050974c051b5a9369a88926750885cd6f125a8f2
[cascardo/linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /*
70  * Ordering of locks:
71  *
72  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73  */
74
75 DEFINE_SPINLOCK(kvm_lock);
76 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
77 LIST_HEAD(vm_list);
78
79 static cpumask_var_t cpus_hardware_enabled;
80 static int kvm_usage_count = 0;
81 static atomic_t hardware_enable_failed;
82
83 struct kmem_cache *kvm_vcpu_cache;
84 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
85
86 static __read_mostly struct preempt_ops kvm_preempt_ops;
87
88 struct dentry *kvm_debugfs_dir;
89
90 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
91                            unsigned long arg);
92 #ifdef CONFIG_COMPAT
93 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
94                                   unsigned long arg);
95 #endif
96 static int hardware_enable_all(void);
97 static void hardware_disable_all(void);
98
99 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
100
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103                                     struct kvm_memory_slot *memslot, gfn_t gfn);
104
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
107
108 static bool largepages_enabled = true;
109
110 bool kvm_is_reserved_pfn(pfn_t pfn)
111 {
112         if (pfn_valid(pfn))
113                 return PageReserved(pfn_to_page(pfn));
114
115         return true;
116 }
117
118 /*
119  * Switches to specified vcpu, until a matching vcpu_put()
120  */
121 int vcpu_load(struct kvm_vcpu *vcpu)
122 {
123         int cpu;
124
125         if (mutex_lock_killable(&vcpu->mutex))
126                 return -EINTR;
127         cpu = get_cpu();
128         preempt_notifier_register(&vcpu->preempt_notifier);
129         kvm_arch_vcpu_load(vcpu, cpu);
130         put_cpu();
131         return 0;
132 }
133
134 void vcpu_put(struct kvm_vcpu *vcpu)
135 {
136         preempt_disable();
137         kvm_arch_vcpu_put(vcpu);
138         preempt_notifier_unregister(&vcpu->preempt_notifier);
139         preempt_enable();
140         mutex_unlock(&vcpu->mutex);
141 }
142
143 static void ack_flush(void *_completed)
144 {
145 }
146
147 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
148 {
149         int i, cpu, me;
150         cpumask_var_t cpus;
151         bool called = true;
152         struct kvm_vcpu *vcpu;
153
154         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
155
156         me = get_cpu();
157         kvm_for_each_vcpu(i, vcpu, kvm) {
158                 kvm_make_request(req, vcpu);
159                 cpu = vcpu->cpu;
160
161                 /* Set ->requests bit before we read ->mode */
162                 smp_mb();
163
164                 if (cpus != NULL && cpu != -1 && cpu != me &&
165                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
166                         cpumask_set_cpu(cpu, cpus);
167         }
168         if (unlikely(cpus == NULL))
169                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
170         else if (!cpumask_empty(cpus))
171                 smp_call_function_many(cpus, ack_flush, NULL, 1);
172         else
173                 called = false;
174         put_cpu();
175         free_cpumask_var(cpus);
176         return called;
177 }
178
179 void kvm_flush_remote_tlbs(struct kvm *kvm)
180 {
181         long dirty_count = kvm->tlbs_dirty;
182
183         smp_mb();
184         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
185                 ++kvm->stat.remote_tlb_flush;
186         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
187 }
188 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
189
190 void kvm_reload_remote_mmus(struct kvm *kvm)
191 {
192         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
193 }
194
195 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
196 {
197         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
198 }
199
200 void kvm_make_scan_ioapic_request(struct kvm *kvm)
201 {
202         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
203 }
204
205 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
206 {
207         struct page *page;
208         int r;
209
210         mutex_init(&vcpu->mutex);
211         vcpu->cpu = -1;
212         vcpu->kvm = kvm;
213         vcpu->vcpu_id = id;
214         vcpu->pid = NULL;
215         init_waitqueue_head(&vcpu->wq);
216         kvm_async_pf_vcpu_init(vcpu);
217
218         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
219         if (!page) {
220                 r = -ENOMEM;
221                 goto fail;
222         }
223         vcpu->run = page_address(page);
224
225         kvm_vcpu_set_in_spin_loop(vcpu, false);
226         kvm_vcpu_set_dy_eligible(vcpu, false);
227         vcpu->preempted = false;
228
229         r = kvm_arch_vcpu_init(vcpu);
230         if (r < 0)
231                 goto fail_free_run;
232         return 0;
233
234 fail_free_run:
235         free_page((unsigned long)vcpu->run);
236 fail:
237         return r;
238 }
239 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
240
241 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
242 {
243         put_pid(vcpu->pid);
244         kvm_arch_vcpu_uninit(vcpu);
245         free_page((unsigned long)vcpu->run);
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
248
249 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
250 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
251 {
252         return container_of(mn, struct kvm, mmu_notifier);
253 }
254
255 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
256                                              struct mm_struct *mm,
257                                              unsigned long address)
258 {
259         struct kvm *kvm = mmu_notifier_to_kvm(mn);
260         int need_tlb_flush, idx;
261
262         /*
263          * When ->invalidate_page runs, the linux pte has been zapped
264          * already but the page is still allocated until
265          * ->invalidate_page returns. So if we increase the sequence
266          * here the kvm page fault will notice if the spte can't be
267          * established because the page is going to be freed. If
268          * instead the kvm page fault establishes the spte before
269          * ->invalidate_page runs, kvm_unmap_hva will release it
270          * before returning.
271          *
272          * The sequence increase only need to be seen at spin_unlock
273          * time, and not at spin_lock time.
274          *
275          * Increasing the sequence after the spin_unlock would be
276          * unsafe because the kvm page fault could then establish the
277          * pte after kvm_unmap_hva returned, without noticing the page
278          * is going to be freed.
279          */
280         idx = srcu_read_lock(&kvm->srcu);
281         spin_lock(&kvm->mmu_lock);
282
283         kvm->mmu_notifier_seq++;
284         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
285         /* we've to flush the tlb before the pages can be freed */
286         if (need_tlb_flush)
287                 kvm_flush_remote_tlbs(kvm);
288
289         spin_unlock(&kvm->mmu_lock);
290
291         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
292
293         srcu_read_unlock(&kvm->srcu, idx);
294 }
295
296 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
297                                         struct mm_struct *mm,
298                                         unsigned long address,
299                                         pte_t pte)
300 {
301         struct kvm *kvm = mmu_notifier_to_kvm(mn);
302         int idx;
303
304         idx = srcu_read_lock(&kvm->srcu);
305         spin_lock(&kvm->mmu_lock);
306         kvm->mmu_notifier_seq++;
307         kvm_set_spte_hva(kvm, address, pte);
308         spin_unlock(&kvm->mmu_lock);
309         srcu_read_unlock(&kvm->srcu, idx);
310 }
311
312 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
313                                                     struct mm_struct *mm,
314                                                     unsigned long start,
315                                                     unsigned long end)
316 {
317         struct kvm *kvm = mmu_notifier_to_kvm(mn);
318         int need_tlb_flush = 0, idx;
319
320         idx = srcu_read_lock(&kvm->srcu);
321         spin_lock(&kvm->mmu_lock);
322         /*
323          * The count increase must become visible at unlock time as no
324          * spte can be established without taking the mmu_lock and
325          * count is also read inside the mmu_lock critical section.
326          */
327         kvm->mmu_notifier_count++;
328         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
329         need_tlb_flush |= kvm->tlbs_dirty;
330         /* we've to flush the tlb before the pages can be freed */
331         if (need_tlb_flush)
332                 kvm_flush_remote_tlbs(kvm);
333
334         spin_unlock(&kvm->mmu_lock);
335         srcu_read_unlock(&kvm->srcu, idx);
336 }
337
338 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
339                                                   struct mm_struct *mm,
340                                                   unsigned long start,
341                                                   unsigned long end)
342 {
343         struct kvm *kvm = mmu_notifier_to_kvm(mn);
344
345         spin_lock(&kvm->mmu_lock);
346         /*
347          * This sequence increase will notify the kvm page fault that
348          * the page that is going to be mapped in the spte could have
349          * been freed.
350          */
351         kvm->mmu_notifier_seq++;
352         smp_wmb();
353         /*
354          * The above sequence increase must be visible before the
355          * below count decrease, which is ensured by the smp_wmb above
356          * in conjunction with the smp_rmb in mmu_notifier_retry().
357          */
358         kvm->mmu_notifier_count--;
359         spin_unlock(&kvm->mmu_lock);
360
361         BUG_ON(kvm->mmu_notifier_count < 0);
362 }
363
364 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
365                                               struct mm_struct *mm,
366                                               unsigned long start,
367                                               unsigned long end)
368 {
369         struct kvm *kvm = mmu_notifier_to_kvm(mn);
370         int young, idx;
371
372         idx = srcu_read_lock(&kvm->srcu);
373         spin_lock(&kvm->mmu_lock);
374
375         young = kvm_age_hva(kvm, start, end);
376         if (young)
377                 kvm_flush_remote_tlbs(kvm);
378
379         spin_unlock(&kvm->mmu_lock);
380         srcu_read_unlock(&kvm->srcu, idx);
381
382         return young;
383 }
384
385 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
386                                        struct mm_struct *mm,
387                                        unsigned long address)
388 {
389         struct kvm *kvm = mmu_notifier_to_kvm(mn);
390         int young, idx;
391
392         idx = srcu_read_lock(&kvm->srcu);
393         spin_lock(&kvm->mmu_lock);
394         young = kvm_test_age_hva(kvm, address);
395         spin_unlock(&kvm->mmu_lock);
396         srcu_read_unlock(&kvm->srcu, idx);
397
398         return young;
399 }
400
401 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
402                                      struct mm_struct *mm)
403 {
404         struct kvm *kvm = mmu_notifier_to_kvm(mn);
405         int idx;
406
407         idx = srcu_read_lock(&kvm->srcu);
408         kvm_arch_flush_shadow_all(kvm);
409         srcu_read_unlock(&kvm->srcu, idx);
410 }
411
412 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
413         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
414         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
415         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
416         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
417         .test_young             = kvm_mmu_notifier_test_young,
418         .change_pte             = kvm_mmu_notifier_change_pte,
419         .release                = kvm_mmu_notifier_release,
420 };
421
422 static int kvm_init_mmu_notifier(struct kvm *kvm)
423 {
424         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
425         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
426 }
427
428 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
429
430 static int kvm_init_mmu_notifier(struct kvm *kvm)
431 {
432         return 0;
433 }
434
435 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
436
437 static void kvm_init_memslots_id(struct kvm *kvm)
438 {
439         int i;
440         struct kvm_memslots *slots = kvm->memslots;
441
442         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
443                 slots->id_to_index[i] = slots->memslots[i].id = i;
444 }
445
446 static struct kvm *kvm_create_vm(unsigned long type)
447 {
448         int r, i;
449         struct kvm *kvm = kvm_arch_alloc_vm();
450
451         if (!kvm)
452                 return ERR_PTR(-ENOMEM);
453
454         r = kvm_arch_init_vm(kvm, type);
455         if (r)
456                 goto out_err_no_disable;
457
458         r = hardware_enable_all();
459         if (r)
460                 goto out_err_no_disable;
461
462 #ifdef CONFIG_HAVE_KVM_IRQFD
463         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
464 #endif
465
466         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
467
468         r = -ENOMEM;
469         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
470         if (!kvm->memslots)
471                 goto out_err_no_srcu;
472
473         /*
474          * Init kvm generation close to the maximum to easily test the
475          * code of handling generation number wrap-around.
