Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[cascardo/linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83
84 /*
85  * Ordering of locks:
86  *
87  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88  */
89
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110                            unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113                                   unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125
126 static bool largepages_enabled = true;
127
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
129 {
130         if (pfn_valid(pfn))
131                 return PageReserved(pfn_to_page(pfn));
132
133         return true;
134 }
135
136 /*
137  * Switches to specified vcpu, until a matching vcpu_put()
138  */
139 int vcpu_load(struct kvm_vcpu *vcpu)
140 {
141         int cpu;
142
143         if (mutex_lock_killable(&vcpu->mutex))
144                 return -EINTR;
145         cpu = get_cpu();
146         preempt_notifier_register(&vcpu->preempt_notifier);
147         kvm_arch_vcpu_load(vcpu, cpu);
148         put_cpu();
149         return 0;
150 }
151 EXPORT_SYMBOL_GPL(vcpu_load);
152
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155         preempt_disable();
156         kvm_arch_vcpu_put(vcpu);
157         preempt_notifier_unregister(&vcpu->preempt_notifier);
158         preempt_enable();
159         mutex_unlock(&vcpu->mutex);
160 }
161 EXPORT_SYMBOL_GPL(vcpu_put);
162
163 static void ack_flush(void *_completed)
164 {
165 }
166
167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
168 {
169         int i, cpu, me;
170         cpumask_var_t cpus;
171         bool called = true;
172         struct kvm_vcpu *vcpu;
173
174         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
175
176         me = get_cpu();
177         kvm_for_each_vcpu(i, vcpu, kvm) {
178                 kvm_make_request(req, vcpu);
179                 cpu = vcpu->cpu;
180
181                 /* Set ->requests bit before we read ->mode. */
182                 smp_mb__after_atomic();
183
184                 if (cpus != NULL && cpu != -1 && cpu != me &&
185                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
186                         cpumask_set_cpu(cpu, cpus);
187         }
188         if (unlikely(cpus == NULL))
189                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
190         else if (!cpumask_empty(cpus))
191                 smp_call_function_many(cpus, ack_flush, NULL, 1);
192         else
193                 called = false;
194         put_cpu();
195         free_cpumask_var(cpus);
196         return called;
197 }
198
199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202         /*
203          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
204          * kvm_make_all_cpus_request.
205          */
206         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
207
208         /*
209          * We want to publish modifications to the page tables before reading
210          * mode. Pairs with a memory barrier in arch-specific code.
211          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
212          * and smp_mb in walk_shadow_page_lockless_begin/end.
213          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
214          *
215          * There is already an smp_mb__after_atomic() before
216          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
217          * barrier here.
218          */
219         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
220                 ++kvm->stat.remote_tlb_flush;
221         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
222 }
223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
224 #endif
225
226 void kvm_reload_remote_mmus(struct kvm *kvm)
227 {
228         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
229 }
230
231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
232 {
233         struct page *page;
234         int r;
235
236         mutex_init(&vcpu->mutex);
237         vcpu->cpu = -1;
238         vcpu->kvm = kvm;
239         vcpu->vcpu_id = id;
240         vcpu->pid = NULL;
241         init_swait_queue_head(&vcpu->wq);
242         kvm_async_pf_vcpu_init(vcpu);
243
244         vcpu->pre_pcpu = -1;
245         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
246
247         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
248         if (!page) {
249                 r = -ENOMEM;
250                 goto fail;
251         }
252         vcpu->run = page_address(page);
253
254         kvm_vcpu_set_in_spin_loop(vcpu, false);
255         kvm_vcpu_set_dy_eligible(vcpu, false);
256         vcpu->preempted = false;
257
258         r = kvm_arch_vcpu_init(vcpu);
259         if (r < 0)
260                 goto fail_free_run;
261         return 0;
262
263 fail_free_run:
264         free_page((unsigned long)vcpu->run);
265 fail:
266         return r;
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
269
270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
271 {
272         put_pid(vcpu->pid);
273         kvm_arch_vcpu_uninit(vcpu);
274         free_page((unsigned long)vcpu->run);
275 }
276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
277
278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
280 {
281         return container_of(mn, struct kvm, mmu_notifier);
282 }
283
284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
285                                              struct mm_struct *mm,
286                                              unsigned long address)
287 {
288         struct kvm *kvm = mmu_notifier_to_kvm(mn);
289         int need_tlb_flush, idx;
290
291         /*
292          * When ->invalidate_page runs, the linux pte has been zapped
293          * already but the page is still allocated until
294          * ->invalidate_page returns. So if we increase the sequence
295          * here the kvm page fault will notice if the spte can't be
296          * established because the page is going to be freed. If
297          * instead the kvm page fault establishes the spte before
298          * ->invalidate_page runs, kvm_unmap_hva will release it
299          * before returning.
300          *
301          * The sequence increase only need to be seen at spin_unlock
302          * time, and not at spin_lock time.
303          *
304          * Increasing the sequence after the spin_unlock would be
305          * unsafe because the kvm page fault could then establish the
306          * pte after kvm_unmap_hva returned, without noticing the page
307          * is going to be freed.
308          */
309         idx = srcu_read_lock(&kvm->srcu);
310         spin_lock(&kvm->mmu_lock);
311
312         kvm->mmu_notifier_seq++;
313         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
314         /* we've to flush the tlb before the pages can be freed */
315         if (need_tlb_flush)
316                 kvm_flush_remote_tlbs(kvm);
317
318         spin_unlock(&kvm->mmu_lock);
319
320         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
321
322         srcu_read_unlock(&kvm->srcu, idx);
323 }
324
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326                                         struct mm_struct *mm,
327                                         unsigned long address,
328                                         pte_t pte)
329 {
330         struct kvm *kvm = mmu_notifier_to_kvm(mn);
331         int idx;
332
333         idx = srcu_read_lock(&kvm->srcu);
334         spin_lock(&kvm->mmu_lock);
335         kvm->mmu_notifier_seq++;
336         kvm_set_spte_hva(kvm, address, pte);
337         spin_unlock(&kvm->mmu_lock);
338         srcu_read_unlock(&kvm->srcu, idx);
339 }
340
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342                                                     struct mm_struct *mm,
343                                                     unsigned long start,
344                                                     unsigned long end)
345 {
346         struct kvm *kvm = mmu_notifier_to_kvm(mn);
347         int need_tlb_flush = 0, idx;
348
349         idx = srcu_read_lock(&kvm->srcu);
350         spin_lock(&kvm->mmu_lock);
351         /*
352          * The count increase must become visible at unlock time as no
353          * spte can be established without taking the mmu_lock and
354          * count is also read inside the mmu_lock critical section.
355          */
356         kvm->mmu_notifier_count++;
357         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358         need_tlb_flush |= kvm->tlbs_dirty;
359         /* we've to flush the tlb before the pages can be freed */
360         if (need_tlb_flush)
361                 kvm_flush_remote_tlbs(kvm);
362
363         spin_unlock(&kvm->mmu_lock);
364         srcu_read_unlock(&kvm->srcu, idx);
365 }
366
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368                                                   struct mm_struct *mm,
369                                                   unsigned long start,
370                                                   unsigned long end)
371 {
372         struct kvm *kvm = mmu_notifier_to_kvm(mn);
373
374         spin_lock(&kvm->mmu_lock);
375         /*
376          * This sequence increase will notify the kvm page fault that
377          * the page that is going to be mapped in the spte could have
378          * been freed.
379          */
380         kvm->mmu_notifier_seq++;
381         smp_wmb();
382         /*
383          * The above sequence increase must be visible before the
384          * below count decrease, which is ensured by the smp_wmb above
385          * in conjunction with the smp_rmb in mmu_notifier_retry().
386          */
387         kvm->mmu_notifier_count--;
388         spin_unlock(&kvm->mmu_lock);
389
390         BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394                                               struct mm_struct *mm,
395                                               unsigned long start,
396                                               unsigned long end)
397 {
398         struct kvm *kvm = mmu_notifier_to_kvm(mn);
399         int young, idx;
400
401         idx = srcu_read_lock(&kvm->srcu);
402         spin_lock(&kvm->mmu_lock);
403
404         young = kvm_age_hva(kvm, start, end);
405         if (young)
406                 kvm_flush_remote_tlbs(kvm);
407
408         spin_unlock(&kvm->mmu_lock);
409         srcu_read_unlock(&kvm->srcu, idx);
410
411         return young;
412 }
413
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415                                         struct mm_struct *mm,
416                                         unsigned long start,
417                                         unsigned long end)
418 {
419         struct kvm *kvm = mmu_notifier_to_kvm(mn);
420         int young, idx;
421
422         idx = srcu_read_lock(&kvm->srcu);
423         spin_lock(&kvm->mmu_lock);
424         /*
425          * Even though we do not flush TLB, this will still adversely
426          * affect performance on pre-Haswell Intel EPT, where there is
427          * no EPT Access Bit to clear so that we have to tear down EPT
428          * tables instead. If we find this unacceptable, we can always
429          * add a parameter to kvm_age_hva so that it effectively doesn't
430          * do anything on clear_young.
431          *
432          * Also note that currently we never issue secondary TLB flushes
433          * from clear_young, leaving this job up to the regular system
434          * cadence. If we find this inaccurate, we might come up with a
435          * more sophisticated heuristic later.
436          */
437         young = kvm_age_hva(kvm, start, end);
438         spin_unlock(&kvm->mmu_lock);
439         srcu_read_unlock(&kvm->srcu, idx);
440
441         return young;
442 }
443
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445                                        struct mm_struct *mm,
446                                        unsigned long address)
447 {
448         struct kvm *kvm = mmu_notifier_to_kvm(mn);
449         int young, idx;
450
451         idx = srcu_read_lock(&kvm->srcu);
452         spin_lock(&kvm->mmu_lock);
453         young = kvm_test_age_hva(kvm, address);
454         spin_unlock(&kvm->mmu_lock);
455         srcu_read_unlock(&kvm->srcu, idx);
456
457         return young;
458 }
459
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461                                      struct mm_struct *mm)
462 {
463         struct kvm *kvm = mmu_notifier_to_kvm(mn);
464         int idx;
465
466         idx = srcu_read_lock(&kvm->srcu);
467         kvm_arch_flush_shadow_all(kvm);
468         srcu_read_unlock(&kvm->srcu, idx);
469 }
470
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
473         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
474         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
475         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
476         .clear_young            = kvm_mmu_notifier_clear_young,
477         .test_young             = kvm_mmu_notifier_test_young,
478         .change_pte             = kvm_mmu_notifier_change_pte,
479         .release                = kvm_mmu_notifier_release,
480 };
481
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 {
484         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
485         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
486 }
487
488 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
489
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 {
492         return 0;
493 }
494
495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
496
497 static struct kvm_memslots *kvm_alloc_memslots(void)
498 {
499         int i;
500         struct kvm_memslots *slots;
501
502         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
503         if (!slots)
504                 return NULL;
505
506         /*
507          * Init kvm generation close to the maximum to easily test the
508          * code of handling generation number wrap-around.
509          */
510         slots->generation = -150;
511         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512                 slots->id_to_index[i] = slots->memslots[i].id = i;
513
514         return slots;
515 }
516
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519         if (!memslot->dirty_bitmap)
520                 return;
521
522         kvfree(memslot->dirty_bitmap);
523         memslot->dirty_bitmap = NULL;
524 }
525
526 /*
527  * Free any memory in @free but not in @dont.
