spi: st-ssc4: Fix misuse of devm_gpio_request/devm_gpio_free APIs
[cascardo/linux.git] / virt / kvm / arm / vgic / vgic-its.c
1 /*
2  * GICv3 ITS emulation
3  *
4  * Copyright (C) 2015,2016 ARM Ltd.
5  * Author: Andre Przywara <andre.przywara@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/cpu.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24 #include <linux/list.h>
25 #include <linux/uaccess.h>
26
27 #include <linux/irqchip/arm-gic-v3.h>
28
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_arm.h>
31 #include <asm/kvm_mmu.h>
32
33 #include "vgic.h"
34 #include "vgic-mmio.h"
35
36 /*
37  * Creates a new (reference to a) struct vgic_irq for a given LPI.
38  * If this LPI is already mapped on another ITS, we increase its refcount
39  * and return a pointer to the existing structure.
40  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
41  * This function returns a pointer to the _unlocked_ structure.
42  */
43 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid)
44 {
45         struct vgic_dist *dist = &kvm->arch.vgic;
46         struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
47
48         /* In this case there is no put, since we keep the reference. */
49         if (irq)
50                 return irq;
51
52         irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
53         if (!irq)
54                 return NULL;
55
56         INIT_LIST_HEAD(&irq->lpi_list);
57         INIT_LIST_HEAD(&irq->ap_list);
58         spin_lock_init(&irq->irq_lock);
59
60         irq->config = VGIC_CONFIG_EDGE;
61         kref_init(&irq->refcount);
62         irq->intid = intid;
63
64         spin_lock(&dist->lpi_list_lock);
65
66         /*
67          * There could be a race with another vgic_add_lpi(), so we need to
68          * check that we don't add a second list entry with the same LPI.
69          */
70         list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
71                 if (oldirq->intid != intid)
72                         continue;
73
74                 /* Someone was faster with adding this LPI, lets use that. */
75                 kfree(irq);
76                 irq = oldirq;
77
78                 /*
79                  * This increases the refcount, the caller is expected to
80                  * call vgic_put_irq() on the returned pointer once it's
81                  * finished with the IRQ.
82                  */
83                 vgic_get_irq_kref(irq);
84
85                 goto out_unlock;
86         }
87
88         list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
89         dist->lpi_list_count++;
90
91 out_unlock:
92         spin_unlock(&dist->lpi_list_lock);
93
94         return irq;
95 }
96
97 struct its_device {
98         struct list_head dev_list;
99
100         /* the head for the list of ITTEs */
101         struct list_head itt_head;
102         u32 device_id;
103 };
104
105 #define COLLECTION_NOT_MAPPED ((u32)~0)
106
107 struct its_collection {
108         struct list_head coll_list;
109
110         u32 collection_id;
111         u32 target_addr;
112 };
113
114 #define its_is_collection_mapped(coll) ((coll) && \
115                                 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
116
117 struct its_itte {
118         struct list_head itte_list;
119
120         struct vgic_irq *irq;
121         struct its_collection *collection;
122         u32 lpi;
123         u32 event_id;
124 };
125
126 /*
127  * Find and returns a device in the device table for an ITS.
128  * Must be called with the its_lock mutex held.
129  */
130 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
131 {
132         struct its_device *device;
133
134         list_for_each_entry(device, &its->device_list, dev_list)
135                 if (device_id == device->device_id)
136                         return device;
137
138         return NULL;
139 }
140
141 /*
142  * Find and returns an interrupt translation table entry (ITTE) for a given
143  * Device ID/Event ID pair on an ITS.
144  * Must be called with the its_lock mutex held.
145  */
146 static struct its_itte *find_itte(struct vgic_its *its, u32 device_id,
147                                   u32 event_id)
148 {
149         struct its_device *device;
150         struct its_itte *itte;
151
152         device = find_its_device(its, device_id);
153         if (device == NULL)
154                 return NULL;
155
156         list_for_each_entry(itte, &device->itt_head, itte_list)
157                 if (itte->event_id == event_id)
158                         return itte;
159
160         return NULL;
161 }
162
163 /* To be used as an iterator this macro misses the enclosing parentheses */
164 #define for_each_lpi_its(dev, itte, its) \
165         list_for_each_entry(dev, &(its)->device_list, dev_list) \
166                 list_for_each_entry(itte, &(dev)->itt_head, itte_list)
167
168 /*
169  * We only implement 48 bits of PA at the moment, although the ITS
170  * supports more. Let's be restrictive here.
171  */
172 #define BASER_ADDRESS(x)        ((x) & GENMASK_ULL(47, 16))
173 #define CBASER_ADDRESS(x)       ((x) & GENMASK_ULL(47, 12))
174 #define PENDBASER_ADDRESS(x)    ((x) & GENMASK_ULL(47, 16))
175 #define PROPBASER_ADDRESS(x)    ((x) & GENMASK_ULL(47, 12))
176
177 #define GIC_LPI_OFFSET 8192
178
179 /*
180  * Finds and returns a collection in the ITS collection table.
181  * Must be called with the its_lock mutex held.
182  */
183 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
184 {
185         struct its_collection *collection;
186
187         list_for_each_entry(collection, &its->collection_list, coll_list) {
188                 if (coll_id == collection->collection_id)
189                         return collection;
190         }
191
192         return NULL;
193 }
194
195 #define LPI_PROP_ENABLE_BIT(p)  ((p) & LPI_PROP_ENABLED)
196 #define LPI_PROP_PRIORITY(p)    ((p) & 0xfc)
197
198 /*
199  * Reads the configuration data for a given LPI from guest memory and
200  * updates the fields in struct vgic_irq.
201  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
202  * VCPU. Unconditionally applies if filter_vcpu is NULL.
