ASoC: tpa6130a2: fix volume setting when no stream is running
[cascardo/linux.git] / virt / kvm / arm / arch_timer.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24
25 #include <clocksource/arm_arch_timer.h>
26 #include <asm/arch_timer.h>
27
28 #include <kvm/arm_vgic.h>
29 #include <kvm/arm_arch_timer.h>
30
31 #include "trace.h"
32
33 static struct timecounter *timecounter;
34 static struct workqueue_struct *wqueue;
35 static unsigned int host_vtimer_irq;
36
37 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
38 {
39         vcpu->arch.timer_cpu.active_cleared_last = false;
40 }
41
42 static cycle_t kvm_phys_timer_read(void)
43 {
44         return timecounter->cc->read(timecounter->cc);
45 }
46
47 static bool timer_is_armed(struct arch_timer_cpu *timer)
48 {
49         return timer->armed;
50 }
51
52 /* timer_arm: as in "arm the timer", not as in ARM the company */
53 static void timer_arm(struct arch_timer_cpu *timer, u64 ns)
54 {
55         timer->armed = true;
56         hrtimer_start(&timer->timer, ktime_add_ns(ktime_get(), ns),
57                       HRTIMER_MODE_ABS);
58 }
59
60 static void timer_disarm(struct arch_timer_cpu *timer)
61 {
62         if (timer_is_armed(timer)) {
63                 hrtimer_cancel(&timer->timer);
64                 cancel_work_sync(&timer->expired);
65                 timer->armed = false;
66         }
67 }
68
69 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
70 {
71         struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
72
73         /*
74          * We disable the timer in the world switch and let it be
75          * handled by kvm_timer_sync_hwstate(). Getting a timer
76          * interrupt at this point is a sure sign of some major
77          * breakage.
78          */
79         pr_warn("Unexpected interrupt %d on vcpu %p\n", irq, vcpu);
80         return IRQ_HANDLED;
81 }
82
83 /*
84  * Work function for handling the backup timer that we schedule when a vcpu is
85  * no longer running, but had a timer programmed to fire in the future.
86  */
87 static void kvm_timer_inject_irq_work(struct work_struct *work)
88 {
89         struct kvm_vcpu *vcpu;
90
91         vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
92         vcpu->arch.timer_cpu.armed = false;
93
94         WARN_ON(!kvm_timer_should_fire(vcpu));
95
96         /*
97          * If the vcpu is blocked we want to wake it up so that it will see
98          * the timer has expired when entering the guest.
99          */
100         kvm_vcpu_kick(vcpu);
101 }
102
103 static u64 kvm_timer_compute_delta(struct kvm_vcpu *vcpu)
104 {
105         cycle_t cval, now;
106
107         cval = vcpu->arch.timer_cpu.cntv_cval;
108         now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
109
110         if (now < cval) {
111                 u64 ns;
112
113                 ns = cyclecounter_cyc2ns(timecounter->cc,
114                                          cval - now,
115                                          timecounter->mask,
116                                          &timecounter->frac);
117                 return ns;
118         }
119
120         return 0;
121 }
122
123 static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt)
124 {
125         struct arch_timer_cpu *timer;
126         struct kvm_vcpu *vcpu;
127         u64 ns;
128
129         timer = container_of(hrt, struct arch_timer_cpu, timer);
130         vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
131
132         /*
133          * Check that the timer has really expired from the guest's
134          * PoV (NTP on the host may have forced it to expire
135          * early). If we should have slept longer, restart it.
136          */
137         ns = kvm_timer_compute_delta(vcpu);
138         if (unlikely(ns)) {
139                 hrtimer_forward_now(hrt, ns_to_ktime(ns));
140                 return HRTIMER_RESTART;
141         }
142
143         queue_work(wqueue, &timer->expired);
144         return HRTIMER_NORESTART;
145 }
146
147 static bool kvm_timer_irq_can_fire(struct kvm_vcpu *vcpu)
148 {
149         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
150
151         return !(timer->cntv_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
152                 (timer->cntv_ctl & ARCH_TIMER_CTRL_ENABLE);
153 }
154
155 bool kvm_timer_should_fire(struct kvm_vcpu *vcpu)
156 {
157         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
158         cycle_t cval, now;
159
160         if (!kvm_timer_irq_can_fire(vcpu))
161                 return false;
162
163         cval = timer->cntv_cval;
164         now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
165
166         return cval <= now;
167 }
168
169 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level)
170 {
171         int ret;
172         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
173
174         BUG_ON(!vgic_initialized(vcpu->kvm));
175
176         timer->active_cleared_last = false;
177         timer->irq.level = new_level;
178         trace_kvm_timer_update_irq(vcpu->vcpu_id, timer->irq.irq,
179                                    timer->irq.level);
180         ret = kvm_vgic_inject_mapped_irq(vcpu->kvm, vcpu->vcpu_id,
181                                          timer->irq.irq,
182                                          timer->irq.level);
183         WARN_ON(ret);
184 }
185
186 /*
187  * Check if there was a change in the timer state (should we raise or lower
188  * the line level to the GIC).
