mm/slub: optimize alloc/free fastpath by removing preemption on/off
authorJoonsoo Kim <iamjoonsoo.kim@lge.com>
Tue, 10 Feb 2015 22:09:32 +0000 (14:09 -0800)
committerLinus Torvalds <torvalds@linux-foundation.org>
Tue, 10 Feb 2015 22:30:30 +0000 (14:30 -0800)
We had to insert a preempt enable/disable in the fastpath a while ago in
order to guarantee that tid and kmem_cache_cpu are retrieved on the same
cpu.  It is the problem only for CONFIG_PREEMPT in which scheduler can
move the process to other cpu during retrieving data.

Now, I reach the solution to remove preempt enable/disable in the
fastpath.  If tid is matched with kmem_cache_cpu's tid after tid and
kmem_cache_cpu are retrieved by separate this_cpu operation, it means
that they are retrieved on the same cpu.  If not matched, we just have
to retry it.

With this guarantee, preemption enable/disable isn't need at all even if
CONFIG_PREEMPT, so this patch removes it.

I saw roughly 5% win in a fast-path loop over kmem_cache_alloc/free in
CONFIG_PREEMPT.  (14.821 ns -> 14.049 ns)

Below is the result of Christoph's slab_test reported by Jesper Dangaard
Brouer.

* Before

 Single thread testing
 =====================
 1. Kmalloc: Repeatedly allocate then free test
 10000 times kmalloc(8) -> 49 cycles kfree -> 62 cycles
 10000 times kmalloc(16) -> 48 cycles kfree -> 64 cycles
 10000 times kmalloc(32) -> 53 cycles kfree -> 70 cycles
 10000 times kmalloc(64) -> 64 cycles kfree -> 77 cycles
 10000 times kmalloc(128) -> 74 cycles kfree -> 84 cycles
 10000 times kmalloc(256) -> 84 cycles kfree -> 114 cycles
 10000 times kmalloc(512) -> 83 cycles kfree -> 116 cycles
 10000 times kmalloc(1024) -> 81 cycles kfree -> 120 cycles
 10000 times kmalloc(2048) -> 104 cycles kfree -> 136 cycles
 10000 times kmalloc(4096) -> 142 cycles kfree -> 165 cycles
 10000 times kmalloc(8192) -> 238 cycles kfree -> 226 cycles
 10000 times kmalloc(16384) -> 403 cycles kfree -> 264 cycles
 2. Kmalloc: alloc/free test
 10000 times kmalloc(8)/kfree -> 68 cycles
 10000 times kmalloc(16)/kfree -> 68 cycles
 10000 times kmalloc(32)/kfree -> 69 cycles
 10000 times kmalloc(64)/kfree -> 68 cycles
 10000 times kmalloc(128)/kfree -> 68 cycles
 10000 times kmalloc(256)/kfree -> 68 cycles
 10000 times kmalloc(512)/kfree -> 74 cycles
 10000 times kmalloc(1024)/kfree -> 75 cycles
 10000 times kmalloc(2048)/kfree -> 74 cycles
 10000 times kmalloc(4096)/kfree -> 74 cycles
 10000 times kmalloc(8192)/kfree -> 75 cycles
 10000 times kmalloc(16384)/kfree -> 510 cycles

* After

 Single thread testing
 =====================
 1. Kmalloc: Repeatedly allocate then free test
 10000 times kmalloc(8) -> 46 cycles kfree -> 61 cycles
 10000 times kmalloc(16) -> 46 cycles kfree -> 63 cycles
 10000 times kmalloc(32) -> 49 cycles kfree -> 69 cycles
 10000 times kmalloc(64) -> 57 cycles kfree -> 76 cycles
 10000 times kmalloc(128) -> 66 cycles kfree -> 83 cycles
 10000 times kmalloc(256) -> 84 cycles kfree -> 110 cycles
 10000 times kmalloc(512) -> 77 cycles kfree -> 114 cycles
 10000 times kmalloc(1024) -> 80 cycles kfree -> 116 cycles
 10000 times kmalloc(2048) -> 102 cycles kfree -> 131 cycles
 10000 times kmalloc(4096) -> 135 cycles kfree -> 163 cycles
 10000 times kmalloc(8192) -> 238 cycles kfree -> 218 cycles
 10000 times kmalloc(16384) -> 399 cycles kfree -> 262 cycles
 2. Kmalloc: alloc/free test
 10000 times kmalloc(8)/kfree -> 65 cycles
 10000 times kmalloc(16)/kfree -> 66 cycles
 10000 times kmalloc(32)/kfree -> 65 cycles
 10000 times kmalloc(64)/kfree -> 66 cycles
 10000 times kmalloc(128)/kfree -> 66 cycles
 10000 times kmalloc(256)/kfree -> 71 cycles
 10000 times kmalloc(512)/kfree -> 72 cycles
 10000 times kmalloc(1024)/kfree -> 71 cycles
 10000 times kmalloc(2048)/kfree -> 71 cycles
 10000 times kmalloc(4096)/kfree -> 71 cycles
 10000 times kmalloc(8192)/kfree -> 65 cycles
 10000 times kmalloc(16384)/kfree -> 511 cycles

Most of the results are better than before.

Note that this change slightly worses performance in !CONFIG_PREEMPT,
roughly 0.3%.  Implementing each case separately would help performance,
but, since it's so marginal, I didn't do that.  This would help
maintanance since we have same code for all cases.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Tested-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm/slub.c

index fe376fe..e7ed6f8 100644 (file)
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -2398,13 +2398,24 @@ redo:
         * reading from one cpu area. That does not matter as long
         * as we end up on the original cpu again when doing the cmpxchg.
         *
-        * Preemption is disabled for the retrieval of the tid because that
-        * must occur from the current processor. We cannot allow rescheduling
-        * on a different processor between the determination of the pointer
-        * and the retrieval of the tid.
+        * We should guarantee that tid and kmem_cache are retrieved on
+        * the same cpu. It could be different if CONFIG_PREEMPT so we need
+        * to check if it is matched or not.
         */
-       preempt_disable();
-       c = this_cpu_ptr(s->cpu_slab);
+       do {
+               tid = this_cpu_read(s->cpu_slab->tid);
+               c = raw_cpu_ptr(s->cpu_slab);
+       } while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
+
+       /*
+        * Irqless object alloc/free algorithm used here depends on sequence
+        * of fetching cpu_slab's data. tid should be fetched before anything
+        * on c to guarantee that object and page associated with previous tid
+        * won't be used with current tid. If we fetch tid first, object and
+        * page could be one associated with next tid and our alloc/free
+        * request will be failed. In this case, we will retry. So, no problem.
+        */
+       barrier();
 
        /*
         * The transaction ids are globally unique per cpu and per operation on
@@ -2412,8 +2423,6 @@ redo:
         * occurs on the right processor and that there was no operation on the
         * linked list in between.
         */
-       tid = c->tid;
-       preempt_enable();
 
        object = c->freelist;
        page = c->page;
@@ -2659,11 +2668,13 @@ redo:
         * data is retrieved via this pointer. If we are on the same cpu
         * during the cmpxchg then the free will succedd.
         */
-       preempt_disable();
-       c = this_cpu_ptr(s->cpu_slab);
+       do {
+               tid = this_cpu_read(s->cpu_slab->tid);
+               c = raw_cpu_ptr(s->cpu_slab);
+       } while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
 
-       tid = c->tid;
-       preempt_enable();
+       /* Same with comment on barrier() in slab_alloc_node() */
+       barrier();
 
        if (likely(page == c->page)) {
                set_freepointer(s, object, c->freelist);