203  */
204 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
205                              struct kvm_vcpu *filter_vcpu)
206 {
207         u64 propbase = PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
208         u8 prop;
209         int ret;
210
211         ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
212                              &prop, 1);
213
214         if (ret)
215                 return ret;
216
217         spin_lock(&irq->irq_lock);
218
219         if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
220                 irq->priority = LPI_PROP_PRIORITY(prop);
221                 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
222
223                 vgic_queue_irq_unlock(kvm, irq);
224         } else {
225                 spin_unlock(&irq->irq_lock);
226         }
227
228         return 0;
229 }
230
231 /*
232  * Create a snapshot of the current LPI list, so that we can enumerate all
233  * LPIs without holding any lock.
234  * Returns the array length and puts the kmalloc'ed array into intid_ptr.
235  */
236 static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr)
237 {
238         struct vgic_dist *dist = &kvm->arch.vgic;
239         struct vgic_irq *irq;
240         u32 *intids;
241         int irq_count = dist->lpi_list_count, i = 0;
242
243         /*
244          * We use the current value of the list length, which may change
245          * after the kmalloc. We don't care, because the guest shouldn't
246          * change anything while the command handling is still running,
247          * and in the worst case we would miss a new IRQ, which one wouldn't
248          * expect to be covered by this command anyway.
249          */
250         intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
251         if (!intids)
252                 return -ENOMEM;
253
254         spin_lock(&dist->lpi_list_lock);
255         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
256                 /* We don't need to "get" the IRQ, as we hold the list lock. */
257                 intids[i] = irq->intid;
258                 if (++i == irq_count)
259                         break;
260         }
261         spin_unlock(&dist->lpi_list_lock);
262
263         *intid_ptr = intids;
264         return irq_count;
265 }
266
267 /*
268  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
269  * is targeting) to the VGIC's view, which deals with target VCPUs.
270  * Needs to be called whenever either the collection for a LPIs has
271  * changed or the collection itself got retargeted.
272  */
273 static void update_affinity_itte(struct kvm *kvm, struct its_itte *itte)
274 {
275         struct kvm_vcpu *vcpu;
276
277         if (!its_is_collection_mapped(itte->collection))
278                 return;
279
280         vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
281
282         spin_lock(&itte->irq->irq_lock);
283         itte->irq->target_vcpu = vcpu;
284         spin_unlock(&itte->irq->irq_lock);
285 }
286
287 /*
288  * Updates the target VCPU for every LPI targeting this collection.
289  * Must be called with the its_lock mutex held.
290  */
291 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
292                                        struct its_collection *coll)
293 {
294         struct its_device *device;
295         struct its_itte *itte;
296
297         for_each_lpi_its(device, itte, its) {
298                 if (!itte->collection || coll != itte->collection)
299                         continue;
300
301                 update_affinity_itte(kvm, itte);
302         }
303 }
304
305 static u32 max_lpis_propbaser(u64 propbaser)
306 {
307         int nr_idbits = (propbaser & 0x1f) + 1;
308
309         return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
310 }
311
312 /*
313  * Scan the whole LPI pending table and sync the pending bit in there
314  * with our own data structures. This relies on the LPI being
315  * mapped before.
316  */
317 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
318 {
319         gpa_t pendbase = PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
320         struct vgic_irq *irq;
321         int last_byte_offset = -1;
322         int ret = 0;
323         u32 *intids;
324         int nr_irqs, i;
325
326         nr_irqs = vgic_copy_lpi_list(vcpu->kvm, &intids);
327         if (nr_irqs < 0)
328                 return nr_irqs;
329
330         for (i = 0; i < nr_irqs; i++) {
331                 int byte_offset, bit_nr;
332                 u8 pendmask;
333
334                 byte_offset = intids[i] / BITS_PER_BYTE;
335                 bit_nr = intids[i] % BITS_PER_BYTE;
336
337                 /*
338                  * For contiguously allocated LPIs chances are we just read
339                  * this very same byte in the last iteration. Reuse that.
340                  */
341                 if (byte_offset != last_byte_offset) {
342                         ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
343                                              &pendmask, 1);
344                         if (ret) {
345                                 kfree(intids);
346                                 return ret;
347                         }
348                         last_byte_offset = byte_offset;
349                 }
350
351                 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
352                 spin_lock(&irq->irq_lock);
353                 irq->pending = pendmask & (1U << bit_nr);
354                 vgic_queue_irq_unlock(vcpu->kvm, irq);
355                 vgic_put_irq(vcpu->kvm, irq);
356         }
357
358         kfree(intids);
359
360         return ret;
361 }
362
363 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
364                                              struct vgic_its *its,
365                                              gpa_t addr, unsigned int len)
366 {
367         u32 reg = 0;
368
369         mutex_lock(&its->cmd_lock);
370         if (its->creadr == its->cwriter)
371                 reg |= GITS_CTLR_QUIESCENT;
372         if (its->enabled)
373                 reg |= GITS_CTLR_ENABLE;
374         mutex_unlock(&its->cmd_lock);
375
376         return reg;
377 }
378
379 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
380                                      gpa_t addr, unsigned int len,
381                                      unsigned long val)
382 {
383         its->enabled = !!(val & GITS_CTLR_ENABLE);
384 }
385
386 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
387                                               struct vgic_its *its,
388                                               gpa_t addr, unsigned int len)
389 {
390         u64 reg = GITS_TYPER_PLPIS;
391
392         /*
393          * We use linear CPU numbers for redistributor addressing,
394          * so GITS_TYPER.PTA is 0.
395          * Also we force all PROPBASER registers to be the same, so
396          * CommonLPIAff is 0 as well.
397          * To avoid memory waste in the guest, we keep the number of IDBits and
398          * DevBits low - as least for the time being.