528  */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530                               struct kvm_memory_slot *dont)
531 {
532         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533                 kvm_destroy_dirty_bitmap(free);
534
535         kvm_arch_free_memslot(kvm, free, dont);
536
537         free->npages = 0;
538 }
539
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542         struct kvm_memory_slot *memslot;
543
544         if (!slots)
545                 return;
546
547         kvm_for_each_memslot(memslot, slots)
548                 kvm_free_memslot(kvm, memslot, NULL);
549
550         kvfree(slots);
551 }
552
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555         int i;
556
557         if (!kvm->debugfs_dentry)
558                 return;
559
560         debugfs_remove_recursive(kvm->debugfs_dentry);
561
562         for (i = 0; i < kvm_debugfs_num_entries; i++)
563                 kfree(kvm->debugfs_stat_data[i]);
564         kfree(kvm->debugfs_stat_data);
565 }
566
567 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
568 {
569         char dir_name[ITOA_MAX_LEN * 2];
570         struct kvm_stat_data *stat_data;
571         struct kvm_stats_debugfs_item *p;
572
573         if (!debugfs_initialized())
574                 return 0;
575
576         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
577         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
578                                                  kvm_debugfs_dir);
579         if (!kvm->debugfs_dentry)
580                 return -ENOMEM;
581
582         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
583                                          sizeof(*kvm->debugfs_stat_data),
584                                          GFP_KERNEL);
585         if (!kvm->debugfs_stat_data)
586                 return -ENOMEM;
587
588         for (p = debugfs_entries; p->name; p++) {
589                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
590                 if (!stat_data)
591                         return -ENOMEM;
592
593                 stat_data->kvm = kvm;
594                 stat_data->offset = p->offset;
595                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
596                 if (!debugfs_create_file(p->name, 0444,
597                                          kvm->debugfs_dentry,
598                                          stat_data,
599                                          stat_fops_per_vm[p->kind]))
600                         return -ENOMEM;
601         }
602         return 0;
603 }
604
605 static struct kvm *kvm_create_vm(unsigned long type)
606 {
607         int r, i;
608         struct kvm *kvm = kvm_arch_alloc_vm();
609
610         if (!kvm)
611                 return ERR_PTR(-ENOMEM);
612
613         spin_lock_init(&kvm->mmu_lock);
614         atomic_inc(&current->mm->mm_count);
615         kvm->mm = current->mm;
616         kvm_eventfd_init(kvm);
617         mutex_init(&kvm->lock);
618         mutex_init(&kvm->irq_lock);
619         mutex_init(&kvm->slots_lock);
620         atomic_set(&kvm->users_count, 1);
621         INIT_LIST_HEAD(&kvm->devices);
622
623         r = kvm_arch_init_vm(kvm, type);
624         if (r)
625                 goto out_err_no_disable;
626
627         r = hardware_enable_all();
628         if (r)
629                 goto out_err_no_disable;
630
631 #ifdef CONFIG_HAVE_KVM_IRQFD
632         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
633 #endif
634
635         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
636
637         r = -ENOMEM;
638         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
639                 kvm->memslots[i] = kvm_alloc_memslots();
640                 if (!kvm->memslots[i])
641                         goto out_err_no_srcu;
642         }
643
644         if (init_srcu_struct(&kvm->srcu))
645                 goto out_err_no_srcu;
646         if (init_srcu_struct(&kvm->irq_srcu))
647                 goto out_err_no_irq_srcu;
648         for (i = 0; i < KVM_NR_BUSES; i++) {
649                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
650                                         GFP_KERNEL);
651                 if (!kvm->buses[i])
652                         goto out_err;
653         }
654
655         r = kvm_init_mmu_notifier(kvm);
656         if (r)
657                 goto out_err;
658
659         spin_lock(&kvm_lock);
660         list_add(&kvm->vm_list, &vm_list);
661         spin_unlock(&kvm_lock);
662
663         preempt_notifier_inc();
664
665         return kvm;
666
667 out_err:
668         cleanup_srcu_struct(&kvm->irq_srcu);
669 out_err_no_irq_srcu:
670         cleanup_srcu_struct(&kvm->srcu);
671 out_err_no_srcu:
672         hardware_disable_all();
673 out_err_no_disable:
674         for (i = 0; i < KVM_NR_BUSES; i++)
675                 kfree(kvm->buses[i]);
676         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
677                 kvm_free_memslots(kvm, kvm->memslots[i]);
678         kvm_arch_free_vm(kvm);
679         mmdrop(current->mm);
680         return ERR_PTR(r);
681 }
682
683 /*
684  * Avoid using vmalloc for a small buffer.
685  * Should not be used when the size is statically known.
686  */
687 void *kvm_kvzalloc(unsigned long size)
688 {
689         if (size > PAGE_SIZE)
690                 return vzalloc(size);
691         else
692                 return kzalloc(size, GFP_KERNEL);
693 }
694
695 static void kvm_destroy_devices(struct kvm *kvm)
696 {
697         struct kvm_device *dev, *tmp;
698
699         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
700                 list_del(&dev->vm_node);
701                 dev->ops->destroy(dev);
702         }
703 }
704
705 static void kvm_destroy_vm(struct kvm *kvm)
706 {
707         int i;
708         struct mm_struct *mm = kvm->mm;
709
710         kvm_destroy_vm_debugfs(kvm);
711         kvm_arch_sync_events(kvm);
712         spin_lock(&kvm_lock);
713         list_del(&kvm->vm_list);
714         spin_unlock(&kvm_lock);
715         kvm_free_irq_routing(kvm);
716         for (i = 0; i < KVM_NR_BUSES; i++)
717                 kvm_io_bus_destroy(kvm->buses[i]);
718         kvm_coalesced_mmio_free(kvm);
719 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
720         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
721 #else
722         kvm_arch_flush_shadow_all(kvm);
723 #endif
724         kvm_arch_destroy_vm(kvm);
725         kvm_destroy_devices(kvm);
726         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
727                 kvm_free_memslots(kvm, kvm->memslots[i]);
728         cleanup_srcu_struct(&kvm->irq_srcu);
729         cleanup_srcu_struct(&kvm->srcu);
730         kvm_arch_free_vm(kvm);
731         preempt_notifier_dec();
732         hardware_disable_all();
733         mmdrop(mm);
734 }
735
736 void kvm_get_kvm(struct kvm *kvm)
737 {
738         atomic_inc(&kvm->users_count);
739 }
740 EXPORT_SYMBOL_GPL(kvm_get_kvm);
741
742 void kvm_put_kvm(struct kvm *kvm)
743 {
744         if (atomic_dec_and_test(&kvm->users_count))
745                 kvm_destroy_vm(kvm);
746 }
747 EXPORT_SYMBOL_GPL(kvm_put_kvm);
748
749
750 static int kvm_vm_release(struct inode *inode, struct file *filp)
751 {
752         struct kvm *kvm = filp->private_data;
753
754         kvm_irqfd_release(kvm);
755
756         kvm_put_kvm(kvm);
757         return 0;
758 }
759
760 /*
761  * Allocation size is twice as large as the actual dirty bitmap size.
762  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
763  */
764 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
765 {
766         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
767
768         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
769         if (!memslot->dirty_bitmap)
770                 return -ENOMEM;
771
772         return 0;
773 }
774
775 /*
776  * Insert memslot and re-sort memslots based on their GFN,
777  * so binary search could be used to lookup GFN.
778  * Sorting algorithm takes advantage of having initially
779  * sorted array and known changed memslot position.
780  */
781 static void update_memslots(struct kvm_memslots *slots,
782                             struct kvm_memory_slot *new)
783 {
784         int id = new->id;
785         int i = slots->id_to_index[id];
786         struct kvm_memory_slot *mslots = slots->memslots;
787
788         WARN_ON(mslots[i].id != id);
789         if (!new->npages) {
790                 WARN_ON(!mslots[i].npages);
791                 if (mslots[i].npages)
792                         slots->used_slots--;
793         } else {
794                 if (!mslots[i].npages)
795                         slots->used_slots++;
796         }
797
798         while (i < KVM_MEM_SLOTS_NUM - 1 &&
799                new->base_gfn <= mslots[i + 1].base_gfn) {
800                 if (!mslots[i + 1].npages)
801                         break;
802                 mslots[i] = mslots[i + 1];
803                 slots->id_to_index[mslots[i].id] = i;
804                 i++;
805         }
806
807         /*
808          * The ">=" is needed when creating a slot with base_gfn == 0,
809          * so that it moves before all those with base_gfn == npages == 0.
810          *
811          * On the other hand, if new->npages is zero, the above loop has
812          * already left i pointing to the beginning of the empty part of
813          * mslots, and the ">=" would move the hole backwards in this
814          * case---which is wrong.  So skip the loop when deleting a slot.
815          */
816         if (new->npages) {
817                 while (i > 0 &&
818                        new->base_gfn >= mslots[i - 1].base_gfn) {
819                         mslots[i] = mslots[i - 1];
820                         slots->id_to_index[mslots[i].id] = i;
821                         i--;
822                 }
823         } else
824                 WARN_ON_ONCE(i != slots->used_slots);
825
826         mslots[i] = *new;
827         slots->id_to_index[mslots[i].id] = i;
828 }
829
830 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
831 {
832         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
833
834 #ifdef __KVM_HAVE_READONLY_MEM
835         valid_flags |= KVM_MEM_READONLY;
836 #endif
837
838         if (mem->flags & ~valid_flags)
839                 return -EINVAL;
840
841         return 0;
842 }
843
844 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
845                 int as_id, struct kvm_memslots *slots)
846 {
847         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
848
849         /*
850          * Set the low bit in the generation, which disables SPTE caching
851          * until the end of synchronize_srcu_expedited.
852          */
853         WARN_ON(old_memslots->generation & 1);
854         slots->generation = old_memslots->generation + 1;
855
856         rcu_assign_pointer(kvm->memslots[as_id], slots);
857         synchronize_srcu_expedited(&kvm->srcu);
858
859         /*
860          * Increment the new memslot generation a second time. This prevents
861          * vm exits that race with memslot updates from caching a memslot
862          * generation that will (potentially) be valid forever.
863          */
864         slots->generation++;
865
866         kvm_arch_memslots_updated(kvm, slots);
867
868         return old_memslots;
869 }
870
871 /*
872  * Allocate some memory and give it an address in the guest physical address
873  * space.
874  *
875  * Discontiguous memory is allowed, mostly for framebuffers.
876  *
877  * Must be called holding kvm->slots_lock for write.
878  */
879 int __kvm_set_memory_region(struct kvm *kvm,
880                             const struct kvm_userspace_memory_region *mem)
881 {
882         int r;
883         gfn_t base_gfn;
884         unsigned long npages;
885         struct kvm_memory_slot *slot;
886         struct kvm_memory_slot old, new;
887         struct kvm_memslots *slots = NULL, *old_memslots;
888         int as_id, id;
889         enum kvm_mr_change change;
890
891         r = check_memory_region_flags(mem);
892         if (r)
893                 goto out;
894
895         r = -EINVAL;
896         as_id = mem->slot >> 16;
897         id = (u16)mem->slot;
898
899         /* General sanity checks */
900         if (mem->memory_size & (PAGE_SIZE - 1))
901                 goto out;
902         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
903                 goto out;
904         /* We can read the guest memory with __xxx_user() later on. */
905         if ((id < KVM_USER_MEM_SLOTS) &&
906             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
907              !access_ok(VERIFY_WRITE,
908                         (void __user *)(unsigned long)mem->userspace_addr,
909                         mem->memory_size)))
910                 goto out;
911         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
912                 goto out;
913         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
914                 goto out;
915
916         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
917         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
918         npages = mem->memory_size >> PAGE_SHIFT;
919
920         if (npages > KVM_MEM_MAX_NR_PAGES)
921                 goto out;
922
923         new = old = *slot;
924
925         new.id = id;
926         new.base_gfn = base_gfn;
927         new.npages = npages;
928         new.flags = mem->flags;
929
930         if (npages) {
931                 if (!old.npages)
932                         change = KVM_MR_CREATE;
933                 else { /* Modify an existing slot. */
934                         if ((mem->userspace_addr != old.userspace_addr) ||
935                             (npages != old.npages) ||
936                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
937                                 goto out;
938
939                         if (base_gfn != old.base_gfn)
940                                 change = KVM_MR_MOVE;
941                         else if (new.flags != old.flags)
942                                 change = KVM_MR_FLAGS_ONLY;
943                         else { /* Nothing to change. */
944                                 r = 0;
945                                 goto out;
946                         }
947                 }
948         } else {
949                 if (!old.npages)
950                         goto out;
951
952                 change = KVM_MR_DELETE;
953                 new.base_gfn = 0;
954                 new.flags = 0;
955         }
956
957         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
958                 /* Check for overlaps */
959                 r = -EEXIST;
960                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
961                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
962                             (slot->id == id))
963                                 continue;
964                         if (!((base_gfn + npages <= slot->base_gfn) ||
965                               (base_gfn >= slot->base_gfn + slot->npages)))
966                                 goto out;
967                 }
968         }
969
970         /* Free page dirty bitmap if unneeded */
971         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
972                 new.dirty_bitmap = NULL;
973
974         r = -ENOMEM;
975         if (change == KVM_MR_CREATE) {
976                 new.userspace_addr = mem->userspace_addr;
977
978                 if (kvm_arch_create_memslot(kvm, &new, npages))
979                         goto out_free;
980         }
981
982         /* Allocate page dirty bitmap if needed */
983         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
984                 if (kvm_create_dirty_bitmap(&new) < 0)
985                         goto out_free;
986         }
987
988         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
989         if (!slots)
990                 goto out_free;
991         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
992
993         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
994                 slot = id_to_memslot(slots, id);
995                 slot->flags |= KVM_MEMSLOT_INVALID;
996
997                 old_memslots = install_new_memslots(kvm, as_id, slots);
998
999                 /* slot was deleted or moved, clear iommu mapping */
1000                 kvm_iommu_unmap_pages(kvm, &old);
1001                 /* From this point no new shadow pages pointing to a deleted,
1002                  * or moved, memslot will be created.
1003                  *
1004                  * validation of sp->gfn happens in:
1005                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1006                  *      - kvm_is_visible_gfn (mmu_check_roots)
1007                  */
1008                 kvm_arch_flush_shadow_memslot(kvm, slot);
1009
1010                 /*
1011                  * We can re-use the old_memslots from above, the only difference
1012                  * from the currently installed memslots is the invalid flag.  This
1013                  * will get overwritten by update_memslots anyway.
