macintosh: therm_pm72: delete deprecated driver
authorWolfram Sang <wsa@the-dreams.de>
Wed, 5 Nov 2014 22:44:11 +0000 (23:44 +0100)
committerWolfram Sang <wsa@the-dreams.de>
Fri, 19 Dec 2014 18:32:47 +0000 (19:32 +0100)
The new driver is around for more than 2 years now, so the old one can
go. Getting rid of it helps the removal of the legacy .attach_adapter
callback of the I2C subsystem.

Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
drivers/macintosh/Kconfig
drivers/macintosh/Makefile
drivers/macintosh/therm_pm72.c [deleted file]
drivers/macintosh/therm_pm72.h [deleted file]

index 3067d56..5844b80 100644 (file)
@@ -204,16 +204,6 @@ config THERM_ADT746X
           iBook G4, and the ATI based aluminium PowerBooks, allowing slightly
          better fan behaviour by default, and some manual control.
 
-config THERM_PM72
-       tristate "Support for thermal management on PowerMac G5 (AGP)"
-       depends on I2C && I2C_POWERMAC && PPC_PMAC64
-       default n
-       help
-         This driver provides thermostat and fan control for the desktop
-         G5 machines.
-
-         This is deprecated, use windfarm instead.
-
 config WINDFARM
        tristate "New PowerMac thermal control infrastructure"
        depends on PPC
index d2f0120..383ba92 100644 (file)
@@ -25,7 +25,6 @@ obj-$(CONFIG_ADB_IOP)         += adb-iop.o
 obj-$(CONFIG_ADB_PMU68K)       += via-pmu68k.o
 obj-$(CONFIG_ADB_MACIO)                += macio-adb.o
 
-obj-$(CONFIG_THERM_PM72)       += therm_pm72.o
 obj-$(CONFIG_THERM_WINDTUNNEL) += therm_windtunnel.o
 obj-$(CONFIG_THERM_ADT746X)    += therm_adt746x.o
 obj-$(CONFIG_WINDFARM)         += windfarm_core.o
diff --git a/drivers/macintosh/therm_pm72.c b/drivers/macintosh/therm_pm72.c
deleted file mode 100644 (file)
index 7ed9258..0000000
+++ /dev/null
@@ -1,2278 +0,0 @@
-/*
- * Device driver for the thermostats & fan controller of  the
- * Apple G5 "PowerMac7,2" desktop machines.
- *
- * (c) Copyright IBM Corp. 2003-2004
- *
- * Maintained by: Benjamin Herrenschmidt
- *                <benh@kernel.crashing.org>
- * 
- *
- * The algorithm used is the PID control algorithm, used the same
- * way the published Darwin code does, using the same values that
- * are present in the Darwin 7.0 snapshot property lists.
- *
- * As far as the CPUs control loops are concerned, I use the
- * calibration & PID constants provided by the EEPROM,
- * I do _not_ embed any value from the property lists, as the ones
- * provided by Darwin 7.0 seem to always have an older version that
- * what I've seen on the actual computers.
- * It would be interesting to verify that though. Darwin has a
- * version code of 1.0.0d11 for all control loops it seems, while
- * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
- *
- * Darwin doesn't provide source to all parts, some missing
- * bits like the AppleFCU driver or the actual scale of some
- * of the values returned by sensors had to be "guessed" some
- * way... or based on what Open Firmware does.
- *
- * I didn't yet figure out how to get the slots power consumption
- * out of the FCU, so that part has not been implemented yet and
- * the slots fan is set to a fixed 50% PWM, hoping this value is
- * safe enough ...
- *
- * Note: I have observed strange oscillations of the CPU control
- * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
- * oscillates slowly (over several minutes) between the minimum
- * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
- * this, it could be some incorrect constant or an error in the
- * way I ported the algorithm, or it could be just normal. I
- * don't have full understanding on the way Apple tweaked the PID
- * algorithm for the CPU control, it is definitely not a standard
- * implementation...
- *
- * TODO:  - Check MPU structure version/signature
- *        - Add things like /sbin/overtemp for non-critical
- *          overtemp conditions so userland can take some policy
- *          decisions, like slowing down CPUs
- *       - Deal with fan and i2c failures in a better way
- *       - Maybe do a generic PID based on params used for
- *         U3 and Drives ? Definitely need to factor code a bit
- *          better... also make sensor detection more robust using
- *          the device-tree to probe for them
- *        - Figure out how to get the slots consumption and set the
- *          slots fan accordingly
- *
- * History:
- *
- *  Nov. 13, 2003 : 0.5
- *     - First release
- *
- *  Nov. 14, 2003 : 0.6
- *     - Read fan speed from FCU, low level fan routines now deal
- *       with errors & check fan status, though higher level don't
- *       do much.
- *     - Move a bunch of definitions to .h file
- *
- *  Nov. 18, 2003 : 0.7
- *     - Fix build on ppc64 kernel
- *     - Move back statics definitions to .c file
- *     - Avoid calling schedule_timeout with a negative number
- *
- *  Dec. 18, 2003 : 0.8
- *     - Fix typo when reading back fan speed on 2 CPU machines
- *
- *  Mar. 11, 2004 : 0.9
- *     - Rework code accessing the ADC chips, make it more robust and
- *       closer to the chip spec. Also make sure it is configured properly,
- *        I've seen yet unexplained cases where on startup, I would have stale
- *        values in the configuration register
- *     - Switch back to use of target fan speed for PID, thus lowering
- *        pressure on i2c
- *
- *  Oct. 20, 2004 : 1.1
- *     - Add device-tree lookup for fan IDs, should detect liquid cooling
- *        pumps when present
- *     - Enable driver for PowerMac7,3 machines
- *     - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
- *     - Add new CPU cooling algorithm for machines with liquid cooling
- *     - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
- *     - Fix a signed/unsigned compare issue in some PID loops
- *
- *  Mar. 10, 2005 : 1.2
- *     - Add basic support for Xserve G5
- *     - Retrieve pumps min/max from EEPROM image in device-tree (broken)
- *     - Use min/max macros here or there
- *     - Latest darwin updated U3H min fan speed to 20% PWM
- *
- *  July. 06, 2006 : 1.3
- *     - Fix setting of RPM fans on Xserve G5 (they were going too fast)
- *      - Add missing slots fan control loop for Xserve G5
- *     - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
- *        still can't properly implement the control loop for these, so let's
- *        reduce the noise a little bit, it appears that 40% still gives us
- *        a pretty good air flow
- *     - Add code to "tickle" the FCU regulary so it doesn't think that
- *        we are gone while in fact, the machine just didn't need any fan
- *        speed change lately
- *
- */
-
-#include <linux/types.h>
-#include <linux/module.h>
-#include <linux/errno.h>
-#include <linux/kernel.h>
-#include <linux/delay.h>
-#include <linux/sched.h>
-#include <linux/init.h>
-#include <linux/spinlock.h>
-#include <linux/wait.h>
-#include <linux/reboot.h>
-#include <linux/kmod.h>
-#include <linux/i2c.h>
-#include <linux/kthread.h>
-#include <linux/mutex.h>
-#include <linux/of_device.h>
-#include <linux/of_platform.h>
-#include <asm/prom.h>
-#include <asm/machdep.h>
-#include <asm/io.h>
-#include <asm/sections.h>
-#include <asm/macio.h>
-
-#include "therm_pm72.h"
-
-#define VERSION "1.3"
-
-#undef DEBUG
-
-#ifdef DEBUG
-#define DBG(args...)   printk(args)
-#else
-#define DBG(args...)   do { } while(0)
-#endif
-
-
-/*
- * Driver statics
- */
-
-static struct platform_device *                of_dev;
-static struct i2c_adapter *            u3_0;
-static struct i2c_adapter *            u3_1;
-static struct i2c_adapter *            k2;
-static struct i2c_client *             fcu;
-static struct cpu_pid_state            processor_state[2];
-static struct basckside_pid_params     backside_params;
-static struct backside_pid_state       backside_state;
-static struct drives_pid_state         drives_state;
-static struct dimm_pid_state           dimms_state;
-static struct slots_pid_state          slots_state;
-static int                             state;
-static int                             cpu_count;
-static int                             cpu_pid_type;
-static struct task_struct              *ctrl_task;
-static struct completion               ctrl_complete;
-static int                             critical_state;
-static int                             rackmac;
-static s32                             dimm_output_clamp;
-static int                             fcu_rpm_shift;
-static int                             fcu_tickle_ticks;
-static DEFINE_MUTEX(driver_lock);
-
-/*
- * We have 3 types of CPU PID control. One is "split" old style control
- * for intake & exhaust fans, the other is "combined" control for both
- * CPUs that also deals with the pumps when present. To be "compatible"
- * with OS X at this point, we only use "COMBINED" on the machines that
- * are identified as having the pumps (though that identification is at
- * least dodgy). Ultimately, we could probably switch completely to this
- * algorithm provided we hack it to deal with the UP case
- */
-#define CPU_PID_TYPE_SPLIT     0
-#define CPU_PID_TYPE_COMBINED  1
-#define CPU_PID_TYPE_RACKMAC   2
-
-/*
- * This table describes all fans in the FCU. The "id" and "type" values
- * are defaults valid for all earlier machines. Newer machines will
- * eventually override the table content based on the device-tree
- */
-struct fcu_fan_table
-{
-       char*   loc;    /* location code */
-       int     type;   /* 0 = rpm, 1 = pwm, 2 = pump */
-       int     id;     /* id or -1 */
-};
-
-#define FCU_FAN_RPM            0
-#define FCU_FAN_PWM            1
-
-#define FCU_FAN_ABSENT_ID      -1
-
-#define FCU_FAN_COUNT          ARRAY_SIZE(fcu_fans)
-
-struct fcu_fan_table   fcu_fans[] = {
-       [BACKSIDE_FAN_PWM_INDEX] = {
-               .loc    = "BACKSIDE,SYS CTRLR FAN",
-               .type   = FCU_FAN_PWM,
-               .id     = BACKSIDE_FAN_PWM_DEFAULT_ID,
-       },
-       [DRIVES_FAN_RPM_INDEX] = {
-               .loc    = "DRIVE BAY",
-               .type   = FCU_FAN_RPM,
-               .id     = DRIVES_FAN_RPM_DEFAULT_ID,
-       },
-       [SLOTS_FAN_PWM_INDEX] = {
-               .loc    = "SLOT,PCI FAN",
-               .type   = FCU_FAN_PWM,
-               .id     = SLOTS_FAN_PWM_DEFAULT_ID,
-       },
-       [CPUA_INTAKE_FAN_RPM_INDEX] = {
-               .loc    = "CPU A INTAKE",
-               .type   = FCU_FAN_RPM,
-               .id     = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
-       },
-       [CPUA_EXHAUST_FAN_RPM_INDEX] = {
-               .loc    = "CPU A EXHAUST",
-               .type   = FCU_FAN_RPM,
-               .id     = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
-       },
-       [CPUB_INTAKE_FAN_RPM_INDEX] = {
-               .loc    = "CPU B INTAKE",
-               .type   = FCU_FAN_RPM,
-               .id     = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
-       },
