Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[cascardo/linux.git] / virt / kvm / arm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
28
29 #include <linux/irqchip/arm-gic.h>
30
31 #include <asm/kvm_emulate.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_mmu.h>
34
35 /*
36  * How the whole thing works (courtesy of Christoffer Dall):
37  *
38  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39  *   something is pending on the CPU interface.
40  * - Interrupts that are pending on the distributor are stored on the
41  *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
42  *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
43  *   arch. timers).
44  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45  *   recalculated
46  * - To calculate the oracle, we need info for each cpu from
47  *   compute_pending_for_cpu, which considers:
48  *   - PPI: dist->irq_pending & dist->irq_enable
49  *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
50  *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
51  *     registers, stored on each vcpu. We only keep one bit of
52  *     information per interrupt, making sure that only one vcpu can
53  *     accept the interrupt.
54  * - If any of the above state changes, we must recalculate the oracle.
55  * - The same is true when injecting an interrupt, except that we only
56  *   consider a single interrupt at a time. The irq_spi_cpu array
57  *   contains the target CPU for each SPI.
58  *
59  * The handling of level interrupts adds some extra complexity. We
60  * need to track when the interrupt has been EOIed, so we can sample
61  * the 'line' again. This is achieved as such:
62  *
63  * - When a level interrupt is moved onto a vcpu, the corresponding
64  *   bit in irq_queued is set. As long as this bit is set, the line
65  *   will be ignored for further interrupts. The interrupt is injected
66  *   into the vcpu with the GICH_LR_EOI bit set (generate a
67  *   maintenance interrupt on EOI).
68  * - When the interrupt is EOIed, the maintenance interrupt fires,
69  *   and clears the corresponding bit in irq_queued. This allows the
70  *   interrupt line to be sampled again.
71  * - Note that level-triggered interrupts can also be set to pending from
72  *   writes to GICD_ISPENDRn and lowering the external input line does not
73  *   cause the interrupt to become inactive in such a situation.
74  *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
75  *   inactive as long as the external input line is held high.
76  */
77
78 #define VGIC_ADDR_UNDEF         (-1)
79 #define IS_VGIC_ADDR_UNDEF(_x)  ((_x) == VGIC_ADDR_UNDEF)
80
81 #define PRODUCT_ID_KVM          0x4b    /* ASCII code K */
82 #define IMPLEMENTER_ARM         0x43b
83 #define GICC_ARCH_VERSION_V2    0x2
84
85 #define ACCESS_READ_VALUE       (1 << 0)
86 #define ACCESS_READ_RAZ         (0 << 0)
87 #define ACCESS_READ_MASK(x)     ((x) & (1 << 0))
88 #define ACCESS_WRITE_IGNORED    (0 << 1)
89 #define ACCESS_WRITE_SETBIT     (1 << 1)
90 #define ACCESS_WRITE_CLEARBIT   (2 << 1)
91 #define ACCESS_WRITE_VALUE      (3 << 1)
92 #define ACCESS_WRITE_MASK(x)    ((x) & (3 << 1))
93
94 static int vgic_init(struct kvm *kvm);
95 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
96 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
97 static void vgic_update_state(struct kvm *kvm);
98 static void vgic_kick_vcpus(struct kvm *kvm);
99 static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi);
100 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
101 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
102 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
103 static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
104 static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
105
106 static const struct vgic_ops *vgic_ops;
107 static const struct vgic_params *vgic;
108
109 /*
110  * struct vgic_bitmap contains a bitmap made of unsigned longs, but
111  * extracts u32s out of them.
112  *
113  * This does not work on 64-bit BE systems, because the bitmap access
114  * will store two consecutive 32-bit words with the higher-addressed
115  * register's bits at the lower index and the lower-addressed register's
116  * bits at the higher index.
117  *
118  * Therefore, swizzle the register index when accessing the 32-bit word
119  * registers to access the right register's value.
120  */
121 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
122 #define REG_OFFSET_SWIZZLE      1
123 #else
124 #define REG_OFFSET_SWIZZLE      0
125 #endif
126
127 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
128 {
129         int nr_longs;
130
131         nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
132
133         b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
134         if (!b->private)
135                 return -ENOMEM;
136
137         b->shared = b->private + nr_cpus;
138
139         return 0;
140 }
141
142 static void vgic_free_bitmap(struct vgic_bitmap *b)
143 {
144         kfree(b->private);
145         b->private = NULL;
146         b->shared = NULL;
147 }
148
149 /*
150  * Call this function to convert a u64 value to an unsigned long * bitmask
151  * in a way that works on both 32-bit and 64-bit LE and BE platforms.
152  *
153  * Warning: Calling this function may modify *val.
154  */
155 static unsigned long *u64_to_bitmask(u64 *val)
156 {
157 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
158         *val = (*val >> 32) | (*val << 32);
159 #endif
160         return (unsigned long *)val;
161 }
162
163 static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
164                                 int cpuid, u32 offset)
165 {
166         offset >>= 2;
167         if (!offset)
168                 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
169         else
170                 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
171 }
172
173 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
174                                    int cpuid, int irq)
175 {
176         if (irq < VGIC_NR_PRIVATE_IRQS)
177                 return test_bit(irq, x->private + cpuid);
178
179         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
180 }
181
182 static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
183                                     int irq, int val)
184 {
185         unsigned long *reg;
186
187         if (irq < VGIC_NR_PRIVATE_IRQS) {
188                 reg = x->private + cpuid;
189         } else {
190                 reg = x->shared;
191                 irq -= VGIC_NR_PRIVATE_IRQS;
192         }
193
194         if (val)
195                 set_bit(irq, reg);
196         else
197                 clear_bit(irq, reg);
198 }
199
200 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
201 {
202         return x->private + cpuid;
203 }
204
205 static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
206 {
207         return x->shared;
208 }
209
210 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
211 {
212         int size;
213
214         size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
215         size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
216
217         x->private = kzalloc(size, GFP_KERNEL);
218         if (!x->private)
219                 return -ENOMEM;
220
221         x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
222         return 0;
223 }
224
225 static void vgic_free_bytemap(struct vgic_bytemap *b)
226 {
227         kfree(b->private);
228         b->private = NULL;
229         b->shared = NULL;
230 }
231
232 static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
233 {
234         u32 *reg;
235
236         if (offset < VGIC_NR_PRIVATE_IRQS) {
237                 reg = x->private;
238                 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
239         } else {
240                 reg = x->shared;
241                 offset -= VGIC_NR_PRIVATE_IRQS;
242         }
243
244         return reg + (offset / sizeof(u32));
245 }
246
247 #define VGIC_CFG_LEVEL  0
248 #define VGIC_CFG_EDGE   1
249
250 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
251 {
252         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
253         int irq_val;
254
255         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
256         return irq_val == VGIC_CFG_EDGE;
257 }
258
259 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
260 {
261         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
262
263         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
264 }
265
266 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
267 {
268         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
269
270         return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
271 }
272
273 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
274 {
275         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
276
277         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
278 }
279
280 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
281 {
282         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
283
284         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
285 }
286
287 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
288 {
289         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
290
291         return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
292 }
293
294 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
295 {
296         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
297
298         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
299 }
300
301 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
302 {
303         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
304
305         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
306 }
307
308 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
309 {
310         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
311
312         return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
313 }
314
315 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
316 {
317         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
318
319         vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
320 }
321
322 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
323 {
324         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
325
326         return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
327 }
328
329 static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
330 {
331         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
332
333         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
334 }
335
336 static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
337 {
338         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
339
340         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
341 }
342
343 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
344 {
345         if (irq < VGIC_NR_PRIVATE_IRQS)
346                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
347         else
348                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
349                         vcpu->arch.vgic_cpu.pending_shared);
350 }
351
352 static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
353 {
354         if (irq < VGIC_NR_PRIVATE_IRQS)
355                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
356         else
357                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
358                           vcpu->arch.vgic_cpu.pending_shared);
359 }
360
361 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
362 {
363         return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
364 }
365
366 static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
367 {
368         return le32_to_cpu(*((u32 *)mmio->data)) & mask;
369 }
370
371 static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
372 {
373         *((u32 *)mmio->data) = cpu_to_le32(value) & mask;
374 }
375
376 /**
377  * vgic_reg_access - access vgic register
378  * @mmio:   pointer to the data describing the mmio access
379  * @reg:    pointer to the virtual backing of vgic distributor data
380  * @offset: least significant 2 bits used for word offset