476          */
477         kvm->memslots->generation = -150;
478
479         kvm_init_memslots_id(kvm);
480         if (init_srcu_struct(&kvm->srcu))
481                 goto out_err_no_srcu;
482         if (init_srcu_struct(&kvm->irq_srcu))
483                 goto out_err_no_irq_srcu;
484         for (i = 0; i < KVM_NR_BUSES; i++) {
485                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
486                                         GFP_KERNEL);
487                 if (!kvm->buses[i])
488                         goto out_err;
489         }
490
491         spin_lock_init(&kvm->mmu_lock);
492         kvm->mm = current->mm;
493         atomic_inc(&kvm->mm->mm_count);
494         kvm_eventfd_init(kvm);
495         mutex_init(&kvm->lock);
496         mutex_init(&kvm->irq_lock);
497         mutex_init(&kvm->slots_lock);
498         atomic_set(&kvm->users_count, 1);
499         INIT_LIST_HEAD(&kvm->devices);
500
501         r = kvm_init_mmu_notifier(kvm);
502         if (r)
503                 goto out_err;
504
505         spin_lock(&kvm_lock);
506         list_add(&kvm->vm_list, &vm_list);
507         spin_unlock(&kvm_lock);
508
509         return kvm;
510
511 out_err:
512         cleanup_srcu_struct(&kvm->irq_srcu);
513 out_err_no_irq_srcu:
514         cleanup_srcu_struct(&kvm->srcu);
515 out_err_no_srcu:
516         hardware_disable_all();
517 out_err_no_disable:
518         for (i = 0; i < KVM_NR_BUSES; i++)
519                 kfree(kvm->buses[i]);
520         kfree(kvm->memslots);
521         kvm_arch_free_vm(kvm);
522         return ERR_PTR(r);
523 }
524
525 /*
526  * Avoid using vmalloc for a small buffer.
527  * Should not be used when the size is statically known.
528  */
529 void *kvm_kvzalloc(unsigned long size)
530 {
531         if (size > PAGE_SIZE)
532                 return vzalloc(size);
533         else
534                 return kzalloc(size, GFP_KERNEL);
535 }
536
537 void kvm_kvfree(const void *addr)
538 {
539         if (is_vmalloc_addr(addr))
540                 vfree(addr);
541         else
542                 kfree(addr);
543 }
544
545 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
546 {
547         if (!memslot->dirty_bitmap)
548                 return;
549
550         kvm_kvfree(memslot->dirty_bitmap);
551         memslot->dirty_bitmap = NULL;
552 }
553
554 /*
555  * Free any memory in @free but not in @dont.
556  */
557 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
558                                   struct kvm_memory_slot *dont)
559 {
560         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
561                 kvm_destroy_dirty_bitmap(free);
562
563         kvm_arch_free_memslot(kvm, free, dont);
564
565         free->npages = 0;
566 }
567
568 static void kvm_free_physmem(struct kvm *kvm)
569 {
570         struct kvm_memslots *slots = kvm->memslots;
571         struct kvm_memory_slot *memslot;
572
573         kvm_for_each_memslot(memslot, slots)
574                 kvm_free_physmem_slot(kvm, memslot, NULL);
575
576         kfree(kvm->memslots);
577 }
578
579 static void kvm_destroy_devices(struct kvm *kvm)
580 {
581         struct list_head *node, *tmp;
582
583         list_for_each_safe(node, tmp, &kvm->devices) {
584                 struct kvm_device *dev =
585                         list_entry(node, struct kvm_device, vm_node);
586
587                 list_del(node);
588                 dev->ops->destroy(dev);
589         }
590 }
591
592 static void kvm_destroy_vm(struct kvm *kvm)
593 {
594         int i;
595         struct mm_struct *mm = kvm->mm;
596
597         kvm_arch_sync_events(kvm);
598         spin_lock(&kvm_lock);
599         list_del(&kvm->vm_list);
600         spin_unlock(&kvm_lock);
601         kvm_free_irq_routing(kvm);
602         for (i = 0; i < KVM_NR_BUSES; i++)
603                 kvm_io_bus_destroy(kvm->buses[i]);
604         kvm_coalesced_mmio_free(kvm);
605 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
606         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
607 #else
608         kvm_arch_flush_shadow_all(kvm);
609 #endif
610         kvm_arch_destroy_vm(kvm);
611         kvm_destroy_devices(kvm);
612         kvm_free_physmem(kvm);
613         cleanup_srcu_struct(&kvm->irq_srcu);
614         cleanup_srcu_struct(&kvm->srcu);
615         kvm_arch_free_vm(kvm);
616         hardware_disable_all();
617         mmdrop(mm);
618 }
619
620 void kvm_get_kvm(struct kvm *kvm)
621 {
622         atomic_inc(&kvm->users_count);
623 }
624 EXPORT_SYMBOL_GPL(kvm_get_kvm);
625
626 void kvm_put_kvm(struct kvm *kvm)
627 {
628         if (atomic_dec_and_test(&kvm->users_count))
629                 kvm_destroy_vm(kvm);
630 }
631 EXPORT_SYMBOL_GPL(kvm_put_kvm);
632
633
634 static int kvm_vm_release(struct inode *inode, struct file *filp)
635 {
636         struct kvm *kvm = filp->private_data;
637
638         kvm_irqfd_release(kvm);
639
640         kvm_put_kvm(kvm);
641         return 0;
642 }
643
644 /*
645  * Allocation size is twice as large as the actual dirty bitmap size.
646  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
647  */
648 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
649 {
650         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
651
652         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
653         if (!memslot->dirty_bitmap)
654                 return -ENOMEM;
655
656         return 0;
657 }
658
659 /*
660  * Insert memslot and re-sort memslots based on their GFN,
661  * so binary search could be used to lookup GFN.
662  * Sorting algorithm takes advantage of having initially
663  * sorted array and known changed memslot position.
664  */
665 static void update_memslots(struct kvm_memslots *slots,
666                             struct kvm_memory_slot *new)
667 {
668         int id = new->id;
669         int i = slots->id_to_index[id];
670         struct kvm_memory_slot *mslots = slots->memslots;
671
672         WARN_ON(mslots[i].id != id);
673         if (!new->npages) {
674                 new->base_gfn = 0;
675                 if (mslots[i].npages)
676                         slots->used_slots--;
677         } else {
678                 if (!mslots[i].npages)
679                         slots->used_slots++;
680         }
681
682         while (i < KVM_MEM_SLOTS_NUM - 1 &&
683                new->base_gfn <= mslots[i + 1].base_gfn) {
684                 if (!mslots[i + 1].npages)
685                         break;
686                 mslots[i] = mslots[i + 1];
687                 slots->id_to_index[mslots[i].id] = i;
688                 i++;
689         }
690
691         /*
692          * The ">=" is needed when creating a slot with base_gfn == 0,
693          * so that it moves before all those with base_gfn == npages == 0.
694          *
695          * On the other hand, if new->npages is zero, the above loop has
696          * already left i pointing to the beginning of the empty part of
697          * mslots, and the ">=" would move the hole backwards in this
698          * case---which is wrong.  So skip the loop when deleting a slot.
699          */
700         if (new->npages) {
701                 while (i > 0 &&
702                        new->base_gfn >= mslots[i - 1].base_gfn) {
703                         mslots[i] = mslots[i - 1];
704                         slots->id_to_index[mslots[i].id] = i;
705                         i--;
706                 }
707         }
708
709         mslots[i] = *new;
710         slots->id_to_index[mslots[i].id] = i;
711 }
712
713 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
714 {
715         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
716
717 #ifdef __KVM_HAVE_READONLY_MEM
718         valid_flags |= KVM_MEM_READONLY;
719 #endif
720
721         if (mem->flags & ~valid_flags)
722                 return -EINVAL;
723
724         return 0;
725 }
726
727 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
728                 struct kvm_memslots *slots)
729 {
730         struct kvm_memslots *old_memslots = kvm->memslots;
731
732         /*
733          * Set the low bit in the generation, which disables SPTE caching
734          * until the end of synchronize_srcu_expedited.
735          */
736         WARN_ON(old_memslots->generation & 1);
737         slots->generation = old_memslots->generation + 1;
738
739         rcu_assign_pointer(kvm->memslots, slots);
740         synchronize_srcu_expedited(&kvm->srcu);
741
742         /*
743          * Increment the new memslot generation a second time. This prevents
744          * vm exits that race with memslot updates from caching a memslot
745          * generation that will (potentially) be valid forever.
746          */
747         slots->generation++;
748
749         kvm_arch_memslots_updated(kvm);
750
751         return old_memslots;
752 }
753
754 /*
755  * Allocate some memory and give it an address in the guest physical address
756  * space.
757  *
758  * Discontiguous memory is allowed, mostly for framebuffers.
759  *
760  * Must be called holding kvm->slots_lock for write.
761  */
762 int __kvm_set_memory_region(struct kvm *kvm,
763                             struct kvm_userspace_memory_region *mem)
764 {
765         int r;
766         gfn_t base_gfn;
767         unsigned long npages;
768         struct kvm_memory_slot *slot;
769         struct kvm_memory_slot old, new;
770         struct kvm_memslots *slots = NULL, *old_memslots;
771         enum kvm_mr_change change;
772
773         r = check_memory_region_flags(mem);
774         if (r)
775                 goto out;
776
777         r = -EINVAL;
778         /* General sanity checks */
779         if (mem->memory_size & (PAGE_SIZE - 1))
780                 goto out;
781         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
782                 goto out;
783         /* We can read the guest memory with __xxx_user() later on. */
784         if ((mem->slot < KVM_USER_MEM_SLOTS) &&
785             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
786              !access_ok(VERIFY_WRITE,
787                         (void __user *)(unsigned long)mem->userspace_addr,
788                         mem->memory_size)))
789                 goto out;
790         if (mem->slot >= KVM_MEM_SLOTS_NUM)
791                 goto out;
792         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
793                 goto out;
794
795         slot = id_to_memslot(kvm->memslots, mem->slot);
796         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
797         npages = mem->memory_size >> PAGE_SHIFT;
798
799         if (npages > KVM_MEM_MAX_NR_PAGES)
800                 goto out;
801
802         if (!npages)
803                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
804
805         new = old = *slot;
806
807         new.id = mem->slot;
808         new.base_gfn = base_gfn;
809         new.npages = npages;
810         new.flags = mem->flags;
811
812         if (npages) {
813                 if (!old.npages)
814                         change = KVM_MR_CREATE;
815                 else { /* Modify an existing slot. */
816                         if ((mem->userspace_addr != old.userspace_addr) ||
817                             (npages != old.npages) ||
818                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
819                                 goto out;
820
821                         if (base_gfn != old.base_gfn)
822                                 change = KVM_MR_MOVE;
823                         else if (new.flags != old.flags)
824                                 change = KVM_MR_FLAGS_ONLY;
825                         else { /* Nothing to change. */
826                                 r = 0;
827                                 goto out;
828                         }
829                 }
830         } else if (old.npages) {
831                 change = KVM_MR_DELETE;
832         } else /* Modify a non-existent slot: disallowed. */
833                 goto out;
834
835         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
836                 /* Check for overlaps */
837                 r = -EEXIST;
838                 kvm_for_each_memslot(slot, kvm->memslots) {
839                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
840                             (slot->id == mem->slot))
841                                 continue;
842                         if (!((base_gfn + npages <= slot->base_gfn) ||
843                               (base_gfn >= slot->base_gfn + slot->npages)))
844                                 goto out;
845                 }
846         }
847
848         /* Free page dirty bitmap if unneeded */
849         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
850                 new.dirty_bitmap = NULL;
851
852         r = -ENOMEM;
853         if (change == KVM_MR_CREATE) {
854                 new.userspace_addr = mem->userspace_addr;
855
856                 if (kvm_arch_create_memslot(kvm, &new, npages))
857                         goto out_free;
858         }
859
860         /* Allocate page dirty bitmap if needed */
861         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
862                 if (kvm_create_dirty_bitmap(&new) < 0)
863                         goto out_free;
864         }
865
866         slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
867                         GFP_KERNEL);
868         if (!slots)
869                 goto out_free;
870
871         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
872                 slot = id_to_memslot(slots, mem->slot);
873                 slot->flags |= KVM_MEMSLOT_INVALID;
874
875                 old_memslots = install_new_memslots(kvm, slots);
876
877                 /* slot was deleted or moved, clear iommu mapping */
878                 kvm_iommu_unmap_pages(kvm, &old);
879                 /* From this point no new shadow pages pointing to a deleted,
880                  * or moved, memslot will be created.