399          */
400         reg |= 0x0f << GITS_TYPER_DEVBITS_SHIFT;
401         reg |= 0x0f << GITS_TYPER_IDBITS_SHIFT;
402
403         return extract_bytes(reg, addr & 7, len);
404 }
405
406 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
407                                              struct vgic_its *its,
408                                              gpa_t addr, unsigned int len)
409 {
410         return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
411 }
412
413 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
414                                                struct vgic_its *its,
415                                                gpa_t addr, unsigned int len)
416 {
417         switch (addr & 0xffff) {
418         case GITS_PIDR0:
419                 return 0x92;    /* part number, bits[7:0] */
420         case GITS_PIDR1:
421                 return 0xb4;    /* part number, bits[11:8] */
422         case GITS_PIDR2:
423                 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
424         case GITS_PIDR4:
425                 return 0x40;    /* This is a 64K software visible page */
426         /* The following are the ID registers for (any) GIC. */
427         case GITS_CIDR0:
428                 return 0x0d;
429         case GITS_CIDR1:
430                 return 0xf0;
431         case GITS_CIDR2:
432                 return 0x05;
433         case GITS_CIDR3:
434                 return 0xb1;
435         }
436
437         return 0;
438 }
439
440 /*
441  * Find the target VCPU and the LPI number for a given devid/eventid pair
442  * and make this IRQ pending, possibly injecting it.
443  * Must be called with the its_lock mutex held.
444  */
445 static void vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
446                                  u32 devid, u32 eventid)
447 {
448         struct its_itte *itte;
449
450         if (!its->enabled)
451                 return;
452
453         itte = find_itte(its, devid, eventid);
454         /* Triggering an unmapped IRQ gets silently dropped. */
455         if (itte && its_is_collection_mapped(itte->collection)) {
456                 struct kvm_vcpu *vcpu;
457
458                 vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
459                 if (vcpu && vcpu->arch.vgic_cpu.lpis_enabled) {
460                         spin_lock(&itte->irq->irq_lock);
461                         itte->irq->pending = true;
462                         vgic_queue_irq_unlock(kvm, itte->irq);
463                 }
464         }
465 }
466
467 /*
468  * Queries the KVM IO bus framework to get the ITS pointer from the given
469  * doorbell address.
470  * We then call vgic_its_trigger_msi() with the decoded data.
471  */
472 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
473 {
474         u64 address;
475         struct kvm_io_device *kvm_io_dev;
476         struct vgic_io_device *iodev;
477
478         if (!vgic_has_its(kvm))
479                 return -ENODEV;
480
481         if (!(msi->flags & KVM_MSI_VALID_DEVID))
482                 return -EINVAL;
483
484         address = (u64)msi->address_hi << 32 | msi->address_lo;
485
486         kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
487         if (!kvm_io_dev)
488                 return -ENODEV;
489
490         iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
491
492         mutex_lock(&iodev->its->its_lock);
493         vgic_its_trigger_msi(kvm, iodev->its, msi->devid, msi->data);
494         mutex_unlock(&iodev->its->its_lock);
495
496         return 0;
497 }
498
499 /* Requires the its_lock to be held. */
500 static void its_free_itte(struct kvm *kvm, struct its_itte *itte)
501 {
502         list_del(&itte->itte_list);
503
504         /* This put matches the get in vgic_add_lpi. */
505         vgic_put_irq(kvm, itte->irq);
506
507         kfree(itte);
508 }
509
510 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
511 {
512         return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
513 }
514
515 #define its_cmd_get_command(cmd)        its_cmd_mask_field(cmd, 0,  0,  8)
516 #define its_cmd_get_deviceid(cmd)       its_cmd_mask_field(cmd, 0, 32, 32)
517 #define its_cmd_get_id(cmd)             its_cmd_mask_field(cmd, 1,  0, 32)
518 #define its_cmd_get_physical_id(cmd)    its_cmd_mask_field(cmd, 1, 32, 32)
519 #define its_cmd_get_collection(cmd)     its_cmd_mask_field(cmd, 2,  0, 16)
520 #define its_cmd_get_target_addr(cmd)    its_cmd_mask_field(cmd, 2, 16, 32)
521 #define its_cmd_get_validbit(cmd)       its_cmd_mask_field(cmd, 2, 63,  1)
522
523 /*
524  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
525  * Must be called with the its_lock mutex held.
526  */
527 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
528                                        u64 *its_cmd)
529 {
530         u32 device_id = its_cmd_get_deviceid(its_cmd);
531         u32 event_id = its_cmd_get_id(its_cmd);
532         struct its_itte *itte;
533
534
535         itte = find_itte(its, device_id, event_id);
536         if (itte && itte->collection) {
537                 /*
538                  * Though the spec talks about removing the pending state, we
539                  * don't bother here since we clear the ITTE anyway and the
540                  * pending state is a property of the ITTE struct.
541                  */
542                 its_free_itte(kvm, itte);
543                 return 0;
544         }
545
546         return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
547 }
548
549 /*
550  * The MOVI command moves an ITTE to a different collection.
551  * Must be called with the its_lock mutex held.
552  */
553 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
554                                     u64 *its_cmd)
555 {
556         u32 device_id = its_cmd_get_deviceid(its_cmd);
557         u32 event_id = its_cmd_get_id(its_cmd);
558         u32 coll_id = its_cmd_get_collection(its_cmd);
559         struct kvm_vcpu *vcpu;
560         struct its_itte *itte;
561         struct its_collection *collection;
562
563         itte = find_itte(its, device_id, event_id);
564         if (!itte)
565                 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
566
567         if (!its_is_collection_mapped(itte->collection))
568                 return E_ITS_MOVI_UNMAPPED_COLLECTION;
569
570         collection = find_collection(its, coll_id);
571         if (!its_is_collection_mapped(collection))
572                 return E_ITS_MOVI_UNMAPPED_COLLECTION;
573
574         itte->collection = collection;
575         vcpu = kvm_get_vcpu(kvm, collection->target_addr);
576
577         spin_lock(&itte->irq->irq_lock);
578         itte->irq->target_vcpu = vcpu;
579         spin_unlock(&itte->irq->irq_lock);
580
581         return 0;
582 }
583
584 /*
585  * Check whether an ID can be stored into the corresponding guest table.