381  * @mode:   ACCESS_ mode (see defines above)
382  *
383  * Helper to make vgic register access easier using one of the access
384  * modes defined for vgic register access
385  * (read,raz,write-ignored,setbit,clearbit,write)
386  */
387 static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
388                             phys_addr_t offset, int mode)
389 {
390         int word_offset = (offset & 3) * 8;
391         u32 mask = (1UL << (mmio->len * 8)) - 1;
392         u32 regval;
393
394         /*
395          * Any alignment fault should have been delivered to the guest
396          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
397          */
398
399         if (reg) {
400                 regval = *reg;
401         } else {
402                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
403                 regval = 0;
404         }
405
406         if (mmio->is_write) {
407                 u32 data = mmio_data_read(mmio, mask) << word_offset;
408                 switch (ACCESS_WRITE_MASK(mode)) {
409                 case ACCESS_WRITE_IGNORED:
410                         return;
411
412                 case ACCESS_WRITE_SETBIT:
413                         regval |= data;
414                         break;
415
416                 case ACCESS_WRITE_CLEARBIT:
417                         regval &= ~data;
418                         break;
419
420                 case ACCESS_WRITE_VALUE:
421                         regval = (regval & ~(mask << word_offset)) | data;
422                         break;
423                 }
424                 *reg = regval;
425         } else {
426                 switch (ACCESS_READ_MASK(mode)) {
427                 case ACCESS_READ_RAZ:
428                         regval = 0;
429                         /* fall through */
430
431                 case ACCESS_READ_VALUE:
432                         mmio_data_write(mmio, mask, regval >> word_offset);
433                 }
434         }
435 }
436
437 static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
438                              struct kvm_exit_mmio *mmio, phys_addr_t offset)
439 {
440         u32 reg;
441         u32 word_offset = offset & 3;
442
443         switch (offset & ~3) {
444         case 0:                 /* GICD_CTLR */
445                 reg = vcpu->kvm->arch.vgic.enabled;
446                 vgic_reg_access(mmio, &reg, word_offset,
447                                 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
448                 if (mmio->is_write) {
449                         vcpu->kvm->arch.vgic.enabled = reg & 1;
450                         vgic_update_state(vcpu->kvm);
451                         return true;
452                 }
453                 break;
454
455         case 4:                 /* GICD_TYPER */
456                 reg  = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
457                 reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1;
458                 vgic_reg_access(mmio, &reg, word_offset,
459                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
460                 break;
461
462         case 8:                 /* GICD_IIDR */
463                 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
464                 vgic_reg_access(mmio, &reg, word_offset,
465                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
466                 break;
467         }
468
469         return false;
470 }
471
472 static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
473                                struct kvm_exit_mmio *mmio, phys_addr_t offset)
474 {
475         vgic_reg_access(mmio, NULL, offset,
476                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
477         return false;
478 }
479
480 static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
481                                        struct kvm_exit_mmio *mmio,
482                                        phys_addr_t offset)
483 {
484         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
485                                        vcpu->vcpu_id, offset);
486         vgic_reg_access(mmio, reg, offset,
487                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
488         if (mmio->is_write) {
489                 vgic_update_state(vcpu->kvm);
490                 return true;
491         }
492
493         return false;
494 }
495
496 static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
497                                          struct kvm_exit_mmio *mmio,
498                                          phys_addr_t offset)
499 {
500         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
501                                        vcpu->vcpu_id, offset);
502         vgic_reg_access(mmio, reg, offset,
503                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
504         if (mmio->is_write) {
505                 if (offset < 4) /* Force SGI enabled */
506                         *reg |= 0xffff;
507                 vgic_retire_disabled_irqs(vcpu);
508                 vgic_update_state(vcpu->kvm);
509                 return true;
510         }
511
512         return false;
513 }
514
515 static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
516                                         struct kvm_exit_mmio *mmio,
517                                         phys_addr_t offset)
518 {
519         u32 *reg, orig;
520         u32 level_mask;
521         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
522
523         reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset);
524         level_mask = (~(*reg));
525
526         /* Mark both level and edge triggered irqs as pending */
527         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
528         orig = *reg;
529         vgic_reg_access(mmio, reg, offset,
530                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
531
532         if (mmio->is_write) {
533                 /* Set the soft-pending flag only for level-triggered irqs */
534                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
535                                           vcpu->vcpu_id, offset);
536                 vgic_reg_access(mmio, reg, offset,
537                                 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
538                 *reg &= level_mask;
539
540                 /* Ignore writes to SGIs */
541                 if (offset < 2) {
542                         *reg &= ~0xffff;
543                         *reg |= orig & 0xffff;
544                 }
545
546                 vgic_update_state(vcpu->kvm);
547                 return true;
548         }
549
550         return false;
551 }
552
553 static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
554                                           struct kvm_exit_mmio *mmio,
555                                           phys_addr_t offset)
556 {
557         u32 *level_active;
558         u32 *reg, orig;
559         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
560
561         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
562         orig = *reg;
563         vgic_reg_access(mmio, reg, offset,
564                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
565         if (mmio->is_write) {
566                 /* Re-set level triggered level-active interrupts */
567                 level_active = vgic_bitmap_get_reg(&dist->irq_level,
568                                           vcpu->vcpu_id, offset);
569                 reg = vgic_bitmap_get_reg(&dist->irq_pending,
570                                           vcpu->vcpu_id, offset);
571                 *reg |= *level_active;
572
573                 /* Ignore writes to SGIs */
574                 if (offset < 2) {
575                         *reg &= ~0xffff;
576                         *reg |= orig & 0xffff;
577                 }
578
579                 /* Clear soft-pending flags */
580                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
581                                           vcpu->vcpu_id, offset);
582                 vgic_reg_access(mmio, reg, offset,
583                                 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
584
585                 vgic_update_state(vcpu->kvm);
586                 return true;
587         }
588
589         return false;
590 }
591
592 static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
593                                      struct kvm_exit_mmio *mmio,
594                                      phys_addr_t offset)
595 {
596         u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
597                                         vcpu->vcpu_id, offset);
598         vgic_reg_access(mmio, reg, offset,
599                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
600         return false;
601 }
602
603 #define GICD_ITARGETSR_SIZE     32
604 #define GICD_CPUTARGETS_BITS    8
605 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
606 static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
607 {
608         struct vgic_dist *dist = &kvm->arch.vgic;
609         int i;
610         u32 val = 0;
611
612         irq -= VGIC_NR_PRIVATE_IRQS;
613
614         for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
615                 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
616
617         return val;
618 }
619
620 static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
621 {
622         struct vgic_dist *dist = &kvm->arch.vgic;
623         struct kvm_vcpu *vcpu;
624         int i, c;
625         unsigned long *bmap;
626         u32 target;
627
628         irq -= VGIC_NR_PRIVATE_IRQS;
629
630         /*
631          * Pick the LSB in each byte. This ensures we target exactly
632          * one vcpu per IRQ. If the byte is null, assume we target
633          * CPU0.
634          */
635         for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
636                 int shift = i * GICD_CPUTARGETS_BITS;
637                 target = ffs((val >> shift) & 0xffU);
638                 target = target ? (target - 1) : 0;
639                 dist->irq_spi_cpu[irq + i] = target;
640                 kvm_for_each_vcpu(c, vcpu, kvm) {
641                         bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
642                         if (c == target)
643                                 set_bit(irq + i, bmap);
644                         else
645                                 clear_bit(irq + i, bmap);
646                 }
647         }
648 }
649
650 static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
651                                    struct kvm_exit_mmio *mmio,
652                                    phys_addr_t offset)
653 {
654         u32 reg;
655
656         /* We treat the banked interrupts targets as read-only */
657         if (offset < 32) {
658                 u32 roreg = 1 << vcpu->vcpu_id;
659                 roreg |= roreg << 8;
660                 roreg |= roreg << 16;
661
662                 vgic_reg_access(mmio, &roreg, offset,
663                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
664                 return false;
665         }
666
667         reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
668         vgic_reg_access(mmio, &reg, offset,
669                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
670         if (mmio->is_write) {
671                 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
672                 vgic_update_state(vcpu->kvm);
673                 return true;
674         }
675
676         return false;
677 }
678
679 static u32 vgic_cfg_expand(u16 val)
680 {
681         u32 res = 0;
682         int i;
683
684         /*
685          * Turn a 16bit value like abcd...mnop into a 32bit word
686          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
687          */
688         for (i = 0; i < 16; i++)
689                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
690
691         return res;
692 }
693
694 static u16 vgic_cfg_compress(u32 val)
695 {
696         u16 res = 0;
697         int i;
698
699         /*
700          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
701          * abcd...mnop which is what we really care about.