881                  *
882                  * validation of sp->gfn happens in:
883                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
884                  *      - kvm_is_visible_gfn (mmu_check_roots)
885                  */
886                 kvm_arch_flush_shadow_memslot(kvm, slot);
887
888                 /*
889                  * We can re-use the old_memslots from above, the only difference
890                  * from the currently installed memslots is the invalid flag.  This
891                  * will get overwritten by update_memslots anyway.
892                  */
893                 slots = old_memslots;
894         }
895
896         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
897         if (r)
898                 goto out_slots;
899
900         /* actual memory is freed via old in kvm_free_physmem_slot below */
901         if (change == KVM_MR_DELETE) {
902                 new.dirty_bitmap = NULL;
903                 memset(&new.arch, 0, sizeof(new.arch));
904         }
905
906         update_memslots(slots, &new);
907         old_memslots = install_new_memslots(kvm, slots);
908
909         kvm_arch_commit_memory_region(kvm, mem, &old, change);
910
911         kvm_free_physmem_slot(kvm, &old, &new);
912         kfree(old_memslots);
913
914         /*
915          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
916          * un-mapped and re-mapped if their base changes.  Since base change
917          * unmapping is handled above with slot deletion, mapping alone is
918          * needed here.  Anything else the iommu might care about for existing
919          * slots (size changes, userspace addr changes and read-only flag
920          * changes) is disallowed above, so any other attribute changes getting
921          * here can be skipped.
922          */
923         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
924                 r = kvm_iommu_map_pages(kvm, &new);
925                 return r;
926         }
927
928         return 0;
929
930 out_slots:
931         kfree(slots);
932 out_free:
933         kvm_free_physmem_slot(kvm, &new, &old);
934 out:
935         return r;
936 }
937 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
938
939 int kvm_set_memory_region(struct kvm *kvm,
940                           struct kvm_userspace_memory_region *mem)
941 {
942         int r;
943
944         mutex_lock(&kvm->slots_lock);
945         r = __kvm_set_memory_region(kvm, mem);
946         mutex_unlock(&kvm->slots_lock);
947         return r;
948 }
949 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
950
951 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
952                                           struct kvm_userspace_memory_region *mem)
953 {
954         if (mem->slot >= KVM_USER_MEM_SLOTS)
955                 return -EINVAL;
956         return kvm_set_memory_region(kvm, mem);
957 }
958
959 int kvm_get_dirty_log(struct kvm *kvm,
960                         struct kvm_dirty_log *log, int *is_dirty)
961 {
962         struct kvm_memory_slot *memslot;
963         int r, i;
964         unsigned long n;
965         unsigned long any = 0;
966
967         r = -EINVAL;
968         if (log->slot >= KVM_USER_MEM_SLOTS)
969                 goto out;
970
971         memslot = id_to_memslot(kvm->memslots, log->slot);
972         r = -ENOENT;
973         if (!memslot->dirty_bitmap)
974                 goto out;
975
976         n = kvm_dirty_bitmap_bytes(memslot);
977
978         for (i = 0; !any && i < n/sizeof(long); ++i)
979                 any = memslot->dirty_bitmap[i];
980
981         r = -EFAULT;
982         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
983                 goto out;
984
985         if (any)
986                 *is_dirty = 1;
987
988         r = 0;
989 out:
990         return r;
991 }
992 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
993
994 bool kvm_largepages_enabled(void)
995 {
996         return largepages_enabled;
997 }
998
999 void kvm_disable_largepages(void)
1000 {
1001         largepages_enabled = false;
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1004
1005 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1006 {
1007         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1008 }
1009 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1010
1011 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1012 {
1013         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1014
1015         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1016               memslot->flags & KVM_MEMSLOT_INVALID)
1017                 return 0;
1018
1019         return 1;
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1022
1023 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1024 {
1025         struct vm_area_struct *vma;
1026         unsigned long addr, size;
1027
1028         size = PAGE_SIZE;
1029
1030         addr = gfn_to_hva(kvm, gfn);
1031         if (kvm_is_error_hva(addr))
1032                 return PAGE_SIZE;
1033
1034         down_read(&current->mm->mmap_sem);
1035         vma = find_vma(current->mm, addr);
1036         if (!vma)
1037                 goto out;
1038
1039         size = vma_kernel_pagesize(vma);
1040
1041 out:
1042         up_read(&current->mm->mmap_sem);
1043
1044         return size;
1045 }
1046
1047 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1048 {
1049         return slot->flags & KVM_MEM_READONLY;
1050 }
1051
1052 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1053                                        gfn_t *nr_pages, bool write)
1054 {
1055         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1056                 return KVM_HVA_ERR_BAD;
1057
1058         if (memslot_is_readonly(slot) && write)
1059                 return KVM_HVA_ERR_RO_BAD;
1060
1061         if (nr_pages)
1062                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1063
1064         return __gfn_to_hva_memslot(slot, gfn);
1065 }
1066
1067 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1068                                      gfn_t *nr_pages)
1069 {
1070         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1071 }
1072
1073 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1074                                         gfn_t gfn)
1075 {
1076         return gfn_to_hva_many(slot, gfn, NULL);
1077 }
1078 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1079
1080 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1081 {
1082         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1083 }
1084 EXPORT_SYMBOL_GPL(gfn_to_hva);
1085
1086 /*
1087  * If writable is set to false, the hva returned by this function is only
1088  * allowed to be read.
1089  */
1090 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1091                                       gfn_t gfn, bool *writable)
1092 {
1093         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1094
1095         if (!kvm_is_error_hva(hva) && writable)
1096                 *writable = !memslot_is_readonly(slot);
1097
1098         return hva;
1099 }
1100
1101 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1102 {
1103         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1104
1105         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1106 }
1107
1108 static int kvm_read_hva(void *data, void __user *hva, int len)
1109 {
1110         return __copy_from_user(data, hva, len);
1111 }
1112
1113 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1114 {
1115         return __copy_from_user_inatomic(data, hva, len);
1116 }
1117
1118 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1119         unsigned long start, int write, struct page **page)
1120 {
1121         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1122
1123         if (write)
1124                 flags |= FOLL_WRITE;
1125
1126         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1127 }
1128
1129 int kvm_get_user_page_io(struct task_struct *tsk, struct mm_struct *mm,
1130                          unsigned long addr, bool write_fault,
1131                          struct page **pagep)
1132 {
1133         int npages;
1134         int locked = 1;
1135         int flags = FOLL_TOUCH | FOLL_HWPOISON |
1136                     (pagep ? FOLL_GET : 0) |
1137                     (write_fault ? FOLL_WRITE : 0);
1138
1139         /*
1140          * If retrying the fault, we get here *not* having allowed the filemap
1141          * to wait on the page lock. We should now allow waiting on the IO with
1142          * the mmap semaphore released.
1143          */
1144         down_read(&mm->mmap_sem);
1145         npages = __get_user_pages(tsk, mm, addr, 1, flags, pagep, NULL,
1146                                   &locked);
1147         if (!locked) {
1148                 VM_BUG_ON(npages);
1149
1150                 if (!pagep)
1151                         return 0;
1152
1153                 /*
1154                  * The previous call has now waited on the IO. Now we can
1155                  * retry and complete. Pass TRIED to ensure we do not re
1156                  * schedule async IO (see e.g. filemap_fault).
1157                  */
1158                 down_read(&mm->mmap_sem);
1159                 npages = __get_user_pages(tsk, mm, addr, 1, flags | FOLL_TRIED,
1160                                           pagep, NULL, NULL);
1161         }
1162         up_read(&mm->mmap_sem);
1163         return npages;
1164 }
1165
1166 static inline int check_user_page_hwpoison(unsigned long addr)
1167 {
1168         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1169
1170         rc = __get_user_pages(current, current->mm, addr, 1,
1171                               flags, NULL, NULL, NULL);
1172         return rc == -EHWPOISON;
1173 }
1174
1175 /*
1176  * The atomic path to get the writable pfn which will be stored in @pfn,
1177  * true indicates success, otherwise false is returned.
1178  */
1179 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1180                             bool write_fault, bool *writable, pfn_t *pfn)
1181 {
1182         struct page *page[1];
1183         int npages;
1184
1185         if (!(async || atomic))
1186                 return false;
1187
1188         /*
1189          * Fast pin a writable pfn only if it is a write fault request
1190          * or the caller allows to map a writable pfn for a read fault
1191          * request.
1192          */
1193         if (!(write_fault || writable))
1194                 return false;
1195
1196         npages = __get_user_pages_fast(addr, 1, 1, page);
1197         if (npages == 1) {
1198                 *pfn = page_to_pfn(page[0]);
1199
1200                 if (writable)
1201                         *writable = true;
1202                 return true;
1203         }
1204
1205         return false;
1206 }
1207
1208 /*
1209  * The slow path to get the pfn of the specified host virtual address,
1210  * 1 indicates success, -errno is returned if error is detected.
1211  */
1212 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1213                            bool *writable, pfn_t *pfn)
1214 {
1215         struct page *page[1];
1216         int npages = 0;
1217
1218         might_sleep();
1219
1220         if (writable)
1221                 *writable = write_fault;
1222
1223         if (async) {
1224                 down_read(&current->mm->mmap_sem);
1225                 npages = get_user_page_nowait(current, current->mm,
1226                                               addr, write_fault, page);
1227                 up_read(&current->mm->mmap_sem);
1228         } else {
1229                 /*
1230                  * By now we have tried gup_fast, and possibly async_pf, and we
1231                  * are certainly not atomic. Time to retry the gup, allowing
1232                  * mmap semaphore to be relinquished in the case of IO.
1233                  */
1234                 npages = kvm_get_user_page_io(current, current->mm, addr,
1235                                               write_fault, page);
1236         }
1237         if (npages != 1)
1238                 return npages;
1239
1240         /* map read fault as writable if possible */
1241         if (unlikely(!write_fault) && writable) {
1242                 struct page *wpage[1];
1243
1244                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1245                 if (npages == 1) {
1246                         *writable = true;
1247                         put_page(page[0]);
1248                         page[0] = wpage[0];
1249                 }
1250
1251                 npages = 1;
1252         }
1253         *pfn = page_to_pfn(page[0]);
1254         return npages;
1255 }
1256
1257 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1258 {
1259         if (unlikely(!(vma->vm_flags & VM_READ)))
1260                 return false;
1261
1262         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1263                 return false;
1264
1265         return true;
1266 }
1267
1268 /*
1269  * Pin guest page in memory and return its pfn.
