driver core: Make Kconfig text for DEBUG_TEST_DRIVER_REMOVE stronger
[cascardo/linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83
84 /*
85  * Ordering of locks:
86  *
87  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88  */
89
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110                            unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113                                   unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125
126 static bool largepages_enabled = true;
127
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
129 {
130         if (pfn_valid(pfn))
131                 return PageReserved(pfn_to_page(pfn));
132
133         return true;
134 }
135
136 /*
137  * Switches to specified vcpu, until a matching vcpu_put()
138  */
139 int vcpu_load(struct kvm_vcpu *vcpu)
140 {
141         int cpu;
142
143         if (mutex_lock_killable(&vcpu->mutex))
144                 return -EINTR;
145         cpu = get_cpu();
146         preempt_notifier_register(&vcpu->preempt_notifier);
147         kvm_arch_vcpu_load(vcpu, cpu);
148         put_cpu();
149         return 0;
150 }
151 EXPORT_SYMBOL_GPL(vcpu_load);
152
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155         preempt_disable();
156         kvm_arch_vcpu_put(vcpu);
157         preempt_notifier_unregister(&vcpu->preempt_notifier);
158         preempt_enable();
159         mutex_unlock(&vcpu->mutex);
160 }
161 EXPORT_SYMBOL_GPL(vcpu_put);
162
163 static void ack_flush(void *_completed)
164 {
165 }
166
167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
168 {
169         int i, cpu, me;
170         cpumask_var_t cpus;
171         bool called = true;
172         struct kvm_vcpu *vcpu;
173
174         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
175
176         me = get_cpu();
177         kvm_for_each_vcpu(i, vcpu, kvm) {
178                 kvm_make_request(req, vcpu);
179                 cpu = vcpu->cpu;
180
181                 /* Set ->requests bit before we read ->mode. */
182                 smp_mb__after_atomic();
183
184                 if (cpus != NULL && cpu != -1 && cpu != me &&
185                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
186                         cpumask_set_cpu(cpu, cpus);
187         }
188         if (unlikely(cpus == NULL))
189                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
190         else if (!cpumask_empty(cpus))
191                 smp_call_function_many(cpus, ack_flush, NULL, 1);
192         else
193                 called = false;
194         put_cpu();
195         free_cpumask_var(cpus);
196         return called;
197 }
198
199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202         /*
203          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
204          * kvm_make_all_cpus_request.
205          */
206         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
207
208         /*
209          * We want to publish modifications to the page tables before reading
210          * mode. Pairs with a memory barrier in arch-specific code.
211          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
212          * and smp_mb in walk_shadow_page_lockless_begin/end.
213          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
214          *
215          * There is already an smp_mb__after_atomic() before
216          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
217          * barrier here.
218          */
219         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
220                 ++kvm->stat.remote_tlb_flush;
221         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
222 }
223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
224 #endif
225
226 void kvm_reload_remote_mmus(struct kvm *kvm)
227 {
228         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
229 }
230
231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
232 {
233         struct page *page;
234         int r;
235
236         mutex_init(&vcpu->mutex);
237         vcpu->cpu = -1;
238         vcpu->kvm = kvm;
239         vcpu->vcpu_id = id;
240         vcpu->pid = NULL;
241         init_swait_queue_head(&vcpu->wq);
242         kvm_async_pf_vcpu_init(vcpu);
243
244         vcpu->pre_pcpu = -1;
245         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
246
247         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
248         if (!page) {
249                 r = -ENOMEM;
250                 goto fail;
251         }
252         vcpu->run = page_address(page);
253
254         kvm_vcpu_set_in_spin_loop(vcpu, false);
255         kvm_vcpu_set_dy_eligible(vcpu, false);
256         vcpu->preempted = false;
257
258         r = kvm_arch_vcpu_init(vcpu);
259         if (r < 0)
260                 goto fail_free_run;
261         return 0;
262
263 fail_free_run:
264         free_page((unsigned long)vcpu->run);
265 fail:
266         return r;
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
269
270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
271 {
272         put_pid(vcpu->pid);
273         kvm_arch_vcpu_uninit(vcpu);
274         free_page((unsigned long)vcpu->run);
275 }
276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
277
278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
280 {
281         return container_of(mn, struct kvm, mmu_notifier);
282 }
283
284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
285                                              struct mm_struct *mm,
286                                              unsigned long address)
287 {
288         struct kvm *kvm = mmu_notifier_to_kvm(mn);
289         int need_tlb_flush, idx;
290
291         /*
292          * When ->invalidate_page runs, the linux pte has been zapped
293          * already but the page is still allocated until
294          * ->invalidate_page returns. So if we increase the sequence
295          * here the kvm page fault will notice if the spte can't be
296          * established because the page is going to be freed. If
297          * instead the kvm page fault establishes the spte before
298          * ->invalidate_page runs, kvm_unmap_hva will release it
299          * before returning.
300          *
301          * The sequence increase only need to be seen at spin_unlock
302          * time, and not at spin_lock time.
303          *
304          * Increasing the sequence after the spin_unlock would be
305          * unsafe because the kvm page fault could then establish the
306          * pte after kvm_unmap_hva returned, without noticing the page
307          * is going to be freed.
308          */
309         idx = srcu_read_lock(&kvm->srcu);
310         spin_lock(&kvm->mmu_lock);
311
312         kvm->mmu_notifier_seq++;
313         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
314         /* we've to flush the tlb before the pages can be freed */
315         if (need_tlb_flush)
316                 kvm_flush_remote_tlbs(kvm);
317
318         spin_unlock(&kvm->mmu_lock);
319
320         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
321
322         srcu_read_unlock(&kvm->srcu, idx);
323 }
324
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326                                         struct mm_struct *mm,
327                                         unsigned long address,
328                                         pte_t pte)
329 {
330         struct kvm *kvm = mmu_notifier_to_kvm(mn);
331         int idx;
332
333         idx = srcu_read_lock(&kvm->srcu);
334         spin_lock(&kvm->mmu_lock);
335         kvm->mmu_notifier_seq++;
336         kvm_set_spte_hva(kvm, address, pte);
337         spin_unlock(&kvm->mmu_lock);
338         srcu_read_unlock(&kvm->srcu, idx);
339 }
340
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342                                                     struct mm_struct *mm,
343                                                     unsigned long start,
344                                                     unsigned long end)
345 {
346         struct kvm *kvm = mmu_notifier_to_kvm(mn);
347         int need_tlb_flush = 0, idx;
348
349         idx = srcu_read_lock(&kvm->srcu);
350         spin_lock(&kvm->mmu_lock);
351         /*
352          * The count increase must become visible at unlock time as no
353          * spte can be established without taking the mmu_lock and
354          * count is also read inside the mmu_lock critical section.
355          */
356         kvm->mmu_notifier_count++;
357         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358         need_tlb_flush |= kvm->tlbs_dirty;
359         /* we've to flush the tlb before the pages can be freed */
360         if (need_tlb_flush)
361                 kvm_flush_remote_tlbs(kvm);
362
363         spin_unlock(&kvm->mmu_lock);
364         srcu_read_unlock(&kvm->srcu, idx);
365 }
366
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368                                                   struct mm_struct *mm,
369                                                   unsigned long start,
370                                                   unsigned long end)
371 {
372         struct kvm *kvm = mmu_notifier_to_kvm(mn);
373
374         spin_lock(&kvm->mmu_lock);
375         /*
376          * This sequence increase will notify the kvm page fault that
377          * the page that is going to be mapped in the spte could have
378          * been freed.
379          */
380         kvm->mmu_notifier_seq++;
381         smp_wmb();
382         /*
383          * The above sequence increase must be visible before the
384          * below count decrease, which is ensured by the smp_wmb above
385          * in conjunction with the smp_rmb in mmu_notifier_retry().
386          */
387         kvm->mmu_notifier_count--;
388         spin_unlock(&kvm->mmu_lock);
389
390         BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394                                               struct mm_struct *mm,
395                                               unsigned long start,
396                                               unsigned long end)
397 {
398         struct kvm *kvm = mmu_notifier_to_kvm(mn);
399         int young, idx;
400
401         idx = srcu_read_lock(&kvm->srcu);
402         spin_lock(&kvm->mmu_lock);
403
404         young = kvm_age_hva(kvm, start, end);
405         if (young)
406                 kvm_flush_remote_tlbs(kvm);
407
408         spin_unlock(&kvm->mmu_lock);
409         srcu_read_unlock(&kvm->srcu, idx);
410
411         return young;
412 }
413
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415                                         struct mm_struct *mm,
416                                         unsigned long start,
417                                         unsigned long end)
418 {
419         struct kvm *kvm = mmu_notifier_to_kvm(mn);
420         int young, idx;
421
422         idx = srcu_read_lock(&kvm->srcu);
423         spin_lock(&kvm->mmu_lock);
424         /*
425          * Even though we do not flush TLB, this will still adversely
426          * affect performance on pre-Haswell Intel EPT, where there is
427          * no EPT Access Bit to clear so that we have to tear down EPT
428          * tables instead. If we find this unacceptable, we can always
429          * add a parameter to kvm_age_hva so that it effectively doesn't
430          * do anything on clear_young.
431          *
432          * Also note that currently we never issue secondary TLB flushes
433          * from clear_young, leaving this job up to the regular system
434          * cadence. If we find this inaccurate, we might come up with a
435          * more sophisticated heuristic later.
436          */
437         young = kvm_age_hva(kvm, start, end);
438         spin_unlock(&kvm->mmu_lock);
439         srcu_read_unlock(&kvm->srcu, idx);
440
441         return young;
442 }
443
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445                                        struct mm_struct *mm,
446                                        unsigned long address)
447 {
448         struct kvm *kvm = mmu_notifier_to_kvm(mn);
449         int young, idx;
450
451         idx = srcu_read_lock(&kvm->srcu);
452         spin_lock(&kvm->mmu_lock);
453         young = kvm_test_age_hva(kvm, address);
454         spin_unlock(&kvm->mmu_lock);
455         srcu_read_unlock(&kvm->srcu, idx);
456
457         return young;
458 }
459
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461                                      struct mm_struct *mm)
462 {
463         struct kvm *kvm = mmu_notifier_to_kvm(mn);
464         int idx;
465
466         idx = srcu_read_lock(&kvm->srcu);
467         kvm_arch_flush_shadow_all(kvm);
468         srcu_read_unlock(&kvm->srcu, idx);
469 }
470
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
473         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
474         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
475         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
476         .clear_young            = kvm_mmu_notifier_clear_young,
477         .test_young             = kvm_mmu_notifier_test_young,
478         .change_pte             = kvm_mmu_notifier_change_pte,
479         .release                = kvm_mmu_notifier_release,
480 };
481
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 {
484         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
485         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
486 }
487
488 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
489
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 {
492         return 0;
493 }
494
495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
496
497 static struct kvm_memslots *kvm_alloc_memslots(void)
498 {
499         int i;
500         struct kvm_memslots *slots;
501
502         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
503         if (!slots)
504                 return NULL;
505
506         /*
507          * Init kvm generation close to the maximum to easily test the
508          * code of handling generation number wrap-around.
509          */
510         slots->generation = -150;
511         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512                 slots->id_to_index[i] = slots->memslots[i].id = i;
513
514         return slots;
515 }
516
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519         if (!memslot->dirty_bitmap)
520                 return;
521
522         kvfree(memslot->dirty_bitmap);
523         memslot->dirty_bitmap = NULL;
524 }
525
526 /*
527  * Free any memory in @free but not in @dont.