702          */
703         for (i = 0; i < 16; i++)
704                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
705
706         return res;
707 }
708
709 /*
710  * The distributor uses 2 bits per IRQ for the CFG register, but the
711  * LSB is always 0. As such, we only keep the upper bit, and use the
712  * two above functions to compress/expand the bits
713  */
714 static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
715                                 struct kvm_exit_mmio *mmio, phys_addr_t offset)
716 {
717         u32 val;
718         u32 *reg;
719
720         reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
721                                   vcpu->vcpu_id, offset >> 1);
722
723         if (offset & 4)
724                 val = *reg >> 16;
725         else
726                 val = *reg & 0xffff;
727
728         val = vgic_cfg_expand(val);
729         vgic_reg_access(mmio, &val, offset,
730                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
731         if (mmio->is_write) {
732                 if (offset < 8) {
733                         *reg = ~0U; /* Force PPIs/SGIs to 1 */
734                         return false;
735                 }
736
737                 val = vgic_cfg_compress(val);
738                 if (offset & 4) {
739                         *reg &= 0xffff;
740                         *reg |= val << 16;
741                 } else {
742                         *reg &= 0xffff << 16;
743                         *reg |= val;
744                 }
745         }
746
747         return false;
748 }
749
750 static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
751                                 struct kvm_exit_mmio *mmio, phys_addr_t offset)
752 {
753         u32 reg;
754         vgic_reg_access(mmio, &reg, offset,
755                         ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
756         if (mmio->is_write) {
757                 vgic_dispatch_sgi(vcpu, reg);
758                 vgic_update_state(vcpu->kvm);
759                 return true;
760         }
761
762         return false;
763 }
764
765 /**
766  * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
767  * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
768  *
769  * Move any pending IRQs that have already been assigned to LRs back to the
770  * emulated distributor state so that the complete emulated state can be read
771  * from the main emulation structures without investigating the LRs.
772  *
773  * Note that IRQs in the active state in the LRs get their pending state moved
774  * to the distributor but the active state stays in the LRs, because we don't
775  * track the active state on the distributor side.
776  */
777 static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
778 {
779         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
780         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
781         int vcpu_id = vcpu->vcpu_id;
782         int i;
783
784         for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
785                 struct vgic_lr lr = vgic_get_lr(vcpu, i);
786
787                 /*
788                  * There are three options for the state bits:
789                  *
790                  * 01: pending
791                  * 10: active
792                  * 11: pending and active
793                  *
794                  * If the LR holds only an active interrupt (not pending) then
795                  * just leave it alone.
796                  */
797                 if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
798                         continue;
799
800                 /*
801                  * Reestablish the pending state on the distributor and the
802                  * CPU interface.  It may have already been pending, but that
803                  * is fine, then we are only setting a few bits that were
804                  * already set.
805                  */
806                 vgic_dist_irq_set_pending(vcpu, lr.irq);
807                 if (lr.irq < VGIC_NR_SGIS)
808                         *vgic_get_sgi_sources(dist, vcpu_id, lr.irq) |= 1 << lr.source;
809                 lr.state &= ~LR_STATE_PENDING;
810                 vgic_set_lr(vcpu, i, lr);
811
812                 /*
813                  * If there's no state left on the LR (it could still be
814                  * active), then the LR does not hold any useful info and can
815                  * be marked as free for other use.
816                  */
817                 if (!(lr.state & LR_STATE_MASK)) {
818                         vgic_retire_lr(i, lr.irq, vcpu);
819                         vgic_irq_clear_queued(vcpu, lr.irq);
820                 }
821
822                 /* Finally update the VGIC state. */
823                 vgic_update_state(vcpu->kvm);
824         }
825 }
826
827 /* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
828 static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
829                                         struct kvm_exit_mmio *mmio,
830                                         phys_addr_t offset)
831 {
832         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
833         int sgi;
834         int min_sgi = (offset & ~0x3);
835         int max_sgi = min_sgi + 3;
836         int vcpu_id = vcpu->vcpu_id;
837         u32 reg = 0;
838
839         /* Copy source SGIs from distributor side */
840         for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
841                 int shift = 8 * (sgi - min_sgi);
842                 reg |= ((u32)*vgic_get_sgi_sources(dist, vcpu_id, sgi)) << shift;
843         }
844
845         mmio_data_write(mmio, ~0, reg);
846         return false;
847 }
848
849 static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
850                                          struct kvm_exit_mmio *mmio,
851                                          phys_addr_t offset, bool set)
852 {
853         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
854         int sgi;
855         int min_sgi = (offset & ~0x3);
856         int max_sgi = min_sgi + 3;
857         int vcpu_id = vcpu->vcpu_id;
858         u32 reg;
859         bool updated = false;
860
861         reg = mmio_data_read(mmio, ~0);
862
863         /* Clear pending SGIs on the distributor */
864         for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
865                 u8 mask = reg >> (8 * (sgi - min_sgi));
866                 u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
867                 if (set) {
868                         if ((*src & mask) != mask)
869                                 updated = true;
870                         *src |= mask;
871                 } else {
872                         if (*src & mask)
873                                 updated = true;
874                         *src &= ~mask;
875                 }
876         }
877
878         if (updated)
879                 vgic_update_state(vcpu->kvm);
880
881         return updated;
882 }
883
884 static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
885                                 struct kvm_exit_mmio *mmio,
886                                 phys_addr_t offset)
887 {
888         if (!mmio->is_write)
889                 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
890         else
891                 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
892 }
893
894 static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
895                                   struct kvm_exit_mmio *mmio,
896                                   phys_addr_t offset)
897 {
898         if (!mmio->is_write)
899                 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
900         else
901                 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
902 }
903
904 /*
905  * I would have liked to use the kvm_bus_io_*() API instead, but it
906  * cannot cope with banked registers (only the VM pointer is passed
907  * around, and we need the vcpu). One of these days, someone please
908  * fix it!
909  */
910 struct mmio_range {
911         phys_addr_t base;
912         unsigned long len;
913         int bits_per_irq;
914         bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
915                             phys_addr_t offset);
916 };
917
918 static const struct mmio_range vgic_dist_ranges[] = {
919         {
920                 .base           = GIC_DIST_CTRL,
921                 .len            = 12,
922                 .bits_per_irq   = 0,
923                 .handle_mmio    = handle_mmio_misc,
924         },
925         {
926                 .base           = GIC_DIST_IGROUP,
927                 .len            = VGIC_MAX_IRQS / 8,
928                 .bits_per_irq   = 1,
929                 .handle_mmio    = handle_mmio_raz_wi,
930         },
931         {
932                 .base           = GIC_DIST_ENABLE_SET,
933                 .len            = VGIC_MAX_IRQS / 8,
934                 .bits_per_irq   = 1,
935                 .handle_mmio    = handle_mmio_set_enable_reg,
936         },
937         {
938                 .base           = GIC_DIST_ENABLE_CLEAR,
939                 .len            = VGIC_MAX_IRQS / 8,
940                 .bits_per_irq   = 1,
941                 .handle_mmio    = handle_mmio_clear_enable_reg,
942         },
943         {
944                 .base           = GIC_DIST_PENDING_SET,
945                 .len            = VGIC_MAX_IRQS / 8,
946                 .bits_per_irq   = 1,
947                 .handle_mmio    = handle_mmio_set_pending_reg,
948         },
949         {
950                 .base           = GIC_DIST_PENDING_CLEAR,
951                 .len            = VGIC_MAX_IRQS / 8,
952                 .bits_per_irq   = 1,
953                 .handle_mmio    = handle_mmio_clear_pending_reg,
954         },
955         {
956                 .base           = GIC_DIST_ACTIVE_SET,
957                 .len            = VGIC_MAX_IRQS / 8,
958                 .bits_per_irq   = 1,
959                 .handle_mmio    = handle_mmio_raz_wi,
960         },
961         {
962                 .base           = GIC_DIST_ACTIVE_CLEAR,
963                 .len            = VGIC_MAX_IRQS / 8,
964                 .bits_per_irq   = 1,
965                 .handle_mmio    = handle_mmio_raz_wi,
966         },
967         {
968                 .base           = GIC_DIST_PRI,
969                 .len            = VGIC_MAX_IRQS,
970                 .bits_per_irq   = 8,
971                 .handle_mmio    = handle_mmio_priority_reg,
972         },
973         {
974                 .base           = GIC_DIST_TARGET,
975                 .len            = VGIC_MAX_IRQS,
976                 .bits_per_irq   = 8,
977                 .handle_mmio    = handle_mmio_target_reg,
978         },
979         {
980                 .base           = GIC_DIST_CONFIG,
981                 .len            = VGIC_MAX_IRQS / 4,
982                 .bits_per_irq   = 2,
983                 .handle_mmio    = handle_mmio_cfg_reg,
984         },
985         {
986                 .base           = GIC_DIST_SOFTINT,
987                 .len            = 4,
988                 .handle_mmio    = handle_mmio_sgi_reg,
989         },
990         {
991                 .base           = GIC_DIST_SGI_PENDING_CLEAR,
992                 .len            = VGIC_NR_SGIS,
993                 .handle_mmio    = handle_mmio_sgi_clear,
994         },
995         {
996                 .base           = GIC_DIST_SGI_PENDING_SET,
997                 .len            = VGIC_NR_SGIS,
998                 .handle_mmio    = handle_mmio_sgi_set,
999         },
1000         {}
1001 };
1002
1003 static const
1004 struct mmio_range *find_matching_range(const struct mmio_range *ranges,
1005                                        struct kvm_exit_mmio *mmio,
1006                                        phys_addr_t offset)
1007 {
1008         const struct mmio_range *r = ranges;
1009
1010         while (r->len) {
1011                 if (offset >= r->base &&
1012                     (offset + mmio->len) <= (r->base + r->len))
1013                         return r;
1014                 r++;
1015         }
1016
1017         return NULL;
1018 }
1019
1020 static bool vgic_validate_access(const struct vgic_dist *dist,
1021                                  const struct mmio_range *range,
1022                                  unsigned long offset)
1023 {
1024         int irq;
1025
1026         if (!range->bits_per_irq)
1027                 return true;    /* Not an irq-based access */
1028
1029         irq = offset * 8 / range->bits_per_irq;
1030         if (irq >= dist->nr_irqs)
1031                 return false;
1032
1033         return true;
1034 }
1035
1036 /**
1037  * vgic_handle_mmio - handle an in-kernel MMIO access
1038  * @vcpu:       pointer to the vcpu performing the access
1039  * @run:        pointer to the kvm_run structure
1040  * @mmio:       pointer to the data describing the access
1041  *
1042  * returns true if the MMIO access has been performed in kernel space,
1043  * and false if it needs to be emulated in user space.