1014                  */
1015                 slots = old_memslots;
1016         }
1017
1018         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1019         if (r)
1020                 goto out_slots;
1021
1022         /* actual memory is freed via old in kvm_free_memslot below */
1023         if (change == KVM_MR_DELETE) {
1024                 new.dirty_bitmap = NULL;
1025                 memset(&new.arch, 0, sizeof(new.arch));
1026         }
1027
1028         update_memslots(slots, &new);
1029         old_memslots = install_new_memslots(kvm, as_id, slots);
1030
1031         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1032
1033         kvm_free_memslot(kvm, &old, &new);
1034         kvfree(old_memslots);
1035
1036         /*
1037          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1038          * un-mapped and re-mapped if their base changes.  Since base change
1039          * unmapping is handled above with slot deletion, mapping alone is
1040          * needed here.  Anything else the iommu might care about for existing
1041          * slots (size changes, userspace addr changes and read-only flag
1042          * changes) is disallowed above, so any other attribute changes getting
1043          * here can be skipped.
1044          */
1045         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1046                 r = kvm_iommu_map_pages(kvm, &new);
1047                 return r;
1048         }
1049
1050         return 0;
1051
1052 out_slots:
1053         kvfree(slots);
1054 out_free:
1055         kvm_free_memslot(kvm, &new, &old);
1056 out:
1057         return r;
1058 }
1059 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1060
1061 int kvm_set_memory_region(struct kvm *kvm,
1062                           const struct kvm_userspace_memory_region *mem)
1063 {
1064         int r;
1065
1066         mutex_lock(&kvm->slots_lock);
1067         r = __kvm_set_memory_region(kvm, mem);
1068         mutex_unlock(&kvm->slots_lock);
1069         return r;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1072
1073 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1074                                           struct kvm_userspace_memory_region *mem)
1075 {
1076         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1077                 return -EINVAL;
1078
1079         return kvm_set_memory_region(kvm, mem);
1080 }
1081
1082 int kvm_get_dirty_log(struct kvm *kvm,
1083                         struct kvm_dirty_log *log, int *is_dirty)
1084 {
1085         struct kvm_memslots *slots;
1086         struct kvm_memory_slot *memslot;
1087         int r, i, as_id, id;
1088         unsigned long n;
1089         unsigned long any = 0;
1090
1091         r = -EINVAL;
1092         as_id = log->slot >> 16;
1093         id = (u16)log->slot;
1094         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1095                 goto out;
1096
1097         slots = __kvm_memslots(kvm, as_id);
1098         memslot = id_to_memslot(slots, id);
1099         r = -ENOENT;
1100         if (!memslot->dirty_bitmap)
1101                 goto out;
1102
1103         n = kvm_dirty_bitmap_bytes(memslot);
1104
1105         for (i = 0; !any && i < n/sizeof(long); ++i)
1106                 any = memslot->dirty_bitmap[i];
1107
1108         r = -EFAULT;
1109         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1110                 goto out;
1111
1112         if (any)
1113                 *is_dirty = 1;
1114
1115         r = 0;
1116 out:
1117         return r;
1118 }
1119 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1120
1121 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1122 /**
1123  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1124  *      are dirty write protect them for next write.
1125  * @kvm:        pointer to kvm instance
1126  * @log:        slot id and address to which we copy the log
1127  * @is_dirty:   flag set if any page is dirty
1128  *
1129  * We need to keep it in mind that VCPU threads can write to the bitmap
1130  * concurrently. So, to avoid losing track of dirty pages we keep the
1131  * following order:
1132  *
1133  *    1. Take a snapshot of the bit and clear it if needed.
1134  *    2. Write protect the corresponding page.
1135  *    3. Copy the snapshot to the userspace.
1136  *    4. Upon return caller flushes TLB's if needed.
1137  *
1138  * Between 2 and 4, the guest may write to the page using the remaining TLB
1139  * entry.  This is not a problem because the page is reported dirty using
1140  * the snapshot taken before and step 4 ensures that writes done after
1141  * exiting to userspace will be logged for the next call.
1142  *
1143  */
1144 int kvm_get_dirty_log_protect(struct kvm *kvm,
1145                         struct kvm_dirty_log *log, bool *is_dirty)
1146 {
1147         struct kvm_memslots *slots;
1148         struct kvm_memory_slot *memslot;
1149         int r, i, as_id, id;
1150         unsigned long n;
1151         unsigned long *dirty_bitmap;
1152         unsigned long *dirty_bitmap_buffer;
1153
1154         r = -EINVAL;
1155         as_id = log->slot >> 16;
1156         id = (u16)log->slot;
1157         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1158                 goto out;
1159
1160         slots = __kvm_memslots(kvm, as_id);
1161         memslot = id_to_memslot(slots, id);
1162
1163         dirty_bitmap = memslot->dirty_bitmap;
1164         r = -ENOENT;
1165         if (!dirty_bitmap)
1166                 goto out;
1167
1168         n = kvm_dirty_bitmap_bytes(memslot);
1169
1170         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1171         memset(dirty_bitmap_buffer, 0, n);
1172
1173         spin_lock(&kvm->mmu_lock);
1174         *is_dirty = false;
1175         for (i = 0; i < n / sizeof(long); i++) {
1176                 unsigned long mask;
1177                 gfn_t offset;
1178
1179                 if (!dirty_bitmap[i])
1180                         continue;
1181
1182                 *is_dirty = true;
1183
1184                 mask = xchg(&dirty_bitmap[i], 0);
1185                 dirty_bitmap_buffer[i] = mask;
1186
1187                 if (mask) {
1188                         offset = i * BITS_PER_LONG;
1189                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1190                                                                 offset, mask);
1191                 }
1192         }
1193
1194         spin_unlock(&kvm->mmu_lock);
1195
1196         r = -EFAULT;
1197         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1198                 goto out;
1199
1200         r = 0;
1201 out:
1202         return r;
1203 }
1204 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1205 #endif
1206
1207 bool kvm_largepages_enabled(void)
1208 {
1209         return largepages_enabled;
1210 }
1211
1212 void kvm_disable_largepages(void)
1213 {
1214         largepages_enabled = false;
1215 }
1216 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1217
1218 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1219 {
1220         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1221 }
1222 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1223
1224 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1225 {
1226         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1227 }
1228
1229 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1230 {
1231         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1232
1233         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1234               memslot->flags & KVM_MEMSLOT_INVALID)
1235                 return false;
1236
1237         return true;
1238 }
1239 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1240
1241 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1242 {
1243         struct vm_area_struct *vma;
1244         unsigned long addr, size;
1245
1246         size = PAGE_SIZE;
1247
1248         addr = gfn_to_hva(kvm, gfn);
1249         if (kvm_is_error_hva(addr))
1250                 return PAGE_SIZE;
1251
1252         down_read(&current->mm->mmap_sem);
1253         vma = find_vma(current->mm, addr);
1254         if (!vma)
1255                 goto out;
1256
1257         size = vma_kernel_pagesize(vma);
1258
1259 out:
1260         up_read(&current->mm->mmap_sem);
1261
1262         return size;
1263 }
1264
1265 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1266 {
1267         return slot->flags & KVM_MEM_READONLY;
1268 }
1269
1270 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1271                                        gfn_t *nr_pages, bool write)
1272 {
1273         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1274                 return KVM_HVA_ERR_BAD;
1275
1276         if (memslot_is_readonly(slot) && write)
1277                 return KVM_HVA_ERR_RO_BAD;
1278
1279         if (nr_pages)
1280                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1281
1282         return __gfn_to_hva_memslot(slot, gfn);
1283 }
1284
1285 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1286                                      gfn_t *nr_pages)
1287 {
1288         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1289 }
1290
1291 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1292                                         gfn_t gfn)
1293 {
1294         return gfn_to_hva_many(slot, gfn, NULL);
1295 }
1296 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1297
1298 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1299 {
1300         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_hva);
1303
1304 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1305 {
1306         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1307 }
1308 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1309
1310 /*
1311  * If writable is set to false, the hva returned by this function is only
1312  * allowed to be read.
1313  */
1314 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1315                                       gfn_t gfn, bool *writable)
1316 {
1317         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1318
1319         if (!kvm_is_error_hva(hva) && writable)
1320                 *writable = !memslot_is_readonly(slot);
1321
1322         return hva;
1323 }
1324
1325 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1326 {
1327         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1328
1329         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1330 }
1331
1332 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1333 {
1334         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1335
1336         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338
1339 static int get_user_page_nowait(unsigned long start, int write,
1340                 struct page **page)
1341 {
1342         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1343
1344         if (write)
1345                 flags |= FOLL_WRITE;
1346
1347         return __get_user_pages(current, current->mm, start, 1, flags, page,
1348                         NULL, NULL);
1349 }
1350
1351 static inline int check_user_page_hwpoison(unsigned long addr)
1352 {
1353         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1354
1355         rc = __get_user_pages(current, current->mm, addr, 1,
1356                               flags, NULL, NULL, NULL);
1357         return rc == -EHWPOISON;
1358 }
1359
1360 /*
1361  * The atomic path to get the writable pfn which will be stored in @pfn,
1362  * true indicates success, otherwise false is returned.
1363  */
1364 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1365                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1366 {
1367         struct page *page[1];
1368         int npages;
1369
1370         if (!(async || atomic))
1371                 return false;
1372
1373         /*
1374          * Fast pin a writable pfn only if it is a write fault request
1375          * or the caller allows to map a writable pfn for a read fault
1376          * request.
1377          */
1378         if (!(write_fault || writable))
1379                 return false;
1380
1381         npages = __get_user_pages_fast(addr, 1, 1, page);
1382         if (npages == 1) {
1383                 *pfn = page_to_pfn(page[0]);
1384
1385                 if (writable)
1386                         *writable = true;
1387                 return true;
1388         }
1389
1390         return false;
1391 }
1392
1393 /*
1394  * The slow path to get the pfn of the specified host virtual address,
1395  * 1 indicates success, -errno is returned if error is detected.
1396  */
1397 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1398                            bool *writable, kvm_pfn_t *pfn)
1399 {
1400         struct page *page[1];
1401         int npages = 0;
1402
1403         might_sleep();
1404
1405         if (writable)
1406                 *writable = write_fault;
1407
1408         if (async) {
1409                 down_read(&current->mm->mmap_sem);
1410                 npages = get_user_page_nowait(addr, write_fault, page);
1411                 up_read(&current->mm->mmap_sem);
1412         } else
1413                 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1414                                                    write_fault, 0, page,
1415                                                    FOLL_TOUCH|FOLL_HWPOISON);
1416         if (npages != 1)
1417                 return npages;
1418
1419         /* map read fault as writable if possible */
1420         if (unlikely(!write_fault) && writable) {
1421                 struct page *wpage[1];
1422
1423                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1424                 if (npages == 1) {
1425                         *writable = true;
1426                         put_page(page[0]);
1427                         page[0] = wpage[0];
1428                 }
1429
1430                 npages = 1;
1431         }
1432         *pfn = page_to_pfn(page[0]);
1433         return npages;
1434 }
1435
1436 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1437 {
1438         if (unlikely(!(vma->vm_flags & VM_READ)))
1439                 return false;
1440
1441         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1442                 return false;
1443
1444         return true;
1445 }
1446
1447 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1448                                unsigned long addr, bool *async,
1449                                bool write_fault, kvm_pfn_t *p_pfn)
1450 {
1451         unsigned long pfn;
1452         int r;
1453
1454         r = follow_pfn(vma, addr, &pfn);
1455         if (r) {
1456                 /*
1457                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1458                  * not call the fault handler, so do it here.
1459                  */
1460                 bool unlocked = false;
1461                 r = fixup_user_fault(current, current->mm, addr,
1462                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1463                                      &unlocked);
1464                 if (unlocked)
1465                         return -EAGAIN;
1466                 if (r)
1467                         return r;
1468
1469                 r = follow_pfn(vma, addr, &pfn);
1470                 if (r)
1471                         return r;
1472
1473         }
1474
1475
1476         /*
1477          * Get a reference here because callers of *hva_to_pfn* and
1478          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1479          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1480          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1481          * simply do nothing for reserved pfns.
1482          *
1483          * Whoever called remap_pfn_range is also going to call e.g.
1484          * unmap_mapping_range before the underlying pages are freed,
1485          * causing a call to our MMU notifier.
1486          */ 
1487         kvm_get_pfn(pfn);
1488
1489         *p_pfn = pfn;
1490         return 0;
1491 }
1492
1493 /*
1494  * Pin guest page in memory and return its pfn.
1495  * @addr: host virtual address which maps memory to the guest
1496  * @atomic: whether this function can sleep
1497  * @async: whether this function need to wait IO complete if the
1498  *         host page is not in the memory
1499  * @write_fault: whether we should get a writable host page
1500  * @writable: whether it allows to map a writable host page for !@write_fault
1501  *
1502  * The function will map a writable host page for these two cases:
1503  * 1): @write_fault = true
1504  * 2): @write_fault = false && @writable, @writable will tell the caller
1505  *     whether the mapping is writable.
