Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetoot...
[cascardo/linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83
84 /*
85  * Ordering of locks:
86  *
87  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88  */
89
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110                            unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113                                   unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125
126 static bool largepages_enabled = true;
127
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
129 {
130         if (pfn_valid(pfn))
131                 return PageReserved(pfn_to_page(pfn));
132
133         return true;
134 }
135
136 /*
137  * Switches to specified vcpu, until a matching vcpu_put()
138  */
139 int vcpu_load(struct kvm_vcpu *vcpu)
140 {
141         int cpu;
142
143         if (mutex_lock_killable(&vcpu->mutex))
144                 return -EINTR;
145         cpu = get_cpu();
146         preempt_notifier_register(&vcpu->preempt_notifier);
147         kvm_arch_vcpu_load(vcpu, cpu);
148         put_cpu();
149         return 0;
150 }
151 EXPORT_SYMBOL_GPL(vcpu_load);
152
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155         preempt_disable();
156         kvm_arch_vcpu_put(vcpu);
157         preempt_notifier_unregister(&vcpu->preempt_notifier);
158         preempt_enable();
159         mutex_unlock(&vcpu->mutex);
160 }
161 EXPORT_SYMBOL_GPL(vcpu_put);
162
163 static void ack_flush(void *_completed)
164 {
165 }
166
167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
168 {
169         int i, cpu, me;
170         cpumask_var_t cpus;
171         bool called = true;
172         struct kvm_vcpu *vcpu;
173
174         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
175
176         me = get_cpu();
177         kvm_for_each_vcpu(i, vcpu, kvm) {
178                 kvm_make_request(req, vcpu);
179                 cpu = vcpu->cpu;
180
181                 /* Set ->requests bit before we read ->mode. */
182                 smp_mb__after_atomic();
183
184                 if (cpus != NULL && cpu != -1 && cpu != me &&
185                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
186                         cpumask_set_cpu(cpu, cpus);
187         }
188         if (unlikely(cpus == NULL))
189                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
190         else if (!cpumask_empty(cpus))
191                 smp_call_function_many(cpus, ack_flush, NULL, 1);
192         else
193                 called = false;
194         put_cpu();
195         free_cpumask_var(cpus);
196         return called;
197 }
198
199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202         /*
203          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
204          * kvm_make_all_cpus_request.
205          */
206         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
207
208         /*
209          * We want to publish modifications to the page tables before reading
210          * mode. Pairs with a memory barrier in arch-specific code.
211          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
212          * and smp_mb in walk_shadow_page_lockless_begin/end.
213          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
214          *
215          * There is already an smp_mb__after_atomic() before
216          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
217          * barrier here.
218          */
219         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
220                 ++kvm->stat.remote_tlb_flush;
221         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
222 }
223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
224 #endif
225
226 void kvm_reload_remote_mmus(struct kvm *kvm)
227 {
228         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
229 }
230
231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
232 {
233         struct page *page;
234         int r;
235
236         mutex_init(&vcpu->mutex);
237         vcpu->cpu = -1;
238         vcpu->kvm = kvm;
239         vcpu->vcpu_id = id;
240         vcpu->pid = NULL;
241         init_swait_queue_head(&vcpu->wq);
242         kvm_async_pf_vcpu_init(vcpu);
243
244         vcpu->pre_pcpu = -1;
245         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
246
247         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
248         if (!page) {
249                 r = -ENOMEM;
250                 goto fail;
251         }
252         vcpu->run = page_address(page);
253
254         kvm_vcpu_set_in_spin_loop(vcpu, false);
255         kvm_vcpu_set_dy_eligible(vcpu, false);
256         vcpu->preempted = false;
257
258         r = kvm_arch_vcpu_init(vcpu);
259         if (r < 0)
260                 goto fail_free_run;
261         return 0;
262
263 fail_free_run:
264         free_page((unsigned long)vcpu->run);
265 fail:
266         return r;
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
269
270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
271 {
272         put_pid(vcpu->pid);
273         kvm_arch_vcpu_uninit(vcpu);
274         free_page((unsigned long)vcpu->run);
275 }
276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
277
278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
280 {
281         return container_of(mn, struct kvm, mmu_notifier);
282 }
283
284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
285                                              struct mm_struct *mm,
286                                              unsigned long address)
287 {
288         struct kvm *kvm = mmu_notifier_to_kvm(mn);
289         int need_tlb_flush, idx;
290
291         /*
292          * When ->invalidate_page runs, the linux pte has been zapped
293          * already but the page is still allocated until
294          * ->invalidate_page returns. So if we increase the sequence
295          * here the kvm page fault will notice if the spte can't be
296          * established because the page is going to be freed. If
297          * instead the kvm page fault establishes the spte before
298          * ->invalidate_page runs, kvm_unmap_hva will release it
299          * before returning.
300          *
301          * The sequence increase only need to be seen at spin_unlock
302          * time, and not at spin_lock time.
303          *
304          * Increasing the sequence after the spin_unlock would be
305          * unsafe because the kvm page fault could then establish the
306          * pte after kvm_unmap_hva returned, without noticing the page
307          * is going to be freed.
308          */
309         idx = srcu_read_lock(&kvm->srcu);
310         spin_lock(&kvm->mmu_lock);
311
312         kvm->mmu_notifier_seq++;
313         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
314         /* we've to flush the tlb before the pages can be freed */
315         if (need_tlb_flush)
316                 kvm_flush_remote_tlbs(kvm);
317
318         spin_unlock(&kvm->mmu_lock);
319
320         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
321
322         srcu_read_unlock(&kvm->srcu, idx);
323 }
324
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326                                         struct mm_struct *mm,
327                                         unsigned long address,
328                                         pte_t pte)
329 {
330         struct kvm *kvm = mmu_notifier_to_kvm(mn);
331         int idx;
332
333         idx = srcu_read_lock(&kvm->srcu);
334         spin_lock(&kvm->mmu_lock);
335         kvm->mmu_notifier_seq++;
336         kvm_set_spte_hva(kvm, address, pte);
337         spin_unlock(&kvm->mmu_lock);
338         srcu_read_unlock(&kvm->srcu, idx);
339 }
340
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342                                                     struct mm_struct *mm,
343                                                     unsigned long start,
344                                                     unsigned long end)
345 {
346         struct kvm *kvm = mmu_notifier_to_kvm(mn);
347         int need_tlb_flush = 0, idx;
348
349         idx = srcu_read_lock(&kvm->srcu);
350         spin_lock(&kvm->mmu_lock);
351         /*
352          * The count increase must become visible at unlock time as no
353          * spte can be established without taking the mmu_lock and
354          * count is also read inside the mmu_lock critical section.
355          */
356         kvm->mmu_notifier_count++;
357         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358         need_tlb_flush |= kvm->tlbs_dirty;
359         /* we've to flush the tlb before the pages can be freed */
360         if (need_tlb_flush)
361                 kvm_flush_remote_tlbs(kvm);
362
363         spin_unlock(&kvm->mmu_lock);
364         srcu_read_unlock(&kvm->srcu, idx);
365 }
366
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368                                                   struct mm_struct *mm,
369                                                   unsigned long start,
370                                                   unsigned long end)
371 {
372         struct kvm *kvm = mmu_notifier_to_kvm(mn);
373
374         spin_lock(&kvm->mmu_lock);
375         /*
376          * This sequence increase will notify the kvm page fault that
377          * the page that is going to be mapped in the spte could have
378          * been freed.
379          */
380         kvm->mmu_notifier_seq++;
381         smp_wmb();
382         /*
383          * The above sequence increase must be visible before the
384          * below count decrease, which is ensured by the smp_wmb above
385          * in conjunction with the smp_rmb in mmu_notifier_retry().
386          */
387         kvm->mmu_notifier_count--;
388         spin_unlock(&kvm->mmu_lock);
389
390         BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394                                               struct mm_struct *mm,
395                                               unsigned long start,
396                                               unsigned long end)
397 {
398         struct kvm *kvm = mmu_notifier_to_kvm(mn);
399         int young, idx;
400
401         idx = srcu_read_lock(&kvm->srcu);
402         spin_lock(&kvm->mmu_lock);
403
404         young = kvm_age_hva(kvm, start, end);
405         if (young)
406                 kvm_flush_remote_tlbs(kvm);
407
408         spin_unlock(&kvm->mmu_lock);
409         srcu_read_unlock(&kvm->srcu, idx);
410
411         return young;
412 }
413
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415                                         struct mm_struct *mm,
416                                         unsigned long start,
417                                         unsigned long end)
418 {
419         struct kvm *kvm = mmu_notifier_to_kvm(mn);
420         int young, idx;
421
422         idx = srcu_read_lock(&kvm->srcu);
423         spin_lock(&kvm->mmu_lock);
424         /*
425          * Even though we do not flush TLB, this will still adversely
426          * affect performance on pre-Haswell Intel EPT, where there is
427          * no EPT Access Bit to clear so that we have to tear down EPT
428          * tables instead. If we find this unacceptable, we can always
429          * add a parameter to kvm_age_hva so that it effectively doesn't
430          * do anything on clear_young.
431          *
432          * Also note that currently we never issue secondary TLB flushes
433          * from clear_young, leaving this job up to the regular system
434          * cadence. If we find this inaccurate, we might come up with a
435          * more sophisticated heuristic later.
436          */
437         young = kvm_age_hva(kvm, start, end);
438         spin_unlock(&kvm->mmu_lock);
439         srcu_read_unlock(&kvm->srcu, idx);
440
441         return young;
442 }
443
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445                                        struct mm_struct *mm,
446                                        unsigned long address)
447 {
448         struct kvm *kvm = mmu_notifier_to_kvm(mn);
449         int young, idx;
450
451         idx = srcu_read_lock(&kvm->srcu);
452         spin_lock(&kvm->mmu_lock);
453         young = kvm_test_age_hva(kvm, address);
454         spin_unlock(&kvm->mmu_lock);
455         srcu_read_unlock(&kvm->srcu, idx);
456
457         return young;
458 }
459
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461                                      struct mm_struct *mm)
462 {
463         struct kvm *kvm = mmu_notifier_to_kvm(mn);
464         int idx;
465
466         idx = srcu_read_lock(&kvm->srcu);
467         kvm_arch_flush_shadow_all(kvm);
468         srcu_read_unlock(&kvm->srcu, idx);
469 }
470
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
473         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
474         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
475         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
476         .clear_young            = kvm_mmu_notifier_clear_young,
477         .test_young             = kvm_mmu_notifier_test_young,
478         .change_pte             = kvm_mmu_notifier_change_pte,
479         .release                = kvm_mmu_notifier_release,
480 };
481
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 {
484         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
485         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
486 }
487
488 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
489
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 {
492         return 0;
493 }
494
495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
496
497 static struct kvm_memslots *kvm_alloc_memslots(void)
498 {
499         int i;
500         struct kvm_memslots *slots;
501
502         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
503         if (!slots)
504                 return NULL;
505
506         /*
507          * Init kvm generation close to the maximum to easily test the
508          * code of handling generation number wrap-around.
509          */
510         slots->generation = -150;
511         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512                 slots->id_to_index[i] = slots->memslots[i].id = i;
513
514         return slots;
515 }
516
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519         if (!memslot->dirty_bitmap)
520                 return;
521
522         kvfree(memslot->dirty_bitmap);
523         memslot->dirty_bitmap = NULL;
524 }
525
526 /*
527  * Free any memory in @free but not in @dont.