1044  */
1045 bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
1046                       struct kvm_exit_mmio *mmio)
1047 {
1048         const struct mmio_range *range;
1049         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1050         unsigned long base = dist->vgic_dist_base;
1051         bool updated_state;
1052         unsigned long offset;
1053
1054         if (!irqchip_in_kernel(vcpu->kvm) ||
1055             mmio->phys_addr < base ||
1056             (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
1057                 return false;
1058
1059         /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
1060         if (mmio->len > 4) {
1061                 kvm_inject_dabt(vcpu, mmio->phys_addr);
1062                 return true;
1063         }
1064
1065         offset = mmio->phys_addr - base;
1066         range = find_matching_range(vgic_dist_ranges, mmio, offset);
1067         if (unlikely(!range || !range->handle_mmio)) {
1068                 pr_warn("Unhandled access %d %08llx %d\n",
1069                         mmio->is_write, mmio->phys_addr, mmio->len);
1070                 return false;
1071         }
1072
1073         spin_lock(&vcpu->kvm->arch.vgic.lock);
1074         offset = mmio->phys_addr - range->base - base;
1075         if (vgic_validate_access(dist, range, offset)) {
1076                 updated_state = range->handle_mmio(vcpu, mmio, offset);
1077         } else {
1078                 vgic_reg_access(mmio, NULL, offset,
1079                                 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
1080                 updated_state = false;
1081         }
1082         spin_unlock(&vcpu->kvm->arch.vgic.lock);
1083         kvm_prepare_mmio(run, mmio);
1084         kvm_handle_mmio_return(vcpu, run);
1085
1086         if (updated_state)
1087                 vgic_kick_vcpus(vcpu->kvm);
1088
1089         return true;
1090 }
1091
1092 static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
1093 {
1094         return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
1095 }
1096
1097 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
1098 {
1099         struct kvm *kvm = vcpu->kvm;
1100         struct vgic_dist *dist = &kvm->arch.vgic;
1101         int nrcpus = atomic_read(&kvm->online_vcpus);
1102         u8 target_cpus;
1103         int sgi, mode, c, vcpu_id;
1104
1105         vcpu_id = vcpu->vcpu_id;
1106
1107         sgi = reg & 0xf;
1108         target_cpus = (reg >> 16) & 0xff;
1109         mode = (reg >> 24) & 3;
1110
1111         switch (mode) {
1112         case 0:
1113                 if (!target_cpus)
1114                         return;
1115                 break;
1116
1117         case 1:
1118                 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
1119                 break;
1120
1121         case 2:
1122                 target_cpus = 1 << vcpu_id;
1123                 break;
1124         }
1125
1126         kvm_for_each_vcpu(c, vcpu, kvm) {
1127                 if (target_cpus & 1) {
1128                         /* Flag the SGI as pending */
1129                         vgic_dist_irq_set_pending(vcpu, sgi);
1130                         *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
1131                         kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
1132                 }
1133
1134                 target_cpus >>= 1;
1135         }
1136 }
1137
1138 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
1139 {
1140         return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
1141 }
1142
1143 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
1144 {
1145         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1146         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
1147         unsigned long pending_private, pending_shared;
1148         int nr_shared = vgic_nr_shared_irqs(dist);
1149         int vcpu_id;
1150
1151         vcpu_id = vcpu->vcpu_id;
1152         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
1153         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
1154
1155         pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
1156         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
1157         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
1158
1159         pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
1160         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
1161         bitmap_and(pend_shared, pending, enabled, nr_shared);
1162         bitmap_and(pend_shared, pend_shared,
1163                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
1164                    nr_shared);
1165
1166         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1167         pending_shared = find_first_bit(pend_shared, nr_shared);
1168         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1169                 pending_shared < vgic_nr_shared_irqs(dist));
1170 }
1171
1172 /*
1173  * Update the interrupt state and determine which CPUs have pending
1174  * interrupts. Must be called with distributor lock held.
1175  */
1176 static void vgic_update_state(struct kvm *kvm)
1177 {
1178         struct vgic_dist *dist = &kvm->arch.vgic;
1179         struct kvm_vcpu *vcpu;
1180         int c;
1181
1182         if (!dist->enabled) {
1183                 set_bit(0, dist->irq_pending_on_cpu);
1184                 return;
1185         }
1186
1187         kvm_for_each_vcpu(c, vcpu, kvm) {
1188                 if (compute_pending_for_cpu(vcpu)) {
1189                         pr_debug("CPU%d has pending interrupts\n", c);
1190                         set_bit(c, dist->irq_pending_on_cpu);
1191                 }
1192         }
1193 }
1194
1195 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1196 {
1197         return vgic_ops->get_lr(vcpu, lr);
1198 }
1199
1200 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1201                                struct vgic_lr vlr)
1202 {
1203         vgic_ops->set_lr(vcpu, lr, vlr);
1204 }
1205
1206 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1207                                struct vgic_lr vlr)
1208 {
1209         vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1210 }
1211
1212 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1213 {
1214         return vgic_ops->get_elrsr(vcpu);
1215 }
1216
1217 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1218 {
1219         return vgic_ops->get_eisr(vcpu);
1220 }
1221
1222 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1223 {
1224         return vgic_ops->get_interrupt_status(vcpu);
1225 }
1226
1227 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1228 {
1229         vgic_ops->enable_underflow(vcpu);
1230 }
1231
1232 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1233 {
1234         vgic_ops->disable_underflow(vcpu);
1235 }
1236
1237 static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1238 {
1239         vgic_ops->get_vmcr(vcpu, vmcr);
1240 }
1241
1242 static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1243 {
1244         vgic_ops->set_vmcr(vcpu, vmcr);
1245 }
1246
1247 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1248 {
1249         vgic_ops->enable(vcpu);
1250 }
1251
1252 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1253 {
1254         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1255         struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1256
1257         vlr.state = 0;
1258         vgic_set_lr(vcpu, lr_nr, vlr);
1259         clear_bit(lr_nr, vgic_cpu->lr_used);
1260         vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1261 }
1262
1263 /*
1264  * An interrupt may have been disabled after being made pending on the
1265  * CPU interface (the classic case is a timer running while we're
1266  * rebooting the guest - the interrupt would kick as soon as the CPU
1267  * interface gets enabled, with deadly consequences).
1268  *
1269  * The solution is to examine already active LRs, and check the
1270  * interrupt is still enabled. If not, just retire it.
1271  */
1272 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1273 {
1274         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1275         int lr;
1276
1277         for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1278                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1279
1280                 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1281                         vgic_retire_lr(lr, vlr.irq, vcpu);
1282                         if (vgic_irq_is_queued(vcpu, vlr.irq))
1283                                 vgic_irq_clear_queued(vcpu, vlr.irq);
1284                 }
1285         }
1286 }
1287
1288 /*
1289  * Queue an interrupt to a CPU virtual interface. Return true on success,
1290  * or false if it wasn't possible to queue it.