528  */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530                               struct kvm_memory_slot *dont)
531 {
532         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533                 kvm_destroy_dirty_bitmap(free);
534
535         kvm_arch_free_memslot(kvm, free, dont);
536
537         free->npages = 0;
538 }
539
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542         struct kvm_memory_slot *memslot;
543
544         if (!slots)
545                 return;
546
547         kvm_for_each_memslot(memslot, slots)
548                 kvm_free_memslot(kvm, memslot, NULL);
549
550         kvfree(slots);
551 }
552
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555         int i;
556
557         if (!kvm->debugfs_dentry)
558                 return;
559
560         debugfs_remove_recursive(kvm->debugfs_dentry);
561
562         if (kvm->debugfs_stat_data) {
563                 for (i = 0; i < kvm_debugfs_num_entries; i++)
564                         kfree(kvm->debugfs_stat_data[i]);
565                 kfree(kvm->debugfs_stat_data);
566         }
567 }
568
569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
570 {
571         char dir_name[ITOA_MAX_LEN * 2];
572         struct kvm_stat_data *stat_data;
573         struct kvm_stats_debugfs_item *p;
574
575         if (!debugfs_initialized())
576                 return 0;
577
578         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
579         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
580                                                  kvm_debugfs_dir);
581         if (!kvm->debugfs_dentry)
582                 return -ENOMEM;
583
584         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
585                                          sizeof(*kvm->debugfs_stat_data),
586                                          GFP_KERNEL);
587         if (!kvm->debugfs_stat_data)
588                 return -ENOMEM;
589
590         for (p = debugfs_entries; p->name; p++) {
591                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
592                 if (!stat_data)
593                         return -ENOMEM;
594
595                 stat_data->kvm = kvm;
596                 stat_data->offset = p->offset;
597                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
598                 if (!debugfs_create_file(p->name, 0444,
599                                          kvm->debugfs_dentry,
600                                          stat_data,
601                                          stat_fops_per_vm[p->kind]))
602                         return -ENOMEM;
603         }
604         return 0;
605 }
606
607 static struct kvm *kvm_create_vm(unsigned long type)
608 {
609         int r, i;
610         struct kvm *kvm = kvm_arch_alloc_vm();
611
612         if (!kvm)
613                 return ERR_PTR(-ENOMEM);
614
615         spin_lock_init(&kvm->mmu_lock);
616         atomic_inc(&current->mm->mm_count);
617         kvm->mm = current->mm;
618         kvm_eventfd_init(kvm);
619         mutex_init(&kvm->lock);
620         mutex_init(&kvm->irq_lock);
621         mutex_init(&kvm->slots_lock);
622         atomic_set(&kvm->users_count, 1);
623         INIT_LIST_HEAD(&kvm->devices);
624
625         r = kvm_arch_init_vm(kvm, type);
626         if (r)
627                 goto out_err_no_disable;
628
629         r = hardware_enable_all();
630         if (r)
631                 goto out_err_no_disable;
632
633 #ifdef CONFIG_HAVE_KVM_IRQFD
634         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
635 #endif
636
637         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
638
639         r = -ENOMEM;
640         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
641                 kvm->memslots[i] = kvm_alloc_memslots();
642                 if (!kvm->memslots[i])
643                         goto out_err_no_srcu;
644         }
645
646         if (init_srcu_struct(&kvm->srcu))
647                 goto out_err_no_srcu;
648         if (init_srcu_struct(&kvm->irq_srcu))
649                 goto out_err_no_irq_srcu;
650         for (i = 0; i < KVM_NR_BUSES; i++) {
651                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
652                                         GFP_KERNEL);
653                 if (!kvm->buses[i])
654                         goto out_err;
655         }
656
657         r = kvm_init_mmu_notifier(kvm);
658         if (r)
659                 goto out_err;
660
661         spin_lock(&kvm_lock);
662         list_add(&kvm->vm_list, &vm_list);
663         spin_unlock(&kvm_lock);
664
665         preempt_notifier_inc();
666
667         return kvm;
668
669 out_err:
670         cleanup_srcu_struct(&kvm->irq_srcu);
671 out_err_no_irq_srcu:
672         cleanup_srcu_struct(&kvm->srcu);
673 out_err_no_srcu:
674         hardware_disable_all();
675 out_err_no_disable:
676         for (i = 0; i < KVM_NR_BUSES; i++)
677                 kfree(kvm->buses[i]);
678         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
679                 kvm_free_memslots(kvm, kvm->memslots[i]);
680         kvm_arch_free_vm(kvm);
681         mmdrop(current->mm);
682         return ERR_PTR(r);
683 }
684
685 /*
686  * Avoid using vmalloc for a small buffer.
687  * Should not be used when the size is statically known.
688  */
689 void *kvm_kvzalloc(unsigned long size)
690 {
691         if (size > PAGE_SIZE)
692                 return vzalloc(size);
693         else
694                 return kzalloc(size, GFP_KERNEL);
695 }
696
697 static void kvm_destroy_devices(struct kvm *kvm)
698 {
699         struct kvm_device *dev, *tmp;
700
701         /*
702          * We do not need to take the kvm->lock here, because nobody else
703          * has a reference to the struct kvm at this point and therefore
704          * cannot access the devices list anyhow.
705          */
706         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
707                 list_del(&dev->vm_node);
708                 dev->ops->destroy(dev);
709         }
710 }
711
712 static void kvm_destroy_vm(struct kvm *kvm)
713 {
714         int i;
715         struct mm_struct *mm = kvm->mm;
716
717         kvm_destroy_vm_debugfs(kvm);
718         kvm_arch_sync_events(kvm);
719         spin_lock(&kvm_lock);
720         list_del(&kvm->vm_list);
721         spin_unlock(&kvm_lock);
722         kvm_free_irq_routing(kvm);
723         for (i = 0; i < KVM_NR_BUSES; i++)
724                 kvm_io_bus_destroy(kvm->buses[i]);
725         kvm_coalesced_mmio_free(kvm);
726 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
727         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
728 #else
729         kvm_arch_flush_shadow_all(kvm);
730 #endif
731         kvm_arch_destroy_vm(kvm);
732         kvm_destroy_devices(kvm);
733         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
734                 kvm_free_memslots(kvm, kvm->memslots[i]);
735         cleanup_srcu_struct(&kvm->irq_srcu);
736         cleanup_srcu_struct(&kvm->srcu);
737         kvm_arch_free_vm(kvm);
738         preempt_notifier_dec();
739         hardware_disable_all();
740         mmdrop(mm);
741 }
742
743 void kvm_get_kvm(struct kvm *kvm)
744 {
745         atomic_inc(&kvm->users_count);
746 }
747 EXPORT_SYMBOL_GPL(kvm_get_kvm);
748
749 void kvm_put_kvm(struct kvm *kvm)
750 {
751         if (atomic_dec_and_test(&kvm->users_count))
752                 kvm_destroy_vm(kvm);
753 }
754 EXPORT_SYMBOL_GPL(kvm_put_kvm);
755
756
757 static int kvm_vm_release(struct inode *inode, struct file *filp)
758 {
759         struct kvm *kvm = filp->private_data;
760
761         kvm_irqfd_release(kvm);
762
763         kvm_put_kvm(kvm);
764         return 0;
765 }
766
767 /*
768  * Allocation size is twice as large as the actual dirty bitmap size.
769  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
770  */
771 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
772 {
773         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
774
775         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
776         if (!memslot->dirty_bitmap)
777                 return -ENOMEM;
778
779         return 0;
780 }
781
782 /*
783  * Insert memslot and re-sort memslots based on their GFN,
784  * so binary search could be used to lookup GFN.
785  * Sorting algorithm takes advantage of having initially
786  * sorted array and known changed memslot position.
787  */
788 static void update_memslots(struct kvm_memslots *slots,
789                             struct kvm_memory_slot *new)
790 {
791         int id = new->id;
792         int i = slots->id_to_index[id];
793         struct kvm_memory_slot *mslots = slots->memslots;
794
795         WARN_ON(mslots[i].id != id);
796         if (!new->npages) {
797                 WARN_ON(!mslots[i].npages);
798                 if (mslots[i].npages)
799                         slots->used_slots--;
800         } else {
801                 if (!mslots[i].npages)
802                         slots->used_slots++;
803         }
804
805         while (i < KVM_MEM_SLOTS_NUM - 1 &&
806                new->base_gfn <= mslots[i + 1].base_gfn) {
807                 if (!mslots[i + 1].npages)
808                         break;
809                 mslots[i] = mslots[i + 1];
810                 slots->id_to_index[mslots[i].id] = i;
811                 i++;
812         }
813
814         /*
815          * The ">=" is needed when creating a slot with base_gfn == 0,
816          * so that it moves before all those with base_gfn == npages == 0.
817          *
818          * On the other hand, if new->npages is zero, the above loop has
819          * already left i pointing to the beginning of the empty part of
820          * mslots, and the ">=" would move the hole backwards in this
821          * case---which is wrong.  So skip the loop when deleting a slot.
822          */
823         if (new->npages) {
824                 while (i > 0 &&
825                        new->base_gfn >= mslots[i - 1].base_gfn) {
826                         mslots[i] = mslots[i - 1];
827                         slots->id_to_index[mslots[i].id] = i;
828                         i--;
829                 }
830         } else
831                 WARN_ON_ONCE(i != slots->used_slots);
832
833         mslots[i] = *new;
834         slots->id_to_index[mslots[i].id] = i;
835 }
836
837 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
838 {
839         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
840
841 #ifdef __KVM_HAVE_READONLY_MEM
842         valid_flags |= KVM_MEM_READONLY;
843 #endif
844
845         if (mem->flags & ~valid_flags)
846                 return -EINVAL;
847
848         return 0;
849 }
850
851 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
852                 int as_id, struct kvm_memslots *slots)
853 {
854         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
855
856         /*
857          * Set the low bit in the generation, which disables SPTE caching
858          * until the end of synchronize_srcu_expedited.
859          */
860         WARN_ON(old_memslots->generation & 1);
861         slots->generation = old_memslots->generation + 1;
862
863         rcu_assign_pointer(kvm->memslots[as_id], slots);
864         synchronize_srcu_expedited(&kvm->srcu);
865
866         /*
867          * Increment the new memslot generation a second time. This prevents
868          * vm exits that race with memslot updates from caching a memslot
869          * generation that will (potentially) be valid forever.
870          */
871         slots->generation++;
872
873         kvm_arch_memslots_updated(kvm, slots);
874
875         return old_memslots;
876 }
877
878 /*
879  * Allocate some memory and give it an address in the guest physical address
880  * space.
881  *
882  * Discontiguous memory is allowed, mostly for framebuffers.
883  *
884  * Must be called holding kvm->slots_lock for write.
885  */
886 int __kvm_set_memory_region(struct kvm *kvm,
887                             const struct kvm_userspace_memory_region *mem)
888 {
889         int r;
890         gfn_t base_gfn;
891         unsigned long npages;
892         struct kvm_memory_slot *slot;
893         struct kvm_memory_slot old, new;
894         struct kvm_memslots *slots = NULL, *old_memslots;
895         int as_id, id;
896         enum kvm_mr_change change;
897
898         r = check_memory_region_flags(mem);
899         if (r)
900                 goto out;
901
902         r = -EINVAL;
903         as_id = mem->slot >> 16;
904         id = (u16)mem->slot;
905
906         /* General sanity checks */
907         if (mem->memory_size & (PAGE_SIZE - 1))
908                 goto out;
909         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
910                 goto out;
911         /* We can read the guest memory with __xxx_user() later on. */
912         if ((id < KVM_USER_MEM_SLOTS) &&
913             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
914              !access_ok(VERIFY_WRITE,
915                         (void __user *)(unsigned long)mem->userspace_addr,
916                         mem->memory_size)))
917                 goto out;
918         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
919                 goto out;
920         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
921                 goto out;
922
923         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
924         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
925         npages = mem->memory_size >> PAGE_SHIFT;
926
927         if (npages > KVM_MEM_MAX_NR_PAGES)
928                 goto out;
929
930         new = old = *slot;
931
932         new.id = id;
933         new.base_gfn = base_gfn;
934         new.npages = npages;
935         new.flags = mem->flags;
936
937         if (npages) {
938                 if (!old.npages)
939                         change = KVM_MR_CREATE;
940                 else { /* Modify an existing slot. */
941                         if ((mem->userspace_addr != old.userspace_addr) ||
942                             (npages != old.npages) ||
943                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
944                                 goto out;
945
946                         if (base_gfn != old.base_gfn)
947                                 change = KVM_MR_MOVE;
948                         else if (new.flags != old.flags)
949                                 change = KVM_MR_FLAGS_ONLY;
950                         else { /* Nothing to change. */
951                                 r = 0;
952                                 goto out;
953                         }
954                 }
955         } else {
956                 if (!old.npages)
957                         goto out;
958
959                 change = KVM_MR_DELETE;
960                 new.base_gfn = 0;
961                 new.flags = 0;
962         }
963
964         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
965                 /* Check for overlaps */
966                 r = -EEXIST;
967                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
968                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
969                             (slot->id == id))
970                                 continue;
971                         if (!((base_gfn + npages <= slot->base_gfn) ||
972                               (base_gfn >= slot->base_gfn + slot->npages)))
973                                 goto out;
974                 }
975         }
976
977         /* Free page dirty bitmap if unneeded */
978         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
979                 new.dirty_bitmap = NULL;
980
981         r = -ENOMEM;
982         if (change == KVM_MR_CREATE) {
983                 new.userspace_addr = mem->userspace_addr;
984
985                 if (kvm_arch_create_memslot(kvm, &new, npages))
986                         goto out_free;
987         }
988
989         /* Allocate page dirty bitmap if needed */
990         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
991                 if (kvm_create_dirty_bitmap(&new) < 0)
992                         goto out_free;
993         }
994
995         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
996         if (!slots)
997                 goto out_free;
998         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
999
1000         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1001                 slot = id_to_memslot(slots, id);
1002                 slot->flags |= KVM_MEMSLOT_INVALID;
1003
1004                 old_memslots = install_new_memslots(kvm, as_id, slots);
1005
1006                 /* slot was deleted or moved, clear iommu mapping */
1007                 kvm_iommu_unmap_pages(kvm, &old);
1008                 /* From this point no new shadow pages pointing to a deleted,
1009                  * or moved, memslot will be created.
1010                  *
1011                  * validation of sp->gfn happens in:
1012                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1013                  *      - kvm_is_visible_gfn (mmu_check_roots)
1014                  */
1015                 kvm_arch_flush_shadow_memslot(kvm, slot);
1016
1017                 /*
1018                  * We can re-use the old_memslots from above, the only difference
1019                  * from the currently installed memslots is the invalid flag.  This
1020                  * will get overwritten by update_memslots anyway.