1270  * @addr: host virtual address which maps memory to the guest
1271  * @atomic: whether this function can sleep
1272  * @async: whether this function need to wait IO complete if the
1273  *         host page is not in the memory
1274  * @write_fault: whether we should get a writable host page
1275  * @writable: whether it allows to map a writable host page for !@write_fault
1276  *
1277  * The function will map a writable host page for these two cases:
1278  * 1): @write_fault = true
1279  * 2): @write_fault = false && @writable, @writable will tell the caller
1280  *     whether the mapping is writable.
1281  */
1282 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1283                         bool write_fault, bool *writable)
1284 {
1285         struct vm_area_struct *vma;
1286         pfn_t pfn = 0;
1287         int npages;
1288
1289         /* we can do it either atomically or asynchronously, not both */
1290         BUG_ON(atomic && async);
1291
1292         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1293                 return pfn;
1294
1295         if (atomic)
1296                 return KVM_PFN_ERR_FAULT;
1297
1298         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1299         if (npages == 1)
1300                 return pfn;
1301
1302         down_read(&current->mm->mmap_sem);
1303         if (npages == -EHWPOISON ||
1304               (!async && check_user_page_hwpoison(addr))) {
1305                 pfn = KVM_PFN_ERR_HWPOISON;
1306                 goto exit;
1307         }
1308
1309         vma = find_vma_intersection(current->mm, addr, addr + 1);
1310
1311         if (vma == NULL)
1312                 pfn = KVM_PFN_ERR_FAULT;
1313         else if ((vma->vm_flags & VM_PFNMAP)) {
1314                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1315                         vma->vm_pgoff;
1316                 BUG_ON(!kvm_is_reserved_pfn(pfn));
1317         } else {
1318                 if (async && vma_is_valid(vma, write_fault))
1319                         *async = true;
1320                 pfn = KVM_PFN_ERR_FAULT;
1321         }
1322 exit:
1323         up_read(&current->mm->mmap_sem);
1324         return pfn;
1325 }
1326
1327 static pfn_t
1328 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1329                      bool *async, bool write_fault, bool *writable)
1330 {
1331         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1332
1333         if (addr == KVM_HVA_ERR_RO_BAD)
1334                 return KVM_PFN_ERR_RO_FAULT;
1335
1336         if (kvm_is_error_hva(addr))
1337                 return KVM_PFN_NOSLOT;
1338
1339         /* Do not map writable pfn in the readonly memslot. */
1340         if (writable && memslot_is_readonly(slot)) {
1341                 *writable = false;
1342                 writable = NULL;
1343         }
1344
1345         return hva_to_pfn(addr, atomic, async, write_fault,
1346                           writable);
1347 }
1348
1349 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1350                           bool write_fault, bool *writable)
1351 {
1352         struct kvm_memory_slot *slot;
1353
1354         if (async)
1355                 *async = false;
1356
1357         slot = gfn_to_memslot(kvm, gfn);
1358
1359         return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1360                                     writable);
1361 }
1362
1363 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1364 {
1365         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1366 }
1367 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1368
1369 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1370                        bool write_fault, bool *writable)
1371 {
1372         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1373 }
1374 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1375
1376 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1377 {
1378         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1379 }
1380 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1381
1382 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1383                       bool *writable)
1384 {
1385         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1386 }
1387 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1388
1389 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1390 {
1391         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1392 }
1393
1394 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1395 {
1396         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1397 }
1398 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1399
1400 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1401                                                                   int nr_pages)
1402 {
1403         unsigned long addr;
1404         gfn_t entry;
1405
1406         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1407         if (kvm_is_error_hva(addr))
1408                 return -1;
1409
1410         if (entry < nr_pages)
1411                 return 0;
1412
1413         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1414 }
1415 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1416
1417 static struct page *kvm_pfn_to_page(pfn_t pfn)
1418 {
1419         if (is_error_noslot_pfn(pfn))
1420                 return KVM_ERR_PTR_BAD_PAGE;
1421
1422         if (kvm_is_reserved_pfn(pfn)) {
1423                 WARN_ON(1);
1424                 return KVM_ERR_PTR_BAD_PAGE;
1425         }
1426
1427         return pfn_to_page(pfn);
1428 }
1429
1430 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1431 {
1432         pfn_t pfn;
1433
1434         pfn = gfn_to_pfn(kvm, gfn);
1435
1436         return kvm_pfn_to_page(pfn);
1437 }
1438
1439 EXPORT_SYMBOL_GPL(gfn_to_page);
1440
1441 void kvm_release_page_clean(struct page *page)
1442 {
1443         WARN_ON(is_error_page(page));
1444
1445         kvm_release_pfn_clean(page_to_pfn(page));
1446 }
1447 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1448
1449 void kvm_release_pfn_clean(pfn_t pfn)
1450 {
1451         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1452                 put_page(pfn_to_page(pfn));
1453 }
1454 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1455
1456 void kvm_release_page_dirty(struct page *page)
1457 {
1458         WARN_ON(is_error_page(page));
1459
1460         kvm_release_pfn_dirty(page_to_pfn(page));
1461 }
1462 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1463
1464 static void kvm_release_pfn_dirty(pfn_t pfn)
1465 {
1466         kvm_set_pfn_dirty(pfn);
1467         kvm_release_pfn_clean(pfn);
1468 }
1469
1470 void kvm_set_pfn_dirty(pfn_t pfn)
1471 {
1472         if (!kvm_is_reserved_pfn(pfn)) {
1473                 struct page *page = pfn_to_page(pfn);
1474                 if (!PageReserved(page))
1475                         SetPageDirty(page);
1476         }
1477 }
1478 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1479
1480 void kvm_set_pfn_accessed(pfn_t pfn)
1481 {
1482         if (!kvm_is_reserved_pfn(pfn))
1483                 mark_page_accessed(pfn_to_page(pfn));
1484 }
1485 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1486
1487 void kvm_get_pfn(pfn_t pfn)
1488 {
1489         if (!kvm_is_reserved_pfn(pfn))
1490                 get_page(pfn_to_page(pfn));
1491 }
1492 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1493
1494 static int next_segment(unsigned long len, int offset)
1495 {
1496         if (len > PAGE_SIZE - offset)
1497                 return PAGE_SIZE - offset;
1498         else
1499                 return len;
1500 }
1501
1502 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1503                         int len)
1504 {
1505         int r;
1506         unsigned long addr;
1507
1508         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1509         if (kvm_is_error_hva(addr))
1510                 return -EFAULT;
1511         r = kvm_read_hva(data, (void __user *)addr + offset, len);
1512         if (r)
1513                 return -EFAULT;
1514         return 0;
1515 }
1516 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1517
1518 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1519 {
1520         gfn_t gfn = gpa >> PAGE_SHIFT;
1521         int seg;
1522         int offset = offset_in_page(gpa);
1523         int ret;
1524
1525         while ((seg = next_segment(len, offset)) != 0) {
1526                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1527                 if (ret < 0)
1528                         return ret;
1529                 offset = 0;
1530                 len -= seg;
1531                 data += seg;
1532                 ++gfn;
1533         }
1534         return 0;
1535 }
1536 EXPORT_SYMBOL_GPL(kvm_read_guest);
1537
1538 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1539                           unsigned long len)
1540 {
1541         int r;
1542         unsigned long addr;
1543         gfn_t gfn = gpa >> PAGE_SHIFT;
1544         int offset = offset_in_page(gpa);
1545
1546         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1547         if (kvm_is_error_hva(addr))
1548                 return -EFAULT;
1549         pagefault_disable();
1550         r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1551         pagefault_enable();
1552         if (r)
1553                 return -EFAULT;
1554         return 0;
1555 }
1556 EXPORT_SYMBOL(kvm_read_guest_atomic);
1557
1558 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1559                          int offset, int len)
1560 {
1561         int r;
1562         unsigned long addr;
1563
1564         addr = gfn_to_hva(kvm, gfn);
1565         if (kvm_is_error_hva(addr))
1566                 return -EFAULT;
1567         r = __copy_to_user((void __user *)addr + offset, data, len);
1568         if (r)
1569                 return -EFAULT;
1570         mark_page_dirty(kvm, gfn);
1571         return 0;
1572 }
1573 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1574
1575 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1576                     unsigned long len)
1577 {
1578         gfn_t gfn = gpa >> PAGE_SHIFT;
1579         int seg;
1580         int offset = offset_in_page(gpa);
1581         int ret;
1582
1583         while ((seg = next_segment(len, offset)) != 0) {
1584                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1585                 if (ret < 0)
1586                         return ret;
1587                 offset = 0;
1588                 len -= seg;
1589                 data += seg;
1590                 ++gfn;
1591         }
1592         return 0;
1593 }
1594
1595 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1596                               gpa_t gpa, unsigned long len)
1597 {
1598         struct kvm_memslots *slots = kvm_memslots(kvm);
1599         int offset = offset_in_page(gpa);
1600         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1601         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1602         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1603         gfn_t nr_pages_avail;
1604
1605         ghc->gpa = gpa;
1606         ghc->generation = slots->generation;
1607         ghc->len = len;
1608         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1609         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1610         if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1611                 ghc->hva += offset;
1612         } else {
1613                 /*
1614                  * If the requested region crosses two memslots, we still
1615                  * verify that the entire region is valid here.
1616                  */
1617                 while (start_gfn <= end_gfn) {
1618                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1619                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1620                                                    &nr_pages_avail);
1621                         if (kvm_is_error_hva(ghc->hva))
1622                                 return -EFAULT;
1623                         start_gfn += nr_pages_avail;
1624                 }
1625                 /* Use the slow path for cross page reads and writes. */
1626                 ghc->memslot = NULL;
1627         }
1628         return 0;
1629 }
1630 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1631
1632 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1633                            void *data, unsigned long len)
1634 {
1635         struct kvm_memslots *slots = kvm_memslots(kvm);
1636         int r;
1637
1638         BUG_ON(len > ghc->len);
1639
1640         if (slots->generation != ghc->generation)
1641                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1642
1643         if (unlikely(!ghc->memslot))
1644                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1645
1646         if (kvm_is_error_hva(ghc->hva))
1647                 return -EFAULT;
1648
1649         r = __copy_to_user((void __user *)ghc->hva, data, len);
1650         if (r)
1651                 return -EFAULT;
1652         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1653
1654         return 0;
1655 }
1656 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1657
1658 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1659                            void *data, unsigned long len)
1660 {
1661         struct kvm_memslots *slots = kvm_memslots(kvm);
1662         int r;
1663
1664         BUG_ON(len > ghc->len);
1665
1666         if (slots->generation != ghc->generation)
1667                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1668
1669         if (unlikely(!ghc->memslot))
1670                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1671
1672         if (kvm_is_error_hva(ghc->hva))
1673                 return -EFAULT;
1674
1675         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1676         if (r)
1677                 return -EFAULT;
1678
1679         return 0;
1680 }
1681 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1682
1683 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1684 {
1685         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1686
1687         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1690
1691 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1692 {
1693         gfn_t gfn = gpa >> PAGE_SHIFT;
1694         int seg;
1695         int offset = offset_in_page(gpa);
1696         int ret;
1697
1698         while ((seg = next_segment(len, offset)) != 0) {
1699                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1700                 if (ret < 0)
1701                         return ret;
1702                 offset = 0;
1703                 len -= seg;
1704                 ++gfn;
1705         }
1706         return 0;
1707 }
1708 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1709
1710 static void mark_page_dirty_in_slot(struct kvm *kvm,
1711                                     struct kvm_memory_slot *memslot,
1712                                     gfn_t gfn)
1713 {
1714         if (memslot && memslot->dirty_bitmap) {
1715                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1716
1717                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1718         }
1719 }
1720
1721 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1722 {
1723         struct kvm_memory_slot *memslot;
1724
1725         memslot = gfn_to_memslot(kvm, gfn);
1726         mark_page_dirty_in_slot(kvm, memslot, gfn);
1727 }
1728 EXPORT_SYMBOL_GPL(mark_page_dirty);
1729
1730 /*
1731  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1732  */
1733 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1734 {
1735         DEFINE_WAIT(wait);
1736
1737         for (;;) {
1738                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1739
1740                 if (kvm_arch_vcpu_runnable(vcpu)) {
1741                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1742                         break;
1743                 }
1744                 if (kvm_cpu_has_pending_timer(vcpu))
1745                         break;
1746                 if (signal_pending(current))
1747                         break;
1748
1749                 schedule();
1750         }
1751
1752         finish_wait(&vcpu->wq, &wait);
1753 }
1754 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1755
1756 #ifndef CONFIG_S390
1757 /*
1758  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1759  */
1760 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1761 {
1762         int me;
1763         int cpu = vcpu->cpu;
1764         wait_queue_head_t *wqp;
1765
1766         wqp = kvm_arch_vcpu_wq(vcpu);
1767         if (waitqueue_active(wqp)) {
1768                 wake_up_interruptible(wqp);
1769                 ++vcpu->stat.halt_wakeup;
1770         }
1771
1772         me = get_cpu();
1773         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1774                 if (kvm_arch_vcpu_should_kick(vcpu))
1775                         smp_send_reschedule(cpu);
1776         put_cpu();
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1779 #endif /* !CONFIG_S390 */
1780
1781 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1782 {
1783         struct pid *pid;
1784         struct task_struct *task = NULL;
1785         int ret = 0;
1786
1787         rcu_read_lock();
1788         pid = rcu_dereference(target->pid);
1789         if (pid)
1790                 task = get_pid_task(pid, PIDTYPE_PID);
1791         rcu_read_unlock();
1792         if (!task)
1793                 return ret;
1794         ret = yield_to(task, 1);
1795         put_task_struct(task);
1796
1797         return ret;
1798 }
1799 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1800
1801 /*
1802  * Helper that checks whether a VCPU is eligible for directed yield.