528  */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530                               struct kvm_memory_slot *dont)
531 {
532         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533                 kvm_destroy_dirty_bitmap(free);
534
535         kvm_arch_free_memslot(kvm, free, dont);
536
537         free->npages = 0;
538 }
539
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542         struct kvm_memory_slot *memslot;
543
544         if (!slots)
545                 return;
546
547         kvm_for_each_memslot(memslot, slots)
548                 kvm_free_memslot(kvm, memslot, NULL);
549
550         kvfree(slots);
551 }
552
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555         int i;
556
557         if (!kvm->debugfs_dentry)
558                 return;
559
560         debugfs_remove_recursive(kvm->debugfs_dentry);
561
562         if (kvm->debugfs_stat_data) {
563                 for (i = 0; i < kvm_debugfs_num_entries; i++)
564                         kfree(kvm->debugfs_stat_data[i]);
565                 kfree(kvm->debugfs_stat_data);
566         }
567 }
568
569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
570 {
571         char dir_name[ITOA_MAX_LEN * 2];
572         struct kvm_stat_data *stat_data;
573         struct kvm_stats_debugfs_item *p;
574
575         if (!debugfs_initialized())
576                 return 0;
577
578         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
579         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
580                                                  kvm_debugfs_dir);
581         if (!kvm->debugfs_dentry)
582                 return -ENOMEM;
583
584         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
585                                          sizeof(*kvm->debugfs_stat_data),
586                                          GFP_KERNEL);
587         if (!kvm->debugfs_stat_data)
588                 return -ENOMEM;
589
590         for (p = debugfs_entries; p->name; p++) {
591                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
592                 if (!stat_data)
593                         return -ENOMEM;
594
595                 stat_data->kvm = kvm;
596                 stat_data->offset = p->offset;
597                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
598                 if (!debugfs_create_file(p->name, 0444,
599                                          kvm->debugfs_dentry,
600                                          stat_data,
601                                          stat_fops_per_vm[p->kind]))
602                         return -ENOMEM;
603         }
604         return 0;
605 }
606
607 static struct kvm *kvm_create_vm(unsigned long type)
608 {
609         int r, i;
610         struct kvm *kvm = kvm_arch_alloc_vm();
611
612         if (!kvm)
613                 return ERR_PTR(-ENOMEM);
614
615         spin_lock_init(&kvm->mmu_lock);
616         atomic_inc(&current->mm->mm_count);
617         kvm->mm = current->mm;
618         kvm_eventfd_init(kvm);
619         mutex_init(&kvm->lock);
620         mutex_init(&kvm->irq_lock);
621         mutex_init(&kvm->slots_lock);
622         atomic_set(&kvm->users_count, 1);
623         INIT_LIST_HEAD(&kvm->devices);
624
625         r = kvm_arch_init_vm(kvm, type);
626         if (r)
627                 goto out_err_no_disable;
628
629         r = hardware_enable_all();
630         if (r)
631                 goto out_err_no_disable;
632
633 #ifdef CONFIG_HAVE_KVM_IRQFD
634         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
635 #endif
636
637         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
638
639         r = -ENOMEM;
640         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
641                 kvm->memslots[i] = kvm_alloc_memslots();
642                 if (!kvm->memslots[i])
643                         goto out_err_no_srcu;
644         }
645
646         if (init_srcu_struct(&kvm->srcu))
647                 goto out_err_no_srcu;
648         if (init_srcu_struct(&kvm->irq_srcu))
649                 goto out_err_no_irq_srcu;
650         for (i = 0; i < KVM_NR_BUSES; i++) {
651                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
652                                         GFP_KERNEL);
653                 if (!kvm->buses[i])
654                         goto out_err;
655         }
656
657         r = kvm_init_mmu_notifier(kvm);
658         if (r)
659                 goto out_err;
660
661         spin_lock(&kvm_lock);
662         list_add(&kvm->vm_list, &vm_list);
663         spin_unlock(&kvm_lock);
664
665         preempt_notifier_inc();
666
667         return kvm;
668
669 out_err:
670         cleanup_srcu_struct(&kvm->irq_srcu);
671 out_err_no_irq_srcu:
672         cleanup_srcu_struct(&kvm->srcu);
673 out_err_no_srcu:
674         hardware_disable_all();
675 out_err_no_disable:
676         for (i = 0; i < KVM_NR_BUSES; i++)
677                 kfree(kvm->buses[i]);
678         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
679                 kvm_free_memslots(kvm, kvm->memslots[i]);
680         kvm_arch_free_vm(kvm);
681         mmdrop(current->mm);
682         return ERR_PTR(r);
683 }
684
685 /*
686  * Avoid using vmalloc for a small buffer.
687  * Should not be used when the size is statically known.
688  */
689 void *kvm_kvzalloc(unsigned long size)
690 {
691         if (size > PAGE_SIZE)
692                 return vzalloc(size);
693         else
694                 return kzalloc(size, GFP_KERNEL);
695 }
696
697 static void kvm_destroy_devices(struct kvm *kvm)
698 {
699         struct kvm_device *dev, *tmp;
700
701         /*
702          * We do not need to take the kvm->lock here, because nobody else
703          * has a reference to the struct kvm at this point and therefore
704          * cannot access the devices list anyhow.
705          */
706         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
707                 list_del(&dev->vm_node);
708                 dev->ops->destroy(dev);
709         }
710 }
711
712 static void kvm_destroy_vm(struct kvm *kvm)
713 {
714         int i;
715         struct mm_struct *mm = kvm->mm;
716
717         kvm_destroy_vm_debugfs(kvm);
718         kvm_arch_sync_events(kvm);
719         spin_lock(&kvm_lock);
720         list_del(&kvm->vm_list);
721         spin_unlock(&kvm_lock);
722         kvm_free_irq_routing(kvm);
723         for (i = 0; i < KVM_NR_BUSES; i++)
724                 kvm_io_bus_destroy(kvm->buses[i]);
725         kvm_coalesced_mmio_free(kvm);
726 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
727         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
728 #else
729         kvm_arch_flush_shadow_all(kvm);
730 #endif
731         kvm_arch_destroy_vm(kvm);
732         kvm_destroy_devices(kvm);
733         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
734                 kvm_free_memslots(kvm, kvm->memslots[i]);
735         cleanup_srcu_struct(&kvm->irq_srcu);
736         cleanup_srcu_struct(&kvm->srcu);
737         kvm_arch_free_vm(kvm);
738         preempt_notifier_dec();
739         hardware_disable_all();
740         mmdrop(mm);
741 }
742
743 void kvm_get_kvm(struct kvm *kvm)
744 {
745         atomic_inc(&kvm->users_count);
746 }
747 EXPORT_SYMBOL_GPL(kvm_get_kvm);
748
749 void kvm_put_kvm(struct kvm *kvm)
750 {
751         if (atomic_dec_and_test(&kvm->users_count))
752                 kvm_destroy_vm(kvm);
753 }
754 EXPORT_SYMBOL_GPL(kvm_put_kvm);
755
756
757 static int kvm_vm_release(struct inode *inode, struct file *filp)
758 {
759         struct kvm *kvm = filp->private_data;
760
761         kvm_irqfd_release(kvm);
762
763         kvm_put_kvm(kvm);
764         return 0;
765 }
766
767 /*
768  * Allocation size is twice as large as the actual dirty bitmap size.
769  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
770  */
771 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
772 {
773         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
774
775         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
776         if (!memslot->dirty_bitmap)
777                 return -ENOMEM;
778
779         return 0;
780 }
781
782 /*
783  * Insert memslot and re-sort memslots based on their GFN,
784  * so binary search could be used to lookup GFN.
785  * Sorting algorithm takes advantage of having initially
786  * sorted array and known changed memslot position.
787  */
788 static void update_memslots(struct kvm_memslots *slots,
789                             struct kvm_memory_slot *new)
790 {
791         int id = new->id;
792         int i = slots->id_to_index[id];
793         struct kvm_memory_slot *mslots = slots->memslots;
794
795         WARN_ON(mslots[i].id != id);
796         if (!new->npages) {
797                 WARN_ON(!mslots[i].npages);
798                 if (mslots[i].npages)
799                         slots->used_slots--;
800         } else {
801                 if (!mslots[i].npages)
802                         slots->used_slots++;
803         }
804
805         while (i < KVM_MEM_SLOTS_NUM - 1 &&
806                new->base_gfn <= mslots[i + 1].base_gfn) {
807                 if (!mslots[i + 1].npages)
808                         break;
809                 mslots[i] = mslots[i + 1];
810                 slots->id_to_index[mslots[i].id] = i;
811                 i++;
812         }
813
814         /*
815          * The ">=" is needed when creating a slot with base_gfn == 0,
816          * so that it moves before all those with base_gfn == npages == 0.
817          *
818          * On the other hand, if new->npages is zero, the above loop has
819          * already left i pointing to the beginning of the empty part of
820          * mslots, and the ">=" would move the hole backwards in this
821          * case---which is wrong.  So skip the loop when deleting a slot.
822          */
823         if (new->npages) {
824                 while (i > 0 &&
825                        new->base_gfn >= mslots[i - 1].base_gfn) {
826                         mslots[i] = mslots[i - 1];
827                         slots->id_to_index[mslots[i].id] = i;
828                         i--;
829                 }
830         } else
831                 WARN_ON_ONCE(i != slots->used_slots);
832
833         mslots[i] = *new;
834         slots->id_to_index[mslots[i].id] = i;
835 }
836
837 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
838 {
839         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
840
841 #ifdef __KVM_HAVE_READONLY_MEM
842         valid_flags |= KVM_MEM_READONLY;
843 #endif
844
845         if (mem->flags & ~valid_flags)
846                 return -EINVAL;
847
848         return 0;
849 }
850
851 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
852                 int as_id, struct kvm_memslots *slots)
853 {
854         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
855
856         /*
857          * Set the low bit in the generation, which disables SPTE caching
858          * until the end of synchronize_srcu_expedited.
859          */
860         WARN_ON(old_memslots->generation & 1);
861         slots->generation = old_memslots->generation + 1;
862
863         rcu_assign_pointer(kvm->memslots[as_id], slots);
864         synchronize_srcu_expedited(&kvm->srcu);
865
866         /*
867          * Increment the new memslot generation a second time. This prevents
868          * vm exits that race with memslot updates from caching a memslot
869          * generation that will (potentially) be valid forever.
870          */
871         slots->generation++;
872
873         kvm_arch_memslots_updated(kvm, slots);
874
875         return old_memslots;
876 }
877
878 /*
879  * Allocate some memory and give it an address in the guest physical address
880  * space.
881  *
882  * Discontiguous memory is allowed, mostly for framebuffers.
883  *
884  * Must be called holding kvm->slots_lock for write.
885  */
886 int __kvm_set_memory_region(struct kvm *kvm,
887                             const struct kvm_userspace_memory_region *mem)
888 {
889         int r;
890         gfn_t base_gfn;
891         unsigned long npages;
892         struct kvm_memory_slot *slot;
893         struct kvm_memory_slot old, new;
894         struct kvm_memslots *slots = NULL, *old_memslots;
895         int as_id, id;
896         enum kvm_mr_change change;
897
898         r = check_memory_region_flags(mem);
899         if (r)
900                 goto out;
901
902         r = -EINVAL;
903         as_id = mem->slot >> 16;
904         id = (u16)mem->slot;
905
906         /* General sanity checks */
907         if (mem->memory_size & (PAGE_SIZE - 1))
908                 goto out;
909         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
910                 goto out;
911         /* We can read the guest memory with __xxx_user() later on. */
912         if ((id < KVM_USER_MEM_SLOTS) &&
913             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
914              !access_ok(VERIFY_WRITE,
915                         (void __user *)(unsigned long)mem->userspace_addr,
916                         mem->memory_size)))
917                 goto out;
918         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
919                 goto out;
920         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
921                 goto out;
922
923         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
924         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
925         npages = mem->memory_size >> PAGE_SHIFT;
926
927         if (npages > KVM_MEM_MAX_NR_PAGES)
928                 goto out;
929
930         new = old = *slot;
931
932         new.id = id;
933         new.base_gfn = base_gfn;
934         new.npages = npages;
935         new.flags = mem->flags;
936
937         if (npages) {
938                 if (!old.npages)
939                         change = KVM_MR_CREATE;
940                 else { /* Modify an existing slot. */
941                         if ((mem->userspace_addr != old.userspace_addr) ||
942                             (npages != old.npages) ||
943                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
944                                 goto out;
945
946                         if (base_gfn != old.base_gfn)
947                                 change = KVM_MR_MOVE;
948                         else if (new.flags != old.flags)
949                                 change = KVM_MR_FLAGS_ONLY;
950                         else { /* Nothing to change. */
951                                 r = 0;
952                                 goto out;
953                         }
954                 }
955         } else {
956                 if (!old.npages)
957                         goto out;
958
959                 change = KVM_MR_DELETE;
960                 new.base_gfn = 0;
961                 new.flags = 0;
962         }
963
964         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
965                 /* Check for overlaps */
966                 r = -EEXIST;
967                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
968                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
969                             (slot->id == id))
970                                 continue;
971                         if (!((base_gfn + npages <= slot->base_gfn) ||
972                               (base_gfn >= slot->base_gfn + slot->npages)))
973                                 goto out;
974                 }
975         }
976
977         /* Free page dirty bitmap if unneeded */
978         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
979                 new.dirty_bitmap = NULL;
980
981         r = -ENOMEM;
982         if (change == KVM_MR_CREATE) {
983                 new.userspace_addr = mem->userspace_addr;
984
985                 if (kvm_arch_create_memslot(kvm, &new, npages))
986                         goto out_free;
987         }
988
989         /* Allocate page dirty bitmap if needed */
990         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
991                 if (kvm_create_dirty_bitmap(&new) < 0)
992                         goto out_free;
993         }
994
995         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
996         if (!slots)
997                 goto out_free;
998         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
999
1000         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1001                 slot = id_to_memslot(slots, id);
1002                 slot->flags |= KVM_MEMSLOT_INVALID;
1003
1004                 old_memslots = install_new_memslots(kvm, as_id, slots);
1005
1006                 /* slot was deleted or moved, clear iommu mapping */
1007                 kvm_iommu_unmap_pages(kvm, &old);
1008                 /* From this point no new shadow pages pointing to a deleted,
1009                  * or moved, memslot will be created.
1010                  *
1011                  * validation of sp->gfn happens in:
1012                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1013                  *      - kvm_is_visible_gfn (mmu_check_roots)
1014                  */
1015                 kvm_arch_flush_shadow_memslot(kvm, slot);
1016
1017                 /*
1018                  * We can re-use the old_memslots from above, the only difference
1019                  * from the currently installed memslots is the invalid flag.  This
1020                  * will get overwritten by update_memslots anyway.