1021                  */
1022                 slots = old_memslots;
1023         }
1024
1025         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1026         if (r)
1027                 goto out_slots;
1028
1029         /* actual memory is freed via old in kvm_free_memslot below */
1030         if (change == KVM_MR_DELETE) {
1031                 new.dirty_bitmap = NULL;
1032                 memset(&new.arch, 0, sizeof(new.arch));
1033         }
1034
1035         update_memslots(slots, &new);
1036         old_memslots = install_new_memslots(kvm, as_id, slots);
1037
1038         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1039
1040         kvm_free_memslot(kvm, &old, &new);
1041         kvfree(old_memslots);
1042
1043         /*
1044          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1045          * un-mapped and re-mapped if their base changes.  Since base change
1046          * unmapping is handled above with slot deletion, mapping alone is
1047          * needed here.  Anything else the iommu might care about for existing
1048          * slots (size changes, userspace addr changes and read-only flag
1049          * changes) is disallowed above, so any other attribute changes getting
1050          * here can be skipped.
1051          */
1052         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1053                 r = kvm_iommu_map_pages(kvm, &new);
1054                 return r;
1055         }
1056
1057         return 0;
1058
1059 out_slots:
1060         kvfree(slots);
1061 out_free:
1062         kvm_free_memslot(kvm, &new, &old);
1063 out:
1064         return r;
1065 }
1066 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1067
1068 int kvm_set_memory_region(struct kvm *kvm,
1069                           const struct kvm_userspace_memory_region *mem)
1070 {
1071         int r;
1072
1073         mutex_lock(&kvm->slots_lock);
1074         r = __kvm_set_memory_region(kvm, mem);
1075         mutex_unlock(&kvm->slots_lock);
1076         return r;
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1079
1080 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1081                                           struct kvm_userspace_memory_region *mem)
1082 {
1083         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1084                 return -EINVAL;
1085
1086         return kvm_set_memory_region(kvm, mem);
1087 }
1088
1089 int kvm_get_dirty_log(struct kvm *kvm,
1090                         struct kvm_dirty_log *log, int *is_dirty)
1091 {
1092         struct kvm_memslots *slots;
1093         struct kvm_memory_slot *memslot;
1094         int r, i, as_id, id;
1095         unsigned long n;
1096         unsigned long any = 0;
1097
1098         r = -EINVAL;
1099         as_id = log->slot >> 16;
1100         id = (u16)log->slot;
1101         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1102                 goto out;
1103
1104         slots = __kvm_memslots(kvm, as_id);
1105         memslot = id_to_memslot(slots, id);
1106         r = -ENOENT;
1107         if (!memslot->dirty_bitmap)
1108                 goto out;
1109
1110         n = kvm_dirty_bitmap_bytes(memslot);
1111
1112         for (i = 0; !any && i < n/sizeof(long); ++i)
1113                 any = memslot->dirty_bitmap[i];
1114
1115         r = -EFAULT;
1116         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1117                 goto out;
1118
1119         if (any)
1120                 *is_dirty = 1;
1121
1122         r = 0;
1123 out:
1124         return r;
1125 }
1126 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1127
1128 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1129 /**
1130  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1131  *      are dirty write protect them for next write.
1132  * @kvm:        pointer to kvm instance
1133  * @log:        slot id and address to which we copy the log
1134  * @is_dirty:   flag set if any page is dirty
1135  *
1136  * We need to keep it in mind that VCPU threads can write to the bitmap
1137  * concurrently. So, to avoid losing track of dirty pages we keep the
1138  * following order:
1139  *
1140  *    1. Take a snapshot of the bit and clear it if needed.
1141  *    2. Write protect the corresponding page.
1142  *    3. Copy the snapshot to the userspace.
1143  *    4. Upon return caller flushes TLB's if needed.
1144  *
1145  * Between 2 and 4, the guest may write to the page using the remaining TLB
1146  * entry.  This is not a problem because the page is reported dirty using
1147  * the snapshot taken before and step 4 ensures that writes done after
1148  * exiting to userspace will be logged for the next call.
1149  *
1150  */
1151 int kvm_get_dirty_log_protect(struct kvm *kvm,
1152                         struct kvm_dirty_log *log, bool *is_dirty)
1153 {
1154         struct kvm_memslots *slots;
1155         struct kvm_memory_slot *memslot;
1156         int r, i, as_id, id;
1157         unsigned long n;
1158         unsigned long *dirty_bitmap;
1159         unsigned long *dirty_bitmap_buffer;
1160
1161         r = -EINVAL;
1162         as_id = log->slot >> 16;
1163         id = (u16)log->slot;
1164         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1165                 goto out;
1166
1167         slots = __kvm_memslots(kvm, as_id);
1168         memslot = id_to_memslot(slots, id);
1169
1170         dirty_bitmap = memslot->dirty_bitmap;
1171         r = -ENOENT;
1172         if (!dirty_bitmap)
1173                 goto out;
1174
1175         n = kvm_dirty_bitmap_bytes(memslot);
1176
1177         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1178         memset(dirty_bitmap_buffer, 0, n);
1179
1180         spin_lock(&kvm->mmu_lock);
1181         *is_dirty = false;
1182         for (i = 0; i < n / sizeof(long); i++) {
1183                 unsigned long mask;
1184                 gfn_t offset;
1185
1186                 if (!dirty_bitmap[i])
1187                         continue;
1188
1189                 *is_dirty = true;
1190
1191                 mask = xchg(&dirty_bitmap[i], 0);
1192                 dirty_bitmap_buffer[i] = mask;
1193
1194                 if (mask) {
1195                         offset = i * BITS_PER_LONG;
1196                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1197                                                                 offset, mask);
1198                 }
1199         }
1200
1201         spin_unlock(&kvm->mmu_lock);
1202
1203         r = -EFAULT;
1204         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1205                 goto out;
1206
1207         r = 0;
1208 out:
1209         return r;
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1212 #endif
1213
1214 bool kvm_largepages_enabled(void)
1215 {
1216         return largepages_enabled;
1217 }
1218
1219 void kvm_disable_largepages(void)
1220 {
1221         largepages_enabled = false;
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1224
1225 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1226 {
1227         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1228 }
1229 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1230
1231 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1232 {
1233         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1234 }
1235
1236 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1237 {
1238         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1239
1240         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1241               memslot->flags & KVM_MEMSLOT_INVALID)
1242                 return false;
1243
1244         return true;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1247
1248 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1249 {
1250         struct vm_area_struct *vma;
1251         unsigned long addr, size;
1252
1253         size = PAGE_SIZE;
1254
1255         addr = gfn_to_hva(kvm, gfn);
1256         if (kvm_is_error_hva(addr))
1257                 return PAGE_SIZE;
1258
1259         down_read(&current->mm->mmap_sem);
1260         vma = find_vma(current->mm, addr);
1261         if (!vma)
1262                 goto out;
1263
1264         size = vma_kernel_pagesize(vma);
1265
1266 out:
1267         up_read(&current->mm->mmap_sem);
1268
1269         return size;
1270 }
1271
1272 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1273 {
1274         return slot->flags & KVM_MEM_READONLY;
1275 }
1276
1277 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1278                                        gfn_t *nr_pages, bool write)
1279 {
1280         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1281                 return KVM_HVA_ERR_BAD;
1282
1283         if (memslot_is_readonly(slot) && write)
1284                 return KVM_HVA_ERR_RO_BAD;
1285
1286         if (nr_pages)
1287                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1288
1289         return __gfn_to_hva_memslot(slot, gfn);
1290 }
1291
1292 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1293                                      gfn_t *nr_pages)
1294 {
1295         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1296 }
1297
1298 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1299                                         gfn_t gfn)
1300 {
1301         return gfn_to_hva_many(slot, gfn, NULL);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1304
1305 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1306 {
1307         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_hva);
1310
1311 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1312 {
1313         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1314 }
1315 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1316
1317 /*
1318  * If writable is set to false, the hva returned by this function is only
1319  * allowed to be read.
1320  */
1321 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1322                                       gfn_t gfn, bool *writable)
1323 {
1324         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1325
1326         if (!kvm_is_error_hva(hva) && writable)
1327                 *writable = !memslot_is_readonly(slot);
1328
1329         return hva;
1330 }
1331
1332 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1333 {
1334         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1335
1336         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338
1339 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1340 {
1341         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1342
1343         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1344 }
1345
1346 static int get_user_page_nowait(unsigned long start, int write,
1347                 struct page **page)
1348 {
1349         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1350
1351         if (write)
1352                 flags |= FOLL_WRITE;
1353
1354         return __get_user_pages(current, current->mm, start, 1, flags, page,
1355                         NULL, NULL);
1356 }
1357
1358 static inline int check_user_page_hwpoison(unsigned long addr)
1359 {
1360         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1361
1362         rc = __get_user_pages(current, current->mm, addr, 1,
1363                               flags, NULL, NULL, NULL);
1364         return rc == -EHWPOISON;
1365 }
1366
1367 /*
1368  * The atomic path to get the writable pfn which will be stored in @pfn,
1369  * true indicates success, otherwise false is returned.
1370  */
1371 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1372                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1373 {
1374         struct page *page[1];
1375         int npages;
1376
1377         if (!(async || atomic))
1378                 return false;
1379
1380         /*
1381          * Fast pin a writable pfn only if it is a write fault request
1382          * or the caller allows to map a writable pfn for a read fault
1383          * request.
1384          */
1385         if (!(write_fault || writable))
1386                 return false;
1387
1388         npages = __get_user_pages_fast(addr, 1, 1, page);
1389         if (npages == 1) {
1390                 *pfn = page_to_pfn(page[0]);
1391
1392                 if (writable)
1393                         *writable = true;
1394                 return true;
1395         }
1396
1397         return false;
1398 }
1399
1400 /*
1401  * The slow path to get the pfn of the specified host virtual address,
1402  * 1 indicates success, -errno is returned if error is detected.
1403  */
1404 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1405                            bool *writable, kvm_pfn_t *pfn)
1406 {
1407         struct page *page[1];
1408         int npages = 0;
1409
1410         might_sleep();
1411
1412         if (writable)
1413                 *writable = write_fault;
1414
1415         if (async) {
1416                 down_read(&current->mm->mmap_sem);
1417                 npages = get_user_page_nowait(addr, write_fault, page);
1418                 up_read(&current->mm->mmap_sem);
1419         } else {
1420                 unsigned int flags = FOLL_TOUCH | FOLL_HWPOISON;
1421
1422                 if (write_fault)
1423                         flags |= FOLL_WRITE;
1424
1425                 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1426                                                    page, flags);
1427         }
1428         if (npages != 1)
1429                 return npages;
1430
1431         /* map read fault as writable if possible */
1432         if (unlikely(!write_fault) && writable) {
1433                 struct page *wpage[1];
1434
1435                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1436                 if (npages == 1) {
1437                         *writable = true;
1438                         put_page(page[0]);
1439                         page[0] = wpage[0];
1440                 }
1441
1442                 npages = 1;
1443         }
1444         *pfn = page_to_pfn(page[0]);
1445         return npages;
1446 }
1447
1448 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1449 {
1450         if (unlikely(!(vma->vm_flags & VM_READ)))
1451                 return false;
1452
1453         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1454                 return false;
1455
1456         return true;
1457 }
1458
1459 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1460                                unsigned long addr, bool *async,
1461                                bool write_fault, kvm_pfn_t *p_pfn)
1462 {
1463         unsigned long pfn;
1464         int r;
1465
1466         r = follow_pfn(vma, addr, &pfn);
1467         if (r) {
1468                 /*
1469                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1470                  * not call the fault handler, so do it here.
1471                  */
1472                 bool unlocked = false;
1473                 r = fixup_user_fault(current, current->mm, addr,
1474                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1475                                      &unlocked);
1476                 if (unlocked)
1477                         return -EAGAIN;
1478                 if (r)
1479                         return r;
1480
1481                 r = follow_pfn(vma, addr, &pfn);
1482                 if (r)
1483                         return r;
1484
1485         }
1486
1487
1488         /*
1489          * Get a reference here because callers of *hva_to_pfn* and
1490          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1491          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1492          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1493          * simply do nothing for reserved pfns.
1494          *
1495          * Whoever called remap_pfn_range is also going to call e.g.
1496          * unmap_mapping_range before the underlying pages are freed,
1497          * causing a call to our MMU notifier.
1498          */ 
1499         kvm_get_pfn(pfn);
1500
1501         *p_pfn = pfn;
1502         return 0;
1503 }
1504
1505 /*
1506  * Pin guest page in memory and return its pfn.
1507  * @addr: host virtual address which maps memory to the guest
1508  * @atomic: whether this function can sleep
1509  * @async: whether this function need to wait IO complete if the
1510  *         host page is not in the memory
1511  * @write_fault: whether we should get a writable host page
1512  * @writable: whether it allows to map a writable host page for !@write_fault
1513  *
1514  * The function will map a writable host page for these two cases:
1515  * 1): @write_fault = true
1516  * 2): @write_fault = false && @writable, @writable will tell the caller
1517  *     whether the mapping is writable.