1803  * Most eligible candidate to yield is decided by following heuristics:
1804  *
1805  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1806  *  (preempted lock holder), indicated by @in_spin_loop.
1807  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1808  *
1809  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1810  *  chance last time (mostly it has become eligible now since we have probably
1811  *  yielded to lockholder in last iteration. This is done by toggling
1812  *  @dy_eligible each time a VCPU checked for eligibility.)
1813  *
1814  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1815  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1816  *  burning. Giving priority for a potential lock-holder increases lock
1817  *  progress.
1818  *
1819  *  Since algorithm is based on heuristics, accessing another VCPU data without
1820  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1821  *  and continue with next VCPU and so on.
1822  */
1823 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1824 {
1825 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1826         bool eligible;
1827
1828         eligible = !vcpu->spin_loop.in_spin_loop ||
1829                     vcpu->spin_loop.dy_eligible;
1830
1831         if (vcpu->spin_loop.in_spin_loop)
1832                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1833
1834         return eligible;
1835 #else
1836         return true;
1837 #endif
1838 }
1839
1840 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1841 {
1842         struct kvm *kvm = me->kvm;
1843         struct kvm_vcpu *vcpu;
1844         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1845         int yielded = 0;
1846         int try = 3;
1847         int pass;
1848         int i;
1849
1850         kvm_vcpu_set_in_spin_loop(me, true);
1851         /*
1852          * We boost the priority of a VCPU that is runnable but not
1853          * currently running, because it got preempted by something
1854          * else and called schedule in __vcpu_run.  Hopefully that
1855          * VCPU is holding the lock that we need and will release it.
1856          * We approximate round-robin by starting at the last boosted VCPU.
1857          */
1858         for (pass = 0; pass < 2 && !yielded && try; pass++) {
1859                 kvm_for_each_vcpu(i, vcpu, kvm) {
1860                         if (!pass && i <= last_boosted_vcpu) {
1861                                 i = last_boosted_vcpu;
1862                                 continue;
1863                         } else if (pass && i > last_boosted_vcpu)
1864                                 break;
1865                         if (!ACCESS_ONCE(vcpu->preempted))
1866                                 continue;
1867                         if (vcpu == me)
1868                                 continue;
1869                         if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1870                                 continue;
1871                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1872                                 continue;
1873
1874                         yielded = kvm_vcpu_yield_to(vcpu);
1875                         if (yielded > 0) {
1876                                 kvm->last_boosted_vcpu = i;
1877                                 break;
1878                         } else if (yielded < 0) {
1879                                 try--;
1880                                 if (!try)
1881                                         break;
1882                         }
1883                 }
1884         }
1885         kvm_vcpu_set_in_spin_loop(me, false);
1886
1887         /* Ensure vcpu is not eligible during next spinloop */
1888         kvm_vcpu_set_dy_eligible(me, false);
1889 }
1890 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1891
1892 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1893 {
1894         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1895         struct page *page;
1896
1897         if (vmf->pgoff == 0)
1898                 page = virt_to_page(vcpu->run);
1899 #ifdef CONFIG_X86
1900         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1901                 page = virt_to_page(vcpu->arch.pio_data);
1902 #endif
1903 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1904         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1905                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1906 #endif
1907         else
1908                 return kvm_arch_vcpu_fault(vcpu, vmf);
1909         get_page(page);
1910         vmf->page = page;
1911         return 0;
1912 }
1913
1914 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1915         .fault = kvm_vcpu_fault,
1916 };
1917
1918 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1919 {
1920         vma->vm_ops = &kvm_vcpu_vm_ops;
1921         return 0;
1922 }
1923
1924 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1925 {
1926         struct kvm_vcpu *vcpu = filp->private_data;
1927
1928         kvm_put_kvm(vcpu->kvm);
1929         return 0;
1930 }
1931
1932 static struct file_operations kvm_vcpu_fops = {
1933         .release        = kvm_vcpu_release,
1934         .unlocked_ioctl = kvm_vcpu_ioctl,
1935 #ifdef CONFIG_COMPAT
1936         .compat_ioctl   = kvm_vcpu_compat_ioctl,
1937 #endif
1938         .mmap           = kvm_vcpu_mmap,
1939         .llseek         = noop_llseek,
1940 };
1941
1942 /*
1943  * Allocates an inode for the vcpu.
1944  */
1945 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1946 {
1947         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1948 }
1949
1950 /*
1951  * Creates some virtual cpus.  Good luck creating more than one.
1952  */
1953 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1954 {
1955         int r;
1956         struct kvm_vcpu *vcpu, *v;
1957
1958         if (id >= KVM_MAX_VCPUS)
1959                 return -EINVAL;
1960
1961         vcpu = kvm_arch_vcpu_create(kvm, id);
1962         if (IS_ERR(vcpu))
1963                 return PTR_ERR(vcpu);
1964
1965         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1966
1967         r = kvm_arch_vcpu_setup(vcpu);
1968         if (r)
1969                 goto vcpu_destroy;
1970
1971         mutex_lock(&kvm->lock);
1972         if (!kvm_vcpu_compatible(vcpu)) {
1973                 r = -EINVAL;
1974                 goto unlock_vcpu_destroy;
1975         }
1976         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1977                 r = -EINVAL;
1978                 goto unlock_vcpu_destroy;
1979         }
1980
1981         kvm_for_each_vcpu(r, v, kvm)
1982                 if (v->vcpu_id == id) {
1983                         r = -EEXIST;
1984                         goto unlock_vcpu_destroy;
1985                 }
1986
1987         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1988
1989         /* Now it's all set up, let userspace reach it */
1990         kvm_get_kvm(kvm);
1991         r = create_vcpu_fd(vcpu);
1992         if (r < 0) {
1993                 kvm_put_kvm(kvm);
1994                 goto unlock_vcpu_destroy;
1995         }
1996
1997         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1998         smp_wmb();
1999         atomic_inc(&kvm->online_vcpus);
2000
2001         mutex_unlock(&kvm->lock);
2002         kvm_arch_vcpu_postcreate(vcpu);
2003         return r;
2004
2005 unlock_vcpu_destroy:
2006         mutex_unlock(&kvm->lock);
2007 vcpu_destroy:
2008         kvm_arch_vcpu_destroy(vcpu);
2009         return r;
2010 }
2011
2012 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2013 {
2014         if (sigset) {
2015                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2016                 vcpu->sigset_active = 1;
2017                 vcpu->sigset = *sigset;
2018         } else
2019                 vcpu->sigset_active = 0;
2020         return 0;
2021 }
2022
2023 static long kvm_vcpu_ioctl(struct file *filp,
2024                            unsigned int ioctl, unsigned long arg)
2025 {
2026         struct kvm_vcpu *vcpu = filp->private_data;
2027         void __user *argp = (void __user *)arg;
2028         int r;
2029         struct kvm_fpu *fpu = NULL;
2030         struct kvm_sregs *kvm_sregs = NULL;
2031
2032         if (vcpu->kvm->mm != current->mm)
2033                 return -EIO;
2034
2035         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2036                 return -EINVAL;
2037
2038 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2039         /*
2040          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2041          * so vcpu_load() would break it.