586  * For a direct table this is pretty easy, but gets a bit nasty for
587  * indirect tables. We check whether the resulting guest physical address
588  * is actually valid (covered by a memslot and guest accessbible).
589  * For this we have to read the respective first level entry.
590  */
591 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, int id)
592 {
593         int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
594         int index;
595         u64 indirect_ptr;
596         gfn_t gfn;
597
598         if (!(baser & GITS_BASER_INDIRECT)) {
599                 phys_addr_t addr;
600
601                 if (id >= (l1_tbl_size / GITS_BASER_ENTRY_SIZE(baser)))
602                         return false;
603
604                 addr = BASER_ADDRESS(baser) + id * GITS_BASER_ENTRY_SIZE(baser);
605                 gfn = addr >> PAGE_SHIFT;
606
607                 return kvm_is_visible_gfn(its->dev->kvm, gfn);
608         }
609
610         /* calculate and check the index into the 1st level */
611         index = id / (SZ_64K / GITS_BASER_ENTRY_SIZE(baser));
612         if (index >= (l1_tbl_size / sizeof(u64)))
613                 return false;
614
615         /* Each 1st level entry is represented by a 64-bit value. */
616         if (kvm_read_guest(its->dev->kvm,
617                            BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
618                            &indirect_ptr, sizeof(indirect_ptr)))
619                 return false;
620
621         indirect_ptr = le64_to_cpu(indirect_ptr);
622
623         /* check the valid bit of the first level entry */
624         if (!(indirect_ptr & BIT_ULL(63)))
625                 return false;
626
627         /*
628          * Mask the guest physical address and calculate the frame number.
629          * Any address beyond our supported 48 bits of PA will be caught
630          * by the actual check in the final step.
631          */
632         indirect_ptr &= GENMASK_ULL(51, 16);
633
634         /* Find the address of the actual entry */
635         index = id % (SZ_64K / GITS_BASER_ENTRY_SIZE(baser));
636         indirect_ptr += index * GITS_BASER_ENTRY_SIZE(baser);
637         gfn = indirect_ptr >> PAGE_SHIFT;
638
639         return kvm_is_visible_gfn(its->dev->kvm, gfn);
640 }
641
642 static int vgic_its_alloc_collection(struct vgic_its *its,
643                                      struct its_collection **colp,
644                                      u32 coll_id)
645 {
646         struct its_collection *collection;
647
648         if (!vgic_its_check_id(its, its->baser_coll_table, coll_id))
649                 return E_ITS_MAPC_COLLECTION_OOR;
650
651         collection = kzalloc(sizeof(*collection), GFP_KERNEL);
652
653         collection->collection_id = coll_id;
654         collection->target_addr = COLLECTION_NOT_MAPPED;
655
656         list_add_tail(&collection->coll_list, &its->collection_list);
657         *colp = collection;
658
659         return 0;
660 }
661
662 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
663 {
664         struct its_collection *collection;
665         struct its_device *device;
666         struct its_itte *itte;
667
668         /*
669          * Clearing the mapping for that collection ID removes the
670          * entry from the list. If there wasn't any before, we can
671          * go home early.
672          */
673         collection = find_collection(its, coll_id);
674         if (!collection)
675                 return;
676
677         for_each_lpi_its(device, itte, its)
678                 if (itte->collection &&
679                     itte->collection->collection_id == coll_id)
680                         itte->collection = NULL;
681
682         list_del(&collection->coll_list);
683         kfree(collection);
684 }
685
686 /*
687  * The MAPTI and MAPI commands map LPIs to ITTEs.
688  * Must be called with its_lock mutex held.
689  */
690 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
691                                     u64 *its_cmd)
692 {
693         u32 device_id = its_cmd_get_deviceid(its_cmd);
694         u32 event_id = its_cmd_get_id(its_cmd);
695         u32 coll_id = its_cmd_get_collection(its_cmd);
696         struct its_itte *itte;
697         struct its_device *device;
698         struct its_collection *collection, *new_coll = NULL;
699         int lpi_nr;
700
701         device = find_its_device(its, device_id);
702         if (!device)
703                 return E_ITS_MAPTI_UNMAPPED_DEVICE;
704
705         if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
706                 lpi_nr = its_cmd_get_physical_id(its_cmd);
707         else
708                 lpi_nr = event_id;
709         if (lpi_nr < GIC_LPI_OFFSET ||
710             lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
711                 return E_ITS_MAPTI_PHYSICALID_OOR;
712
713         collection = find_collection(its, coll_id);
714         if (!collection) {
715                 int ret = vgic_its_alloc_collection(its, &collection, coll_id);
716                 if (ret)
717                         return ret;
718                 new_coll = collection;
719         }
720
721         itte = find_itte(its, device_id, event_id);
722         if (!itte) {
723                 itte = kzalloc(sizeof(struct its_itte), GFP_KERNEL);
724                 if (!itte) {
725                         if (new_coll)
726                                 vgic_its_free_collection(its, coll_id);
727                         return -ENOMEM;
728                 }
729
730                 itte->event_id  = event_id;
731                 list_add_tail(&itte->itte_list, &device->itt_head);
732         }
733
734         itte->collection = collection;
735         itte->lpi = lpi_nr;
736         itte->irq = vgic_add_lpi(kvm, lpi_nr);
737         update_affinity_itte(kvm, itte);
738
739         /*
740          * We "cache" the configuration table entries in out struct vgic_irq's.