1506  */
1507 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1508                         bool write_fault, bool *writable)
1509 {
1510         struct vm_area_struct *vma;
1511         kvm_pfn_t pfn = 0;
1512         int npages, r;
1513
1514         /* we can do it either atomically or asynchronously, not both */
1515         BUG_ON(atomic && async);
1516
1517         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1518                 return pfn;
1519
1520         if (atomic)
1521                 return KVM_PFN_ERR_FAULT;
1522
1523         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1524         if (npages == 1)
1525                 return pfn;
1526
1527         down_read(&current->mm->mmap_sem);
1528         if (npages == -EHWPOISON ||
1529               (!async && check_user_page_hwpoison(addr))) {
1530                 pfn = KVM_PFN_ERR_HWPOISON;
1531                 goto exit;
1532         }
1533
1534 retry:
1535         vma = find_vma_intersection(current->mm, addr, addr + 1);
1536
1537         if (vma == NULL)
1538                 pfn = KVM_PFN_ERR_FAULT;
1539         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1540                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1541                 if (r == -EAGAIN)
1542                         goto retry;
1543                 if (r < 0)
1544                         pfn = KVM_PFN_ERR_FAULT;
1545         } else {
1546                 if (async && vma_is_valid(vma, write_fault))
1547                         *async = true;
1548                 pfn = KVM_PFN_ERR_FAULT;
1549         }
1550 exit:
1551         up_read(&current->mm->mmap_sem);
1552         return pfn;
1553 }
1554
1555 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1556                                bool atomic, bool *async, bool write_fault,
1557                                bool *writable)
1558 {
1559         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1560
1561         if (addr == KVM_HVA_ERR_RO_BAD) {
1562                 if (writable)
1563                         *writable = false;
1564                 return KVM_PFN_ERR_RO_FAULT;
1565         }
1566
1567         if (kvm_is_error_hva(addr)) {
1568                 if (writable)
1569                         *writable = false;
1570                 return KVM_PFN_NOSLOT;
1571         }
1572
1573         /* Do not map writable pfn in the readonly memslot. */
1574         if (writable && memslot_is_readonly(slot)) {
1575                 *writable = false;
1576                 writable = NULL;
1577         }
1578
1579         return hva_to_pfn(addr, atomic, async, write_fault,
1580                           writable);
1581 }
1582 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1583
1584 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1585                       bool *writable)
1586 {
1587         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1588                                     write_fault, writable);
1589 }
1590 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1591
1592 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1593 {
1594         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1595 }
1596 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1597
1598 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1599 {
1600         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1601 }
1602 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1603
1604 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1605 {
1606         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1609
1610 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1611 {
1612         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1615
1616 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1617 {
1618         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1619 }
1620 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1621
1622 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1623 {
1624         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1627
1628 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1629                             struct page **pages, int nr_pages)
1630 {
1631         unsigned long addr;
1632         gfn_t entry;
1633
1634         addr = gfn_to_hva_many(slot, gfn, &entry);
1635         if (kvm_is_error_hva(addr))
1636                 return -1;
1637
1638         if (entry < nr_pages)
1639                 return 0;
1640
1641         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1642 }
1643 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1644
1645 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1646 {
1647         if (is_error_noslot_pfn(pfn))
1648                 return KVM_ERR_PTR_BAD_PAGE;
1649
1650         if (kvm_is_reserved_pfn(pfn)) {
1651                 WARN_ON(1);
1652                 return KVM_ERR_PTR_BAD_PAGE;
1653         }
1654
1655         return pfn_to_page(pfn);
1656 }
1657
1658 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1659 {
1660         kvm_pfn_t pfn;
1661
1662         pfn = gfn_to_pfn(kvm, gfn);
1663
1664         return kvm_pfn_to_page(pfn);
1665 }
1666 EXPORT_SYMBOL_GPL(gfn_to_page);
1667
1668 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1669 {
1670         kvm_pfn_t pfn;
1671
1672         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1673
1674         return kvm_pfn_to_page(pfn);
1675 }
1676 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1677
1678 void kvm_release_page_clean(struct page *page)
1679 {
1680         WARN_ON(is_error_page(page));
1681
1682         kvm_release_pfn_clean(page_to_pfn(page));
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1685
1686 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1687 {
1688         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1689                 put_page(pfn_to_page(pfn));
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1692
1693 void kvm_release_page_dirty(struct page *page)
1694 {
1695         WARN_ON(is_error_page(page));
1696
1697         kvm_release_pfn_dirty(page_to_pfn(page));
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1700
1701 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1702 {
1703         kvm_set_pfn_dirty(pfn);
1704         kvm_release_pfn_clean(pfn);
1705 }
1706
1707 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1708 {
1709         if (!kvm_is_reserved_pfn(pfn)) {
1710                 struct page *page = pfn_to_page(pfn);
1711
1712                 if (!PageReserved(page))
1713                         SetPageDirty(page);
1714         }
1715 }
1716 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1717
1718 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1719 {
1720         if (!kvm_is_reserved_pfn(pfn))
1721                 mark_page_accessed(pfn_to_page(pfn));
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1724
1725 void kvm_get_pfn(kvm_pfn_t pfn)
1726 {
1727         if (!kvm_is_reserved_pfn(pfn))
1728                 get_page(pfn_to_page(pfn));
1729 }
1730 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1731
1732 static int next_segment(unsigned long len, int offset)
1733 {
1734         if (len > PAGE_SIZE - offset)
1735                 return PAGE_SIZE - offset;
1736         else
1737                 return len;
1738 }
1739
1740 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1741                                  void *data, int offset, int len)
1742 {
1743         int r;
1744         unsigned long addr;
1745
1746         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1747         if (kvm_is_error_hva(addr))
1748                 return -EFAULT;
1749         r = __copy_from_user(data, (void __user *)addr + offset, len);
1750         if (r)
1751                 return -EFAULT;
1752         return 0;
1753 }
1754
1755 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1756                         int len)
1757 {
1758         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1759
1760         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1761 }
1762 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1763
1764 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1765                              int offset, int len)
1766 {
1767         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1768
1769         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1770 }
1771 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1772
1773 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1774 {
1775         gfn_t gfn = gpa >> PAGE_SHIFT;
1776         int seg;
1777         int offset = offset_in_page(gpa);
1778         int ret;
1779
1780         while ((seg = next_segment(len, offset)) != 0) {
1781                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1782                 if (ret < 0)
1783                         return ret;
1784                 offset = 0;
1785                 len -= seg;
1786                 data += seg;
1787                 ++gfn;
1788         }
1789         return 0;
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_read_guest);
1792
1793 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1794 {
1795         gfn_t gfn = gpa >> PAGE_SHIFT;
1796         int seg;
1797         int offset = offset_in_page(gpa);
1798         int ret;
1799
1800         while ((seg = next_segment(len, offset)) != 0) {
1801                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1802                 if (ret < 0)
1803                         return ret;
1804                 offset = 0;
1805                 len -= seg;
1806                 data += seg;
1807                 ++gfn;
1808         }
1809         return 0;
1810 }
1811 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1812
1813 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1814                                    void *data, int offset, unsigned long len)
1815 {
1816         int r;
1817         unsigned long addr;
1818
1819         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1820         if (kvm_is_error_hva(addr))
1821                 return -EFAULT;
1822         pagefault_disable();
1823         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1824         pagefault_enable();
1825         if (r)
1826                 return -EFAULT;
1827         return 0;
1828 }
1829
1830 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1831                           unsigned long len)
1832 {
1833         gfn_t gfn = gpa >> PAGE_SHIFT;
1834         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1835         int offset = offset_in_page(gpa);
1836
1837         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1840
1841 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1842                                void *data, unsigned long len)
1843 {
1844         gfn_t gfn = gpa >> PAGE_SHIFT;
1845         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1846         int offset = offset_in_page(gpa);
1847
1848         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1849 }
1850 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1851
1852 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1853                                   const void *data, int offset, int len)
1854 {
1855         int r;
1856         unsigned long addr;
1857
1858         addr = gfn_to_hva_memslot(memslot, gfn);
1859         if (kvm_is_error_hva(addr))
1860                 return -EFAULT;
1861         r = __copy_to_user((void __user *)addr + offset, data, len);
1862         if (r)
1863                 return -EFAULT;
1864         mark_page_dirty_in_slot(memslot, gfn);
1865         return 0;
1866 }
1867
1868 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1869                          const void *data, int offset, int len)
1870 {
1871         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1872
1873         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1876
1877 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1878                               const void *data, int offset, int len)
1879 {
1880         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1881
1882         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1883 }
1884 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1885
1886 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1887                     unsigned long len)
1888 {
1889         gfn_t gfn = gpa >> PAGE_SHIFT;
1890         int seg;
1891         int offset = offset_in_page(gpa);
1892         int ret;
1893
1894         while ((seg = next_segment(len, offset)) != 0) {
1895                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1896                 if (ret < 0)
1897                         return ret;
1898                 offset = 0;
1899                 len -= seg;
1900                 data += seg;
1901                 ++gfn;
1902         }
1903         return 0;
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_write_guest);
1906
1907 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1908                          unsigned long len)
1909 {
1910         gfn_t gfn = gpa >> PAGE_SHIFT;
1911         int seg;
1912         int offset = offset_in_page(gpa);
1913         int ret;
1914
1915         while ((seg = next_segment(len, offset)) != 0) {
1916                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1917                 if (ret < 0)
1918                         return ret;
1919                 offset = 0;
1920                 len -= seg;
1921                 data += seg;
1922                 ++gfn;
1923         }
1924         return 0;
1925 }
1926 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1927
1928 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1929                               gpa_t gpa, unsigned long len)
1930 {
1931         struct kvm_memslots *slots = kvm_memslots(kvm);
1932         int offset = offset_in_page(gpa);
1933         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1934         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1935         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1936         gfn_t nr_pages_avail;
1937
1938         ghc->gpa = gpa;
1939         ghc->generation = slots->generation;
1940         ghc->len = len;
1941         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1942         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1943         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1944                 ghc->hva += offset;
1945         } else {
1946                 /*
1947                  * If the requested region crosses two memslots, we still
1948                  * verify that the entire region is valid here.
1949                  */
1950                 while (start_gfn <= end_gfn) {
1951                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1952                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1953                                                    &nr_pages_avail);
1954                         if (kvm_is_error_hva(ghc->hva))
1955                                 return -EFAULT;
1956                         start_gfn += nr_pages_avail;
1957                 }
1958                 /* Use the slow path for cross page reads and writes. */
1959                 ghc->memslot = NULL;
1960         }
1961         return 0;
1962 }
1963 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1964
1965 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1966                            void *data, unsigned long len)
1967 {
1968         struct kvm_memslots *slots = kvm_memslots(kvm);
1969         int r;
1970
1971         BUG_ON(len > ghc->len);
1972
1973         if (slots->generation != ghc->generation)
1974                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1975
1976         if (unlikely(!ghc->memslot))
1977                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1978
1979         if (kvm_is_error_hva(ghc->hva))
1980                 return -EFAULT;
1981
1982         r = __copy_to_user((void __user *)ghc->hva, data, len);
1983         if (r)
1984                 return -EFAULT;
1985         mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1986
1987         return 0;
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1990
1991 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1992                            void *data, unsigned long len)
1993 {
1994         struct kvm_memslots *slots = kvm_memslots(kvm);
1995         int r;
1996
1997         BUG_ON(len > ghc->len);
1998
1999         if (slots->generation != ghc->generation)
2000                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2001
2002         if (unlikely(!ghc->memslot))
2003                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2004
2005         if (kvm_is_error_hva(ghc->hva))
2006                 return -EFAULT;
2007
2008         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2009         if (r)
2010                 return -EFAULT;
2011
2012         return 0;
2013 }
2014 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2015
2016 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2017 {
2018         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2019
2020         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2021 }
2022 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2023
2024 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2025 {
2026         gfn_t gfn = gpa >> PAGE_SHIFT;
2027         int seg;
2028         int offset = offset_in_page(gpa);
2029         int ret;
2030
2031         while ((seg = next_segment(len, offset)) != 0) {
2032                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2033                 if (ret < 0)
2034                         return ret;
2035                 offset = 0;
2036                 len -= seg;
2037                 ++gfn;
2038         }
2039         return 0;
2040 }
2041 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2042
2043 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2044                                     gfn_t gfn)
2045 {
2046         if (memslot && memslot->dirty_bitmap) {
2047                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2048
2049                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2050         }
2051 }
2052
2053 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2054 {
2055         struct kvm_memory_slot *memslot;
2056
2057         memslot = gfn_to_memslot(kvm, gfn);
2058         mark_page_dirty_in_slot(memslot, gfn);
2059 }
2060 EXPORT_SYMBOL_GPL(mark_page_dirty);
2061
2062 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2063 {
2064         struct kvm_memory_slot *memslot;
2065
2066         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2067         mark_page_dirty_in_slot(memslot, gfn);
2068 }
2069 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2070
2071 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2072 {
2073         unsigned int old, val, grow;
2074
2075         old = val = vcpu->halt_poll_ns;
2076         grow = READ_ONCE(halt_poll_ns_grow);
2077         /* 10us base */
2078         if (val == 0 && grow)
2079                 val = 10000;
2080         else
2081                 val *= grow;
2082
2083         if (val > halt_poll_ns)
2084                 val = halt_poll_ns;
2085
2086         vcpu->halt_poll_ns = val;
2087         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2088 }
2089
2090 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2091 {
2092         unsigned int old, val, shrink;
2093
2094         old = val = vcpu->halt_poll_ns;
2095         shrink = READ_ONCE(halt_poll_ns_shrink);
2096         if (shrink == 0)
2097                 val = 0;
2098         else
2099                 val /= shrink;
2100
2101         vcpu->halt_poll_ns = val;
2102         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2103 }
2104
2105 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2106 {
2107         if (kvm_arch_vcpu_runnable(vcpu)) {
2108                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2109                 return -EINTR;
2110         }
2111         if (kvm_cpu_has_pending_timer(vcpu))
2112                 return -EINTR;
2113         if (signal_pending(current))
2114                 return -EINTR;
2115
2116         return 0;
2117 }
2118
2119 /*
2120  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2121  */
2122 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2123 {
2124         ktime_t start, cur;
2125         DECLARE_SWAITQUEUE(wait);
2126         bool waited = false;
2127         u64 block_ns;
2128
2129         start = cur = ktime_get();
2130         if (vcpu->halt_poll_ns) {
2131                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2132
2133                 ++vcpu->stat.halt_attempted_poll;
2134                 do {
2135                         /*
2136                          * This sets KVM_REQ_UNHALT if an interrupt
2137                          * arrives.