2042          */
2043         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
2044                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2045 #endif
2046
2047
2048         r = vcpu_load(vcpu);
2049         if (r)
2050                 return r;
2051         switch (ioctl) {
2052         case KVM_RUN:
2053                 r = -EINVAL;
2054                 if (arg)
2055                         goto out;
2056                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2057                         /* The thread running this VCPU changed. */
2058                         struct pid *oldpid = vcpu->pid;
2059                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2060                         rcu_assign_pointer(vcpu->pid, newpid);
2061                         if (oldpid)
2062                                 synchronize_rcu();
2063                         put_pid(oldpid);
2064                 }
2065                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2066                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2067                 break;
2068         case KVM_GET_REGS: {
2069                 struct kvm_regs *kvm_regs;
2070
2071                 r = -ENOMEM;
2072                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2073                 if (!kvm_regs)
2074                         goto out;
2075                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2076                 if (r)
2077                         goto out_free1;
2078                 r = -EFAULT;
2079                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2080                         goto out_free1;
2081                 r = 0;
2082 out_free1:
2083                 kfree(kvm_regs);
2084                 break;
2085         }
2086         case KVM_SET_REGS: {
2087                 struct kvm_regs *kvm_regs;
2088
2089                 r = -ENOMEM;
2090                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2091                 if (IS_ERR(kvm_regs)) {
2092                         r = PTR_ERR(kvm_regs);
2093                         goto out;
2094                 }
2095                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2096                 kfree(kvm_regs);
2097                 break;
2098         }
2099         case KVM_GET_SREGS: {
2100                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2101                 r = -ENOMEM;
2102                 if (!kvm_sregs)
2103                         goto out;
2104                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2105                 if (r)
2106                         goto out;
2107                 r = -EFAULT;
2108                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2109                         goto out;
2110                 r = 0;
2111                 break;
2112         }
2113         case KVM_SET_SREGS: {
2114                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2115                 if (IS_ERR(kvm_sregs)) {
2116                         r = PTR_ERR(kvm_sregs);
2117                         kvm_sregs = NULL;
2118                         goto out;
2119                 }
2120                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2121                 break;
2122         }
2123         case KVM_GET_MP_STATE: {
2124                 struct kvm_mp_state mp_state;
2125
2126                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2127                 if (r)
2128                         goto out;
2129                 r = -EFAULT;
2130                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2131                         goto out;
2132                 r = 0;
2133                 break;
2134         }
2135         case KVM_SET_MP_STATE: {
2136                 struct kvm_mp_state mp_state;
2137
2138                 r = -EFAULT;
2139                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2140                         goto out;
2141                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2142                 break;
2143         }
2144         case KVM_TRANSLATE: {
2145                 struct kvm_translation tr;
2146
2147                 r = -EFAULT;
2148                 if (copy_from_user(&tr, argp, sizeof tr))
2149                         goto out;
2150                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2151                 if (r)
2152                         goto out;
2153                 r = -EFAULT;
2154                 if (copy_to_user(argp, &tr, sizeof tr))
2155                         goto out;
2156                 r = 0;
2157                 break;
2158         }
2159         case KVM_SET_GUEST_DEBUG: {
2160                 struct kvm_guest_debug dbg;
2161
2162                 r = -EFAULT;
2163                 if (copy_from_user(&dbg, argp, sizeof dbg))
2164                         goto out;
2165                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2166                 break;
2167         }
2168         case KVM_SET_SIGNAL_MASK: {
2169                 struct kvm_signal_mask __user *sigmask_arg = argp;
2170                 struct kvm_signal_mask kvm_sigmask;
2171                 sigset_t sigset, *p;
2172
2173                 p = NULL;
2174                 if (argp) {
2175                         r = -EFAULT;
2176                         if (copy_from_user(&kvm_sigmask, argp,
2177                                            sizeof kvm_sigmask))
2178                                 goto out;
2179                         r = -EINVAL;
2180                         if (kvm_sigmask.len != sizeof sigset)
2181                                 goto out;
2182                         r = -EFAULT;
2183                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2184                                            sizeof sigset))
2185                                 goto out;
2186                         p = &sigset;
2187                 }
2188                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2189                 break;
2190         }
2191         case KVM_GET_FPU: {
2192                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2193                 r = -ENOMEM;
2194                 if (!fpu)
2195                         goto out;
2196                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2197                 if (r)
2198                         goto out;
2199                 r = -EFAULT;
2200                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2201                         goto out;
2202                 r = 0;
2203                 break;
2204         }
2205         case KVM_SET_FPU: {
2206                 fpu = memdup_user(argp, sizeof(*fpu));
2207                 if (IS_ERR(fpu)) {
2208                         r = PTR_ERR(fpu);
2209                         fpu = NULL;
2210                         goto out;
2211                 }
2212                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2213                 break;
2214         }
2215         default:
2216                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2217         }
2218 out:
2219         vcpu_put(vcpu);
2220         kfree(fpu);
2221         kfree(kvm_sregs);
2222         return r;
2223 }
2224
2225 #ifdef CONFIG_COMPAT
2226 static long kvm_vcpu_compat_ioctl(struct file *filp,
2227                                   unsigned int ioctl, unsigned long arg)
2228 {
2229         struct kvm_vcpu *vcpu = filp->private_data;
2230         void __user *argp = compat_ptr(arg);
2231         int r;
2232
2233         if (vcpu->kvm->mm != current->mm)
2234                 return -EIO;
2235
2236         switch (ioctl) {
2237         case KVM_SET_SIGNAL_MASK: {
2238                 struct kvm_signal_mask __user *sigmask_arg = argp;
2239                 struct kvm_signal_mask kvm_sigmask;
2240                 compat_sigset_t csigset;
2241                 sigset_t sigset;
2242
2243                 if (argp) {
2244                         r = -EFAULT;
2245                         if (copy_from_user(&kvm_sigmask, argp,
2246                                            sizeof kvm_sigmask))
2247                                 goto out;
2248                         r = -EINVAL;
2249                         if (kvm_sigmask.len != sizeof csigset)
2250                                 goto out;
2251                         r = -EFAULT;
2252                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2253                                            sizeof csigset))
2254                                 goto out;
2255                         sigset_from_compat(&sigset, &csigset);
2256                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2257                 } else
2258                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2259                 break;
2260         }
2261         default:
2262                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2263         }
2264
2265 out:
2266         return r;
2267 }
2268 #endif
2269
2270 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2271                                  int (*accessor)(struct kvm_device *dev,
2272                                                  struct kvm_device_attr *attr),
2273                                  unsigned long arg)
2274 {
2275         struct kvm_device_attr attr;
2276
2277         if (!accessor)
2278                 return -EPERM;
2279
2280         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2281                 return -EFAULT;
2282
2283         return accessor(dev, &attr);
2284 }
2285
2286 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2287                              unsigned long arg)
2288 {
2289         struct kvm_device *dev = filp->private_data;
2290
2291         switch (ioctl) {
2292         case KVM_SET_DEVICE_ATTR:
2293                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2294         case KVM_GET_DEVICE_ATTR:
2295                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2296         case KVM_HAS_DEVICE_ATTR:
2297                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2298         default:
2299                 if (dev->ops->ioctl)
2300                         return dev->ops->ioctl(dev, ioctl, arg);
2301
2302                 return -ENOTTY;
2303         }
2304 }
2305
2306 static int kvm_device_release(struct inode *inode, struct file *filp)
2307 {
2308         struct kvm_device *dev = filp->private_data;
2309         struct kvm *kvm = dev->kvm;
2310
2311         kvm_put_kvm(kvm);
2312         return 0;
2313 }
2314
2315 static const struct file_operations kvm_device_fops = {
2316         .unlocked_ioctl = kvm_device_ioctl,
2317 #ifdef CONFIG_COMPAT
2318         .compat_ioctl = kvm_device_ioctl,
2319 #endif
2320         .release = kvm_device_release,
2321 };
2322
2323 struct kvm_device *kvm_device_from_filp(struct file *filp)
2324 {
2325         if (filp->f_op != &kvm_device_fops)
2326                 return NULL;
2327
2328         return filp->private_data;
2329 }
2330
2331 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2332 #ifdef CONFIG_KVM_MPIC
2333         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2334         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2335 #endif
2336
2337 #ifdef CONFIG_KVM_XICS
2338         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2339 #endif
2340 };
2341
2342 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2343 {
2344         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2345                 return -ENOSPC;
2346
2347         if (kvm_device_ops_table[type] != NULL)
2348                 return -EEXIST;
2349
2350         kvm_device_ops_table[type] = ops;
2351         return 0;
2352 }
2353
2354 void kvm_unregister_device_ops(u32 type)
2355 {
2356         if (kvm_device_ops_table[type] != NULL)
2357                 kvm_device_ops_table[type] = NULL;
2358 }
2359
2360 static int kvm_ioctl_create_device(struct kvm *kvm,
2361                                    struct kvm_create_device *cd)
2362 {
2363         struct kvm_device_ops *ops = NULL;
2364         struct kvm_device *dev;
2365         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2366         int ret;
2367
2368         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2369                 return -ENODEV;
2370
2371         ops = kvm_device_ops_table[cd->type];
2372         if (ops == NULL)
2373                 return -ENODEV;
2374
2375         if (test)
2376                 return 0;
2377
2378         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2379         if (!dev)
2380                 return -ENOMEM;
2381
2382         dev->ops = ops;
2383         dev->kvm = kvm;
2384
2385         ret = ops->create(dev, cd->type);
2386         if (ret < 0) {
2387                 kfree(dev);
2388                 return ret;
2389         }
2390
2391         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2392         if (ret < 0) {
2393                 ops->destroy(dev);
2394                 return ret;
2395         }
2396
2397         list_add(&dev->vm_node, &kvm->devices);
2398         kvm_get_kvm(kvm);
2399         cd->fd = ret;
2400         return 0;
2401 }
2402
2403 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2404 {
2405         switch (arg) {
2406         case KVM_CAP_USER_MEMORY:
2407         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2408         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2409 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2410         case KVM_CAP_SET_BOOT_CPU_ID:
2411 #endif
2412         case KVM_CAP_INTERNAL_ERROR_DATA:
2413 #ifdef CONFIG_HAVE_KVM_MSI
2414         case KVM_CAP_SIGNAL_MSI:
2415 #endif
2416 #ifdef CONFIG_HAVE_KVM_IRQFD
2417         case KVM_CAP_IRQFD_RESAMPLE:
2418 #endif
2419         case KVM_CAP_CHECK_EXTENSION_VM:
2420                 return 1;
2421 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2422         case KVM_CAP_IRQ_ROUTING:
2423                 return KVM_MAX_IRQ_ROUTES;
2424 #endif
2425         default:
2426                 break;
2427         }
2428         return kvm_vm_ioctl_check_extension(kvm, arg);
2429 }
2430
2431 static long kvm_vm_ioctl(struct file *filp,
2432                            unsigned int ioctl, unsigned long arg)
2433 {
2434         struct kvm *kvm = filp->private_data;
2435         void __user *argp = (void __user *)arg;
2436         int r;
2437
2438         if (kvm->mm != current->mm)
2439                 return -EIO;
2440         switch (ioctl) {
2441         case KVM_CREATE_VCPU:
2442                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2443                 break;
2444         case KVM_SET_USER_MEMORY_REGION: {
2445                 struct kvm_userspace_memory_region kvm_userspace_mem;
2446
2447                 r = -EFAULT;
2448                 if (copy_from_user(&kvm_userspace_mem, argp,
2449                                                 sizeof kvm_userspace_mem))
2450                         goto out;
2451
2452                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2453                 break;
2454         }
2455         case KVM_GET_DIRTY_LOG: {
2456                 struct kvm_dirty_log log;
2457
2458                 r = -EFAULT;
2459                 if (copy_from_user(&log, argp, sizeof log))
2460                         goto out;
2461                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2462                 break;
2463         }
2464 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2465         case KVM_REGISTER_COALESCED_MMIO: {
2466                 struct kvm_coalesced_mmio_zone zone;
2467                 r = -EFAULT;
2468                 if (copy_from_user(&zone, argp, sizeof zone))
2469                         goto out;
2470                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2471                 break;
2472         }
2473         case KVM_UNREGISTER_COALESCED_MMIO: {
2474                 struct kvm_coalesced_mmio_zone zone;
2475                 r = -EFAULT;
2476                 if (copy_from_user(&zone, argp, sizeof zone))
2477                         goto out;
2478                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2479                 break;
2480         }
2481 #endif
2482         case KVM_IRQFD: {
2483                 struct kvm_irqfd data;
2484
2485                 r = -EFAULT;
2486                 if (copy_from_user(&data, argp, sizeof data))
2487                         goto out;
