spi: pic32: Fix checking return value of devm_ioremap_resource
[cascardo/linux.git] / virt / kvm / arm / arch_timer.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/of_irq.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24
25 #include <clocksource/arm_arch_timer.h>
26 #include <asm/arch_timer.h>
27
28 #include <kvm/arm_vgic.h>
29 #include <kvm/arm_arch_timer.h>
30
31 #include "trace.h"
32
33 static struct timecounter *timecounter;
34 static struct workqueue_struct *wqueue;
35 static unsigned int host_vtimer_irq;
36
37 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
38 {
39         vcpu->arch.timer_cpu.active_cleared_last = false;
40 }
41
42 static cycle_t kvm_phys_timer_read(void)
43 {
44         return timecounter->cc->read(timecounter->cc);
45 }
46
47 static bool timer_is_armed(struct arch_timer_cpu *timer)
48 {
49         return timer->armed;
50 }
51
52 /* timer_arm: as in "arm the timer", not as in ARM the company */
53 static void timer_arm(struct arch_timer_cpu *timer, u64 ns)
54 {
55         timer->armed = true;
56         hrtimer_start(&timer->timer, ktime_add_ns(ktime_get(), ns),
57                       HRTIMER_MODE_ABS);
58 }
59
60 static void timer_disarm(struct arch_timer_cpu *timer)
61 {
62         if (timer_is_armed(timer)) {
63                 hrtimer_cancel(&timer->timer);
64                 cancel_work_sync(&timer->expired);
65                 timer->armed = false;
66         }
67 }
68
69 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
70 {
71         struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
72
73         /*
74          * We disable the timer in the world switch and let it be
75          * handled by kvm_timer_sync_hwstate(). Getting a timer
76          * interrupt at this point is a sure sign of some major
77          * breakage.
78          */
79         pr_warn("Unexpected interrupt %d on vcpu %p\n", irq, vcpu);
80         return IRQ_HANDLED;
81 }
82
83 /*
84  * Work function for handling the backup timer that we schedule when a vcpu is
85  * no longer running, but had a timer programmed to fire in the future.
86  */
87 static void kvm_timer_inject_irq_work(struct work_struct *work)
88 {
89         struct kvm_vcpu *vcpu;
90
91         vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
92         vcpu->arch.timer_cpu.armed = false;
93
94         /*
95          * If the vcpu is blocked we want to wake it up so that it will see
96          * the timer has expired when entering the guest.
97          */
98         kvm_vcpu_kick(vcpu);
99 }
100
101 static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt)
102 {
103         struct arch_timer_cpu *timer;
104         timer = container_of(hrt, struct arch_timer_cpu, timer);
105         queue_work(wqueue, &timer->expired);
106         return HRTIMER_NORESTART;
107 }
108
109 static bool kvm_timer_irq_can_fire(struct kvm_vcpu *vcpu)
110 {
111         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
112
113         return !(timer->cntv_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
114                 (timer->cntv_ctl & ARCH_TIMER_CTRL_ENABLE);
115 }
116
117 bool kvm_timer_should_fire(struct kvm_vcpu *vcpu)
118 {
119         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
120         cycle_t cval, now;
121
122         if (!kvm_timer_irq_can_fire(vcpu))
123                 return false;
124
125         cval = timer->cntv_cval;
126         now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
127
128         return cval <= now;
129 }
130
131 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level)
132 {
133         int ret;
134         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
135
136         BUG_ON(!vgic_initialized(vcpu->kvm));
137
138         timer->active_cleared_last = false;
139         timer->irq.level = new_level;
140         trace_kvm_timer_update_irq(vcpu->vcpu_id, timer->map->virt_irq,
141                                    timer->irq.level);
142         ret = kvm_vgic_inject_mapped_irq(vcpu->kvm, vcpu->vcpu_id,
143                                          timer->map,
144                                          timer->irq.level);
145         WARN_ON(ret);
146 }
147
148 /*
149  * Check if there was a change in the timer state (should we raise or lower
150  * the line level to the GIC).
151  */
152 static int kvm_timer_update_state(struct kvm_vcpu *vcpu)
153 {
154         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
155
156         /*
157          * If userspace modified the timer registers via SET_ONE_REG before
158          * the vgic was initialized, we mustn't set the timer->irq.level value
159          * because the guest would never see the interrupt.  Instead wait
160          * until we call this function from kvm_timer_flush_hwstate.
161          */
162         if (!vgic_initialized(vcpu->kvm))
163                 return -ENODEV;
164
165         if (kvm_timer_should_fire(vcpu) != timer->irq.level)
166                 kvm_timer_update_irq(vcpu, !timer->irq.level);
167
168         return 0;
169 }
170
171 /*
172  * Schedule the background timer before calling kvm_vcpu_block, so that this
173  * thread is removed from its waitqueue and made runnable when there's a timer
174  * interrupt to handle.