1518  */
1519 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1520                         bool write_fault, bool *writable)
1521 {
1522         struct vm_area_struct *vma;
1523         kvm_pfn_t pfn = 0;
1524         int npages, r;
1525
1526         /* we can do it either atomically or asynchronously, not both */
1527         BUG_ON(atomic && async);
1528
1529         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1530                 return pfn;
1531
1532         if (atomic)
1533                 return KVM_PFN_ERR_FAULT;
1534
1535         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1536         if (npages == 1)
1537                 return pfn;
1538
1539         down_read(&current->mm->mmap_sem);
1540         if (npages == -EHWPOISON ||
1541               (!async && check_user_page_hwpoison(addr))) {
1542                 pfn = KVM_PFN_ERR_HWPOISON;
1543                 goto exit;
1544         }
1545
1546 retry:
1547         vma = find_vma_intersection(current->mm, addr, addr + 1);
1548
1549         if (vma == NULL)
1550                 pfn = KVM_PFN_ERR_FAULT;
1551         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1552                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1553                 if (r == -EAGAIN)
1554                         goto retry;
1555                 if (r < 0)
1556                         pfn = KVM_PFN_ERR_FAULT;
1557         } else {
1558                 if (async && vma_is_valid(vma, write_fault))
1559                         *async = true;
1560                 pfn = KVM_PFN_ERR_FAULT;
1561         }
1562 exit:
1563         up_read(&current->mm->mmap_sem);
1564         return pfn;
1565 }
1566
1567 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1568                                bool atomic, bool *async, bool write_fault,
1569                                bool *writable)
1570 {
1571         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1572
1573         if (addr == KVM_HVA_ERR_RO_BAD) {
1574                 if (writable)
1575                         *writable = false;
1576                 return KVM_PFN_ERR_RO_FAULT;
1577         }
1578
1579         if (kvm_is_error_hva(addr)) {
1580                 if (writable)
1581                         *writable = false;
1582                 return KVM_PFN_NOSLOT;
1583         }
1584
1585         /* Do not map writable pfn in the readonly memslot. */
1586         if (writable && memslot_is_readonly(slot)) {
1587                 *writable = false;
1588                 writable = NULL;
1589         }
1590
1591         return hva_to_pfn(addr, atomic, async, write_fault,
1592                           writable);
1593 }
1594 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1595
1596 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1597                       bool *writable)
1598 {
1599         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1600                                     write_fault, writable);
1601 }
1602 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1603
1604 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1605 {
1606         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1609
1610 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1611 {
1612         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1613 }
1614 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1615
1616 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1617 {
1618         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1619 }
1620 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1621
1622 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1623 {
1624         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1627
1628 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1629 {
1630         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1631 }
1632 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1633
1634 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1635 {
1636         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1639
1640 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1641                             struct page **pages, int nr_pages)
1642 {
1643         unsigned long addr;
1644         gfn_t entry;
1645
1646         addr = gfn_to_hva_many(slot, gfn, &entry);
1647         if (kvm_is_error_hva(addr))
1648                 return -1;
1649
1650         if (entry < nr_pages)
1651                 return 0;
1652
1653         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1654 }
1655 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1656
1657 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1658 {
1659         if (is_error_noslot_pfn(pfn))
1660                 return KVM_ERR_PTR_BAD_PAGE;
1661
1662         if (kvm_is_reserved_pfn(pfn)) {
1663                 WARN_ON(1);
1664                 return KVM_ERR_PTR_BAD_PAGE;
1665         }
1666
1667         return pfn_to_page(pfn);
1668 }
1669
1670 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1671 {
1672         kvm_pfn_t pfn;
1673
1674         pfn = gfn_to_pfn(kvm, gfn);
1675
1676         return kvm_pfn_to_page(pfn);
1677 }
1678 EXPORT_SYMBOL_GPL(gfn_to_page);
1679
1680 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1681 {
1682         kvm_pfn_t pfn;
1683
1684         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1685
1686         return kvm_pfn_to_page(pfn);
1687 }
1688 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1689
1690 void kvm_release_page_clean(struct page *page)
1691 {
1692         WARN_ON(is_error_page(page));
1693
1694         kvm_release_pfn_clean(page_to_pfn(page));
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1697
1698 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1699 {
1700         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1701                 put_page(pfn_to_page(pfn));
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1704
1705 void kvm_release_page_dirty(struct page *page)
1706 {
1707         WARN_ON(is_error_page(page));
1708
1709         kvm_release_pfn_dirty(page_to_pfn(page));
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1712
1713 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1714 {
1715         kvm_set_pfn_dirty(pfn);
1716         kvm_release_pfn_clean(pfn);
1717 }
1718
1719 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1720 {
1721         if (!kvm_is_reserved_pfn(pfn)) {
1722                 struct page *page = pfn_to_page(pfn);
1723
1724                 if (!PageReserved(page))
1725                         SetPageDirty(page);
1726         }
1727 }
1728 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1729
1730 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1731 {
1732         if (!kvm_is_reserved_pfn(pfn))
1733                 mark_page_accessed(pfn_to_page(pfn));
1734 }
1735 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1736
1737 void kvm_get_pfn(kvm_pfn_t pfn)
1738 {
1739         if (!kvm_is_reserved_pfn(pfn))
1740                 get_page(pfn_to_page(pfn));
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1743
1744 static int next_segment(unsigned long len, int offset)
1745 {
1746         if (len > PAGE_SIZE - offset)
1747                 return PAGE_SIZE - offset;
1748         else
1749                 return len;
1750 }
1751
1752 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1753                                  void *data, int offset, int len)
1754 {
1755         int r;
1756         unsigned long addr;
1757
1758         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1759         if (kvm_is_error_hva(addr))
1760                 return -EFAULT;
1761         r = __copy_from_user(data, (void __user *)addr + offset, len);
1762         if (r)
1763                 return -EFAULT;
1764         return 0;
1765 }
1766
1767 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1768                         int len)
1769 {
1770         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1771
1772         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1775
1776 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1777                              int offset, int len)
1778 {
1779         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1780
1781         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1782 }
1783 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1784
1785 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1786 {
1787         gfn_t gfn = gpa >> PAGE_SHIFT;
1788         int seg;
1789         int offset = offset_in_page(gpa);
1790         int ret;
1791
1792         while ((seg = next_segment(len, offset)) != 0) {
1793                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1794                 if (ret < 0)
1795                         return ret;
1796                 offset = 0;
1797                 len -= seg;
1798                 data += seg;
1799                 ++gfn;
1800         }
1801         return 0;
1802 }
1803 EXPORT_SYMBOL_GPL(kvm_read_guest);
1804
1805 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1806 {
1807         gfn_t gfn = gpa >> PAGE_SHIFT;
1808         int seg;
1809         int offset = offset_in_page(gpa);
1810         int ret;
1811
1812         while ((seg = next_segment(len, offset)) != 0) {
1813                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1814                 if (ret < 0)
1815                         return ret;
1816                 offset = 0;
1817                 len -= seg;
1818                 data += seg;
1819                 ++gfn;
1820         }
1821         return 0;
1822 }
1823 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1824
1825 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1826                                    void *data, int offset, unsigned long len)
1827 {
1828         int r;
1829         unsigned long addr;
1830
1831         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1832         if (kvm_is_error_hva(addr))
1833                 return -EFAULT;
1834         pagefault_disable();
1835         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1836         pagefault_enable();
1837         if (r)
1838                 return -EFAULT;
1839         return 0;
1840 }
1841
1842 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1843                           unsigned long len)
1844 {
1845         gfn_t gfn = gpa >> PAGE_SHIFT;
1846         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1847         int offset = offset_in_page(gpa);
1848
1849         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1852
1853 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1854                                void *data, unsigned long len)
1855 {
1856         gfn_t gfn = gpa >> PAGE_SHIFT;
1857         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1858         int offset = offset_in_page(gpa);
1859
1860         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1863
1864 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1865                                   const void *data, int offset, int len)
1866 {
1867         int r;
1868         unsigned long addr;
1869
1870         addr = gfn_to_hva_memslot(memslot, gfn);
1871         if (kvm_is_error_hva(addr))
1872                 return -EFAULT;
1873         r = __copy_to_user((void __user *)addr + offset, data, len);
1874         if (r)
1875                 return -EFAULT;
1876         mark_page_dirty_in_slot(memslot, gfn);
1877         return 0;
1878 }
1879
1880 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1881                          const void *data, int offset, int len)
1882 {
1883         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1884
1885         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1886 }
1887 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1888
1889 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1890                               const void *data, int offset, int len)
1891 {
1892         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1893
1894         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1897
1898 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1899                     unsigned long len)
1900 {
1901         gfn_t gfn = gpa >> PAGE_SHIFT;
1902         int seg;
1903         int offset = offset_in_page(gpa);
1904         int ret;
1905
1906         while ((seg = next_segment(len, offset)) != 0) {
1907                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1908                 if (ret < 0)
1909                         return ret;
1910                 offset = 0;
1911                 len -= seg;
1912                 data += seg;
1913                 ++gfn;
1914         }
1915         return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_write_guest);
1918
1919 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1920                          unsigned long len)
1921 {
1922         gfn_t gfn = gpa >> PAGE_SHIFT;
1923         int seg;
1924         int offset = offset_in_page(gpa);
1925         int ret;
1926
1927         while ((seg = next_segment(len, offset)) != 0) {
1928                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1929                 if (ret < 0)
1930                         return ret;
1931                 offset = 0;
1932                 len -= seg;
1933                 data += seg;
1934                 ++gfn;
1935         }
1936         return 0;
1937 }
1938 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1939
1940 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1941                               gpa_t gpa, unsigned long len)
1942 {
1943         struct kvm_memslots *slots = kvm_memslots(kvm);
1944         int offset = offset_in_page(gpa);
1945         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1946         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1947         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1948         gfn_t nr_pages_avail;
1949
1950         ghc->gpa = gpa;
1951         ghc->generation = slots->generation;
1952         ghc->len = len;
1953         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1954         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1955         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1956                 ghc->hva += offset;
1957         } else {
1958                 /*
1959                  * If the requested region crosses two memslots, we still
1960                  * verify that the entire region is valid here.
1961                  */
1962                 while (start_gfn <= end_gfn) {
1963                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1964                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1965                                                    &nr_pages_avail);
1966                         if (kvm_is_error_hva(ghc->hva))
1967                                 return -EFAULT;
1968                         start_gfn += nr_pages_avail;
1969                 }
1970                 /* Use the slow path for cross page reads and writes. */
1971                 ghc->memslot = NULL;
1972         }
1973         return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1976
1977 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1978                            void *data, unsigned long len)
1979 {
1980         struct kvm_memslots *slots = kvm_memslots(kvm);
1981         int r;
1982
1983         BUG_ON(len > ghc->len);
1984
1985         if (slots->generation != ghc->generation)
1986                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1987
1988         if (unlikely(!ghc->memslot))
1989                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1990
1991         if (kvm_is_error_hva(ghc->hva))
1992                 return -EFAULT;
1993
1994         r = __copy_to_user((void __user *)ghc->hva, data, len);
1995         if (r)
1996                 return -EFAULT;
1997         mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1998
1999         return 0;
2000 }
2001 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2002
2003 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2004                            void *data, unsigned long len)
2005 {
2006         struct kvm_memslots *slots = kvm_memslots(kvm);
2007         int r;
2008
2009         BUG_ON(len > ghc->len);
2010
2011         if (slots->generation != ghc->generation)
2012                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2013
2014         if (unlikely(!ghc->memslot))
2015                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2016
2017         if (kvm_is_error_hva(ghc->hva))
2018                 return -EFAULT;
2019
2020         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2021         if (r)
2022                 return -EFAULT;
2023
2024         return 0;
2025 }
2026 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2027
2028 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2029 {
2030         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2031
2032         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2035
2036 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2037 {
2038         gfn_t gfn = gpa >> PAGE_SHIFT;
2039         int seg;
2040         int offset = offset_in_page(gpa);
2041         int ret;
2042
2043         while ((seg = next_segment(len, offset)) != 0) {
2044                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2045                 if (ret < 0)
2046                         return ret;
2047                 offset = 0;
2048                 len -= seg;
2049                 ++gfn;
2050         }
2051         return 0;
2052 }
2053 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2054
2055 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2056                                     gfn_t gfn)
2057 {
2058         if (memslot && memslot->dirty_bitmap) {
2059                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2060
2061                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2062         }
2063 }
2064
2065 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2066 {
2067         struct kvm_memory_slot *memslot;
2068
2069         memslot = gfn_to_memslot(kvm, gfn);
2070         mark_page_dirty_in_slot(memslot, gfn);
2071 }
2072 EXPORT_SYMBOL_GPL(mark_page_dirty);
2073
2074 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2075 {
2076         struct kvm_memory_slot *memslot;
2077
2078         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2079         mark_page_dirty_in_slot(memslot, gfn);
2080 }
2081 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2082
2083 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2084 {
2085         unsigned int old, val, grow;
2086
2087         old = val = vcpu->halt_poll_ns;
2088         grow = READ_ONCE(halt_poll_ns_grow);
2089         /* 10us base */
2090         if (val == 0 && grow)
2091                 val = 10000;
2092         else
2093                 val *= grow;
2094
2095         if (val > halt_poll_ns)
2096                 val = halt_poll_ns;
2097
2098         vcpu->halt_poll_ns = val;
2099         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2100 }
2101
2102 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2103 {
2104         unsigned int old, val, shrink;
2105
2106         old = val = vcpu->halt_poll_ns;
2107         shrink = READ_ONCE(halt_poll_ns_shrink);
2108         if (shrink == 0)
2109                 val = 0;
2110         else
2111                 val /= shrink;
2112
2113         vcpu->halt_poll_ns = val;
2114         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2115 }
2116
2117 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2118 {
2119         if (kvm_arch_vcpu_runnable(vcpu)) {
2120                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2121                 return -EINTR;
2122         }
2123         if (kvm_cpu_has_pending_timer(vcpu))
2124                 return -EINTR;
2125         if (signal_pending(current))
2126                 return -EINTR;
2127
2128         return 0;
2129 }
2130
2131 /*
2132  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2133  */
2134 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2135 {
2136         ktime_t start, cur;
2137         DECLARE_SWAITQUEUE(wait);
2138         bool waited = false;
2139         u64 block_ns;
2140
2141         start = cur = ktime_get();
2142         if (vcpu->halt_poll_ns) {
2143                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2144
2145                 ++vcpu->stat.halt_attempted_poll;
2146                 do {
2147                         /*
2148                          * This sets KVM_REQ_UNHALT if an interrupt
2149                          * arrives.