189  */
190 static int kvm_timer_update_state(struct kvm_vcpu *vcpu)
191 {
192         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
193
194         /*
195          * If userspace modified the timer registers via SET_ONE_REG before
196          * the vgic was initialized, we mustn't set the timer->irq.level value
197          * because the guest would never see the interrupt.  Instead wait
198          * until we call this function from kvm_timer_flush_hwstate.
199          */
200         if (!vgic_initialized(vcpu->kvm) || !timer->enabled)
201                 return -ENODEV;
202
203         if (kvm_timer_should_fire(vcpu) != timer->irq.level)
204                 kvm_timer_update_irq(vcpu, !timer->irq.level);
205
206         return 0;
207 }
208
209 /*
210  * Schedule the background timer before calling kvm_vcpu_block, so that this
211  * thread is removed from its waitqueue and made runnable when there's a timer
212  * interrupt to handle.
213  */
214 void kvm_timer_schedule(struct kvm_vcpu *vcpu)
215 {
216         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
217
218         BUG_ON(timer_is_armed(timer));
219
220         /*
221          * No need to schedule a background timer if the guest timer has
222          * already expired, because kvm_vcpu_block will return before putting
223          * the thread to sleep.
224          */
225         if (kvm_timer_should_fire(vcpu))
226                 return;
227
228         /*
229          * If the timer is not capable of raising interrupts (disabled or
230          * masked), then there's no more work for us to do.
231          */
232         if (!kvm_timer_irq_can_fire(vcpu))
233                 return;
234
235         /*  The timer has not yet expired, schedule a background timer */
236         timer_arm(timer, kvm_timer_compute_delta(vcpu));
237 }
238
239 void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
240 {
241         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
242         timer_disarm(timer);
243 }
244
245 /**
246  * kvm_timer_flush_hwstate - prepare to move the virt timer to the cpu
247  * @vcpu: The vcpu pointer
248  *
249  * Check if the virtual timer has expired while we were running in the host,
250  * and inject an interrupt if that was the case.
251  */
252 void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
253 {
254         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
255         bool phys_active;
256         int ret;
257
258         if (kvm_timer_update_state(vcpu))
259                 return;
260
261         /*
262         * If we enter the guest with the virtual input level to the VGIC
263         * asserted, then we have already told the VGIC what we need to, and
264         * we don't need to exit from the guest until the guest deactivates
265         * the already injected interrupt, so therefore we should set the
266         * hardware active state to prevent unnecessary exits from the guest.
267         *
268         * Also, if we enter the guest with the virtual timer interrupt active,
269         * then it must be active on the physical distributor, because we set
270         * the HW bit and the guest must be able to deactivate the virtual and
271         * physical interrupt at the same time.
272         *
273         * Conversely, if the virtual input level is deasserted and the virtual
274         * interrupt is not active, then always clear the hardware active state
275         * to ensure that hardware interrupts from the timer triggers a guest
276         * exit.
277         */
278         phys_active = timer->irq.level ||
279                         kvm_vgic_map_is_active(vcpu, timer->irq.irq);
280
281         /*
282          * We want to avoid hitting the (re)distributor as much as
283          * possible, as this is a potentially expensive MMIO access
284          * (not to mention locks in the irq layer), and a solution for
285          * this is to cache the "active" state in memory.
286          *
287          * Things to consider: we cannot cache an "active set" state,
288          * because the HW can change this behind our back (it becomes
289          * "clear" in the HW). We must then restrict the caching to
290          * the "clear" state.
291          *
292          * The cache is invalidated on:
293          * - vcpu put, indicating that the HW cannot be trusted to be
294          *   in a sane state on the next vcpu load,
295          * - any change in the interrupt state
296          *
297          * Usage conditions:
298          * - cached value is "active clear"
299          * - value to be programmed is "active clear"
300          */
301         if (timer->active_cleared_last && !phys_active)
302                 return;
303
304         ret = irq_set_irqchip_state(host_vtimer_irq,
305                                     IRQCHIP_STATE_ACTIVE,
306                                     phys_active);
307         WARN_ON(ret);
308
309         timer->active_cleared_last = !phys_active;
310 }
311
312 /**
313  * kvm_timer_sync_hwstate - sync timer state from cpu
314  * @vcpu: The vcpu pointer
315  *
316  * Check if the virtual timer has expired while we were running in the guest,
317  * and inject an interrupt if that was the case.
318  */
319 void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
320 {
321         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
322
323         BUG_ON(timer_is_armed(timer));
324
325         /*
326          * The guest could have modified the timer registers or the timer
327          * could have expired, update the timer state.
328          */
329         kvm_timer_update_state(vcpu);
330 }
331
332 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu,
333                          const struct kvm_irq_level *irq)
334 {
335         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
336
337         /*
338          * The vcpu timer irq number cannot be determined in
339          * kvm_timer_vcpu_init() because it is called much before
340          * kvm_vcpu_set_target(). To handle this, we determine
341          * vcpu timer irq number when the vcpu is reset.