175  */
176 void kvm_timer_schedule(struct kvm_vcpu *vcpu)
177 {
178         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
179         u64 ns;
180         cycle_t cval, now;
181
182         BUG_ON(timer_is_armed(timer));
183
184         /*
185          * No need to schedule a background timer if the guest timer has
186          * already expired, because kvm_vcpu_block will return before putting
187          * the thread to sleep.
188          */
189         if (kvm_timer_should_fire(vcpu))
190                 return;
191
192         /*
193          * If the timer is not capable of raising interrupts (disabled or
194          * masked), then there's no more work for us to do.
195          */
196         if (!kvm_timer_irq_can_fire(vcpu))
197                 return;
198
199         /*  The timer has not yet expired, schedule a background timer */
200         cval = timer->cntv_cval;
201         now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
202
203         ns = cyclecounter_cyc2ns(timecounter->cc,
204                                  cval - now,
205                                  timecounter->mask,
206                                  &timecounter->frac);
207         timer_arm(timer, ns);
208 }
209
210 void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
211 {
212         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
213         timer_disarm(timer);
214 }
215
216 /**
217  * kvm_timer_flush_hwstate - prepare to move the virt timer to the cpu
218  * @vcpu: The vcpu pointer
219  *
220  * Check if the virtual timer has expired while we were running in the host,
221  * and inject an interrupt if that was the case.
222  */
223 void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
224 {
225         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
226         bool phys_active;
227         int ret;
228
229         if (kvm_timer_update_state(vcpu))
230                 return;
231
232         /*
233         * If we enter the guest with the virtual input level to the VGIC
234         * asserted, then we have already told the VGIC what we need to, and
235         * we don't need to exit from the guest until the guest deactivates
236         * the already injected interrupt, so therefore we should set the
237         * hardware active state to prevent unnecessary exits from the guest.
238         *
239         * Also, if we enter the guest with the virtual timer interrupt active,
240         * then it must be active on the physical distributor, because we set
241         * the HW bit and the guest must be able to deactivate the virtual and
242         * physical interrupt at the same time.
243         *
244         * Conversely, if the virtual input level is deasserted and the virtual
245         * interrupt is not active, then always clear the hardware active state
246         * to ensure that hardware interrupts from the timer triggers a guest
247         * exit.
248         */
249         if (timer->irq.level || kvm_vgic_map_is_active(vcpu, timer->map))
250                 phys_active = true;
251         else
252                 phys_active = false;
253
254         /*
255          * We want to avoid hitting the (re)distributor as much as
256          * possible, as this is a potentially expensive MMIO access
257          * (not to mention locks in the irq layer), and a solution for
258          * this is to cache the "active" state in memory.
259          *
260          * Things to consider: we cannot cache an "active set" state,
261          * because the HW can change this behind our back (it becomes
262          * "clear" in the HW). We must then restrict the caching to
263          * the "clear" state.
264          *
265          * The cache is invalidated on:
266          * - vcpu put, indicating that the HW cannot be trusted to be
267          *   in a sane state on the next vcpu load,
268          * - any change in the interrupt state
269          *
270          * Usage conditions:
271          * - cached value is "active clear"
272          * - value to be programmed is "active clear"
273          */
274         if (timer->active_cleared_last && !phys_active)
275                 return;
276
277         ret = irq_set_irqchip_state(timer->map->irq,
278                                     IRQCHIP_STATE_ACTIVE,
279                                     phys_active);
280         WARN_ON(ret);
281
282         timer->active_cleared_last = !phys_active;
283 }
284
285 /**
286  * kvm_timer_sync_hwstate - sync timer state from cpu
287  * @vcpu: The vcpu pointer
288  *
289  * Check if the virtual timer has expired while we were running in the guest,
290  * and inject an interrupt if that was the case.
291  */
292 void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
293 {
294         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
295
296         BUG_ON(timer_is_armed(timer));
297
298         /*
299          * The guest could have modified the timer registers or the timer
300          * could have expired, update the timer state.
301          */
302         kvm_timer_update_state(vcpu);
303 }
304
305 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu,
306                          const struct kvm_irq_level *irq)
307 {
308         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
309         struct irq_phys_map *map;
310
311         /*
312          * The vcpu timer irq number cannot be determined in
313          * kvm_timer_vcpu_init() because it is called much before
314          * kvm_vcpu_set_target(). To handle this, we determine
315          * vcpu timer irq number when the vcpu is reset.
316          */
317         timer->irq.irq = irq->irq;
318
319         /*
320          * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
321          * and to 0 for ARMv7.  We provide an implementation that always
322          * resets the timer to be disabled and unmasked and is compliant with
323          * the ARMv7 architecture.
324          */
325         timer->cntv_ctl = 0;
326         kvm_timer_update_state(vcpu);
327
328         /*
329          * Tell the VGIC that the virtual interrupt is tied to a
330          * physical interrupt. We do that once per VCPU.