2150                          */
2151                         if (kvm_vcpu_check_block(vcpu) < 0) {
2152                                 ++vcpu->stat.halt_successful_poll;
2153                                 if (!vcpu_valid_wakeup(vcpu))
2154                                         ++vcpu->stat.halt_poll_invalid;
2155                                 goto out;
2156                         }
2157                         cur = ktime_get();
2158                 } while (single_task_running() && ktime_before(cur, stop));
2159         }
2160
2161         kvm_arch_vcpu_blocking(vcpu);
2162
2163         for (;;) {
2164                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2165
2166                 if (kvm_vcpu_check_block(vcpu) < 0)
2167                         break;
2168
2169                 waited = true;
2170                 schedule();
2171         }
2172
2173         finish_swait(&vcpu->wq, &wait);
2174         cur = ktime_get();
2175
2176         kvm_arch_vcpu_unblocking(vcpu);
2177 out:
2178         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2179
2180         if (!vcpu_valid_wakeup(vcpu))
2181                 shrink_halt_poll_ns(vcpu);
2182         else if (halt_poll_ns) {
2183                 if (block_ns <= vcpu->halt_poll_ns)
2184                         ;
2185                 /* we had a long block, shrink polling */
2186                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2187                         shrink_halt_poll_ns(vcpu);
2188                 /* we had a short halt and our poll time is too small */
2189                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2190                         block_ns < halt_poll_ns)
2191                         grow_halt_poll_ns(vcpu);
2192         } else
2193                 vcpu->halt_poll_ns = 0;
2194
2195         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2196         kvm_arch_vcpu_block_finish(vcpu);
2197 }
2198 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2199
2200 #ifndef CONFIG_S390
2201 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2202 {
2203         struct swait_queue_head *wqp;
2204
2205         wqp = kvm_arch_vcpu_wq(vcpu);
2206         if (swait_active(wqp)) {
2207                 swake_up(wqp);
2208                 ++vcpu->stat.halt_wakeup;
2209         }
2210
2211 }
2212 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2213
2214 /*
2215  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2216  */
2217 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2218 {
2219         int me;
2220         int cpu = vcpu->cpu;
2221
2222         kvm_vcpu_wake_up(vcpu);
2223         me = get_cpu();
2224         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2225                 if (kvm_arch_vcpu_should_kick(vcpu))
2226                         smp_send_reschedule(cpu);
2227         put_cpu();
2228 }
2229 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2230 #endif /* !CONFIG_S390 */
2231
2232 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2233 {
2234         struct pid *pid;
2235         struct task_struct *task = NULL;
2236         int ret = 0;
2237
2238         rcu_read_lock();
2239         pid = rcu_dereference(target->pid);
2240         if (pid)
2241                 task = get_pid_task(pid, PIDTYPE_PID);
2242         rcu_read_unlock();
2243         if (!task)
2244                 return ret;
2245         ret = yield_to(task, 1);
2246         put_task_struct(task);
2247
2248         return ret;
2249 }
2250 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2251
2252 /*
2253  * Helper that checks whether a VCPU is eligible for directed yield.
2254  * Most eligible candidate to yield is decided by following heuristics:
2255  *
2256  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2257  *  (preempted lock holder), indicated by @in_spin_loop.
2258  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2259  *
2260  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2261  *  chance last time (mostly it has become eligible now since we have probably
2262  *  yielded to lockholder in last iteration. This is done by toggling
2263  *  @dy_eligible each time a VCPU checked for eligibility.)
2264  *
2265  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2266  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2267  *  burning. Giving priority for a potential lock-holder increases lock
2268  *  progress.
2269  *
2270  *  Since algorithm is based on heuristics, accessing another VCPU data without
2271  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2272  *  and continue with next VCPU and so on.
2273  */
2274 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2275 {
2276 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2277         bool eligible;
2278
2279         eligible = !vcpu->spin_loop.in_spin_loop ||
2280                     vcpu->spin_loop.dy_eligible;
2281
2282         if (vcpu->spin_loop.in_spin_loop)
2283                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2284
2285         return eligible;
2286 #else
2287         return true;
2288 #endif
2289 }
2290
2291 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2292 {
2293         struct kvm *kvm = me->kvm;
2294         struct kvm_vcpu *vcpu;
2295         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2296         int yielded = 0;
2297         int try = 3;
2298         int pass;
2299         int i;
2300
2301         kvm_vcpu_set_in_spin_loop(me, true);
2302         /*
2303          * We boost the priority of a VCPU that is runnable but not
2304          * currently running, because it got preempted by something
2305          * else and called schedule in __vcpu_run.  Hopefully that
2306          * VCPU is holding the lock that we need and will release it.
2307          * We approximate round-robin by starting at the last boosted VCPU.
2308          */
2309         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2310                 kvm_for_each_vcpu(i, vcpu, kvm) {
2311                         if (!pass && i <= last_boosted_vcpu) {
2312                                 i = last_boosted_vcpu;
2313                                 continue;
2314                         } else if (pass && i > last_boosted_vcpu)
2315                                 break;
2316                         if (!ACCESS_ONCE(vcpu->preempted))
2317                                 continue;
2318                         if (vcpu == me)
2319                                 continue;
2320                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2321                                 continue;
2322                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2323                                 continue;
2324
2325                         yielded = kvm_vcpu_yield_to(vcpu);
2326                         if (yielded > 0) {
2327                                 kvm->last_boosted_vcpu = i;
2328                                 break;
2329                         } else if (yielded < 0) {
2330                                 try--;
2331                                 if (!try)
2332                                         break;
2333                         }
2334                 }
2335         }
2336         kvm_vcpu_set_in_spin_loop(me, false);
2337
2338         /* Ensure vcpu is not eligible during next spinloop */
2339         kvm_vcpu_set_dy_eligible(me, false);
2340 }
2341 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2342
2343 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2344 {
2345         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2346         struct page *page;
2347
2348         if (vmf->pgoff == 0)
2349                 page = virt_to_page(vcpu->run);
2350 #ifdef CONFIG_X86
2351         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2352                 page = virt_to_page(vcpu->arch.pio_data);
2353 #endif
2354 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2355         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2356                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2357 #endif
2358         else
2359                 return kvm_arch_vcpu_fault(vcpu, vmf);
2360         get_page(page);
2361         vmf->page = page;
2362         return 0;
2363 }
2364
2365 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2366         .fault = kvm_vcpu_fault,
2367 };
2368
2369 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2370 {
2371         vma->vm_ops = &kvm_vcpu_vm_ops;
2372         return 0;
2373 }
2374
2375 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2376 {
2377         struct kvm_vcpu *vcpu = filp->private_data;
2378
2379         debugfs_remove_recursive(vcpu->debugfs_dentry);
2380         kvm_put_kvm(vcpu->kvm);
2381         return 0;
2382 }
2383
2384 static struct file_operations kvm_vcpu_fops = {
2385         .release        = kvm_vcpu_release,
2386         .unlocked_ioctl = kvm_vcpu_ioctl,
2387 #ifdef CONFIG_KVM_COMPAT
2388         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2389 #endif
2390         .mmap           = kvm_vcpu_mmap,
2391         .llseek         = noop_llseek,
2392 };
2393
2394 /*
2395  * Allocates an inode for the vcpu.
2396  */
2397 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2398 {
2399         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2400 }
2401
2402 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2403 {
2404         char dir_name[ITOA_MAX_LEN * 2];
2405         int ret;
2406
2407         if (!kvm_arch_has_vcpu_debugfs())
2408                 return 0;
2409
2410         if (!debugfs_initialized())
2411                 return 0;
2412
2413         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2414         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2415                                                                 vcpu->kvm->debugfs_dentry);
2416         if (!vcpu->debugfs_dentry)
2417                 return -ENOMEM;
2418
2419         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2420         if (ret < 0) {
2421                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2422                 return ret;
2423         }
2424
2425         return 0;
2426 }
2427
2428 /*
2429  * Creates some virtual cpus.  Good luck creating more than one.
2430  */
2431 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2432 {
2433         int r;
2434         struct kvm_vcpu *vcpu;
2435
2436         if (id >= KVM_MAX_VCPU_ID)
2437                 return -EINVAL;
2438
2439         mutex_lock(&kvm->lock);
2440         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2441                 mutex_unlock(&kvm->lock);
2442                 return -EINVAL;
2443         }
2444
2445         kvm->created_vcpus++;
2446         mutex_unlock(&kvm->lock);
2447
2448         vcpu = kvm_arch_vcpu_create(kvm, id);
2449         if (IS_ERR(vcpu)) {
2450                 r = PTR_ERR(vcpu);
2451                 goto vcpu_decrement;
2452         }
2453
2454         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2455
2456         r = kvm_arch_vcpu_setup(vcpu);
2457         if (r)
2458                 goto vcpu_destroy;
2459
2460         r = kvm_create_vcpu_debugfs(vcpu);
2461         if (r)
2462                 goto vcpu_destroy;
2463
2464         mutex_lock(&kvm->lock);
2465         if (kvm_get_vcpu_by_id(kvm, id)) {
2466                 r = -EEXIST;
2467                 goto unlock_vcpu_destroy;
2468         }
2469
2470         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2471
2472         /* Now it's all set up, let userspace reach it */
2473         kvm_get_kvm(kvm);
2474         r = create_vcpu_fd(vcpu);
2475         if (r < 0) {
2476                 kvm_put_kvm(kvm);
2477                 goto unlock_vcpu_destroy;
2478         }
2479
2480         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2481
2482         /*
2483          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2484          * before kvm->online_vcpu's incremented value.
2485          */
2486         smp_wmb();
2487         atomic_inc(&kvm->online_vcpus);
2488
2489         mutex_unlock(&kvm->lock);
2490         kvm_arch_vcpu_postcreate(vcpu);
2491         return r;
2492
2493 unlock_vcpu_destroy:
2494         mutex_unlock(&kvm->lock);
2495         debugfs_remove_recursive(vcpu->debugfs_dentry);
2496 vcpu_destroy:
2497         kvm_arch_vcpu_destroy(vcpu);
2498 vcpu_decrement:
2499         mutex_lock(&kvm->lock);
2500         kvm->created_vcpus--;
2501         mutex_unlock(&kvm->lock);
2502         return r;
2503 }
2504
2505 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2506 {
2507         if (sigset) {
2508                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2509                 vcpu->sigset_active = 1;
2510                 vcpu->sigset = *sigset;
2511         } else
2512                 vcpu->sigset_active = 0;
2513         return 0;
2514 }
2515
2516 static long kvm_vcpu_ioctl(struct file *filp,
2517                            unsigned int ioctl, unsigned long arg)
2518 {
2519         struct kvm_vcpu *vcpu = filp->private_data;
2520         void __user *argp = (void __user *)arg;
2521         int r;
2522         struct kvm_fpu *fpu = NULL;
2523         struct kvm_sregs *kvm_sregs = NULL;
2524
2525         if (vcpu->kvm->mm != current->mm)
2526                 return -EIO;
2527
2528         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2529                 return -EINVAL;
2530
2531 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2532         /*
2533          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2534          * so vcpu_load() would break it.