-       [CPUB_EXHAUST_FAN_RPM_INDEX] = {
-               .loc    = "CPU B EXHAUST",
-               .type   = FCU_FAN_RPM,
-               .id     = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
-       },
-       /* pumps aren't present by default, have to be looked up in the
-        * device-tree
-        */
-       [CPUA_PUMP_RPM_INDEX] = {
-               .loc    = "CPU A PUMP",
-               .type   = FCU_FAN_RPM,          
-               .id     = FCU_FAN_ABSENT_ID,
-       },
-       [CPUB_PUMP_RPM_INDEX] = {
-               .loc    = "CPU B PUMP",
-               .type   = FCU_FAN_RPM,
-               .id     = FCU_FAN_ABSENT_ID,
-       },
-       /* Xserve fans */
-       [CPU_A1_FAN_RPM_INDEX] = {
-               .loc    = "CPU A 1",
-               .type   = FCU_FAN_RPM,
-               .id     = FCU_FAN_ABSENT_ID,
-       },
-       [CPU_A2_FAN_RPM_INDEX] = {
-               .loc    = "CPU A 2",
-               .type   = FCU_FAN_RPM,
-               .id     = FCU_FAN_ABSENT_ID,
-       },
-       [CPU_A3_FAN_RPM_INDEX] = {
-               .loc    = "CPU A 3",
-               .type   = FCU_FAN_RPM,
-               .id     = FCU_FAN_ABSENT_ID,
-       },
-       [CPU_B1_FAN_RPM_INDEX] = {
-               .loc    = "CPU B 1",
-               .type   = FCU_FAN_RPM,
-               .id     = FCU_FAN_ABSENT_ID,
-       },
-       [CPU_B2_FAN_RPM_INDEX] = {
-               .loc    = "CPU B 2",
-               .type   = FCU_FAN_RPM,
-               .id     = FCU_FAN_ABSENT_ID,
-       },
-       [CPU_B3_FAN_RPM_INDEX] = {
-               .loc    = "CPU B 3",
-               .type   = FCU_FAN_RPM,
-               .id     = FCU_FAN_ABSENT_ID,
-       },
-};
-
-static struct i2c_driver therm_pm72_driver;
-
-/*
- * Utility function to create an i2c_client structure and
- * attach it to one of u3 adapters
- */
-static struct i2c_client *attach_i2c_chip(int id, const char *name)
-{
-       struct i2c_client *clt;
-       struct i2c_adapter *adap;
-       struct i2c_board_info info;
-
-       if (id & 0x200)
-               adap = k2;
-       else if (id & 0x100)
-               adap = u3_1;
-       else
-               adap = u3_0;
-       if (adap == NULL)
-               return NULL;
-
-       memset(&info, 0, sizeof(struct i2c_board_info));
-       info.addr = (id >> 1) & 0x7f;
-       strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
-       clt = i2c_new_device(adap, &info);
-       if (!clt) {
-               printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
-               return NULL;
-       }
-
-       /*
-        * Let i2c-core delete that device on driver removal.
-        * This is safe because i2c-core holds the core_lock mutex for us.
-        */
-       list_add_tail(&clt->detected, &therm_pm72_driver.clients);
-       return clt;
-}
-
-/*
- * Here are the i2c chip access wrappers
- */
-
-static void initialize_adc(struct cpu_pid_state *state)
-{
-       int rc;
-       u8 buf[2];
-
-       /* Read ADC the configuration register and cache it. We
-        * also make sure Config2 contains proper values, I've seen
-        * cases where we got stale grabage in there, thus preventing
-        * proper reading of conv. values
-        */
-
-       /* Clear Config2 */
-       buf[0] = 5;
-       buf[1] = 0;
-       i2c_master_send(state->monitor, buf, 2);
-
-       /* Read & cache Config1 */
-       buf[0] = 1;
-       rc = i2c_master_send(state->monitor, buf, 1);
-       if (rc > 0) {
-               rc = i2c_master_recv(state->monitor, buf, 1);
-               if (rc > 0) {
-                       state->adc_config = buf[0];
-                       DBG("ADC config reg: %02x\n", state->adc_config);
-                       /* Disable shutdown mode */
-                       state->adc_config &= 0xfe;
-                       buf[0] = 1;
-                       buf[1] = state->adc_config;
-                       rc = i2c_master_send(state->monitor, buf, 2);
-               }
-       }
-       if (rc <= 0)
-               printk(KERN_ERR "therm_pm72: Error reading ADC config"
-                      " register !\n");
-}
-
-static int read_smon_adc(struct cpu_pid_state *state, int chan)
-{
-       int rc, data, tries = 0;
-       u8 buf[2];
-
-       for (;;) {
-               /* Set channel */
-               buf[0] = 1;
-               buf[1] = (state->adc_config & 0x1f) | (chan << 5);
-               rc = i2c_master_send(state->monitor, buf, 2);
-               if (rc <= 0)
-                       goto error;
-               /* Wait for conversion */
-               msleep(1);
-               /* Switch to data register */
-               buf[0] = 4;
-               rc = i2c_master_send(state->monitor, buf, 1);
-               if (rc <= 0)
-                       goto error;
-               /* Read result */
-               rc = i2c_master_recv(state->monitor, buf, 2);
-               if (rc < 0)
-                       goto error;
-               data = ((u16)buf[0]) << 8 | (u16)buf[1];
-               return data >> 6;
-       error:
-               DBG("Error reading ADC, retrying...\n");
-               if (++tries > 10) {
-                       printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
-                       return -1;
-               }
-               msleep(10);
-       }
-}
-
-static int read_lm87_reg(struct i2c_client * chip, int reg)
-{
-       int rc, tries = 0;
-       u8 buf;
-
-       for (;;) {
-               /* Set address */
-               buf = (u8)reg;
-               rc = i2c_master_send(chip, &buf, 1);
-               if (rc <= 0)
-                       goto error;
-               rc = i2c_master_recv(chip, &buf, 1);
-               if (rc <= 0)
-                       goto error;
-               return (int)buf;
-       error:
-               DBG("Error reading LM87, retrying...\n");
-               if (++tries > 10) {
-                       printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
-                       return -1;
-               }
-               msleep(10);
-       }
-}
-
-static int fan_read_reg(int reg, unsigned char *buf, int nb)
-{
-       int tries, nr, nw;
-
-       buf[0] = reg;
-       tries = 0;
-       for (;;) {
-               nw = i2c_master_send(fcu, buf, 1);
-               if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
-                       break;
-               msleep(10);
-               ++tries;
-       }
-       if (nw <= 0) {
-               printk(KERN_ERR "Failure writing address to FCU: %d", nw);
-               return -EIO;
-       }
-       tries = 0;
-       for (;;) {
-               nr = i2c_master_recv(fcu, buf, nb);
-               if (nr > 0 || (nr < 0 && nr != -ENODEV) || tries >= 100)
-                       break;
-               msleep(10);
-               ++tries;
-       }
-       if (nr <= 0)
-               printk(KERN_ERR "Failure reading data from FCU: %d", nw);
-       return nr;
-}
-
-static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
-{
-       int tries, nw;
-       unsigned char buf[16];
-
-       buf[0] = reg;
-       memcpy(buf+1, ptr, nb);
-       ++nb;
-       tries = 0;
-       for (;;) {
-               nw = i2c_master_send(fcu, buf, nb);
-               if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
-                       break;
-               msleep(10);
-               ++tries;
-       }
-       if (nw < 0)
-               printk(KERN_ERR "Failure writing to FCU: %d", nw);
-       return nw;
-}
-
-static int start_fcu(void)
-{
-       unsigned char buf = 0xff;
-       int rc;
-
-       rc = fan_write_reg(0xe, &buf, 1);
-       if (rc < 0)
-               return -EIO;
-       rc = fan_write_reg(0x2e, &buf, 1);
-       if (rc < 0)
-               return -EIO;
-       rc = fan_read_reg(0, &buf, 1);
-       if (rc < 0)
-               return -EIO;
-       fcu_rpm_shift = (buf == 1) ? 2 : 3;
-       printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
-              fcu_rpm_shift);
-
-       return 0;
-}
-
-static int set_rpm_fan(int fan_index, int rpm)
-{
-       unsigned char buf[2];
-       int rc, id, min, max;
-
-       if (fcu_fans[fan_index].type != FCU_FAN_RPM)
-               return -EINVAL;
-       id = fcu_fans[fan_index].id; 
-       if (id == FCU_FAN_ABSENT_ID)
-               return -EINVAL;
-
-       min = 2400 >> fcu_rpm_shift;
-       max = 56000 >> fcu_rpm_shift;
-
-       if (rpm < min)
-               rpm = min;
-       else if (rpm > max)
-               rpm = max;
-       buf[0] = rpm >> (8 - fcu_rpm_shift);
-       buf[1] = rpm << fcu_rpm_shift;
-       rc = fan_write_reg(0x10 + (id * 2), buf, 2);
-       if (rc < 0)
-               return -EIO;
-       return 0;
-}
-
-static int get_rpm_fan(int fan_index, int programmed)
-{
-       unsigned char failure;
-       unsigned char active;
-       unsigned char buf[2];
-       int rc, id, reg_base;
-
-       if (fcu_fans[fan_index].type != FCU_FAN_RPM)
-               return -EINVAL;
-       id = fcu_fans[fan_index].id; 
-       if (id == FCU_FAN_ABSENT_ID)
-               return -EINVAL;
-
-       rc = fan_read_reg(0xb, &failure, 1);
-       if (rc != 1)
-               return -EIO;
-       if ((failure & (1 << id)) != 0)
-               return -EFAULT;
-       rc = fan_read_reg(0xd, &active, 1);
-       if (rc != 1)
-               return -EIO;
-       if ((active & (1 << id)) == 0)
-               return -ENXIO;
-
-       /* Programmed value or real current speed */
-       reg_base = programmed ? 0x10 : 0x11;
-       rc = fan_read_reg(reg_base + (id * 2), buf, 2);
-       if (rc != 2)
-               return -EIO;
-
-       return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
-}
-
-static int set_pwm_fan(int fan_index, int pwm)
-{
-       unsigned char buf[2];
-       int rc, id;
-
-       if (fcu_fans[fan_index].type != FCU_FAN_PWM)
-               return -EINVAL;
-       id = fcu_fans[fan_index].id; 
-       if (id == FCU_FAN_ABSENT_ID)
-               return -EINVAL;
-
-       if (pwm < 10)
-               pwm = 10;
-       else if (pwm > 100)
-               pwm = 100;
-       pwm = (pwm * 2559) / 1000;
-       buf[0] = pwm;
-       rc = fan_write_reg(0x30 + (id * 2), buf, 1);
-       if (rc < 0)
-               return rc;
-       return 0;
-}
-
-static int get_pwm_fan(int fan_index)
-{
-       unsigned char failure;
-       unsigned char active;
-       unsigned char buf[2];
-       int rc, id;
-
-       if (fcu_fans[fan_index].type != FCU_FAN_PWM)
-               return -EINVAL;
-       id = fcu_fans[fan_index].id; 
-       if (id == FCU_FAN_ABSENT_ID)
-               return -EINVAL;
-
-       rc = fan_read_reg(0x2b, &failure, 1);
-       if (rc != 1)
-               return -EIO;
-       if ((failure & (1 << id)) != 0)
-               return -EFAULT;
-       rc = fan_read_reg(0x2d, &active, 1);
-       if (rc != 1)
-               return -EIO;
-       if ((active & (1 << id)) == 0)