741          * However we only have those structs for mapped IRQs, so we read in
742          * the respective config data from memory here upon mapping the LPI.
743          */
744         update_lpi_config(kvm, itte->irq, NULL);
745
746         return 0;
747 }
748
749 /* Requires the its_lock to be held. */
750 static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
751 {
752         struct its_itte *itte, *temp;
753
754         /*
755          * The spec says that unmapping a device with still valid
756          * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
757          * since we cannot leave the memory unreferenced.
758          */
759         list_for_each_entry_safe(itte, temp, &device->itt_head, itte_list)
760                 its_free_itte(kvm, itte);
761
762         list_del(&device->dev_list);
763         kfree(device);
764 }
765
766 /*
767  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
768  * Must be called with the its_lock mutex held.
769  */
770 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
771                                     u64 *its_cmd)
772 {
773         u32 device_id = its_cmd_get_deviceid(its_cmd);
774         bool valid = its_cmd_get_validbit(its_cmd);
775         struct its_device *device;
776
777         if (!vgic_its_check_id(its, its->baser_device_table, device_id))
778                 return E_ITS_MAPD_DEVICE_OOR;
779
780         device = find_its_device(its, device_id);
781
782         /*
783          * The spec says that calling MAPD on an already mapped device
784          * invalidates all cached data for this device. We implement this
785          * by removing the mapping and re-establishing it.
786          */
787         if (device)
788                 vgic_its_unmap_device(kvm, device);
789
790         /*
791          * The spec does not say whether unmapping a not-mapped device
792          * is an error, so we are done in any case.
793          */
794         if (!valid)
795                 return 0;
796
797         device = kzalloc(sizeof(struct its_device), GFP_KERNEL);
798         if (!device)
799                 return -ENOMEM;
800
801         device->device_id = device_id;
802         INIT_LIST_HEAD(&device->itt_head);
803
804         list_add_tail(&device->dev_list, &its->device_list);
805
806         return 0;
807 }
808
809 /*
810  * The MAPC command maps collection IDs to redistributors.
811  * Must be called with the its_lock mutex held.
812  */
813 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
814                                     u64 *its_cmd)
815 {
816         u16 coll_id;
817         u32 target_addr;
818         struct its_collection *collection;
819         bool valid;
820
821         valid = its_cmd_get_validbit(its_cmd);
822         coll_id = its_cmd_get_collection(its_cmd);
823         target_addr = its_cmd_get_target_addr(its_cmd);
824
825         if (target_addr >= atomic_read(&kvm->online_vcpus))
826                 return E_ITS_MAPC_PROCNUM_OOR;
827
828         if (!valid) {
829                 vgic_its_free_collection(its, coll_id);
830         } else {
831                 collection = find_collection(its, coll_id);
832
833                 if (!collection) {
834                         int ret;
835
836                         ret = vgic_its_alloc_collection(its, &collection,
837                                                         coll_id);
838                         if (ret)
839                                 return ret;
840                         collection->target_addr = target_addr;
841                 } else {
842                         collection->target_addr = target_addr;
843                         update_affinity_collection(kvm, its, collection);
844                 }
845         }
846
847         return 0;
848 }
849
850 /*
851  * The CLEAR command removes the pending state for a particular LPI.
852  * Must be called with the its_lock mutex held.
853  */
854 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
855                                      u64 *its_cmd)
856 {
857         u32 device_id = its_cmd_get_deviceid(its_cmd);
858         u32 event_id = its_cmd_get_id(its_cmd);
859         struct its_itte *itte;
860
861
862         itte = find_itte(its, device_id, event_id);
863         if (!itte)
864                 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
865
866         itte->irq->pending = false;
867
868         return 0;
869 }
870
871 /*
872  * The INV command syncs the configuration bits from the memory table.
873  * Must be called with the its_lock mutex held.
874  */
875 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
876                                    u64 *its_cmd)
877 {
878         u32 device_id = its_cmd_get_deviceid(its_cmd);
879         u32 event_id = its_cmd_get_id(its_cmd);
880         struct its_itte *itte;
881
882
883         itte = find_itte(its, device_id, event_id);
884         if (!itte)
885                 return E_ITS_INV_UNMAPPED_INTERRUPT;
886
887         return update_lpi_config(kvm, itte->irq, NULL);
888 }
889
890 /*
891  * The INVALL command requests flushing of all IRQ data in this collection.
892  * Find the VCPU mapped to that collection, then iterate over the VM's list
893  * of mapped LPIs and update the configuration for each IRQ which targets
894  * the specified vcpu. The configuration will be read from the in-memory
895  * configuration table.
896  * Must be called with the its_lock mutex held.
897  */
898 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
899                                       u64 *its_cmd)
900 {
901         u32 coll_id = its_cmd_get_collection(its_cmd);
902         struct its_collection *collection;
903         struct kvm_vcpu *vcpu;
904         struct vgic_irq *irq;
905         u32 *intids;
906         int irq_count, i;
907
908         collection = find_collection(its, coll_id);
909         if (!its_is_collection_mapped(collection))
910                 return E_ITS_INVALL_UNMAPPED_COLLECTION;
911
912         vcpu = kvm_get_vcpu(kvm, collection->target_addr);
913
914         irq_count = vgic_copy_lpi_list(kvm, &intids);
915         if (irq_count < 0)
916                 return irq_count;
917
918         for (i = 0; i < irq_count; i++) {
919                 irq = vgic_get_irq(kvm, NULL, intids[i]);
920                 if (!irq)
921                         continue;
922                 update_lpi_config(kvm, irq, vcpu);
923                 vgic_put_irq(kvm, irq);
924         }
925
926         kfree(intids);
927
928         return 0;
929 }
930
931 /*
932  * The MOVALL command moves the pending state of all IRQs targeting one
933  * redistributor to another. We don't hold the pending state in the VCPUs,
934  * but in the IRQs instead, so there is really not much to do for us here.