1021                  */
1022                 slots = old_memslots;
1023         }
1024
1025         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1026         if (r)
1027                 goto out_slots;
1028
1029         /* actual memory is freed via old in kvm_free_memslot below */
1030         if (change == KVM_MR_DELETE) {
1031                 new.dirty_bitmap = NULL;
1032                 memset(&new.arch, 0, sizeof(new.arch));
1033         }
1034
1035         update_memslots(slots, &new);
1036         old_memslots = install_new_memslots(kvm, as_id, slots);
1037
1038         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1039
1040         kvm_free_memslot(kvm, &old, &new);
1041         kvfree(old_memslots);
1042
1043         /*
1044          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1045          * un-mapped and re-mapped if their base changes.  Since base change
1046          * unmapping is handled above with slot deletion, mapping alone is
1047          * needed here.  Anything else the iommu might care about for existing
1048          * slots (size changes, userspace addr changes and read-only flag
1049          * changes) is disallowed above, so any other attribute changes getting
1050          * here can be skipped.
1051          */
1052         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1053                 r = kvm_iommu_map_pages(kvm, &new);
1054                 return r;
1055         }
1056
1057         return 0;
1058
1059 out_slots:
1060         kvfree(slots);
1061 out_free:
1062         kvm_free_memslot(kvm, &new, &old);
1063 out:
1064         return r;
1065 }
1066 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1067
1068 int kvm_set_memory_region(struct kvm *kvm,
1069                           const struct kvm_userspace_memory_region *mem)
1070 {
1071         int r;
1072
1073         mutex_lock(&kvm->slots_lock);
1074         r = __kvm_set_memory_region(kvm, mem);
1075         mutex_unlock(&kvm->slots_lock);
1076         return r;
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1079
1080 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1081                                           struct kvm_userspace_memory_region *mem)
1082 {
1083         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1084                 return -EINVAL;
1085
1086         return kvm_set_memory_region(kvm, mem);
1087 }
1088
1089 int kvm_get_dirty_log(struct kvm *kvm,
1090                         struct kvm_dirty_log *log, int *is_dirty)
1091 {
1092         struct kvm_memslots *slots;
1093         struct kvm_memory_slot *memslot;
1094         int r, i, as_id, id;
1095         unsigned long n;
1096         unsigned long any = 0;
1097
1098         r = -EINVAL;
1099         as_id = log->slot >> 16;
1100         id = (u16)log->slot;
1101         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1102                 goto out;
1103
1104         slots = __kvm_memslots(kvm, as_id);
1105         memslot = id_to_memslot(slots, id);
1106         r = -ENOENT;
1107         if (!memslot->dirty_bitmap)
1108                 goto out;
1109
1110         n = kvm_dirty_bitmap_bytes(memslot);
1111
1112         for (i = 0; !any && i < n/sizeof(long); ++i)
1113                 any = memslot->dirty_bitmap[i];
1114
1115         r = -EFAULT;
1116         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1117                 goto out;
1118
1119         if (any)
1120                 *is_dirty = 1;
1121
1122         r = 0;
1123 out:
1124         return r;
1125 }
1126 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1127
1128 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1129 /**
1130  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1131  *      are dirty write protect them for next write.
1132  * @kvm:        pointer to kvm instance
1133  * @log:        slot id and address to which we copy the log
1134  * @is_dirty:   flag set if any page is dirty
1135  *
1136  * We need to keep it in mind that VCPU threads can write to the bitmap
1137  * concurrently. So, to avoid losing track of dirty pages we keep the
1138  * following order:
1139  *
1140  *    1. Take a snapshot of the bit and clear it if needed.
1141  *    2. Write protect the corresponding page.
1142  *    3. Copy the snapshot to the userspace.
1143  *    4. Upon return caller flushes TLB's if needed.
1144  *
1145  * Between 2 and 4, the guest may write to the page using the remaining TLB
1146  * entry.  This is not a problem because the page is reported dirty using
1147  * the snapshot taken before and step 4 ensures that writes done after
1148  * exiting to userspace will be logged for the next call.
1149  *
1150  */
1151 int kvm_get_dirty_log_protect(struct kvm *kvm,
1152                         struct kvm_dirty_log *log, bool *is_dirty)
1153 {
1154         struct kvm_memslots *slots;
1155         struct kvm_memory_slot *memslot;
1156         int r, i, as_id, id;
1157         unsigned long n;
1158         unsigned long *dirty_bitmap;
1159         unsigned long *dirty_bitmap_buffer;
1160
1161         r = -EINVAL;
1162         as_id = log->slot >> 16;
1163         id = (u16)log->slot;
1164         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1165                 goto out;
1166
1167         slots = __kvm_memslots(kvm, as_id);
1168         memslot = id_to_memslot(slots, id);
1169
1170         dirty_bitmap = memslot->dirty_bitmap;
1171         r = -ENOENT;
1172         if (!dirty_bitmap)
1173                 goto out;
1174
1175         n = kvm_dirty_bitmap_bytes(memslot);
1176
1177         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1178         memset(dirty_bitmap_buffer, 0, n);
1179
1180         spin_lock(&kvm->mmu_lock);
1181         *is_dirty = false;
1182         for (i = 0; i < n / sizeof(long); i++) {
1183                 unsigned long mask;
1184                 gfn_t offset;
1185
1186                 if (!dirty_bitmap[i])
1187                         continue;
1188
1189                 *is_dirty = true;
1190
1191                 mask = xchg(&dirty_bitmap[i], 0);
1192                 dirty_bitmap_buffer[i] = mask;
1193
1194                 if (mask) {
1195                         offset = i * BITS_PER_LONG;
1196                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1197                                                                 offset, mask);
1198                 }
1199         }
1200
1201         spin_unlock(&kvm->mmu_lock);
1202
1203         r = -EFAULT;
1204         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1205                 goto out;
1206
1207         r = 0;
1208 out:
1209         return r;
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1212 #endif
1213
1214 bool kvm_largepages_enabled(void)
1215 {
1216         return largepages_enabled;
1217 }
1218
1219 void kvm_disable_largepages(void)
1220 {
1221         largepages_enabled = false;
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1224
1225 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1226 {
1227         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1228 }
1229 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1230
1231 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1232 {
1233         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1234 }
1235
1236 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1237 {
1238         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1239
1240         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1241               memslot->flags & KVM_MEMSLOT_INVALID)
1242                 return false;
1243
1244         return true;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1247
1248 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1249 {
1250         struct vm_area_struct *vma;
1251         unsigned long addr, size;
1252
1253         size = PAGE_SIZE;
1254
1255         addr = gfn_to_hva(kvm, gfn);
1256         if (kvm_is_error_hva(addr))
1257                 return PAGE_SIZE;
1258
1259         down_read(&current->mm->mmap_sem);
1260         vma = find_vma(current->mm, addr);
1261         if (!vma)
1262                 goto out;
1263
1264         size = vma_kernel_pagesize(vma);
1265
1266 out:
1267         up_read(&current->mm->mmap_sem);
1268
1269         return size;
1270 }
1271
1272 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1273 {
1274         return slot->flags & KVM_MEM_READONLY;
1275 }
1276
1277 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1278                                        gfn_t *nr_pages, bool write)
1279 {
1280         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1281                 return KVM_HVA_ERR_BAD;
1282
1283         if (memslot_is_readonly(slot) && write)
1284                 return KVM_HVA_ERR_RO_BAD;
1285
1286         if (nr_pages)
1287                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1288
1289         return __gfn_to_hva_memslot(slot, gfn);
1290 }
1291
1292 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1293                                      gfn_t *nr_pages)
1294 {
1295         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1296 }
1297
1298 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1299                                         gfn_t gfn)
1300 {
1301         return gfn_to_hva_many(slot, gfn, NULL);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1304
1305 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1306 {
1307         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_hva);
1310
1311 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1312 {
1313         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1314 }
1315 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1316
1317 /*
1318  * If writable is set to false, the hva returned by this function is only
1319  * allowed to be read.
1320  */
1321 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1322                                       gfn_t gfn, bool *writable)
1323 {
1324         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1325
1326         if (!kvm_is_error_hva(hva) && writable)
1327                 *writable = !memslot_is_readonly(slot);
1328
1329         return hva;
1330 }
1331
1332 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1333 {
1334         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1335
1336         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338
1339 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1340 {
1341         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1342
1343         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1344 }
1345
1346 static int get_user_page_nowait(unsigned long start, int write,
1347                 struct page **page)
1348 {
1349         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1350
1351         if (write)
1352                 flags |= FOLL_WRITE;
1353
1354         return __get_user_pages(current, current->mm, start, 1, flags, page,
1355                         NULL, NULL);
1356 }
1357
1358 static inline int check_user_page_hwpoison(unsigned long addr)
1359 {
1360         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1361
1362         rc = __get_user_pages(current, current->mm, addr, 1,
1363                               flags, NULL, NULL, NULL);
1364         return rc == -EHWPOISON;
1365 }
1366
1367 /*
1368  * The atomic path to get the writable pfn which will be stored in @pfn,
1369  * true indicates success, otherwise false is returned.
1370  */
1371 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1372                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1373 {
1374         struct page *page[1];
1375         int npages;
1376
1377         if (!(async || atomic))
1378                 return false;
1379
1380         /*
1381          * Fast pin a writable pfn only if it is a write fault request
1382          * or the caller allows to map a writable pfn for a read fault
1383          * request.
1384          */
1385         if (!(write_fault || writable))
1386                 return false;
1387
1388         npages = __get_user_pages_fast(addr, 1, 1, page);
1389         if (npages == 1) {
1390                 *pfn = page_to_pfn(page[0]);
1391
1392                 if (writable)
1393                         *writable = true;
1394                 return true;
1395         }
1396
1397         return false;
1398 }
1399
1400 /*
1401  * The slow path to get the pfn of the specified host virtual address,
1402  * 1 indicates success, -errno is returned if error is detected.
1403  */
1404 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1405                            bool *writable, kvm_pfn_t *pfn)
1406 {
1407         struct page *page[1];
1408         int npages = 0;
1409
1410         might_sleep();
1411
1412         if (writable)
1413                 *writable = write_fault;
1414
1415         if (async) {
1416                 down_read(&current->mm->mmap_sem);
1417                 npages = get_user_page_nowait(addr, write_fault, page);
1418                 up_read(&current->mm->mmap_sem);
1419         } else
1420                 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1421                                                    write_fault, 0, page,
1422                                                    FOLL_TOUCH|FOLL_HWPOISON);
1423         if (npages != 1)
1424                 return npages;
1425
1426         /* map read fault as writable if possible */
1427         if (unlikely(!write_fault) && writable) {
1428                 struct page *wpage[1];
1429
1430                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1431                 if (npages == 1) {
1432                         *writable = true;
1433                         put_page(page[0]);
1434                         page[0] = wpage[0];
1435                 }
1436
1437                 npages = 1;
1438         }
1439         *pfn = page_to_pfn(page[0]);
1440         return npages;
1441 }
1442
1443 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1444 {
1445         if (unlikely(!(vma->vm_flags & VM_READ)))
1446                 return false;
1447
1448         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1449                 return false;
1450
1451         return true;
1452 }
1453
1454 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1455                                unsigned long addr, bool *async,
1456                                bool write_fault, kvm_pfn_t *p_pfn)
1457 {
1458         unsigned long pfn;
1459         int r;
1460
1461         r = follow_pfn(vma, addr, &pfn);
1462         if (r) {
1463                 /*
1464                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1465                  * not call the fault handler, so do it here.
1466                  */
1467                 bool unlocked = false;
1468                 r = fixup_user_fault(current, current->mm, addr,
1469                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1470                                      &unlocked);
1471                 if (unlocked)
1472                         return -EAGAIN;
1473                 if (r)
1474                         return r;
1475
1476                 r = follow_pfn(vma, addr, &pfn);
1477                 if (r)
1478                         return r;
1479
1480         }
1481
1482
1483         /*
1484          * Get a reference here because callers of *hva_to_pfn* and
1485          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1486          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1487          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1488          * simply do nothing for reserved pfns.
1489          *
1490          * Whoever called remap_pfn_range is also going to call e.g.
1491          * unmap_mapping_range before the underlying pages are freed,
1492          * causing a call to our MMU notifier.
1493          */ 
1494         kvm_get_pfn(pfn);
1495
1496         *p_pfn = pfn;
1497         return 0;
1498 }
1499
1500 /*
1501  * Pin guest page in memory and return its pfn.
1502  * @addr: host virtual address which maps memory to the guest
1503  * @atomic: whether this function can sleep
1504  * @async: whether this function need to wait IO complete if the
1505  *         host page is not in the memory
1506  * @write_fault: whether we should get a writable host page
1507  * @writable: whether it allows to map a writable host page for !@write_fault
1508  *
1509  * The function will map a writable host page for these two cases:
1510  * 1): @write_fault = true
1511  * 2): @write_fault = false && @writable, @writable will tell the caller
1512  *     whether the mapping is writable.