1291  */
1292 static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1293 {
1294         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1295         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1296         struct vgic_lr vlr;
1297         int lr;
1298
1299         /* Sanitize the input... */
1300         BUG_ON(sgi_source_id & ~7);
1301         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1302         BUG_ON(irq >= dist->nr_irqs);
1303
1304         kvm_debug("Queue IRQ%d\n", irq);
1305
1306         lr = vgic_cpu->vgic_irq_lr_map[irq];
1307
1308         /* Do we have an active interrupt for the same CPUID? */
1309         if (lr != LR_EMPTY) {
1310                 vlr = vgic_get_lr(vcpu, lr);
1311                 if (vlr.source == sgi_source_id) {
1312                         kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1313                         BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1314                         vlr.state |= LR_STATE_PENDING;
1315                         vgic_set_lr(vcpu, lr, vlr);
1316                         return true;
1317                 }
1318         }
1319
1320         /* Try to use another LR for this interrupt */
1321         lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1322                                vgic->nr_lr);
1323         if (lr >= vgic->nr_lr)
1324                 return false;
1325
1326         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1327         vgic_cpu->vgic_irq_lr_map[irq] = lr;
1328         set_bit(lr, vgic_cpu->lr_used);
1329
1330         vlr.irq = irq;
1331         vlr.source = sgi_source_id;
1332         vlr.state = LR_STATE_PENDING;
1333         if (!vgic_irq_is_edge(vcpu, irq))
1334                 vlr.state |= LR_EOI_INT;
1335
1336         vgic_set_lr(vcpu, lr, vlr);
1337
1338         return true;
1339 }
1340
1341 static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1342 {
1343         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1344         unsigned long sources;
1345         int vcpu_id = vcpu->vcpu_id;
1346         int c;
1347
1348         sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
1349
1350         for_each_set_bit(c, &sources, dist->nr_cpus) {
1351                 if (vgic_queue_irq(vcpu, c, irq))
1352                         clear_bit(c, &sources);
1353         }
1354
1355         *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
1356
1357         /*
1358          * If the sources bitmap has been cleared it means that we
1359          * could queue all the SGIs onto link registers (see the
1360          * clear_bit above), and therefore we are done with them in
1361          * our emulated gic and can get rid of them.
1362          */
1363         if (!sources) {
1364                 vgic_dist_irq_clear_pending(vcpu, irq);
1365                 vgic_cpu_irq_clear(vcpu, irq);
1366                 return true;
1367         }
1368
1369         return false;
1370 }
1371
1372 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1373 {
1374         if (!vgic_can_sample_irq(vcpu, irq))
1375                 return true; /* level interrupt, already queued */
1376
1377         if (vgic_queue_irq(vcpu, 0, irq)) {
1378                 if (vgic_irq_is_edge(vcpu, irq)) {
1379                         vgic_dist_irq_clear_pending(vcpu, irq);
1380                         vgic_cpu_irq_clear(vcpu, irq);
1381                 } else {
1382                         vgic_irq_set_queued(vcpu, irq);
1383                 }
1384
1385                 return true;
1386         }
1387
1388         return false;
1389 }
1390
1391 /*
1392  * Fill the list registers with pending interrupts before running the
1393  * guest.
1394  */
1395 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1396 {
1397         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1398         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1399         int i, vcpu_id;
1400         int overflow = 0;
1401
1402         vcpu_id = vcpu->vcpu_id;
1403
1404         /*
1405          * We may not have any pending interrupt, or the interrupts
1406          * may have been serviced from another vcpu. In all cases,
1407          * move along.
1408          */
1409         if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1410                 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1411                 goto epilog;
1412         }
1413
1414         /* SGIs */
1415         for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1416                 if (!vgic_queue_sgi(vcpu, i))
1417                         overflow = 1;
1418         }
1419
1420         /* PPIs */
1421         for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1422                 if (!vgic_queue_hwirq(vcpu, i))
1423                         overflow = 1;
1424         }
1425
1426         /* SPIs */
1427         for_each_set_bit(i, vgic_cpu->pending_shared, vgic_nr_shared_irqs(dist)) {
1428                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1429                         overflow = 1;
1430         }
1431
1432 epilog:
1433         if (overflow) {
1434                 vgic_enable_underflow(vcpu);
1435         } else {
1436                 vgic_disable_underflow(vcpu);
1437                 /*
1438                  * We're about to run this VCPU, and we've consumed
1439                  * everything the distributor had in store for
1440                  * us. Claim we don't have anything pending. We'll
1441                  * adjust that if needed while exiting.
1442                  */
1443                 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1444         }
1445 }
1446
1447 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1448 {
1449         u32 status = vgic_get_interrupt_status(vcpu);
1450         bool level_pending = false;
1451
1452         kvm_debug("STATUS = %08x\n", status);
1453
1454         if (status & INT_STATUS_EOI) {
1455                 /*
1456                  * Some level interrupts have been EOIed. Clear their
1457                  * active bit.
1458                  */
1459                 u64 eisr = vgic_get_eisr(vcpu);
1460                 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1461                 int lr;
1462
1463                 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1464                         struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1465                         WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1466
1467                         vgic_irq_clear_queued(vcpu, vlr.irq);
1468                         WARN_ON(vlr.state & LR_STATE_MASK);
1469                         vlr.state = 0;
1470                         vgic_set_lr(vcpu, lr, vlr);
1471
1472                         /*
1473                          * If the IRQ was EOIed it was also ACKed and we we
1474                          * therefore assume we can clear the soft pending
1475                          * state (should it had been set) for this interrupt.
1476                          *
1477                          * Note: if the IRQ soft pending state was set after
1478                          * the IRQ was acked, it actually shouldn't be
1479                          * cleared, but we have no way of knowing that unless
1480                          * we start trapping ACKs when the soft-pending state
1481                          * is set.
1482                          */
1483                         vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1484
1485                         /* Any additional pending interrupt? */
1486                         if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1487                                 vgic_cpu_irq_set(vcpu, vlr.irq);
1488                                 level_pending = true;
1489                         } else {
1490                                 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1491                                 vgic_cpu_irq_clear(vcpu, vlr.irq);
1492                         }
1493
1494                         /*
1495                          * Despite being EOIed, the LR may not have
1496                          * been marked as empty.
1497                          */
1498                         vgic_sync_lr_elrsr(vcpu, lr, vlr);
1499                 }
1500         }
1501
1502         if (status & INT_STATUS_UNDERFLOW)
1503                 vgic_disable_underflow(vcpu);
1504
1505         return level_pending;
1506 }
1507
1508 /*
1509  * Sync back the VGIC state after a guest run. The distributor lock is
1510  * needed so we don't get preempted in the middle of the state processing.
1511  */
1512 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1513 {
1514         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1515         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1516         u64 elrsr;
1517         unsigned long *elrsr_ptr;
1518         int lr, pending;
1519         bool level_pending;
1520
1521         level_pending = vgic_process_maintenance(vcpu);
1522         elrsr = vgic_get_elrsr(vcpu);
1523         elrsr_ptr = u64_to_bitmask(&elrsr);
1524
1525         /* Clear mappings for empty LRs */
1526         for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1527                 struct vgic_lr vlr;
1528
1529                 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1530                         continue;
1531
1532                 vlr = vgic_get_lr(vcpu, lr);
1533
1534                 BUG_ON(vlr.irq >= dist->nr_irqs);
1535                 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1536         }
1537
1538         /* Check if we still have something up our sleeve... */
1539         pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1540         if (level_pending || pending < vgic->nr_lr)
1541                 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1542 }
1543
1544 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1545 {
1546         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1547
1548         if (!irqchip_in_kernel(vcpu->kvm))
1549                 return;
1550
1551         spin_lock(&dist->lock);
1552         __kvm_vgic_flush_hwstate(vcpu);
1553         spin_unlock(&dist->lock);
1554 }
1555
1556 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1557 {
1558         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1559
1560         if (!irqchip_in_kernel(vcpu->kvm))
1561                 return;
1562
1563         spin_lock(&dist->lock);
1564         __kvm_vgic_sync_hwstate(vcpu);
1565         spin_unlock(&dist->lock);
1566 }
1567
1568 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1569 {
1570         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1571
1572         if (!irqchip_in_kernel(vcpu->kvm))
1573                 return 0;
1574
1575         return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1576 }
1577
1578 static void vgic_kick_vcpus(struct kvm *kvm)
1579 {
1580         struct kvm_vcpu *vcpu;
1581         int c;
1582
1583         /*
1584          * We've injected an interrupt, time to find out who deserves
1585          * a good kick...