331          */
332         map = kvm_vgic_map_phys_irq(vcpu, irq->irq, host_vtimer_irq);
333         if (WARN_ON(IS_ERR(map)))
334                 return PTR_ERR(map);
335
336         timer->map = map;
337         return 0;
338 }
339
340 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
341 {
342         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
343
344         INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
345         hrtimer_init(&timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
346         timer->timer.function = kvm_timer_expire;
347 }
348
349 static void kvm_timer_init_interrupt(void *info)
350 {
351         enable_percpu_irq(host_vtimer_irq, 0);
352 }
353
354 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
355 {
356         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
357
358         switch (regid) {
359         case KVM_REG_ARM_TIMER_CTL:
360                 timer->cntv_ctl = value;
361                 break;
362         case KVM_REG_ARM_TIMER_CNT:
363                 vcpu->kvm->arch.timer.cntvoff = kvm_phys_timer_read() - value;
364                 break;
365         case KVM_REG_ARM_TIMER_CVAL:
366                 timer->cntv_cval = value;
367                 break;
368         default:
369                 return -1;
370         }
371
372         kvm_timer_update_state(vcpu);
373         return 0;
374 }
375
376 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
377 {
378         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
379
380         switch (regid) {
381         case KVM_REG_ARM_TIMER_CTL:
382                 return timer->cntv_ctl;
383         case KVM_REG_ARM_TIMER_CNT:
384                 return kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
385         case KVM_REG_ARM_TIMER_CVAL:
386                 return timer->cntv_cval;
387         }
388         return (u64)-1;
389 }
390
391 static int kvm_timer_cpu_notify(struct notifier_block *self,
392                                 unsigned long action, void *cpu)
393 {
394         switch (action) {
395         case CPU_STARTING:
396         case CPU_STARTING_FROZEN:
397                 kvm_timer_init_interrupt(NULL);
398                 break;
399         case CPU_DYING:
400         case CPU_DYING_FROZEN:
401                 disable_percpu_irq(host_vtimer_irq);
402                 break;
403         }
404
405         return NOTIFY_OK;
406 }
407
408 static struct notifier_block kvm_timer_cpu_nb = {
409         .notifier_call = kvm_timer_cpu_notify,
410 };
411
412 static const struct of_device_id arch_timer_of_match[] = {
413         { .compatible   = "arm,armv7-timer",    },
414         { .compatible   = "arm,armv8-timer",    },
415         {},
416 };
417
418 int kvm_timer_hyp_init(void)
419 {
420         struct device_node *np;
421         unsigned int ppi;
422         int err;
423
424         timecounter = arch_timer_get_timecounter();
425         if (!timecounter)
426                 return -ENODEV;
427
428         np = of_find_matching_node(NULL, arch_timer_of_match);
429         if (!np) {
430                 kvm_err("kvm_arch_timer: can't find DT node\n");
431                 return -ENODEV;
432         }
433
434         ppi = irq_of_parse_and_map(np, 2);
435         if (!ppi) {
436                 kvm_err("kvm_arch_timer: no virtual timer interrupt\n");
437                 err = -EINVAL;
438                 goto out;
439         }
440
441         err = request_percpu_irq(ppi, kvm_arch_timer_handler,
442                                  "kvm guest timer", kvm_get_running_vcpus());
443         if (err) {
444                 kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
445                         ppi, err);
446                 goto out;
447         }
448
449         host_vtimer_irq = ppi;
450
451         err = __register_cpu_notifier(&kvm_timer_cpu_nb);
452         if (err) {
453                 kvm_err("Cannot register timer CPU notifier\n");
454                 goto out_free;
455         }
456
457         wqueue = create_singlethread_workqueue("kvm_arch_timer");
458         if (!wqueue) {
459                 err = -ENOMEM;
460                 goto out_free;
461         }
462
463         kvm_info("%s IRQ%d\n", np->name, ppi);
464         on_each_cpu(kvm_timer_init_interrupt, NULL, 1);
465
466         goto out;
467 out_free:
468         free_percpu_irq(ppi, kvm_get_running_vcpus());
469 out:
470         of_node_put(np);
471         return err;
472 }
473
474 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
475 {
476         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
477
478         timer_disarm(timer);
479         if (timer->map)
480                 kvm_vgic_unmap_phys_irq(vcpu, timer->map);
481 }
482
483 void kvm_timer_enable(struct kvm *kvm)
484 {
485         if (kvm->arch.timer.enabled)
486                 return;
487
488         /*
489          * There is a potential race here between VCPUs starting for the first
490          * time, which may be enabling the timer multiple times.  That doesn't
491          * hurt though, because we're just setting a variable to the same
492          * variable that it already was.  The important thing is that all
493          * VCPUs have the enabled variable set, before entering the guest, if
494          * the arch timers are enabled.
495          */
496         if (timecounter && wqueue)
497                 kvm->arch.timer.enabled = 1;
498 }
499
500 void kvm_timer_init(struct kvm *kvm)
501 {
502         kvm->arch.timer.cntvoff = kvm_phys_timer_read();
503 }