1513  */
1514 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1515                         bool write_fault, bool *writable)
1516 {
1517         struct vm_area_struct *vma;
1518         kvm_pfn_t pfn = 0;
1519         int npages, r;
1520
1521         /* we can do it either atomically or asynchronously, not both */
1522         BUG_ON(atomic && async);
1523
1524         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1525                 return pfn;
1526
1527         if (atomic)
1528                 return KVM_PFN_ERR_FAULT;
1529
1530         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1531         if (npages == 1)
1532                 return pfn;
1533
1534         down_read(&current->mm->mmap_sem);
1535         if (npages == -EHWPOISON ||
1536               (!async && check_user_page_hwpoison(addr))) {
1537                 pfn = KVM_PFN_ERR_HWPOISON;
1538                 goto exit;
1539         }
1540
1541 retry:
1542         vma = find_vma_intersection(current->mm, addr, addr + 1);
1543
1544         if (vma == NULL)
1545                 pfn = KVM_PFN_ERR_FAULT;
1546         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1547                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1548                 if (r == -EAGAIN)
1549                         goto retry;
1550                 if (r < 0)
1551                         pfn = KVM_PFN_ERR_FAULT;
1552         } else {
1553                 if (async && vma_is_valid(vma, write_fault))
1554                         *async = true;
1555                 pfn = KVM_PFN_ERR_FAULT;
1556         }
1557 exit:
1558         up_read(&current->mm->mmap_sem);
1559         return pfn;
1560 }
1561
1562 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1563                                bool atomic, bool *async, bool write_fault,
1564                                bool *writable)
1565 {
1566         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1567
1568         if (addr == KVM_HVA_ERR_RO_BAD) {
1569                 if (writable)
1570                         *writable = false;
1571                 return KVM_PFN_ERR_RO_FAULT;
1572         }
1573
1574         if (kvm_is_error_hva(addr)) {
1575                 if (writable)
1576                         *writable = false;
1577                 return KVM_PFN_NOSLOT;
1578         }
1579
1580         /* Do not map writable pfn in the readonly memslot. */
1581         if (writable && memslot_is_readonly(slot)) {
1582                 *writable = false;
1583                 writable = NULL;
1584         }
1585
1586         return hva_to_pfn(addr, atomic, async, write_fault,
1587                           writable);
1588 }
1589 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1590
1591 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1592                       bool *writable)
1593 {
1594         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1595                                     write_fault, writable);
1596 }
1597 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1598
1599 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1600 {
1601         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1602 }
1603 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1604
1605 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1606 {
1607         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1608 }
1609 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1610
1611 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1612 {
1613         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1614 }
1615 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1616
1617 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1618 {
1619         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1620 }
1621 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1622
1623 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1624 {
1625         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1626 }
1627 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1628
1629 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1630 {
1631         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1632 }
1633 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1634
1635 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1636                             struct page **pages, int nr_pages)
1637 {
1638         unsigned long addr;
1639         gfn_t entry;
1640
1641         addr = gfn_to_hva_many(slot, gfn, &entry);
1642         if (kvm_is_error_hva(addr))
1643                 return -1;
1644
1645         if (entry < nr_pages)
1646                 return 0;
1647
1648         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1649 }
1650 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1651
1652 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1653 {
1654         if (is_error_noslot_pfn(pfn))
1655                 return KVM_ERR_PTR_BAD_PAGE;
1656
1657         if (kvm_is_reserved_pfn(pfn)) {
1658                 WARN_ON(1);
1659                 return KVM_ERR_PTR_BAD_PAGE;
1660         }
1661
1662         return pfn_to_page(pfn);
1663 }
1664
1665 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1666 {
1667         kvm_pfn_t pfn;
1668
1669         pfn = gfn_to_pfn(kvm, gfn);
1670
1671         return kvm_pfn_to_page(pfn);
1672 }
1673 EXPORT_SYMBOL_GPL(gfn_to_page);
1674
1675 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1676 {
1677         kvm_pfn_t pfn;
1678
1679         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1680
1681         return kvm_pfn_to_page(pfn);
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1684
1685 void kvm_release_page_clean(struct page *page)
1686 {
1687         WARN_ON(is_error_page(page));
1688
1689         kvm_release_pfn_clean(page_to_pfn(page));
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1692
1693 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1694 {
1695         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1696                 put_page(pfn_to_page(pfn));
1697 }
1698 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1699
1700 void kvm_release_page_dirty(struct page *page)
1701 {
1702         WARN_ON(is_error_page(page));
1703
1704         kvm_release_pfn_dirty(page_to_pfn(page));
1705 }
1706 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1707
1708 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1709 {
1710         kvm_set_pfn_dirty(pfn);
1711         kvm_release_pfn_clean(pfn);
1712 }
1713
1714 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1715 {
1716         if (!kvm_is_reserved_pfn(pfn)) {
1717                 struct page *page = pfn_to_page(pfn);
1718
1719                 if (!PageReserved(page))
1720                         SetPageDirty(page);
1721         }
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1724
1725 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1726 {
1727         if (!kvm_is_reserved_pfn(pfn))
1728                 mark_page_accessed(pfn_to_page(pfn));
1729 }
1730 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1731
1732 void kvm_get_pfn(kvm_pfn_t pfn)
1733 {
1734         if (!kvm_is_reserved_pfn(pfn))
1735                 get_page(pfn_to_page(pfn));
1736 }
1737 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1738
1739 static int next_segment(unsigned long len, int offset)
1740 {
1741         if (len > PAGE_SIZE - offset)
1742                 return PAGE_SIZE - offset;
1743         else
1744                 return len;
1745 }
1746
1747 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1748                                  void *data, int offset, int len)
1749 {
1750         int r;
1751         unsigned long addr;
1752
1753         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1754         if (kvm_is_error_hva(addr))
1755                 return -EFAULT;
1756         r = __copy_from_user(data, (void __user *)addr + offset, len);
1757         if (r)
1758                 return -EFAULT;
1759         return 0;
1760 }
1761
1762 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1763                         int len)
1764 {
1765         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1766
1767         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1768 }
1769 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1770
1771 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1772                              int offset, int len)
1773 {
1774         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1775
1776         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1779
1780 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1781 {
1782         gfn_t gfn = gpa >> PAGE_SHIFT;
1783         int seg;
1784         int offset = offset_in_page(gpa);
1785         int ret;
1786
1787         while ((seg = next_segment(len, offset)) != 0) {
1788                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1789                 if (ret < 0)
1790                         return ret;
1791                 offset = 0;
1792                 len -= seg;
1793                 data += seg;
1794                 ++gfn;
1795         }
1796         return 0;
1797 }
1798 EXPORT_SYMBOL_GPL(kvm_read_guest);
1799
1800 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1801 {
1802         gfn_t gfn = gpa >> PAGE_SHIFT;
1803         int seg;
1804         int offset = offset_in_page(gpa);
1805         int ret;
1806
1807         while ((seg = next_segment(len, offset)) != 0) {
1808                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1809                 if (ret < 0)
1810                         return ret;
1811                 offset = 0;
1812                 len -= seg;
1813                 data += seg;
1814                 ++gfn;
1815         }
1816         return 0;
1817 }
1818 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1819
1820 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1821                                    void *data, int offset, unsigned long len)
1822 {
1823         int r;
1824         unsigned long addr;
1825
1826         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1827         if (kvm_is_error_hva(addr))
1828                 return -EFAULT;
1829         pagefault_disable();
1830         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1831         pagefault_enable();
1832         if (r)
1833                 return -EFAULT;
1834         return 0;
1835 }
1836
1837 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1838                           unsigned long len)
1839 {
1840         gfn_t gfn = gpa >> PAGE_SHIFT;
1841         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1842         int offset = offset_in_page(gpa);
1843
1844         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1847
1848 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1849                                void *data, unsigned long len)
1850 {
1851         gfn_t gfn = gpa >> PAGE_SHIFT;
1852         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1853         int offset = offset_in_page(gpa);
1854
1855         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1856 }
1857 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1858
1859 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1860                                   const void *data, int offset, int len)
1861 {
1862         int r;
1863         unsigned long addr;
1864
1865         addr = gfn_to_hva_memslot(memslot, gfn);
1866         if (kvm_is_error_hva(addr))
1867                 return -EFAULT;
1868         r = __copy_to_user((void __user *)addr + offset, data, len);
1869         if (r)
1870                 return -EFAULT;
1871         mark_page_dirty_in_slot(memslot, gfn);
1872         return 0;
1873 }
1874
1875 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1876                          const void *data, int offset, int len)
1877 {
1878         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1879
1880         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1881 }
1882 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1883
1884 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1885                               const void *data, int offset, int len)
1886 {
1887         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1888
1889         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1890 }
1891 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1892
1893 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1894                     unsigned long len)
1895 {
1896         gfn_t gfn = gpa >> PAGE_SHIFT;
1897         int seg;
1898         int offset = offset_in_page(gpa);
1899         int ret;
1900
1901         while ((seg = next_segment(len, offset)) != 0) {
1902                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1903                 if (ret < 0)
1904                         return ret;
1905                 offset = 0;
1906                 len -= seg;
1907                 data += seg;
1908                 ++gfn;
1909         }
1910         return 0;
1911 }
1912 EXPORT_SYMBOL_GPL(kvm_write_guest);
1913
1914 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1915                          unsigned long len)
1916 {
1917         gfn_t gfn = gpa >> PAGE_SHIFT;
1918         int seg;
1919         int offset = offset_in_page(gpa);
1920         int ret;
1921
1922         while ((seg = next_segment(len, offset)) != 0) {
1923                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1924                 if (ret < 0)
1925                         return ret;
1926                 offset = 0;
1927                 len -= seg;
1928                 data += seg;
1929                 ++gfn;
1930         }
1931         return 0;
1932 }
1933 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1934
1935 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1936                               gpa_t gpa, unsigned long len)
1937 {
1938         struct kvm_memslots *slots = kvm_memslots(kvm);
1939         int offset = offset_in_page(gpa);
1940         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1941         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1942         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1943         gfn_t nr_pages_avail;
1944
1945         ghc->gpa = gpa;
1946         ghc->generation = slots->generation;
1947         ghc->len = len;
1948         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1949         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1950         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1951                 ghc->hva += offset;
1952         } else {
1953                 /*
1954                  * If the requested region crosses two memslots, we still
1955                  * verify that the entire region is valid here.
1956                  */
1957                 while (start_gfn <= end_gfn) {
1958                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1959                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1960                                                    &nr_pages_avail);
1961                         if (kvm_is_error_hva(ghc->hva))
1962                                 return -EFAULT;
1963                         start_gfn += nr_pages_avail;
1964                 }
1965                 /* Use the slow path for cross page reads and writes. */
1966                 ghc->memslot = NULL;
1967         }
1968         return 0;
1969 }
1970 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1971
1972 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1973                            void *data, unsigned long len)
1974 {
1975         struct kvm_memslots *slots = kvm_memslots(kvm);
1976         int r;
1977
1978         BUG_ON(len > ghc->len);
1979
1980         if (slots->generation != ghc->generation)
1981                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1982
1983         if (unlikely(!ghc->memslot))
1984                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1985
1986         if (kvm_is_error_hva(ghc->hva))
1987                 return -EFAULT;
1988
1989         r = __copy_to_user((void __user *)ghc->hva, data, len);
1990         if (r)
1991                 return -EFAULT;
1992         mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1993
1994         return 0;
1995 }
1996 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1997
1998 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1999                            void *data, unsigned long len)
2000 {
2001         struct kvm_memslots *slots = kvm_memslots(kvm);
2002         int r;
2003
2004         BUG_ON(len > ghc->len);
2005
2006         if (slots->generation != ghc->generation)
2007                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2008
2009         if (unlikely(!ghc->memslot))
2010                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2011
2012         if (kvm_is_error_hva(ghc->hva))
2013                 return -EFAULT;
2014
2015         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2016         if (r)
2017                 return -EFAULT;
2018
2019         return 0;
2020 }
2021 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2022
2023 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2024 {
2025         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2026
2027         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2028 }
2029 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2030
2031 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2032 {
2033         gfn_t gfn = gpa >> PAGE_SHIFT;
2034         int seg;
2035         int offset = offset_in_page(gpa);
2036         int ret;
2037
2038         while ((seg = next_segment(len, offset)) != 0) {
2039                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2040                 if (ret < 0)
2041                         return ret;
2042                 offset = 0;
2043                 len -= seg;
2044                 ++gfn;
2045         }
2046         return 0;
2047 }
2048 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2049
2050 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2051                                     gfn_t gfn)
2052 {
2053         if (memslot && memslot->dirty_bitmap) {
2054                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2055
2056                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2057         }
2058 }
2059
2060 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2061 {
2062         struct kvm_memory_slot *memslot;
2063
2064         memslot = gfn_to_memslot(kvm, gfn);
2065         mark_page_dirty_in_slot(memslot, gfn);
2066 }
2067 EXPORT_SYMBOL_GPL(mark_page_dirty);
2068
2069 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2070 {
2071         struct kvm_memory_slot *memslot;
2072
2073         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2074         mark_page_dirty_in_slot(memslot, gfn);
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2077
2078 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2079 {
2080         unsigned int old, val, grow;
2081
2082         old = val = vcpu->halt_poll_ns;
2083         grow = READ_ONCE(halt_poll_ns_grow);
2084         /* 10us base */
2085         if (val == 0 && grow)
2086                 val = 10000;
2087         else
2088                 val *= grow;
2089
2090         if (val > halt_poll_ns)
2091                 val = halt_poll_ns;
2092
2093         vcpu->halt_poll_ns = val;
2094         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2095 }
2096
2097 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2098 {
2099         unsigned int old, val, shrink;
2100
2101         old = val = vcpu->halt_poll_ns;
2102         shrink = READ_ONCE(halt_poll_ns_shrink);
2103         if (shrink == 0)
2104                 val = 0;
2105         else
2106                 val /= shrink;
2107
2108         vcpu->halt_poll_ns = val;
2109         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2110 }
2111
2112 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2113 {
2114         if (kvm_arch_vcpu_runnable(vcpu)) {
2115                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2116                 return -EINTR;
2117         }
2118         if (kvm_cpu_has_pending_timer(vcpu))
2119                 return -EINTR;
2120         if (signal_pending(current))
2121                 return -EINTR;
2122
2123         return 0;
2124 }
2125
2126 /*
2127  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2128  */
2129 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2130 {
2131         ktime_t start, cur;
2132         DECLARE_SWAITQUEUE(wait);
2133         bool waited = false;
2134         u64 block_ns;
2135
2136         start = cur = ktime_get();
2137         if (vcpu->halt_poll_ns) {
2138                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2139
2140                 ++vcpu->stat.halt_attempted_poll;
2141                 do {
2142                         /*
2143                          * This sets KVM_REQ_UNHALT if an interrupt
2144                          * arrives.