1586          */
1587         kvm_for_each_vcpu(c, vcpu, kvm) {
1588                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1589                         kvm_vcpu_kick(vcpu);
1590         }
1591 }
1592
1593 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1594 {
1595         int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1596
1597         /*
1598          * Only inject an interrupt if:
1599          * - edge triggered and we have a rising edge
1600          * - level triggered and we change level
1601          */
1602         if (edge_triggered) {
1603                 int state = vgic_dist_irq_is_pending(vcpu, irq);
1604                 return level > state;
1605         } else {
1606                 int state = vgic_dist_irq_get_level(vcpu, irq);
1607                 return level != state;
1608         }
1609 }
1610
1611 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1612                                   unsigned int irq_num, bool level)
1613 {
1614         struct vgic_dist *dist = &kvm->arch.vgic;
1615         struct kvm_vcpu *vcpu;
1616         int edge_triggered, level_triggered;
1617         int enabled;
1618         bool ret = true;
1619
1620         spin_lock(&dist->lock);
1621
1622         vcpu = kvm_get_vcpu(kvm, cpuid);
1623         edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1624         level_triggered = !edge_triggered;
1625
1626         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1627                 ret = false;
1628                 goto out;
1629         }
1630
1631         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1632                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1633                 vcpu = kvm_get_vcpu(kvm, cpuid);
1634         }
1635
1636         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1637
1638         if (level) {
1639                 if (level_triggered)
1640                         vgic_dist_irq_set_level(vcpu, irq_num);
1641                 vgic_dist_irq_set_pending(vcpu, irq_num);
1642         } else {
1643                 if (level_triggered) {
1644                         vgic_dist_irq_clear_level(vcpu, irq_num);
1645                         if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1646                                 vgic_dist_irq_clear_pending(vcpu, irq_num);
1647                 }
1648
1649                 ret = false;
1650                 goto out;
1651         }
1652
1653         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1654
1655         if (!enabled) {
1656                 ret = false;
1657                 goto out;
1658         }
1659
1660         if (!vgic_can_sample_irq(vcpu, irq_num)) {
1661                 /*
1662                  * Level interrupt in progress, will be picked up
1663                  * when EOId.
1664                  */
1665                 ret = false;
1666                 goto out;
1667         }
1668
1669         if (level) {
1670                 vgic_cpu_irq_set(vcpu, irq_num);
1671                 set_bit(cpuid, dist->irq_pending_on_cpu);
1672         }
1673
1674 out:
1675         spin_unlock(&dist->lock);
1676
1677         return ret ? cpuid : -EINVAL;
1678 }
1679
1680 /**
1681  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1682  * @kvm:     The VM structure pointer
1683  * @cpuid:   The CPU for PPIs
1684  * @irq_num: The IRQ number that is assigned to the device
1685  * @level:   Edge-triggered:  true:  to trigger the interrupt
1686  *                            false: to ignore the call
1687  *           Level-sensitive  true:  activates an interrupt
1688  *                            false: deactivates an interrupt
1689  *
1690  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1691  * level-sensitive interrupts.  You can think of the level parameter as 1
1692  * being HIGH and 0 being LOW and all devices being active-HIGH.
1693  */
1694 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1695                         bool level)
1696 {
1697         int ret = 0;
1698         int vcpu_id;
1699
1700         if (unlikely(!vgic_initialized(kvm))) {
1701                 mutex_lock(&kvm->lock);
1702                 ret = vgic_init(kvm);
1703                 mutex_unlock(&kvm->lock);
1704
1705                 if (ret)
1706                         goto out;
1707         }
1708
1709         vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
1710         if (vcpu_id >= 0) {
1711                 /* kick the specified vcpu */
1712                 kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
1713         }
1714
1715 out:
1716         return ret;
1717 }
1718
1719 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1720 {
1721         /*
1722          * We cannot rely on the vgic maintenance interrupt to be
1723          * delivered synchronously. This means we can only use it to
1724          * exit the VM, and we perform the handling of EOIed
1725          * interrupts on the exit path (see vgic_process_maintenance).
1726          */
1727         return IRQ_HANDLED;
1728 }
1729
1730 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1731 {
1732         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1733
1734         kfree(vgic_cpu->pending_shared);
1735         kfree(vgic_cpu->vgic_irq_lr_map);
1736         vgic_cpu->pending_shared = NULL;
1737         vgic_cpu->vgic_irq_lr_map = NULL;
1738 }
1739
1740 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1741 {
1742         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1743
1744         int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1745         vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1746         vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1747
1748         if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) {
1749                 kvm_vgic_vcpu_destroy(vcpu);
1750                 return -ENOMEM;
1751         }
1752
1753         memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1754
1755         /*
1756          * Store the number of LRs per vcpu, so we don't have to go
1757          * all the way to the distributor structure to find out. Only
1758          * assembly code should use this one.
1759          */
1760         vgic_cpu->nr_lr = vgic->nr_lr;
1761
1762         return 0;
1763 }
1764
1765 void kvm_vgic_destroy(struct kvm *kvm)
1766 {
1767         struct vgic_dist *dist = &kvm->arch.vgic;
1768         struct kvm_vcpu *vcpu;
1769         int i;
1770
1771         kvm_for_each_vcpu(i, vcpu, kvm)
1772                 kvm_vgic_vcpu_destroy(vcpu);
1773
1774         vgic_free_bitmap(&dist->irq_enabled);
1775         vgic_free_bitmap(&dist->irq_level);
1776         vgic_free_bitmap(&dist->irq_pending);
1777         vgic_free_bitmap(&dist->irq_soft_pend);
1778         vgic_free_bitmap(&dist->irq_queued);
1779         vgic_free_bitmap(&dist->irq_cfg);
1780         vgic_free_bytemap(&dist->irq_priority);
1781         if (dist->irq_spi_target) {
1782                 for (i = 0; i < dist->nr_cpus; i++)
1783                         vgic_free_bitmap(&dist->irq_spi_target[i]);
1784         }
1785         kfree(dist->irq_sgi_sources);
1786         kfree(dist->irq_spi_cpu);
1787         kfree(dist->irq_spi_target);
1788         kfree(dist->irq_pending_on_cpu);
1789         dist->irq_sgi_sources = NULL;
1790         dist->irq_spi_cpu = NULL;
1791         dist->irq_spi_target = NULL;
1792         dist->irq_pending_on_cpu = NULL;
1793         dist->nr_cpus = 0;
1794 }
1795
1796 /*
1797  * Allocate and initialize the various data structures. Must be called
1798  * with kvm->lock held!
1799  */
1800 static int vgic_init(struct kvm *kvm)
1801 {
1802         struct vgic_dist *dist = &kvm->arch.vgic;
1803         struct kvm_vcpu *vcpu;
1804         int nr_cpus, nr_irqs;
1805         int ret, i, vcpu_id;
1806
1807         if (vgic_initialized(kvm))
1808                 return 0;
1809
1810         nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1811         if (!nr_cpus)           /* No vcpus? Can't be good... */
1812                 return -EINVAL;
1813
1814         /*
1815          * If nobody configured the number of interrupts, use the
1816          * legacy one.
1817          */
1818         if (!dist->nr_irqs)
1819                 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1820
1821         nr_irqs = dist->nr_irqs;
1822
1823         ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1824         ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1825         ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1826         ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1827         ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1828         ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1829         ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1830
1831         if (ret)
1832                 goto out;
1833
1834         dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1835         dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1836         dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1837                                        GFP_KERNEL);
1838         dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1839                                            GFP_KERNEL);
1840         if (!dist->irq_sgi_sources ||
1841             !dist->irq_spi_cpu ||
1842             !dist->irq_spi_target ||
1843             !dist->irq_pending_on_cpu) {
1844                 ret = -ENOMEM;
1845                 goto out;
1846         }
1847
1848         for (i = 0; i < nr_cpus; i++)
1849                 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1850                                         nr_cpus, nr_irqs);
1851
1852         if (ret)
1853                 goto out;
1854
1855         for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i += 4)
1856                 vgic_set_target_reg(kvm, 0, i);
1857
1858         kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
1859                 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1860                 if (ret) {
1861                         kvm_err("VGIC: Failed to allocate vcpu memory\n");
1862                         break;
1863                 }
1864
1865                 for (i = 0; i < dist->nr_irqs; i++) {
1866                         if (i < VGIC_NR_PPIS)
1867                                 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1868                                                         vcpu->vcpu_id, i, 1);
1869                         if (i < VGIC_NR_PRIVATE_IRQS)
1870                                 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1871                                                         vcpu->vcpu_id, i,
1872                                                         VGIC_CFG_EDGE);
1873                 }
1874
1875                 vgic_enable(vcpu);
1876         }
1877
1878 out:
1879         if (ret)
1880                 kvm_vgic_destroy(kvm);
1881
1882         return ret;
1883 }
1884
1885 /**
1886  * kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs
1887  * @kvm: pointer to the kvm struct
1888  *
1889  * Map the virtual CPU interface into the VM before running any VCPUs.  We
1890  * can't do this at creation time, because user space must first set the
1891  * virtual CPU interface address in the guest physical address space.