2138                          */
2139                         if (kvm_vcpu_check_block(vcpu) < 0) {
2140                                 ++vcpu->stat.halt_successful_poll;
2141                                 if (!vcpu_valid_wakeup(vcpu))
2142                                         ++vcpu->stat.halt_poll_invalid;
2143                                 goto out;
2144                         }
2145                         cur = ktime_get();
2146                 } while (single_task_running() && ktime_before(cur, stop));
2147         }
2148
2149         kvm_arch_vcpu_blocking(vcpu);
2150
2151         for (;;) {
2152                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2153
2154                 if (kvm_vcpu_check_block(vcpu) < 0)
2155                         break;
2156
2157                 waited = true;
2158                 schedule();
2159         }
2160
2161         finish_swait(&vcpu->wq, &wait);
2162         cur = ktime_get();
2163
2164         kvm_arch_vcpu_unblocking(vcpu);
2165 out:
2166         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2167
2168         if (!vcpu_valid_wakeup(vcpu))
2169                 shrink_halt_poll_ns(vcpu);
2170         else if (halt_poll_ns) {
2171                 if (block_ns <= vcpu->halt_poll_ns)
2172                         ;
2173                 /* we had a long block, shrink polling */
2174                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2175                         shrink_halt_poll_ns(vcpu);
2176                 /* we had a short halt and our poll time is too small */
2177                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2178                         block_ns < halt_poll_ns)
2179                         grow_halt_poll_ns(vcpu);
2180         } else
2181                 vcpu->halt_poll_ns = 0;
2182
2183         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2184         kvm_arch_vcpu_block_finish(vcpu);
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2187
2188 #ifndef CONFIG_S390
2189 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2190 {
2191         struct swait_queue_head *wqp;
2192
2193         wqp = kvm_arch_vcpu_wq(vcpu);
2194         if (swait_active(wqp)) {
2195                 swake_up(wqp);
2196                 ++vcpu->stat.halt_wakeup;
2197         }
2198
2199 }
2200 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2201
2202 /*
2203  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2204  */
2205 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2206 {
2207         int me;
2208         int cpu = vcpu->cpu;
2209
2210         kvm_vcpu_wake_up(vcpu);
2211         me = get_cpu();
2212         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2213                 if (kvm_arch_vcpu_should_kick(vcpu))
2214                         smp_send_reschedule(cpu);
2215         put_cpu();
2216 }
2217 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2218 #endif /* !CONFIG_S390 */
2219
2220 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2221 {
2222         struct pid *pid;
2223         struct task_struct *task = NULL;
2224         int ret = 0;
2225
2226         rcu_read_lock();
2227         pid = rcu_dereference(target->pid);
2228         if (pid)
2229                 task = get_pid_task(pid, PIDTYPE_PID);
2230         rcu_read_unlock();
2231         if (!task)
2232                 return ret;
2233         ret = yield_to(task, 1);
2234         put_task_struct(task);
2235
2236         return ret;
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2239
2240 /*
2241  * Helper that checks whether a VCPU is eligible for directed yield.
2242  * Most eligible candidate to yield is decided by following heuristics:
2243  *
2244  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2245  *  (preempted lock holder), indicated by @in_spin_loop.
2246  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2247  *
2248  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2249  *  chance last time (mostly it has become eligible now since we have probably
2250  *  yielded to lockholder in last iteration. This is done by toggling
2251  *  @dy_eligible each time a VCPU checked for eligibility.)
2252  *
2253  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2254  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2255  *  burning. Giving priority for a potential lock-holder increases lock
2256  *  progress.
2257  *
2258  *  Since algorithm is based on heuristics, accessing another VCPU data without
2259  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2260  *  and continue with next VCPU and so on.
2261  */
2262 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2263 {
2264 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2265         bool eligible;
2266
2267         eligible = !vcpu->spin_loop.in_spin_loop ||
2268                     vcpu->spin_loop.dy_eligible;
2269
2270         if (vcpu->spin_loop.in_spin_loop)
2271                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2272
2273         return eligible;
2274 #else
2275         return true;
2276 #endif
2277 }
2278
2279 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2280 {
2281         struct kvm *kvm = me->kvm;
2282         struct kvm_vcpu *vcpu;
2283         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2284         int yielded = 0;
2285         int try = 3;
2286         int pass;
2287         int i;
2288
2289         kvm_vcpu_set_in_spin_loop(me, true);
2290         /*
2291          * We boost the priority of a VCPU that is runnable but not
2292          * currently running, because it got preempted by something
2293          * else and called schedule in __vcpu_run.  Hopefully that
2294          * VCPU is holding the lock that we need and will release it.
2295          * We approximate round-robin by starting at the last boosted VCPU.
2296          */
2297         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2298                 kvm_for_each_vcpu(i, vcpu, kvm) {
2299                         if (!pass && i <= last_boosted_vcpu) {
2300                                 i = last_boosted_vcpu;
2301                                 continue;
2302                         } else if (pass && i > last_boosted_vcpu)
2303                                 break;
2304                         if (!ACCESS_ONCE(vcpu->preempted))
2305                                 continue;
2306                         if (vcpu == me)
2307                                 continue;
2308                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2309                                 continue;
2310                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2311                                 continue;
2312
2313                         yielded = kvm_vcpu_yield_to(vcpu);
2314                         if (yielded > 0) {
2315                                 kvm->last_boosted_vcpu = i;
2316                                 break;
2317                         } else if (yielded < 0) {
2318                                 try--;
2319                                 if (!try)
2320                                         break;
2321                         }
2322                 }
2323         }
2324         kvm_vcpu_set_in_spin_loop(me, false);
2325
2326         /* Ensure vcpu is not eligible during next spinloop */
2327         kvm_vcpu_set_dy_eligible(me, false);
2328 }
2329 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2330
2331 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2332 {
2333         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2334         struct page *page;
2335
2336         if (vmf->pgoff == 0)
2337                 page = virt_to_page(vcpu->run);
2338 #ifdef CONFIG_X86
2339         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2340                 page = virt_to_page(vcpu->arch.pio_data);
2341 #endif
2342 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2343         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2344                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2345 #endif
2346         else
2347                 return kvm_arch_vcpu_fault(vcpu, vmf);
2348         get_page(page);
2349         vmf->page = page;
2350         return 0;
2351 }
2352
2353 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2354         .fault = kvm_vcpu_fault,
2355 };
2356
2357 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2358 {
2359         vma->vm_ops = &kvm_vcpu_vm_ops;
2360         return 0;
2361 }
2362
2363 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2364 {
2365         struct kvm_vcpu *vcpu = filp->private_data;
2366
2367         kvm_put_kvm(vcpu->kvm);
2368         return 0;
2369 }
2370
2371 static struct file_operations kvm_vcpu_fops = {
2372         .release        = kvm_vcpu_release,
2373         .unlocked_ioctl = kvm_vcpu_ioctl,
2374 #ifdef CONFIG_KVM_COMPAT
2375         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2376 #endif
2377         .mmap           = kvm_vcpu_mmap,
2378         .llseek         = noop_llseek,
2379 };
2380
2381 /*
2382  * Allocates an inode for the vcpu.
2383  */
2384 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2385 {
2386         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2387 }
2388
2389 /*
2390  * Creates some virtual cpus.  Good luck creating more than one.
2391  */
2392 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2393 {
2394         int r;
2395         struct kvm_vcpu *vcpu;
2396
2397         if (id >= KVM_MAX_VCPU_ID)
2398                 return -EINVAL;
2399
2400         mutex_lock(&kvm->lock);
2401         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2402                 mutex_unlock(&kvm->lock);
2403                 return -EINVAL;
2404         }
2405
2406         kvm->created_vcpus++;
2407         mutex_unlock(&kvm->lock);
2408
2409         vcpu = kvm_arch_vcpu_create(kvm, id);
2410         if (IS_ERR(vcpu)) {
2411                 r = PTR_ERR(vcpu);
2412                 goto vcpu_decrement;
2413         }
2414
2415         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2416
2417         r = kvm_arch_vcpu_setup(vcpu);
2418         if (r)
2419                 goto vcpu_destroy;
2420
2421         mutex_lock(&kvm->lock);
2422         if (kvm_get_vcpu_by_id(kvm, id)) {
2423                 r = -EEXIST;
2424                 goto unlock_vcpu_destroy;
2425         }
2426
2427         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2428
2429         /* Now it's all set up, let userspace reach it */
2430         kvm_get_kvm(kvm);
2431         r = create_vcpu_fd(vcpu);
2432         if (r < 0) {
2433                 kvm_put_kvm(kvm);
2434                 goto unlock_vcpu_destroy;
2435         }
2436
2437         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2438
2439         /*
2440          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2441          * before kvm->online_vcpu's incremented value.
2442          */
2443         smp_wmb();
2444         atomic_inc(&kvm->online_vcpus);
2445
2446         mutex_unlock(&kvm->lock);
2447         kvm_arch_vcpu_postcreate(vcpu);
2448         return r;
2449
2450 unlock_vcpu_destroy:
2451         mutex_unlock(&kvm->lock);
2452 vcpu_destroy:
2453         kvm_arch_vcpu_destroy(vcpu);
2454 vcpu_decrement:
2455         mutex_lock(&kvm->lock);
2456         kvm->created_vcpus--;
2457         mutex_unlock(&kvm->lock);
2458         return r;
2459 }
2460
2461 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2462 {
2463         if (sigset) {
2464                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2465                 vcpu->sigset_active = 1;
2466                 vcpu->sigset = *sigset;
2467         } else
2468                 vcpu->sigset_active = 0;
2469         return 0;
2470 }
2471
2472 static long kvm_vcpu_ioctl(struct file *filp,
2473                            unsigned int ioctl, unsigned long arg)
2474 {
2475         struct kvm_vcpu *vcpu = filp->private_data;
2476         void __user *argp = (void __user *)arg;
2477         int r;
2478         struct kvm_fpu *fpu = NULL;
2479         struct kvm_sregs *kvm_sregs = NULL;
2480
2481         if (vcpu->kvm->mm != current->mm)
2482                 return -EIO;
2483
2484         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2485                 return -EINVAL;
2486
2487 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2488         /*
2489          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2490          * so vcpu_load() would break it.