-               return -ENXIO;
-
-       /* Programmed value or real current speed */
-       rc = fan_read_reg(0x30 + (id * 2), buf, 1);
-       if (rc != 1)
-               return -EIO;
-
-       return (buf[0] * 1000) / 2559;
-}
-
-static void tickle_fcu(void)
-{
-       int pwm;
-
-       pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
-
-       DBG("FCU Tickle, slots fan is: %d\n", pwm);
-       if (pwm < 0)
-               pwm = 100;
-
-       if (!rackmac) {
-               pwm = SLOTS_FAN_DEFAULT_PWM;
-       } else if (pwm < SLOTS_PID_OUTPUT_MIN)
-               pwm = SLOTS_PID_OUTPUT_MIN;
-
-       /* That is hopefully enough to make the FCU happy */
-       set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
-}
-
-
-/*
- * Utility routine to read the CPU calibration EEPROM data
- * from the device-tree
- */
-static int read_eeprom(int cpu, struct mpu_data *out)
-{
-       struct device_node *np;
-       char nodename[64];
-       const u8 *data;
-       int len;
-
-       /* prom.c routine for finding a node by path is a bit brain dead
-        * and requires exact @xxx unit numbers. This is a bit ugly but
-        * will work for these machines
-        */
-       sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
-       np = of_find_node_by_path(nodename);
-       if (np == NULL) {
-               printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
-               return -ENODEV;
-       }
-       data = of_get_property(np, "cpuid", &len);
-       if (data == NULL) {
-               printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
-               of_node_put(np);
-               return -ENODEV;
-       }
-       memcpy(out, data, sizeof(struct mpu_data));
-       of_node_put(np);
-       
-       return 0;
-}
-
-static void fetch_cpu_pumps_minmax(void)
-{
-       struct cpu_pid_state *state0 = &processor_state[0];
-       struct cpu_pid_state *state1 = &processor_state[1];
-       u16 pump_min = 0, pump_max = 0xffff;
-       u16 tmp[4];
-
-       /* Try to fetch pumps min/max infos from eeprom */
-
-       memcpy(&tmp, &state0->mpu.processor_part_num, 8);
-       if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
-               pump_min = max(pump_min, tmp[0]);
-               pump_max = min(pump_max, tmp[1]);
-       }
-       if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
-               pump_min = max(pump_min, tmp[2]);
-               pump_max = min(pump_max, tmp[3]);
-       }
-
-       /* Double check the values, this _IS_ needed as the EEPROM on
-        * some dual 2.5Ghz G5s seem, at least, to have both min & max
-        * same to the same value ... (grrrr)
-        */
-       if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
-               pump_min = CPU_PUMP_OUTPUT_MIN;
-               pump_max = CPU_PUMP_OUTPUT_MAX;
-       }
-
-       state0->pump_min = state1->pump_min = pump_min;
-       state0->pump_max = state1->pump_max = pump_max;
-}
-
-/* 
- * Now, unfortunately, sysfs doesn't give us a nice void * we could
- * pass around to the attribute functions, so we don't really have
- * choice but implement a bunch of them...
- *
- * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
- * the input twice... I accept patches :)
- */
-#define BUILD_SHOW_FUNC_FIX(name, data)                                \
-static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)       \
-{                                                              \
-       ssize_t r;                                              \
-       mutex_lock(&driver_lock);                                       \
-       r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));        \
-       mutex_unlock(&driver_lock);                                     \
-       return r;                                               \
-}
-#define BUILD_SHOW_FUNC_INT(name, data)                                \
-static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)       \
-{                                                              \
-       return sprintf(buf, "%d", data);                        \
-}
-
-BUILD_SHOW_FUNC_FIX(cpu0_temperature, processor_state[0].last_temp)
-BUILD_SHOW_FUNC_FIX(cpu0_voltage, processor_state[0].voltage)
-BUILD_SHOW_FUNC_FIX(cpu0_current, processor_state[0].current_a)
-BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, processor_state[0].rpm)
-BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, processor_state[0].intake_rpm)
-
-BUILD_SHOW_FUNC_FIX(cpu1_temperature, processor_state[1].last_temp)
-BUILD_SHOW_FUNC_FIX(cpu1_voltage, processor_state[1].voltage)
-BUILD_SHOW_FUNC_FIX(cpu1_current, processor_state[1].current_a)
-BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, processor_state[1].rpm)
-BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, processor_state[1].intake_rpm)
-
-BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
-BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
-
-BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
-BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
-
-BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
-BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
-
-BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
-
-static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
-static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
-static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
-static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
-static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
-
-static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
-static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
-static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
-static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
-static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
-
-static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
-static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
-
-static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
-static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
-
-static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
-static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
-
-static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
-
-/*
- * CPUs fans control loop
- */
-
-static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
-{
-       s32 ltemp, volts, amps;
-       int index, rc = 0;
-
-       /* Default (in case of error) */
-       *temp = state->cur_temp;
-       *power = state->cur_power;
-
-       if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
-               index = (state->index == 0) ?
-                       CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
-       else
-               index = (state->index == 0) ?
-                       CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
-
-       /* Read current fan status */
-       rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
-       if (rc < 0) {
-               /* XXX What do we do now ? Nothing for now, keep old value, but
-                * return error upstream
-                */
-               DBG("  cpu %d, fan reading error !\n", state->index);
-       } else {
-               state->rpm = rc;
-               DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
-       }
-
-       /* Get some sensor readings and scale it */
-       ltemp = read_smon_adc(state, 1);
-       if (ltemp == -1) {
-               /* XXX What do we do now ? */
-               state->overtemp++;
-               if (rc == 0)
-                       rc = -EIO;
-               DBG("  cpu %d, temp reading error !\n", state->index);
-       } else {
-               /* Fixup temperature according to diode calibration
-                */
-               DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
-                   state->index,
-                   ltemp, state->mpu.mdiode, state->mpu.bdiode);
-               *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
-               state->last_temp = *temp;
-               DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
-       }
-
-       /*
-        * Read voltage & current and calculate power
-        */
-       volts = read_smon_adc(state, 3);
-       amps = read_smon_adc(state, 4);
-
-       /* Scale voltage and current raw sensor values according to fixed scales
-        * obtained in Darwin and calculate power from I and V
-        */
-       volts *= ADC_CPU_VOLTAGE_SCALE;
-       amps *= ADC_CPU_CURRENT_SCALE;
-       *power = (((u64)volts) * ((u64)amps)) >> 16;
-       state->voltage = volts;
-       state->current_a = amps;
-       state->last_power = *power;
-
-       DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
-           state->index, FIX32TOPRINT(state->current_a),
-           FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
-
-       return 0;
-}
-
-static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
-{
-       s32 power_target, integral, derivative, proportional, adj_in_target, sval;
-       s64 integ_p, deriv_p, prop_p, sum; 
-       int i;
-
-       /* Calculate power target value (could be done once for all)
-        * and convert to a 16.16 fp number
-        */
-       power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
-       DBG("  power target: %d.%03d, error: %d.%03d\n",
-           FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
-
-       /* Store temperature and power in history array */
-       state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
-       state->temp_history[state->cur_temp] = temp;
-       state->cur_power = (state->cur_power + 1) % state->count_power;
-       state->power_history[state->cur_power] = power;
-       state->error_history[state->cur_power] = power_target - power;
-       
-       /* If first loop, fill the history table */
-       if (state->first) {
-               for (i = 0; i < (state->count_power - 1); i++) {
-                       state->cur_power = (state->cur_power + 1) % state->count_power;
-                       state->power_history[state->cur_power] = power;
-                       state->error_history[state->cur_power] = power_target - power;
-               }
-               for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
-                       state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
-                       state->temp_history[state->cur_temp] = temp;                    
-               }
-               state->first = 0;
-       }
-
-       /* Calculate the integral term normally based on the "power" values */
-       sum = 0;
-       integral = 0;
-       for (i = 0; i < state->count_power; i++)
-               integral += state->error_history[i];
-       integral *= CPU_PID_INTERVAL;
-       DBG("  integral: %08x\n", integral);
-
-       /* Calculate the adjusted input (sense value).