935  * However the spec says that no IRQ must target the old redistributor
936  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
937  * This command affects all LPIs in the system that target that redistributor.
938  */
939 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
940                                       u64 *its_cmd)
941 {
942         struct vgic_dist *dist = &kvm->arch.vgic;
943         u32 target1_addr = its_cmd_get_target_addr(its_cmd);
944         u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
945         struct kvm_vcpu *vcpu1, *vcpu2;
946         struct vgic_irq *irq;
947
948         if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
949             target2_addr >= atomic_read(&kvm->online_vcpus))
950                 return E_ITS_MOVALL_PROCNUM_OOR;
951
952         if (target1_addr == target2_addr)
953                 return 0;
954
955         vcpu1 = kvm_get_vcpu(kvm, target1_addr);
956         vcpu2 = kvm_get_vcpu(kvm, target2_addr);
957
958         spin_lock(&dist->lpi_list_lock);
959
960         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
961                 spin_lock(&irq->irq_lock);
962
963                 if (irq->target_vcpu == vcpu1)
964                         irq->target_vcpu = vcpu2;
965
966                 spin_unlock(&irq->irq_lock);
967         }
968
969         spin_unlock(&dist->lpi_list_lock);
970
971         return 0;
972 }
973
974 /*
975  * The INT command injects the LPI associated with that DevID/EvID pair.
976  * Must be called with the its_lock mutex held.
977  */
978 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
979                                    u64 *its_cmd)
980 {
981         u32 msi_data = its_cmd_get_id(its_cmd);
982         u64 msi_devid = its_cmd_get_deviceid(its_cmd);
983
984         vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
985
986         return 0;
987 }
988
989 /*
990  * This function is called with the its_cmd lock held, but the ITS data
991  * structure lock dropped.
992  */
993 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
994                                    u64 *its_cmd)
995 {
996         int ret = -ENODEV;
997
998         mutex_lock(&its->its_lock);
999         switch (its_cmd_get_command(its_cmd)) {
1000         case GITS_CMD_MAPD:
1001                 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1002                 break;
1003         case GITS_CMD_MAPC:
1004                 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1005                 break;
1006         case GITS_CMD_MAPI:
1007                 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1008                 break;
1009         case GITS_CMD_MAPTI:
1010                 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1011                 break;
1012         case GITS_CMD_MOVI:
1013                 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1014                 break;
1015         case GITS_CMD_DISCARD:
1016                 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1017                 break;
1018         case GITS_CMD_CLEAR:
1019                 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1020                 break;
1021         case GITS_CMD_MOVALL:
1022                 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1023                 break;
1024         case GITS_CMD_INT:
1025                 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1026                 break;
1027         case GITS_CMD_INV:
1028                 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1029                 break;
1030         case GITS_CMD_INVALL:
1031                 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1032                 break;
1033         case GITS_CMD_SYNC:
1034                 /* we ignore this command: we are in sync all of the time */
1035                 ret = 0;
1036                 break;
1037         }
1038         mutex_unlock(&its->its_lock);
1039
1040         return ret;
1041 }
1042
1043 static u64 vgic_sanitise_its_baser(u64 reg)
1044 {
1045         reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1046                                   GITS_BASER_SHAREABILITY_SHIFT,
1047                                   vgic_sanitise_shareability);
1048         reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1049                                   GITS_BASER_INNER_CACHEABILITY_SHIFT,
1050                                   vgic_sanitise_inner_cacheability);
1051         reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1052                                   GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1053                                   vgic_sanitise_outer_cacheability);
1054
1055         /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1056         reg &= ~GENMASK_ULL(15, 12);
1057
1058         /* We support only one (ITS) page size: 64K */
1059         reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1060
1061         return reg;
1062 }
1063
1064 static u64 vgic_sanitise_its_cbaser(u64 reg)
1065 {
1066         reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1067                                   GITS_CBASER_SHAREABILITY_SHIFT,
1068                                   vgic_sanitise_shareability);
1069         reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1070                                   GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1071                                   vgic_sanitise_inner_cacheability);
1072         reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1073                                   GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1074                                   vgic_sanitise_outer_cacheability);
1075
1076         /*
1077          * Sanitise the physical address to be 64k aligned.
1078          * Also limit the physical addresses to 48 bits.
1079          */
1080         reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1081
1082         return reg;
1083 }
1084
1085 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1086                                                struct vgic_its *its,
1087                                                gpa_t addr, unsigned int len)
1088 {
1089         return extract_bytes(its->cbaser, addr & 7, len);
1090 }
1091
1092 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1093                                        gpa_t addr, unsigned int len,
1094                                        unsigned long val)
1095 {
1096         /* When GITS_CTLR.Enable is 1, this register is RO. */
1097         if (its->enabled)
1098                 return;
1099
1100         mutex_lock(&its->cmd_lock);
1101         its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1102         its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1103         its->creadr = 0;
1104         /*
1105          * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1106          * it to CREADR to make sure we start with an empty command buffer.
1107          */
1108         its->cwriter = its->creadr;
1109         mutex_unlock(&its->cmd_lock);
1110 }
1111
1112 #define ITS_CMD_BUFFER_SIZE(baser)      ((((baser) & 0xff) + 1) << 12)
1113 #define ITS_CMD_SIZE                    32
1114 #define ITS_CMD_OFFSET(reg)             ((reg) & GENMASK(19, 5))
1115
1116 /*
1117  * By writing to CWRITER the guest announces new commands to be processed.
1118  * To avoid any races in the first place, we take the its_cmd lock, which
1119  * protects our ring buffer variables, so that there is only one user
1120  * per ITS handling commands at a given time.