2145                          */
2146                         if (kvm_vcpu_check_block(vcpu) < 0) {
2147                                 ++vcpu->stat.halt_successful_poll;
2148                                 if (!vcpu_valid_wakeup(vcpu))
2149                                         ++vcpu->stat.halt_poll_invalid;
2150                                 goto out;
2151                         }
2152                         cur = ktime_get();
2153                 } while (single_task_running() && ktime_before(cur, stop));
2154         }
2155
2156         kvm_arch_vcpu_blocking(vcpu);
2157
2158         for (;;) {
2159                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2160
2161                 if (kvm_vcpu_check_block(vcpu) < 0)
2162                         break;
2163
2164                 waited = true;
2165                 schedule();
2166         }
2167
2168         finish_swait(&vcpu->wq, &wait);
2169         cur = ktime_get();
2170
2171         kvm_arch_vcpu_unblocking(vcpu);
2172 out:
2173         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2174
2175         if (!vcpu_valid_wakeup(vcpu))
2176                 shrink_halt_poll_ns(vcpu);
2177         else if (halt_poll_ns) {
2178                 if (block_ns <= vcpu->halt_poll_ns)
2179                         ;
2180                 /* we had a long block, shrink polling */
2181                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2182                         shrink_halt_poll_ns(vcpu);
2183                 /* we had a short halt and our poll time is too small */
2184                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2185                         block_ns < halt_poll_ns)
2186                         grow_halt_poll_ns(vcpu);
2187         } else
2188                 vcpu->halt_poll_ns = 0;
2189
2190         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2191         kvm_arch_vcpu_block_finish(vcpu);
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2194
2195 #ifndef CONFIG_S390
2196 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2197 {
2198         struct swait_queue_head *wqp;
2199
2200         wqp = kvm_arch_vcpu_wq(vcpu);
2201         if (swait_active(wqp)) {
2202                 swake_up(wqp);
2203                 ++vcpu->stat.halt_wakeup;
2204         }
2205
2206 }
2207 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2208
2209 /*
2210  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2211  */
2212 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2213 {
2214         int me;
2215         int cpu = vcpu->cpu;
2216
2217         kvm_vcpu_wake_up(vcpu);
2218         me = get_cpu();
2219         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2220                 if (kvm_arch_vcpu_should_kick(vcpu))
2221                         smp_send_reschedule(cpu);
2222         put_cpu();
2223 }
2224 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2225 #endif /* !CONFIG_S390 */
2226
2227 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2228 {
2229         struct pid *pid;
2230         struct task_struct *task = NULL;
2231         int ret = 0;
2232
2233         rcu_read_lock();
2234         pid = rcu_dereference(target->pid);
2235         if (pid)
2236                 task = get_pid_task(pid, PIDTYPE_PID);
2237         rcu_read_unlock();
2238         if (!task)
2239                 return ret;
2240         ret = yield_to(task, 1);
2241         put_task_struct(task);
2242
2243         return ret;
2244 }
2245 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2246
2247 /*
2248  * Helper that checks whether a VCPU is eligible for directed yield.
2249  * Most eligible candidate to yield is decided by following heuristics:
2250  *
2251  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2252  *  (preempted lock holder), indicated by @in_spin_loop.
2253  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2254  *
2255  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2256  *  chance last time (mostly it has become eligible now since we have probably
2257  *  yielded to lockholder in last iteration. This is done by toggling
2258  *  @dy_eligible each time a VCPU checked for eligibility.)
2259  *
2260  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2261  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2262  *  burning. Giving priority for a potential lock-holder increases lock
2263  *  progress.
2264  *
2265  *  Since algorithm is based on heuristics, accessing another VCPU data without
2266  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2267  *  and continue with next VCPU and so on.
2268  */
2269 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2270 {
2271 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2272         bool eligible;
2273
2274         eligible = !vcpu->spin_loop.in_spin_loop ||
2275                     vcpu->spin_loop.dy_eligible;
2276
2277         if (vcpu->spin_loop.in_spin_loop)
2278                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2279
2280         return eligible;
2281 #else
2282         return true;
2283 #endif
2284 }
2285
2286 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2287 {
2288         struct kvm *kvm = me->kvm;
2289         struct kvm_vcpu *vcpu;
2290         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2291         int yielded = 0;
2292         int try = 3;
2293         int pass;
2294         int i;
2295
2296         kvm_vcpu_set_in_spin_loop(me, true);
2297         /*
2298          * We boost the priority of a VCPU that is runnable but not
2299          * currently running, because it got preempted by something
2300          * else and called schedule in __vcpu_run.  Hopefully that
2301          * VCPU is holding the lock that we need and will release it.
2302          * We approximate round-robin by starting at the last boosted VCPU.
2303          */
2304         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2305                 kvm_for_each_vcpu(i, vcpu, kvm) {
2306                         if (!pass && i <= last_boosted_vcpu) {
2307                                 i = last_boosted_vcpu;
2308                                 continue;
2309                         } else if (pass && i > last_boosted_vcpu)
2310                                 break;
2311                         if (!ACCESS_ONCE(vcpu->preempted))
2312                                 continue;
2313                         if (vcpu == me)
2314                                 continue;
2315                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2316                                 continue;
2317                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2318                                 continue;
2319
2320                         yielded = kvm_vcpu_yield_to(vcpu);
2321                         if (yielded > 0) {
2322                                 kvm->last_boosted_vcpu = i;
2323                                 break;
2324                         } else if (yielded < 0) {
2325                                 try--;
2326                                 if (!try)
2327                                         break;
2328                         }
2329                 }
2330         }
2331         kvm_vcpu_set_in_spin_loop(me, false);
2332
2333         /* Ensure vcpu is not eligible during next spinloop */
2334         kvm_vcpu_set_dy_eligible(me, false);
2335 }
2336 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2337
2338 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2339 {
2340         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2341         struct page *page;
2342
2343         if (vmf->pgoff == 0)
2344                 page = virt_to_page(vcpu->run);
2345 #ifdef CONFIG_X86
2346         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2347                 page = virt_to_page(vcpu->arch.pio_data);
2348 #endif
2349 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2350         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2351                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2352 #endif
2353         else
2354                 return kvm_arch_vcpu_fault(vcpu, vmf);
2355         get_page(page);
2356         vmf->page = page;
2357         return 0;
2358 }
2359
2360 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2361         .fault = kvm_vcpu_fault,
2362 };
2363
2364 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2365 {
2366         vma->vm_ops = &kvm_vcpu_vm_ops;
2367         return 0;
2368 }
2369
2370 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2371 {
2372         struct kvm_vcpu *vcpu = filp->private_data;
2373
2374         debugfs_remove_recursive(vcpu->debugfs_dentry);
2375         kvm_put_kvm(vcpu->kvm);
2376         return 0;
2377 }
2378
2379 static struct file_operations kvm_vcpu_fops = {
2380         .release        = kvm_vcpu_release,
2381         .unlocked_ioctl = kvm_vcpu_ioctl,
2382 #ifdef CONFIG_KVM_COMPAT
2383         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2384 #endif
2385         .mmap           = kvm_vcpu_mmap,
2386         .llseek         = noop_llseek,
2387 };
2388
2389 /*
2390  * Allocates an inode for the vcpu.
2391  */
2392 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2393 {
2394         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2395 }
2396
2397 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2398 {
2399         char dir_name[ITOA_MAX_LEN * 2];
2400         int ret;
2401
2402         if (!kvm_arch_has_vcpu_debugfs())
2403                 return 0;
2404
2405         if (!debugfs_initialized())
2406                 return 0;
2407
2408         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2409         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2410                                                                 vcpu->kvm->debugfs_dentry);
2411         if (!vcpu->debugfs_dentry)
2412                 return -ENOMEM;
2413
2414         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2415         if (ret < 0) {
2416                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2417                 return ret;
2418         }
2419
2420         return 0;
2421 }
2422
2423 /*
2424  * Creates some virtual cpus.  Good luck creating more than one.
2425  */
2426 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2427 {
2428         int r;
2429         struct kvm_vcpu *vcpu;
2430
2431         if (id >= KVM_MAX_VCPU_ID)
2432                 return -EINVAL;
2433
2434         mutex_lock(&kvm->lock);
2435         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2436                 mutex_unlock(&kvm->lock);
2437                 return -EINVAL;
2438         }
2439
2440         kvm->created_vcpus++;
2441         mutex_unlock(&kvm->lock);
2442
2443         vcpu = kvm_arch_vcpu_create(kvm, id);
2444         if (IS_ERR(vcpu)) {
2445                 r = PTR_ERR(vcpu);
2446                 goto vcpu_decrement;
2447         }
2448
2449         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2450
2451         r = kvm_arch_vcpu_setup(vcpu);
2452         if (r)
2453                 goto vcpu_destroy;
2454
2455         r = kvm_create_vcpu_debugfs(vcpu);
2456         if (r)
2457                 goto vcpu_destroy;
2458
2459         mutex_lock(&kvm->lock);
2460         if (kvm_get_vcpu_by_id(kvm, id)) {
2461                 r = -EEXIST;
2462                 goto unlock_vcpu_destroy;
2463         }
2464
2465         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2466
2467         /* Now it's all set up, let userspace reach it */
2468         kvm_get_kvm(kvm);
2469         r = create_vcpu_fd(vcpu);
2470         if (r < 0) {
2471                 kvm_put_kvm(kvm);
2472                 goto unlock_vcpu_destroy;
2473         }
2474
2475         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2476
2477         /*
2478          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2479          * before kvm->online_vcpu's incremented value.
2480          */
2481         smp_wmb();
2482         atomic_inc(&kvm->online_vcpus);
2483
2484         mutex_unlock(&kvm->lock);
2485         kvm_arch_vcpu_postcreate(vcpu);
2486         return r;
2487
2488 unlock_vcpu_destroy:
2489         mutex_unlock(&kvm->lock);
2490         debugfs_remove_recursive(vcpu->debugfs_dentry);
2491 vcpu_destroy:
2492         kvm_arch_vcpu_destroy(vcpu);
2493 vcpu_decrement:
2494         mutex_lock(&kvm->lock);
2495         kvm->created_vcpus--;
2496         mutex_unlock(&kvm->lock);
2497         return r;
2498 }
2499
2500 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2501 {
2502         if (sigset) {
2503                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2504                 vcpu->sigset_active = 1;
2505                 vcpu->sigset = *sigset;
2506         } else
2507                 vcpu->sigset_active = 0;
2508         return 0;
2509 }
2510
2511 static long kvm_vcpu_ioctl(struct file *filp,
2512                            unsigned int ioctl, unsigned long arg)
2513 {
2514         struct kvm_vcpu *vcpu = filp->private_data;
2515         void __user *argp = (void __user *)arg;
2516         int r;
2517         struct kvm_fpu *fpu = NULL;
2518         struct kvm_sregs *kvm_sregs = NULL;
2519
2520         if (vcpu->kvm->mm != current->mm)
2521                 return -EIO;
2522
2523         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2524                 return -EINVAL;
2525
2526 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2527         /*
2528          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2529          * so vcpu_load() would break it.