1892  */
1893 int kvm_vgic_map_resources(struct kvm *kvm)
1894 {
1895         int ret = 0;
1896
1897         if (!irqchip_in_kernel(kvm))
1898                 return 0;
1899
1900         mutex_lock(&kvm->lock);
1901
1902         if (vgic_ready(kvm))
1903                 goto out;
1904
1905         if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1906             IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1907                 kvm_err("Need to set vgic cpu and dist addresses first\n");
1908                 ret = -ENXIO;
1909                 goto out;
1910         }
1911
1912         /*
1913          * Initialize the vgic if this hasn't already been done on demand by
1914          * accessing the vgic state from userspace.
1915          */
1916         ret = vgic_init(kvm);
1917         if (ret) {
1918                 kvm_err("Unable to allocate maps\n");
1919                 goto out;
1920         }
1921
1922         ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1923                                     vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE,
1924                                     true);
1925         if (ret) {
1926                 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1927                 goto out;
1928         }
1929
1930         kvm->arch.vgic.ready = true;
1931 out:
1932         if (ret)
1933                 kvm_vgic_destroy(kvm);
1934         mutex_unlock(&kvm->lock);
1935         return ret;
1936 }
1937
1938 int kvm_vgic_create(struct kvm *kvm)
1939 {
1940         int i, vcpu_lock_idx = -1, ret;
1941         struct kvm_vcpu *vcpu;
1942
1943         mutex_lock(&kvm->lock);
1944
1945         if (kvm->arch.vgic.vctrl_base) {
1946                 ret = -EEXIST;
1947                 goto out;
1948         }
1949
1950         /*
1951          * Any time a vcpu is run, vcpu_load is called which tries to grab the
1952          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
1953          * that no other VCPUs are run while we create the vgic.
1954          */
1955         ret = -EBUSY;
1956         kvm_for_each_vcpu(i, vcpu, kvm) {
1957                 if (!mutex_trylock(&vcpu->mutex))
1958                         goto out_unlock;
1959                 vcpu_lock_idx = i;
1960         }
1961
1962         kvm_for_each_vcpu(i, vcpu, kvm) {
1963                 if (vcpu->arch.has_run_once)
1964                         goto out_unlock;
1965         }
1966         ret = 0;
1967
1968         spin_lock_init(&kvm->arch.vgic.lock);
1969         kvm->arch.vgic.in_kernel = true;
1970         kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1971         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1972         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1973
1974 out_unlock:
1975         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1976                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1977                 mutex_unlock(&vcpu->mutex);
1978         }
1979
1980 out:
1981         mutex_unlock(&kvm->lock);
1982         return ret;
1983 }
1984
1985 static int vgic_ioaddr_overlap(struct kvm *kvm)
1986 {
1987         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1988         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1989
1990         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1991                 return 0;
1992         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1993             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1994                 return -EBUSY;
1995         return 0;
1996 }
1997
1998 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1999                               phys_addr_t addr, phys_addr_t size)
2000 {
2001         int ret;
2002
2003         if (addr & ~KVM_PHYS_MASK)
2004                 return -E2BIG;
2005
2006         if (addr & (SZ_4K - 1))
2007                 return -EINVAL;
2008
2009         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
2010                 return -EEXIST;
2011         if (addr + size < addr)
2012                 return -EINVAL;
2013
2014         *ioaddr = addr;
2015         ret = vgic_ioaddr_overlap(kvm);
2016         if (ret)
2017                 *ioaddr = VGIC_ADDR_UNDEF;
2018
2019         return ret;
2020 }
2021
2022 /**
2023  * kvm_vgic_addr - set or get vgic VM base addresses
2024  * @kvm:   pointer to the vm struct
2025  * @type:  the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
2026  * @addr:  pointer to address value
2027  * @write: if true set the address in the VM address space, if false read the
2028  *          address
2029  *
2030  * Set or get the vgic base addresses for the distributor and the virtual CPU
2031  * interface in the VM physical address space.  These addresses are properties
2032  * of the emulated core/SoC and therefore user space initially knows this
2033  * information.
2034  */
2035 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
2036 {
2037         int r = 0;
2038         struct vgic_dist *vgic = &kvm->arch.vgic;
2039
2040         mutex_lock(&kvm->lock);
2041         switch (type) {
2042         case KVM_VGIC_V2_ADDR_TYPE_DIST:
2043                 if (write) {
2044                         r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
2045                                                *addr, KVM_VGIC_V2_DIST_SIZE);
2046                 } else {
2047                         *addr = vgic->vgic_dist_base;
2048                 }
2049                 break;
2050         case KVM_VGIC_V2_ADDR_TYPE_CPU:
2051                 if (write) {
2052                         r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
2053                                                *addr, KVM_VGIC_V2_CPU_SIZE);
2054                 } else {
2055                         *addr = vgic->vgic_cpu_base;
2056                 }
2057                 break;
2058         default:
2059                 r = -ENODEV;
2060         }
2061
2062         mutex_unlock(&kvm->lock);
2063         return r;
2064 }
2065
2066 static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
2067                                  struct kvm_exit_mmio *mmio, phys_addr_t offset)
2068 {
2069         bool updated = false;
2070         struct vgic_vmcr vmcr;
2071         u32 *vmcr_field;
2072         u32 reg;
2073
2074         vgic_get_vmcr(vcpu, &vmcr);
2075
2076         switch (offset & ~0x3) {
2077         case GIC_CPU_CTRL:
2078                 vmcr_field = &vmcr.ctlr;
2079                 break;
2080         case GIC_CPU_PRIMASK:
2081                 vmcr_field = &vmcr.pmr;
2082                 break;
2083         case GIC_CPU_BINPOINT:
2084                 vmcr_field = &vmcr.bpr;
2085                 break;
2086         case GIC_CPU_ALIAS_BINPOINT:
2087                 vmcr_field = &vmcr.abpr;
2088                 break;
2089         default:
2090                 BUG();
2091         }
2092
2093         if (!mmio->is_write) {
2094                 reg = *vmcr_field;
2095                 mmio_data_write(mmio, ~0, reg);
2096         } else {
2097                 reg = mmio_data_read(mmio, ~0);
2098                 if (reg != *vmcr_field) {
2099                         *vmcr_field = reg;
2100                         vgic_set_vmcr(vcpu, &vmcr);
2101                         updated = true;
2102                 }
2103         }
2104         return updated;
2105 }
2106
2107 static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
2108                              struct kvm_exit_mmio *mmio, phys_addr_t offset)
2109 {
2110         return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
2111 }
2112
2113 static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
2114                                   struct kvm_exit_mmio *mmio,
2115                                   phys_addr_t offset)
2116 {
2117         u32 reg;
2118
2119         if (mmio->is_write)
2120                 return false;
2121
2122         /* GICC_IIDR */
2123         reg = (PRODUCT_ID_KVM << 20) |
2124               (GICC_ARCH_VERSION_V2 << 16) |
2125               (IMPLEMENTER_ARM << 0);
2126         mmio_data_write(mmio, ~0, reg);
2127         return false;
2128 }
2129
2130 /*
2131  * CPU Interface Register accesses - these are not accessed by the VM, but by
2132  * user space for saving and restoring VGIC state.