2491          */
2492         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2493                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2494 #endif
2495
2496
2497         r = vcpu_load(vcpu);
2498         if (r)
2499                 return r;
2500         switch (ioctl) {
2501         case KVM_RUN:
2502                 r = -EINVAL;
2503                 if (arg)
2504                         goto out;
2505                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2506                         /* The thread running this VCPU changed. */
2507                         struct pid *oldpid = vcpu->pid;
2508                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2509
2510                         rcu_assign_pointer(vcpu->pid, newpid);
2511                         if (oldpid)
2512                                 synchronize_rcu();
2513                         put_pid(oldpid);
2514                 }
2515                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2516                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2517                 break;
2518         case KVM_GET_REGS: {
2519                 struct kvm_regs *kvm_regs;
2520
2521                 r = -ENOMEM;
2522                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2523                 if (!kvm_regs)
2524                         goto out;
2525                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2526                 if (r)
2527                         goto out_free1;
2528                 r = -EFAULT;
2529                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2530                         goto out_free1;
2531                 r = 0;
2532 out_free1:
2533                 kfree(kvm_regs);
2534                 break;
2535         }
2536         case KVM_SET_REGS: {
2537                 struct kvm_regs *kvm_regs;
2538
2539                 r = -ENOMEM;
2540                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2541                 if (IS_ERR(kvm_regs)) {
2542                         r = PTR_ERR(kvm_regs);
2543                         goto out;
2544                 }
2545                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2546                 kfree(kvm_regs);
2547                 break;
2548         }
2549         case KVM_GET_SREGS: {
2550                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2551                 r = -ENOMEM;
2552                 if (!kvm_sregs)
2553                         goto out;
2554                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2555                 if (r)
2556                         goto out;
2557                 r = -EFAULT;
2558                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2559                         goto out;
2560                 r = 0;
2561                 break;
2562         }
2563         case KVM_SET_SREGS: {
2564                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2565                 if (IS_ERR(kvm_sregs)) {
2566                         r = PTR_ERR(kvm_sregs);
2567                         kvm_sregs = NULL;
2568                         goto out;
2569                 }
2570                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2571                 break;
2572         }
2573         case KVM_GET_MP_STATE: {
2574                 struct kvm_mp_state mp_state;
2575
2576                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2577                 if (r)
2578                         goto out;
2579                 r = -EFAULT;
2580                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2581                         goto out;
2582                 r = 0;
2583                 break;
2584         }
2585         case KVM_SET_MP_STATE: {
2586                 struct kvm_mp_state mp_state;
2587
2588                 r = -EFAULT;
2589                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2590                         goto out;
2591                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2592                 break;
2593         }
2594         case KVM_TRANSLATE: {
2595                 struct kvm_translation tr;
2596
2597                 r = -EFAULT;
2598                 if (copy_from_user(&tr, argp, sizeof(tr)))
2599                         goto out;
2600                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2601                 if (r)
2602                         goto out;
2603                 r = -EFAULT;
2604                 if (copy_to_user(argp, &tr, sizeof(tr)))
2605                         goto out;
2606                 r = 0;
2607                 break;
2608         }
2609         case KVM_SET_GUEST_DEBUG: {
2610                 struct kvm_guest_debug dbg;
2611
2612                 r = -EFAULT;
2613                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2614                         goto out;
2615                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2616                 break;
2617         }
2618         case KVM_SET_SIGNAL_MASK: {
2619                 struct kvm_signal_mask __user *sigmask_arg = argp;
2620                 struct kvm_signal_mask kvm_sigmask;
2621                 sigset_t sigset, *p;
2622
2623                 p = NULL;
2624                 if (argp) {
2625                         r = -EFAULT;
2626                         if (copy_from_user(&kvm_sigmask, argp,
2627                                            sizeof(kvm_sigmask)))
2628                                 goto out;
2629                         r = -EINVAL;
2630                         if (kvm_sigmask.len != sizeof(sigset))
2631                                 goto out;
2632                         r = -EFAULT;
2633                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2634                                            sizeof(sigset)))
2635                                 goto out;
2636                         p = &sigset;
2637                 }
2638                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2639                 break;
2640         }
2641         case KVM_GET_FPU: {
2642                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2643                 r = -ENOMEM;
2644                 if (!fpu)
2645                         goto out;
2646                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2647                 if (r)
2648                         goto out;
2649                 r = -EFAULT;
2650                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2651                         goto out;
2652                 r = 0;
2653                 break;
2654         }
2655         case KVM_SET_FPU: {
2656                 fpu = memdup_user(argp, sizeof(*fpu));
2657                 if (IS_ERR(fpu)) {
2658                         r = PTR_ERR(fpu);
2659                         fpu = NULL;
2660                         goto out;
2661                 }
2662                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2663                 break;
2664         }
2665         default:
2666                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2667         }
2668 out:
2669         vcpu_put(vcpu);
2670         kfree(fpu);
2671         kfree(kvm_sregs);
2672         return r;
2673 }
2674
2675 #ifdef CONFIG_KVM_COMPAT
2676 static long kvm_vcpu_compat_ioctl(struct file *filp,
2677                                   unsigned int ioctl, unsigned long arg)
2678 {
2679         struct kvm_vcpu *vcpu = filp->private_data;
2680         void __user *argp = compat_ptr(arg);
2681         int r;
2682
2683         if (vcpu->kvm->mm != current->mm)
2684                 return -EIO;
2685
2686         switch (ioctl) {
2687         case KVM_SET_SIGNAL_MASK: {
2688                 struct kvm_signal_mask __user *sigmask_arg = argp;
2689                 struct kvm_signal_mask kvm_sigmask;
2690                 compat_sigset_t csigset;
2691                 sigset_t sigset;
2692
2693                 if (argp) {
2694                         r = -EFAULT;
2695                         if (copy_from_user(&kvm_sigmask, argp,
2696                                            sizeof(kvm_sigmask)))
2697                                 goto out;
2698                         r = -EINVAL;
2699                         if (kvm_sigmask.len != sizeof(csigset))
2700                                 goto out;
2701                         r = -EFAULT;
2702                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2703                                            sizeof(csigset)))
2704                                 goto out;
2705                         sigset_from_compat(&sigset, &csigset);
2706                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2707                 } else
2708                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2709                 break;
2710         }
2711         default:
2712                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2713         }
2714
2715 out:
2716         return r;
2717 }
2718 #endif
2719
2720 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2721                                  int (*accessor)(struct kvm_device *dev,
2722                                                  struct kvm_device_attr *attr),
2723                                  unsigned long arg)
2724 {
2725         struct kvm_device_attr attr;
2726
2727         if (!accessor)
2728                 return -EPERM;
2729
2730         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2731                 return -EFAULT;
2732
2733         return accessor(dev, &attr);
2734 }
2735
2736 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2737                              unsigned long arg)
2738 {
2739         struct kvm_device *dev = filp->private_data;
2740
2741         switch (ioctl) {
2742         case KVM_SET_DEVICE_ATTR:
2743                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2744         case KVM_GET_DEVICE_ATTR:
2745                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2746         case KVM_HAS_DEVICE_ATTR:
2747                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2748         default:
2749                 if (dev->ops->ioctl)
2750                         return dev->ops->ioctl(dev, ioctl, arg);
2751
2752                 return -ENOTTY;
2753         }
2754 }
2755
2756 static int kvm_device_release(struct inode *inode, struct file *filp)
2757 {
2758         struct kvm_device *dev = filp->private_data;
2759         struct kvm *kvm = dev->kvm;
2760
2761         kvm_put_kvm(kvm);
2762         return 0;
2763 }
2764
2765 static const struct file_operations kvm_device_fops = {
2766         .unlocked_ioctl = kvm_device_ioctl,
2767 #ifdef CONFIG_KVM_COMPAT
2768         .compat_ioctl = kvm_device_ioctl,
2769 #endif
2770         .release = kvm_device_release,
2771 };
2772
2773 struct kvm_device *kvm_device_from_filp(struct file *filp)
2774 {
2775         if (filp->f_op != &kvm_device_fops)
2776                 return NULL;
2777
2778         return filp->private_data;
2779 }
2780
2781 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2782 #ifdef CONFIG_KVM_MPIC
2783         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2784         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2785 #endif
2786
2787 #ifdef CONFIG_KVM_XICS
2788         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2789 #endif
2790 };
2791
2792 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2793 {
2794         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2795                 return -ENOSPC;
2796
2797         if (kvm_device_ops_table[type] != NULL)
2798                 return -EEXIST;
2799
2800         kvm_device_ops_table[type] = ops;
2801         return 0;
2802 }
2803
2804 void kvm_unregister_device_ops(u32 type)
2805 {
2806         if (kvm_device_ops_table[type] != NULL)
2807                 kvm_device_ops_table[type] = NULL;
2808 }
2809
2810 static int kvm_ioctl_create_device(struct kvm *kvm,
2811                                    struct kvm_create_device *cd)
2812 {
2813         struct kvm_device_ops *ops = NULL;
2814         struct kvm_device *dev;
2815         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2816         int ret;
2817
2818         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2819                 return -ENODEV;
2820
2821         ops = kvm_device_ops_table[cd->type];
2822         if (ops == NULL)
2823                 return -ENODEV;
2824
2825         if (test)
2826                 return 0;
2827
2828         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2829         if (!dev)
2830                 return -ENOMEM;
2831
2832         dev->ops = ops;
2833         dev->kvm = kvm;
2834
2835         ret = ops->create(dev, cd->type);
2836         if (ret < 0) {
2837                 kfree(dev);
2838                 return ret;
2839         }
2840
2841         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2842         if (ret < 0) {
2843                 ops->destroy(dev);
2844                 return ret;
2845         }
2846
2847         list_add(&dev->vm_node, &kvm->devices);
2848         kvm_get_kvm(kvm);
2849         cd->fd = ret;
2850         return 0;
2851 }
2852
2853 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2854 {
2855         switch (arg) {
2856         case KVM_CAP_USER_MEMORY:
2857         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2858         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2859         case KVM_CAP_INTERNAL_ERROR_DATA:
2860 #ifdef CONFIG_HAVE_KVM_MSI
2861         case KVM_CAP_SIGNAL_MSI:
2862 #endif
2863 #ifdef CONFIG_HAVE_KVM_IRQFD
2864         case KVM_CAP_IRQFD:
2865         case KVM_CAP_IRQFD_RESAMPLE:
2866 #endif
2867         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2868         case KVM_CAP_CHECK_EXTENSION_VM:
2869                 return 1;
2870 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2871         case KVM_CAP_IRQ_ROUTING:
2872                 return KVM_MAX_IRQ_ROUTES;
2873 #endif
2874 #if KVM_ADDRESS_SPACE_NUM > 1
2875         case KVM_CAP_MULTI_ADDRESS_SPACE:
2876                 return KVM_ADDRESS_SPACE_NUM;
2877 #endif
2878         case KVM_CAP_MAX_VCPU_ID:
2879                 return KVM_MAX_VCPU_ID;
2880         default:
2881                 break;
2882         }
2883         return kvm_vm_ioctl_check_extension(kvm, arg);
2884 }
2885
2886 static long kvm_vm_ioctl(struct file *filp,
2887                            unsigned int ioctl, unsigned long arg)
2888 {
2889         struct kvm *kvm = filp->private_data;
2890         void __user *argp = (void __user *)arg;
2891         int r;
2892
2893         if (kvm->mm != current->mm)
2894                 return -EIO;
2895         switch (ioctl) {
2896         case KVM_CREATE_VCPU:
2897                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2898                 break;
2899         case KVM_SET_USER_MEMORY_REGION: {
2900                 struct kvm_userspace_memory_region kvm_userspace_mem;
2901
2902                 r = -EFAULT;
2903                 if (copy_from_user(&kvm_userspace_mem, argp,
2904                                                 sizeof(kvm_userspace_mem)))
2905                         goto out;
2906
2907                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2908                 break;
2909         }
2910         case KVM_GET_DIRTY_LOG: {
2911                 struct kvm_dirty_log log;
2912
2913                 r = -EFAULT;
2914                 if (copy_from_user(&log, argp, sizeof(log)))
2915                         goto out;
2916                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2917                 break;
2918         }
2919 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2920         case KVM_REGISTER_COALESCED_MMIO: {
2921                 struct kvm_coalesced_mmio_zone zone;
2922
2923                 r = -EFAULT;
2924                 if (copy_from_user(&zone, argp, sizeof(zone)))
2925                         goto out;
2926                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2927                 break;
2928         }
2929         case KVM_UNREGISTER_COALESCED_MMIO: {
2930                 struct kvm_coalesced_mmio_zone zone;
2931
2932                 r = -EFAULT;
2933                 if (copy_from_user(&zone, argp, sizeof(zone)))
2934                         goto out;
2935                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2936                 break;
2937         }
2938 #endif
2939         case KVM_IRQFD: {
2940                 struct kvm_irqfd data;
2941
2942                 r = -EFAULT;