2530          */
2531         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2532                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2533 #endif
2534
2535
2536         r = vcpu_load(vcpu);
2537         if (r)
2538                 return r;
2539         switch (ioctl) {
2540         case KVM_RUN:
2541                 r = -EINVAL;
2542                 if (arg)
2543                         goto out;
2544                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2545                         /* The thread running this VCPU changed. */
2546                         struct pid *oldpid = vcpu->pid;
2547                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2548
2549                         rcu_assign_pointer(vcpu->pid, newpid);
2550                         if (oldpid)
2551                                 synchronize_rcu();
2552                         put_pid(oldpid);
2553                 }
2554                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2555                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2556                 break;
2557         case KVM_GET_REGS: {
2558                 struct kvm_regs *kvm_regs;
2559
2560                 r = -ENOMEM;
2561                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2562                 if (!kvm_regs)
2563                         goto out;
2564                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2565                 if (r)
2566                         goto out_free1;
2567                 r = -EFAULT;
2568                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2569                         goto out_free1;
2570                 r = 0;
2571 out_free1:
2572                 kfree(kvm_regs);
2573                 break;
2574         }
2575         case KVM_SET_REGS: {
2576                 struct kvm_regs *kvm_regs;
2577
2578                 r = -ENOMEM;
2579                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2580                 if (IS_ERR(kvm_regs)) {
2581                         r = PTR_ERR(kvm_regs);
2582                         goto out;
2583                 }
2584                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2585                 kfree(kvm_regs);
2586                 break;
2587         }
2588         case KVM_GET_SREGS: {
2589                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2590                 r = -ENOMEM;
2591                 if (!kvm_sregs)
2592                         goto out;
2593                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2594                 if (r)
2595                         goto out;
2596                 r = -EFAULT;
2597                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2598                         goto out;
2599                 r = 0;
2600                 break;
2601         }
2602         case KVM_SET_SREGS: {
2603                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2604                 if (IS_ERR(kvm_sregs)) {
2605                         r = PTR_ERR(kvm_sregs);
2606                         kvm_sregs = NULL;
2607                         goto out;
2608                 }
2609                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2610                 break;
2611         }
2612         case KVM_GET_MP_STATE: {
2613                 struct kvm_mp_state mp_state;
2614
2615                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2616                 if (r)
2617                         goto out;
2618                 r = -EFAULT;
2619                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2620                         goto out;
2621                 r = 0;
2622                 break;
2623         }
2624         case KVM_SET_MP_STATE: {
2625                 struct kvm_mp_state mp_state;
2626
2627                 r = -EFAULT;
2628                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2629                         goto out;
2630                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2631                 break;
2632         }
2633         case KVM_TRANSLATE: {
2634                 struct kvm_translation tr;
2635
2636                 r = -EFAULT;
2637                 if (copy_from_user(&tr, argp, sizeof(tr)))
2638                         goto out;
2639                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2640                 if (r)
2641                         goto out;
2642                 r = -EFAULT;
2643                 if (copy_to_user(argp, &tr, sizeof(tr)))
2644                         goto out;
2645                 r = 0;
2646                 break;
2647         }
2648         case KVM_SET_GUEST_DEBUG: {
2649                 struct kvm_guest_debug dbg;
2650
2651                 r = -EFAULT;
2652                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2653                         goto out;
2654                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2655                 break;
2656         }
2657         case KVM_SET_SIGNAL_MASK: {
2658                 struct kvm_signal_mask __user *sigmask_arg = argp;
2659                 struct kvm_signal_mask kvm_sigmask;
2660                 sigset_t sigset, *p;
2661
2662                 p = NULL;
2663                 if (argp) {
2664                         r = -EFAULT;
2665                         if (copy_from_user(&kvm_sigmask, argp,
2666                                            sizeof(kvm_sigmask)))
2667                                 goto out;
2668                         r = -EINVAL;
2669                         if (kvm_sigmask.len != sizeof(sigset))
2670                                 goto out;
2671                         r = -EFAULT;
2672                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2673                                            sizeof(sigset)))
2674                                 goto out;
2675                         p = &sigset;
2676                 }
2677                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2678                 break;
2679         }
2680         case KVM_GET_FPU: {
2681                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2682                 r = -ENOMEM;
2683                 if (!fpu)
2684                         goto out;
2685                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2686                 if (r)
2687                         goto out;
2688                 r = -EFAULT;
2689                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2690                         goto out;
2691                 r = 0;
2692                 break;
2693         }
2694         case KVM_SET_FPU: {
2695                 fpu = memdup_user(argp, sizeof(*fpu));
2696                 if (IS_ERR(fpu)) {
2697                         r = PTR_ERR(fpu);
2698                         fpu = NULL;
2699                         goto out;
2700                 }
2701                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2702                 break;
2703         }
2704         default:
2705                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2706         }
2707 out:
2708         vcpu_put(vcpu);
2709         kfree(fpu);
2710         kfree(kvm_sregs);
2711         return r;
2712 }
2713
2714 #ifdef CONFIG_KVM_COMPAT
2715 static long kvm_vcpu_compat_ioctl(struct file *filp,
2716                                   unsigned int ioctl, unsigned long arg)
2717 {
2718         struct kvm_vcpu *vcpu = filp->private_data;
2719         void __user *argp = compat_ptr(arg);
2720         int r;
2721
2722         if (vcpu->kvm->mm != current->mm)
2723                 return -EIO;
2724
2725         switch (ioctl) {
2726         case KVM_SET_SIGNAL_MASK: {
2727                 struct kvm_signal_mask __user *sigmask_arg = argp;
2728                 struct kvm_signal_mask kvm_sigmask;
2729                 compat_sigset_t csigset;
2730                 sigset_t sigset;
2731
2732                 if (argp) {
2733                         r = -EFAULT;
2734                         if (copy_from_user(&kvm_sigmask, argp,
2735                                            sizeof(kvm_sigmask)))
2736                                 goto out;
2737                         r = -EINVAL;
2738                         if (kvm_sigmask.len != sizeof(csigset))
2739                                 goto out;
2740                         r = -EFAULT;
2741                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2742                                            sizeof(csigset)))
2743                                 goto out;
2744                         sigset_from_compat(&sigset, &csigset);
2745                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2746                 } else
2747                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2748                 break;
2749         }
2750         default:
2751                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2752         }
2753
2754 out:
2755         return r;
2756 }
2757 #endif
2758
2759 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2760                                  int (*accessor)(struct kvm_device *dev,
2761                                                  struct kvm_device_attr *attr),
2762                                  unsigned long arg)
2763 {
2764         struct kvm_device_attr attr;
2765
2766         if (!accessor)
2767                 return -EPERM;
2768
2769         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2770                 return -EFAULT;
2771
2772         return accessor(dev, &attr);
2773 }
2774
2775 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2776                              unsigned long arg)
2777 {
2778         struct kvm_device *dev = filp->private_data;
2779
2780         switch (ioctl) {
2781         case KVM_SET_DEVICE_ATTR:
2782                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2783         case KVM_GET_DEVICE_ATTR:
2784                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2785         case KVM_HAS_DEVICE_ATTR:
2786                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2787         default:
2788                 if (dev->ops->ioctl)
2789                         return dev->ops->ioctl(dev, ioctl, arg);
2790
2791                 return -ENOTTY;
2792         }
2793 }
2794
2795 static int kvm_device_release(struct inode *inode, struct file *filp)
2796 {
2797         struct kvm_device *dev = filp->private_data;
2798         struct kvm *kvm = dev->kvm;
2799
2800         kvm_put_kvm(kvm);
2801         return 0;
2802 }
2803
2804 static const struct file_operations kvm_device_fops = {
2805         .unlocked_ioctl = kvm_device_ioctl,
2806 #ifdef CONFIG_KVM_COMPAT
2807         .compat_ioctl = kvm_device_ioctl,
2808 #endif
2809         .release = kvm_device_release,
2810 };
2811
2812 struct kvm_device *kvm_device_from_filp(struct file *filp)
2813 {
2814         if (filp->f_op != &kvm_device_fops)
2815                 return NULL;
2816
2817         return filp->private_data;
2818 }
2819
2820 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2821 #ifdef CONFIG_KVM_MPIC
2822         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2823         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2824 #endif
2825
2826 #ifdef CONFIG_KVM_XICS
2827         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2828 #endif
2829 };
2830
2831 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2832 {
2833         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2834                 return -ENOSPC;
2835
2836         if (kvm_device_ops_table[type] != NULL)
2837                 return -EEXIST;
2838
2839         kvm_device_ops_table[type] = ops;
2840         return 0;
2841 }
2842
2843 void kvm_unregister_device_ops(u32 type)
2844 {
2845         if (kvm_device_ops_table[type] != NULL)
2846                 kvm_device_ops_table[type] = NULL;
2847 }
2848
2849 static int kvm_ioctl_create_device(struct kvm *kvm,
2850                                    struct kvm_create_device *cd)
2851 {
2852         struct kvm_device_ops *ops = NULL;
2853         struct kvm_device *dev;
2854         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2855         int ret;
2856
2857         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2858                 return -ENODEV;
2859
2860         ops = kvm_device_ops_table[cd->type];
2861         if (ops == NULL)
2862                 return -ENODEV;
2863
2864         if (test)
2865                 return 0;
2866
2867         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2868         if (!dev)
2869                 return -ENOMEM;
2870
2871         dev->ops = ops;
2872         dev->kvm = kvm;
2873
2874         mutex_lock(&kvm->lock);
2875         ret = ops->create(dev, cd->type);
2876         if (ret < 0) {
2877                 mutex_unlock(&kvm->lock);
2878                 kfree(dev);
2879                 return ret;
2880         }
2881         list_add(&dev->vm_node, &kvm->devices);
2882         mutex_unlock(&kvm->lock);
2883
2884         if (ops->init)
2885                 ops->init(dev);
2886
2887         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2888         if (ret < 0) {
2889                 ops->destroy(dev);
2890                 mutex_lock(&kvm->lock);
2891                 list_del(&dev->vm_node);
2892                 mutex_unlock(&kvm->lock);
2893                 return ret;
2894         }
2895
2896         kvm_get_kvm(kvm);
2897         cd->fd = ret;
2898         return 0;
2899 }
2900
2901 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2902 {
2903         switch (arg) {
2904         case KVM_CAP_USER_MEMORY:
2905         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2906         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2907         case KVM_CAP_INTERNAL_ERROR_DATA:
2908 #ifdef CONFIG_HAVE_KVM_MSI
2909         case KVM_CAP_SIGNAL_MSI:
2910 #endif
2911 #ifdef CONFIG_HAVE_KVM_IRQFD
2912         case KVM_CAP_IRQFD:
2913         case KVM_CAP_IRQFD_RESAMPLE:
2914 #endif
2915         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2916         case KVM_CAP_CHECK_EXTENSION_VM:
2917                 return 1;
2918 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2919         case KVM_CAP_IRQ_ROUTING:
2920                 return KVM_MAX_IRQ_ROUTES;
2921 #endif
2922 #if KVM_ADDRESS_SPACE_NUM > 1
2923         case KVM_CAP_MULTI_ADDRESS_SPACE:
2924                 return KVM_ADDRESS_SPACE_NUM;
2925 #endif
2926         case KVM_CAP_MAX_VCPU_ID:
2927                 return KVM_MAX_VCPU_ID;
2928         default:
2929                 break;
2930         }
2931         return kvm_vm_ioctl_check_extension(kvm, arg);
2932 }
2933
2934 static long kvm_vm_ioctl(struct file *filp,
2935                            unsigned int ioctl, unsigned long arg)
2936 {
2937         struct kvm *kvm = filp->private_data;
2938         void __user *argp = (void __user *)arg;
2939         int r;
2940
2941         if (kvm->mm != current->mm)
2942                 return -EIO;
2943         switch (ioctl) {
2944         case KVM_CREATE_VCPU:
2945                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2946                 break;
2947         case KVM_SET_USER_MEMORY_REGION: {
2948                 struct kvm_userspace_memory_region kvm_userspace_mem;
2949
2950                 r = -EFAULT;
2951                 if (copy_from_user(&kvm_userspace_mem, argp,
2952                                                 sizeof(kvm_userspace_mem)))
2953                         goto out;
2954
2955                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2956                 break;
2957         }
2958         case KVM_GET_DIRTY_LOG: {
2959                 struct kvm_dirty_log log;
2960
2961                 r = -EFAULT;
2962                 if (copy_from_user(&log, argp, sizeof(log)))
2963                         goto out;
2964                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2965                 break;
2966         }
2967 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2968         case KVM_REGISTER_COALESCED_MMIO: {
2969                 struct kvm_coalesced_mmio_zone zone;
2970
2971                 r = -EFAULT;
2972                 if (copy_from_user(&zone, argp, sizeof(zone)))
2973                         goto out;
2974                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2975                 break;
2976         }
2977         case KVM_UNREGISTER_COALESCED_MMIO: {
2978                 struct kvm_coalesced_mmio_zone zone;
2979
2980                 r = -EFAULT;
2981                 if (copy_from_user(&zone, argp, sizeof(zone)))
2982                         goto out;
2983                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2984                 break;