-        *   G_r is 12.20
-        *   integ is 16.16
-        *   so the result is 28.36
-        *
-        * input target is mpu.ttarget, input max is mpu.tmax
-        */
-       integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
-       DBG("   integ_p: %d\n", (int)(integ_p >> 36));
-       sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
-       adj_in_target = (state->mpu.ttarget << 16);
-       if (adj_in_target > sval)
-               adj_in_target = sval;
-       DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
-           state->mpu.ttarget);
-
-       /* Calculate the derivative term */
-       derivative = state->temp_history[state->cur_temp] -
-               state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
-                                   % CPU_TEMP_HISTORY_SIZE];
-       derivative /= CPU_PID_INTERVAL;
-       deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
-       DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
-       sum += deriv_p;
-
-       /* Calculate the proportional term */
-       proportional = temp - adj_in_target;
-       prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
-       DBG("   prop_p: %d\n", (int)(prop_p >> 36));
-       sum += prop_p;
-
-       /* Scale sum */
-       sum >>= 36;
-
-       DBG("   sum: %d\n", (int)sum);
-       state->rpm += (s32)sum;
-}
-
-static void do_monitor_cpu_combined(void)
-{
-       struct cpu_pid_state *state0 = &processor_state[0];
-       struct cpu_pid_state *state1 = &processor_state[1];
-       s32 temp0, power0, temp1, power1;
-       s32 temp_combi, power_combi;
-       int rc, intake, pump;
-
-       rc = do_read_one_cpu_values(state0, &temp0, &power0);
-       if (rc < 0) {
-               /* XXX What do we do now ? */
-       }
-       state1->overtemp = 0;
-       rc = do_read_one_cpu_values(state1, &temp1, &power1);
-       if (rc < 0) {
-               /* XXX What do we do now ? */
-       }
-       if (state1->overtemp)
-               state0->overtemp++;
-
-       temp_combi = max(temp0, temp1);
-       power_combi = max(power0, power1);
-
-       /* Check tmax, increment overtemp if we are there. At tmax+8, we go
-        * full blown immediately and try to trigger a shutdown
-        */
-       if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
-               printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
-                      temp_combi >> 16);
-               state0->overtemp += CPU_MAX_OVERTEMP / 4;
-       } else if (temp_combi > (state0->mpu.tmax << 16)) {
-               state0->overtemp++;
-               printk(KERN_WARNING "Temperature %d above max %d. overtemp %d\n",
-                      temp_combi >> 16, state0->mpu.tmax, state0->overtemp);
-       } else {
-               if (state0->overtemp)
-                       printk(KERN_WARNING "Temperature back down to %d\n",
-                              temp_combi >> 16);
-               state0->overtemp = 0;
-       }
-       if (state0->overtemp >= CPU_MAX_OVERTEMP)
-               critical_state = 1;
-       if (state0->overtemp > 0) {
-               state0->rpm = state0->mpu.rmaxn_exhaust_fan;
-               state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
-               pump = state0->pump_max;
-               goto do_set_fans;
-       }
-
-       /* Do the PID */
-       do_cpu_pid(state0, temp_combi, power_combi);
-
-       /* Range check */
-       state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
-       state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
-
-       /* Calculate intake fan speed */
-       intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
-       intake = max(intake, (int)state0->mpu.rminn_intake_fan);
-       intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
-       state0->intake_rpm = intake;
-
-       /* Calculate pump speed */
-       pump = (state0->rpm * state0->pump_max) /
-               state0->mpu.rmaxn_exhaust_fan;
-       pump = min(pump, state0->pump_max);
-       pump = max(pump, state0->pump_min);
-       
- do_set_fans:
-       /* We copy values from state 0 to state 1 for /sysfs */
-       state1->rpm = state0->rpm;
-       state1->intake_rpm = state0->intake_rpm;
-
-       DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
-           state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
-
-       /* We should check for errors, shouldn't we ? But then, what
-        * do we do once the error occurs ? For FCU notified fan
-        * failures (-EFAULT) we probably want to notify userland
-        * some way...
-        */
-       set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
-       set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
-       set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
-       set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
-
-       if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
-               set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
-       if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
-               set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
-}
-
-static void do_monitor_cpu_split(struct cpu_pid_state *state)
-{
-       s32 temp, power;
-       int rc, intake;
-
-       /* Read current fan status */
-       rc = do_read_one_cpu_values(state, &temp, &power);
-       if (rc < 0) {
-               /* XXX What do we do now ? */
-       }
-
-       /* Check tmax, increment overtemp if we are there. At tmax+8, we go
-        * full blown immediately and try to trigger a shutdown
-        */
-       if (temp >= ((state->mpu.tmax + 8) << 16)) {
-               printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
-                      " (%d) !\n",
-                      state->index, temp >> 16);
-               state->overtemp += CPU_MAX_OVERTEMP / 4;
-       } else if (temp > (state->mpu.tmax << 16)) {
-               state->overtemp++;
-               printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
-                      state->index, temp >> 16, state->mpu.tmax, state->overtemp);
-       } else {
-               if (state->overtemp)
-                       printk(KERN_WARNING "CPU %d temperature back down to %d\n",
-                              state->index, temp >> 16);
-               state->overtemp = 0;
-       }
-       if (state->overtemp >= CPU_MAX_OVERTEMP)
-               critical_state = 1;
-       if (state->overtemp > 0) {
-               state->rpm = state->mpu.rmaxn_exhaust_fan;
-               state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
-               goto do_set_fans;
-       }
-
-       /* Do the PID */
-       do_cpu_pid(state, temp, power);
-
-       /* Range check */
-       state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
-       state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
-
-       /* Calculate intake fan */
-       intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
-       intake = max(intake, (int)state->mpu.rminn_intake_fan);
-       intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
-       state->intake_rpm = intake;
-
- do_set_fans:
-       DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
-           state->index, (int)state->rpm, intake, state->overtemp);
-
-       /* We should check for errors, shouldn't we ? But then, what
-        * do we do once the error occurs ? For FCU notified fan
-        * failures (-EFAULT) we probably want to notify userland
-        * some way...
-        */
-       if (state->index == 0) {
-               set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
-               set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
-       } else {
-               set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
-               set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
-       }
-}
-
-static void do_monitor_cpu_rack(struct cpu_pid_state *state)
-{
-       s32 temp, power, fan_min;
-       int rc;
-
-       /* Read current fan status */
-       rc = do_read_one_cpu_values(state, &temp, &power);
-       if (rc < 0) {
-               /* XXX What do we do now ? */
-       }
-
-       /* Check tmax, increment overtemp if we are there. At tmax+8, we go
-        * full blown immediately and try to trigger a shutdown
-        */
-       if (temp >= ((state->mpu.tmax + 8) << 16)) {
-               printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
-                      " (%d) !\n",
-                      state->index, temp >> 16);
-               state->overtemp = CPU_MAX_OVERTEMP / 4;
-       } else if (temp > (state->mpu.tmax << 16)) {
-               state->overtemp++;
-               printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
-                      state->index, temp >> 16, state->mpu.tmax, state->overtemp);
-       } else {
-               if (state->overtemp)
-                       printk(KERN_WARNING "CPU %d temperature back down to %d\n",
-                              state->index, temp >> 16);
-               state->overtemp = 0;
-       }
-       if (state->overtemp >= CPU_MAX_OVERTEMP)
-               critical_state = 1;
-       if (state->overtemp > 0) {
-               state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
-               goto do_set_fans;
-       }
-
-       /* Do the PID */
-       do_cpu_pid(state, temp, power);
-
-       /* Check clamp from dimms */
-       fan_min = dimm_output_clamp;
-       fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
-
-       DBG(" CPU min mpu = %d, min dimm = %d\n",
-           state->mpu.rminn_intake_fan, dimm_output_clamp);
-
-       state->rpm = max(state->rpm, (int)fan_min);
-       state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
-       state->intake_rpm = state->rpm;
-
- do_set_fans:
-       DBG("** CPU %d RPM: %d overtemp: %d\n",
-           state->index, (int)state->rpm, state->overtemp);
-
-       /* We should check for errors, shouldn't we ? But then, what
-        * do we do once the error occurs ? For FCU notified fan
-        * failures (-EFAULT) we probably want to notify userland
-        * some way...
-        */
-       if (state->index == 0) {
-               set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
-               set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
-               set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
-       } else {
-               set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
-               set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
-               set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
-       }
-}
-
-/*
- * Initialize the state structure for one CPU control loop
- */
-static int init_processor_state(struct cpu_pid_state *state, int index)
-{
-       int err;
-
-       state->index = index;
-       state->first = 1;
-       state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
-       state->overtemp = 0;
-       state->adc_config = 0x00;
-
-
-       if (index == 0)
-               state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
-       else if (index == 1)
-               state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
-       if (state->monitor == NULL)
-               goto fail;
-
-       if (read_eeprom(index, &state->mpu))
-               goto fail;
-
-       state->count_power = state->mpu.tguardband;
-       if (state->count_power > CPU_POWER_HISTORY_SIZE) {
-               printk(KERN_WARNING "Warning ! too many power history slots\n");
-               state->count_power = CPU_POWER_HISTORY_SIZE;
-       }
-       DBG("CPU %d Using %d power history entries\n", index, state->count_power);
-
-       if (index == 0) {
-               err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
-               err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
-               err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
-               err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
-               err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
-       } else {
-               err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
-               err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
-               err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
-               err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
-               err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
-       }
-       if (err)
-               printk(KERN_WARNING "Failed to create some of the attribute"
-                       "files for CPU %d\n", index);
-
-       return 0;
- fail:
-       state->monitor = NULL;
-       
-       return -ENODEV;
-}
-
-/*
- * Dispose of the state data for one CPU control loop
- */
-static void dispose_processor_state(struct cpu_pid_state *state)
-{
-       if (state->monitor == NULL)
-               return;
-
-       if (state->index == 0) {
-               device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
-               device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
-               device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
-               device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
-               device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
-       } else {
-               device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
-               device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
-               device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
-               device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
-               device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
-       }
-
-       state->monitor = NULL;
-}
-
-/*
- * Motherboard backside & U3 heatsink fan control loop
- */
-static void do_monitor_backside(struct backside_pid_state *state)
-{
-       s32 temp, integral, derivative, fan_min;
-       s64 integ_p, deriv_p, prop_p, sum; 
-       int i, rc;
-
-       if (--state->ticks != 0)
-               return;
-       state->ticks = backside_params.interval;
-
-       DBG("backside:\n");
-