2943                 if (copy_from_user(&data, argp, sizeof(data)))
2944                         goto out;
2945                 r = kvm_irqfd(kvm, &data);
2946                 break;
2947         }
2948         case KVM_IOEVENTFD: {
2949                 struct kvm_ioeventfd data;
2950
2951                 r = -EFAULT;
2952                 if (copy_from_user(&data, argp, sizeof(data)))
2953                         goto out;
2954                 r = kvm_ioeventfd(kvm, &data);
2955                 break;
2956         }
2957 #ifdef CONFIG_HAVE_KVM_MSI
2958         case KVM_SIGNAL_MSI: {
2959                 struct kvm_msi msi;
2960
2961                 r = -EFAULT;
2962                 if (copy_from_user(&msi, argp, sizeof(msi)))
2963                         goto out;
2964                 r = kvm_send_userspace_msi(kvm, &msi);
2965                 break;
2966         }
2967 #endif
2968 #ifdef __KVM_HAVE_IRQ_LINE
2969         case KVM_IRQ_LINE_STATUS:
2970         case KVM_IRQ_LINE: {
2971                 struct kvm_irq_level irq_event;
2972
2973                 r = -EFAULT;
2974                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2975                         goto out;
2976
2977                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2978                                         ioctl == KVM_IRQ_LINE_STATUS);
2979                 if (r)
2980                         goto out;
2981
2982                 r = -EFAULT;
2983                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2984                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2985                                 goto out;
2986                 }
2987
2988                 r = 0;
2989                 break;
2990         }
2991 #endif
2992 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2993         case KVM_SET_GSI_ROUTING: {
2994                 struct kvm_irq_routing routing;
2995                 struct kvm_irq_routing __user *urouting;
2996                 struct kvm_irq_routing_entry *entries = NULL;
2997
2998                 r = -EFAULT;
2999                 if (copy_from_user(&routing, argp, sizeof(routing)))
3000                         goto out;
3001                 r = -EINVAL;
3002                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3003                         goto out;
3004                 if (routing.flags)
3005                         goto out;
3006                 if (routing.nr) {
3007                         r = -ENOMEM;
3008                         entries = vmalloc(routing.nr * sizeof(*entries));
3009                         if (!entries)
3010                                 goto out;
3011                         r = -EFAULT;
3012                         urouting = argp;
3013                         if (copy_from_user(entries, urouting->entries,
3014                                            routing.nr * sizeof(*entries)))
3015                                 goto out_free_irq_routing;
3016                 }
3017                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3018                                         routing.flags);
3019 out_free_irq_routing:
3020                 vfree(entries);
3021                 break;
3022         }
3023 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3024         case KVM_CREATE_DEVICE: {
3025                 struct kvm_create_device cd;
3026
3027                 r = -EFAULT;
3028                 if (copy_from_user(&cd, argp, sizeof(cd)))
3029                         goto out;
3030
3031                 r = kvm_ioctl_create_device(kvm, &cd);
3032                 if (r)
3033                         goto out;
3034
3035                 r = -EFAULT;
3036                 if (copy_to_user(argp, &cd, sizeof(cd)))
3037                         goto out;
3038
3039                 r = 0;
3040                 break;
3041         }
3042         case KVM_CHECK_EXTENSION:
3043                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3044                 break;
3045         default:
3046                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3047         }
3048 out:
3049         return r;
3050 }
3051
3052 #ifdef CONFIG_KVM_COMPAT
3053 struct compat_kvm_dirty_log {
3054         __u32 slot;
3055         __u32 padding1;
3056         union {
3057                 compat_uptr_t dirty_bitmap; /* one bit per page */
3058                 __u64 padding2;
3059         };
3060 };
3061
3062 static long kvm_vm_compat_ioctl(struct file *filp,
3063                            unsigned int ioctl, unsigned long arg)
3064 {
3065         struct kvm *kvm = filp->private_data;
3066         int r;
3067
3068         if (kvm->mm != current->mm)
3069                 return -EIO;
3070         switch (ioctl) {
3071         case KVM_GET_DIRTY_LOG: {
3072                 struct compat_kvm_dirty_log compat_log;
3073                 struct kvm_dirty_log log;
3074
3075                 r = -EFAULT;
3076                 if (copy_from_user(&compat_log, (void __user *)arg,
3077                                    sizeof(compat_log)))
3078                         goto out;
3079                 log.slot         = compat_log.slot;
3080                 log.padding1     = compat_log.padding1;
3081                 log.padding2     = compat_log.padding2;
3082                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3083
3084                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3085                 break;
3086         }
3087         default:
3088                 r = kvm_vm_ioctl(filp, ioctl, arg);
3089         }
3090
3091 out:
3092         return r;
3093 }
3094 #endif
3095
3096 static struct file_operations kvm_vm_fops = {
3097         .release        = kvm_vm_release,
3098         .unlocked_ioctl = kvm_vm_ioctl,
3099 #ifdef CONFIG_KVM_COMPAT
3100         .compat_ioctl   = kvm_vm_compat_ioctl,
3101 #endif
3102         .llseek         = noop_llseek,
3103 };
3104
3105 static int kvm_dev_ioctl_create_vm(unsigned long type)
3106 {
3107         int r;
3108         struct kvm *kvm;
3109         struct file *file;
3110
3111         kvm = kvm_create_vm(type);
3112         if (IS_ERR(kvm))
3113                 return PTR_ERR(kvm);
3114 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3115         r = kvm_coalesced_mmio_init(kvm);
3116         if (r < 0) {
3117                 kvm_put_kvm(kvm);
3118                 return r;
3119         }
3120 #endif
3121         r = get_unused_fd_flags(O_CLOEXEC);
3122         if (r < 0) {
3123                 kvm_put_kvm(kvm);
3124                 return r;
3125         }
3126         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3127         if (IS_ERR(file)) {
3128                 put_unused_fd(r);
3129                 kvm_put_kvm(kvm);
3130                 return PTR_ERR(file);
3131         }
3132
3133         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3134                 put_unused_fd(r);
3135                 fput(file);
3136                 return -ENOMEM;
3137         }
3138
3139         fd_install(r, file);
3140         return r;
3141 }
3142
3143 static long kvm_dev_ioctl(struct file *filp,
3144                           unsigned int ioctl, unsigned long arg)
3145 {
3146         long r = -EINVAL;
3147
3148         switch (ioctl) {
3149         case KVM_GET_API_VERSION:
3150                 if (arg)
3151                         goto out;
3152                 r = KVM_API_VERSION;
3153                 break;
3154         case KVM_CREATE_VM:
3155                 r = kvm_dev_ioctl_create_vm(arg);
3156                 break;
3157         case KVM_CHECK_EXTENSION:
3158                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3159                 break;
3160         case KVM_GET_VCPU_MMAP_SIZE:
3161                 if (arg)
3162                         goto out;
3163                 r = PAGE_SIZE;     /* struct kvm_run */
3164 #ifdef CONFIG_X86
3165                 r += PAGE_SIZE;    /* pio data page */
3166 #endif
3167 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3168                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3169 #endif
3170                 break;
3171         case KVM_TRACE_ENABLE:
3172         case KVM_TRACE_PAUSE:
3173         case KVM_TRACE_DISABLE:
3174                 r = -EOPNOTSUPP;
3175                 break;
3176         default:
3177                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3178         }
3179 out:
3180         return r;
3181 }
3182
3183 static struct file_operations kvm_chardev_ops = {
3184         .unlocked_ioctl = kvm_dev_ioctl,
3185         .compat_ioctl   = kvm_dev_ioctl,
3186         .llseek         = noop_llseek,
3187 };
3188
3189 static struct miscdevice kvm_dev = {
3190         KVM_MINOR,
3191         "kvm",
3192         &kvm_chardev_ops,
3193 };
3194
3195 static void hardware_enable_nolock(void *junk)
3196 {
3197         int cpu = raw_smp_processor_id();
3198         int r;
3199
3200         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3201                 return;
3202
3203         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3204
3205         r = kvm_arch_hardware_enable();
3206
3207         if (r) {
3208                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3209                 atomic_inc(&hardware_enable_failed);
3210                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3211         }
3212 }
3213
3214 static int kvm_starting_cpu(unsigned int cpu)
3215 {
3216         raw_spin_lock(&kvm_count_lock);
3217         if (kvm_usage_count)
3218                 hardware_enable_nolock(NULL);
3219         raw_spin_unlock(&kvm_count_lock);
3220         return 0;
3221 }
3222
3223 static void hardware_disable_nolock(void *junk)
3224 {
3225         int cpu = raw_smp_processor_id();
3226
3227         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3228                 return;
3229         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3230         kvm_arch_hardware_disable();
3231 }
3232
3233 static int kvm_dying_cpu(unsigned int cpu)
3234 {
3235         raw_spin_lock(&kvm_count_lock);
3236         if (kvm_usage_count)
3237                 hardware_disable_nolock(NULL);
3238         raw_spin_unlock(&kvm_count_lock);
3239         return 0;
3240 }
3241
3242 static void hardware_disable_all_nolock(void)
3243 {
3244         BUG_ON(!kvm_usage_count);
3245
3246         kvm_usage_count--;
3247         if (!kvm_usage_count)
3248                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3249 }
3250
3251 static void hardware_disable_all(void)
3252 {
3253         raw_spin_lock(&kvm_count_lock);
3254         hardware_disable_all_nolock();
3255         raw_spin_unlock(&kvm_count_lock);
3256 }
3257
3258 static int hardware_enable_all(void)
3259 {
3260         int r = 0;
3261
3262         raw_spin_lock(&kvm_count_lock);
3263
3264         kvm_usage_count++;
3265         if (kvm_usage_count == 1) {
3266                 atomic_set(&hardware_enable_failed, 0);
3267                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3268
3269                 if (atomic_read(&hardware_enable_failed)) {
3270                         hardware_disable_all_nolock();
3271                         r = -EBUSY;
3272                 }
3273         }
3274
3275         raw_spin_unlock(&kvm_count_lock);
3276
3277         return r;
3278 }
3279
3280 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3281                       void *v)
3282 {
3283         /*
3284          * Some (well, at least mine) BIOSes hang on reboot if
3285          * in vmx root mode.
3286          *
3287          * And Intel TXT required VMX off for all cpu when system shutdown.
3288          */
3289         pr_info("kvm: exiting hardware virtualization\n");
3290         kvm_rebooting = true;
3291         on_each_cpu(hardware_disable_nolock, NULL, 1);
3292         return NOTIFY_OK;
3293 }
3294
3295 static struct notifier_block kvm_reboot_notifier = {
3296         .notifier_call = kvm_reboot,
3297         .priority = 0,
3298 };
3299
3300 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3301 {
3302         int i;
3303
3304         for (i = 0; i < bus->dev_count; i++) {
3305                 struct kvm_io_device *pos = bus->range[i].dev;
3306
3307                 kvm_iodevice_destructor(pos);
3308         }
3309         kfree(bus);
3310 }
3311
3312 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3313                                  const struct kvm_io_range *r2)
3314 {
3315         gpa_t addr1 = r1->addr;
3316         gpa_t addr2 = r2->addr;
3317
3318         if (addr1 < addr2)
3319                 return -1;
3320
3321         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3322          * accept any overlapping write.  Any order is acceptable for
3323          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3324          * we process all of them.
3325          */
3326         if (r2->len) {
3327                 addr1 += r1->len;
3328                 addr2 += r2->len;
3329         }
3330
3331         if (addr1 > addr2)
3332                 return 1;
3333
3334         return 0;
3335 }
3336
3337 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3338 {
3339         return kvm_io_bus_cmp(p1, p2);
3340 }
3341
3342 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3343                           gpa_t addr, int len)
3344 {
3345         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3346                 .addr = addr,
3347                 .len = len,
3348                 .dev = dev,
3349         };
3350
3351         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3352                 kvm_io_bus_sort_cmp, NULL);
3353
3354         return 0;
3355 }
3356
3357 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3358                              gpa_t addr, int len)
3359 {
3360         struct kvm_io_range *range, key;
3361         int off;
3362
3363         key = (struct kvm_io_range) {
3364                 .addr = addr,
3365                 .len = len,
3366         };
3367
3368         range = bsearch(&key, bus->range, bus->dev_count,
3369                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3370         if (range == NULL)
3371                 return -ENOENT;
3372
3373         off = range - bus->range;
3374
3375         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3376                 off--;
3377
3378         return off;
3379 }
3380
3381 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3382                               struct kvm_io_range *range, const void *val)
3383 {
3384         int idx;
3385
3386         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3387         if (idx < 0)
3388                 return -EOPNOTSUPP;
3389
3390         while (idx < bus->dev_count &&
3391                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3392                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3393                                         range->len, val))
3394                         return idx;
3395                 idx++;
3396         }
3397
3398         return -EOPNOTSUPP;
3399 }
3400
3401 /* kvm_io_bus_write - called under kvm->slots_lock */
3402 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3403                      int len, const void *val)
3404 {
3405         struct kvm_io_bus *bus;
3406         struct kvm_io_range range;
3407         int r;
3408
3409         range = (struct kvm_io_range) {
3410                 .addr = addr,
3411                 .len = len,
3412         };
3413
3414         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3415         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3416         return r < 0 ? r : 0;
3417 }
3418
3419 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3420 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3421                             gpa_t addr, int len, const void *val, long cookie)
3422 {
3423         struct kvm_io_bus *bus;
3424         struct kvm_io_range range;
3425
3426         range = (struct kvm_io_range) {
3427                 .addr = addr,
3428                 .len = len,
3429         };
3430
3431         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3432
3433         /* First try the device referenced by cookie. */
3434         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3435             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3436                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3437                                         val))
3438                         return cookie;
3439
3440         /*
3441          * cookie contained garbage; fall back to search and return the
3442          * correct cookie value.