2535          */
2536         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2537                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2538 #endif
2539
2540
2541         r = vcpu_load(vcpu);
2542         if (r)
2543                 return r;
2544         switch (ioctl) {
2545         case KVM_RUN:
2546                 r = -EINVAL;
2547                 if (arg)
2548                         goto out;
2549                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2550                         /* The thread running this VCPU changed. */
2551                         struct pid *oldpid = vcpu->pid;
2552                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2553
2554                         rcu_assign_pointer(vcpu->pid, newpid);
2555                         if (oldpid)
2556                                 synchronize_rcu();
2557                         put_pid(oldpid);
2558                 }
2559                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2560                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2561                 break;
2562         case KVM_GET_REGS: {
2563                 struct kvm_regs *kvm_regs;
2564
2565                 r = -ENOMEM;
2566                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2567                 if (!kvm_regs)
2568                         goto out;
2569                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2570                 if (r)
2571                         goto out_free1;
2572                 r = -EFAULT;
2573                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2574                         goto out_free1;
2575                 r = 0;
2576 out_free1:
2577                 kfree(kvm_regs);
2578                 break;
2579         }
2580         case KVM_SET_REGS: {
2581                 struct kvm_regs *kvm_regs;
2582
2583                 r = -ENOMEM;
2584                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2585                 if (IS_ERR(kvm_regs)) {
2586                         r = PTR_ERR(kvm_regs);
2587                         goto out;
2588                 }
2589                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2590                 kfree(kvm_regs);
2591                 break;
2592         }
2593         case KVM_GET_SREGS: {
2594                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2595                 r = -ENOMEM;
2596                 if (!kvm_sregs)
2597                         goto out;
2598                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2599                 if (r)
2600                         goto out;
2601                 r = -EFAULT;
2602                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2603                         goto out;
2604                 r = 0;
2605                 break;
2606         }
2607         case KVM_SET_SREGS: {
2608                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2609                 if (IS_ERR(kvm_sregs)) {
2610                         r = PTR_ERR(kvm_sregs);
2611                         kvm_sregs = NULL;
2612                         goto out;
2613                 }
2614                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2615                 break;
2616         }
2617         case KVM_GET_MP_STATE: {
2618                 struct kvm_mp_state mp_state;
2619
2620                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2621                 if (r)
2622                         goto out;
2623                 r = -EFAULT;
2624                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2625                         goto out;
2626                 r = 0;
2627                 break;
2628         }
2629         case KVM_SET_MP_STATE: {
2630                 struct kvm_mp_state mp_state;
2631
2632                 r = -EFAULT;
2633                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2634                         goto out;
2635                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2636                 break;
2637         }
2638         case KVM_TRANSLATE: {
2639                 struct kvm_translation tr;
2640
2641                 r = -EFAULT;
2642                 if (copy_from_user(&tr, argp, sizeof(tr)))
2643                         goto out;
2644                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2645                 if (r)
2646                         goto out;
2647                 r = -EFAULT;
2648                 if (copy_to_user(argp, &tr, sizeof(tr)))
2649                         goto out;
2650                 r = 0;
2651                 break;
2652         }
2653         case KVM_SET_GUEST_DEBUG: {
2654                 struct kvm_guest_debug dbg;
2655
2656                 r = -EFAULT;
2657                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2658                         goto out;
2659                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2660                 break;
2661         }
2662         case KVM_SET_SIGNAL_MASK: {
2663                 struct kvm_signal_mask __user *sigmask_arg = argp;
2664                 struct kvm_signal_mask kvm_sigmask;
2665                 sigset_t sigset, *p;
2666
2667                 p = NULL;
2668                 if (argp) {
2669                         r = -EFAULT;
2670                         if (copy_from_user(&kvm_sigmask, argp,
2671                                            sizeof(kvm_sigmask)))
2672                                 goto out;
2673                         r = -EINVAL;
2674                         if (kvm_sigmask.len != sizeof(sigset))
2675                                 goto out;
2676                         r = -EFAULT;
2677                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2678                                            sizeof(sigset)))
2679                                 goto out;
2680                         p = &sigset;
2681                 }
2682                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2683                 break;
2684         }
2685         case KVM_GET_FPU: {
2686                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2687                 r = -ENOMEM;
2688                 if (!fpu)
2689                         goto out;
2690                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2691                 if (r)
2692                         goto out;
2693                 r = -EFAULT;
2694                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2695                         goto out;
2696                 r = 0;
2697                 break;
2698         }
2699         case KVM_SET_FPU: {
2700                 fpu = memdup_user(argp, sizeof(*fpu));
2701                 if (IS_ERR(fpu)) {
2702                         r = PTR_ERR(fpu);
2703                         fpu = NULL;
2704                         goto out;
2705                 }
2706                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2707                 break;
2708         }
2709         default:
2710                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2711         }
2712 out:
2713         vcpu_put(vcpu);
2714         kfree(fpu);
2715         kfree(kvm_sregs);
2716         return r;
2717 }
2718
2719 #ifdef CONFIG_KVM_COMPAT
2720 static long kvm_vcpu_compat_ioctl(struct file *filp,
2721                                   unsigned int ioctl, unsigned long arg)
2722 {
2723         struct kvm_vcpu *vcpu = filp->private_data;
2724         void __user *argp = compat_ptr(arg);
2725         int r;
2726
2727         if (vcpu->kvm->mm != current->mm)
2728                 return -EIO;
2729
2730         switch (ioctl) {
2731         case KVM_SET_SIGNAL_MASK: {
2732                 struct kvm_signal_mask __user *sigmask_arg = argp;
2733                 struct kvm_signal_mask kvm_sigmask;
2734                 compat_sigset_t csigset;
2735                 sigset_t sigset;
2736
2737                 if (argp) {
2738                         r = -EFAULT;
2739                         if (copy_from_user(&kvm_sigmask, argp,
2740                                            sizeof(kvm_sigmask)))
2741                                 goto out;
2742                         r = -EINVAL;
2743                         if (kvm_sigmask.len != sizeof(csigset))
2744                                 goto out;
2745                         r = -EFAULT;
2746                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2747                                            sizeof(csigset)))
2748                                 goto out;
2749                         sigset_from_compat(&sigset, &csigset);
2750                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2751                 } else
2752                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2753                 break;
2754         }
2755         default:
2756                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2757         }
2758
2759 out:
2760         return r;
2761 }
2762 #endif
2763
2764 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2765                                  int (*accessor)(struct kvm_device *dev,
2766                                                  struct kvm_device_attr *attr),
2767                                  unsigned long arg)
2768 {
2769         struct kvm_device_attr attr;
2770
2771         if (!accessor)
2772                 return -EPERM;
2773
2774         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2775                 return -EFAULT;
2776
2777         return accessor(dev, &attr);
2778 }
2779
2780 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2781                              unsigned long arg)
2782 {
2783         struct kvm_device *dev = filp->private_data;
2784
2785         switch (ioctl) {
2786         case KVM_SET_DEVICE_ATTR:
2787                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2788         case KVM_GET_DEVICE_ATTR:
2789                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2790         case KVM_HAS_DEVICE_ATTR:
2791                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2792         default:
2793                 if (dev->ops->ioctl)
2794                         return dev->ops->ioctl(dev, ioctl, arg);
2795
2796                 return -ENOTTY;
2797         }
2798 }
2799
2800 static int kvm_device_release(struct inode *inode, struct file *filp)
2801 {
2802         struct kvm_device *dev = filp->private_data;
2803         struct kvm *kvm = dev->kvm;
2804
2805         kvm_put_kvm(kvm);
2806         return 0;
2807 }
2808
2809 static const struct file_operations kvm_device_fops = {
2810         .unlocked_ioctl = kvm_device_ioctl,
2811 #ifdef CONFIG_KVM_COMPAT
2812         .compat_ioctl = kvm_device_ioctl,
2813 #endif
2814         .release = kvm_device_release,
2815 };
2816
2817 struct kvm_device *kvm_device_from_filp(struct file *filp)
2818 {
2819         if (filp->f_op != &kvm_device_fops)
2820                 return NULL;
2821
2822         return filp->private_data;
2823 }
2824
2825 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2826 #ifdef CONFIG_KVM_MPIC
2827         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2828         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2829 #endif
2830
2831 #ifdef CONFIG_KVM_XICS
2832         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2833 #endif
2834 };
2835
2836 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2837 {
2838         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2839                 return -ENOSPC;
2840
2841         if (kvm_device_ops_table[type] != NULL)
2842                 return -EEXIST;
2843
2844         kvm_device_ops_table[type] = ops;
2845         return 0;
2846 }
2847
2848 void kvm_unregister_device_ops(u32 type)
2849 {
2850         if (kvm_device_ops_table[type] != NULL)
2851                 kvm_device_ops_table[type] = NULL;
2852 }
2853
2854 static int kvm_ioctl_create_device(struct kvm *kvm,
2855                                    struct kvm_create_device *cd)
2856 {
2857         struct kvm_device_ops *ops = NULL;
2858         struct kvm_device *dev;
2859         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2860         int ret;
2861
2862         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2863                 return -ENODEV;
2864
2865         ops = kvm_device_ops_table[cd->type];
2866         if (ops == NULL)
2867                 return -ENODEV;
2868
2869         if (test)
2870                 return 0;
2871
2872         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2873         if (!dev)
2874                 return -ENOMEM;
2875
2876         dev->ops = ops;
2877         dev->kvm = kvm;
2878
2879         mutex_lock(&kvm->lock);
2880         ret = ops->create(dev, cd->type);
2881         if (ret < 0) {
2882                 mutex_unlock(&kvm->lock);
2883                 kfree(dev);
2884                 return ret;
2885         }
2886         list_add(&dev->vm_node, &kvm->devices);
2887         mutex_unlock(&kvm->lock);
2888
2889         if (ops->init)
2890                 ops->init(dev);
2891
2892         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2893         if (ret < 0) {
2894                 ops->destroy(dev);
2895                 mutex_lock(&kvm->lock);
2896                 list_del(&dev->vm_node);
2897                 mutex_unlock(&kvm->lock);
2898                 return ret;
2899         }
2900
2901         kvm_get_kvm(kvm);
2902         cd->fd = ret;
2903         return 0;
2904 }
2905
2906 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2907 {
2908         switch (arg) {
2909         case KVM_CAP_USER_MEMORY:
2910         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2911         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2912         case KVM_CAP_INTERNAL_ERROR_DATA:
2913 #ifdef CONFIG_HAVE_KVM_MSI
2914         case KVM_CAP_SIGNAL_MSI:
2915 #endif
2916 #ifdef CONFIG_HAVE_KVM_IRQFD
2917         case KVM_CAP_IRQFD:
2918         case KVM_CAP_IRQFD_RESAMPLE:
2919 #endif
2920         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2921         case KVM_CAP_CHECK_EXTENSION_VM:
2922                 return 1;
2923 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2924         case KVM_CAP_IRQ_ROUTING:
2925                 return KVM_MAX_IRQ_ROUTES;
2926 #endif
2927 #if KVM_ADDRESS_SPACE_NUM > 1
2928         case KVM_CAP_MULTI_ADDRESS_SPACE:
2929                 return KVM_ADDRESS_SPACE_NUM;
2930 #endif
2931         case KVM_CAP_MAX_VCPU_ID:
2932                 return KVM_MAX_VCPU_ID;
2933         default:
2934                 break;
2935         }
2936         return kvm_vm_ioctl_check_extension(kvm, arg);
2937 }
2938
2939 static long kvm_vm_ioctl(struct file *filp,
2940                            unsigned int ioctl, unsigned long arg)
2941 {
2942         struct kvm *kvm = filp->private_data;
2943         void __user *argp = (void __user *)arg;
2944         int r;
2945
2946         if (kvm->mm != current->mm)
2947                 return -EIO;
2948         switch (ioctl) {
2949         case KVM_CREATE_VCPU:
2950                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2951                 break;
2952         case KVM_SET_USER_MEMORY_REGION: {
2953                 struct kvm_userspace_memory_region kvm_userspace_mem;
2954
2955                 r = -EFAULT;
2956                 if (copy_from_user(&kvm_userspace_mem, argp,
2957                                                 sizeof(kvm_userspace_mem)))
2958                         goto out;
2959
2960                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2961                 break;
2962         }
2963         case KVM_GET_DIRTY_LOG: {
2964                 struct kvm_dirty_log log;
2965
2966                 r = -EFAULT;
2967                 if (copy_from_user(&log, argp, sizeof(log)))
2968                         goto out;
2969                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2970                 break;
2971         }
2972 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2973         case KVM_REGISTER_COALESCED_MMIO: {
2974                 struct kvm_coalesced_mmio_zone zone;
2975
2976                 r = -EFAULT;
2977                 if (copy_from_user(&zone, argp, sizeof(zone)))
2978                         goto out;
2979                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2980                 break;
2981         }
2982         case KVM_UNREGISTER_COALESCED_MMIO: {
2983                 struct kvm_coalesced_mmio_zone zone;
2984
2985                 r = -EFAULT;
2986                 if (copy_from_user(&zone, argp, sizeof(zone)))
2987                         goto out;
2988                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2989                 break;