1121  */
1122 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1123                                         gpa_t addr, unsigned int len,
1124                                         unsigned long val)
1125 {
1126         gpa_t cbaser;
1127         u64 cmd_buf[4];
1128         u32 reg;
1129
1130         if (!its)
1131                 return;
1132
1133         mutex_lock(&its->cmd_lock);
1134
1135         reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1136         reg = ITS_CMD_OFFSET(reg);
1137         if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1138                 mutex_unlock(&its->cmd_lock);
1139                 return;
1140         }
1141
1142         its->cwriter = reg;
1143         cbaser = CBASER_ADDRESS(its->cbaser);
1144
1145         while (its->cwriter != its->creadr) {
1146                 int ret = kvm_read_guest(kvm, cbaser + its->creadr,
1147                                          cmd_buf, ITS_CMD_SIZE);
1148                 /*
1149                  * If kvm_read_guest() fails, this could be due to the guest
1150                  * programming a bogus value in CBASER or something else going
1151                  * wrong from which we cannot easily recover.
1152                  * According to section 6.3.2 in the GICv3 spec we can just
1153                  * ignore that command then.
1154                  */
1155                 if (!ret)
1156                         vgic_its_handle_command(kvm, its, cmd_buf);
1157
1158                 its->creadr += ITS_CMD_SIZE;
1159                 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1160                         its->creadr = 0;
1161         }
1162
1163         mutex_unlock(&its->cmd_lock);
1164 }
1165
1166 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1167                                                 struct vgic_its *its,
1168                                                 gpa_t addr, unsigned int len)
1169 {
1170         return extract_bytes(its->cwriter, addr & 0x7, len);
1171 }
1172
1173 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1174                                                struct vgic_its *its,
1175                                                gpa_t addr, unsigned int len)
1176 {
1177         return extract_bytes(its->creadr, addr & 0x7, len);
1178 }
1179
1180 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1181 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1182                                               struct vgic_its *its,
1183                                               gpa_t addr, unsigned int len)
1184 {
1185         u64 reg;
1186
1187         switch (BASER_INDEX(addr)) {
1188         case 0:
1189                 reg = its->baser_device_table;
1190                 break;
1191         case 1:
1192                 reg = its->baser_coll_table;
1193                 break;
1194         default:
1195                 reg = 0;
1196                 break;
1197         }
1198
1199         return extract_bytes(reg, addr & 7, len);
1200 }
1201
1202 #define GITS_BASER_RO_MASK      (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1203 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1204                                       struct vgic_its *its,
1205                                       gpa_t addr, unsigned int len,
1206                                       unsigned long val)
1207 {
1208         u64 entry_size, device_type;
1209         u64 reg, *regptr, clearbits = 0;
1210
1211         /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1212         if (its->enabled)
1213                 return;
1214
1215         switch (BASER_INDEX(addr)) {
1216         case 0:
1217                 regptr = &its->baser_device_table;
1218                 entry_size = 8;
1219                 device_type = GITS_BASER_TYPE_DEVICE;
1220                 break;
1221         case 1:
1222                 regptr = &its->baser_coll_table;
1223                 entry_size = 8;
1224                 device_type = GITS_BASER_TYPE_COLLECTION;
1225                 clearbits = GITS_BASER_INDIRECT;
1226                 break;
1227         default:
1228                 return;
1229         }
1230
1231         reg = update_64bit_reg(*regptr, addr & 7, len, val);
1232         reg &= ~GITS_BASER_RO_MASK;
1233         reg &= ~clearbits;
1234
1235         reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1236         reg |= device_type << GITS_BASER_TYPE_SHIFT;
1237         reg = vgic_sanitise_its_baser(reg);
1238
1239         *regptr = reg;
1240 }
1241
1242 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)             \
1243 {                                                               \
1244         .reg_offset = off,                                      \
1245         .len = length,                                          \
1246         .access_flags = acc,                                    \
1247         .its_read = rd,                                         \
1248         .its_write = wr,                                        \
1249 }
1250
1251 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1252                               gpa_t addr, unsigned int len, unsigned long val)
1253 {
1254         /* Ignore */
1255 }
1256
1257 static struct vgic_register_region its_registers[] = {
1258         REGISTER_ITS_DESC(GITS_CTLR,
1259                 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1260                 VGIC_ACCESS_32bit),
1261         REGISTER_ITS_DESC(GITS_IIDR,
1262                 vgic_mmio_read_its_iidr, its_mmio_write_wi, 4,
1263                 VGIC_ACCESS_32bit),
1264         REGISTER_ITS_DESC(GITS_TYPER,
1265                 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1266                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1267         REGISTER_ITS_DESC(GITS_CBASER,
1268                 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1269                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1270         REGISTER_ITS_DESC(GITS_CWRITER,
1271                 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1272                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1273         REGISTER_ITS_DESC(GITS_CREADR,
1274                 vgic_mmio_read_its_creadr, its_mmio_write_wi, 8,
1275                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1276         REGISTER_ITS_DESC(GITS_BASER,
1277                 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1278                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1279         REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1280                 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1281                 VGIC_ACCESS_32bit),
1282 };
1283
1284 /* This is called on setting the LPI enable bit in the redistributor. */
1285 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1286 {
1287         if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1288                 its_sync_lpi_pending_table(vcpu);
1289 }
1290
1291 static int vgic_its_init_its(struct kvm *kvm, struct vgic_its *its)
1292 {
1293         struct vgic_io_device *iodev = &its->iodev;
1294         int ret;
1295
1296         if (its->initialized)
1297                 return 0;
1298
1299         if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base))
1300                 return -ENXIO;
1301
1302         iodev->regions = its_registers;
1303         iodev->nr_regions = ARRAY_SIZE(its_registers);