3443          */
3444         return __kvm_io_bus_write(vcpu, bus, &range, val);
3445 }
3446
3447 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3448                              struct kvm_io_range *range, void *val)
3449 {
3450         int idx;
3451
3452         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3453         if (idx < 0)
3454                 return -EOPNOTSUPP;
3455
3456         while (idx < bus->dev_count &&
3457                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3458                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3459                                        range->len, val))
3460                         return idx;
3461                 idx++;
3462         }
3463
3464         return -EOPNOTSUPP;
3465 }
3466 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3467
3468 /* kvm_io_bus_read - called under kvm->slots_lock */
3469 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3470                     int len, void *val)
3471 {
3472         struct kvm_io_bus *bus;
3473         struct kvm_io_range range;
3474         int r;
3475
3476         range = (struct kvm_io_range) {
3477                 .addr = addr,
3478                 .len = len,
3479         };
3480
3481         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3482         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3483         return r < 0 ? r : 0;
3484 }
3485
3486
3487 /* Caller must hold slots_lock. */
3488 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3489                             int len, struct kvm_io_device *dev)
3490 {
3491         struct kvm_io_bus *new_bus, *bus;
3492
3493         bus = kvm->buses[bus_idx];
3494         /* exclude ioeventfd which is limited by maximum fd */
3495         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3496                 return -ENOSPC;
3497
3498         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3499                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3500         if (!new_bus)
3501                 return -ENOMEM;
3502         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3503                sizeof(struct kvm_io_range)));
3504         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3505         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3506         synchronize_srcu_expedited(&kvm->srcu);
3507         kfree(bus);
3508
3509         return 0;
3510 }
3511
3512 /* Caller must hold slots_lock. */
3513 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3514                               struct kvm_io_device *dev)
3515 {
3516         int i, r;
3517         struct kvm_io_bus *new_bus, *bus;
3518
3519         bus = kvm->buses[bus_idx];
3520         r = -ENOENT;
3521         for (i = 0; i < bus->dev_count; i++)
3522                 if (bus->range[i].dev == dev) {
3523                         r = 0;
3524                         break;
3525                 }
3526
3527         if (r)
3528                 return r;
3529
3530         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3531                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3532         if (!new_bus)
3533                 return -ENOMEM;
3534
3535         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3536         new_bus->dev_count--;
3537         memcpy(new_bus->range + i, bus->range + i + 1,
3538                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3539
3540         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3541         synchronize_srcu_expedited(&kvm->srcu);
3542         kfree(bus);
3543         return r;
3544 }
3545
3546 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3547                                          gpa_t addr)
3548 {
3549         struct kvm_io_bus *bus;
3550         int dev_idx, srcu_idx;
3551         struct kvm_io_device *iodev = NULL;
3552
3553         srcu_idx = srcu_read_lock(&kvm->srcu);
3554
3555         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3556
3557         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3558         if (dev_idx < 0)
3559                 goto out_unlock;
3560
3561         iodev = bus->range[dev_idx].dev;
3562
3563 out_unlock:
3564         srcu_read_unlock(&kvm->srcu, srcu_idx);
3565
3566         return iodev;
3567 }
3568 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3569
3570 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3571                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3572                            const char *fmt)
3573 {
3574         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3575                                           inode->i_private;
3576
3577         /* The debugfs files are a reference to the kvm struct which
3578          * is still valid when kvm_destroy_vm is called.
3579          * To avoid the race between open and the removal of the debugfs
3580          * directory we test against the users count.
3581          */
3582         if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3583                 return -ENOENT;
3584
3585         if (simple_attr_open(inode, file, get, set, fmt)) {
3586                 kvm_put_kvm(stat_data->kvm);
3587                 return -ENOMEM;
3588         }
3589
3590         return 0;
3591 }
3592
3593 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3594 {
3595         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3596                                           inode->i_private;
3597
3598         simple_attr_release(inode, file);
3599         kvm_put_kvm(stat_data->kvm);
3600
3601         return 0;
3602 }
3603
3604 static int vm_stat_get_per_vm(void *data, u64 *val)
3605 {
3606         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3607
3608         *val = *(u32 *)((void *)stat_data->kvm + stat_data->offset);
3609
3610         return 0;
3611 }
3612
3613 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3614 {
3615         __simple_attr_check_format("%llu\n", 0ull);
3616         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3617                                 NULL, "%llu\n");
3618 }
3619
3620 static const struct file_operations vm_stat_get_per_vm_fops = {
3621         .owner   = THIS_MODULE,
3622         .open    = vm_stat_get_per_vm_open,
3623         .release = kvm_debugfs_release,
3624         .read    = simple_attr_read,
3625         .write   = simple_attr_write,
3626         .llseek  = generic_file_llseek,
3627 };
3628
3629 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3630 {
3631         int i;
3632         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3633         struct kvm_vcpu *vcpu;
3634
3635         *val = 0;
3636
3637         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3638                 *val += *(u32 *)((void *)vcpu + stat_data->offset);
3639
3640         return 0;
3641 }
3642
3643 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3644 {
3645         __simple_attr_check_format("%llu\n", 0ull);
3646         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3647                                  NULL, "%llu\n");
3648 }
3649
3650 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3651         .owner   = THIS_MODULE,
3652         .open    = vcpu_stat_get_per_vm_open,
3653         .release = kvm_debugfs_release,
3654         .read    = simple_attr_read,
3655         .write   = simple_attr_write,
3656         .llseek  = generic_file_llseek,
3657 };
3658
3659 static const struct file_operations *stat_fops_per_vm[] = {
3660         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3661         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3662 };
3663
3664 static int vm_stat_get(void *_offset, u64 *val)
3665 {
3666         unsigned offset = (long)_offset;
3667         struct kvm *kvm;
3668         struct kvm_stat_data stat_tmp = {.offset = offset};
3669         u64 tmp_val;
3670
3671         *val = 0;
3672         spin_lock(&kvm_lock);
3673         list_for_each_entry(kvm, &vm_list, vm_list) {
3674                 stat_tmp.kvm = kvm;
3675                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3676                 *val += tmp_val;
3677         }
3678         spin_unlock(&kvm_lock);
3679         return 0;
3680 }
3681
3682 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3683
3684 static int vcpu_stat_get(void *_offset, u64 *val)
3685 {
3686         unsigned offset = (long)_offset;
3687         struct kvm *kvm;
3688         struct kvm_stat_data stat_tmp = {.offset = offset};
3689         u64 tmp_val;
3690
3691         *val = 0;
3692         spin_lock(&kvm_lock);
3693         list_for_each_entry(kvm, &vm_list, vm_list) {
3694                 stat_tmp.kvm = kvm;
3695                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3696                 *val += tmp_val;
3697         }
3698         spin_unlock(&kvm_lock);
3699         return 0;
3700 }
3701
3702 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3703
3704 static const struct file_operations *stat_fops[] = {
3705         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3706         [KVM_STAT_VM]   = &vm_stat_fops,
3707 };
3708
3709 static int kvm_init_debug(void)
3710 {
3711         int r = -EEXIST;
3712         struct kvm_stats_debugfs_item *p;
3713
3714         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3715         if (kvm_debugfs_dir == NULL)
3716                 goto out;
3717
3718         kvm_debugfs_num_entries = 0;
3719         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3720                 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3721                                          (void *)(long)p->offset,
3722                                          stat_fops[p->kind]))
3723                         goto out_dir;
3724         }
3725
3726         return 0;
3727
3728 out_dir:
3729         debugfs_remove_recursive(kvm_debugfs_dir);
3730 out:
3731         return r;
3732 }
3733
3734 static int kvm_suspend(void)
3735 {
3736         if (kvm_usage_count)
3737                 hardware_disable_nolock(NULL);
3738         return 0;
3739 }
3740
3741 static void kvm_resume(void)
3742 {
3743         if (kvm_usage_count) {
3744                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3745                 hardware_enable_nolock(NULL);
3746         }
3747 }
3748
3749 static struct syscore_ops kvm_syscore_ops = {
3750         .suspend = kvm_suspend,
3751         .resume = kvm_resume,
3752 };
3753
3754 static inline
3755 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3756 {
3757         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3758 }
3759
3760 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3761 {
3762         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3763
3764         if (vcpu->preempted)
3765                 vcpu->preempted = false;
3766
3767         kvm_arch_sched_in(vcpu, cpu);
3768
3769         kvm_arch_vcpu_load(vcpu, cpu);
3770 }
3771
3772 static void kvm_sched_out(struct preempt_notifier *pn,
3773                           struct task_struct *next)
3774 {
3775         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3776
3777         if (current->state == TASK_RUNNING)
3778                 vcpu->preempted = true;
3779         kvm_arch_vcpu_put(vcpu);
3780 }
3781
3782 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3783                   struct module *module)
3784 {
3785         int r;
3786         int cpu;
3787
3788         r = kvm_arch_init(opaque);
3789         if (r)
3790                 goto out_fail;
3791
3792         /*
3793          * kvm_arch_init makes sure there's at most one caller
3794          * for architectures that support multiple implementations,
3795          * like intel and amd on x86.
3796          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3797          * conflicts in case kvm is already setup for another implementation.
3798          */
3799         r = kvm_irqfd_init();
3800         if (r)
3801                 goto out_irqfd;
3802
3803         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3804                 r = -ENOMEM;
3805                 goto out_free_0;
3806         }
3807
3808         r = kvm_arch_hardware_setup();
3809         if (r < 0)
3810                 goto out_free_0a;
3811
3812         for_each_online_cpu(cpu) {
3813                 smp_call_function_single(cpu,
3814                                 kvm_arch_check_processor_compat,
3815                                 &r, 1);
3816                 if (r < 0)
3817                         goto out_free_1;
3818         }
3819
3820         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3821                                       kvm_starting_cpu, kvm_dying_cpu);
3822         if (r)
3823                 goto out_free_2;
3824         register_reboot_notifier(&kvm_reboot_notifier);
3825
3826         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3827         if (!vcpu_align)
3828                 vcpu_align = __alignof__(struct kvm_vcpu);
3829         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3830                                            0, NULL);
3831         if (!kvm_vcpu_cache) {
3832                 r = -ENOMEM;
3833                 goto out_free_3;
3834         }
3835
3836         r = kvm_async_pf_init();
3837         if (r)
3838                 goto out_free;
3839
3840         kvm_chardev_ops.owner = module;
3841         kvm_vm_fops.owner = module;
3842         kvm_vcpu_fops.owner = module;
3843
3844         r = misc_register(&kvm_dev);
3845         if (r) {
3846                 pr_err("kvm: misc device register failed\n");
3847                 goto out_unreg;
3848         }
3849
3850         register_syscore_ops(&kvm_syscore_ops);
3851
3852         kvm_preempt_ops.sched_in = kvm_sched_in;
3853         kvm_preempt_ops.sched_out = kvm_sched_out;
3854
3855         r = kvm_init_debug();
3856         if (r) {
3857                 pr_err("kvm: create debugfs files failed\n");
3858                 goto out_undebugfs;
3859         }
3860
3861         r = kvm_vfio_ops_init();
3862         WARN_ON(r);
3863
3864         return 0;
3865
3866 out_undebugfs:
3867         unregister_syscore_ops(&kvm_syscore_ops);
3868         misc_deregister(&kvm_dev);
3869 out_unreg:
3870         kvm_async_pf_deinit();
3871 out_free:
3872         kmem_cache_destroy(kvm_vcpu_cache);
3873 out_free_3:
3874         unregister_reboot_notifier(&kvm_reboot_notifier);
3875         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3876 out_free_2:
3877 out_free_1:
3878         kvm_arch_hardware_unsetup();
3879 out_free_0a:
3880         free_cpumask_var(cpus_hardware_enabled);
3881 out_free_0:
3882         kvm_irqfd_exit();
3883 out_irqfd:
3884         kvm_arch_exit();
3885 out_fail:
3886         return r;
3887 }
3888 EXPORT_SYMBOL_GPL(kvm_init);
3889
3890 void kvm_exit(void)
3891 {
3892         debugfs_remove_recursive(kvm_debugfs_dir);
3893         misc_deregister(&kvm_dev);
3894         kmem_cache_destroy(kvm_vcpu_cache);
3895         kvm_async_pf_deinit();
3896         unregister_syscore_ops(&kvm_syscore_ops);
3897         unregister_reboot_notifier(&kvm_reboot_notifier);
3898         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3899         on_each_cpu(hardware_disable_nolock, NULL, 1);
3900         kvm_arch_hardware_unsetup();
3901         kvm_arch_exit();
3902         kvm_irqfd_exit();
3903         free_cpumask_var(cpus_hardware_enabled);
3904         kvm_vfio_ops_exit();
3905 }
3906 EXPORT_SYMBOL_GPL(kvm_exit);