2133  */
2134 static const struct mmio_range vgic_cpu_ranges[] = {
2135         {
2136                 .base           = GIC_CPU_CTRL,
2137                 .len            = 12,
2138                 .handle_mmio    = handle_cpu_mmio_misc,
2139         },
2140         {
2141                 .base           = GIC_CPU_ALIAS_BINPOINT,
2142                 .len            = 4,
2143                 .handle_mmio    = handle_mmio_abpr,
2144         },
2145         {
2146                 .base           = GIC_CPU_ACTIVEPRIO,
2147                 .len            = 16,
2148                 .handle_mmio    = handle_mmio_raz_wi,
2149         },
2150         {
2151                 .base           = GIC_CPU_IDENT,
2152                 .len            = 4,
2153                 .handle_mmio    = handle_cpu_mmio_ident,
2154         },
2155 };
2156
2157 static int vgic_attr_regs_access(struct kvm_device *dev,
2158                                  struct kvm_device_attr *attr,
2159                                  u32 *reg, bool is_write)
2160 {
2161         const struct mmio_range *r = NULL, *ranges;
2162         phys_addr_t offset;
2163         int ret, cpuid, c;
2164         struct kvm_vcpu *vcpu, *tmp_vcpu;
2165         struct vgic_dist *vgic;
2166         struct kvm_exit_mmio mmio;
2167
2168         offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2169         cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
2170                 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
2171
2172         mutex_lock(&dev->kvm->lock);
2173
2174         ret = vgic_init(dev->kvm);
2175         if (ret)
2176                 goto out;
2177
2178         if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
2179                 ret = -EINVAL;
2180                 goto out;
2181         }
2182
2183         vcpu = kvm_get_vcpu(dev->kvm, cpuid);
2184         vgic = &dev->kvm->arch.vgic;
2185
2186         mmio.len = 4;
2187         mmio.is_write = is_write;
2188         if (is_write)
2189                 mmio_data_write(&mmio, ~0, *reg);
2190         switch (attr->group) {
2191         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2192                 mmio.phys_addr = vgic->vgic_dist_base + offset;
2193                 ranges = vgic_dist_ranges;
2194                 break;
2195         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2196                 mmio.phys_addr = vgic->vgic_cpu_base + offset;
2197                 ranges = vgic_cpu_ranges;
2198                 break;
2199         default:
2200                 BUG();
2201         }
2202         r = find_matching_range(ranges, &mmio, offset);
2203
2204         if (unlikely(!r || !r->handle_mmio)) {
2205                 ret = -ENXIO;
2206                 goto out;
2207         }
2208
2209
2210         spin_lock(&vgic->lock);
2211
2212         /*
2213          * Ensure that no other VCPU is running by checking the vcpu->cpu
2214          * field.  If no other VPCUs are running we can safely access the VGIC
2215          * state, because even if another VPU is run after this point, that
2216          * VCPU will not touch the vgic state, because it will block on
2217          * getting the vgic->lock in kvm_vgic_sync_hwstate().
2218          */
2219         kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
2220                 if (unlikely(tmp_vcpu->cpu != -1)) {
2221                         ret = -EBUSY;
2222                         goto out_vgic_unlock;
2223                 }
2224         }
2225
2226         /*
2227          * Move all pending IRQs from the LRs on all VCPUs so the pending
2228          * state can be properly represented in the register state accessible
2229          * through this API.
2230          */
2231         kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
2232                 vgic_unqueue_irqs(tmp_vcpu);
2233
2234         offset -= r->base;
2235         r->handle_mmio(vcpu, &mmio, offset);
2236
2237         if (!is_write)
2238                 *reg = mmio_data_read(&mmio, ~0);
2239
2240         ret = 0;
2241 out_vgic_unlock:
2242         spin_unlock(&vgic->lock);
2243 out:
2244         mutex_unlock(&dev->kvm->lock);
2245         return ret;
2246 }
2247
2248 static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2249 {
2250         int r;
2251
2252         switch (attr->group) {
2253         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2254                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2255                 u64 addr;
2256                 unsigned long type = (unsigned long)attr->attr;
2257
2258                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2259                         return -EFAULT;
2260
2261                 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2262                 return (r == -ENODEV) ? -ENXIO : r;
2263         }
2264
2265         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2266         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2267                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2268                 u32 reg;
2269
2270                 if (get_user(reg, uaddr))
2271                         return -EFAULT;
2272
2273                 return vgic_attr_regs_access(dev, attr, &reg, true);
2274         }
2275         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2276                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2277                 u32 val;
2278                 int ret = 0;
2279
2280                 if (get_user(val, uaddr))
2281                         return -EFAULT;
2282
2283                 /*
2284                  * We require:
2285                  * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
2286                  * - at most 1024 interrupts
2287                  * - a multiple of 32 interrupts
2288                  */
2289                 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
2290                     val > VGIC_MAX_IRQS ||
2291                     (val & 31))
2292                         return -EINVAL;
2293
2294                 mutex_lock(&dev->kvm->lock);
2295
2296                 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2297                         ret = -EBUSY;
2298                 else
2299                         dev->kvm->arch.vgic.nr_irqs = val;
2300
2301                 mutex_unlock(&dev->kvm->lock);
2302
2303                 return ret;
2304         }
2305
2306         }
2307
2308         return -ENXIO;
2309 }
2310
2311 static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2312 {
2313         int r = -ENXIO;
2314
2315         switch (attr->group) {
2316         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2317                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2318                 u64 addr;
2319                 unsigned long type = (unsigned long)attr->attr;
2320
2321                 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2322                 if (r)
2323                         return (r == -ENODEV) ? -ENXIO : r;
2324
2325                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2326                         return -EFAULT;
2327                 break;
2328         }
2329
2330         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2331         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2332                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2333                 u32 reg = 0;
2334
2335                 r = vgic_attr_regs_access(dev, attr, &reg, false);
2336                 if (r)
2337                         return r;
2338                 r = put_user(reg, uaddr);
2339                 break;
2340         }
2341         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2342                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2343                 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2344                 break;
2345         }
2346
2347         }
2348
2349         return r;
2350 }
2351
2352 static int vgic_has_attr_regs(const struct mmio_range *ranges,
2353                               phys_addr_t offset)
2354 {
2355         struct kvm_exit_mmio dev_attr_mmio;
2356
2357         dev_attr_mmio.len = 4;
2358         if (find_matching_range(ranges, &dev_attr_mmio, offset))
2359                 return 0;
2360         else
2361                 return -ENXIO;
2362 }
2363
2364 static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2365 {
2366         phys_addr_t offset;
2367
2368         switch (attr->group) {
2369         case KVM_DEV_ARM_VGIC_GRP_ADDR:
2370                 switch (attr->attr) {
2371                 case KVM_VGIC_V2_ADDR_TYPE_DIST:
2372                 case KVM_VGIC_V2_ADDR_TYPE_CPU:
2373                         return 0;
2374                 }
2375                 break;
2376         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2377                 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2378                 return vgic_has_attr_regs(vgic_dist_ranges, offset);
2379         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2380                 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2381                 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
2382         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
2383                 return 0;
2384         }
2385         return -ENXIO;
2386 }
2387
2388 static void vgic_destroy(struct kvm_device *dev)
2389 {
2390         kfree(dev);
2391 }
2392
2393 static int vgic_create(struct kvm_device *dev, u32 type)
2394 {
2395         return kvm_vgic_create(dev->kvm);
2396 }
2397
2398 static struct kvm_device_ops kvm_arm_vgic_v2_ops = {
2399         .name = "kvm-arm-vgic",
2400         .create = vgic_create,
2401         .destroy = vgic_destroy,
2402         .set_attr = vgic_set_attr,
2403         .get_attr = vgic_get_attr,
2404         .has_attr = vgic_has_attr,
2405 };
2406
2407 static void vgic_init_maintenance_interrupt(void *info)
2408 {
2409         enable_percpu_irq(vgic->maint_irq, 0);
2410 }
2411
2412 static int vgic_cpu_notify(struct notifier_block *self,
2413                            unsigned long action, void *cpu)
2414 {
2415         switch (action) {
2416         case CPU_STARTING:
2417         case CPU_STARTING_FROZEN:
2418                 vgic_init_maintenance_interrupt(NULL);
2419                 break;
2420         case CPU_DYING:
2421         case CPU_DYING_FROZEN:
2422                 disable_percpu_irq(vgic->maint_irq);
2423                 break;
2424         }
2425
2426         return NOTIFY_OK;
2427 }
2428
2429 static struct notifier_block vgic_cpu_nb = {
2430         .notifier_call = vgic_cpu_notify,
2431 };
2432
2433 static const struct of_device_id vgic_ids[] = {
2434         { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2435         { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
2436         {},
2437 };
2438
2439 int kvm_vgic_hyp_init(void)
2440 {
2441         const struct of_device_id *matched_id;
2442         const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2443                                 const struct vgic_params **);
2444         struct device_node *vgic_node;
2445         int ret;
2446
2447         vgic_node = of_find_matching_node_and_match(NULL,
2448                                                     vgic_ids, &matched_id);
2449         if (!vgic_node) {
2450                 kvm_err("error: no compatible GIC node found\n");
2451                 return -ENODEV;
2452         }
2453
2454         vgic_probe = matched_id->data;
2455         ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2456         if (ret)
2457                 return ret;
2458
2459         ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2460                                  "vgic", kvm_get_running_vcpus());
2461         if (ret) {
2462                 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2463                 return ret;
2464         }
2465
2466         ret = __register_cpu_notifier(&vgic_cpu_nb);
2467         if (ret) {
2468                 kvm_err("Cannot register vgic CPU notifier\n");
2469                 goto out_free_irq;
2470         }
2471
2472         /* Callback into for arch code for setup */
2473         vgic_arch_setup(vgic);
2474
2475         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2476
2477         return kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
2478                                        KVM_DEV_TYPE_ARM_VGIC_V2);
2479
2480 out_free_irq:
2481         free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2482         return ret;
2483 }