1304         kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1305
1306         iodev->base_addr = its->vgic_its_base;
1307         iodev->iodev_type = IODEV_ITS;
1308         iodev->its = its;
1309         mutex_lock(&kvm->slots_lock);
1310         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1311                                       KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1312         mutex_unlock(&kvm->slots_lock);
1313
1314         if (!ret)
1315                 its->initialized = true;
1316
1317         return ret;
1318 }
1319
1320 #define INITIAL_BASER_VALUE                                               \
1321         (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)                | \
1322          GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)         | \
1323          GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)             | \
1324          ((8ULL - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)                    | \
1325          GITS_BASER_PAGE_SIZE_64K)
1326
1327 #define INITIAL_PROPBASER_VALUE                                           \
1328         (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)            | \
1329          GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)     | \
1330          GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1331
1332 static int vgic_its_create(struct kvm_device *dev, u32 type)
1333 {
1334         struct vgic_its *its;
1335
1336         if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1337                 return -ENODEV;
1338
1339         its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1340         if (!its)
1341                 return -ENOMEM;
1342
1343         mutex_init(&its->its_lock);
1344         mutex_init(&its->cmd_lock);
1345
1346         its->vgic_its_base = VGIC_ADDR_UNDEF;
1347
1348         INIT_LIST_HEAD(&its->device_list);
1349         INIT_LIST_HEAD(&its->collection_list);
1350
1351         dev->kvm->arch.vgic.has_its = true;
1352         its->initialized = false;
1353         its->enabled = false;
1354         its->dev = dev;
1355
1356         its->baser_device_table = INITIAL_BASER_VALUE                   |
1357                 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1358         its->baser_coll_table = INITIAL_BASER_VALUE |
1359                 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1360         dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1361
1362         dev->private = its;
1363
1364         return 0;
1365 }
1366
1367 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1368 {
1369         struct kvm *kvm = kvm_dev->kvm;
1370         struct vgic_its *its = kvm_dev->private;
1371         struct its_device *dev;
1372         struct its_itte *itte;
1373         struct list_head *dev_cur, *dev_temp;
1374         struct list_head *cur, *temp;
1375
1376         /*
1377          * We may end up here without the lists ever having been initialized.
1378          * Check this and bail out early to avoid dereferencing a NULL pointer.
1379          */
1380         if (!its->device_list.next)
1381                 return;
1382
1383         mutex_lock(&its->its_lock);
1384         list_for_each_safe(dev_cur, dev_temp, &its->device_list) {
1385                 dev = container_of(dev_cur, struct its_device, dev_list);
1386                 list_for_each_safe(cur, temp, &dev->itt_head) {
1387                         itte = (container_of(cur, struct its_itte, itte_list));
1388                         its_free_itte(kvm, itte);
1389                 }
1390                 list_del(dev_cur);
1391                 kfree(dev);
1392         }
1393
1394         list_for_each_safe(cur, temp, &its->collection_list) {
1395                 list_del(cur);
1396                 kfree(container_of(cur, struct its_collection, coll_list));
1397         }
1398         mutex_unlock(&its->its_lock);
1399
1400         kfree(its);
1401 }
1402
1403 static int vgic_its_has_attr(struct kvm_device *dev,
1404                              struct kvm_device_attr *attr)
1405 {
1406         switch (attr->group) {
1407         case KVM_DEV_ARM_VGIC_GRP_ADDR:
1408                 switch (attr->attr) {
1409                 case KVM_VGIC_ITS_ADDR_TYPE:
1410                         return 0;
1411                 }
1412                 break;
1413         case KVM_DEV_ARM_VGIC_GRP_CTRL:
1414                 switch (attr->attr) {
1415                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1416                         return 0;
1417                 }
1418                 break;
1419         }
1420         return -ENXIO;
1421 }
1422
1423 static int vgic_its_set_attr(struct kvm_device *dev,
1424                              struct kvm_device_attr *attr)
1425 {
1426         struct vgic_its *its = dev->private;
1427         int ret;
1428
1429         switch (attr->group) {
1430         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1431                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1432                 unsigned long type = (unsigned long)attr->attr;
1433                 u64 addr;
1434
1435                 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1436                         return -ENODEV;
1437
1438                 if (its->initialized)
1439                         return -EBUSY;
1440
1441                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1442                         return -EFAULT;
1443
1444                 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
1445                                         addr, SZ_64K);
1446                 if (ret)
1447                         return ret;
1448
1449                 its->vgic_its_base = addr;
1450
1451                 return 0;
1452         }
1453         case KVM_DEV_ARM_VGIC_GRP_CTRL:
1454                 switch (attr->attr) {
1455                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1456                         return vgic_its_init_its(dev->kvm, its);
1457                 }
1458                 break;
1459         }
1460         return -ENXIO;
1461 }
1462
1463 static int vgic_its_get_attr(struct kvm_device *dev,
1464                              struct kvm_device_attr *attr)
1465 {
1466         switch (attr->group) {
1467         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1468                 struct vgic_its *its = dev->private;
1469                 u64 addr = its->vgic_its_base;
1470                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1471                 unsigned long type = (unsigned long)attr->attr;
1472
1473                 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1474                         return -ENODEV;
1475
1476                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1477                         return -EFAULT;
1478                 break;
1479         default:
1480                 return -ENXIO;
1481         }
1482         }
1483
1484         return 0;
1485 }
1486
1487 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
1488         .name = "kvm-arm-vgic-its",
1489         .create = vgic_its_create,
1490         .destroy = vgic_its_destroy,
1491         .set_attr = vgic_its_set_attr,
1492         .get_attr = vgic_its_get_attr,
1493         .has_attr = vgic_its_has_attr,
1494 };
1495
1496 int kvm_vgic_register_its_device(void)
1497 {
1498         return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
1499                                        KVM_DEV_TYPE_ARM_VGIC_ITS);
1500 }