2303
2304 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2305                           char *msg, size_t msgsize)
2306 {
2307         int paranoid;
2308
2309         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2310             evsel->attr.type   == PERF_TYPE_HARDWARE &&
2311             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2312                 /*
2313                  * If it's cycles then fall back to hrtimer based
2314                  * cpu-clock-tick sw counter, which is always available even if
2315                  * no PMU support.
2316                  *
2317                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2318                  * b0a873e).
2319                  */
2320                 scnprintf(msg, msgsize, "%s",
2321 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2322
2323                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
2324                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2325
2326                 zfree(&evsel->name);
2327                 return true;
2328         } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2329                    (paranoid = perf_event_paranoid()) > 1) {
2330                 const char *name = perf_evsel__name(evsel);
2331                 char *new_name;
2332
2333                 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2334                         return false;
2335
2336                 if (evsel->name)
2337                         free(evsel->name);
2338                 evsel->name = new_name;
2339                 scnprintf(msg, msgsize,
2340 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2341                 evsel->attr.exclude_kernel = 1;
2342
2343                 return true;
2344         }
2345
2346         return false;
2347 }
2348
2349 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2350                               int err, char *msg, size_t size)
2351 {
2352         char sbuf[STRERR_BUFSIZE];
2353
2354         switch (err) {
2355         case EPERM:
2356         case EACCES:
2357                 return scnprintf(msg, size,
2358                  "You may not have permission to collect %sstats.\n\n"
2359                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2360                  "which controls use of the performance events system by\n"
2361                  "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2362                  "The current value is %d:\n\n"
2363                  "  -1: Allow use of (almost) all events by all users\n"
2364                  ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2365                  ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2366                  ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN",
2367                                  target->system_wide ? "system-wide " : "",
2368                                  perf_event_paranoid());
2369         case ENOENT:
2370                 return scnprintf(msg, size, "The %s event is not supported.",
2371                                  perf_evsel__name(evsel));
2372         case EMFILE:
2373                 return scnprintf(msg, size, "%s",
2374                          "Too many events are opened.\n"
2375                          "Probably the maximum number of open file descriptors has been reached.\n"
2376                          "Hint: Try again after reducing the number of events.\n"
2377                          "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2378         case ENOMEM:
2379                 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2380                     access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2381                         return scnprintf(msg, size,
2382                                          "Not enough memory to setup event with callchain.\n"
2383                                          "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2384                                          "Hint: Current value: %d", sysctl_perf_event_max_stack);
2385                 break;
2386         case ENODEV:
2387                 if (target->cpu_list)
2388                         return scnprintf(msg, size, "%s",
2389          "No such device - did you specify an out-of-range profile CPU?");
2390                 break;
2391         case EOPNOTSUPP:
2392                 if (evsel->attr.sample_period != 0)
2393                         return scnprintf(msg, size, "%s",
2394         "PMU Hardware doesn't support sampling/overflow-interrupts.");
2395                 if (evsel->attr.precise_ip)
2396                         return scnprintf(msg, size, "%s",
2397         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2398 #if defined(__i386__) || defined(__x86_64__)
2399                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2400                         return scnprintf(msg, size, "%s",
2401         "No hardware sampling interrupt available.\n"
2402         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2403 #endif
2404                 break;
2405         case EBUSY:
2406                 if (find_process("oprofiled"))
2407                         return scnprintf(msg, size,
2408         "The PMU counters are busy/taken by another profiler.\n"
2409         "We found oprofile daemon running, please stop it and try again.");
2410                 break;
2411         case EINVAL:
2412                 if (perf_missing_features.clockid)
2413                         return scnprintf(msg, size, "clockid feature not supported.");
2414                 if (perf_missing_features.clockid_wrong)
2415                         return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2416                 break;
2417         default:
2418                 break;
2419         }
2420
2421         return scnprintf(msg, size,
2422         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2423         "/bin/dmesg may provide additional information.\n"
2424         "No CONFIG_PERF_EVENTS=y kernel support configured?",
2425                          err, strerror_r(err, sbuf, sizeof(sbuf)),
2426                          perf_evsel__name(evsel));
2427 }