2990         }
2991 #endif
2992         case KVM_IRQFD: {
2993                 struct kvm_irqfd data;
2994
2995                 r = -EFAULT;
2996                 if (copy_from_user(&data, argp, sizeof(data)))
2997                         goto out;
2998                 r = kvm_irqfd(kvm, &data);
2999                 break;
3000         }
3001         case KVM_IOEVENTFD: {
3002                 struct kvm_ioeventfd data;
3003
3004                 r = -EFAULT;
3005                 if (copy_from_user(&data, argp, sizeof(data)))
3006                         goto out;
3007                 r = kvm_ioeventfd(kvm, &data);
3008                 break;
3009         }
3010 #ifdef CONFIG_HAVE_KVM_MSI
3011         case KVM_SIGNAL_MSI: {
3012                 struct kvm_msi msi;
3013
3014                 r = -EFAULT;
3015                 if (copy_from_user(&msi, argp, sizeof(msi)))
3016                         goto out;
3017                 r = kvm_send_userspace_msi(kvm, &msi);
3018                 break;
3019         }
3020 #endif
3021 #ifdef __KVM_HAVE_IRQ_LINE
3022         case KVM_IRQ_LINE_STATUS:
3023         case KVM_IRQ_LINE: {
3024                 struct kvm_irq_level irq_event;
3025
3026                 r = -EFAULT;
3027                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3028                         goto out;
3029
3030                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3031                                         ioctl == KVM_IRQ_LINE_STATUS);
3032                 if (r)
3033                         goto out;
3034
3035                 r = -EFAULT;
3036                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3037                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3038                                 goto out;
3039                 }
3040
3041                 r = 0;
3042                 break;
3043         }
3044 #endif
3045 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3046         case KVM_SET_GSI_ROUTING: {
3047                 struct kvm_irq_routing routing;
3048                 struct kvm_irq_routing __user *urouting;
3049                 struct kvm_irq_routing_entry *entries = NULL;
3050
3051                 r = -EFAULT;
3052                 if (copy_from_user(&routing, argp, sizeof(routing)))
3053                         goto out;
3054                 r = -EINVAL;
3055                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3056                         goto out;
3057                 if (routing.flags)
3058                         goto out;
3059                 if (routing.nr) {
3060                         r = -ENOMEM;
3061                         entries = vmalloc(routing.nr * sizeof(*entries));
3062                         if (!entries)
3063                                 goto out;
3064                         r = -EFAULT;
3065                         urouting = argp;
3066                         if (copy_from_user(entries, urouting->entries,
3067                                            routing.nr * sizeof(*entries)))
3068                                 goto out_free_irq_routing;
3069                 }
3070                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3071                                         routing.flags);
3072 out_free_irq_routing:
3073                 vfree(entries);
3074                 break;
3075         }
3076 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3077         case KVM_CREATE_DEVICE: {
3078                 struct kvm_create_device cd;
3079
3080                 r = -EFAULT;
3081                 if (copy_from_user(&cd, argp, sizeof(cd)))
3082                         goto out;
3083
3084                 r = kvm_ioctl_create_device(kvm, &cd);
3085                 if (r)
3086                         goto out;
3087
3088                 r = -EFAULT;
3089                 if (copy_to_user(argp, &cd, sizeof(cd)))
3090                         goto out;
3091
3092                 r = 0;
3093                 break;
3094         }
3095         case KVM_CHECK_EXTENSION:
3096                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3097                 break;
3098         default:
3099                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3100         }
3101 out:
3102         return r;
3103 }
3104
3105 #ifdef CONFIG_KVM_COMPAT
3106 struct compat_kvm_dirty_log {
3107         __u32 slot;
3108         __u32 padding1;
3109         union {
3110                 compat_uptr_t dirty_bitmap; /* one bit per page */
3111                 __u64 padding2;
3112         };
3113 };
3114
3115 static long kvm_vm_compat_ioctl(struct file *filp,
3116                            unsigned int ioctl, unsigned long arg)
3117 {
3118         struct kvm *kvm = filp->private_data;
3119         int r;
3120
3121         if (kvm->mm != current->mm)
3122                 return -EIO;
3123         switch (ioctl) {
3124         case KVM_GET_DIRTY_LOG: {
3125                 struct compat_kvm_dirty_log compat_log;
3126                 struct kvm_dirty_log log;
3127
3128                 r = -EFAULT;
3129                 if (copy_from_user(&compat_log, (void __user *)arg,
3130                                    sizeof(compat_log)))
3131                         goto out;
3132                 log.slot         = compat_log.slot;
3133                 log.padding1     = compat_log.padding1;
3134                 log.padding2     = compat_log.padding2;
3135                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3136
3137                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3138                 break;
3139         }
3140         default:
3141                 r = kvm_vm_ioctl(filp, ioctl, arg);
3142         }
3143
3144 out:
3145         return r;
3146 }
3147 #endif
3148
3149 static struct file_operations kvm_vm_fops = {
3150         .release        = kvm_vm_release,
3151         .unlocked_ioctl = kvm_vm_ioctl,
3152 #ifdef CONFIG_KVM_COMPAT
3153         .compat_ioctl   = kvm_vm_compat_ioctl,
3154 #endif
3155         .llseek         = noop_llseek,
3156 };
3157
3158 static int kvm_dev_ioctl_create_vm(unsigned long type)
3159 {
3160         int r;
3161         struct kvm *kvm;
3162         struct file *file;
3163
3164         kvm = kvm_create_vm(type);
3165         if (IS_ERR(kvm))
3166                 return PTR_ERR(kvm);
3167 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3168         r = kvm_coalesced_mmio_init(kvm);
3169         if (r < 0) {
3170                 kvm_put_kvm(kvm);
3171                 return r;
3172         }
3173 #endif
3174         r = get_unused_fd_flags(O_CLOEXEC);
3175         if (r < 0) {
3176                 kvm_put_kvm(kvm);
3177                 return r;
3178         }
3179         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3180         if (IS_ERR(file)) {
3181                 put_unused_fd(r);
3182                 kvm_put_kvm(kvm);
3183                 return PTR_ERR(file);
3184         }
3185
3186         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3187                 put_unused_fd(r);
3188                 fput(file);
3189                 return -ENOMEM;
3190         }
3191
3192         fd_install(r, file);
3193         return r;
3194 }
3195
3196 static long kvm_dev_ioctl(struct file *filp,
3197                           unsigned int ioctl, unsigned long arg)
3198 {
3199         long r = -EINVAL;
3200
3201         switch (ioctl) {
3202         case KVM_GET_API_VERSION:
3203                 if (arg)
3204                         goto out;
3205                 r = KVM_API_VERSION;
3206                 break;
3207         case KVM_CREATE_VM:
3208                 r = kvm_dev_ioctl_create_vm(arg);
3209                 break;
3210         case KVM_CHECK_EXTENSION:
3211                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3212                 break;
3213         case KVM_GET_VCPU_MMAP_SIZE:
3214                 if (arg)
3215                         goto out;
3216                 r = PAGE_SIZE;     /* struct kvm_run */
3217 #ifdef CONFIG_X86
3218                 r += PAGE_SIZE;    /* pio data page */
3219 #endif
3220 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3221                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3222 #endif
3223                 break;
3224         case KVM_TRACE_ENABLE:
3225         case KVM_TRACE_PAUSE:
3226         case KVM_TRACE_DISABLE:
3227                 r = -EOPNOTSUPP;
3228                 break;
3229         default:
3230                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3231         }
3232 out:
3233         return r;
3234 }
3235
3236 static struct file_operations kvm_chardev_ops = {
3237         .unlocked_ioctl = kvm_dev_ioctl,
3238         .compat_ioctl   = kvm_dev_ioctl,
3239         .llseek         = noop_llseek,
3240 };
3241
3242 static struct miscdevice kvm_dev = {
3243         KVM_MINOR,
3244         "kvm",
3245         &kvm_chardev_ops,
3246 };
3247
3248 static void hardware_enable_nolock(void *junk)
3249 {
3250         int cpu = raw_smp_processor_id();
3251         int r;
3252
3253         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3254                 return;
3255
3256         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3257
3258         r = kvm_arch_hardware_enable();
3259
3260         if (r) {
3261                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3262                 atomic_inc(&hardware_enable_failed);
3263                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3264         }
3265 }
3266
3267 static int kvm_starting_cpu(unsigned int cpu)
3268 {
3269         raw_spin_lock(&kvm_count_lock);
3270         if (kvm_usage_count)
3271                 hardware_enable_nolock(NULL);
3272         raw_spin_unlock(&kvm_count_lock);
3273         return 0;
3274 }
3275
3276 static void hardware_disable_nolock(void *junk)
3277 {
3278         int cpu = raw_smp_processor_id();
3279
3280         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3281                 return;
3282         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3283         kvm_arch_hardware_disable();
3284 }
3285
3286 static int kvm_dying_cpu(unsigned int cpu)
3287 {
3288         raw_spin_lock(&kvm_count_lock);
3289         if (kvm_usage_count)
3290                 hardware_disable_nolock(NULL);
3291         raw_spin_unlock(&kvm_count_lock);
3292         return 0;
3293 }
3294
3295 static void hardware_disable_all_nolock(void)
3296 {
3297         BUG_ON(!kvm_usage_count);
3298
3299         kvm_usage_count--;
3300         if (!kvm_usage_count)
3301                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3302 }
3303
3304 static void hardware_disable_all(void)
3305 {
3306         raw_spin_lock(&kvm_count_lock);
3307         hardware_disable_all_nolock();
3308         raw_spin_unlock(&kvm_count_lock);
3309 }
3310
3311 static int hardware_enable_all(void)
3312 {
3313         int r = 0;
3314
3315         raw_spin_lock(&kvm_count_lock);
3316
3317         kvm_usage_count++;
3318         if (kvm_usage_count == 1) {
3319                 atomic_set(&hardware_enable_failed, 0);
3320                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3321
3322                 if (atomic_read(&hardware_enable_failed)) {
3323                         hardware_disable_all_nolock();
3324                         r = -EBUSY;
3325                 }
3326         }
3327
3328         raw_spin_unlock(&kvm_count_lock);
3329
3330         return r;
3331 }
3332
3333 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3334                       void *v)
3335 {
3336         /*
3337          * Some (well, at least mine) BIOSes hang on reboot if
3338          * in vmx root mode.
3339          *
3340          * And Intel TXT required VMX off for all cpu when system shutdown.
3341          */
3342         pr_info("kvm: exiting hardware virtualization\n");
3343         kvm_rebooting = true;
3344         on_each_cpu(hardware_disable_nolock, NULL, 1);
3345         return NOTIFY_OK;
3346 }
3347
3348 static struct notifier_block kvm_reboot_notifier = {
3349         .notifier_call = kvm_reboot,
3350         .priority = 0,
3351 };
3352
3353 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3354 {
3355         int i;
3356
3357         for (i = 0; i < bus->dev_count; i++) {
3358                 struct kvm_io_device *pos = bus->range[i].dev;
3359
3360                 kvm_iodevice_destructor(pos);
3361         }
3362         kfree(bus);
3363 }
3364
3365 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3366                                  const struct kvm_io_range *r2)
3367 {
3368         gpa_t addr1 = r1->addr;
3369         gpa_t addr2 = r2->addr;
3370
3371         if (addr1 < addr2)
3372                 return -1;
3373
3374         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3375          * accept any overlapping write.  Any order is acceptable for
3376          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3377          * we process all of them.
3378          */
3379         if (r2->len) {
3380                 addr1 += r1->len;
3381                 addr2 += r2->len;
3382         }
3383
3384         if (addr1 > addr2)
3385                 return 1;
3386
3387         return 0;
3388 }
3389
3390 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3391 {
3392         return kvm_io_bus_cmp(p1, p2);
3393 }
3394
3395 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3396                           gpa_t addr, int len)
3397 {
3398         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3399                 .addr = addr,
3400                 .len = len,
3401                 .dev = dev,
3402         };
3403
3404         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3405                 kvm_io_bus_sort_cmp, NULL);
3406
3407         return 0;
3408 }
3409
3410 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3411                              gpa_t addr, int len)
3412 {
3413         struct kvm_io_range *range, key;
3414         int off;
3415
3416         key = (struct kvm_io_range) {
3417                 .addr = addr,
3418                 .len = len,
3419         };
3420
3421         range = bsearch(&key, bus->range, bus->dev_count,
3422                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3423         if (range == NULL)
3424                 return -ENOENT;
3425
3426         off = range - bus->range;
3427
3428         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3429                 off--;
3430
3431         return off;
3432 }
3433
3434 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3435                               struct kvm_io_range *range, const void *val)
3436 {
3437         int idx;
3438
3439         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3440         if (idx < 0)
3441                 return -EOPNOTSUPP;
3442
3443         while (idx < bus->dev_count &&
3444                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3445                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3446                                         range->len, val))
3447                         return idx;
3448                 idx++;
3449         }
3450
3451         return -EOPNOTSUPP;
3452 }
3453
3454 /* kvm_io_bus_write - called under kvm->slots_lock */
3455 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3456                      int len, const void *val)
3457 {
3458         struct kvm_io_bus *bus;
3459         struct kvm_io_range range;
3460         int r;
3461
3462         range = (struct kvm_io_range) {
3463                 .addr = addr,
3464                 .len = len,
3465         };
3466
3467         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3468         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3469         return r < 0 ? r : 0;
3470 }
3471
3472 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3473 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3474                             gpa_t addr, int len, const void *val, long cookie)
3475 {
3476         struct kvm_io_bus *bus;
3477         struct kvm_io_range range;
3478
3479         range = (struct kvm_io_range) {
3480                 .addr = addr,
3481                 .len = len,
3482         };
3483
3484         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3485
3486         /* First try the device referenced by cookie. */
3487         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3488             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3489                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3490                                         val))
3491                         return cookie;
3492
3493         /*
3494          * cookie contained garbage; fall back to search and return the
3495          * correct cookie value.