342          */
343         timer->irq.irq = irq->irq;
344
345         /*
346          * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
347          * and to 0 for ARMv7.  We provide an implementation that always
348          * resets the timer to be disabled and unmasked and is compliant with
349          * the ARMv7 architecture.
350          */
351         timer->cntv_ctl = 0;
352         kvm_timer_update_state(vcpu);
353
354         return 0;
355 }
356
357 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
358 {
359         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
360
361         INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
362         hrtimer_init(&timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
363         timer->timer.function = kvm_timer_expire;
364 }
365
366 static void kvm_timer_init_interrupt(void *info)
367 {
368         enable_percpu_irq(host_vtimer_irq, 0);
369 }
370
371 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
372 {
373         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
374
375         switch (regid) {
376         case KVM_REG_ARM_TIMER_CTL:
377                 timer->cntv_ctl = value;
378                 break;
379         case KVM_REG_ARM_TIMER_CNT:
380                 vcpu->kvm->arch.timer.cntvoff = kvm_phys_timer_read() - value;
381                 break;
382         case KVM_REG_ARM_TIMER_CVAL:
383                 timer->cntv_cval = value;
384                 break;
385         default:
386                 return -1;
387         }
388
389         kvm_timer_update_state(vcpu);
390         return 0;
391 }
392
393 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
394 {
395         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
396
397         switch (regid) {
398         case KVM_REG_ARM_TIMER_CTL:
399                 return timer->cntv_ctl;
400         case KVM_REG_ARM_TIMER_CNT:
401                 return kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
402         case KVM_REG_ARM_TIMER_CVAL:
403                 return timer->cntv_cval;
404         }
405         return (u64)-1;
406 }
407
408 static int kvm_timer_starting_cpu(unsigned int cpu)
409 {
410         kvm_timer_init_interrupt(NULL);
411         return 0;
412 }
413
414 static int kvm_timer_dying_cpu(unsigned int cpu)
415 {
416         disable_percpu_irq(host_vtimer_irq);
417         return 0;
418 }
419
420 int kvm_timer_hyp_init(void)
421 {
422         struct arch_timer_kvm_info *info;
423         int err;
424
425         info = arch_timer_get_kvm_info();
426         timecounter = &info->timecounter;
427
428         if (info->virtual_irq <= 0) {
429                 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
430                         info->virtual_irq);
431                 return -ENODEV;
432         }
433         host_vtimer_irq = info->virtual_irq;
434
435         err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
436                                  "kvm guest timer", kvm_get_running_vcpus());
437         if (err) {
438                 kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
439                         host_vtimer_irq, err);
440                 goto out;
441         }
442
443         wqueue = create_singlethread_workqueue("kvm_arch_timer");
444         if (!wqueue) {
445                 err = -ENOMEM;
446                 goto out_free;
447         }
448
449         kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
450
451         cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
452                           "AP_KVM_ARM_TIMER_STARTING", kvm_timer_starting_cpu,
453                           kvm_timer_dying_cpu);
454         goto out;
455 out_free:
456         free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
457 out:
458         return err;
459 }
460
461 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
462 {
463         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
464
465         timer_disarm(timer);
466         kvm_vgic_unmap_phys_irq(vcpu, timer->irq.irq);
467 }
468
469 int kvm_timer_enable(struct kvm_vcpu *vcpu)
470 {
471         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
472         struct irq_desc *desc;
473         struct irq_data *data;
474         int phys_irq;
475         int ret;
476
477         if (timer->enabled)
478                 return 0;
479
480         /*
481          * Find the physical IRQ number corresponding to the host_vtimer_irq
482          */
483         desc = irq_to_desc(host_vtimer_irq);
484         if (!desc) {
485                 kvm_err("%s: no interrupt descriptor\n", __func__);
486                 return -EINVAL;
487         }
488
489         data = irq_desc_get_irq_data(desc);
490         while (data->parent_data)
491                 data = data->parent_data;
492
493         phys_irq = data->hwirq;
494
495         /*
496          * Tell the VGIC that the virtual interrupt is tied to a
497          * physical interrupt. We do that once per VCPU.
498          */
499         ret = kvm_vgic_map_phys_irq(vcpu, timer->irq.irq, phys_irq);
500         if (ret)
501                 return ret;
502
503
504         /*
505          * There is a potential race here between VCPUs starting for the first
506          * time, which may be enabling the timer multiple times.  That doesn't
507          * hurt though, because we're just setting a variable to the same
508          * variable that it already was.  The important thing is that all
509          * VCPUs have the enabled variable set, before entering the guest, if
510          * the arch timers are enabled.
511          */
512         if (timecounter && wqueue)
513                 timer->enabled = 1;
514
515         return 0;
516 }
517
518 void kvm_timer_init(struct kvm *kvm)
519 {
520         kvm->arch.timer.cntvoff = kvm_phys_timer_read();
521 }