2488                 r = kvm_irqfd(kvm, &data);
2489                 break;
2490         }
2491         case KVM_IOEVENTFD: {
2492                 struct kvm_ioeventfd data;
2493
2494                 r = -EFAULT;
2495                 if (copy_from_user(&data, argp, sizeof data))
2496                         goto out;
2497                 r = kvm_ioeventfd(kvm, &data);
2498                 break;
2499         }
2500 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2501         case KVM_SET_BOOT_CPU_ID:
2502                 r = 0;
2503                 mutex_lock(&kvm->lock);
2504                 if (atomic_read(&kvm->online_vcpus) != 0)
2505                         r = -EBUSY;
2506                 else
2507                         kvm->bsp_vcpu_id = arg;
2508                 mutex_unlock(&kvm->lock);
2509                 break;
2510 #endif
2511 #ifdef CONFIG_HAVE_KVM_MSI
2512         case KVM_SIGNAL_MSI: {
2513                 struct kvm_msi msi;
2514
2515                 r = -EFAULT;
2516                 if (copy_from_user(&msi, argp, sizeof msi))
2517                         goto out;
2518                 r = kvm_send_userspace_msi(kvm, &msi);
2519                 break;
2520         }
2521 #endif
2522 #ifdef __KVM_HAVE_IRQ_LINE
2523         case KVM_IRQ_LINE_STATUS:
2524         case KVM_IRQ_LINE: {
2525                 struct kvm_irq_level irq_event;
2526
2527                 r = -EFAULT;
2528                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2529                         goto out;
2530
2531                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2532                                         ioctl == KVM_IRQ_LINE_STATUS);
2533                 if (r)
2534                         goto out;
2535
2536                 r = -EFAULT;
2537                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2538                         if (copy_to_user(argp, &irq_event, sizeof irq_event))
2539                                 goto out;
2540                 }
2541
2542                 r = 0;
2543                 break;
2544         }
2545 #endif
2546 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2547         case KVM_SET_GSI_ROUTING: {
2548                 struct kvm_irq_routing routing;
2549                 struct kvm_irq_routing __user *urouting;
2550                 struct kvm_irq_routing_entry *entries;
2551
2552                 r = -EFAULT;
2553                 if (copy_from_user(&routing, argp, sizeof(routing)))
2554                         goto out;
2555                 r = -EINVAL;
2556                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2557                         goto out;
2558                 if (routing.flags)
2559                         goto out;
2560                 r = -ENOMEM;
2561                 entries = vmalloc(routing.nr * sizeof(*entries));
2562                 if (!entries)
2563                         goto out;
2564                 r = -EFAULT;
2565                 urouting = argp;
2566                 if (copy_from_user(entries, urouting->entries,
2567                                    routing.nr * sizeof(*entries)))
2568                         goto out_free_irq_routing;
2569                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2570                                         routing.flags);
2571         out_free_irq_routing:
2572                 vfree(entries);
2573                 break;
2574         }
2575 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2576         case KVM_CREATE_DEVICE: {
2577                 struct kvm_create_device cd;
2578
2579                 r = -EFAULT;
2580                 if (copy_from_user(&cd, argp, sizeof(cd)))
2581                         goto out;
2582
2583                 r = kvm_ioctl_create_device(kvm, &cd);
2584                 if (r)
2585                         goto out;
2586
2587                 r = -EFAULT;
2588                 if (copy_to_user(argp, &cd, sizeof(cd)))
2589                         goto out;
2590
2591                 r = 0;
2592                 break;
2593         }
2594         case KVM_CHECK_EXTENSION:
2595                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2596                 break;
2597         default:
2598                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2599         }
2600 out:
2601         return r;
2602 }
2603
2604 #ifdef CONFIG_COMPAT
2605 struct compat_kvm_dirty_log {
2606         __u32 slot;
2607         __u32 padding1;
2608         union {
2609                 compat_uptr_t dirty_bitmap; /* one bit per page */
2610                 __u64 padding2;
2611         };
2612 };
2613
2614 static long kvm_vm_compat_ioctl(struct file *filp,
2615                            unsigned int ioctl, unsigned long arg)
2616 {
2617         struct kvm *kvm = filp->private_data;
2618         int r;
2619
2620         if (kvm->mm != current->mm)
2621                 return -EIO;
2622         switch (ioctl) {
2623         case KVM_GET_DIRTY_LOG: {
2624                 struct compat_kvm_dirty_log compat_log;
2625                 struct kvm_dirty_log log;
2626
2627                 r = -EFAULT;
2628                 if (copy_from_user(&compat_log, (void __user *)arg,
2629                                    sizeof(compat_log)))
2630                         goto out;
2631                 log.slot         = compat_log.slot;
2632                 log.padding1     = compat_log.padding1;
2633                 log.padding2     = compat_log.padding2;
2634                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2635
2636                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2637                 break;
2638         }
2639         default:
2640                 r = kvm_vm_ioctl(filp, ioctl, arg);
2641         }
2642
2643 out:
2644         return r;
2645 }
2646 #endif
2647
2648 static struct file_operations kvm_vm_fops = {
2649         .release        = kvm_vm_release,
2650         .unlocked_ioctl = kvm_vm_ioctl,
2651 #ifdef CONFIG_COMPAT
2652         .compat_ioctl   = kvm_vm_compat_ioctl,
2653 #endif
2654         .llseek         = noop_llseek,
2655 };
2656
2657 static int kvm_dev_ioctl_create_vm(unsigned long type)
2658 {
2659         int r;
2660         struct kvm *kvm;
2661
2662         kvm = kvm_create_vm(type);
2663         if (IS_ERR(kvm))
2664                 return PTR_ERR(kvm);
2665 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2666         r = kvm_coalesced_mmio_init(kvm);
2667         if (r < 0) {
2668                 kvm_put_kvm(kvm);
2669                 return r;
2670         }
2671 #endif
2672         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2673         if (r < 0)
2674                 kvm_put_kvm(kvm);
2675
2676         return r;
2677 }
2678
2679 static long kvm_dev_ioctl(struct file *filp,
2680                           unsigned int ioctl, unsigned long arg)
2681 {
2682         long r = -EINVAL;
2683
2684         switch (ioctl) {
2685         case KVM_GET_API_VERSION:
2686                 if (arg)
2687                         goto out;
2688                 r = KVM_API_VERSION;
2689                 break;
2690         case KVM_CREATE_VM:
2691                 r = kvm_dev_ioctl_create_vm(arg);
2692                 break;
2693         case KVM_CHECK_EXTENSION:
2694                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2695                 break;
2696         case KVM_GET_VCPU_MMAP_SIZE:
2697                 if (arg)
2698                         goto out;
2699                 r = PAGE_SIZE;     /* struct kvm_run */
2700 #ifdef CONFIG_X86
2701                 r += PAGE_SIZE;    /* pio data page */
2702 #endif
2703 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2704                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2705 #endif
2706                 break;
2707         case KVM_TRACE_ENABLE:
2708         case KVM_TRACE_PAUSE:
2709         case KVM_TRACE_DISABLE:
2710                 r = -EOPNOTSUPP;
2711                 break;
2712         default:
2713                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2714         }
2715 out:
2716         return r;
2717 }
2718
2719 static struct file_operations kvm_chardev_ops = {
2720         .unlocked_ioctl = kvm_dev_ioctl,
2721         .compat_ioctl   = kvm_dev_ioctl,
2722         .llseek         = noop_llseek,
2723 };
2724
2725 static struct miscdevice kvm_dev = {
2726         KVM_MINOR,
2727         "kvm",
2728         &kvm_chardev_ops,
2729 };
2730
2731 static void hardware_enable_nolock(void *junk)
2732 {
2733         int cpu = raw_smp_processor_id();
2734         int r;
2735
2736         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2737                 return;
2738
2739         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2740
2741         r = kvm_arch_hardware_enable();
2742
2743         if (r) {
2744                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2745                 atomic_inc(&hardware_enable_failed);
2746                 printk(KERN_INFO "kvm: enabling virtualization on "
2747                                  "CPU%d failed\n", cpu);
2748         }
2749 }
2750
2751 static void hardware_enable(void)
2752 {
2753         raw_spin_lock(&kvm_count_lock);
2754         if (kvm_usage_count)
2755                 hardware_enable_nolock(NULL);
2756         raw_spin_unlock(&kvm_count_lock);
2757 }
2758
2759 static void hardware_disable_nolock(void *junk)
2760 {
2761         int cpu = raw_smp_processor_id();
2762
2763         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2764                 return;
2765         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2766         kvm_arch_hardware_disable();
2767 }
2768
2769 static void hardware_disable(void)
2770 {
2771         raw_spin_lock(&kvm_count_lock);
2772         if (kvm_usage_count)
2773                 hardware_disable_nolock(NULL);
2774         raw_spin_unlock(&kvm_count_lock);
2775 }
2776
2777 static void hardware_disable_all_nolock(void)
2778 {
2779         BUG_ON(!kvm_usage_count);
2780
2781         kvm_usage_count--;
2782         if (!kvm_usage_count)
2783                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2784 }
2785
2786 static void hardware_disable_all(void)
2787 {
2788         raw_spin_lock(&kvm_count_lock);
2789         hardware_disable_all_nolock();
2790         raw_spin_unlock(&kvm_count_lock);
2791 }
2792
2793 static int hardware_enable_all(void)
2794 {
2795         int r = 0;
2796
2797         raw_spin_lock(&kvm_count_lock);
2798
2799         kvm_usage_count++;
2800         if (kvm_usage_count == 1) {
2801                 atomic_set(&hardware_enable_failed, 0);
2802                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2803
2804                 if (atomic_read(&hardware_enable_failed)) {
2805                         hardware_disable_all_nolock();
2806                         r = -EBUSY;
2807                 }
2808         }
2809
2810         raw_spin_unlock(&kvm_count_lock);
2811
2812         return r;
2813 }
2814
2815 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2816                            void *v)
2817 {
2818         int cpu = (long)v;
2819
2820         val &= ~CPU_TASKS_FROZEN;
2821         switch (val) {
2822         case CPU_DYING:
2823                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2824                        cpu);
2825                 hardware_disable();
2826                 break;
2827         case CPU_STARTING:
2828                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2829                        cpu);
2830                 hardware_enable();
2831                 break;
2832         }
2833         return NOTIFY_OK;
2834 }
2835
2836 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2837                       void *v)
2838 {
2839         /*
2840          * Some (well, at least mine) BIOSes hang on reboot if
2841          * in vmx root mode.
2842          *
2843          * And Intel TXT required VMX off for all cpu when system shutdown.
2844          */
2845         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2846         kvm_rebooting = true;
2847         on_each_cpu(hardware_disable_nolock, NULL, 1);
2848         return NOTIFY_OK;
2849 }
2850
2851 static struct notifier_block kvm_reboot_notifier = {
2852         .notifier_call = kvm_reboot,
2853         .priority = 0,
2854 };
2855
2856 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2857 {
2858         int i;
2859
2860         for (i = 0; i < bus->dev_count; i++) {
2861                 struct kvm_io_device *pos = bus->range[i].dev;
2862
2863                 kvm_iodevice_destructor(pos);
2864         }
2865         kfree(bus);
2866 }
2867
2868 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2869                                  const struct kvm_io_range *r2)
2870 {
2871         if (r1->addr < r2->addr)
2872                 return -1;
2873         if (r1->addr + r1->len > r2->addr + r2->len)
2874                 return 1;
2875         return 0;
2876 }
2877
2878 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2879 {
2880         return kvm_io_bus_cmp(p1, p2);
2881 }
2882
2883 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2884                           gpa_t addr, int len)
2885 {
2886         bus->range[bus->dev_count++] = (struct kvm_io_range) {
2887                 .addr = addr,
2888                 .len = len,
2889                 .dev = dev,
2890         };
2891
2892         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2893                 kvm_io_bus_sort_cmp, NULL);
2894
2895         return 0;
2896 }
2897
2898 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2899                              gpa_t addr, int len)
2900 {
2901         struct kvm_io_range *range, key;
2902         int off;
2903
2904         key = (struct kvm_io_range) {
2905                 .addr = addr,
2906                 .len = len,
2907         };
2908
2909         range = bsearch(&key, bus->range, bus->dev_count,
2910                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2911         if (range == NULL)
2912                 return -ENOENT;
2913
2914         off = range - bus->range;
2915
2916         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2917                 off--;
2918
2919         return off;
2920 }
2921
2922 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2923                               struct kvm_io_range *range, const void *val)
2924 {
2925         int idx;
2926
2927         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2928         if (idx < 0)
2929                 return -EOPNOTSUPP;
2930
2931         while (idx < bus->dev_count &&
2932                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2933                 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2934                                         range->len, val))
2935                         return idx;
2936                 idx++;
2937         }
2938
2939         return -EOPNOTSUPP;
2940 }
2941
2942 /* kvm_io_bus_write - called under kvm->slots_lock */
2943 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2944                      int len, const void *val)
2945 {
2946         struct kvm_io_bus *bus;
2947         struct kvm_io_range range;
2948         int r;
2949
2950         range = (struct kvm_io_range) {
2951                 .addr = addr,
2952                 .len = len,
2953         };
2954
2955         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2956         r = __kvm_io_bus_write(bus, &range, val);
2957         return r < 0 ? r : 0;
2958 }
2959
2960 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2961 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2962                             int len, const void *val, long cookie)
2963 {
2964         struct kvm_io_bus *bus;
2965         struct kvm_io_range range;
2966
2967         range = (struct kvm_io_range) {
2968                 .addr = addr,
2969                 .len = len,
2970         };
2971
2972         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2973
2974         /* First try the device referenced by cookie. */
2975         if ((cookie >= 0) && (cookie < bus->dev_count) &&
2976             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2977                 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2978                                         val))
2979                         return cookie;
2980
2981         /*
2982          * cookie contained garbage; fall back to search and return the
2983          * correct cookie value.