-       /* Check fan status */
-       rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
-       if (rc < 0) {
-               printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
-               /* XXX What do we do now ? */
-       } else
-               state->pwm = rc;
-       DBG("  current pwm: %d\n", state->pwm);
-
-       /* Get some sensor readings */
-       temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
-       state->last_temp = temp;
-       DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
-           FIX32TOPRINT(backside_params.input_target));
-
-       /* Store temperature and error in history array */
-       state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
-       state->sample_history[state->cur_sample] = temp;
-       state->error_history[state->cur_sample] = temp - backside_params.input_target;
-       
-       /* If first loop, fill the history table */
-       if (state->first) {
-               for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
-                       state->cur_sample = (state->cur_sample + 1) %
-                               BACKSIDE_PID_HISTORY_SIZE;
-                       state->sample_history[state->cur_sample] = temp;
-                       state->error_history[state->cur_sample] =
-                               temp - backside_params.input_target;
-               }
-               state->first = 0;
-       }
-
-       /* Calculate the integral term */
-       sum = 0;
-       integral = 0;
-       for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
-               integral += state->error_history[i];
-       integral *= backside_params.interval;
-       DBG("  integral: %08x\n", integral);
-       integ_p = ((s64)backside_params.G_r) * (s64)integral;
-       DBG("   integ_p: %d\n", (int)(integ_p >> 36));
-       sum += integ_p;
-
-       /* Calculate the derivative term */
-       derivative = state->error_history[state->cur_sample] -
-               state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
-                                   % BACKSIDE_PID_HISTORY_SIZE];
-       derivative /= backside_params.interval;
-       deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
-       DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
-       sum += deriv_p;
-
-       /* Calculate the proportional term */
-       prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
-       DBG("   prop_p: %d\n", (int)(prop_p >> 36));
-       sum += prop_p;
-
-       /* Scale sum */
-       sum >>= 36;
-
-       DBG("   sum: %d\n", (int)sum);
-       if (backside_params.additive)
-               state->pwm += (s32)sum;
-       else
-               state->pwm = sum;
-
-       /* Check for clamp */
-       fan_min = (dimm_output_clamp * 100) / 14000;
-       fan_min = max(fan_min, backside_params.output_min);
-
-       state->pwm = max(state->pwm, fan_min);
-       state->pwm = min(state->pwm, backside_params.output_max);
-
-       DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
-       set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
-}
-
-/*
- * Initialize the state structure for the backside fan control loop
- */
-static int init_backside_state(struct backside_pid_state *state)
-{
-       struct device_node *u3;
-       int u3h = 1; /* conservative by default */
-       int err;
-
-       /*
-        * There are different PID params for machines with U3 and machines
-        * with U3H, pick the right ones now
-        */
-       u3 = of_find_node_by_path("/u3@0,f8000000");
-       if (u3 != NULL) {
-               const u32 *vers = of_get_property(u3, "device-rev", NULL);
-               if (vers)
-                       if (((*vers) & 0x3f) < 0x34)
-                               u3h = 0;
-               of_node_put(u3);
-       }
-
-       if (rackmac) {
-               backside_params.G_d = BACKSIDE_PID_RACK_G_d;
-               backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
-               backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
-               backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
-               backside_params.G_p = BACKSIDE_PID_RACK_G_p;
-               backside_params.G_r = BACKSIDE_PID_G_r;
-               backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
-               backside_params.additive = 0;
-       } else if (u3h) {
-               backside_params.G_d = BACKSIDE_PID_U3H_G_d;
-               backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
-               backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
-               backside_params.interval = BACKSIDE_PID_INTERVAL;
-               backside_params.G_p = BACKSIDE_PID_G_p;
-               backside_params.G_r = BACKSIDE_PID_G_r;
-               backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
-               backside_params.additive = 1;
-       } else {
-               backside_params.G_d = BACKSIDE_PID_U3_G_d;
-               backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
-               backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
-               backside_params.interval = BACKSIDE_PID_INTERVAL;
-               backside_params.G_p = BACKSIDE_PID_G_p;
-               backside_params.G_r = BACKSIDE_PID_G_r;
-               backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
-               backside_params.additive = 1;
-       }
-
-       state->ticks = 1;
-       state->first = 1;
-       state->pwm = 50;
-
-       state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
-       if (state->monitor == NULL)
-               return -ENODEV;
-
-       err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
-       err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
-       if (err)
-               printk(KERN_WARNING "Failed to create attribute file(s)"
-                       " for backside fan\n");
-
-       return 0;
-}
-
-/*
- * Dispose of the state data for the backside control loop
- */
-static void dispose_backside_state(struct backside_pid_state *state)
-{
-       if (state->monitor == NULL)
-               return;
-
-       device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
-       device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
-
-       state->monitor = NULL;
-}
-/*
- * Drives bay fan control loop
- */
-static void do_monitor_drives(struct drives_pid_state *state)
-{
-       s32 temp, integral, derivative;
-       s64 integ_p, deriv_p, prop_p, sum; 
-       int i, rc;
-
-       if (--state->ticks != 0)
-               return;
-       state->ticks = DRIVES_PID_INTERVAL;
-
-       DBG("drives:\n");
-
-       /* Check fan status */
-       rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
-       if (rc < 0) {
-               printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
-               /* XXX What do we do now ? */
-       } else
-               state->rpm = rc;
-       DBG("  current rpm: %d\n", state->rpm);
-
-       /* Get some sensor readings */
-       temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
-                                                   DS1775_TEMP)) << 8;
-       state->last_temp = temp;
-       DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
-           FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
-
-       /* Store temperature and error in history array */
-       state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
-       state->sample_history[state->cur_sample] = temp;
-       state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
-       
-       /* If first loop, fill the history table */
-       if (state->first) {
-               for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
-                       state->cur_sample = (state->cur_sample + 1) %
-                               DRIVES_PID_HISTORY_SIZE;
-                       state->sample_history[state->cur_sample] = temp;
-                       state->error_history[state->cur_sample] =
-                               temp - DRIVES_PID_INPUT_TARGET;
-               }
-               state->first = 0;
-       }
-
-       /* Calculate the integral term */
-       sum = 0;
-       integral = 0;
-       for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
-               integral += state->error_history[i];
-       integral *= DRIVES_PID_INTERVAL;
-       DBG("  integral: %08x\n", integral);
-       integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
-       DBG("   integ_p: %d\n", (int)(integ_p >> 36));
-       sum += integ_p;
-
-       /* Calculate the derivative term */
-       derivative = state->error_history[state->cur_sample] -
-               state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
-                                   % DRIVES_PID_HISTORY_SIZE];
-       derivative /= DRIVES_PID_INTERVAL;
-       deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
-       DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
-       sum += deriv_p;
-
-       /* Calculate the proportional term */
-       prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
-       DBG("   prop_p: %d\n", (int)(prop_p >> 36));
-       sum += prop_p;
-
-       /* Scale sum */
-       sum >>= 36;
-
-       DBG("   sum: %d\n", (int)sum);
-       state->rpm += (s32)sum;
-
-       state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
-       state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
-
-       DBG("** DRIVES RPM: %d\n", (int)state->rpm);
-       set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
-}
-
-/*
- * Initialize the state structure for the drives bay fan control loop
- */
-static int init_drives_state(struct drives_pid_state *state)
-{
-       int err;
-
-       state->ticks = 1;
-       state->first = 1;
-       state->rpm = 1000;
-
-       state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
-       if (state->monitor == NULL)
-               return -ENODEV;
-
-       err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
-       err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
-       if (err)
-               printk(KERN_WARNING "Failed to create attribute file(s)"
-                       " for drives bay fan\n");
-
-       return 0;
-}
-
-/*
- * Dispose of the state data for the drives control loop
- */
-static void dispose_drives_state(struct drives_pid_state *state)
-{
-       if (state->monitor == NULL)
-               return;
-
-       device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
-       device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
-
-       state->monitor = NULL;
-}
-
-/*
- * DIMMs temp control loop
- */
-static void do_monitor_dimms(struct dimm_pid_state *state)
-{
-       s32 temp, integral, derivative, fan_min;
-       s64 integ_p, deriv_p, prop_p, sum;
-       int i;
-
-       if (--state->ticks != 0)
-               return;
-       state->ticks = DIMM_PID_INTERVAL;
-
-       DBG("DIMM:\n");
-
-       DBG("  current value: %d\n", state->output);
-
-       temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
-       if (temp < 0)
-               return;
-       temp <<= 16;
-       state->last_temp = temp;
-       DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
-           FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
-
-       /* Store temperature and error in history array */
-       state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
-       state->sample_history[state->cur_sample] = temp;
-       state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
-
-       /* If first loop, fill the history table */
-       if (state->first) {
-               for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
-                       state->cur_sample = (state->cur_sample + 1) %
-                               DIMM_PID_HISTORY_SIZE;
-                       state->sample_history[state->cur_sample] = temp;
-                       state->error_history[state->cur_sample] =
-                               temp - DIMM_PID_INPUT_TARGET;
-               }
-               state->first = 0;
-       }
-
-       /* Calculate the integral term */
-       sum = 0;
-       integral = 0;
-       for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
-               integral += state->error_history[i];
-       integral *= DIMM_PID_INTERVAL;
-       DBG("  integral: %08x\n", integral);
-       integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
-       DBG("   integ_p: %d\n", (int)(integ_p >> 36));
-       sum += integ_p;
-
-       /* Calculate the derivative term */
-       derivative = state->error_history[state->cur_sample] -
-               state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
-                                   % DIMM_PID_HISTORY_SIZE];
-       derivative /= DIMM_PID_INTERVAL;
-       deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
-       DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
-       sum += deriv_p;
-
-       /* Calculate the proportional term */
-       prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
-       DBG("   prop_p: %d\n", (int)(prop_p >> 36));
-       sum += prop_p;
-
-       /* Scale sum */
-       sum >>= 36;
-
-       DBG("   sum: %d\n", (int)sum);
-       state->output = (s32)sum;
-       state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
-       state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
-       dimm_output_clamp = state->output;
-
-       DBG("** DIMM clamp value: %d\n", (int)state->output);
-
-       /* Backside PID is only every 5 seconds, force backside fan clamping now */
-       fan_min = (dimm_output_clamp * 100) / 14000;
-       fan_min = max(fan_min, backside_params.output_min);
-       if (backside_state.pwm < fan_min) {
-               backside_state.pwm = fan_min;
-               DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
-               set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
-       }
-}
-
-/*
- * Initialize the state structure for the DIMM temp control loop
- */
-static int init_dimms_state(struct dimm_pid_state *state)
-{
-       state->ticks = 1;
-       state->first = 1;
-       state->output = 4000;
-