2985         }
2986 #endif
2987         case KVM_IRQFD: {
2988                 struct kvm_irqfd data;
2989
2990                 r = -EFAULT;
2991                 if (copy_from_user(&data, argp, sizeof(data)))
2992                         goto out;
2993                 r = kvm_irqfd(kvm, &data);
2994                 break;
2995         }
2996         case KVM_IOEVENTFD: {
2997                 struct kvm_ioeventfd data;
2998
2999                 r = -EFAULT;
3000                 if (copy_from_user(&data, argp, sizeof(data)))
3001                         goto out;
3002                 r = kvm_ioeventfd(kvm, &data);
3003                 break;
3004         }
3005 #ifdef CONFIG_HAVE_KVM_MSI
3006         case KVM_SIGNAL_MSI: {
3007                 struct kvm_msi msi;
3008
3009                 r = -EFAULT;
3010                 if (copy_from_user(&msi, argp, sizeof(msi)))
3011                         goto out;
3012                 r = kvm_send_userspace_msi(kvm, &msi);
3013                 break;
3014         }
3015 #endif
3016 #ifdef __KVM_HAVE_IRQ_LINE
3017         case KVM_IRQ_LINE_STATUS:
3018         case KVM_IRQ_LINE: {
3019                 struct kvm_irq_level irq_event;
3020
3021                 r = -EFAULT;
3022                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3023                         goto out;
3024
3025                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3026                                         ioctl == KVM_IRQ_LINE_STATUS);
3027                 if (r)
3028                         goto out;
3029
3030                 r = -EFAULT;
3031                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3032                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3033                                 goto out;
3034                 }
3035
3036                 r = 0;
3037                 break;
3038         }
3039 #endif
3040 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3041         case KVM_SET_GSI_ROUTING: {
3042                 struct kvm_irq_routing routing;
3043                 struct kvm_irq_routing __user *urouting;
3044                 struct kvm_irq_routing_entry *entries = NULL;
3045
3046                 r = -EFAULT;
3047                 if (copy_from_user(&routing, argp, sizeof(routing)))
3048                         goto out;
3049                 r = -EINVAL;
3050                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3051                         goto out;
3052                 if (routing.flags)
3053                         goto out;
3054                 if (routing.nr) {
3055                         r = -ENOMEM;
3056                         entries = vmalloc(routing.nr * sizeof(*entries));
3057                         if (!entries)
3058                                 goto out;
3059                         r = -EFAULT;
3060                         urouting = argp;
3061                         if (copy_from_user(entries, urouting->entries,
3062                                            routing.nr * sizeof(*entries)))
3063                                 goto out_free_irq_routing;
3064                 }
3065                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3066                                         routing.flags);
3067 out_free_irq_routing:
3068                 vfree(entries);
3069                 break;
3070         }
3071 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3072         case KVM_CREATE_DEVICE: {
3073                 struct kvm_create_device cd;
3074
3075                 r = -EFAULT;
3076                 if (copy_from_user(&cd, argp, sizeof(cd)))
3077                         goto out;
3078
3079                 r = kvm_ioctl_create_device(kvm, &cd);
3080                 if (r)
3081                         goto out;
3082
3083                 r = -EFAULT;
3084                 if (copy_to_user(argp, &cd, sizeof(cd)))
3085                         goto out;
3086
3087                 r = 0;
3088                 break;
3089         }
3090         case KVM_CHECK_EXTENSION:
3091                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3092                 break;
3093         default:
3094                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3095         }
3096 out:
3097         return r;
3098 }
3099
3100 #ifdef CONFIG_KVM_COMPAT
3101 struct compat_kvm_dirty_log {
3102         __u32 slot;
3103         __u32 padding1;
3104         union {
3105                 compat_uptr_t dirty_bitmap; /* one bit per page */
3106                 __u64 padding2;
3107         };
3108 };
3109
3110 static long kvm_vm_compat_ioctl(struct file *filp,
3111                            unsigned int ioctl, unsigned long arg)
3112 {
3113         struct kvm *kvm = filp->private_data;
3114         int r;
3115
3116         if (kvm->mm != current->mm)
3117                 return -EIO;
3118         switch (ioctl) {
3119         case KVM_GET_DIRTY_LOG: {
3120                 struct compat_kvm_dirty_log compat_log;
3121                 struct kvm_dirty_log log;
3122
3123                 r = -EFAULT;
3124                 if (copy_from_user(&compat_log, (void __user *)arg,
3125                                    sizeof(compat_log)))
3126                         goto out;
3127                 log.slot         = compat_log.slot;
3128                 log.padding1     = compat_log.padding1;
3129                 log.padding2     = compat_log.padding2;
3130                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3131
3132                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3133                 break;
3134         }
3135         default:
3136                 r = kvm_vm_ioctl(filp, ioctl, arg);
3137         }
3138
3139 out:
3140         return r;
3141 }
3142 #endif
3143
3144 static struct file_operations kvm_vm_fops = {
3145         .release        = kvm_vm_release,
3146         .unlocked_ioctl = kvm_vm_ioctl,
3147 #ifdef CONFIG_KVM_COMPAT
3148         .compat_ioctl   = kvm_vm_compat_ioctl,
3149 #endif
3150         .llseek         = noop_llseek,
3151 };
3152
3153 static int kvm_dev_ioctl_create_vm(unsigned long type)
3154 {
3155         int r;
3156         struct kvm *kvm;
3157         struct file *file;
3158
3159         kvm = kvm_create_vm(type);
3160         if (IS_ERR(kvm))
3161                 return PTR_ERR(kvm);
3162 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3163         r = kvm_coalesced_mmio_init(kvm);
3164         if (r < 0) {
3165                 kvm_put_kvm(kvm);
3166                 return r;
3167         }
3168 #endif
3169         r = get_unused_fd_flags(O_CLOEXEC);
3170         if (r < 0) {
3171                 kvm_put_kvm(kvm);
3172                 return r;
3173         }
3174         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3175         if (IS_ERR(file)) {
3176                 put_unused_fd(r);
3177                 kvm_put_kvm(kvm);
3178                 return PTR_ERR(file);
3179         }
3180
3181         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3182                 put_unused_fd(r);
3183                 fput(file);
3184                 return -ENOMEM;
3185         }
3186
3187         fd_install(r, file);
3188         return r;
3189 }
3190
3191 static long kvm_dev_ioctl(struct file *filp,
3192                           unsigned int ioctl, unsigned long arg)
3193 {
3194         long r = -EINVAL;
3195
3196         switch (ioctl) {
3197         case KVM_GET_API_VERSION:
3198                 if (arg)
3199                         goto out;
3200                 r = KVM_API_VERSION;
3201                 break;
3202         case KVM_CREATE_VM:
3203                 r = kvm_dev_ioctl_create_vm(arg);
3204                 break;
3205         case KVM_CHECK_EXTENSION:
3206                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3207                 break;
3208         case KVM_GET_VCPU_MMAP_SIZE:
3209                 if (arg)
3210                         goto out;
3211                 r = PAGE_SIZE;     /* struct kvm_run */
3212 #ifdef CONFIG_X86
3213                 r += PAGE_SIZE;    /* pio data page */
3214 #endif
3215 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3216                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3217 #endif
3218                 break;
3219         case KVM_TRACE_ENABLE:
3220         case KVM_TRACE_PAUSE:
3221         case KVM_TRACE_DISABLE:
3222                 r = -EOPNOTSUPP;
3223                 break;
3224         default:
3225                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3226         }
3227 out:
3228         return r;
3229 }
3230
3231 static struct file_operations kvm_chardev_ops = {
3232         .unlocked_ioctl = kvm_dev_ioctl,
3233         .compat_ioctl   = kvm_dev_ioctl,
3234         .llseek         = noop_llseek,
3235 };
3236
3237 static struct miscdevice kvm_dev = {
3238         KVM_MINOR,
3239         "kvm",
3240         &kvm_chardev_ops,
3241 };
3242
3243 static void hardware_enable_nolock(void *junk)
3244 {
3245         int cpu = raw_smp_processor_id();
3246         int r;
3247
3248         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3249                 return;
3250
3251         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3252
3253         r = kvm_arch_hardware_enable();
3254
3255         if (r) {
3256                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3257                 atomic_inc(&hardware_enable_failed);
3258                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3259         }
3260 }
3261
3262 static int kvm_starting_cpu(unsigned int cpu)
3263 {
3264         raw_spin_lock(&kvm_count_lock);
3265         if (kvm_usage_count)
3266                 hardware_enable_nolock(NULL);
3267         raw_spin_unlock(&kvm_count_lock);
3268         return 0;
3269 }
3270
3271 static void hardware_disable_nolock(void *junk)
3272 {
3273         int cpu = raw_smp_processor_id();
3274
3275         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3276                 return;
3277         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3278         kvm_arch_hardware_disable();
3279 }
3280
3281 static int kvm_dying_cpu(unsigned int cpu)
3282 {
3283         raw_spin_lock(&kvm_count_lock);
3284         if (kvm_usage_count)
3285                 hardware_disable_nolock(NULL);
3286         raw_spin_unlock(&kvm_count_lock);
3287         return 0;
3288 }
3289
3290 static void hardware_disable_all_nolock(void)
3291 {
3292         BUG_ON(!kvm_usage_count);
3293
3294         kvm_usage_count--;
3295         if (!kvm_usage_count)
3296                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3297 }
3298
3299 static void hardware_disable_all(void)
3300 {
3301         raw_spin_lock(&kvm_count_lock);
3302         hardware_disable_all_nolock();
3303         raw_spin_unlock(&kvm_count_lock);
3304 }
3305
3306 static int hardware_enable_all(void)
3307 {
3308         int r = 0;
3309
3310         raw_spin_lock(&kvm_count_lock);
3311
3312         kvm_usage_count++;
3313         if (kvm_usage_count == 1) {
3314                 atomic_set(&hardware_enable_failed, 0);
3315                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3316
3317                 if (atomic_read(&hardware_enable_failed)) {
3318                         hardware_disable_all_nolock();
3319                         r = -EBUSY;
3320                 }
3321         }
3322
3323         raw_spin_unlock(&kvm_count_lock);
3324
3325         return r;
3326 }
3327
3328 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3329                       void *v)
3330 {
3331         /*
3332          * Some (well, at least mine) BIOSes hang on reboot if
3333          * in vmx root mode.
3334          *
3335          * And Intel TXT required VMX off for all cpu when system shutdown.
3336          */
3337         pr_info("kvm: exiting hardware virtualization\n");
3338         kvm_rebooting = true;
3339         on_each_cpu(hardware_disable_nolock, NULL, 1);
3340         return NOTIFY_OK;
3341 }
3342
3343 static struct notifier_block kvm_reboot_notifier = {
3344         .notifier_call = kvm_reboot,
3345         .priority = 0,
3346 };
3347
3348 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3349 {
3350         int i;
3351
3352         for (i = 0; i < bus->dev_count; i++) {
3353                 struct kvm_io_device *pos = bus->range[i].dev;
3354
3355                 kvm_iodevice_destructor(pos);
3356         }
3357         kfree(bus);
3358 }
3359
3360 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3361                                  const struct kvm_io_range *r2)
3362 {
3363         gpa_t addr1 = r1->addr;
3364         gpa_t addr2 = r2->addr;
3365
3366         if (addr1 < addr2)
3367                 return -1;
3368
3369         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3370          * accept any overlapping write.  Any order is acceptable for
3371          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3372          * we process all of them.
3373          */
3374         if (r2->len) {
3375                 addr1 += r1->len;
3376                 addr2 += r2->len;
3377         }
3378
3379         if (addr1 > addr2)
3380                 return 1;
3381
3382         return 0;
3383 }
3384
3385 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3386 {
3387         return kvm_io_bus_cmp(p1, p2);
3388 }
3389
3390 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3391                           gpa_t addr, int len)
3392 {
3393         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3394                 .addr = addr,
3395                 .len = len,
3396                 .dev = dev,
3397         };
3398
3399         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3400                 kvm_io_bus_sort_cmp, NULL);
3401
3402         return 0;
3403 }
3404
3405 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3406                              gpa_t addr, int len)
3407 {
3408         struct kvm_io_range *range, key;
3409         int off;
3410
3411         key = (struct kvm_io_range) {
3412                 .addr = addr,
3413                 .len = len,
3414         };
3415
3416         range = bsearch(&key, bus->range, bus->dev_count,
3417                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3418         if (range == NULL)
3419                 return -ENOENT;
3420
3421         off = range - bus->range;
3422
3423         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3424                 off--;
3425
3426         return off;
3427 }
3428
3429 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3430                               struct kvm_io_range *range, const void *val)
3431 {
3432         int idx;
3433
3434         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3435         if (idx < 0)
3436                 return -EOPNOTSUPP;
3437
3438         while (idx < bus->dev_count &&
3439                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3440                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3441                                         range->len, val))
3442                         return idx;
3443                 idx++;
3444         }
3445
3446         return -EOPNOTSUPP;
3447 }
3448
3449 /* kvm_io_bus_write - called under kvm->slots_lock */
3450 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3451                      int len, const void *val)
3452 {
3453         struct kvm_io_bus *bus;
3454         struct kvm_io_range range;
3455         int r;
3456
3457         range = (struct kvm_io_range) {
3458                 .addr = addr,
3459                 .len = len,
3460         };
3461
3462         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3463         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3464         return r < 0 ? r : 0;
3465 }
3466
3467 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3468 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3469                             gpa_t addr, int len, const void *val, long cookie)
3470 {
3471         struct kvm_io_bus *bus;
3472         struct kvm_io_range range;
3473
3474         range = (struct kvm_io_range) {
3475                 .addr = addr,
3476                 .len = len,
3477         };
3478
3479         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3480
3481         /* First try the device referenced by cookie. */
3482         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3483             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3484                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3485                                         val))
3486                         return cookie;
3487
3488         /*
3489          * cookie contained garbage; fall back to search and return the
3490          * correct cookie value.