2984          */
2985         return __kvm_io_bus_write(bus, &range, val);
2986 }
2987
2988 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2989                              void *val)
2990 {
2991         int idx;
2992
2993         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2994         if (idx < 0)
2995                 return -EOPNOTSUPP;
2996
2997         while (idx < bus->dev_count &&
2998                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2999                 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
3000                                        range->len, val))
3001                         return idx;
3002                 idx++;
3003         }
3004
3005         return -EOPNOTSUPP;
3006 }
3007 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3008
3009 /* kvm_io_bus_read - called under kvm->slots_lock */
3010 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3011                     int len, void *val)
3012 {
3013         struct kvm_io_bus *bus;
3014         struct kvm_io_range range;
3015         int r;
3016
3017         range = (struct kvm_io_range) {
3018                 .addr = addr,
3019                 .len = len,
3020         };
3021
3022         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3023         r = __kvm_io_bus_read(bus, &range, val);
3024         return r < 0 ? r : 0;
3025 }
3026
3027
3028 /* Caller must hold slots_lock. */
3029 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3030                             int len, struct kvm_io_device *dev)
3031 {
3032         struct kvm_io_bus *new_bus, *bus;
3033
3034         bus = kvm->buses[bus_idx];
3035         /* exclude ioeventfd which is limited by maximum fd */
3036         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3037                 return -ENOSPC;
3038
3039         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3040                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3041         if (!new_bus)
3042                 return -ENOMEM;
3043         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3044                sizeof(struct kvm_io_range)));
3045         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3046         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3047         synchronize_srcu_expedited(&kvm->srcu);
3048         kfree(bus);
3049
3050         return 0;
3051 }
3052
3053 /* Caller must hold slots_lock. */
3054 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3055                               struct kvm_io_device *dev)
3056 {
3057         int i, r;
3058         struct kvm_io_bus *new_bus, *bus;
3059
3060         bus = kvm->buses[bus_idx];
3061         r = -ENOENT;
3062         for (i = 0; i < bus->dev_count; i++)
3063                 if (bus->range[i].dev == dev) {
3064                         r = 0;
3065                         break;
3066                 }
3067
3068         if (r)
3069                 return r;
3070
3071         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3072                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3073         if (!new_bus)
3074                 return -ENOMEM;
3075
3076         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3077         new_bus->dev_count--;
3078         memcpy(new_bus->range + i, bus->range + i + 1,
3079                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3080
3081         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3082         synchronize_srcu_expedited(&kvm->srcu);
3083         kfree(bus);
3084         return r;
3085 }
3086
3087 static struct notifier_block kvm_cpu_notifier = {
3088         .notifier_call = kvm_cpu_hotplug,
3089 };
3090
3091 static int vm_stat_get(void *_offset, u64 *val)
3092 {
3093         unsigned offset = (long)_offset;
3094         struct kvm *kvm;
3095
3096         *val = 0;
3097         spin_lock(&kvm_lock);
3098         list_for_each_entry(kvm, &vm_list, vm_list)
3099                 *val += *(u32 *)((void *)kvm + offset);
3100         spin_unlock(&kvm_lock);
3101         return 0;
3102 }
3103
3104 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3105
3106 static int vcpu_stat_get(void *_offset, u64 *val)
3107 {
3108         unsigned offset = (long)_offset;
3109         struct kvm *kvm;
3110         struct kvm_vcpu *vcpu;
3111         int i;
3112
3113         *val = 0;
3114         spin_lock(&kvm_lock);
3115         list_for_each_entry(kvm, &vm_list, vm_list)
3116                 kvm_for_each_vcpu(i, vcpu, kvm)
3117                         *val += *(u32 *)((void *)vcpu + offset);
3118
3119         spin_unlock(&kvm_lock);
3120         return 0;
3121 }
3122
3123 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3124
3125 static const struct file_operations *stat_fops[] = {
3126         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3127         [KVM_STAT_VM]   = &vm_stat_fops,
3128 };
3129
3130 static int kvm_init_debug(void)
3131 {
3132         int r = -EEXIST;
3133         struct kvm_stats_debugfs_item *p;
3134
3135         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3136         if (kvm_debugfs_dir == NULL)
3137                 goto out;
3138
3139         for (p = debugfs_entries; p->name; ++p) {
3140                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3141                                                 (void *)(long)p->offset,
3142                                                 stat_fops[p->kind]);
3143                 if (p->dentry == NULL)
3144                         goto out_dir;
3145         }
3146
3147         return 0;
3148
3149 out_dir:
3150         debugfs_remove_recursive(kvm_debugfs_dir);
3151 out:
3152         return r;
3153 }
3154
3155 static void kvm_exit_debug(void)
3156 {
3157         struct kvm_stats_debugfs_item *p;
3158
3159         for (p = debugfs_entries; p->name; ++p)
3160                 debugfs_remove(p->dentry);
3161         debugfs_remove(kvm_debugfs_dir);
3162 }
3163
3164 static int kvm_suspend(void)
3165 {
3166         if (kvm_usage_count)
3167                 hardware_disable_nolock(NULL);
3168         return 0;
3169 }
3170
3171 static void kvm_resume(void)
3172 {
3173         if (kvm_usage_count) {
3174                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3175                 hardware_enable_nolock(NULL);
3176         }
3177 }
3178
3179 static struct syscore_ops kvm_syscore_ops = {
3180         .suspend = kvm_suspend,
3181         .resume = kvm_resume,
3182 };
3183
3184 static inline
3185 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3186 {
3187         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3188 }
3189
3190 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3191 {
3192         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3193         if (vcpu->preempted)
3194                 vcpu->preempted = false;
3195
3196         kvm_arch_sched_in(vcpu, cpu);
3197
3198         kvm_arch_vcpu_load(vcpu, cpu);
3199 }
3200
3201 static void kvm_sched_out(struct preempt_notifier *pn,
3202                           struct task_struct *next)
3203 {
3204         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3205
3206         if (current->state == TASK_RUNNING)
3207                 vcpu->preempted = true;
3208         kvm_arch_vcpu_put(vcpu);
3209 }
3210
3211 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3212                   struct module *module)
3213 {
3214         int r;
3215         int cpu;
3216
3217         r = kvm_arch_init(opaque);
3218         if (r)
3219                 goto out_fail;
3220
3221         /*
3222          * kvm_arch_init makes sure there's at most one caller
3223          * for architectures that support multiple implementations,
3224          * like intel and amd on x86.
3225          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3226          * conflicts in case kvm is already setup for another implementation.
3227          */
3228         r = kvm_irqfd_init();
3229         if (r)
3230                 goto out_irqfd;
3231
3232         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3233                 r = -ENOMEM;
3234                 goto out_free_0;
3235         }
3236
3237         r = kvm_arch_hardware_setup();
3238         if (r < 0)
3239                 goto out_free_0a;
3240
3241         for_each_online_cpu(cpu) {
3242                 smp_call_function_single(cpu,
3243                                 kvm_arch_check_processor_compat,
3244                                 &r, 1);
3245                 if (r < 0)
3246                         goto out_free_1;
3247         }
3248
3249         r = register_cpu_notifier(&kvm_cpu_notifier);
3250         if (r)
3251                 goto out_free_2;
3252         register_reboot_notifier(&kvm_reboot_notifier);
3253
3254         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3255         if (!vcpu_align)
3256                 vcpu_align = __alignof__(struct kvm_vcpu);
3257         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3258                                            0, NULL);
3259         if (!kvm_vcpu_cache) {
3260                 r = -ENOMEM;
3261                 goto out_free_3;
3262         }
3263
3264         r = kvm_async_pf_init();
3265         if (r)
3266                 goto out_free;
3267
3268         kvm_chardev_ops.owner = module;
3269         kvm_vm_fops.owner = module;
3270         kvm_vcpu_fops.owner = module;
3271
3272         r = misc_register(&kvm_dev);
3273         if (r) {
3274                 printk(KERN_ERR "kvm: misc device register failed\n");
3275                 goto out_unreg;
3276         }
3277
3278         register_syscore_ops(&kvm_syscore_ops);
3279
3280         kvm_preempt_ops.sched_in = kvm_sched_in;
3281         kvm_preempt_ops.sched_out = kvm_sched_out;
3282
3283         r = kvm_init_debug();
3284         if (r) {
3285                 printk(KERN_ERR "kvm: create debugfs files failed\n");
3286                 goto out_undebugfs;
3287         }
3288
3289         r = kvm_vfio_ops_init();
3290         WARN_ON(r);
3291
3292         return 0;
3293
3294 out_undebugfs:
3295         unregister_syscore_ops(&kvm_syscore_ops);
3296         misc_deregister(&kvm_dev);
3297 out_unreg:
3298         kvm_async_pf_deinit();
3299 out_free:
3300         kmem_cache_destroy(kvm_vcpu_cache);
3301 out_free_3:
3302         unregister_reboot_notifier(&kvm_reboot_notifier);
3303         unregister_cpu_notifier(&kvm_cpu_notifier);
3304 out_free_2:
3305 out_free_1:
3306         kvm_arch_hardware_unsetup();
3307 out_free_0a:
3308         free_cpumask_var(cpus_hardware_enabled);
3309 out_free_0:
3310         kvm_irqfd_exit();
3311 out_irqfd:
3312         kvm_arch_exit();
3313 out_fail:
3314         return r;
3315 }
3316 EXPORT_SYMBOL_GPL(kvm_init);
3317
3318 void kvm_exit(void)
3319 {
3320         kvm_exit_debug();
3321         misc_deregister(&kvm_dev);
3322         kmem_cache_destroy(kvm_vcpu_cache);
3323         kvm_async_pf_deinit();
3324         unregister_syscore_ops(&kvm_syscore_ops);
3325         unregister_reboot_notifier(&kvm_reboot_notifier);
3326         unregister_cpu_notifier(&kvm_cpu_notifier);
3327         on_each_cpu(hardware_disable_nolock, NULL, 1);
3328         kvm_arch_hardware_unsetup();
3329         kvm_arch_exit();
3330         kvm_irqfd_exit();
3331         free_cpumask_var(cpus_hardware_enabled);
3332         kvm_vfio_ops_exit();
3333 }
3334 EXPORT_SYMBOL_GPL(kvm_exit);