-       state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
-       if (state->monitor == NULL)
-               return -ENODEV;
-
-       if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
-               printk(KERN_WARNING "Failed to create attribute file"
-                       " for DIMM temperature\n");
-
-       return 0;
-}
-
-/*
- * Dispose of the state data for the DIMM control loop
- */
-static void dispose_dimms_state(struct dimm_pid_state *state)
-{
-       if (state->monitor == NULL)
-               return;
-
-       device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
-
-       state->monitor = NULL;
-}
-
-/*
- * Slots fan control loop
- */
-static void do_monitor_slots(struct slots_pid_state *state)
-{
-       s32 temp, integral, derivative;
-       s64 integ_p, deriv_p, prop_p, sum;
-       int i, rc;
-
-       if (--state->ticks != 0)
-               return;
-       state->ticks = SLOTS_PID_INTERVAL;
-
-       DBG("slots:\n");
-
-       /* Check fan status */
-       rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
-       if (rc < 0) {
-               printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
-               /* XXX What do we do now ? */
-       } else
-               state->pwm = rc;
-       DBG("  current pwm: %d\n", state->pwm);
-
-       /* Get some sensor readings */
-       temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
-                                                   DS1775_TEMP)) << 8;
-       state->last_temp = temp;
-       DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
-           FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
-
-       /* Store temperature and error in history array */
-       state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
-       state->sample_history[state->cur_sample] = temp;
-       state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
-
-       /* If first loop, fill the history table */
-       if (state->first) {
-               for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
-                       state->cur_sample = (state->cur_sample + 1) %
-                               SLOTS_PID_HISTORY_SIZE;
-                       state->sample_history[state->cur_sample] = temp;
-                       state->error_history[state->cur_sample] =
-                               temp - SLOTS_PID_INPUT_TARGET;
-               }
-               state->first = 0;
-       }
-
-       /* Calculate the integral term */
-       sum = 0;
-       integral = 0;
-       for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
-               integral += state->error_history[i];
-       integral *= SLOTS_PID_INTERVAL;
-       DBG("  integral: %08x\n", integral);
-       integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
-       DBG("   integ_p: %d\n", (int)(integ_p >> 36));
-       sum += integ_p;
-
-       /* Calculate the derivative term */
-       derivative = state->error_history[state->cur_sample] -
-               state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
-                                   % SLOTS_PID_HISTORY_SIZE];
-       derivative /= SLOTS_PID_INTERVAL;
-       deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
-       DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
-       sum += deriv_p;
-
-       /* Calculate the proportional term */
-       prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
-       DBG("   prop_p: %d\n", (int)(prop_p >> 36));
-       sum += prop_p;
-
-       /* Scale sum */
-       sum >>= 36;
-
-       DBG("   sum: %d\n", (int)sum);
-       state->pwm = (s32)sum;
-
-       state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
-       state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
-
-       DBG("** DRIVES PWM: %d\n", (int)state->pwm);
-       set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
-}
-
-/*
- * Initialize the state structure for the slots bay fan control loop
- */
-static int init_slots_state(struct slots_pid_state *state)
-{
-       int err;
-
-       state->ticks = 1;
-       state->first = 1;
-       state->pwm = 50;
-
-       state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
-       if (state->monitor == NULL)
-               return -ENODEV;
-
-       err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
-       err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
-       if (err)
-               printk(KERN_WARNING "Failed to create attribute file(s)"
-                       " for slots bay fan\n");
-
-       return 0;
-}
-
-/*
- * Dispose of the state data for the slots control loop
- */
-static void dispose_slots_state(struct slots_pid_state *state)
-{
-       if (state->monitor == NULL)
-               return;
-
-       device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
-       device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
-
-       state->monitor = NULL;
-}
-
-
-static int call_critical_overtemp(void)
-{
-       char *argv[] = { critical_overtemp_path, NULL };
-       static char *envp[] = { "HOME=/",
-                               "TERM=linux",
-                               "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
-                               NULL };
-
-       return call_usermodehelper(critical_overtemp_path,
-                                  argv, envp, UMH_WAIT_EXEC);
-}
-
-
-/*
- * Here's the kernel thread that calls the various control loops
- */
-static int main_control_loop(void *x)
-{
-       DBG("main_control_loop started\n");
-
-       mutex_lock(&driver_lock);
-
-       if (start_fcu() < 0) {
-               printk(KERN_ERR "kfand: failed to start FCU\n");
-               mutex_unlock(&driver_lock);
-               goto out;
-       }
-
-       /* Set the PCI fan once for now on non-RackMac */
-       if (!rackmac)
-               set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
-
-       /* Initialize ADCs */
-       initialize_adc(&processor_state[0]);
-       if (processor_state[1].monitor != NULL)
-               initialize_adc(&processor_state[1]);
-
-       fcu_tickle_ticks = FCU_TICKLE_TICKS;
-
-       mutex_unlock(&driver_lock);
-
-       while (state == state_attached) {
-               unsigned long elapsed, start;
-
-               start = jiffies;
-
-               mutex_lock(&driver_lock);
-
-               /* Tickle the FCU just in case */
-               if (--fcu_tickle_ticks < 0) {
-                       fcu_tickle_ticks = FCU_TICKLE_TICKS;
-                       tickle_fcu();
-               }
-
-               /* First, we always calculate the new DIMMs state on an Xserve */
-               if (rackmac)
-                       do_monitor_dimms(&dimms_state);
-
-               /* Then, the CPUs */
-               if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
-                       do_monitor_cpu_combined();
-               else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
-                       do_monitor_cpu_rack(&processor_state[0]);
-                       if (processor_state[1].monitor != NULL)
-                               do_monitor_cpu_rack(&processor_state[1]);
-                       // better deal with UP
-               } else {
-                       do_monitor_cpu_split(&processor_state[0]);
-                       if (processor_state[1].monitor != NULL)
-                               do_monitor_cpu_split(&processor_state[1]);
-                       // better deal with UP
-               }
-               /* Then, the rest */
-               do_monitor_backside(&backside_state);
-               if (rackmac)
-                       do_monitor_slots(&slots_state);
-               else
-                       do_monitor_drives(&drives_state);
-               mutex_unlock(&driver_lock);
-
-               if (critical_state == 1) {
-                       printk(KERN_WARNING "Temperature control detected a critical condition\n");
-                       printk(KERN_WARNING "Attempting to shut down...\n");
-                       if (call_critical_overtemp()) {
-                               printk(KERN_WARNING "Can't call %s, power off now!\n",
-                                      critical_overtemp_path);
-                               machine_power_off();
-                       }
-               }
-               if (critical_state > 0)
-                       critical_state++;
-               if (critical_state > MAX_CRITICAL_STATE) {
-                       printk(KERN_WARNING "Shutdown timed out, power off now !\n");
-                       machine_power_off();
-               }
-
-               // FIXME: Deal with signals
-               elapsed = jiffies - start;
-               if (elapsed < HZ)
-                       schedule_timeout_interruptible(HZ - elapsed);
-       }
-
- out:
-       DBG("main_control_loop ended\n");
-
-       ctrl_task = 0;
-       complete_and_exit(&ctrl_complete, 0);
-}
-
-/*
- * Dispose the control loops when tearing down
- */
-static void dispose_control_loops(void)
-{
-       dispose_processor_state(&processor_state[0]);
-       dispose_processor_state(&processor_state[1]);
-       dispose_backside_state(&backside_state);
-       dispose_drives_state(&drives_state);
-       dispose_slots_state(&slots_state);
-       dispose_dimms_state(&dimms_state);
-}
-
-/*
- * Create the control loops. U3-0 i2c bus is up, so we can now
- * get to the various sensors
- */
-static int create_control_loops(void)
-{
-       struct device_node *np;
-
-       /* Count CPUs from the device-tree, we don't care how many are
-        * actually used by Linux
-        */
-       cpu_count = 0;
-       for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
-               cpu_count++;
-
-       DBG("counted %d CPUs in the device-tree\n", cpu_count);
-
-       /* Decide the type of PID algorithm to use based on the presence of
-        * the pumps, though that may not be the best way, that is good enough
-        * for now
-        */
-       if (rackmac)
-               cpu_pid_type = CPU_PID_TYPE_RACKMAC;
-       else if (of_machine_is_compatible("PowerMac7,3")
-           && (cpu_count > 1)
-           && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
-           && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
-               printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
-               cpu_pid_type = CPU_PID_TYPE_COMBINED;
-       } else
-               cpu_pid_type = CPU_PID_TYPE_SPLIT;
-
-       /* Create control loops for everything. If any fail, everything
-        * fails
-        */
-       if (init_processor_state(&processor_state[0], 0))
-               goto fail;
-       if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
-               fetch_cpu_pumps_minmax();
-
-       if (cpu_count > 1 && init_processor_state(&processor_state[1], 1))
-               goto fail;
-       if (init_backside_state(&backside_state))
-               goto fail;
-       if (rackmac && init_dimms_state(&dimms_state))
-               goto fail;
-       if (rackmac && init_slots_state(&slots_state))
-               goto fail;
-       if (!rackmac && init_drives_state(&drives_state))
-               goto fail;
-
-       DBG("all control loops up !\n");
-
-       return 0;
-       
- fail:
-       DBG("failure creating control loops, disposing\n");
-
-       dispose_control_loops();
-
-       return -ENODEV;
-}
-
-/*
- * Start the control loops after everything is up, that is create
- * the thread that will make them run
- */
-static void start_control_loops(void)
-{
-       init_completion(&ctrl_complete);
-
-       ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
-}
-
-/*
- * Stop the control loops when tearing down
- */
-static void stop_control_loops(void)
-{
-       if (ctrl_task)
-               wait_for_completion(&ctrl_complete);
-}
-
-/*
- * Attach to the i2c FCU after detecting U3-1 bus
- */
-static int attach_fcu(void)
-{
-       fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
-       if (fcu == NULL)
-               return -ENODEV;
-
-       DBG("FCU attached\n");
-
-       return 0;
-}
-
-/*
- * Detach from the i2c FCU when tearing down
- */
-static void detach_fcu(void)
-{
-       fcu = NULL;
-}
-
-/*
- * Attach to the i2c controller. We probe the various chips based
- * on the device-tree nodes and build everything for the driver to
- * run, we then kick the driver monitoring thread
- */
-static int therm_pm72_attach(struct i2c_adapter *adapter)
-{
-       mutex_lock(&driver_lock);
-
-       /* Check state */
-       if (state == state_detached)
-               state = state_attaching;
-       if (state != state_attaching) {
-               mutex_unlock(&driver_lock);
-               return 0;
-       }
-
-       /* Check if we are looking for one of these */
-       if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
-               u3_0 = adapter;
-               DBG("found U3-0\n");
-               if (k2 || !rackmac)
-                       if (create_control_loops())
-                               u3_0 = NULL;
-       } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
-               u3_1 = adapter;
-               DBG("found U3-1, attaching FCU\n");
-               if (attach_fcu())
-                       u3_1 = NULL;
-       } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
-               k2 = adapter;
-               DBG("Found K2\n");
-               if (u3_0 && rackmac)
-                       if (create_control_loops())
-                               k2 = NULL;
-       }
-       /* We got all we need, start control loops */
-       if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
-               DBG("everything up, starting control loops\n");
-               state = state_attached;
-               start_control_loops();
-       }
-       mutex_unlock(&driver_lock);
-
-       return 0;
-}
-
-static int therm_pm72_probe(struct i2c_client *client,
-                           const struct i2c_device_id *id)
-{
-       /* Always succeed, the real work was done in therm_pm72_attach() */
-       return 0;
-}
-
-/*
- * Called when any of the devices which participates into thermal management
- * is going away.