3496          */
3497         return __kvm_io_bus_write(vcpu, bus, &range, val);
3498 }
3499
3500 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3501                              struct kvm_io_range *range, void *val)
3502 {
3503         int idx;
3504
3505         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3506         if (idx < 0)
3507                 return -EOPNOTSUPP;
3508
3509         while (idx < bus->dev_count &&
3510                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3511                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3512                                        range->len, val))
3513                         return idx;
3514                 idx++;
3515         }
3516
3517         return -EOPNOTSUPP;
3518 }
3519 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3520
3521 /* kvm_io_bus_read - called under kvm->slots_lock */
3522 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3523                     int len, void *val)
3524 {
3525         struct kvm_io_bus *bus;
3526         struct kvm_io_range range;
3527         int r;
3528
3529         range = (struct kvm_io_range) {
3530                 .addr = addr,
3531                 .len = len,
3532         };
3533
3534         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3535         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3536         return r < 0 ? r : 0;
3537 }
3538
3539
3540 /* Caller must hold slots_lock. */
3541 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3542                             int len, struct kvm_io_device *dev)
3543 {
3544         struct kvm_io_bus *new_bus, *bus;
3545
3546         bus = kvm->buses[bus_idx];
3547         /* exclude ioeventfd which is limited by maximum fd */
3548         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3549                 return -ENOSPC;
3550
3551         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3552                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3553         if (!new_bus)
3554                 return -ENOMEM;
3555         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3556                sizeof(struct kvm_io_range)));
3557         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3558         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3559         synchronize_srcu_expedited(&kvm->srcu);
3560         kfree(bus);
3561
3562         return 0;
3563 }
3564
3565 /* Caller must hold slots_lock. */
3566 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3567                               struct kvm_io_device *dev)
3568 {
3569         int i, r;
3570         struct kvm_io_bus *new_bus, *bus;
3571
3572         bus = kvm->buses[bus_idx];
3573         r = -ENOENT;
3574         for (i = 0; i < bus->dev_count; i++)
3575                 if (bus->range[i].dev == dev) {
3576                         r = 0;
3577                         break;
3578                 }
3579
3580         if (r)
3581                 return r;
3582
3583         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3584                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3585         if (!new_bus)
3586                 return -ENOMEM;
3587
3588         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3589         new_bus->dev_count--;
3590         memcpy(new_bus->range + i, bus->range + i + 1,
3591                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3592
3593         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3594         synchronize_srcu_expedited(&kvm->srcu);
3595         kfree(bus);
3596         return r;
3597 }
3598
3599 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3600                                          gpa_t addr)
3601 {
3602         struct kvm_io_bus *bus;
3603         int dev_idx, srcu_idx;
3604         struct kvm_io_device *iodev = NULL;
3605
3606         srcu_idx = srcu_read_lock(&kvm->srcu);
3607
3608         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3609
3610         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3611         if (dev_idx < 0)
3612                 goto out_unlock;
3613
3614         iodev = bus->range[dev_idx].dev;
3615
3616 out_unlock:
3617         srcu_read_unlock(&kvm->srcu, srcu_idx);
3618
3619         return iodev;
3620 }
3621 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3622
3623 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3624                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3625                            const char *fmt)
3626 {
3627         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3628                                           inode->i_private;
3629
3630         /* The debugfs files are a reference to the kvm struct which
3631          * is still valid when kvm_destroy_vm is called.
3632          * To avoid the race between open and the removal of the debugfs
3633          * directory we test against the users count.
3634          */
3635         if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3636                 return -ENOENT;
3637
3638         if (simple_attr_open(inode, file, get, set, fmt)) {
3639                 kvm_put_kvm(stat_data->kvm);
3640                 return -ENOMEM;
3641         }
3642
3643         return 0;
3644 }
3645
3646 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3647 {
3648         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3649                                           inode->i_private;
3650
3651         simple_attr_release(inode, file);
3652         kvm_put_kvm(stat_data->kvm);
3653
3654         return 0;
3655 }
3656
3657 static int vm_stat_get_per_vm(void *data, u64 *val)
3658 {
3659         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3660
3661         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3662
3663         return 0;
3664 }
3665
3666 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3667 {
3668         __simple_attr_check_format("%llu\n", 0ull);
3669         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3670                                 NULL, "%llu\n");
3671 }
3672
3673 static const struct file_operations vm_stat_get_per_vm_fops = {
3674         .owner   = THIS_MODULE,
3675         .open    = vm_stat_get_per_vm_open,
3676         .release = kvm_debugfs_release,
3677         .read    = simple_attr_read,
3678         .write   = simple_attr_write,
3679         .llseek  = generic_file_llseek,
3680 };
3681
3682 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3683 {
3684         int i;
3685         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3686         struct kvm_vcpu *vcpu;
3687
3688         *val = 0;
3689
3690         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3691                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3692
3693         return 0;
3694 }
3695
3696 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3697 {
3698         __simple_attr_check_format("%llu\n", 0ull);
3699         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3700                                  NULL, "%llu\n");
3701 }
3702
3703 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3704         .owner   = THIS_MODULE,
3705         .open    = vcpu_stat_get_per_vm_open,
3706         .release = kvm_debugfs_release,
3707         .read    = simple_attr_read,
3708         .write   = simple_attr_write,
3709         .llseek  = generic_file_llseek,
3710 };
3711
3712 static const struct file_operations *stat_fops_per_vm[] = {
3713         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3714         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3715 };
3716
3717 static int vm_stat_get(void *_offset, u64 *val)
3718 {
3719         unsigned offset = (long)_offset;
3720         struct kvm *kvm;
3721         struct kvm_stat_data stat_tmp = {.offset = offset};
3722         u64 tmp_val;
3723
3724         *val = 0;
3725         spin_lock(&kvm_lock);
3726         list_for_each_entry(kvm, &vm_list, vm_list) {
3727                 stat_tmp.kvm = kvm;
3728                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3729                 *val += tmp_val;
3730         }
3731         spin_unlock(&kvm_lock);
3732         return 0;
3733 }
3734
3735 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3736
3737 static int vcpu_stat_get(void *_offset, u64 *val)
3738 {
3739         unsigned offset = (long)_offset;
3740         struct kvm *kvm;
3741         struct kvm_stat_data stat_tmp = {.offset = offset};
3742         u64 tmp_val;
3743
3744         *val = 0;
3745         spin_lock(&kvm_lock);
3746         list_for_each_entry(kvm, &vm_list, vm_list) {
3747                 stat_tmp.kvm = kvm;
3748                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3749                 *val += tmp_val;
3750         }
3751         spin_unlock(&kvm_lock);
3752         return 0;
3753 }
3754
3755 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3756
3757 static const struct file_operations *stat_fops[] = {
3758         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3759         [KVM_STAT_VM]   = &vm_stat_fops,
3760 };
3761
3762 static int kvm_init_debug(void)
3763 {
3764         int r = -EEXIST;
3765         struct kvm_stats_debugfs_item *p;
3766
3767         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3768         if (kvm_debugfs_dir == NULL)
3769                 goto out;
3770
3771         kvm_debugfs_num_entries = 0;
3772         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3773                 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3774                                          (void *)(long)p->offset,
3775                                          stat_fops[p->kind]))
3776                         goto out_dir;
3777         }
3778
3779         return 0;
3780
3781 out_dir:
3782         debugfs_remove_recursive(kvm_debugfs_dir);
3783 out:
3784         return r;
3785 }
3786
3787 static int kvm_suspend(void)
3788 {
3789         if (kvm_usage_count)
3790                 hardware_disable_nolock(NULL);
3791         return 0;
3792 }
3793
3794 static void kvm_resume(void)
3795 {
3796         if (kvm_usage_count) {
3797                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3798                 hardware_enable_nolock(NULL);
3799         }
3800 }
3801
3802 static struct syscore_ops kvm_syscore_ops = {
3803         .suspend = kvm_suspend,
3804         .resume = kvm_resume,
3805 };
3806
3807 static inline
3808 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3809 {
3810         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3811 }
3812
3813 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3814 {
3815         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3816
3817         if (vcpu->preempted)
3818                 vcpu->preempted = false;
3819
3820         kvm_arch_sched_in(vcpu, cpu);
3821
3822         kvm_arch_vcpu_load(vcpu, cpu);
3823 }
3824
3825 static void kvm_sched_out(struct preempt_notifier *pn,
3826                           struct task_struct *next)
3827 {
3828         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3829
3830         if (current->state == TASK_RUNNING)
3831                 vcpu->preempted = true;
3832         kvm_arch_vcpu_put(vcpu);
3833 }
3834
3835 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3836                   struct module *module)
3837 {
3838         int r;
3839         int cpu;
3840
3841         r = kvm_arch_init(opaque);
3842         if (r)
3843                 goto out_fail;
3844
3845         /*
3846          * kvm_arch_init makes sure there's at most one caller
3847          * for architectures that support multiple implementations,
3848          * like intel and amd on x86.
3849          */
3850
3851         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3852                 r = -ENOMEM;
3853                 goto out_free_0;
3854         }
3855
3856         r = kvm_arch_hardware_setup();
3857         if (r < 0)
3858                 goto out_free_0a;
3859
3860         for_each_online_cpu(cpu) {
3861                 smp_call_function_single(cpu,
3862                                 kvm_arch_check_processor_compat,
3863                                 &r, 1);
3864                 if (r < 0)
3865                         goto out_free_1;
3866         }
3867
3868         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3869                                       kvm_starting_cpu, kvm_dying_cpu);
3870         if (r)
3871                 goto out_free_2;
3872         register_reboot_notifier(&kvm_reboot_notifier);
3873
3874         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3875         if (!vcpu_align)
3876                 vcpu_align = __alignof__(struct kvm_vcpu);
3877         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3878                                            0, NULL);
3879         if (!kvm_vcpu_cache) {
3880                 r = -ENOMEM;
3881                 goto out_free_3;
3882         }
3883
3884         r = kvm_async_pf_init();
3885         if (r)
3886                 goto out_free;
3887
3888         kvm_chardev_ops.owner = module;
3889         kvm_vm_fops.owner = module;
3890         kvm_vcpu_fops.owner = module;
3891
3892         r = misc_register(&kvm_dev);
3893         if (r) {
3894                 pr_err("kvm: misc device register failed\n");
3895                 goto out_unreg;
3896         }
3897
3898         register_syscore_ops(&kvm_syscore_ops);
3899
3900         kvm_preempt_ops.sched_in = kvm_sched_in;
3901         kvm_preempt_ops.sched_out = kvm_sched_out;
3902
3903         r = kvm_init_debug();
3904         if (r) {
3905                 pr_err("kvm: create debugfs files failed\n");
3906                 goto out_undebugfs;
3907         }
3908
3909         r = kvm_vfio_ops_init();
3910         WARN_ON(r);
3911
3912         return 0;
3913
3914 out_undebugfs:
3915         unregister_syscore_ops(&kvm_syscore_ops);
3916         misc_deregister(&kvm_dev);
3917 out_unreg:
3918         kvm_async_pf_deinit();
3919 out_free:
3920         kmem_cache_destroy(kvm_vcpu_cache);
3921 out_free_3:
3922         unregister_reboot_notifier(&kvm_reboot_notifier);
3923         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3924 out_free_2:
3925 out_free_1:
3926         kvm_arch_hardware_unsetup();
3927 out_free_0a:
3928         free_cpumask_var(cpus_hardware_enabled);
3929 out_free_0:
3930         kvm_irqfd_exit();
3931         kvm_arch_exit();
3932 out_fail:
3933         return r;
3934 }
3935 EXPORT_SYMBOL_GPL(kvm_init);
3936
3937 void kvm_exit(void)
3938 {
3939         debugfs_remove_recursive(kvm_debugfs_dir);
3940         misc_deregister(&kvm_dev);
3941         kmem_cache_destroy(kvm_vcpu_cache);
3942         kvm_async_pf_deinit();
3943         unregister_syscore_ops(&kvm_syscore_ops);
3944         unregister_reboot_notifier(&kvm_reboot_notifier);
3945         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3946         on_each_cpu(hardware_disable_nolock, NULL, 1);
3947         kvm_arch_hardware_unsetup();
3948         kvm_arch_exit();
3949         kvm_irqfd_exit();
3950         free_cpumask_var(cpus_hardware_enabled);
3951         kvm_vfio_ops_exit();
3952 }
3953 EXPORT_SYMBOL_GPL(kvm_exit);