3491          */
3492         return __kvm_io_bus_write(vcpu, bus, &range, val);
3493 }
3494
3495 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3496                              struct kvm_io_range *range, void *val)
3497 {
3498         int idx;
3499
3500         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3501         if (idx < 0)
3502                 return -EOPNOTSUPP;
3503
3504         while (idx < bus->dev_count &&
3505                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3506                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3507                                        range->len, val))
3508                         return idx;
3509                 idx++;
3510         }
3511
3512         return -EOPNOTSUPP;
3513 }
3514 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3515
3516 /* kvm_io_bus_read - called under kvm->slots_lock */
3517 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3518                     int len, void *val)
3519 {
3520         struct kvm_io_bus *bus;
3521         struct kvm_io_range range;
3522         int r;
3523
3524         range = (struct kvm_io_range) {
3525                 .addr = addr,
3526                 .len = len,
3527         };
3528
3529         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3530         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3531         return r < 0 ? r : 0;
3532 }
3533
3534
3535 /* Caller must hold slots_lock. */
3536 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3537                             int len, struct kvm_io_device *dev)
3538 {
3539         struct kvm_io_bus *new_bus, *bus;
3540
3541         bus = kvm->buses[bus_idx];
3542         /* exclude ioeventfd which is limited by maximum fd */
3543         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3544                 return -ENOSPC;
3545
3546         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3547                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3548         if (!new_bus)
3549                 return -ENOMEM;
3550         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3551                sizeof(struct kvm_io_range)));
3552         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3553         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3554         synchronize_srcu_expedited(&kvm->srcu);
3555         kfree(bus);
3556
3557         return 0;
3558 }
3559
3560 /* Caller must hold slots_lock. */
3561 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3562                               struct kvm_io_device *dev)
3563 {
3564         int i, r;
3565         struct kvm_io_bus *new_bus, *bus;
3566
3567         bus = kvm->buses[bus_idx];
3568         r = -ENOENT;
3569         for (i = 0; i < bus->dev_count; i++)
3570                 if (bus->range[i].dev == dev) {
3571                         r = 0;
3572                         break;
3573                 }
3574
3575         if (r)
3576                 return r;
3577
3578         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3579                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3580         if (!new_bus)
3581                 return -ENOMEM;
3582
3583         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3584         new_bus->dev_count--;
3585         memcpy(new_bus->range + i, bus->range + i + 1,
3586                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3587
3588         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3589         synchronize_srcu_expedited(&kvm->srcu);
3590         kfree(bus);
3591         return r;
3592 }
3593
3594 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3595                                          gpa_t addr)
3596 {
3597         struct kvm_io_bus *bus;
3598         int dev_idx, srcu_idx;
3599         struct kvm_io_device *iodev = NULL;
3600
3601         srcu_idx = srcu_read_lock(&kvm->srcu);
3602
3603         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3604
3605         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3606         if (dev_idx < 0)
3607                 goto out_unlock;
3608
3609         iodev = bus->range[dev_idx].dev;
3610
3611 out_unlock:
3612         srcu_read_unlock(&kvm->srcu, srcu_idx);
3613
3614         return iodev;
3615 }
3616 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3617
3618 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3619                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3620                            const char *fmt)
3621 {
3622         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3623                                           inode->i_private;
3624
3625         /* The debugfs files are a reference to the kvm struct which
3626          * is still valid when kvm_destroy_vm is called.
3627          * To avoid the race between open and the removal of the debugfs
3628          * directory we test against the users count.
3629          */
3630         if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3631                 return -ENOENT;
3632
3633         if (simple_attr_open(inode, file, get, set, fmt)) {
3634                 kvm_put_kvm(stat_data->kvm);
3635                 return -ENOMEM;
3636         }
3637
3638         return 0;
3639 }
3640
3641 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3642 {
3643         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3644                                           inode->i_private;
3645
3646         simple_attr_release(inode, file);
3647         kvm_put_kvm(stat_data->kvm);
3648
3649         return 0;
3650 }
3651
3652 static int vm_stat_get_per_vm(void *data, u64 *val)
3653 {
3654         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3655
3656         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3657
3658         return 0;
3659 }
3660
3661 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3662 {
3663         __simple_attr_check_format("%llu\n", 0ull);
3664         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3665                                 NULL, "%llu\n");
3666 }
3667
3668 static const struct file_operations vm_stat_get_per_vm_fops = {
3669         .owner   = THIS_MODULE,
3670         .open    = vm_stat_get_per_vm_open,
3671         .release = kvm_debugfs_release,
3672         .read    = simple_attr_read,
3673         .write   = simple_attr_write,
3674         .llseek  = generic_file_llseek,
3675 };
3676
3677 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3678 {
3679         int i;
3680         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3681         struct kvm_vcpu *vcpu;
3682
3683         *val = 0;
3684
3685         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3686                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3687
3688         return 0;
3689 }
3690
3691 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3692 {
3693         __simple_attr_check_format("%llu\n", 0ull);
3694         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3695                                  NULL, "%llu\n");
3696 }
3697
3698 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3699         .owner   = THIS_MODULE,
3700         .open    = vcpu_stat_get_per_vm_open,
3701         .release = kvm_debugfs_release,
3702         .read    = simple_attr_read,
3703         .write   = simple_attr_write,
3704         .llseek  = generic_file_llseek,
3705 };
3706
3707 static const struct file_operations *stat_fops_per_vm[] = {
3708         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3709         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3710 };
3711
3712 static int vm_stat_get(void *_offset, u64 *val)
3713 {
3714         unsigned offset = (long)_offset;
3715         struct kvm *kvm;
3716         struct kvm_stat_data stat_tmp = {.offset = offset};
3717         u64 tmp_val;
3718
3719         *val = 0;
3720         spin_lock(&kvm_lock);
3721         list_for_each_entry(kvm, &vm_list, vm_list) {
3722                 stat_tmp.kvm = kvm;
3723                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3724                 *val += tmp_val;
3725         }
3726         spin_unlock(&kvm_lock);
3727         return 0;
3728 }
3729
3730 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3731
3732 static int vcpu_stat_get(void *_offset, u64 *val)
3733 {
3734         unsigned offset = (long)_offset;
3735         struct kvm *kvm;
3736         struct kvm_stat_data stat_tmp = {.offset = offset};
3737         u64 tmp_val;
3738
3739         *val = 0;
3740         spin_lock(&kvm_lock);
3741         list_for_each_entry(kvm, &vm_list, vm_list) {
3742                 stat_tmp.kvm = kvm;
3743                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3744                 *val += tmp_val;
3745         }
3746         spin_unlock(&kvm_lock);
3747         return 0;
3748 }
3749
3750 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3751
3752 static const struct file_operations *stat_fops[] = {
3753         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3754         [KVM_STAT_VM]   = &vm_stat_fops,
3755 };
3756
3757 static int kvm_init_debug(void)
3758 {
3759         int r = -EEXIST;
3760         struct kvm_stats_debugfs_item *p;
3761
3762         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3763         if (kvm_debugfs_dir == NULL)
3764                 goto out;
3765
3766         kvm_debugfs_num_entries = 0;
3767         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3768                 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3769                                          (void *)(long)p->offset,
3770                                          stat_fops[p->kind]))
3771                         goto out_dir;
3772         }
3773
3774         return 0;
3775
3776 out_dir:
3777         debugfs_remove_recursive(kvm_debugfs_dir);
3778 out:
3779         return r;
3780 }
3781
3782 static int kvm_suspend(void)
3783 {
3784         if (kvm_usage_count)
3785                 hardware_disable_nolock(NULL);
3786         return 0;
3787 }
3788
3789 static void kvm_resume(void)
3790 {
3791         if (kvm_usage_count) {
3792                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3793                 hardware_enable_nolock(NULL);
3794         }
3795 }
3796
3797 static struct syscore_ops kvm_syscore_ops = {
3798         .suspend = kvm_suspend,
3799         .resume = kvm_resume,
3800 };
3801
3802 static inline
3803 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3804 {
3805         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3806 }
3807
3808 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3809 {
3810         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3811
3812         if (vcpu->preempted)
3813                 vcpu->preempted = false;
3814
3815         kvm_arch_sched_in(vcpu, cpu);
3816
3817         kvm_arch_vcpu_load(vcpu, cpu);
3818 }
3819
3820 static void kvm_sched_out(struct preempt_notifier *pn,
3821                           struct task_struct *next)
3822 {
3823         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3824
3825         if (current->state == TASK_RUNNING)
3826                 vcpu->preempted = true;
3827         kvm_arch_vcpu_put(vcpu);
3828 }
3829
3830 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3831                   struct module *module)
3832 {
3833         int r;
3834         int cpu;
3835
3836         r = kvm_arch_init(opaque);
3837         if (r)
3838                 goto out_fail;
3839
3840         /*
3841          * kvm_arch_init makes sure there's at most one caller
3842          * for architectures that support multiple implementations,
3843          * like intel and amd on x86.
3844          */
3845
3846         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3847                 r = -ENOMEM;
3848                 goto out_free_0;
3849         }
3850
3851         r = kvm_arch_hardware_setup();
3852         if (r < 0)
3853                 goto out_free_0a;
3854
3855         for_each_online_cpu(cpu) {
3856                 smp_call_function_single(cpu,
3857                                 kvm_arch_check_processor_compat,
3858                                 &r, 1);
3859                 if (r < 0)
3860                         goto out_free_1;
3861         }
3862
3863         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3864                                       kvm_starting_cpu, kvm_dying_cpu);
3865         if (r)
3866                 goto out_free_2;
3867         register_reboot_notifier(&kvm_reboot_notifier);
3868
3869         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3870         if (!vcpu_align)
3871                 vcpu_align = __alignof__(struct kvm_vcpu);
3872         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3873                                            0, NULL);
3874         if (!kvm_vcpu_cache) {
3875                 r = -ENOMEM;
3876                 goto out_free_3;
3877         }
3878
3879         r = kvm_async_pf_init();
3880         if (r)
3881                 goto out_free;
3882
3883         kvm_chardev_ops.owner = module;
3884         kvm_vm_fops.owner = module;
3885         kvm_vcpu_fops.owner = module;
3886
3887         r = misc_register(&kvm_dev);
3888         if (r) {
3889                 pr_err("kvm: misc device register failed\n");
3890                 goto out_unreg;
3891         }
3892
3893         register_syscore_ops(&kvm_syscore_ops);
3894
3895         kvm_preempt_ops.sched_in = kvm_sched_in;
3896         kvm_preempt_ops.sched_out = kvm_sched_out;
3897
3898         r = kvm_init_debug();
3899         if (r) {
3900                 pr_err("kvm: create debugfs files failed\n");
3901                 goto out_undebugfs;
3902         }
3903
3904         r = kvm_vfio_ops_init();
3905         WARN_ON(r);
3906
3907         return 0;
3908
3909 out_undebugfs:
3910         unregister_syscore_ops(&kvm_syscore_ops);
3911         misc_deregister(&kvm_dev);
3912 out_unreg:
3913         kvm_async_pf_deinit();
3914 out_free:
3915         kmem_cache_destroy(kvm_vcpu_cache);
3916 out_free_3:
3917         unregister_reboot_notifier(&kvm_reboot_notifier);
3918         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3919 out_free_2:
3920 out_free_1:
3921         kvm_arch_hardware_unsetup();
3922 out_free_0a:
3923         free_cpumask_var(cpus_hardware_enabled);
3924 out_free_0:
3925         kvm_irqfd_exit();
3926         kvm_arch_exit();
3927 out_fail:
3928         return r;
3929 }
3930 EXPORT_SYMBOL_GPL(kvm_init);
3931
3932 void kvm_exit(void)
3933 {
3934         debugfs_remove_recursive(kvm_debugfs_dir);
3935         misc_deregister(&kvm_dev);
3936         kmem_cache_destroy(kvm_vcpu_cache);
3937         kvm_async_pf_deinit();
3938         unregister_syscore_ops(&kvm_syscore_ops);
3939         unregister_reboot_notifier(&kvm_reboot_notifier);
3940         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3941         on_each_cpu(hardware_disable_nolock, NULL, 1);
3942         kvm_arch_hardware_unsetup();
3943         kvm_arch_exit();
3944         kvm_irqfd_exit();
3945         free_cpumask_var(cpus_hardware_enabled);
3946         kvm_vfio_ops_exit();
3947 }
3948 EXPORT_SYMBOL_GPL(kvm_exit);