- */
-static int therm_pm72_remove(struct i2c_client *client)
-{
-       struct i2c_adapter *adapter = client->adapter;
-
-       mutex_lock(&driver_lock);
-
-       if (state != state_detached)
-               state = state_detaching;
-
-       /* Stop control loops if any */
-       DBG("stopping control loops\n");
-       mutex_unlock(&driver_lock);
-       stop_control_loops();
-       mutex_lock(&driver_lock);
-
-       if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
-               DBG("lost U3-0, disposing control loops\n");
-               dispose_control_loops();
-               u3_0 = NULL;
-       }
-       
-       if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
-               DBG("lost U3-1, detaching FCU\n");
-               detach_fcu();
-               u3_1 = NULL;
-       }
-       if (u3_0 == NULL && u3_1 == NULL)
-               state = state_detached;
-
-       mutex_unlock(&driver_lock);
-
-       return 0;
-}
-
-/*
- * i2c_driver structure to attach to the host i2c controller
- */
-
-static const struct i2c_device_id therm_pm72_id[] = {
-       /*
-        * Fake device name, thermal management is done by several
-        * chips but we don't need to differentiate between them at
-        * this point.
-        */
-       { "therm_pm72", 0 },
-       { }
-};
-
-static struct i2c_driver therm_pm72_driver = {
-       .driver = {
-               .name   = "therm_pm72",
-       },
-       .attach_adapter = therm_pm72_attach,
-       .probe          = therm_pm72_probe,
-       .remove         = therm_pm72_remove,
-       .id_table       = therm_pm72_id,
-};
-
-static int fan_check_loc_match(const char *loc, int fan)
-{
-       char    tmp[64];
-       char    *c, *e;
-
-       strlcpy(tmp, fcu_fans[fan].loc, 64);
-
-       c = tmp;
-       for (;;) {
-               e = strchr(c, ',');
-               if (e)
-                       *e = 0;
-               if (strcmp(loc, c) == 0)
-                       return 1;
-               if (e == NULL)
-                       break;
-               c = e + 1;
-       }
-       return 0;
-}
-
-static void fcu_lookup_fans(struct device_node *fcu_node)
-{
-       struct device_node *np = NULL;
-       int i;
-
-       /* The table is filled by default with values that are suitable
-        * for the old machines without device-tree informations. We scan
-        * the device-tree and override those values with whatever is
-        * there
-        */
-
-       DBG("Looking up FCU controls in device-tree...\n");
-
-       while ((np = of_get_next_child(fcu_node, np)) != NULL) {
-               int type = -1;
-               const char *loc;
-               const u32 *reg;
-
-               DBG(" control: %s, type: %s\n", np->name, np->type);
-
-               /* Detect control type */
-               if (!strcmp(np->type, "fan-rpm-control") ||
-                   !strcmp(np->type, "fan-rpm"))
-                       type = FCU_FAN_RPM;
-               if (!strcmp(np->type, "fan-pwm-control") ||
-                   !strcmp(np->type, "fan-pwm"))
-                       type = FCU_FAN_PWM;
-               /* Only care about fans for now */
-               if (type == -1)
-                       continue;
-
-               /* Lookup for a matching location */
-               loc = of_get_property(np, "location", NULL);
-               reg = of_get_property(np, "reg", NULL);
-               if (loc == NULL || reg == NULL)
-                       continue;
-               DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
-
-               for (i = 0; i < FCU_FAN_COUNT; i++) {
-                       int fan_id;
-
-                       if (!fan_check_loc_match(loc, i))
-                               continue;
-                       DBG(" location match, index: %d\n", i);
-                       fcu_fans[i].id = FCU_FAN_ABSENT_ID;
-                       if (type != fcu_fans[i].type) {
-                               printk(KERN_WARNING "therm_pm72: Fan type mismatch "
-                                      "in device-tree for %s\n", np->full_name);
-                               break;
-                       }
-                       if (type == FCU_FAN_RPM)
-                               fan_id = ((*reg) - 0x10) / 2;
-                       else
-                               fan_id = ((*reg) - 0x30) / 2;
-                       if (fan_id > 7) {
-                               printk(KERN_WARNING "therm_pm72: Can't parse "
-                                      "fan ID in device-tree for %s\n", np->full_name);
-                               break;
-                       }
-                       DBG(" fan id -> %d, type -> %d\n", fan_id, type);
-                       fcu_fans[i].id = fan_id;
-               }
-       }
-
-       /* Now dump the array */
-       printk(KERN_INFO "Detected fan controls:\n");
-       for (i = 0; i < FCU_FAN_COUNT; i++) {
-               if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
-                       continue;
-               printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
-                      fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
-                      fcu_fans[i].id, fcu_fans[i].loc);
-       }
-}
-
-static int fcu_of_probe(struct platform_device* dev)
-{
-       state = state_detached;
-       of_dev = dev;
-
-       dev_info(&dev->dev, "PowerMac G5 Thermal control driver %s\n", VERSION);
-
-       /* Lookup the fans in the device tree */
-       fcu_lookup_fans(dev->dev.of_node);
-
-       /* Add the driver */
-       return i2c_add_driver(&therm_pm72_driver);
-}
-
-static int fcu_of_remove(struct platform_device* dev)
-{
-       i2c_del_driver(&therm_pm72_driver);
-
-       return 0;
-}
-
-static const struct of_device_id fcu_match[] = 
-{
-       {
-       .type           = "fcu",
-       },
-       {},
-};
-MODULE_DEVICE_TABLE(of, fcu_match);
-
-static struct platform_driver fcu_of_platform_driver = 
-{
-       .driver = {
-               .name = "temperature",
-               .of_match_table = fcu_match,
-       },
-       .probe          = fcu_of_probe,
-       .remove         = fcu_of_remove
-};
-
-/*
- * Check machine type, attach to i2c controller
- */
-static int __init therm_pm72_init(void)
-{
-       rackmac = of_machine_is_compatible("RackMac3,1");
-
-       if (!of_machine_is_compatible("PowerMac7,2") &&
-           !of_machine_is_compatible("PowerMac7,3") &&
-           !rackmac)
-               return -ENODEV;
-
-       return platform_driver_register(&fcu_of_platform_driver);
-}
-
-static void __exit therm_pm72_exit(void)
-{
-       platform_driver_unregister(&fcu_of_platform_driver);
-}
-
-module_init(therm_pm72_init);
-module_exit(therm_pm72_exit);
-
-MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
-MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
-MODULE_LICENSE("GPL");
-
diff --git a/drivers/macintosh/therm_pm72.h b/drivers/macintosh/therm_pm72.h
deleted file mode 100644 (file)
index df3680e..0000000
+++ /dev/null
@@ -1,326 +0,0 @@
-#ifndef __THERM_PMAC_7_2_H__
-#define __THERM_PMAC_7_2_H__
-
-typedef unsigned short fu16;
-typedef int fs32;
-typedef short fs16;
-
-struct mpu_data
-{
-       u8      signature;              /* 0x00 - EEPROM sig. */
-       u8      bytes_used;             /* 0x01 - Bytes used in eeprom (160 ?) */
-       u8      size;                   /* 0x02 - EEPROM size (256 ?) */
-       u8      version;                /* 0x03 - EEPROM version */
-       u32     data_revision;          /* 0x04 - Dataset revision */
-       u8      processor_bin_code[3];  /* 0x08 - Processor BIN code */
-       u8      bin_code_expansion;     /* 0x0b - ??? (padding ?) */
-       u8      processor_num;          /* 0x0c - Number of CPUs on this MPU */
-       u8      input_mul_bus_div;      /* 0x0d - Clock input multiplier/bus divider */
-       u8      reserved1[2];           /* 0x0e - */
-       u32     input_clk_freq_high;    /* 0x10 - Input clock frequency high */
-       u8      cpu_nb_target_cycles;   /* 0x14 - ??? */
-       u8      cpu_statlat;            /* 0x15 - ??? */
-       u8      cpu_snooplat;           /* 0x16 - ??? */
-       u8      cpu_snoopacc;           /* 0x17 - ??? */
-       u8      nb_paamwin;             /* 0x18 - ??? */
-       u8      nb_statlat;             /* 0x19 - ??? */
-       u8      nb_snooplat;            /* 0x1a - ??? */
-       u8      nb_snoopwin;            /* 0x1b - ??? */
-       u8      api_bus_mode;           /* 0x1c - ??? */
-       u8      reserved2[3];           /* 0x1d - */
-       u32     input_clk_freq_low;     /* 0x20 - Input clock frequency low */
-       u8      processor_card_slot;    /* 0x24 - Processor card slot number */
-       u8      reserved3[2];           /* 0x25 - */
-       u8      padjmax;                /* 0x27 - Max power adjustment (Not in OF!) */
-       u8      ttarget;                /* 0x28 - Target temperature */
-       u8      tmax;                   /* 0x29 - Max temperature */
-       u8      pmaxh;                  /* 0x2a - Max power */
-       u8      tguardband;             /* 0x2b - Guardband temp ??? Hist. len in OSX */
-       fs32    pid_gp;                 /* 0x2c - PID proportional gain */
-       fs32    pid_gr;                 /* 0x30 - PID reset gain */
-       fs32    pid_gd;                 /* 0x34 - PID derivative gain */
-       fu16    voph;                   /* 0x38 - Vop High */
-       fu16    vopl;                   /* 0x3a - Vop Low */
-       fs16    nactual_die;            /* 0x3c - nActual Die */
-       fs16    nactual_heatsink;       /* 0x3e - nActual Heatsink */
-       fs16    nactual_system;         /* 0x40 - nActual System */
-       u16     calibration_flags;      /* 0x42 - Calibration flags */
-       fu16    mdiode;                 /* 0x44 - Diode M value (scaling factor) */
-       fs16    bdiode;                 /* 0x46 - Diode B value (offset) */
-       fs32    theta_heat_sink;        /* 0x48 - Theta heat sink */
-       u16     rminn_intake_fan;       /* 0x4c - Intake fan min RPM */
-       u16     rmaxn_intake_fan;       /* 0x4e - Intake fan max RPM */
-       u16     rminn_exhaust_fan;      /* 0x50 - Exhaust fan min RPM */
-       u16     rmaxn_exhaust_fan;      /* 0x52 - Exhaust fan max RPM */
-       u8      processor_part_num[8];  /* 0x54 - Processor part number XX pumps min/max */
-       u32     processor_lot_num;      /* 0x5c - Processor lot number */
-       u8      orig_card_sernum[0x10]; /* 0x60 - Card original serial number */
-       u8      curr_card_sernum[0x10]; /* 0x70 - Card current serial number */
-       u8      mlb_sernum[0x18];       /* 0x80 - MLB serial number */
-       u32     checksum1;              /* 0x98 - */
-       u32     checksum2;              /* 0x9c - */    
-}; /* Total size = 0xa0 */
-
-/* Display a 16.16 fixed point value */
-#define FIX32TOPRINT(f)        ((f) >> 16),((((f) & 0xffff) * 1000) >> 16)
-
-/*
- * Maximum number of seconds to be in critical state (after a
- * normal shutdown attempt). If the machine isn't down after
- * this counter elapses, we force an immediate machine power
- * off.
- */
-#define MAX_CRITICAL_STATE                     30
-static char * critical_overtemp_path = "/sbin/critical_overtemp";
-
-/*
- * This option is "weird" :) Basically, if you define this to 1
- * the control loop for the RPMs fans (not PWMs) will apply the
- * correction factor obtained from the PID to the _actual_ RPM
- * speed read from the FCU.
- * If you define the below constant to 0, then it will be
- * applied to the setpoint RPM speed, that is basically the
- * speed we proviously "asked" for.
- *
- * I'm not sure which of these Apple's algorithm is supposed
- * to use
- */
-#define RPM_PID_USE_ACTUAL_SPEED               0
-
-/*
- * i2c IDs. Currently, we hard code those and assume that
- * the FCU is on U3 bus 1 while all sensors are on U3 bus
- * 0. This appear to be safe enough for this first version
- * of the driver, though I would accept any clean patch
- * doing a better use of the device-tree without turning the
- * while i2c registration mechanism into a racy mess
- *
- * Note: Xserve changed this. We have some bits on the K2 bus,
- * which I arbitrarily set to 0x200. Ultimately, we really want
- * too lookup these in the device-tree though
- */
-#define FAN_CTRLER_ID          0x15e
-#define SUPPLY_MONITOR_ID              0x58
-#define SUPPLY_MONITORB_ID             0x5a
-#define DRIVES_DALLAS_ID       0x94
-#define BACKSIDE_MAX_ID                0x98
-#define XSERVE_DIMMS_LM87      0x25a
-#define XSERVE_SLOTS_LM75      0x290
-
-/*
- * Some MAX6690, DS1775, LM87 register definitions
- */
-#define MAX6690_INT_TEMP       0
-#define MAX6690_EXT_TEMP       1
-#define DS1775_TEMP            0
-#define LM87_INT_TEMP          0x27
-
-/*
- * Scaling factors for the AD7417 ADC converters (except
- * for the CPU diode which is obtained from the EEPROM).
- * Those values are obtained from the property list of
- * the darwin driver
- */
-#define ADC_12V_CURRENT_SCALE  0x0320  /* _AD2 */
-#define ADC_CPU_VOLTAGE_SCALE  0x00a0  /* _AD3 */
-#define ADC_CPU_CURRENT_SCALE  0x1f40  /* _AD4 */
-
-/*
- * PID factors for the U3/Backside fan control loop. We have 2 sets
- * of values here, one set for U3 and one set for U3H
- */
-#define BACKSIDE_FAN_PWM_DEFAULT_ID    1
-#define BACKSIDE_FAN_PWM_INDEX         0
-#define BACKSIDE_PID_U3_G_d            0x02800000
-#define BACKSIDE_PID_U3H_G_d           0x01400000
-#define BACKSIDE_PID_RACK_G_d          0x00500000
-#define BACKSIDE_PID_G_p               0x00500000
-#define BACKSIDE_PID_RACK_G_p          0x0004cccc
-#define BACKSIDE_PID_G_r               0x00000000
-#define BACKSIDE_PID_U3_INPUT_TARGET   0x00410000
-#define BACKSIDE_PID_U3H_INPUT_TARGET  0x004b0000
-#define BACKSIDE_PID_RACK_INPUT_TARGET 0x00460000
-#define BACKSIDE_PID_INTERVAL          5
-#define BACKSIDE_PID_RACK_INTERVAL     1
-#define BACKSIDE_PID_OUTPUT_MAX                100
-#define BACKSIDE_PID_U3_OUTPUT_MIN     20
-#define BACKSIDE_PID_U3H_OUTPUT_MIN    20
-#define BACKSIDE_PID_HISTORY_SIZE      2
-
-struct basckside_pid_params
-{
-       s32                     G_d;
-       s32                     G_p;
-       s32                     G_r;
-       s32                     input_target;
-       s32                     output_min;
-       s32                     output_max;
-       s32                     interval;
-       int                     additive;
-};
-
-struct backside_pid_state
-{
-       int                     ticks;
-       struct i2c_client *     monitor;
-       s32                     sample_history[BACKSIDE_PID_HISTORY_SIZE];
-       s32                     error_history[BACKSIDE_PID_HISTORY_SIZE];
-       int                     cur_sample;
-       s32                     last_temp;
-       int                     pwm;
-       int                     first;
-};
-
-/*
- * PID factors for the Drive Bay fan control loop
- */
-#define DRIVES_FAN_RPM_DEFAULT_ID      2
-#define DRIVES_FAN_RPM_INDEX           1
-#define DRIVES_PID_G_d                 0x01e00000
-#define DRIVES_PID_G_p                 0x00500000
-#define DRIVES_PID_G_r                 0x00000000
-#define DRIVES_PID_INPUT_TARGET                0x00280000
-#define DRIVES_PID_INTERVAL                    5
-#define DRIVES_PID_OUTPUT_MAX          4000
-#define DRIVES_PID_OUTPUT_MIN          300
-#define DRIVES_PID_HISTORY_SIZE                2
-
-struct drives_pid_state
-{
-       int                     ticks;
-       struct i2c_client *     monitor;
-       s32                     sample_history[BACKSIDE_PID_HISTORY_SIZE];
-       s32                     error_history[BACKSIDE_PID_HISTORY_SIZE];
-       int                     cur_sample;
-       s32                     last_temp;
-       int                     rpm;
-       int                     first;
-};
-
-#define SLOTS_FAN_PWM_DEFAULT_ID       2
-#define SLOTS_FAN_PWM_INDEX            2
-#define        SLOTS_FAN_DEFAULT_PWM           40 /* Do better here ! */
-
-
-/*
- * PID factors for the Xserve DIMM control loop
- */
-#define DIMM_PID_G_d                   0
-#define DIMM_PID_G_p                   0
-#define DIMM_PID_G_r                   0x06553600
-#define DIMM_PID_INPUT_TARGET          3276800
-#define DIMM_PID_INTERVAL              1
-#define DIMM_PID_OUTPUT_MAX            14000
-#define DIMM_PID_OUTPUT_MIN            4000
-#define DIMM_PID_HISTORY_SIZE          20
-
-struct dimm_pid_state
-{
-       int                     ticks;
-       struct i2c_client *     monitor;
-       s32                     sample_history[DIMM_PID_HISTORY_SIZE];
-       s32                     error_history[DIMM_PID_HISTORY_SIZE];
-       int                     cur_sample;
-       s32                     last_temp;
-       int                     first;
-       int                     output;
-};
-
-
-/*
- * PID factors for the Xserve Slots control loop
- */
-#define SLOTS_PID_G_d                  0
-#define SLOTS_PID_G_p                  0
-#define SLOTS_PID_G_r                  0x00100000
-#define SLOTS_PID_INPUT_TARGET         3200000
-#define SLOTS_PID_INTERVAL             1
-#define SLOTS_PID_OUTPUT_MAX           100
-#define SLOTS_PID_OUTPUT_MIN           20
-#define SLOTS_PID_HISTORY_SIZE         20
-
-struct slots_pid_state
-{
-       int                     ticks;
-       struct i2c_client *     monitor;
-       s32                     sample_history[SLOTS_PID_HISTORY_SIZE];
-       s32                     error_history[SLOTS_PID_HISTORY_SIZE];
-       int                     cur_sample;
-       s32                     last_temp;
-       int                     first;
-       int                     pwm;
-};
-
-
-
-/* Desktops */
-
-#define CPUA_INTAKE_FAN_RPM_DEFAULT_ID 3
-#define CPUA_EXHAUST_FAN_RPM_DEFAULT_ID        4
-#define CPUB_INTAKE_FAN_RPM_DEFAULT_ID 5
-#define CPUB_EXHAUST_FAN_RPM_DEFAULT_ID        6
-
-#define CPUA_INTAKE_FAN_RPM_INDEX      3
-#define CPUA_EXHAUST_FAN_RPM_INDEX     4
-#define CPUB_INTAKE_FAN_RPM_INDEX      5
-#define CPUB_EXHAUST_FAN_RPM_INDEX     6
-
-#define CPU_INTAKE_SCALE               0x0000f852
-#define CPU_TEMP_HISTORY_SIZE          2
-#define CPU_POWER_HISTORY_SIZE         10
-#define CPU_PID_INTERVAL               1
-#define CPU_MAX_OVERTEMP               90
-
-#define CPUA_PUMP_RPM_INDEX            7
-#define CPUB_PUMP_RPM_INDEX            8
-#define CPU_PUMP_OUTPUT_MAX            3200
-#define CPU_PUMP_OUTPUT_MIN            1250
-
-/* Xserve */
-#define CPU_A1_FAN_RPM_INDEX           9
-#define CPU_A2_FAN_RPM_INDEX           10
-#define CPU_A3_FAN_RPM_INDEX           11
-#define CPU_B1_FAN_RPM_INDEX           12
-#define CPU_B2_FAN_RPM_INDEX           13
-#define CPU_B3_FAN_RPM_INDEX           14
-
-
-struct cpu_pid_state
-{
-       int                     index;
-       struct i2c_client *     monitor;
-       struct mpu_data         mpu;
-       int                     overtemp;
-       s32                     temp_history[CPU_TEMP_HISTORY_SIZE];
-       int                     cur_temp;
-       s32                     power_history[CPU_POWER_HISTORY_SIZE];
-       s32                     error_history[CPU_POWER_HISTORY_SIZE];
-       int                     cur_power;
-       int                     count_power;
-       int                     rpm;
-       int                     intake_rpm;
-       s32                     voltage;
-       s32                     current_a;
-       s32                     last_temp;
-       s32                     last_power;
-       int                     first;
-       u8                      adc_config;
-       s32                     pump_min;
-       s32                     pump_max;
-};
-
-/* Tickle FCU every 10 seconds */
-#define FCU_TICKLE_TICKS       10
-
-/*
- * Driver state
- */
-enum {
-       state_detached,
-       state_attaching,
-       state_attached,
-       state_detaching,
-};
-
-
-#endif /* __THERM_PMAC_7_2_H__ */